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Taking shape:
The path to myosin activation in the

Drosophila ventral furrow

by

Natalie C. Heer

Submitted to the Department of Biology on December 31s, 2017, in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy in Biology

Abstract

Creating biological form requires the generation of forces to rearrange tissues, as well as the
patterning and organizational control of those forces to create the correct shapes. Force
generation by actomyosin networks is a major driver of morphogenesis across many systems. The
organization of actomyosin networks across multiple length scales is critical in generating
biological form, including the Drosophila melanogaster ventral furrow. Using quantitative
microscopy to measure the pattern of transcription, signaling, myosin activation, and cell shape
in the Drosophila mesoderm, I found that cells within the ventral domain accumulate different
amounts of active apical non-muscle myosin 2 depending on their distance from the ventral
midline. This gradient in active myosin depends on a newly quantified gradient in upstream
signaling proteins, including the transcription factor Twist. Experimental broadening of the
myosin domain in vivo disrupts tissue curvature where active myosin is uniform. From this data,
I argue that apical contractility gradients are important for tissue folding. Finally, I found that
the gradient in active myosin is shaped by inhibitors of RhoA signaling downstream of the Twist
gradient. This work improves our of understanding how actomyosin activity at the tissue level in
the Drosophila ventral furrow is organized and how that organization impacts biological form.

Thesis Supervisor: Adam C. Martin
Title: Associate Professor of Biology
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Chapter 1. Tension, Contraction, and Tissue
Morphogenesis

Natalie C. Heer andAdam C. Martin

Portions of this chapter were published as: Heer, N. C. & Martin, A. C. Tension,
contraction, and tissue morphogenesis. Development 144, 4249-4260 (2017). The
published paper was conceived and edited jointly by NCH and ACM. ACM was primarily
responsible for drafting most parts of section 1.2. NCH was primarily responsible for
drafting all other sections.

One hundred years ago, in his seminal work On Growth and Form, D'Arcy Wentworth

Thompson proposed that an organism's form is a "diagram of the forces" that have acted and

continue to act upon it (Thompson, 1917). When Thompson was writing, what those forces

were and how they were generated was a mystery, but Thompson's work has inspired generations

of biologists to think quantitatively about the creation of biological form. The discovery of the

types of forces influencing morphogenesis has relied on the inference of force from individual cell

shapes or from direct measurements of force through manipulation of the tissue. A number of

factors have been implicated in generating these types of forces. In particular, genetic screens

identifying mutations that disrupt morphogenesis have revealed that a critical driver of

morphogenesis is the actomyosin cytoskeleton, which is composed of actin (that can polymerize

into filaments) and myosin (a molecular motor) that together compose networks that generate

contractile force (Quintin et al., 2008). The actomyosin cytoskeleton generates the force required

to drive ventral furrow formation in the Drosophila embryo.
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Posterior Figure 1.1: Diagram of a
Drosophila embryo before and
after ventral furrow formation.
The anterior portion of the

nterior eembryo is cut away to show the
cross-sectional view. The ventral

Ventral domain of the embryo is colored

furrow in green. The anterior-posterior

formation and dorsal-ventral axes are
marked.

Dorsal

Drosophila ventral furrow formation is one of the first major tissue rearrangements in the embryo.

As part of Drosophila gastrulation, it is the folding event along the anterior-posterior (long) axis

of the embryo that results in the internalization of the mesodermal precursor cells (Fig. 1.1)

(Leptin and Grunewald, 1990). As an overview, the first section of the review will discuss how

contractile forces are generated, from the molecular to the tissue level. The second section will

discuss examples of tissue morphogenesis that illustrate how patterns of contractility sculpt

tissues, from single cell ingression to compartment boundary maintenance. The final section will

present an overview of the previous understanding of the patterning of the Drosophila embryo

that is required for ventral furrow formation.

1.1. Contractile force generation: From molecules to tissues

While D'Arcy Thompson dismissed "the many theories and speculations which would

connect the phenomena of surface-tension with contractility [and] muscular movement"

(Thompson, 1917), we now understand that this connection is paramount. However, the tension

at cell surfaces is not driven by surface tension, as Thompson understood it, but by tension in the

cortical actin layer'. Below, I begin with an overview of the molecular components of contractile

' When D'Arcy Thompson referred to "surface tension" at cell boundaries he equated it to the
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networks that underlie this tension. I then discuss advances in our understanding of the

subcellular organization of these networks and how they generate contractile force, thus

increasing cortical tension. Next, I discuss how these networks are connected between cells and

the role these networks play in shaping the mechanical properties of the tissue.

To illustrate the fundamental mechanisms of actomyosin based contractility, I focus on

two systems of actomyosin based contractile systems. Most obviously, the Drosophila ventral

furrow, because in addition to being the system in which the experiments in this thesis were

performed, it has also been the system instrumental for recent advances in our understanding of

contractility generated by non-muscle, actomyosin networks in multicellular organisms. On the

cellular level in the Drosophila ventral furrow, actomyosin contractility drives the constriction of

the apical side of polarized epithelial cells. Fission yeast is the second system which has

significantly contributed to recent advances in our understanding of actomyosin based force

generation on the molecular level. In fission yeast cytokinesis, a contractile actomyosin ring

assembles at the equator of the yeast cell and constricts, separating the daughter cells. The fission

yeast contractile ring is arguably the best-understood model of non-muscle actomyosin-based

contractile force generation.

surface tension at an air-liquid or liquid-liquid interface. This surface tension is driven by the
minimization of the interface to realize the most energetically preferable arrangement of
molecules in a liquid drop. While the plasma membrane does have an inherent surface tension,
the forces we discuss in this review are primarily, although not exclusively, the result of forces
generated by an actomyosin network in the cell cortex underlying the plasma membrane.
Going forward we will refer to this form of "effective surface tension" as cortical tension. This
is also consistent with work showing that the contribution of membrane tension to the effective
surface tension is often negligible (Krens et al., 2017, Maitre et al., 2012, Steinberg, 1963). In
the systems we discuss, relative cortical tension can be measured without determining the
source of the stress in the tissue and often without generating an absolute measurement of
force. Because cortical tension and surface tension drive similar changes in shape, many of the
in silico models discussed here model cortical tension as surface or line tension.
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1.1.1. Molecular level: the importance of myosin motorfunction

Our understanding of the role of physical forces in generating organism and tissue form is

predicated on our understanding the molecular mechanisms that convert chemical energy to

kinetic energy. There are many mechanisms for biological systems to generate force, including

more than one mechanism to generate contractile force (Vale and Milligan, 2000). There is

evidence that all of the systems presented in this work generate force through the actomyosin

cytoskeleton. Actin and myosin are the two primary components of the actomyosin cytoskeleton,

both of which convert chemical energy to force generation. Actin networks are regulated by

proteins that control the rate of polymerization and depolymerization of individual actin

filaments (F-actin). In addition, a host of other proteins control actin network architecture by

crosslinking F-actin together, by bundling actin filaments into cables, and by regulating the

stability or formation of dendritic branches that are formed by-the Arp2/3 complex (Pollard,

2007). Myosin (non-muscle myosin 2 in this case) is primarily regulated through

phosphorylation of the myosin regulatory light chain, which controls motor activity and the

formation of bipolar filaments important for contractile function (Heissler and Sellers, 2016).

Note that some myosin 2 proteins, such as that in fission yeast, do not form a typical

minifilament, but form other types of oligomers (Laplante et al., 2016). Regulation of cell

contractility through transcriptional regulation of myosin and actin regulators has also been

observed (Calvo et al., 2013; Pollard, 2007). Mechanisms of actomyosin based contraction can be

roughly classified as being dependent on or independent of myosin 2 motor activity. Evidence

suggests that both such modes of contractility exist in cells (Ma et al., 2012; Vicente-Manzanares

et al., 2007). Thus, one or both modes could be important for tissue-level forces.

The classical model of contractile force generation has myosin 2 functioning as a motor,
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converting energy from ATP hydrolysis into directed motion and cytoskeletal network

contraction. This contractile model relies on active myosin 2 forming higher-order structures, or

oligomers (Fenix et al., 2016; Laplante et al., 2016). The most common type of oligomer is a

bipolar myosin filament whose formation is regulated by phosphorylation of the myosin 2

regulatory light chain by various kinases (e.g., Rho Kinase, ROCK and Citron kinase) (Fig.

1.2A) (Amano et al., 1996; Heissler and Sellers, 2014; Yamashiro et al., 2003). In bipolar myosin

filaments, motor heads at both ends of the myosin filament are able to interact with and walk

along distinct actin filaments (F-actin) towards the barbed or plus end (Fig. 1.2A, green arrows).

In striated muscle, a stereotyped version of this interaction slides antiparallel F-actin networks

together (Huxley and Hanson, 1954). One prediction of this model is that the speed of

contraction is correlated with the ATPase activity of the motor (and more specifically ADP

release), which has been observed experimentally when compared to both muscle contraction

rates and in vitro motility assays (Barany, 1967; Yengo et al., 2012). This prediction is important

for distinguishing between the motor dependent and independent models of contractility.

Alternatively, myosin 2 and other proteins can function as crosslinkers, allowing

depolymerization of actin filaments to drive contraction (Fig. 1.2B) (Sun et al., 2010). This type

of myosin motor-independent contraction has been shown to operate in ring closure for

cytokinetic events in several organisms (Ma et al., 2012; Mendes Pinto et al., 2012; Xue and

Sokac, 2016). In the early Drosophila embryo, there is a mass ring-closure event during which all

cells are separated from a central yolk compartment. Interestingly, this process occurs in two

stages, one of which depends on myosin motor activity, and another that is myosin-independent

and depends on actin depolymerization (Xue and Sokac, 2016). This suggests that these two

mechanisms could be used individually or in combination to effect contraction.
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A Motor-based contractility B Depolymerization-based contractility

Inactive ROCK G-Actin 4
Myosin V - F-Actin +

- F-Actin +

MMyiinbarbed+

pointed 4 Movement

Movement

+ 4

Figure 1.2: Diagram of the two models by which networks of actin and myosin can generate contractile

forces. (A) Myosin is activated by ROCK and polymerizes into a bipolar filament (green). Contractility

(black arrows) is generated by the motor activity of myosin as it walks along antiparallel actin filaments

(green arrows). (B) Contractility (black arrows) is driven by F-actin depolymerization into G-actin (red).

In this case, myosin (gray) would act as one of potentially many crosslinkers between neighboring

filaments. Plus and minus ends of the F-actin filaments are denoted. Note that here, for illustrative

purposes, we denote actin subunits depolymerizing from the filament end, but in reality proteins that

mediate depolymerization (i.e., Cofilin) cause filament severing (Andrianantoandro and Pollard, 2006).

It is difficult to determine whether contractile events in vivo depend on the motor

function of myosin 2. This is because it is difficult to distinguish whether myosin motor or

crosslinking function is required. Common methods to inhibit myosin 2, such as Rho-Kinase

(ROCK) inhibition, disrupt both motor and crosslinking functions because they prevent

phosphorylation and, thus, the conformational changes that are required for bipolar filament

assembly (Craig et al., 1983). Another myosin inhibitor, blebbistatin locks the actin-binding

domain of myosin 2 in a weak actin binding state, which has similar affinity to actin as

unphosphorylated myosin even though the myosin is filamentous (Kovacs et al., 2004;

Ramamurthy et al., 2004). Therefore, testing for myosin's motor activity requires mutants that

only disrupt this activity. For example, mutants of the myosin heavy chain that are known to

11
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disrupt motor activity have been used for this purpose (Ma et al., 2012; Vicente-Manzanares et

al., 2007). In addition, some mutations in the Drosophila myosin regulatory light chain decrease

motor activity without overtly affecting bipolar filament formation (Vasquez et al., 2016).

1.1.2. Cell level: the importance ofactomyosin network organization

In striated muscle, contraction relies on a stereotypic antiparallel organization of F-actin

arrays within a sarcomere, with bipolar myosin filaments in the center (Fig. 1.2A). However,

models of contraction with purified components demonstrate that unstructured networks can

also contract, and this is thought to correspond to the situation in the cortex of smooth muscle

and nonmuscle cells (Koenderink et al., 2009; Murrell and Gardel, 2012; Soares e Silva et al.,

2011). Here we discuss findings that demonstrate the importance of network organization for

contracting cells, even in what were previously considered unstructured networks. The

reconstitution of contractility with purified components and defined F-actin architectures has

shown that maximizing the antiparallel organization of actin networks enhances myosin-based

constriction velocity (Reymann et al., 2012). This suggests that antiparallel F-actin networks are

more efficient at generating contractile forces. Further supporting the importance of actin

network organization in producing contractile force, modeling of fission yeast cytokinesis finds

that actomyosin rings in which myosin is oriented nearer to F-actin minus ends-a more

sarcomere-like organization-are able to generate higher tension (Fig. 1.3A, see inset)

(Stachowiak et al., 2014). Though the organization of the actomyosin network is important for

contractile force generation in these in vitro and in silico experiments, it is often unclear whether

such organization exists and how it is generated in nonmuscle tissues.
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Myosin
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B Myosin polarization
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D

Radial Sarcomere
Impaired turnover:
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Figure 1.3: Diagram of actomyosin network organization in Drosophila ventral furrow cells and fission

yeast contractile ring. (A) Diagram of the organization of a normal contractile ring. Inset shows actin

polymerizing from a node structure that contains myosin and an F-actin elongating formin, capturing a
second myosin node, and being severed to maintain the correct density of actin. F-actin is in gray and
myosin oligomers are in green. There is not a net polarity to this network, but within the network myosin

captures polymerizing F-actin near the minus end and pulls on it. (B) The actomyosin network in the
Drosophila ventral furrow is organized in a manner that resembles a sarcomere, but is radially arranged. The

myosin (green) is activated at the center of the apical cell surface. Actin organization is depicted in gray.

The organization of each component is depicted separately and together. (C) Diagram of a contractile ring

with actin turnover inhibited. F-actin is in gray and myosin-containing nodes are in green. Myosin nodes

aggregate because they are never detached from each other. (D) Diagram of the actin network in a

Drosophila ventral furrow cell that has impaired turnover. The network aggregates and separates from

junctions on one side of the cell.

Epithelia have properties that might enable organized actomyosin networks to form at a

cellular level as has been found to be the case in the Drosophila embryo. Adherens junctions

around the apical circumference of epithelial cells serve as platforms in which F-actin is both

assembled and anchored (Michael and Yap, 2013). In ventral furrow cells of the Drosophila
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embryo, F-actin plus ends are enriched at the adherens junctions at the boundaries of the apical

surface and F-actin minus ends are enriched in the apical center (Fig. 1.3B) (Coravos and

Martin, 2016). In many contracting epithelial cells, including salivary gland cells, amnioserosa,

and follicle cells, active RhoA, ROCK, and myosin have been found to accumulate at the center

of the apical or basal cortex (referred to as medial myosin accumulation) (Chung et al., 2017;

Coravos and Martin, 2016; Mason et al., 2013; Mason et al., 2016; Qin et al., 2017). Thus,

ventral furrow cells, and possibly these other cell types, have a cytoskeletal organization that

resembles a muscle sarcomere, except that it is radially arranged. Disrupting this organized

structure by activating myosin across the entire apical surface inhibits apical constriction,

suggesting that this network organization is critical for contraction (Coravos and Martin, 2016).

Consistent with a sarcomere-like (i.e., motor-dependent) mode of constriction in ventral furrow

cells, mutants in the myosin regulatory light chain that decrease myosin's motor/ATPase activity

result in a proportionate decrease in apical constriction and tissue folding rate (Vasquez et al.,

2016). Thus, in some cases, non-muscle cells require spatially organized myosin motor activity to

contract cells and tissues. Future research is needed to determine whether mammalian

nonmuscle cell types also have this type of cytoskeletal organization or if this is an adaptation to

support the rapid embryonic development of insects or other invertebrates.

1.1.3. Transmittingforce between cells: the importance ofactin network turnover

The creation of many biological forms requires the propagation of forces across tissues.

