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Abstract

One way to study how people design is to understand how others observe them de-
signing. I take a step towards this understanding by examining how people segment
visual design events temporally, in other words, how they divide these events into
smaller pieces. I developed a methodology to comparatively study how multiple ob-
servers segment design events. In order to test my methodology, I conducted an
experiment. In this experiment, I compared di↵erent attributes of a design event to
see if some attributes communicate more meaning than others. From the results of
the experiment, I observed that the segmentation of the design event was a↵ected
more by the gestures of the designer than by the produced designs. My observations
suggest computational principles that could be used to develop computational design
assistants that better understand designers intentions.
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Introduction

I started to be interested in how people design while I was
an undergraduate student in architecture. As most architecture
students do, I enjoyed that the studio classes provided a class
experience very different from most other classes. Generally in
studio classes students are encouraged to start a project with an
ideation phase, followed by further development of an idea, cul-
minating in a mostly developed design. One thing I am certain
of: The studio experience allowed me to reflect on not only what I
produced but also how I produced it. Very early on, I realized that
drawing helped me to resolve any impasses experienced within
later phases of design development. Moreover, drawing helped
me to trace what I did; it kindled my inspiration to iterate further.
Drawing enabled me to shift my attention across the materials I
was looking at, to see a detail closer, to change my goals during
the activity, and to see new things in my design and manipulate
them. I am interested in understanding the act of drawing as a
powerful tool in the designer’s toolbox.

One way to study design is to understand how people observe
the design process. In this study, I explore drawing events as one
form of designing. However, I conduct this exploration indirectly,
by paying attention to how other people see drawing events. With
this, we can rethink drawing activities as a rich and challenging
area of study for apprehending how seeing works. Because, when
people observe an activity they divide it up into pieces in a spe-
cific way. What is meant by dividing up is temporal segmentation
and it can be defined as the act of parsing or chunking continuous
temporal sequences into discrete parts that are meaningful to the
observer.

This segmentation by multiple observers is especially relevant,
as drawing activities are dynamic - they unfold in time. Moreover,
they involve both perception and action, not as separate faculties
but as two systems relying on each other. Therefore, the complex-
ity of the design process demands an approach that should be
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different from a single-handed observation.
There is an extensive body of work dedicated to studying the

act of seeing but less so for studying the act of drawing. On the
one hand, in the scientific domain the study of seeing is subsumed
under the study of vision. And for now, let’s consider the study
of drawing as the study of one form of sensorimotor engagement.
Historically, neurophysiological and psychophysical studies have
undertaken vision and sensorimotor engagement separately. These
fields rely on technical instruments for observing subjects, and
the data captured by these methodologies has high temporal res-
olution [Ullman, 1996, Schiller and Tehovnik, 2015, Goodale and
Humphrey, 1998].

On the other hand, several methods such as "Protocol Analy-
sis" and "Think-aloud" protocols provided by artificial intelligence
inspired an array of cognitive scientists and design researchers to
study seeing and drawing together [Jiang and Yen, 2009, Bayazit,
2004]. These methods operate in relatively coarser time scales and
the analysis of the data provided by the subjects depends entirely
on qualitative interpretations by the researcher. If we assume the
task under study to be a continuous event, these qualitative in-
terpretations take the form of labels and descriptions attached
to the specific parts of that event. It is common practice for the
researchers within this paradigm to bring their own schemas, con-
cepts and examples in order to conduct their analysis. [Bamberger
and Schon, 1983, Schon and Wiggins, 1992, Suwa and Tversky,
1997].

Figure 1: Regarding the different
temporal representations of an
event, where does the human
interpretation fit in? Imagine a
scenario from the field of cognitive
neuroscience where a human
performance on a specific task is
investigated. Rows correspond
to (1) the event under study, (2),
(3) individual interpretations, (4)
Oculomotor data and (5) MEG or
fMRI data.