This is seen in the morphogenesis of the Drosophila pupal wing, the folding of the neural tube,

and the formation of the Drosophila ventral furrow. In the pupal wing, the tissue must be

anchored on the distal end to the extracellular matrix and on the other to the wing hinge, which

14



contracts, for the epithelium to expand correctly (Aigouy et al., 2010). This suggests that forces

are propagated across the full length of the wing as hinge contraction stretches the wing into

shape (Etournay et al., 2015; Ray et al., 2015). Recent work on mammalian neural tube closure

has also shown that forces are propagated across the neuroepithelium as it folds (Galea et al.,

2017). This propagation involves supracellular actomyosin cables, which in vertebrate

gastrulation form across the cell surface and in neurulation at cell-cell interfaces. These

supracellular cables are linked through intercellular adhesions to form a larger network (Galea et

al., 2017; Pfister et al., 2016). The folding of the neural tube is a particularly important example

given that defects in neural tube closure result in a serious and relatively common birth defect,

spina bifida (Wallingford et al., 2013). We speculate that the following discussion will be

relevant to understanding causes of spina bifida.

For tissues to transmit forces, the individual cells that make up the tissue must be

mechanically linked. In epithelial tissues this often occurs at adherens junctions, which contain

the self-binding adhesion receptor E-Cadherin (Lecuit and Yap, 2015). However, cells in some

tissue types can be connected through an integrin-ECM-integrin attachment (e.g., a

myotendinous junction) (Goody et al., 2015). In addition to maintaining extracellular

attachment, to transmit force and maintain tissue integrity, the junctional proteins in the

cytoplasm need to be robustly coupled to the actomyosin cortex as the cortex constricts and/or

remodels (Roh-Johnson et al., 2012). In the case of myosin-motor-driven contraction, this

attachment is thought to depend on actin-adhesion receptor interactions through adaptor

proteins such as a-catenin and p-catenin (Ladoux et al., 2015). In addition, other F-actin-

binding proteins such as vinculin and afadin can also be recruited to intercellular junctions and

are important for junction functionality (Choi et al., 2016; Huveneers et al., 2012). Interestingly,

15



in less complex metazoans, such as the sea anemone, the interaction between a-catenin and F-

actin is constitutive (Clarke et al., 2016). However, in mammals strong binding between a-

catenin and F-actin depends on applied force, suggesting a catch-bond like behavior (Buckley et

al., 2014). In an in vitro system, actin binding by G. gallus vinculin responds asymmetrically to

applied force (i.e. force towards the F-actin minus end results in a maximally stable bond)

(Huang et al., 2017). Such an asymmetry could result in a long-range polarity in the actin

cytoskeletal network. Intriguingly, this asymmetry could help drive the sarcomere-like

configuration of the actin network observed in ventral furrow cells (Fig. 1.3B). The additional

layer of feedback in the mammalian system impacts the ability of cells to transmit forces and

should be taken into account when analyzing these systems.

One lesson about the mechanism of intercellular force transmission ironically comes from

studies of unicellular fission yeast. This lesson involves the importance of actin turnover (i.e.,

actin filament assembly and disassembly) in mediating the coupling between the actomyosin

cortex and the adherens junction. Models of contractile ring formation in fission yeast have

shown that actin disassembly and remodeling are required to generate a uniform contractile ring

network. Actin turnover counterbalances the clustering/aggregation of the network that happens

as the myosin motor contracts it (Fig. 1.3A) (Stachowiak et al., 2014; Vavylonis et al., 2008).

Disrupting actin turnover causes actomyosin to aggregate unevenly, not only in the contractile

ring, but also in contractile ventral furrow cells (Fig. 1.3C,D) (Chen and Pollard, 2011; Jodoin et

al., 2015). Continuous actin turnover during contraction explains why the density of the actin

network is constant as the network contracts in both the fission yeast contractile ring and cells of

the Drosophila ventral furrow (Mason et al., 2013; Wu and Pollard, 2005). In addition, early

work on sea urchin cytokinesis has demonstrated that the volume of the contractile ring
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decreased with constriction, suggesting that ring components are disassembled during

contraction (Schroeder, 1972). In the ventral furrow, F-actin disassembly and the renewal of the

apical actin meshwork are important for the stable coupling of that apical network to the

adherens junctions; in the absence of robust actin turnover actomyosin aggregates and separates

from the junction (Fig. 1.3D) (Jodoin et al., 2015).

In the context of neural tube closure, this mechanism of actin turnover propagating forces

across a tissue could possibly explain the role of Cofilin, an actin depolymerase, in neural tube

defects. Single nucleotide polymorphisms (SNPs) in the CFL1 gene, which encodes the non-

muscle Cofilin, are associated with human spina bifida, although it is not clear whether or how

these SNPs impact Cofilin function (Zhu et al., 2007). In addition, Cofilin mutants result in

neural tube defects in mice (Escuin et al., 2015; Gurniak et al., 2005). Disruption of actin

turnover also affects the establishment of planar cell polarity and this role for actin turnover may

also play a role in the neural tube defect (Mahaffey et al., 2013). Although it is still debated

whether neural tube closure is driven by myosin 2 motor-dependent contractility (Escuin et al.,

2015), it is possible that actin turnover contributes to morphogenesis by enabling stable

connections of actomyosin networks to intercellular junctions. For future studies of neural tube

closure, it will be important to use live imaging to determine whether actin networks aggregate

and separate from junctions in Cofilin mutants.

1.1.4. Actomyosin contractile systems regulate tissue stiffness

In addition to generating contractility, actomyosin networks contribute to the material

properties of cells and tissues, which impacts how tissues respond to contractile forces during

development. The details of actin network mechanics have been reviewed elsewhere (Gardel et
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al., 2008). Briefly, the elastic properties of actin networks depend on the actin and crosslinker

concentration and on the amount of network stress, all of which are tightly regulated in the cell

(Gardel et al., 2004; Xu et al., 2000). In actomyosin networks reconstituted from purified

proteins, the effect of myosin activity on the properties of the actin network can vary. In the case

of high ATP levels, myosin can fluidize the network; however, myosin can stiffen the network at

low ATP levels, where the myosin motor heads will remain bound to F-actin for longer (Gardel

et al., 2008).

Actomyosin contractility is also important for regulating tissue stiffness in developing

organisms. This was observed in the context of axis elongation in the Xenopus embryo, where

tissue stiffness was decreased when ROCK was inhibited (Zhou et al., 2009). The stiffness may

be important for development as it increases over the course of axis elongation. One role for the

increase in stiffness may be to allow the elongating tissue to push against neighboring tissues. In

tissue explants of the Xenopus neural plate, actomyosin contractility was required for elongation

when the tissue was cultured in agarose, which provides resistance to elongation, but not when

the explant was cultured in liquid medium (Zhou et al., 2015). Additionally, during elongation

of the C. elegans embryo, the actomyosin cortex plays a role in maintaining the anisotropic

stiffness that is thought to drive tissue elongation (Vuong-Brender et al., 2017). In this sense,

regulation of myosin activity and the organization of the actin network can affect morphogenesis

without necessarily generating tissue contraction. The implication of this dual role for

actomyosin networks in generating contractility and also regulating the mechanical properties of

the same or neighboring tissues is that inhibiting myosin and F-actin may simultaneously block

contractility and change the mechanical properties of the surrounding tissue making it difficult to

interpret resulting mutant phenotypes.
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Relaxation of cortical tension through the negative regulation of myosin also plays an

important role in certain morphogenetic processes, including the expansion of the ventricle

lumen in the zebrafish hindbrain and processes of tissue elongation that include zebrafish epiboly

and Drosophila dorsal closure. The expansion or inflation of the zebrafish hindbrain requires the

epithelium surrounding the ventricle lumen to relax through the activity of myosin phosphatase,

an inhibitor of myosin activation (Gutzman and Sive, 2010). Mutation of myosin phosphatase

causes a smaller ventricle than wildtype, presumably because the surrounding epithelium has

high cortical tension or stiffness and cannot deform. In a recent paper, it was shown that an Arf

guanine nucleotide exchange factor, known as cytohesin, is required to downregulate actomyosin

contractility to enable tissue elongation in both zebrafish and Drosophila (West et al., 2017).

Thus, the regulation of stiffness through modulation of actomyosin contractility appears to be a

strategy by which organisms restrict or permit tissue deformations.

1.2. Tissue level organization of contractility and form

The next step in understanding how biological form is created is to understand how

different tissue-level organizations of actomyosin contractility generate different biological forms.

The following section discusses a few simple developmental systems in which the relationship

between tissue level organization of actomyosin contractility and the resulting biological form are

beginning to be understood. In many of the cases I have chosen, our understanding of the

process has been enhanced with the help of minimal mechanical models. Many of these models

approximate actomyosin contractility with general increases in surface tension. While surface

tension and energy minimization in the manner of soap bubbles is not consistent with our

current understanding of the energy-consuming mechanisms governing cell shape, energy
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models, such as vertex models, are often useful for modeling morphogenetic systems (Farhadifar

et al., 2007; Fletcher et al., 2014). Furthermore, the investigation of how contractility drives .

morphogenesis is often accompanied by measurements of cortical tension. However, it should be

noted that, in addition to actomyosin-based contractility, tissue surface tension is influenced by

cell-cell adhesion and cell osmotic pressure (Krens et al., 2017; Maitre et al., 2012; Steinberg,

1963).

The first examples presented are simple examples in which individual cells have elevated

levels of cortical tension with respect to their neighbors. In general, these systems all use a

conserved force-generating module, the actomyosin cytoskeleton. In many cases, the exact nature

and organization of the actomyosin cytoskeleton has yet to be established. However, the

arrangement of contracting cells influences where forces are balanced, which ultimately affects

the resulting form.

1.2.1. Differential tension driving epithelial cell ingression

Cell ingression is the process by which single or multiple cells leave an epithelial layer.

Cell ingression from an epithelium is important for regulating growth and homeostasis and is

also important for tissue architecture. In numerous examples, from C. elegans to the mouse, it has

been shown that cell ingression is associated with elevated contractility and cortical tension in the

ingressing cell. The tension differential between ingressing and neighboring cells during the

ingression processes is often dependent on actomyosin accumulation in the ingressing cell or at

the boundary between the ingressing cell and non-ingressing cells (Fig. 1.4A,B).

In early development, cell ingression is important to physically separate cells with
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Figure 1.4: Differential contractility can cause ingression, cell sorting, and morphological changes.
(A) enface view of an epithelial cell experiencing higher cortical tension levels than neighboring cells
illustrating the difference between medial localization of the actomyosin network (top) and

junctional localization (bottom). Actomyosin networks are illustrated in yellow. (B) Apical-basal
cross-section of ingressing cell before (top) and during (bottom) ingression. Cortical tension is
denoted in green. (C) Diagram of sorting between two cell types: white cells (lower tension) and
gray cells (higher tension). Relative cortical tension is denoted in green, with darker green indicating
higher tension. (D) Diagram of cyst formation due to high tension at clone boundaries and resulting
inward pressure. (A-D) Red arrows denote the direction of high tension force and blue arrows
denote direction of low tension force. Black arrows denote movement.

different fates. During C. elegans gastrulation, two of the cells fated to be endoderm ingress from

the surface layer (Lee and Goldstein, 2003). In mouse, the cells that will form the fetus come

from the inner cell mass, a collection of cells that are internalized early in development (Johnson
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and Ziomek, 1981). Cell ingression has recently been shown drive internalization for those cells

that are not internalized by asymmetric cell division (Maitre et al., 2016; Samarage et al., 2015).

In both the C. elegans and mouse examples, cells gradually reduce their surface area (in both cases

an apical surface) until they are completely enveloped by the remaining cells of the embryo. Laser

ablations have shown that internalizing cells have higher cortical tension at the apical surface

than do the neighboring cells, and that the higher levels of tension depend on actomyosin

contractility (Roh-Johnson et al., 2012; Samarage et al., 2015). The imbalance in cortical tension

between neighboring cells is likely critical for driving ingression. For instance, prior to inner cell

mass ingression in the mouse embryo there is a universal increase in cortical tension. This

universal increase in cortical tension at the embryo surface does not result in ingression, but

rather compaction of the embryo, such that cells become pressed tightly together (Maitre et al.,

2015). Compaction also depends on the extension of filopodia from some of the cells onto

neighboring cells (Fierro-Gonzalez et al., 2013). These filopodia may also be required to

generate cortical tension (Fierro-Gonzalez et al., 2013).

It is interesting to note that actomyosin exhibits different organizations in these different

systems. In C. elegans, an apical actomyosin cortex contracts centripetally to generate tension and

reduce apical surface area (Roh-Johnson et al., 2012). In contrast, ingressing inner cell mass cells

have a prominent actomyosin belt at intercellular junctions that appears to drive ingression

(Samarage et al., 2015). During compaction, the surface actomyosin cortex undergoes pulsatile or

wave-like contractions (Maitre et al., 2015). When Drosophila neuroblasts delaminate from the

surface ectoderm, another example of cell ingression, both junctional actomyosin accumulation

and pulses of apical myosin accompany ingression (An et al., 2017; Simoes et al., 2017).

Disruption of the myosin pulsing disrupted invagination although myosin depletion experiments
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have not indicated a critical role for myosin and it is possible other processes are also critical for

neuroblast ingression (An et al., 2017; Simoes et al., 2017). Despite the different spatio-temporal

organizations of myosin in these divergent systems, overall it appears that elevated cortical

tension in and around a single cell can drive cell ingression.

In general, the model that cell ingression is driven by differential regulation of cortical

tension through actomyosin contractility and thus, force imbalance, seems to hold for a variety of

systems. Apoptotic cells are extruded from epithelia in a system that parallels cell ingression.

This process also depends on increased cortical tension and actomyosin contractility, but in both

the apoptotic cell and neighboring cells (Kuipers et al., 2014; Rosenblatt et al., 2001; Slattum et

al., 2009; Toyama et al., 2008). It seems clear that high cortical tension is driven by actomyosin

activity, but it is also clear that there a diversity of ways in which actomyosin can produce force

(i.e., medial vs. junctional and autonomous vs. non-autonomous). In addition, other

mechanisms, such as changes in basolateral contractility could also drive ingression (Jodoin and

Martin, 2016; Wu et al., 2014). An interesting future avenue of research is to address why apical

constriction sometimes results in ingression and other times does not.

1.2.2. Tension between different populations ofcells

Cell types can exhibit intrinsic differences in levels of cortical tension, and it has been

shown that cortical tension can be regulated at the boundaries of different cell types (Bielmeier et

al., 2016). As we discussed previously, cortical tension is also often differentially regulated at cell-

medium (often apical) vs cell-cell (often baso-lateral) interfaces. These imbalances can lead to

cell sorting behavior (Fig. 1.4C), as well as changes to tissue shape (Fig. 1.4D) (Harris, 1976;

Krieg et al., 2008).
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Cultured aggregates of zebrafish endoderm, mesoderm, and ectoderm cells sort into

clusters of distinct cell types due to difference in cortical tension between cell types (Krieg et al.,

2008). The cells with the higher cortical tension will cluster and the cell type with lower tension

will envelop them (Fig. 1.4C, gray vs white cells). This event depends on myosin activity as well

as low osmotic pressure to create the difference in cortical tension between groups of cells (Krens

et al., 2017; Krieg et al., 2008). This cell sorting can be explained using a Cellular Potts Model,

which predicts that correct cell sorting depends not only on a difference in cortical tension

between the two cell populations, but also a difference in cortical tension between the cortex at

the cell-medium interface and the cortex at the cell-cell interface (Krieg et al., 2008; Maitre et

al., 2012). There are three levels of cortical tension in this system and both the subcellular

restriction of high tension to the tissue surface and the tension differential between the two cell

types are required for generating a multilayered structure with high-tension cells at the interior.

Another example of cell sorting is the formation of cysts in epithelial tissues (Fig. 1.4D).

It has been demonstrated that cancer cells are able to form cysts that separate them from non-

cancerous cells (Cortina et al., 2007). In addition, cysts containing cells of one cell fate have been

shown to separate from background cells of a different fate. An example of this has been

observed in the Drosophila wing imaginal disc; cysts of wild-type cells develop in the wing

epithelium where the majority of cells are misexpressing a cell-fate-specifying transcription factor

(Bielmeier et al., 2016). The formation of these cysts is yet another example of a mechanism

whereby contraction drives tissue shape change. Clones of cells that differentially express a gene

regulating cell fate accumulate myosin and F-actin along basolateral cell surfaces contacting the

neighboring wild-type tissue, suggesting activation of the actomyosin contractile cortex

(Bielmeier et al., 2016). No tension measurements were made in this system, but an in silico
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vertex model that assumed increased cortical tension at the contact boundaries between different

cell types was able to recapitulate bending of the clone into a cyst-like bulge.