It is worth taking time to understand the role of interpretation
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in both of these methodologies, which operate in entirely differ-
ent temporal resolutions. I claim that all of these methodologi-
cal approaches involve segmentation as a form of interpretation
(see figure 1). Imagine a scenario in which subjects are presented
with a video depicting people performing everyday tasks, and
the subjectsâĂŹ responses are measured using multiple imaging
techniques. The layers in this diagram illustrate the amount of
granularity that can be achieved with different techniques. For
example, fMRI or EEG techniques yield high resolution data across
multiple time frames in the order of milliseconds. But in order to
make sense of that granularity we need individual interpretations,
represented as the middle layers in the figure 1, shown in color. By
collecting multiple interpretations together, we can search for reg-
ularity in the middle layer. If there are matches between multiple
observations, where do they occur? And if there are mismatches,
what caused them? This aspect of segmentation provides a critical
segue into understanding complex temporal events such as design.

What I propose is that by documenting the act of segmentation
- by observing the observer - I can integrate these two different
methodological approaches into a successful study of design ac-
tivities. This approach will allow me to obtain data with high tem-
poral resolution while at the same time documenting individual
interpretations.

The segmentation of visual design events by multiple observers
have not been comparatively studied. In most of the studies, seg-
mentation has been done by the researcher. I suggest that increas-
ing the number of observers who segment the activity can provide
novel insights. Moreover, detailed study of the human segmenta-
tion of drawing activities can help to better identify the regularities
in the perception of drawing events.





Background

In order to give a brief overview of how the segmentation
of events is understood in different domains, I will talk in this
section about the methods employed within the fields of cognitive
sciences, artificial intelligence and design research. These methods
are designed to understand events featuring an agent perceiving
and performing actions directed to solve a specific task.

Segmentation: A Cause or a Consequence ?

In cognitive sciences, several researchers have studied the segmen-
tation of events [Newtson, 1976, Tversky and Zacks, 2012, Kurby
and Zacks, 2008, Baldwin et al., 2008]. Newtson 1 studied whether 1 Darren Newtson. The Per-

ceptual Organization of Ongoing
Behavior. Journal of Experimental
Social Psychology, 1976

segmentations of videos featuring humans performing everyday
tasks matched across subjects. Hierarchical organization between
the events and their parts have also been studied [Newtson, 1973,
Hard et al., 2006]. Event Segmentation Theory proposes that segmen-
tation is a side effect resulting from an agent’s desire to anticipate
the upcoming information [Kurby and Zacks, 2008]. According
to these researchers, when the change in the scene is maximal,
prediction becomes more error-prone. They believe that these
moments correspond with both the implicit and explicit segmen-
tation performed by human observers. Baldwin et al. 2 propose 2 Dare Baldwin, Annika Ander-

sson, Jenny Saffran, and Meredith
Meyer. Segmenting dynamic hu-
man action via statistical structure.
Cognition, 106(3):1382–1407, March
2008

that chains of actions constituting events are like words in a sen-
tence. They claim that implicit segmentation can also occur by
taking into account the statistical dependencies between actions. In
other words, events are unitized automatically due to the statistical
dependencies between sequences.

In psychophysics, measurement of pupil diameter has proven
to be important evidence in detecting event boundaries. Increase
in pupil diameter provides a measure of the amount of cognitive
processing. Zacks and Swallow [2007] showed that this increase
is correlated with the boundaries of an event identified by the
individuals who are eye-tracked. Furthermore, in neuroscience,
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preliminary neurophysiological evidence suggests that brain ac-
tivity in specific regions is correlated with event boundaries even
when the task does not require segmentation [Zacks et al., 2001,
Speer et al., 2003, 2007, Zacks et al., 2006]. However, whether
neural processing plays a causal or a consequential role in event
segmentation is still an open question in neuroscience.

Figure 2: Still image examples
extracted from videos featuring
a model performing everyday
activities [Baldwin et al., 2008].

In terms of how event segmentation relates to the understand-
ing of self-initiated events, the recently developed theory of Event
Coding suggests that perceived events and yet-to-be-produced
events (actions) are equally represented in a common representa-
tional medium [Hommel, 2015]. In this account, the events you can
produce constrain the events that you can perceive.

Figure 3: Warneken and Tomasello
[2006] showed that even prelin-
guistic infants can interpret the
intentions of another person. Start-
ing from very early ages people
are really good at anticipating the
goals of another agent and inter-
vene accordingly.