Both of the previous examples involve increased cortical tension at the boundaries of the

two cell types, but different shapes emerge. The commonality is that differential cortical tension

at an interface results in physical separation of cell types. In each of the systems discussed, the

cells are able to respond to increases in tension without clear directional constraints. We next

discuss the role of tissue stiffness and resistance in modifying the effects of contractility on tissue

shape.

1.2.3. Balance versus imbalance at intercellularjunctions

Whether contractile forces are organized such that they are balanced or not at junctions is

also important for tissue shape and organization. During tissue extension, actomyosin cables can

be enriched along specific intercellular junctions due to planar cell polarity (Bertet et al., 2004;

Shindo and Wallingford, 2014; Zallen and Wieschaus, 2004). Actomyosin enrichment at

junctions in these cases is associated with tension and junctional shrinkage, suggesting that there

is unbalanced contractile force (Fig. 1.5A) (Fernandez-Gonzalez et al., 2009; Rauzi et al., 2008).

This anisotropic tension operates in tandem with polarized basal cell migration to promote axis

extension (Sun et al., 2017). Medial, not junctional, actomyosin contractility appears to elongate

new cell contacts after the old contact has disappeared (Fig. 1.5A) (Collinet et al., 2015; Yu and

Fernandez-Gonzalez, 2016). The consequence of polarized actomyosin contractility and cell

crawling is that cells converge along the dorsal-ventral axis, resulting in an anterior-posterior

extension.

Alternatively, balanced forces along junctional interfaces have been shown to resist cell
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Figure 1.5: Diagram of polarized junctional actomyosin contractility during tissue extension and at

compartment boundaries. (A) Diagram of neighbor exchange during tissue extension. Actomyosin is

planar polarized to the vertical junction. This actomyosin network leads to apical junction shrinkage

either through contraction or by directionally stabilizing fluctuations in junction length (Rauzi et al.,
2010). The junction is then expanded in the horizontal direction by medial actomyosin contractility in

green cells. (B) Diagram of forces at a compartment boundary that inhibit cell rearrangement. When a

rearrangement happens near the boundary the boundary resists deformation. For example, the

shrinking horizontal junction shrinks from one end so that the boundary remains straight. Regions of

contractility are depicted in green, with network organization diagramed in yellow. Red arrows denote

the direction of contractile tension.

movement and mixing. In both development and homeostasis, different cell types are segregated

from each other in what are known as compartments (Batlle and Wilkinson, 2012). Recent

studies have shown that actomyosin contractility is often activated at cell interfaces of the

compartment boundary (Landsberg et al., 2009; Major and Irvine, 2006; Monier et al., 2010), in

a similar manner to the process described for cyst formation in the wing (Bielmeier et al., 2016)

In this case, balanced myosin contractility and the resulting high tension maintains a straight

compartment boundary and prevents cell mixing between compartments (Fig. 1.5B). Activation

of myosin has also been shown to inhibit cell mixing and maintain boundaries between different
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cell types in Xenopus (Fagotto et al., 2013). In Drosophila epithelia, high tension at boundaries

resists the local deformations from cell division as well as to bias cell intercalation so as to prevent

cell movement across the boundary (Fig. 1.5B), and the mixing of cells of different fates (Monier

et al., 2010; Umetsu et al., 2014). Thus, similar to examples of apical actomyosin cortex

contraction, unbalanced junctional tension drives tissue shape change whereas balanced forces

resist movement.

In conclusion, these examples illustrate the variety of ways in which different patterns of

contractility and resulting tensions can sculpt the myriad of animal tissue shapes observed in

nature. These examples illustrate the importance of considering tissue context and force balance

when thinking about how biological form is created. I have focused on systems where there is

knowledge of 'active' molecular mechanisms that underlie the resulting forces and/or material

properties, there are many other systems whose analysis is likely to unearth new principles by

which cells and tissues regulate their growth and form.

1.3. Establishment of the ventral domain in the Drosophila embryo

The development of Drosophila melanogaster embryos is incredibly efficient, resulting in a

fully formed larvae in just 24 hours. Much of the speed with which the embryo develops can be

attributed to the enormous amount of resources and information deposited in the embryo

maternally. After it is laid, the embryo undergoes 13 rounds of synchronous syncytial divisions

(i.e., the nuclei divide without any cytokinetic events). After the ninth division, the nuclei move

to the periphery of the embryo where they remain until cellularization, the process in which the

nuclei are partitioned into individual cells by an ingression of the plasma membrane surrounding

the embryo. Cellularization directly precedes ventral furrow formation and results in the
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formation of a single epithelial sheet that surrounds the entire embryo. At this stage, the

epithelium has the classic apical-basal polarity, with the apical surface of the cells creating the

outer surface of the embryo. This epithelium is unique in that it lacks a basement membrane.

The ventral domain of Drosophila is defined as part of the dorsal-ventral patterning

process in the embryo. The dorsal-ventral axis is defined by the activation of the maternal

morphogen Dorsal in a gradient (Steward et al., 1988). Dorsal is deposited maternally as both

mRNA and protein and translated everywhere in the embryo, but it is activated in a gradient

along the dorsal-ventral axis by a Toll-based signaling pathway. This signaling pathway

promotes nuclear translocation of Dorsal, a transcription factor. Nuclear levels of Dorsal are

proportional to the amount of Toll signaling; the evidence for this is nicely summarized in

(Reeves and Stathopoulos, 2009). This signaling gradient is set up during oogenesis by signaling

between the embryo and the maternal follicle cells that surround the embryo. A protease cascade

is activated between the vitelline membrane and the embryo surface in a gradient along the

dorsal-ventral axis of the embryo as well (Cho et al., 2012; Hong and Hashimoto, 1995; Konrad

et al., 1998; Steen et al., 2010). This protease cascades leads to the processing and activation of

the Toll ligand Spitzle (Spz) (DeLotto and DeLotto, 1998). The protease cascade is also

spatially restricted to a gradient by the protease inhibitor Serpin27A (Hashimoto et al., 2003;

Ligoxygakis et al., 2003).

High levels of nuclear Dorsal activate the transcription of two embryonic transcription

factors in the ventral domain, Twist and Snail, that are required for mesodermal cell fate (Thisse

et al., 1987). While Twist is thought to generally function as an activator, and Snail as a

repressor, there is evidence that they both can act in either capacity (Kolsch et al., 2007;

Manning et al., 2013; Rembold et al., 2014). Twist and Snail are both required for normal
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ventral furrow formation, and, interestingly, their mammalian homologues have been implicated

in cancer metastasis (Yang et al., 2004).

Twist plays a role in both patterning the ventral domain and inducing apical constriction

in the embryo. twist is required for mesodermal cell fate, and is required to activate the

transcription of snail. Prior to this work, the distribution of twist mRNA had not been

quantified with respect to the ventral furrow. Twist is thought to induce ventral furrow

formation through two transcriptional targets, T48 andfolded gastrulation (fog) (Costa et al.,

1994; Kolsch et al., 2007). Fog is thought to act as a ligand for a G-protein coupled receptor

(GPCR), which activates a heterotrimeric G protein (Kanesaki et al., 2013; Manning et al.,

2013). The Gu, concertina, is required for normal ventral furrow formation and thought to be

activated by Fog binding to a GPCR receptor (Dawes-Hoang et al., 2005). DRhoGEF2 is also

required for ventral furrow formation, and is thought to be activated by both the Ga and the

Twist target, T48 (Barrett et al., 1997; Hacker and Perrimon, 1998; Kolsch et al., 2007).

DRhoGEF2 is then able to activate actomyosin contractility through the RhoA/ROCK pathway

discussed earlier in this chapter.

There are two known mechanisms by which Snail is thought to promote ventral furrow

formation. The first is possibly through the activation of the transcription of the GPCR mist, a

receptor for the Fog ligand (Manning et al., 2013). Mist is thought to act in parallel with Smog,

a maternally-deposited GPCR (Kerridge et al., 2016). Snail is required for the apical movement

of the adherens junctions in the ventral furrow that precedes furrow formation (Dawes-Hoang et

al., 2005; Leptin and Grunewald, 1990). This movement depends on the repression of the

bearded genes by Snail in the ventral domain (Chanet and Schweisguth, 2012). It was recently

discovered that the bearded genes repress an independent factor promoting actomyosin
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contractility in the mesoderm, Neuralized, an E3 ubiquitin ligase (Perez-Mockus et al., 2017). It

is not yet understood how Neuralized promotes myosin contractility in the mesoderm. Snail thus

activates ventral furrow formation by repressing a repressor of a contractility-promoting factor in

the ventral domain.

1.3.1. Resistance: the interplay of tension and stiffness

In the Drosophila ventral furrow, actomyosin networks function both to generate and

resist contractility. This is determined by the patterning of the myosin activation in the ventral

domain of the embryo. Because the embryo is an ellipsoid (Fig. 1.1A), there are more cells

activating actomyosin contractility along the anterior-posterior axis then along the dorsal-ventral

axis. This results in higher tension along the anterior posterior axis (Chanet et al., 2017; Martin

et al., 2010), which causes the cells to constrict less along the anterior-posterior axis. When cells

in the ventral domain are mechanically isolated, they constrict uniformly in all directions. Thus,

actomyosin contractility causes cells to constrict along the dorsal-ventral axis, but due to the

patterning of contractility across the tissue, actomyosin also serves to restrict constriction along

the anterior-posterior axis.

Cells along the dorsal-ventral axis do not behave in a uniform manner. Cells closest to

the ventral midline constrict earlier and possibly more rapidly than cells further away (Oda and

Tsukita, 2001; Sweeton et al., 1991). The region of constricting cells is less than region of cells

expressing twist (Leptin, 1991; Sweeton et al., 1991). The Twist targetfog was known to be

expressed in a more restricted domain that corresponded more closely with the domain of apical

constriction (Costa et al., 1994). The main questions answered in the following chapters are: 1)

What causes cells closest to the ventral midline to constrict more? And 2) Is this difference in
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cell behavior important for tissue folding?
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Chapter 2. Actomyosin-based tissue folding
requires a multicellular myosin gradient
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This chapter was previously published as Heer, N. C. et al. Actomyosin-based
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experiments, all of the image analysis and made the rest of the figures.

Actomyosin-associated folding of epithelial sheets is a common mode of morphogenesis

during the development of complex organs and organisms. Defects in these folding events can

lead to congenital birth defects, including spina bifida, which can be caused by failure of the

neural plate to fold and fuse (Copp and Greene, 2010; Wallingford et al., 2013). Actomyosin-

based epithelial folding is often associated with apical constriction, a process in which apical

actomyosin contractility causes columnar epithelial cells to adopt a wedge shape by reducing their

apical cell surface area (Martin and Goldstein, 2014). One unanswered question is how apical

contractility must be spatially patterned in a tissue to generate three-dimensional (3D) form.

Drosophila gastrulation is a classic example of tissue folding in response to apical

constriction. Cells on the ventral side of the embryo fold into the embryo as one of the first tissue

rearrangements during development. The domain of invaginating cells is specified by two

embryonic transcription factors, twist and snail (Leptin and Grunewald, 1990; Thisse et al.,
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1987). At the time of gastrulation, snail expression extends 9 cells from the ventral midline (VM)

(to form an 18 cell wide domain) (Ip et al., 1992). twist expression extends a few cells further

than snail (Leptin, 1991). Both genes are initially expressed in a narrower domain of cells that

expands over time (Leptin, 1991). Expression of both twist and snail requires the maternal

transcription factor dorsal. twist is necessary for persistent apical constriction and non-muscle

myosin 2 (myosin) accumulation (Mason et al., 2016; Xie and Martin, 2015). Two

transcriptional targets of Twist appear to act in parallel to regulate actomyosin contractility in the

ventral furrow: folded gastrulation (fog) and T48. Fog is a secreted protein that activates a

maternally provided Gcx12/13, concertina, through a GPCR pathway (Costa et al., 1994;

Kerridge et al., 2016; Manning et al., 2013; Parks and Wieschaus, 1991; Xie et al., 2016). T48 is

a transmembrane protein that contains a PDZ-binding consensus motif (Kolsch et al., 2007).

T48 and Ga12/13 activation at the apical surface appear to recruit and activate RhoGEF2, a

Rho Guanine nucleotide exchange factor with a PDZ domain and a regulator of G protein

signaling (RGS) domain (Barrett et al., 1997; Hacker and Perrimon, 1998). There, active

RhoGEF2 can activate RhoA (Rhol in flies), which, in turn, promotes apical actomyosin

contractility (Kolsch et al., 2007; Mason et al., 2016). RhoA's effector, ROCK, is required for

apical myosin accumulation in the ventral furrow (Dawes-Hoang et al., 2005).

As the tissue folds, there is significant variation in the extent and timing of apical

constriction along the ventral-lateral axis of the furrow (Leptin and Grunewald, 1990; Oda et al.,

1998; Sweeton et al., 1991) (Fig. 1A). Specifically, cells closer to the VM constrict earlier and to

a greater extent than cells farther from the VM, despite the fact that all cells express twist prior

to constriction (Leptin, 1991). The twist targetfog is transcribed in a subset of ventral cells that

extends 6 cells from the VM (Costa et al., 1994); this region corresponds to the region of earliest
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constriction (Sweeton et al., 1991). Recently, it was shown that expression of twist

transcriptional targets,fog and T48 occurs in a graded manner along the ventral-lateral axis (Lim

et al., 2017). The intensity profile of myosin during gastrulation has been illustrated at the tissue

level, with highest myosin concentrations at the VM (Lim et al., 2017; Spahn and Reuter, 2013).

However, whether there are cell-to-cell differences in transcription and active myosin levels and

how patterns of transcription and contractility relate to each other is unknown. Most

importantly, it is not known whether the variation in apical constriction/contractility is relevant

to tissue folding.

Here, we demonstrate that there is a gradient in myosin contractility across the ventral

furrow. This gradient starts 2 - 3 cells from the VM and extends to - 6 cells from the VM. In

this region, 2 - 6 cells from the VM, each subsequent cell has lower levels of active myosin. This

contractility gradient originates from the dorsal morphogen gradient, and perturbation of the

dorsal morphogen gradient changes the spatial patterning of contractility. Our 3D model of the

gastrulating embryo predicts the importance of contractility gradients in generating a tissue fold.

Our experimental data validated a prediction of the model: tissue bending was associated with

contractile gradients, but not absolute contractility.

2.1. Results

2.1.1. Ventralfurrowformation is associated with a multicellular contractility
gradient, originating 2-3 cellsfrom the VM.

To determine how tissue-scale contractility is organized in the ventral furrow, we imaged

embryos with labeled myosin (sqh::GFP) and membrane (gap43::mCherry) (Martin et al., 2010;

Royou et al., 2002). We segmented all images from time-lapse movies of the folding process and

partitioned cells into bins based on the initial distance of the cell centroid from the VM
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Figure 2.1: Apical area and
active myosin intensity are
present in a ventral-lateral
gradient. (A) Cell position bins
relative to the ventral midline
(VM, yellow dashed line).
(B,E) Apical area (B, y-axis) or
total active myosin intensity (E,
y-axis) plotted for each ventral-
lateral cell position bin (x-axis)
for each time frame (color bar)
as the embryo furrows.
(C,F) Distribution of cell areas
(C) or total active myosin
intensity (F) for cells in
different position bins at time
point t=406 s. Red lines
indicate median values, box
indicates inner quartiles,
dashed lines indicate outer
quartiles. (D,G) Pairwise
statistical comparisons between
different cell bins. Tables show
P-values from a two-sample
Kolmogorov-Smirnov (K-S)
test comparing the distribution
of apical area (D) and active
myosin (G) in each cell bin
with every other cell bin. Green
shading indicates statistical
significance (P<0.05). All data

in A-G are from a single embryo. (B,E) n varies for each cell bin and time point. n=17 cells/bin (minimum)
and 47 cells/bin (average). (C,D,F,G) n values are 58, 48, 50, 40, 32, 30 and 17 cells (for bins 1-7,
respectively).

(example, Fig. 2.1A). As previously observed (Jodoin and Martin, 2016), cells do not intercalate

during furrow formation, and cell positions for bins at later time points show the same relative

positions as at the initial reference time point (Fig. 2.1A). Thus, we were able to measure cell

apical cross-sectional area over time as a function of relative position from the VM.

In agreement with a past live imaging study, which quantified groups of cells (Oda et al.,

1998), we found that apical area reduction was not uniform along the ventral-lateral axis. Prior to

the onset of constriction, all cells along the ventral-lateral axis had an apical area of
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approximately 40 rn2 (Fig. 2.1B and 2.2A,B, blue curves). Over time, cells within 4 cells of the
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VM reduced their apical area and cells farther than 5 cells from the VM expanded their apical

area (Fig. 2.1B and 2.2A,B, blue to yellow curves). At late time points, the apical area

distributions for the 2 cells adjacent to the VM were not statistically different, but each

subsequent cell from the VM had significantly larger apical area until 6 cells from the VM

(Fig. 2.1C,D and 2.2C,D). We refer to this pattern in the resulting apical area as a gradient in

apical constriction. Differences in cell area were not seen when cells were binned based on their
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position along the orthogonal anterior-posterior axis of the embryo, demonstrating that the

apical constriction gradient occurs mainly along the ventral-lateral axis (Fig. 2.3).

To measure the levels of 'active' myosin in the cell apex, we have used an image

processing method to capture activated, cortical myosin molecules and exclude cytoplasmic,

'inactive' myosin (see Methods). Several arguments support the fact that we have measured active

myosin: 1) Drosophila myosin 2 can exist either as a single molecule in an inactive, folded

conformation or as an active bipolar filament consisting of 12 molecules, depending on

phosphorylation of its regulatory light chain (Vasquez et al., 2016), 2) Inhibition of ROCK, a

kinase that phosphorylates and activates myosin filament formation and motor activity, results in

the immediate dissolution (in 10 - 15 seconds) of the intense cortical myosin structures that we

measure (Coravos and Martin, 2016), and 3) The amount of myosin that we measured using this

method is well-correlated with apical constriction in single cells (Martin et al., 2009; Xie and

Martin, 2015). For all of these reasons, we conclude that the intensity of the cortical myosin

structures measured in this study represent active myosin.

We found that there was a cellular gradient in active myosin that accompanied ventral

furrow formation. Specifically, active myosin intensity distributions were highest on average in

the two cells adjacent to the VM (Fig. 2.1E-G and 2.2E-H). The average amount of active

myosin in the third cell from the VM was often lower, but this was not always statistically

significant (Fig. 2.1E-G and 2.2G-J). Beginning three cells from the VM every subsequent cell

position consistently exhibited a significantly lower active myosin distribution than the one

before (Fig. 2.1F,G, and 2.2G-J). Thus, there is a multicellular gradient in myosin activity that

starts 2 - 3 cells from the VM and extends to 6 cells from the VM. We refer to this as a ventral-

lateral contractility gradient.
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and 45, 43, 44, 44, 44, 47,

2.1.2. An upstream regulator ofcontractility, T48, exists in a gradient

To determine the source of the active myosin gradient, we examined an upstream

component of the signaling pathway that regulates ventral furrow formation, the integral

membrane protein T48 (Fig. 2.4A). We engineered a T48 allele with an internal GFP tag. The

GFP::T48 fusion allele was expressed from the endogenous T48 promoter using bacterial

artificial chromosome-mediated recombineering (Venken et al., 2006). GFP::T48 was visualized

in fixed embryos stained with a GFP antibody (Fig. 2.4B). We segmented the image based on
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phalloidin staining and binned cells with respect to their position from the VM (Fig. 2.4C and

2.5A). We found that average signal density of GFP::T48 is highest in cells closest to the VM

(Fig. 2.4D and 2.5B). Similar to the distribution of active myosin, a difference in T48 levels first

appears between cells 3 and 4 from the VM. The gradient in T48 seems to extend slightly

further than the gradient in myosin (encompassing 7 - 8 cells on either side of the midline) (Fig.

2.4D,E and 2.5B,C). The fact that there is a T48 gradient is consistent with the myosin gradient

resulting from upstream signals.

The measured gradient in T48::GFP signal density (a.u. per Vm 2) could reflect the

gradient in apical constriction, and not a gradient in T48 gene expression. As cells apically

constrict, T48::GFP on apical membranes could be concentrated. To test this we measured the

total amount of T48 at the apical surface of a cell. We found that total signal is strongly
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correlated with cell area possibly due to a low signal to noise ratio (Fig. 2F). However, for cells of

a given area, cells closest to the VM have a higher level of total T48::GFP signal, suggesting that

differential expression of T48 accounts for at least some of the difference in signal density (Fig.

2F blue vs yellow points). This is supported by recent work measuring T48 expression in the

ventral domain that found that T48 and fog, another twist target, are expressed earlier in cells

closest to the VM (Lim et al., 2017). Our data demonstrates that between 3 - 7 cells from the

VM there are differences in both T48 density and overall levels, in a pattern that mirrors active

myosin.

2.1.3. twist mRNA is present in a gradient at the onset of cycle 14

It has been previously shown that Dorsal, the maternal morphogen that is required for

twist transcription, is active in a gradient along the ventral-lateral axis with highest nuclear levels

in the most ventral cells (Fig. 2.4A) (Kanodia et al., 2009; Reeves et al., 2012). twist expression

levels have previously been described as being uniform across the central region of the ventral

furrow with a gradient of twist at the edge of the furrow, where cells stretch (Leptin, 1991). We

measured twist mRNA levels at the beginning of nuclear cycle 14, about an hour before

gastrulation, using quantitative fluorescence in situ hybridization (FISH). We found that twist

mRNA was detected as small puncta in the cytoplasm of ventral cells (Fig. 2.6A). We measured

twist mRNA levels by quantifying the mean intensity of the twist FISH signal in the cytoplasm

adjacent to each nucleus (McHale et al., 2011). At early nuclear cycle 14, twist is expressed in a

gradient around the VM. The gradient begins 2-3 cells from the VM and extends to about 12

cells from the VM (Fig. 2.6B,C). Early differences in twist levels are consistent with, and could

explain, the later differences in transcription and downstream signaling measured in this paper
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(C) Pairwise statistical comparisons between cell bins in (B). p-values recorded (K-S test). Green indicates
p<0.0 5. n is one embryo with 45, 43, 44, 44, 44, 47, 50, 51, 50, 50, 56, 30 and 5 cells (for bins 1-13,
re,,nertivelvV. Scrle hir 1 1 m -
and previously (Costa et al., 1994). Time delays due to transcription of target genes and the

translation of Twist and target genes could explain the delay between the measurement of twist

mRNA and the downstream gradients. Thus, there is an early, transient gradient in twist mRNA

levels that could explain the subsequent gradient in apical T48 levels, myosin activity, and

contractility.

2.1.4. Mechanical model demonstrates that contractile gradients promote curvature

To understand the mechanisms underlying furrow formation by contractility gradients,

we studied a 3D continuum model of the Drosophila embryo during gastrulation. At this

developmental stage, the embryo consists of a thin, single-layer epithelial sheet of approximately

ellipsoid shape. Its mechanics can be described mathematically by an elastic shell (Koiter shell

model, (Ciarlet, 2000)), represented by its middle surface (Fig. 2.7A and 2.7B, dotted line); for

further explanation see Materials and Methods. Passive mechanical stresses appear whenever the

49



Fig 4
A

h b
yolk

B

A+'

h -7----

C Myosin p

-1 -
-100 10 -100

-o
D
0.0s

0

C-

_n n"

z

Jy

Contraction

rofile width (pm)

4 100

0

-30

0

0
U

0

0

-0
E

E

0.03

n >llI-
hihs e pmn) 1 my-n-100 (pm) 100

highest concentration of myosin, there is no contractility gradient and

1  ~

a, Jh
a2 jh

(blue). (E) Myosin gradient (top) aligned with maximum curvature (bottom) as a function of w. The

location of peak contractility M is highlighted with shaded bars. Blue line corresponds to leftmost

simulation in C, red to the middle simulation and green to the rightmost.

middle-surface geometry deviates from its original shape by local stretching or bending

deformations. Active stresses from apical constriction were incorporated into this model by

modifying the local preferred curvature of the middle surface (mimicking constriction at the

apical surface); these cause active bending moments that drive furrow formation (Fig. 2.7B).
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0 proxy for the difference
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This is analogous to the bending of bimetallic strips, which assume a curved state when one of

the two adjacent layers expands less strongly than the other in the presence of a thermal stimulus

(Timoshenko, 1925). Similarly, apical contraction is expected to create a preferred tissue

curvature. To relate the local myosin activity to active stress generation, we analyzed how apical

constriction affects preferred curvature in a vertex-based cell model (Fig. 2.7B). This allowed us

to relate active stresses to a dimensionless parameter M. M measures the relative strength of

active and passive stresses and fully determines the induced shape deformation. The parameter M

can thus be understood as a dimensionless contractility coefficient that is proportional to the

local myosin activity. This theoretical framework allowed us to efficiently study spatial patterns

of contractility and compare the predicted 3D shell shapes against our experimental data for

wild-type and mutant embryos.

Guided by our myosin activity measurements in wild-type embryos, we approximated the

contractility profile as M(p) = MO(1 + e-k) / (1 + ek(I'PI-w)). Here, p is the distance

from the VM, MO denotes the maximum value of M (assumed at p = 0), k is a steepness

coefficient characterizing the profile decay, and w is the width of the profile (Fig. 2.7C). We

adjusted k, MO, and w to fit the distribution of myosin and apical constriction that we observed

in wild-type embryos.

To test whether the gradient in contractility was important for folding, we compared

furrow formation in the model for increasing values of w (Fig. 2.7C). For low values of w, we

observed furrows that were morphologically similar to those of wild-type embryos (Fig. 2.7C, left

and middle). Increasing w increased the width of the region of contractility and resulted in a

region around V = 0 where the contractility profile is flat (Fig. 2.7C, right). Simulated
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Figure 2.8: Parameter scan shows folding requires increased contractility and a contractility gradient. (A)
Phase diagram showing parameters for which a furrow forms (blue) and for which a furrow fails to form

(red). Letters indicate parameters that correspond to the examples in B-D. (B) Low contractility parameter,
M0 =6, does not furrow. (C) High contractility and presence of gradient (Mo=24 and k=O.256 pam',

respectively) results in furrow. (D) Low steepness parameter, k=0.064 p~m 1 , does not furrow. Insets indicate
M as a function of w and cross-section views along the long axis of the ellipsoid. In each case, width w=43

p~m.

equilibrium shapes showed that, as the distance between regions of graded contractility

increased, the furrow width also increased, leaving a relatively flat surface in the region of

uniform contractility (Fig. 2.7C). Importantly, changes in shell curvature were associated with

the position of the gradient in M (Fig. 2.7D). This was the case regardless of the width of the

myosin profile. Changes in shell curvature always occurred near the boundary where there was a

gradient in M. In contrast, where there was an extended region of uniform M, curvature was low

(Fig. 2.7D,E).

We next explored how our model responded to changes in M0 and k; i.e., the level of

contractility and steepness of the contractility gradient, respectively. We found that with low

contractility M0, but normal steepness k, our model does not form a furrow (Fig. 2.8A,B).

Additionally, in our model, having high contractility M0, but a low steepness k for the gradient,
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3: 2 Y nuclear cycle 14 in a

i1 1  Spn27A-RNAi embryo.
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2 0.95 1.00 0.80 0.09 0.22 0.13 0.29 0.47 0.36 0.30 0.42 0.75 0.13 twist mRNA staining and
3 0.82 0.80 1.00 0.15 0.06 0.05 0.08 0.23 0.13 0.18 0.07 0.35 0.08 riht imae is a mere of
4 0.04 0.09 0.15 1.00 0.02 0.07 0.05 0.02 0.00 0.01 0.10 0.06 0.15 g ag rg
5 0.07 0.22 0.06 0.02 1.00 0.99 0.63 0.89 0.36 0.47 0.93 0.88 0.37 the twist mRNA in green
6 0.08 0.13 0.05 0.07 0.99 1.00 0.89 0.92 0.67 0.64 0.96 0.59 0.4 and DAPI in magenta.

re 7 0.13 0.29 0.08 0.05 0.63 0.89 1.00 0.98 0.27 0.48 0.94 0.91 0.71
8 0.35 0.47 0.23 0.02 0.89 0.92 0.98 1.00 0.30 0.69 0.98 0.93 0.30 (B) Cytoplasmic twisi
9 0.26 0.36 0.13 0.00 0.36 0.67 0.27 0.30 1.00 0.74 0.54 0.13 0.02 mRNA signal is uniform

10 0.28 0.30 0.18 0.01 0.47 0.64 0.48 0.69 0.74 1.00 0.57 0.50 0.14 around the VM
11 0.28 0.42 0.07 0.10 0.93 0.96 0.94 0.98 0.54 0.57 1.00 0.90 0.71
12 0.55 0.75 0.35 0.06 0.88 0.59 0.91 0.93 0.13 0.50 0.90 1.00 0.57 Cytoplasmic twist mRNA
13 0.13 0.13 0.08 0.15 0.37 0.44 0.71 0.30 0.02 0.14 0.71 0.57 1.00 signal (fluorescence

intensity/pnm 2) is plotted as a function of cells from the VM (x-axis) (determined by average cell diameter).
(C) There is no statistically significant gradient in levels of twist mRNA. p-values (K-S test) comparing
the distribution of twist (a.u. pm-2) in each cell bin from (B). Green indicates p<0.0 5 . Data from one embryo
is presented. n of cells for each bin (1-13) is 23, 16, 19, 22, 21, 21, 21, 23, 20, 23, 19, 19, and 20 respectively.
Scale bars = 10 pm.

also fails to form a furrow and instead results in an hour-glass-shaped flattened depression (Fig.

2.8A,D). Only when both M0 and k are above a certain threshold will the model form a furrow.

Thus, our model predicts that furrow formation in embryos will fail if either the total activity of

active myosin or the steepness of the gradient is too small.

2.1.5. Experimentalflattening ofthe active myosin gradient in vivo disrupts tissue

curvature.

Our 3D model simulations predicted that tissue folding occurs where there is a gradient

in contractility. To show that uniform levels of active myosin were insufficient to cause tissue

bending, we attempted to flatten the active myosin gradient in vivo using a genetic perturbation.

Spn27A is a negative regulator of ventral cell fate in the Drosophila embryo (Fig. 2.4A).

Hypomorphic alleles of Spn27A and depletion of Spn27A using RNA interference (RNAi) have

been shown to increase the width of the ventral domain (Jodoin et al., 2015; Ligoxygakis et al.,
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2003). We hypothesized that increasing Dorsal activity could lead to an extended region of

uniform Dorsal activity around the VM. We first tested the effect of Spn27A depletion on the

upstream gradient in twist mRNA and found that, as expected, twist expression levels were

uniform in an expanded region around the VM in Spn27A-RNAi embryos (Fig. 2.9). We next

examined the effect of Spn27A depletion on the contractility gradient, and found that the region
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(A) The cross-sectional shape
of the furrow in control Rh3-
RAi is consistent with the
WT furrow shape. Z-
projection from an image
stack from two control
embryos. Embryo 1 is the
same embryo as measured in
Fig. 2.11 A, C, E, and G.
Embryo 2 is the same embryo
as measured in Fig. 2.11 B, D,
F, and H. Timestamps are
consistent. (B) The cross-
section shape of the furrow in
Spn27A4-RNAi embryos is
flatter and consistent with the
model. Images are Z
projections from an image
stack from two Spn27A-
RNAi embryos. Embryo 2 is
the same embryo as measured

15 in Fig. 2.12 A, C, E, and G.

Embryo 3 is the same embryo as measured in Fig. 2.12 B, D, F, and H. (C) Quantification of apical cell
length along each embryonic axis shows that control cells constrict more along the dorsal-lateral (DV) axis
than Spn27A-RNAi embryos (left), but constrict a similar amount along the anterior-posterior (AP) axis
(right). Cell length along each axis was determined by fitting an ellipsoid to shape of the cell and measuring
the length along the AP and DV axes. control-RNAi (blue, n = 168 cells, 2 embryos), Spn27A-RNAi (red,
n = 153 cells, 2 embryos), shaded areas indicate SD.

of uniform active myosin was broadened (Fig. 2.10A). Control knock-downs exhibited a

gradient in active myosin similar to wild-type embryos (Fig. 2.11A-F). In contrast, Spn27A

depleted embryos did not exhibit a normal gradient; instead they exhibited uniform active

myosin within 6 cells of the VM (Fig. 2.11C-E and 2.12A-F). Furthermore, the uniform levels

of active myosin were associated with uniform apical constriction compared to the normal apical

area gradient seen in the control RNAi embryos (Fig. 2.10F-H and 2.12G-J compared with
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2.11G-J). Because Spn27A attenuates Dorsal activity, our data suggests that the gradient in

twist, active myosin, and apical constriction is the result of the gradient in Dorsal transcriptional

activity.