We Need Robots that can Learn How to Flip Pancakes from Videos

In artificial intelligence and robotics, designing better learning
algorithms is a necessary step if we are to develop systems that
can help humans in a variety of tasks. Whether the goal is to cre-
ate a robot that can recognize human actions in order take care
of household tasks, or to design a system that parses videos as
humans do, defining sound procedures for segmenting human
activity is becoming an important area of research.

In the literature, some researchers have undertaken the prob-
lem of segmenting everyday tasks. For example, Bouchard and
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Badler [2015] segmented human motions by utilizing a qualitative
analysis method called Laban Movement Analysis (LMA). Laban
Movement Analysis attributes qualitatively determined semantic
categories to human motion. The authors trained a supervised
learning algorithm with manually segmented motion capture data.
The algorithm produced semantic segmentations that were effec-
tive when used with general motion capture data, but when com-
pared with human segmentation data it also resulted in many false
positives. The authors claimed that this was due to the occurrence
of specific motion elements that have no high-level meaning for
the human observers. Spriggs et al. [2009] investigated cooking ac-
tivities performed by humans and performed a segmentation and
classification study. They recorded activities by using first-person
sensing with accelerometers and inertial measurement units. Al-
though they were able to segment activities in an unsupervised
manner, they were not able to achieve their desired level of accu-
racy in classifying action units. The authors claimed that this was
due to high variability in the periodicity of human actions even in
a constrained context such as cooking.

Figure 4: Recurrent neural net-
works are used to capture the
statistical regularities in sequential
data.

Unlike the approaches above that specifically focus on how to
segment a video, generative approaches in AI can also give us
clues for parsing visual events. For example, inline with the other
statistical approaches discussed earlier in the cognitive science
literature, there are a number of statistical techniques employed
for representing and generating human activities. Graves [2013]
studied the statistical features of handwriting samples recorded
as a sequence using recurrent neural networks. Recurrent neural
networks (RNNs) are a family of neural networks that are used
to establish statistical relationships between the parts of any se-
quential data in the form of x

(1), ..., x

(n). In this approach, a RNN
has been trained on handwriting data. Then, the network is used
to generate handwriting sequences by predicting a distribution
of pen locations. One important consequence of being trained
with this unique data is that the network outputs probability dis-
tributions with high variance at certain points. This is because
uncertainty increases at the end of strokes for generating certain
letters due to the statistical properties of the English language.

There are a number of systems that blend recurrent neural net-
works with convolutional neural networks Krizhevsky et al. [2012]
to identify temporal patterns in a video. Convolutional neural
networks (CNNs) are another family of neural networks inspired
by the structure and arrangement of object recognition pathways
in the brains of primates. CNNs form their own internal repre-
sentations of visual features, and are able to decide whether an
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Figure 5: Visualization of the den-
sity outputs of the RNN. Large
blobs demonstrate that the predic-
tions at the end of the strokes have
high variance.

object is present in an image by incorporating elements of local
context (e.g. pixels in images). As a result, they demonstrate su-
perior performance at detecting specific objects. When combined
with RNNs it becomes possible to keep track of visual features
that are computed by the CNNs through time. Furthermore, the
organization of RNNs permits the formation of non-linear rela-
tions between derived visual features across different timescales.
This is key in finding regularities in a sequence in order to predict
next instances. For example, [Lotter et al., 2016] proposed a com-
bined network that, when given a set of consecutive video frames,
predicts the next few frames.The integration of these two networks
produces promising results in prediction tasks, however, their ca-
pacity to parse events into coherent pieces by taking into account
the prediction errors has not been exploited yet.

There are Organic Chunks within Design

Understanding how people design has been the main area of focus
of many design researchers. Inspired by developments in artifi-
cial intelligence and cognitive sciences, design researchers have
adopted techniques such as "Protocol Analysis" and "Think-aloud"
protocols in order to study designers [Bayazit, 2004, Anders and
Simon, 1980, Ericsson and Simon, 1993]. Protocol Analysis and
"Think-aloud" protocols include prompting the person under
study to verbally describe what she is doing during the execution
of a cognitive task.