In accordance with the prediction of our 3D continuum mechanical model, Spn27A

depleted embryos exhibited reduced cross-sectional curvature in the region surrounding the VM,

while the tissue does curve where there is a gradient of apical myosin activity at the edge of the

broadened ventral domain (compare Fig. 2.7C to Fig. 2.14A and 2.13A to 2.13B). This failure

to form a sharp furrow was associated with defective/reduced apical constriction, specifically

along the ventral-lateral axis (Fig. 2.13C). This phenotype is consistent with the prediction of

our model that increasing the width (w) of the region of contractility results in an expanded

furrow, which is flattened at the VM where there is no myosin gradient.

2.2. Discussion

In many cases, epithelial folding is thought to result from myosin accumulating at the site of the

fold (Lecuit et al., 2011; Leptin, 2005; Martin and Goldstein, 2014). Here, we show that active

myosin accumulation fails to effectively change tissue curvature, except in regions where

neighboring cells or tissue regions are accumulating different amounts of apical, active myosin.

This conclusion is based on several pieces of evidence: 1) There is a gradient in mean levels of

active myosin, which originates 2-3 cells from the VM and extends to 6 cells from the VM

(Fig. 2.14B), 2) There are graded levels of both twist and its transcriptional target GFP::T48

that originate 3 cells from the VM and extend slightly farther than mean levels of active myosin

(Fig. 2.14B), 3) mechanical modeling of a 3D elastic shell requires a contractility gradient to

form a fold that resembles a ventral furrow, and 4) experimentally expanding and flattening the
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myosin gradient in vivo results in an abnormal tissue shape that is predicted by the mechanical

model. Thus, changes in tissue curvature and folding occur at sites of active myosin gradients. In

the case of the Drosophila ventral furrow, the gradient in active myosin is the result of a gradient

in the activity or levels of upstream transcription factors.

Gradients in the level of contractility, in our case apical contractile myosin, promote curvature by

promoting a contractile force imbalance between neighboring regions of cells (Fig. 2.14C). In

the case of the wild-type ventral furrow, this imbalance occurs along the ventral-lateral axis. Cells

within 2-3 rows from the VM, accumulate similar levels of active myosin and constrict the same

amount. Despite uniform active myosin in these central ~ 4 cells, it appears that these cells are

able to pull the surrounding tissue and effectively constrict. Beyond 2-3 cells from the VM each

cell exhibits progressively lower apical, active myosin, T48, and twist levels and constricts later

and to a lesser extent (Fig. 2.14B,C).

Furrow formation requires asymmetric constriction (i.e., a wedge shape), such that cells'

apical surface remains stretched along the anterior-posterior axis and constricted along the

orthogonal (ventral-lateral) axis (Martin et al., 2010). When mechanically isolated, ventral

furrow cells constrict symmetrically, suggesting that the elongated shape of the cell apical surface

is the result of differences in forces generated by the surrounding tissue (Martin et al., 2010). We

propose that the contractility gradient we measured in this paper allows cells to constrict more

along the ventral-lateral axis because of less resistance from the surrounding tissue. This results

in wedge-shaped cells and promotes curvature/folding specifically along the ventral-lateral axis

(Fig. 2.14C).

In contrast to wild-type embryos, uniform contractility levels (i.e. in Spn27A-RNAi)

increase the resistance to apical constriction from neighboring cells, thus, cells do not constrict
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Figure 2.14: Model of ventral furrow formation. (A) Orthogonal projections in the z-plane of the ventral
cross-section of wild-type (from Fig. 2.1) and Spn27A-RNAi (from Fig. 2.10) embryos. (B) Summary of
gradients observed for twist mRNA (early nuclear cycle 14), T48::GFP, active myosin, and apical
constriction in wild-type embryos. Uniform signal levels are in black, gradients are in color. (C) Gradient
of myosin activation promotes cell wedging around the VM due to force imbalance, which folds the tissue.
(D) Expansion of the ventral domain (i.e. Spn27A-RNAi) leads to an extended region of uniform myosin,
in which forces are more balanced and bending is inhibited near the VM. Scale bars: 10 im.

enough to generate high curvature (Fig. 2.14A,D). Consistent with this interpretation Spn27A-

RNAi exhibited a defect in constriction along the ventral-lateral axis (Fig. 2.13C). Spn27A-RNAi

embryos could occasionally fold and internalize the mesoderm, but these folds consistently

exhibited a flattened depression and the invagination was often uneven and not temporally

smooth.

2.2.1. A 3D elastic shell model supports importance of contractile gradients in tissue

folding.

The in vivo experimental outcomes described above are consistent with our mechanical

model. We found that having a contractile gradient around the circumference of an ellipsoid

resulted in a sharp, narrow furrow. In contrast, increasing the width of the contractile zone
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between opposing contractile gradients resulted in a flattening of the tissue at the VM, similar to

in Spn27A-RNAi. In a systematic parameter scan of our model, the ventral furrow fails to

develop if either contractility or the steepness of the gradient is too small. Thus, it is not simply

absolute apical myosin activity that is required for shape, but active myosin differentials between

neighboring regions or cells.

Our mechanical model differs from previous models of Drosophila gastrulation. It

represents the first 3D continuum model of ventral furrow formation where apical constriction is

the only active force input into the system (Conte et al., 2009; Conte et al., 2008; Odell et al.,

1981; Polyakov et al., 2014; Spahn and Reuter, 2013). In particular, our theoretical analysis

implies the role of active myosin gradients in tissue bending. Spahn and colleagues explored the

role of a gradient in contractility on the pattern of cellular constriction, but their planar model

did not reveal the importance of the gradient to folding (Spahn and Reuter, 2013). Conte and

colleagues presented a 3D model of Drosophila gastrulation, but required introducing an

ectodermal pushing to generate folding (Conte et al., 2008). Our results suggest that the embryo

does not require ectodermal pushing if there is a contractility gradient.

We note that contractility conditions for successful furrow formation are intrinsic 3D

effects not captured by 2D cross-section models. In particular, 2D models assume spatial

invariance along the anterior-posterior axis and thus can be thought of as a model of furrow

formation on an infinite cylinder. A cylinder has vanishing Gaussian curvature and axially

invariant deformations introduce bending, but no stretching deformations. By contrast, furrow

formation on an ellipsoid requires stretching of the membrane due to positive Gaussian

curvature. The high energetic cost of stretching thus presents an effective energy barrier against

such deformations, an important mechanical effect neglected in 2D. Therefore, 2D models may
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significantly underestimate the conditions required for the furrow to form. The present 3D

analysis underscores the mechanical importance of contractility gradients for the robust

formation of the ventral furrow.

There are some limitations to our particular modeling approach. The most important is

that the height of the elastic shell in our model is constant. This is not the case in vivo, where

apical constriction initially results is cells lengthening along their apical-basal axis, followed by

shortening along same axis (Sweeton et al., 1991). This final shortening step is associated with

the generation of the highest curvature (Polyakov et al., 2014). Given that our model successfully

predicts several experimental observations, thinking that a given magnitude of apical contractility

generates a local preferred curvature of the surface of a shell provides a useful framework with

which to understand tissue folding. The final tissue curvature will also be governed by the extent

to which epithelial cells lengthen (which minimizes curvature) versus expanding their basal

domain (which promotes curvature). A future experimental challenge will be to understand the

cell biological and physical mechanisms that control epithelial cell height during this process.

Regardless of specific mechanisms that control cell height the spatial pattern of contractility will

play a central role in governing final tissue shape.

2.2.2. Evidencefor the presence andfunction of a contractile gradient in the ventral

furrow

Because of our ability to resolve cell shape and active myosin at cellular resolution, we

have been able to show that there is a gradient in apical myosin that starts 3 cells from the VM

and extends 6 cells distal to the VM. Thus, a 4-cell wide domain exhibits a contractility gradient,

with differences in contractility existing between individual rows of cells with given ventral-

lateral positions (Fig. 2.14B). The gradient we measured depends on a gradient in twist and
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likely T48. It was the basis for our mechanical model of folding. Importantly, we show that

flattening of this gradient leads to defects in tissue shape (i.e. reduced tissue curvature at the

VM).

Other work also supports the importance of an active myosin gradient. Mutation of a

possible attenuator of Fog signaling, gprk2, results in a broader activation of myosin (Fuse et al.,

2013). Interestingly, the gprk2 mutant phenotype delayed folding at the VM and instead only

displayed changes in curvature at the edges of the myosin domain (Fuse et al., 2013). The gprk2

mutant phenotype resembles that of Spn27A-RNAi. Thus, multiple mutant phenotypes are

consistent with the requirement of an active myosin gradient to promote tissue curvature, which

reinforces our conclusions.

2.2.3. Implications ofthe gradient model to neural tube closure

Our finding, that it is not myosin activity per se, but active myosin differentials that lead

to folding, is likely relevant to neural tube closure in vertebrates. Interestingly, the neural tube

folds mainly at 3 hinge points that are separate from one another in the neuroepithelium (Copp

and Greene, 2010). The width of the domain of apically constricting cells in a hinge point in the

mouse neuroepithelium has been shown to be about 3 or 4 cells (Smith et al., 1994). Because

folding occurs in regions where there is differential myosin activity, hinge points might promote

this differential and enable more efficient tissue folding, as opposed to activating myosin in the

entire neuroepithelium.
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2.3. Materials and Methods

2.3.1. Fly stocks and genetics

Fly lines and crosses are listed in Table 2.1. Embryos were collected from cages at 250 C

except where noted.

Table 2.1

Stock Genotype Source/Reference Figure
(# of embryos)

1 SqhGFP Royou

2 w; Gap43::mCherry(attp4O); Sqh::GFP Martin et al., 2010
3 OreR Bloomington 3 (1)

Drosophila Stock
Center

4 y[1] sc[*] v[1]; TRiP center*
Pfy[+t7.7] v[+tl.8]=TRiP.HMC03159}
attP2 (Spn27A shRNA line)

5 y[1] sc[*] v[1]; TRiP center*
PIy[+t7.7] v[+tl.8]=TRiP.GLO1052}attP2
(Rh3 shRNA control line)

6 y,w; Vasquez et al., 2014
Sqh::GFP;
mat15, Gap43::mCherry/(TM3, Sb[1])

7 y,w;+; vk33[BAC GFP::T48) Heer et al. 2017 2 (1); S3 (1)

F2 embryos imaged from these crosses,
using above stock numbers/genotypes.
Non-balancer females were used for cages.

Stock # 1 x 2 (Virgins x males) 1 B-H (1);
S1(2); S2 (2)

4 x 6 (23 and 18 oC) 6 B-F (1);
S3(1); S6 (2)

5 x 6 (23 C) S5(2)
*Norbert Perrimon, Harvard Medical School and Howard Hughes Medical Institute,
Boston, MA
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2.3.2. Cloning

GFP was inserted in the T48 coding sequence at amino acid residue 85, with a standard

linker (amino acids GGSG) added before and after the GFP. The T48::GFP construct was

inserted in the BAC (CH321-58L17,) using standard recombineering techniques (Venken et al.,

2006; Warming et al., 2005). We injected the nanos-integrase; attp40; vk33 embryos with the

purified BAC and selected for transgenic flies using white+ marker. Primers for T48 transgenic

as follows:

5' upstream homology arm: 5'-ATGCGGTCGGTGGAAGTGGC-3'; 3' upstream

homology arm: 5'-GCTCACGCCCGAGCCGCCCATGCCGGGCAGCACCAC-3'; 5'

GFP with linker:

5'-GGCGGCTCGGGCGTGAGCAAGGGCGAGGAGCTGTTCACCGG-3'; 3' GFP

with linker: 5'-GCCCGAGCCGCCCTTGTACAGCTCGTCCATGCCGAGAGTG-3'; 5'

downstream homology arm:

5'-GTACAAGGGCGGCTCGGGCCTGCAAAATTCAGGTGGG-3'; 3' downstream

homology arm: 5'-CACACGCTTTATTTGGGGCTC-3'.

2.3.3. Live and Fixed imaging

For live imaging, embryos were dechorionated with 50% bleach, rinsed with water and

mounted with ventral side facing up on glass slides covered with embryo glue (Scotch tape glue

in Heptane). A chamber was created using spacers made from 1.5 cover slips, and imaged

through a No. 1 cover slip after being covered in Halocarbon oil 27. Images were acquired on a

Zeiss 710 microscope with an Apochromat 40x/1.2 numerical aperture W Korr M27 objective.

Pinhole size: 2.2 or 2.4 airy units. A 488/561 beam splitter was used. Channels were excited
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(Argon 488 LASER, 2.6% or 4.5%, DPSS 561-10, 2% or 2.8%) and acquired (Detected range:

493-561 nm and 599-696 nm) concurrently.

For immunostaining, embryos were first dechorionated in 50% bleach and fixed in 8%

PFA using standard protocols. The vitelline membranes of the embryos were mechanically

removed using a syringe and the embryos were then stained using standard protocols with a GFP

antibody(Rabbit, 1:500, ABCAM (ab290)) and AlexaFluor 647 phalloidin (Invitrogen).

Embryos were mounted in Aqua Poly/Mount (Polyscience, Inc). All imaging was done on a

Zeiss 710 confocal microscope with a Plan-Apochromat 63x/1.4 numerical aperture Oil DIC

M27 objective. Pinhole size: 1 airy unit. Channel 1: DPSS 651-10 LASER (1%), detector range:

574-712 nm. Channel 2: Argon 488 LASER (2%) detector range: 493-574 nm.

For quantitative FISH, embryos were fixed (8% PFA, 45 mins) and stained as described

in (Little et al., 2011). Probes complementary to the twist ORF were conjugated to

AlexaFluor594 (Life Technologies). DAPI was used to detect nuclei. Embryos were mounted in

Aqua Poly/Mount (Polyscience, Inc). All imaging was done on a Zeiss 710 confocal microscope

with a Plan-Apochromat 63x/1.4 numerical aperture Oil DIC M27 objective. Channels were

acquired on separate tracks. Pinhole size: 1 airy unit. Tracki: Diode 405-30 (.5%) Detector

range: 410-582 nm. Track 2 HeNe594 (15%) detector range 602-734 nm. Each line was scanned

4 times and the sum recorded.

2.3.4. Image processing

All image analysis was done in FIJI (http://fiji.sc) (Schindelin et al., 2012) and

MATLAB (MathWorks). Custom software for image processing is available upon request to the

corresponding author.
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Analysis of active myosin: First cytoplasmic background signal (defined as the mean

cytoplasmic signal plus 2.5 std.) was subtracted from the myosin channel (Martin et al., 2009;

Vasquez et al., 2014). This subtraction removed the contribution of cytoplasmic myosin to the

integrated signal and left only the concentrated apical signal that evidence suggests is active

myosin. The max myosin signal intensity in z was used to generate a rough map of the embryo

surface. A Fourier transform was used to generate a smooth continuous surface. Myosin signal

was averaged over the 4 tm above the surface and membrane signal was the sum of the signal

from 1-2m below the surface. (Membrane signal was only used for segmentation, not

quantification).

Immunostained images: T48 signal was quantified in a single apical slice from a 3D

image. Fixed embryos are flattened during mounting, surface projections used in live embryos

were not necessary. The T48 signal was not background subtracted.

All live and immunostained images were then segmented using an existing MATLAB

package Embryo Development Geometry Explorer (EDGE) (Gelbart et al., 2012). Membrane

signal (gap43mCherry) or cortical actin (phalloidin) were used to detect cell boundaries and track

cells in time for live images. Errors in segmentation were corrected manually to ensure proper

segmentation. Our segmentation algorithm was used to determine centroid position, cell

diameter, cell area and total myosin or T48 signal intensity within a cell.

Quantification of the twist mRNA in OR and Spn27A-RNAi embryos: FISH signal was

performed using a previously published software package, which partitions the cytoplasm into

"cells" based on nuclear position and subtracts the nuclear volume from measurements of average

cytoplasmic signal per "cell" (McHale et al., 2011). This package was used to determine cell

centroid position for each cell, average cytoplasmic signal per pixel for each cell, and average cell
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diameter for the image.

2.3.5. Image Analysis

In all image quantifications, data was aggregated into "cell bins". Cells were assigned to

bins based on the position of the cell centroid along the ventral-lateral axis. We first identified

the approximate position of the VM in all images. In live images, the VM was defined as the

position at which the furrow closes over (Fig. 2.1, 2.10, 2.2, 2.11 and 2.12). In fixed images, the

signal was first confirmed to be symmetric, and the position of the VM was determined by the

symmetry of the signal (Fig. 2.4, 2.5, 2.6, and 2.9). We were unable to determine the precise

VM position in Spn27A-RNAi embryos stained for in twist mRNA because the boundaries of

the domain expressing twist mRNA extended beyond the field of view. In this case (Fig. 2.5) we

did not assume symmetry of the signal, and simply determined the distribution twist mRNA in a

ventral region. When assigning cells to bins based on centroid position, live images were binned

based on initial position of the cell centroid before tissue contraction and folding and the

boundaries of the bins were set by the average cell diameter along the ventral-lateral axis (Fig.

2.1, 2.2, 2.11, 2.10, and 2.12). For example, cell bin 1 includes all cells with a cell centroid that

fell within 1 average cell diameter of the VM. For fixed images where cells had already begun to

constrict, the width of each bin was set manually to approximate the width of cells at that

ventral-lateral position (Fig. 2.4 and 2.5). For fixed images were cells had yet to constrict, the

boundaries of each bin were determined by an average cell diameter estimate (Fig. 2.6 and 2.9).

For a representative time point from each image, box and whisker plots depicted the

distribution of values in each cell bin were generated using MATLAB. Additionally, for all box

and whisker plots, a two sample Kolmogorov-Smirnov test was used to test whether the
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distribution of signal at each bin was significantly different from the distribution of signal at

every other bin. For live images, we also determined the mean value of each bin for all time

points.

In some time series, image acquisition began slightly after myosin accumulation in which

case t =0 s, is the first acquired image in the time series. In other time series, the image

acquisition began much before furrow formation in which case we truncated the time series so

that the initial time point is -1 min before cells begin to constrict.

Apical cell length measurement: Cell length along the ventral-lateral and anterior-

posterior axes is an output of EDGE. Embryos were aligned in time base on the average onset of

apical constriction. Measurements were made only for cells within -2 cell diameters of the

ventral midline.

2.3.6. Statistical analysis

Testing for statistical significance was done using the MATLAB statistical toolbox. We

used the non-parametric two sample Kolmogorov-Smirnov to test for significance for all

reported p-values.

2.3.7. Theoretical Model

At the gastrulation state, the epithelial sheet consists of -6,000 cells and its shape closely

resembles that of an ellipsoid with major axis a - 250 pm and minor axes b = c - 125 pm (Fig.

2.7A). As both the length and diameter of the embryo are much larger than the average cell

diameter -7- 8 ptm and thickness h - 35 pim, the mechanics of the epithelial cell sheet can

approximately be described by the Koiter shell model (Ciarlet, 2000). This continuum theory

accounts for mechanical strain and stresses in terms of the deviation of the shell's middle-surface
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w from a reference shape &. Explicitly, the elastic energy E of the shell is given by

E - f S (1 - v)Tr[(a - )2] + vTr(a - )2
(1-V2)

+ [(1 - v) Tr [(b - b) 2 ] + vTr(b - b)]d&

Here, Y is the Young's modulus, v the Poisson Ratio (we set v = corresponding to an

incompressible material), and the integral extends over the surface 6. The parameter S accounts

for the spatially dependent stiffness variations and is typically set to S = 1 for passive equilibrium

materials. However, when including apical constriction stresses, S becomes myosin dependent, as

outlined below. The first term in the integral corresponds to a stretching energy, while the

second term captures the energetic cost of bending the surface. Tr denotes a generalized trace,

similar to the usual matrix trace (see SM for details). a and 5 are the 2 x 2 metric tensors of the

deformed surface & and reference surface 10. They describe the local geometry of the surface by

measuring the lengths of and angles between tangent vectors ai at any point of the surface (Fig.

2.7A). Specifically, the components of a are given by aij = ai - aj with - the usual (vector) dot

product. The first term in Eq. (1) thus measures the deviations of lengths and angles between the

reference and deformed configurations, thereby capturing the energetic cost of stretching and

shearing the surface. Similarly, the curvature tensors b and b measure the local curvature of the

deformed and the reference surface (denoted), respectively; see SM for their precise definitions.

Thus, the integrand in the second line assigns an energetic cost whenever there is a mismatch

between the local and preferred curvatures b and b, respectively.

The Koiter shell energy in Eq. (1) describes the mechanics of a passive shell. To include

the internal stresses due to active myosin, we consider a patch of neighboring rectangular 'model'
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cells (Fig. 1B). The inner and outer faces represent the apical and basal surfaces of the epithelial

cells, respectively. We assume that the most relevant forces are due to compression/stretching of

the upper and lower cell faces. If the cell patch is initially in a stress-free flat state, active myosin

stresses are introduced by adding an additional surface tension term to the apical face of the cells.

The energy E of each cell then reads

E(A+, A-) = CMpM A+ 2 + K(A+ - A 0 )2 + K(A- - A 0 ) 2

where A+ and A- denote the areas of the outer (contracting) and inner cell faces, A0 is

the stress-free reference area of each face, and K their stiffness in the absence of myosin. pm is

the myosin concentration and CM a proportionality constant. We note that the dimensionless

ratio M = CMPM alone determines the myosin-induced shape deformation. M can thus be
K

understood as a dimensionless contractility coefficient that is proportional to the local myosin

concentration. Assuming a constant cell volume and constant thickness h, we can determine the

equilibrium shape of the patch for given value of M in terms of the equilibrium areas A+ and A-

that minimize Eq. (2). Reducing the geometry to its middle surface, we find that the initially flat

patch effectively obtains a new, myosin-induced target curvature K given by

6
K ~ -

S

with 0 = r - 2 arctan the angle between the middle-surface normal of

neighboring cells and s = A the distance between cell centers on the middle-surface

(Fig. 1B). The exact dependence of K on M is given in the SM. Taking the continuum limit

(SM), we obtain the myosin-induced target curvature tensor b= K i

and the material stiffening parameter S = 1 + M. The mismatch of local shell curvature
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b and myosin-induced spontaneous curvature b drives furrow formation in our model. In our

simulations, we add to Eq. (1) two additional energy terms representing the incompressibility of

the embryo yolk and the stiffness of the vitelline membrane. The resulting continuum model was

simulated using the algorithm previously described (Vetter et al., 2013).
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Chapter 3. Inhibitors downstream of Twist
restrict the multicellular gradient of myosin
activation

Natalie C. Heer

Classically, morphogen gradients function to convey tissue-scale positional information

to individual cells within that tissue. In the case of the Drosophila ventral furrow, the morphogen

gradient that determines cell position along the dorsal-ventral axis also patterns the activation of

actomyosin contractility in the embryo. There are many signaling steps between the gradient in

the morphogen Dorsal and the gradient in actomyosin contractility, some of which are still

unknown. The signal activators measured in the previous chapter were all activated or present in

a gradient similar to the Dorsal gradient, but more upstream components consistently had

broader gradients than more downstream components. In the previous chapter, we found that

the downstream gradients depended on the upstream gradients, but it is still unclear what

determines the shape and extent of the myosin gradient given the distribution of Twist. (Fig.

3.1).

Generally speaking, cell fate outputs are determined by the concentration of morphogen

inputs. Recent work, however, has suggested that it is not simply the concentration at any given

time that determines cell fates, but instead may be a result of more complicated processes, such

as temporal integration of the signal or a cell-level calculation of the spatial and temporal
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derivatives of the signal (Richards and Saunders, 2015). To begin to understand the relationship

between morphogen input and constriction output in the ventral domain, I will test whether

signaling inhibitors play a role in restricting the morphogen and Twist gradient to the gradient

in apical constriction. The two signaling pathway inhibitors that I test in this chapter are C-

GAP, an inhibitor of RhoA, and Gprk2, an inhibitor of GPCR signaling that functions

upstream of RhoA (Fuse et al., 2013; Mason et al., 2016).

In the Drosophila embryo, the Dorsal morphogen has classically been thought to

determine domains, including the ventral domain, through concentration thresholding; that is all

cells with a Dorsal concentration above a certain threshold would be in the ventral domain.

Recent work, however, has suggested a more complicated relationship. The Dorsal gradient

increases in amplitude and sharpness with time (Reeves et al., 2012). The width of the domains

of expression of snail, t48, andfog genes downstream of Dorsal activity also expand over time
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(Lim et al., 2017; Reeves et al., 2012). For t48 andfog, the increasing width of the expression

domain causes the transcripts to accumulate in a gradient (Lim et al., 2017). The mechanism is a

possible source for the signaling gradients measured in Chapter 2. An important aspect of the

gradients that I measured is that the more upstream components have broader distributions,

raising the question of what causes the narrowing of the gradient across the signaling pathway.

Twist, the most upstream component measured in Chapter 2, is one of two key

embryonic transcription factors downstream of Dorsal in the ventral domain (Leptin and

Grunewald, 1990). Twist is required to spatially pattern the ventral furrow and to activate apical

constriction in the furrow domain (Heer et al., 2017; Leptin and Grunewald, 1990). Twist

activates the transcription of two target genes,fog and T48. RhoGEF2 is activated in parallel by

T48 and a GPCR/G protein pathway activated by Fog (Costa et al., 1994; Hacker and

Perrimon, 1998; Kanesaki et al., 2013; Kolsch et al., 2007; Rogers et al., 2004). RhoGEF2, in

turn, activates RhoA, a small GTPase that is a key component of the signaling pathway. RhoA

promotes and organizes myosin activity and actin polarity within individual cells, leading to

apical constriction (Coravos and Martin, 2016; Mason et al., 2013).

The inhibitor of RhoA, C-GAP, plays a crucial role in regulating the dynamics of

actomyosin contractility in the ventral furrow. Embryos depleted of C-GAP, or genetic mutants

for the C-GAP gene, display a range of phenotypes, including disruption of embryo

development prior to ventral furrow formation, inhibition of furrow formation, and delay of

furrow formation (Mason et al., 2016). C-GAP levels, along with RhoGEF2 levels, set the rate

of myosin oscillations (pulsing) in the embryo. During furrow formation, apical myosin levels

both oscillate and increase with time on the cell level. Overexpression of C-GAP causes the

myosin dynamics to be more oscillatory, whereas depleting C-GAP eliminates oscillations and
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causes the linear increase of activate myosin to dominate. Both extremes can prevent successful

apical constriction. C-GAP is maternally loaded and uniformly expressed in the embryo, though

it is not yet known how C-GAP is regulated (Mason et al., 2016).

GPCR kinases phosphorylate ligand-bound GPCRs and attenuate their signaling

(Moore, 2007). Gprk2, the Drosophila GPCR kinase, is required for proper cell dynamics in the

ventral furrow (Fuse et al., 2013). Prior to this work, the impact of Gprk2 inhibition of the

dynamics of myosin accumulation had not been studied, but Gprk2 mutant embryos display

different dynamics, in which more lateral cells in the ventral domain move toward the ventral

furrow. In wild type embryos, these more lateral cells experience an acceleration in their

movement towards the ventral midline (VM), which is inhibited in Gprk2 mutant embryos

(Fuse et al., 2013). This effect depends on Fog activity, suggesting that Gprk2 operates

downstream of Twist and Fog (Fuse et al., 2013).

Recent work has demonstrated the importance of negative regulators in promoting

dynamic constriction and maintaining tissue integrity in the ventral furrow (Jodoin et al., 2015;

Mason et al., 2016). Here, I directly test whether these inhibitors also shape the spatial

distribution of apical myosin across the tissue. My hypothesis, based on the previous chapter, is

that the negative regulators might play a role in narrowing the broader gradient seen in more

upstream signaling components. This is the first step in generating a model of how a gradient in

Twist is translated into a gradient in active myosin.

3.1. Results

3.1.1. The inhibitor ofRhoA activity, C-GAP restricts the width ofthe gradient in
active myosin in the ventralfurrow.

To test whether C-GAP restricts the gradient of the more upstream components, I
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measured the distribution of active myosin 2 in embryos depleted of C-GAP using a GFP-tagged

version of the myosin regulatory light chain (sqh::GFP). To disrupt C-GAP, shRNA targeting

the C-GAP transcript was loaded into the embryo using the UAS-GAL4 system. Embryos were

collected under conditions designed to generate a mild phenotype because severe phenotypes

disrupt the process of cellularization and thus the integrity of the epithelium (see Methods for

description) (Mason et al., 2016). I analyzed the shape of the myosin gradient in two embryos

moderately depleted of C-GAP RNA. Cells were binned by their position relative to the VM,

with cells on both sides of the VM combined into the same bins (Fig. 3.2A,B).

First, I analyzed the averaged active myosin levels for each cell bin over time (Fig. 3.2C,D

and 3.S1A,B). As the C-GAP-depleted embryo furrows, active myosin levels increase at the

midline and in cell bins 1-7, in contrast with the control embryo, in which active myosin levels

increase in cell bins 1-5 (Fig. 3.2C,D and 3.3A,B). Next, I analyzed the distribution of active

myosin values per cell in each cell bin at a specific time point between 350s and 450s after the

onset of apical constriction (Fig. 3.2E,F and 3.3C,D). From these graphs, it is clear that there is

greater variation in active myosin cells in cell bins with higher levels of active myosin. This is

consistent with previous analyses of active myosin distributions in Chapter 2. Consistent with

our measurements of average cell bin values over time, the gradient in active myosin is broader in

C-GAP-depleted embryos than in the control embryo (Fig. 3.2E,F and 3.3C,D). The domains

of uniform active myosin around the VM, defined by the cell bins, do not exhibit a statistical

difference in the distribution of total active myosin levels per cell (K-S test, p < 0.05; see

Methods for details). Cells within 4-5 cells of the VM have uniform myosin levels in the C-

2 Active myosin, as it is used here, is defined in Section 2.2.1.
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(E-F) The distribution of active myosin at t = 390 s in the control embryo (E) and t = 374 s in a C-GAP-
RNAi embryo (F). The distribution for each bin is depicted as a box plot. Red lines indicate median values,
the box indicates inner quartiles, and dashed lines indicate outer quartiles. (G-H) C-GAP-RNAi increases
the domain of cells with active myosin distributions that are not statistically different from each other. Table
is of the p-values for each pair-wise statistical test (K-S test) each of the cell bins plotted in E and F,
respectively. Green indicates p < 0.05. n varies for each cell bin and time point. Note: A, C, E, and G are
all the same embryo and the same as in Fig. 2.4A, C, E, and G, with n = 44.5 cells/bin (mean) and 5
cells/bin (min). B, D, F, and H are all the same embryo and the same as Fig. 2.4B, D, F, and H, with n =

45.5 cells/bin (mean) and 3 cells/bin (min). Scale bars: 10 pm.

GAP-depleted embryos, whereas control embryos only have uniform levels of myosin activation

within 2-3 cells of the VM (Fig. 3.2G,H, 3.3E,F).

3.1.2. Modulation of RhoA activity by C-GAP is required to create the normal tissue
folding shape.

Next, I analyzed the effect of C-GAP depletion and the resulting change in the active
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myosin gradient on the apical area in the same embryos. I calculated the average apical area for

each time point over all cell bins. Consistent with our findings in Spn27A-depleted embryos, the

broadening of the myosin gradient corresponds to a broadening of the gradient in apical

constriction at all time points (Fig. 3.4A,B and 3.5A,B). There is a clear inflection point in the

analysis of apical area with respect to cell distance from the VM over time (Fig. 3.4A,B, 3.5A,B).

This point differentiates between cells that tend to constrict over time and cells that generally

expand over time. This inflection point can be used define the width of the domain of apical
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for each of the cell bins plotted in E and F respectively. Green indicates p < 0.05. n varies for each cell bin

and time point. (G-H) Cross-sections of the embryo show that the C-GAP-RNAi embryo has a flattened

domain around the VM. Cross-sections are of control embryo at t = 507 s (G) and C-GAP-RNAi embryo
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constriction. In the control embryo, as in other wild-type embryos, the fourth row of cells is at

the inflection point (Fig. 3.4A and 3.5A). In contrast, in the embryo depleted of C-GAP, the
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sixth (Fig. 3.4B) or seventh (Fig. 3.5B) cell rows are the inflection point, indicating a broadening

of the domain. Next, I analyzed the distribution of apical area in each cell bin at the same time

points for which I analyzed the distribution of active myosin (3.4C,D and 3.5C,D). There is also

an increase in the domain of statistically-significant uniform cell constriction, from two cells

from the VM in the control embryos (Fig. 3.4E and Fig. 3.5E) to four and six cells from the VM

for each of the C-GAP depleted embryos, respectively (Fig. 3.4F and 3.5F). The embryo with a

greater expansion of the uniform myosin domain also exhibited a greater expansion of the

uniform area domain.