In design research, Suwa and Tversky [1997] studied sketching
activity in architectural design. They asked experienced designers
and students to design a layout for a museum by sketching for
45 minutes. They conducted a protocol analysis that involved
instructing designers to watch a video of their drawing sequence
and provide information about what they were thinking at the
time. They had the subjects in question divide their own videos
into segments. Then, researchers labeled the segments themselves
by taking into account the designers’ activities in the videos and



background 23

the corresponding verbal descriptions of the designers along with
their activity in the videos. . They then counted and compared the
segments to derive conclusions based on the similarities between
expert and novice performances.

Figure 6: Segments from the proto-
col analysis in Suwa and Tversky
study

Bilda et al. [2006] also studied sketching activity in architectural
design. They prompted participants to design a house in 45 min-
utes, blindfolding half of the participants to force them to rely on
their imagery. They further instructed participants to think aloud
while designing. After that, they segmented the verbal descrip-
tions of the designers by interpreting their intentions. In order to
accomplish this, they used recorded videos to determine the start
and end points of segments. They encoded the segments with four
action categories: physical, perceptual, functional and conceptual.
These were determined on the assumption that design thinking
progresses at multiple levels in parallel. They established links be-
tween action categories belonging to each segment. Finally, these
outcomes are evaluated to derive certain conclusions such as the
effects of working memory limitations or implications of design
education on the designers’ behavior.

Jeanne Bamberger and Donald S. Schon 3 provided an interest- 3 Jeanne Bamberger and Don-
ald A. Schon. Learning as Reflec-
tive Conversation with Materials:
Notes from Work in Progress. Art
Education, 36(2):68–73, 1983

ing analysis of making events that also inspired the methodology
proposed in this work. Schon, a design researcher, and Bamberger,
a music educator, studied the process of making a tune out of bells
with different pitch. They filmed the making process while sub-
jects tried to find a tune. Researchers then studied the videos and
attempted to find important boundaries to produce organic chunks
within the continuous making events. However, their greatest in-
sight was to realize that by repeating this chunking process several
passes and also by making other people find their own meaningful
chunks in the same events, they were able to find new boundaries
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and new chunks. This enabled researchers to reflect on and change
their own interpretations. Eventually, this study resulted in more
discoveries about the individual making processes.



Methodology

In the previous section I provided a compilation of state of
the art methodologies from diverse fields aimed at understanding
how people perceive both daily events and design events. In this
chapter I will share the details of my proposed methodology and
the experiments I did to test my methodology.

Proposed Methodology

One of the most important considerations undertaken during the
design of the methodology was creating an easy-to-use and accu-
rate segmentation tool. Capturing accurate and detailed data from
subjects is an important task, and capturing data that features
individual interpretations of events is becoming more important
for the fields of artificial intelligence, cognitive neurosciences and
design. For this reason, I designed a web-based software that al-
lows researchers to design, analyze and share their segmentation
experiments. Moreover, with this software, researchers can collect
data from subjects regarding specific moments in events that the
subjects identify as important as well as corresponding labels for
those moments and durations. This can be done with a millisec-
ond accuracy that is well suited to proper scientific analysis.

A segmentation study starts with researchers selecting which
events to focus on. Events under study can be any event featuring
specific everyday tasks, improvised dance or design performances
or footage of observations of human interaction. The software then
lets researchers upload or link their videos into their protocols. A
protocol might feature multiple phases. For example, in order to
make subjects familiar with the task researchers can introduce a
preparatory segmentation phase. This phase can be followed by
additional phases for recording baseline measurements or distract-
ing subjects for the purposes of the experiment. Then, the main
phases of measurement and collection can be appended to the
protocol. Finally, multiple protocols can be appended together to
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create more complex experiments or to test new protocols.

Figure 7: A sample of the software
user interface.

The design of the segmentation interface comprises a software
screen that contains the design video and an interactive timeline
below it. This timeline provides the area where observers indicate
event boundaries and segments. An indicator of the current time
is shown with a protruded, sliding bar (fig. 7). Subjects press a key
to indicate breakpoints. Within the context of this methodology,
it is decided to define breakpoints as marks to indicate a specific
moment, whereas segments are defined by the interval between
consecutive breakpoints.

Figure 8: (left) Subjects indicate
breakpoints by pressing keys.
(right) A new breakpoint and a
segment defined upon keypress.

Depending on the protocol, when subjects press a key, they may
be instructed to either continue indicating breakpoints without
labeling (see fig. 8) or they may be asked to include their descrip-
tions for the corresponding breakpoint and segment (fig. 10). For
the latter, the software produces pop-up forms triggered by the
key-press, in which subjects can provide their labels. The video
and timer can be stopped in this moment, and whenever subjects
are done with labeling they can continue to the video by pressing
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a key.
For example, with this software, researchers can develop pro-

tocols allowing for retrospective labeling. Retrospective labeling
protocol work as follows: Initially, subjects are made familiar with
the task and their baseline measurements are recorded. Then, in
the first phase of the experiment subjects are presented with the
video to be segmented. In this phase they are instructed to pro-
vide breakpoints only and they are not able to stop the video. In
the second phase, subjects are presented with the same video and
are instructed to provide labels for the segments and breakpoints
they gave in the first phase. They can freely start and stop the
video in this second phase. As subjects will have more time and
control in this phase, the labels are subject to more careful inter-
pretation. However, this protocol has its disadvantages. Primarily,
a retrospective look on the given breakpoints and segments can
contaminate the labels that they originally gave in the first phase.

Figure 9: Depending on the proto-
col, subjects may be instructed to
provide labels for the correspond-
ing breakpoints and segments

Additionally, the software enables researchers to produce pro-
tocols that let subjects change the locations of breakpoints, change
the labels from previous phases, or even introduce new break-
points or delete existing ones. Responses to this protocol can give
clues about how the segmentation strategies of a subject change
through multiple iterations. Furthermore, this protocol could help
researchers understand what constitutes better information for a
particular observer and study how subjects construct hierarchical
relationships between coarse and fine segments.
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Figure 10: In the recursive segmen-
tation protocol, subjects can change
the location of breakpoints or the
labels of breakpoints and segments.

Experiment

I conducted an experiment to test the proposed methodology.
I formed two groups and showed each group a different draw-
ing performance video. In these videos, the gestures (actions) of
the designer are the same but only one video results in marks
on the canvas. I asked whether the breakpoints and labels pro-
vided by subjects change when they are limited to observing the
performance of a designer instead of the gestures alongside the
produced design. I hypothesized that the breakpoints and labels
provided by the subjects in both groups would match. Further-
more, I expected that in both conditions the activity would be
segmented in a way that is primarily governed by the motion pro-
duced by the designer. In other words, particular attributes of mo-
tion such as changes in speed and direction that also correspond
to low-level features of an image sequence (video) consistently
result in observer breakpoints. Moreover, collected labels for each
breakpoint and segment will be used to evaluate whether the seg-
ments provided by a subject relate to the gestures (actions) or to
the produced design.

For the performance videos, I produced a series of abstract
drawing videos 4. I claim that abstract drawings in the videos 4 Available at this address.
used in the experiment can be thought of as designs. Because
design can be defined as a creative act that requires planning, exe-
cution, evaluation and improvisation. Moreover, design processes
include change of goals or strategy and re-framing of a problem at
hand. During the production of these videos, large effort has been
made to ensure that the drawing process incorporates all of the
attributes above.

The videos were recorded with a Canon 7D DSLR camera at
1920x1080 pixels in 30 fps. I selected a video that has just enough
variation in gesture speed, discontinuity, stroke width and length.
However, instead of drawing with actual paint I only captured

https://www.youtube.com/watch?v=6MjnnMpT024
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Figure 11: A pair of videos in
which the gestures are exactly the
same but only one contains the
marks.

the gestures by drawing on an empty canvas using a brush with-
out paint. I produced two videos by overlaying a digital layer of
a drawing sequence on one and keeping only the gestures of the
designer on the other. This way I ensured that the gestures were
exactly the same but only one of the pair contains the marks (see
figure 11). The videos are then encoded to H265 format and re-
duced to 1080x720 pixels to be able to be served on a third-party
video server. During the experiment, one from the pair is selected
randomly for each subject.