Finally, I observed the shape of the fold by generating a cross-sectional view from the

image stack for all embryos (Fig. 3.4G and 3.5G). In the C-GAP-depleted embryo with the

narrower gradient in active myosin, I observed no difference in curvature from the control (Fig.

3.4G). In the embryo with the widest gradient of active myosin, there is clearly a distortion of

the furrow shape at later time points (Fig. 3.5G). The furrow is flat around the VM and the

tissue bends further from the VM. This distortion does resolve itself, and the embryo is able to

fold. This is consistent with the very broad gradient in embryos depleted of Spn27A causing a

flattening of the tissue around the VM as in Chapter 2. We cannot rule out the possibility that

the furrow is misshapen due to a defect in apical constriction, as we know happens in C-GAP-

depleted embryos. In this embryo, I also observed a region of uniform contractility that is wider

than the region of uniform active myosin level (Fig. 3.3F vs. 3.5F). This is the only embryo in

which this is observed, a result that may also be caused by an inhibition of apical constriction due

to the role of C-GAP in dynamically inhibiting RhoA.
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3.1.3. Gprk2 increases the width ofthe myosin and area gradient.

Next, I examined the effect of Gprk2, an inhibitor upstream of RhoA activation, on the

shape of the myosin and area gradients. Previous analyses found that the lateral mesodermal cells

behave more similarly to the ventral mesodermal cells in Gprk2 mutant embryos. My hypothesis

was that this change in behavior is due to an expansion of the myosin gradient.

To assess the role of GPCR downregulation in the ventral domain, I quantified the

distribution of active myosin in embryos that were depleted of Gprk2 by RNAi. Gprk2-depleted

embryos were generated by crossing a UAS-driven shRNA targeting Grpk2 with a GAL4

maternal driver (See Methods for fly genetics). Cells in the embryo were binned based on their

initial position from the VM, as for C-GAP (Fig. 3.6A,B). Average active myosin levels for each

cell bin increase over time as the embryo folds in both control and Gprk2 RNAi embryos (Fig.

3.6C,D and 3.7A,B). There was variation in the phenotypes that I quantified in the Gprk2

RNAi embryos (Fig. 3.6D and 3.7A vs Fig. 3.7B). Of the three embryos that I quantified, two

showed active myosin levels increasing in all cells in which it could be measured (Fig. 3.6D and

3.7A). I analyzed the distribution of myosin at specific time points; due to experimental

limitations, some embryos were analyzed at earlier time points (as specified in Fig. 3.6E,F and

3.7C,D). The distribution of myosin in these cell bins is consistent with the averages reported for

all time points. Statistical analysis shows that one embryo had an expanded domain of uniform

active myosin of four cells from VM, as opposed to the three cells seen in the wild type (Fig.

3.6G,H). The other two embryos did not show an expansion of the domain of uniform myosin.

This is possibly due to the fact that they were analyzed at earlier time points (Fig. 3.7E,F).
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Figure 3.6: Gprk2-RNAi increases the width of the gradient of active myosin and the region of uniform
active myosin around the VM. (A-B) Diagram of the cell bins of a control (white-RNAi) (A) and Gprk2 -
RNAi (B) embryo. Cell membranes (gap43::mCh) are shown in grayscale. Cells, as identified by EDGE,
are colored by the bin to which they are assigned. Yellow line denotes VM. (C-D) C-GAP-RNAi embryos
increase myosin in cell bins 6 and 7, unlike in the control embryo. Plot shows distribution of average active
myosin per cell bin as a function of distance from the VM at various times for the control-RNAi (C) and
Gprk2-RNAi (D) embryo. (E-F) The distribution of active myosin at t = 353 s in the control embryo (E)
and t = 372 s in a Gprk2-RNAi embryo (F). The distribution for each bin is depicted as a box and whisker
plot. Red lines indicate median values, box indicates inner quartiles, while dotted lines indicate outer
quartiles. (G-H) Gprk2-RNAi increases the domain of cells with active myosin distributions that are not
statistically different from each other from 3 to 4 cells. Table is of the p-values for each pair-wise statistical
test (K-S test) for each of the cell bins plotted in E and F respectively. Green indicates p < 0.05. n varies
for each cell bin and time point. Note: A, C, E, and G are all the same embryo and the same as in Fig.
2.8A, C, E, G, with n = 44. cells/bin (mean) and 13 cells/bin (min). B, D, F, and H are all the same embryo
and the same as in Fig. 2.8B, D, F and H, with n = 29.7 cells/bin (mean) and 7 cells/bin (min). Scale bars:
10 am
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Figure 3.7: Gprk2-RNAi increases the width of the gradient of active myosin and the region of uniform

active myosin around the VM in some but not all Grpk2-RNAi embryos. (A-B) Some C-GAP-RNAi

embryos increase myosin in cell bins 6 (A) but not others (B). Plot shows distribution of average active

myosin per cell bin as a function of distance from the VM at various time points for both Gprk2-RNAi

embryos. (C-D) The distribution of active myosin at t = 213 s in one Gprk2-RNAi embryo (E) and t = 314 s

the other Gprk2-RNAi embryo (F). The distribution for each bin is depicted as a box and whisker plot.

Red lines indicate median values, box indicates inner quartiles, while dotted lines indicate outer quartiles.

(E-F) Gprk2-RNAi does not increase the domain of cells with active myosin distributions that are not

statistically different from each other from 3 to 4 cells in these two embryos. Table is of the p-values for

each pair-wise statistical test (K-S test) between the distribution of fluorescence intensity for each of the

cell bins plotted in E and F respectively. Green shading indicates statistical significance with p<0.05 . n

varies for each cell bin and time point. Note: A, C, and E are all the same embryo Gprk2-RNAi embryo

and the same as Fig. 2.9A, C, E, G, with n = 52 cells/bin (mean) and 25 cells/bin (min). B, D, and F are

all the same embryo and the same as Fig. 2.9B, D, F, and H, with n = 39 cells/bin (mean) and 8 cells/bin

(min). Scale bars: 10 pm

88

Gprk2 RNAi 1xsq::GFP

1 2 3 4 5 6
Cells from VM

Gprk2 RNAi lxsqh::GFP
213s

T

Gprk2 RNAi lxsqh::GFP -- 157 s
-- 118s
- -79s
- -39s
- Os
- 39s

- 79s
-118S

157s
197s

- 236 s
275 s
314 s

B 700

.- 600

cd 500

'F 400
O
E 300

-- 200

<100

0

D
1500

1000

500

0

E
(D

1 2 3 4 5 6
Cells from VM

Gprk2 RNAi 1xsqh::GFP
314s

T

- T

0

E

6 7

,

7



3.1.4. Effect of Gprk2 depletion on the distribution of apical constriction.

Area is more easily comparable between embryos than active myosin levels, and in all of

my previous analysis, expansion of the region of active myosin proportionally expands the region

of constricting cells. Therefore, I examined the distribution of apical area in the same embryos to

further examine whether there were differences in the patterning of the active myosin gradient.

Measuring apical area over time, we see that the control embryo and two of the Gprk2-depleted

embryos reduce their apical area in cell bins 1-4 over time (Fig. 3.8A and 3.9A,B). In the other

Gprk2 embryo, cell bin five also reduces in area over time (Fig. 3.8B). There was a slight

expansion of the region of uniform apical area to 3 cells, from the wildtype 2 cells, but this could

also be due to the early time point of some of the measurements (Fig. 3.8E,F and 9E,F).

Finally, I did not observe a difference in the shape of the furrow between Gprk2-depleted

and control embryos (Fig. 3.8G,H and Fig. 3.9G,H). There was no flattening of the furrow

around the VM, which is consistent with the lack of increase in the uniform region of myosin

activation around the VM.

These results indicate that Gprk2 depletion can expand both the region of myosin

activation and apical area constriction, but less robustly than depletion of C-GAP. Because of

the difference between my observations and the observations of the mutant phenotype, it may be

the case that the depletion of Gprk2 was incomplete in the embryos I analyzed (Fuse et al.,

2013). Additionally, I found that expansion of the region of uniform myosin around the ventral

midline does not have an effect until it is at least two cells wider than in control embryos.
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Figure 3.8: Gprk2 -RNAi increases the width of the gradient of apical constriction and the region of

uniform apical area around the VM. (A-B) Plot shows distribution of average apical area per cell bin as a

function of distance from the VM for time points listed in the legend the control (white-RNAi) (A) and

Gprk2-RNAi (B) embryo. (C-D) The distribution of apical areas for all cell bins at t=353 s in the control

embryo (C) and t = 372 s in a Gprk2-RNAi embryo (D). The distribution for each bin is depicted as a box

plot. Red lines indicate median values, the box indicates inner quartiles, and dashed lines indicate outer

quartiles. (E-F) Gprk2-RNAi increases the domain of cells with apical area distributions that are not
statistically different from each other around the VM. Table is of the p-values for each pair-wise statistical

test (K-S test) between each of the cell bins plotted in C and D respectively. Green indicates statistical

significance with p<0.05. n varies for each cell bin and time point. (G-H) Cross-sections of the embryo

show that the Gprk2-RNAi embryo has a wildtype v-shaped furrow. Cross-sections are of control embryo
at t = 507 s (G) and Gprk2-RNAi embryo at t = 666 s. Cross-sections are reconstructed from a z-stack.

Myosin (sqh::GFP) is shown in green and membranes (gap43::mCH) in magenta. Note: A, C, E, and G
are all the same white-RNAi control embryo and the same as in Fig. 2.6A, C, E, G, with n = 44 cells/bin

(mean) and 13 cells/bin (min). B, D, F, and H are all the same Gprk2-RNAi embryo and the same as in

Fig. 2.6B, D, F, and H, with n = 29.7 cells/bin (mean) and 7 cells/bin (min). Scale bars: 10 ptm.
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Figure 3.9: Gprk2 -RNAi increases the width of the gradient of apical constriction and the region of
uniform apical area around the VM. (A-B) Plot shows distribution of average apical area per cell bin as a
function of distance from the VM at various time in two Gprk2-RNAi embryos. (C-D) The distribution
of apical areas for all cell bins at t = 213 s in (C) and t = 314 s in (D). The distribution for each bin is
depicted as a box plot. Red lines indicate median values, the box indicates inner quartiles, and dashed lines
indicate outer quartiles. (E-F) Gprk2-RNAi increases the domain of cells with apical area distributions that
are not statistically different from each other around the VM. Table is of the p-values for each pair-wise
statistical test (K-S test) between each of the cell bins plotted in C and D respectively. Green indicates
statistical significance with p < 0.05. n varies for each cell bin and time point. (G-H) Cross-sections of the
embryo show that the Gprk2-RNAi embryo has a wildtype v-shaped furrow. Cross-sections of embryos at
t = 774 s (G) and t = 546 s (H). Cross-sections are reconstructed from a z-stack. Myosin (sqh::GFP) is
shown in green and membranes (gap43::mCH) in magenta. Note: A, C, E, and G are all the same embryo
Gprk2-RNAi embryo and the same as Fig. 2.7A, C, E, with n = 52 cells/bin (mean) and 25 cells/bin (min).
B, D, F, and H are all the same embryo and the same as Fig. 2.7B, D, F, with n = 39 cells/bin (mean) and
8 cells/bin (min). Scale bars: 10 pm
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3.2. Discussion

Above, I found that depletion of known negative regulators of ventral furrow formation

expands the gradient of active myosin. In the previous chapter, we noted that the gradients in

upstream signaling components were generally broader than that of the more downstream

components. Specifically, the distribution of active myosin in the C-GAP-RNAi embryos is

similar in width to the distribution of T48 signal measured in the previous chapter. My findings

in this chapter are consistent with C-GAP and Gprk2 both serving to narrow the gradient.

When compared to the effect of depleting Spn27A, I found that the domain of active myosin

was less expanded when depleting Gprk2 and C-GAP. This is consistent with our current

understanding that both Gprk2 and C-GAP act downstream of the Twist signal, and thus

myosin activity is still limited by the width of the Twist domain. I found that Gprk2 depletion

less consistently expands the domain of active myosin and apical constriction. To differentiate

between the phenotypic effect of Gprk2 depletion and C-GAP depletion, I would need to

increase the number of embryos analyzed, particularly at later time points. It would be

additionally useful to measure average levels of Gprk2 mRNA in the knock-down compared

with control knock-down embryos to determine how much of the lack of phenotype is due to

incomplete knock-down.

In addition to a widening of the gradient of active myosin in C-GAP-depleted embryos,

I also observed a 1-2 cell increase in the region of uniform active myosin around the VM. This is

consistent with a model in which inhibition of RhoA by C-GAP prevents RhoA from reaching

saturation levels outside of the normal 2-3 cell domain of uniform myosin. To validate such a

model, one would need to quantify the distribution of active RhoA, the distribution of the RhoA
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input, RhoGEF2, and the distribution of C-GAP. Our current understanding of the distribution

of active RhoA is based on the distribution of its downstream effector ROCK (Mason et al.,

2013). The distribution of ROCK, the RhoA-dependent kinase that activates myosin in our

system, has been measured on the per-cell level and localizes strongly with myosin in cells near

the VM; this suggesting that it would closely track the gradient in active myosin. C-GAP is

known to be maternally deposited, and our current hypothesis is that it acts uniformly across the

ventral domain.

Finally, I suggest developing a method for quantifying tissue curvature in the furrow.

This would allow a more careful analysis of the effect of changing the distribution of active

myosin on tissue shape. This could be done be developing an image analysis program that could

extract the shape from the cross-sectional view of the embryo. One would also need to develop a

way of either averaging the shape over the length of the embryo, or creating an analysis that

specifically associated curvature at a given anterior-posterior position to a specific level of active

myosin at that position.

There is more work to be done to understand how the broader upstream signals are

modulated over the course of the signaling pathway. I found that there was a subtle shift in the

gradient of active myosin and apical constriction when C-GAP and Gprk2 are depleted.

Detecting this subtle shift is dependent on the cell-level quantification techniques that I

developed (Heer et al., 2017), and there are many more components of the pathway that can be

measured using this technique. The Drosophila ventral furrow is one of the best-described

systems of morphogenesis, allowing thorough characterization of all aspect of the system.

Multiple discoveries from this system have been found to apply in other systems and contexts,

and it is possible this discovery, that gradients in contractility are important for tissue folding,
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might hold true in other systems as well.
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3.3. Materials and Methods

Table 3.1

Stock Genotype Source/Reference

1 y[1] v[1]; P{TRiP.HMS00017}attP2; sqh::GFP (white, Control Perkins et al., 2015
shRNA)

2 y[1] sc[*] v[1]; P{TRiP.HMS00412)attP2 (RhoGAP71E, C- Perkins et al., 2015
GAP shRNA)

3 y[1] v[1]; P{TRiP.HMS00017}attP2 Adapted from 2 by
(white, Control shRNTA) Frank Mason

4 y[1] sc[*] v[1]; P{TRiP.HMS00412}attP2; sqh::GFP Adapted from 1 by
(RhoGAP71E, C-GAP shRNA) Frank Mason

5 y[1] sc[*] v[1]; Pty[+t7.7] v[+tl.8]=TRiP.GLO1052}attP2 TRiP center*
(Rh3 shRNA control line)

7 w; mat67, Sqh::GFP; mat15, Gap43::mCherry/(TM3, Sb[1]) Vasquez et al., 2014

8 y[1] sc[*] v[l];P[TRiP.GL00233}attP2 (Gprk2 shRNA)

F2 embryos imaged from these crosses, using above stock Figure
numbers/genotypes. Non-balancer females were used for cages.