Figure 12: Experimental procedure
for the simultaneous labeling
protocol

For this experiment, I recruited 70 subjects between ages 18 and
40 through the Amazon Mechanical Turk platform. Subjects were
directed to the web-based software. The protocol for this experi-
ment is called simultaneous labeling protocol and it is executed as
follows. In order to make subjects familiar with the task, a short
practice video is presented. After this practice phase, subjects are
directed to the baseline phase. In the baseline phase subjects are
asked to provide breakpoints when they see a cross in a video
sequence. This way, the amount of lag in the responses of each
subject can be measured during data normalization. In the last
and main phase of the experiment subjects are presented with a
performance video randomly selected from the pair of videos, one
of which contains the gestures with marks on the canvas and the
other only the gestures. In this phase they are instructed to pro-
vide breakpoints and labels for both breakpoints and segments.
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Full instructions for the main phase were as follows:

1. "This is the same task as in the preparatory phase but with a
different video."

2. "In the next section a drawing performance video will start
playing when you press the Start button."

3. "Your task is to press the spacebar to indicate the important
moments in the video. What makes an important moment is up
to you."

4. "When you press the key, video will stop and a pop-up form
will appear and the video will not continue until you provide
your descriptions for both the breakpoints and segments."

5. "Think of a breakpoint as a mark for that important moment. A
description for a breakpoint should be about what happened at
that exact moment."

6. "Whereas, a segment is defined as the period from the previous
breakpoint and the current breakpoint. A description for a
segment should be about what happened during that period."

7. "If you produce less than 3 breakpoints, you will have to repeat
this task.".



Analysis

In this section I will share the details of the approaches I’ve
taken to interpret the results of the experiment defined in the pre-
vious section. Then, I will discuss the implications of my analysis
for the larger thesis detailed in this work.

Results

Figure 13: Kernel density esti-
mation [Rosenblatt, 1956] centers
blocks with a certain bandwith
around the data points. Adding
up the intersections results in a
smoother distribution compared
to histograms. Image copyright:
Duong.

Out of 70 subjects who participated in the experiment, 37 of them
segmented the video that contain both gestures and marks and 33

of them segmented the video that contain gestures only. In order
to account for the lags in breakpoints and to normalize the break-
points for each subject the following procedure is used. From the
breakpoints of that subject, Gaussian kernel density [Rosenblatt,
1956] is computed. In choosing the appropriate bandwidth for
the densities, a search algorithm has been used provided by the
scikit-learn package [Pedregosa et al., 2011] in Python. This func-
tion computes the best bandwidth value by finding the density
that best fits the data. Criteria for the best fit is determined by the
maximum likelihood estimation. This way, data received from each
subject has been transformed into a probability density. This al-
lows for calculating the correlation of the computed densities with
each other. Therefore,

• A breakpoint set from a subject that gave the largest average
correlation with the signals produced out of of the remaining
breakpoint sets is selected as the baseline set,

• Another subject is selected from the group,

• Different lag values ranging between -100ms to 100ms in 10ms
intervals are added to the breakpoints of the second subject,

• Gaussian kernel density is computed for each of the new break-
point sets of that subject,
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• The lag value that gave the best correlation with the first density
is added to each breakpoint in the breakpoint set of the second
subject,

• Adjusted breakpoints are added to the group set.

The procedure above is repeated for all the remaining subjects
in the group to generate a new lag-adjusted breakpoints set. Then,
for each group, kernel densities are computed from the sets of
breakpoints. Optimal bandwidth values for the density estimates
for each distribution are calculated with the same procedure de-
scribed above. The fig. 14) shows both distributions.

Figure 14: Comparison of the lag
adjusted responses for both videos.