Stock # 4 x 7 (Virgins x males) 3.2, 3.3, 3.4, 3.5
5 x 7 3.2, 3.4
1 x 7 3.3, 3.5
3 x 7 3.6, 3.8

8 x 7 3.6, 3.7, 3.8, 3.9

*Norbert Perrimon, Harvard Medical School and Howard Hughes Medical Institute,
Boston, MA

3.3.1. Fly stocks and genetics

Fly lines and crosses used in this chapter are listed in Table 3.1. Embryos were collected

at 25 'C. Embryos from cross 1 and control cross 2 were collected from cages that had been aged

more than 5 days to generate a consistent and mild phenotype. Modulation of RNAi levels are

further described in (Jodoin et al., 2015).
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3.3.2. Live imaging

C-Gap RNAi and control embryos were collected from cages that had been aged more than

5 days to standardize the phenotype. All embryos were dechlorinated in 50% bleach for 2

minutes, rinsed and mounted on slides coated with embryo glue (made by dissolving the adhesive

from Scotch Tape in heptane). Embryos were visualized through a No. 1 coverslip, while

immersed in Halocarbon 27 oil. Images were acquired with an Apochromatic 40x/1.2 numeric

aperture W Korr M27 objective on a Zeiss 710 microscope, with pinhole size 1 AU. A 488/561

beam splitter was used to acquire (Detector range: 493.0-560.8 nm and 599.0-696.0 nm) and

excite (Argon 488 LASER, 15.0% and DPSS 561-10, 2.0% and 5.0%) channels concurrently.

3.3.3. Image processing

Images were analyzed using Fiji (http://fiji.sc) (Schindelin et al., 2012) and MATLAB

(MathWorks). Custom image processing software is available upon request. The myosin signal

was processed as described in Chapter 2. The myosin signal (sqh::GFP) was thresholded at 2.5

standard deviations above the mean of the cytoplasmic background signal. Myosin signal was

averaged over the 4 pm above the embryo surface. Images were segmented using the custom

Embryo Development Geometry Explorer (EDGE) MATLAB package (Gelbart et al., 2012).

Membrane signal (gap43::mCherry) was used to identify cell boundaries and track cells in time.

Errors in the segmentation software were manually corrected. EDGE was used to measure cell

centroid position, cell vertex position, cell diameter, cell area, and total myosin signal within a

cell.

3.3.4. Image Analysis

To measure the tissue-level distribution of myosin relative to the VM independently of

the displacement of cells with time, cells were binned based on their position relative to the VM.
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Cells were assigned to bins based on the position of the cell centroid in the initial image. For

most embryos, the boundaries of each bin were set by the average cell diameter. For embryos that

began apical constriction prior to the time point of the image, the boundaries of each bin were

empirically determined as some fraction of the average cell diameter as described in Section 2.4.5

(Fig. 3.6A,C,E and 3.7A,C,E).

3.3.5. Temporal alignment

Time 0 for each embryo was set as the time point immediately preceding the onset of

average area reduction for the area of cell bin 1. For one control embryo that had begun apical

area reduction prior to the first image acquired, I gave the first image a time of 39s, which was

the length of the time steps between images (Fig. 3.6A,C,E and 3.7A,C,E). This was an

approximation based on the apical area in cell bin 1 compared to the average area in the other

cell bins.

3.3.6. Statistical analysis

Statistical analysis done using the MATLAB Statistics and Machine Learning Toolbox.

The significance was determined using a Kolmogorov-Smirnov test with a = 0.05.
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Chapter 4. Concluding thoughts

Natalie C. Heer

Section 4.1 is adapted from: Heer, N. C. & Martin, A. C. Tension, contraction,
and tissue morphogenesis. Development 144, 4249-4260 (2017).

Broadly speaking, this dissertation serves to link the fields of tissue mechanics and

developmental patterning. This link is possible because of the elegance of the Drosophila embryo

as a model system and because of the extensive work that has preceded me in the field. First, I

summarize my work in the context of tissue morphogenesis and relate it to the field of tissue

mechanics. Looking towards the future, I next describe below some possible approaches to

continue the work described in this dissertation.

4.1. Resistance: the interplay of tension and stiffness

From the work in this dissertation we can start to outline a paradigm by which the tissue-

level organization of actomyosin contractility affects the individual cell shape changes and

ultimately tissue shape. We can think of the tissue level organization of myosin activation as

creating tension fields in which individual cells constrict in a manner that depends on their

intrinsic contractility and the contractility of their neighbors. Specifically, in the context of a

tissue, isotropic cell contractility can result in anisotropic forces and tissue movements,

depending on how contractility is organized at the tissue level.

In the formation of the Drosophila ventral furrow, the ellipsoid shape of the embryo and the

different distribution of myosin activation along the anterior-posterior vs. ventral-dorsal axes

establishes an inherent asymmetry that orients tissue curvature along the ventral-dorsal axis,
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forming a long, narrow furrow (Fig. 4.1A). In this system, cells initially have a radial

organization to the cytoskeleton and in the absence of surrounding forces, contract isotropically

(Fig. 4.1B) (Chanet et al., 2017; Coravos and Martin, 2016; Martin et al., 2010). However, the

domain of cells expressing the transcription factors that promote contractility is rectangular (- 70

cells long and 18 cells wide), and there is a ventral-dorsal gradient in the transcription of genes

that promote contractility (Fig. 4.1B) (Heer et al., 2017; Lim et al., 2017). A consequence of this

gradient being along the dorsal-ventral axis is that there is more-or-less uniform contractility and

force balance along the anterior-posterior axis (Fig. 4.1C). The balanced contractile forces

between neighboring cells prevents robust apical constriction along the anterior-posterior axis

and leads to tension along that axis (Martin et al., 2010; Sweeton et al., 1991). In contrast, the

gradient and resulting imbalance in contractility along the ventral-dorsal axis provides less

resistance to cell constriction. This allows cells to mostly constrict along the ventral-dorsal axis

and prevents the buildup of cortical tension along this axis (Chanet et al., 2017; Heer et al.,

2017). The result is the formation of the wedge-shaped cells that fold the tissue along the

ventral-dorsal axis (Fig. 4.1B vs 4.1C). The formation of wedge-shaped cells in the Drosophila

ventral furrow is also regulated by basolateral cortical tension that initially resists tissue

deformation. Basal expansion of the ventral cells is associated with a decrease in basal myosin

levels and vertex modeling predicts that this is important for the formation of wedge-shaped cells

(Polyakov et al., 2014). Thus, the organization of the region of active contractility and

actomyosin-based resistance from neighboring contractile cells, in combination with resistance

within the cell, affects both the individual cell shape changes as well as the overall tissue

architecture.
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Figure 4.1: Diagram of the spatial pattern of contractility that results in Drosophila ventral furrow
formation. (A) Surface view of the ventral surface of the embryo. Distribution and magnitude of myosin
activity is in green (darker green, more myosin activity). Anterior-posterior axis is in orange and dorsal-
ventral axis is in purple. (B) Diagram showing how an apical contractility gradient causes a force
imbalance that allows cells to constrict and the tissue to bend along the dorsal-ventral axis. (C) Diagram
showing how uniform apical contractility along the anterior-posterior axis promotes balanced forces and
tension, which prevents tissue bending along this axis. (D) Diagram of the embryo in the process of
folding with the orientation of actomyosin fibers diagramed in yellow.

In addition to the pre-pattern in gene expression (Heer et al., 2017; Lim et al., 2017),

mechanical feedback influences cytoskeletal organization and, presumably, force generation

(Chanet et al., 2017). In both experiment and theory, actomyosin meshworks orient along the

axis that is most resistant to constriction, possibly allowing greater tension to accumulate along

that axis (Fig. 4.1D, yellow fibers). A remarkable illustration of the integrated nature of cell force

generation and organism shape is that converting Drosophila embryos from an ellipsoid shape to

a round shape disrupts the organization of the actomyosin meshworks in cells and the anisotropic

tension in the tissue (Chanet et al., 2017). While it is still necessary to find a way to specifically
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perturb this feedback loop, it is possible that this mechanism is important to reinforce cues

provided by the pre-pattern in gene expression. I next explore three possible pathways to further

our knowledge of this system.

4.2. Why is a multi-layered signaling pathway necessary?

The most difficult questions to answer in biology are the "why" questions. In this case we

are presented with the question of why there are so many levels of the signaling pathway between

twist and apical myosin activation if its primary purpose is to simply transform one gradient

signal into another gradient signal. The purpose of myosin in generating a gradient in apical area

is evident, but the answer is less clear for the more upstream components. A multi-tiered setup is

even more puzzling because each step of the pathway introduces additional noise into the system.

This ostensibly makes it harder for an individual cell to interpret a morphogen gradient and

generate the correct output, such as correct cell fate or an appropriate amount of actomyosin

contractility. However, a recent study has shown that multi-layered pathways can actually

improve information transfer in some situations, even when each layer is increasingly noisy

(Tikhonov et al., 2015). In particular, this applies to pathways in which the downstream

components of the pathway are able to access the information of more upstream components, as

in a feed-forward network. Tikhonov et al. validated this model for the case of anterior-posterior

patterning in the Drosophila embryo, in which the enhancers and promotors of the pair-rule

genes are bound not just by the transcription factors immediately preceding them in the pathway,

but also by more upstream transcription factors such as Bicoid. As our system also exhibits a

multi-step pathway, it is worth exploring whether a similar model could describe the interactions

in our pathway, and thus explain the multiple steps to interpret the gradient. For example, it is
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possible that T48 may allow RhoGEF2 to directly read the accumulated levels of Twist activity

independent of Fog activation of the GPCR pathway. The role of negative regulators in our

system also suggests that the multiple layers of the pathway may serve to increase robustness

(Richards and Saunders, 2015).

A successful application of this model would first require additional experimental

evidence as well. Most importantly we need quantitative measurements of additional pathway

components that have yet to-be measured, including the positive regulators RhoGEF2, RhoA,

and ROCK, and the negative regulators C-GAP, Gprk2 and MBS, an inhibitor of myosin that

is important for proper furrow formation (Vasquez et al., 2014). In the context of these

measurements, we must also address the question of whether a fluorescence measurement of

protein levels is a true reflection of activity levels. We are able to approximate activity levels for

myosin using our thresholding mechanism, which is based on empirical evidence and our

understanding of how the myosin motor is activated (see Section 2.2.1). We do not yet have an

equivalent understanding for RhoGEF2 or C-GAP. Since most of these components become

localized to the apicaldomain when the pathway is activated, we could build models to infer the

relative levels of active and inactive molecules from localized fluorescent signals. This would rely

on the fluorescence intensity distribution in different parts of cells in the embryo and be validated

using mutants that either over-activate or inhibit the component. Additionally, the lateral

domains of embryos could be used as an internal control for background levels of fluorescence.

Imaging lateral and ventral domains concurrently at a high time resolution is difficult using

confocal microscopy; however, if we instead use light sheet fluorescence microscopy, a greater

region of the embryo can be captured in less time. Thus, we would be able to quantify RhoGEF2

and other pathway components in both the ventral and lateral domains.
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4.3. A question of timing

A more careful dissection of the time-dependent nature of the gradients of the upstream

components is an important next step for generating a model of the input-output relationship

between the Twist gradient and the downstream active myosin gradient. Much of the work

presented here focuses on a single time point, at which the statistical significance of the gradient

is assessed, while in reality the gradient of each of the components changes over time. This

aspect of the gradient merits further exploration, as it is possible that the region of uniform

myosin also varies across time. If this is borne out in experiments, it would be an important

feature of any model of how the gradient in Twist activity causes a gradient in myosin activity.

The advances presented in this dissertation allow us to compare the distribution of different

components at different time points, but there is much that is unknown about the timing of

these features. Of particular interest to me is how Twist activity corresponds to myosin activity

on the individual-cell level. Much of the previous work in this system has focused on the

variability in myosin accumulation and apical area reduction between neighboring cells (Martin

et al., 2009; Vasquez et al., 2014; Xie and Martin, 2015; Xie et al., 2016). By averaging the

properties of neighboring cells together, I was able to show a correspondence between input and

output factors. Future analysis of this multicellular gradient requires that we address cell-to-cell

variability and dynamics that naturally occur in this system.

4.4. Manipulating contractility in the embryo.

A true understanding of how contractility can cause different embryonic shapes to

develop will depend on the ability to precisely control patterns of contractility in the embryo.

This dissertation and other research have relied on genetic perturbations to change the pattern of
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contractility in the Drosophila embryo. Additional perturbations can be achieved by drug

injection and laser ablation, as well as an optogenetic approach to inhibit actin polymerization

(Coravos and Martin, 2016; Guglielmi et al., 2015; Martin et al., 2010). An ideal tool for

exploring how contractile patterning affects tissue shape would be optogenetic activation of

contractility. A recently developed system has been able to activate RhoA in cell culture by

optogenetically targeting the catalytic domain (DHPH) of a RhoGEF, ARHGEF1 1, to the

plasma membrane. This was done by fusing the DHPH domain to CRY2, half of a light

controlled dimerization pair, while the other half, CIBN, was targeted to the plasma membrane

(Valon et al., 2017). In the presence of blue light, this system rapidly and specifically increases

the force exerted by a cell as measured by traction force microscopy (Trepat et al., 2009).

Adapting this system to work in Drosophila would allow us to more expansively probe the phase

space of our mathematical model presented in Chapter 2. To implement this system in

Drosophila, I would suggest using the GEF domain (DHPH) from DRhoGEF2. Additionally, I

would suggest targeting the GEF domain specifically to the apical domain of the epithelium.

Specific experiments that I would suggest are generating a region of contractility with

sharp boundaries, which would allow us to determine if there is a certain width to the graded

region of myosin contractility that is required for folding. We could also find the minimum

number of contractile cells necessary to form a furrow. Currently we know that embryos are still

able to furrow if the domain of actomyosin contractility is widened, but we don't yet know if

there is a lower limit on how wide the domain of contractility could be. I suggest doing these

experiments in a twist or snail null background to eliminate existing pattering of the contractile

domain. This would also allow us to test for the requirement of pathways outside of the

RhoA/ROCK pathway in activation apical contractility.
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Before experimenting with different shapes of contractile organization, we would need to

test whether the optogenetic system was able to promote contractility in a snail mutant. As

discussed previously, snail controls pathways that are possibly independent of RhoA, such as the

repression of the bearded genes (Chanet and Schweisguth, 2012; Perez-Mockus et al., 2017). If

the optogenetic system was able to generate contractility in snail mutant embryos, we could

conclude that the control of contractility by Neuralized was functioning through RhoGEF2.

The optogenetic system would also be able to test whether the localization of RhoGEF2

to the center of the apical domain (medioapical) is required to generate contractility (Coravos

and Martin, 2016; Mason et al., 2016). It is currently known that downstream of RhoGEF2,

ROCK must be localized to the medioapical domain to generate contractility, but it is not yet

clear whether that localization depends on the medial localization of RhoGEF2 localization

(Coravos and Martin, 2016). By illuminating the tissue uniformly, RhoA would receive a

uniform activation signal, but still be dynamically deactivated by C-GAP. This experiment

would need to be performed in a twist mutant background so we could rule out the case where

endogenous RhoGEF2 activity would be sufficient to polarize RhoA. I would first perform this

experiment with labeled ROCK to determine whether active RhoA was able to spatial polarize in

the context of uniform activation. I would also measure the ability of these cells to generate

apical constriction, to determine the requirements of polarized RhoGEF2 signal to contractility.

4.5. Conclusion

Spatiotemporal patterning and tissue morphogenesis is fascinating. Here I measured the

spatiotemporal pattern of active myosin in the Drosophila ventral furrow. I found that active

myosin is present in a gradient that increases with time. The gradient was measured as a function
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of cells from the ventral midline. Active myosin levels are uniform within 2-3 cells from the

ventral midline. Cells 4-6 have distinct distributions of active myosin at each position creating a

distribution best described as a gradient. This gradient in active myosin corresponds to a gradient

in apical contractility. I defined the gradient in contractility as being uniform within 1-2 cells of

the ventral midline with cells 2-4 constricting with different distributions of area at each

position. I found that the gradient in active myosin and area depends on a gradient in upstream

factors twist and the Twist target, T48. I measure Twist mRNA to be in a gradient from cells 2-

12 from the ventral midline, and T48 to be in a gradient from 2-8 cells from the ventral midline.

I also found that the presence of a gradient in active myosin near the ventral midline is required

for normal furrow shape. Finally, I found that the position of the gradient in active myosin

depends on the presence of two inhibitors of signaling downstream of Twist, Gprk2 and C-

GAP. This is the first step in understanding how tissue level spatiotemporal patterning of

actomyosin contractility specifically controlled, and how it affects morphogenesis.
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