Distributions defined by the kernel densities are non-parametric.
Therefore, in order to compare the two distributions, two-sample
Kolmogorov-Smirnov(KS) test is used. Two-sample Kolmogorov-
Smirnov test statistic is given by,

Dn,m = sup
x

|F1,n(x)� F2,m(x)|, (1)

where F1,n(x) and F2,m(x) are the distribution functions of two
samples. Calculated test statistic and p value obtained by com-
paring the two samples are given by D = 0.054 and p = 0.104.
Furthermore, within group distributions are also tested against
the uniform distributions in 10, 000 samples by using the KS tests.
Where it yield p < 0.0005.

Computing the Video Features

Furthermore, subject responses are compared with the features
derived from the video. The feature used in the analysis is sum
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of absolute differences between the pixel intensities of consecu-
tive video frames (see fig. 15). Therefore, this feature gives the
moments where most change occurred. Moreover, as the pixel val-
ues in the background of the performance videos were uniform,
these changes are more likely to correspond to the motions of the
designer.

Figure 15: Absolute differences
between consecutive frames are
calculated.

Before computing the absolute differences, video frames are
transformed into jpeg images and resized to 500 x 280 pixels.
Then, means of the channels (R, G, B) are subtracted from the
corresponding channel values in each image. Finally, the sum of
absolute differences between the consecutive frames of videos
are mapped to the range between 0 and 1 and plotted against the
corresponding lag-adjusted subject responses.

Figure 16: Comparison of the (left)
responses to the video without
marks against absolute differences
of frame pairs in the video without
marks, (right) of the responses
to the video with marks against
absolute differences of frame pairs
in the video with marks.

Discussion

Now that the results are presented, we can discuss their implica-
tions.

Subjects Responded Similarly to both Videos

Comparing the distributions of the lag adjusted responses to both
videos with a KS-test yield a p-value (p = 0.104) that lets us to
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make the argument that we cannot reject the hypothesis that two
distributions are the same. This observation is supported with
the visual inspection of the two distributions (see fig. 14). Based
on these, it would not be misguided to claim that the aggregate
responses in both groups are similar. In other words, a clear signal
is present within each group and this signal is correlated between
the two groups.

Low-level Video Features Affect Segmentations

When the two distributions are plotted with the differences be-
tween frame pairs, it can be seen that the number of breakpoints
increases after bursts of motion. This might be due to two rea-
sons. Initially, the bursts of motion correspond to the drawings
of shapes followed by the moments where the brush gradually
slowed down and lifted off from the canvas. Therefore, subjects
chose those moments because of the differential changes in motion
such as changes in the speed of the brush or in the direction of the
hand during the lift off. This makes clear that the gestures played
a larger role in the observers’ segmentation of the drawing event
than the design itself.

Based on this observation we can propose that the agreement
in responses across subjects can be predicted by the features of the
gestures computed from the image sequences.

In order to emphasize the importance of this proposal, let’s
rewind back to my larger thesis. I suggest that the scope of indi-
vidual interpretations of a design event are based on how people
divide up that event. This can be observed from the fact that the
labels provided by each subject are determined by the segments
produced by the subjects themselves. I believe that segments de-
fined by the breakpoints and the labels together constitute an
individual story about how this design process is understood.
Therefore, I found that the majority of subjective interpretations of
a creative event are based on regularities that are computable from
the sequential motion cues.

This finding can be utilized in developing computational de-
sign assistants. For example, with this knowledge, we can build
computational agents that know which moments to focus on in a
design event. Moreover, supplying these agents with the capacity
to divide up long sequences into small, manageable and coherent
pieces will help them achieve greater computational flexibility. We
can then let AI systems learn from videos or by directly observing
designers. These learning systems would attain a greater under-
standing of the design events they observe by segmenting them
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based on computational regularities in the sequential visual data.
Furthermore, we can reach this design goal without giving away
the system’s capacity to redefine the pieces altogether. I believe
that these developments could help these systems explore new
possibilities and eventually create their own designs.

Although I primarily studied the moments with significant
agreement across subjects, we can also learn from the moments
where there is little agreement. I suspect that these moments
would more likely feature labels that indicate different reason-
ing patterns. The methodology proposed in this work enables
researchers to identify these idiosyncratic cases. Hopefully, careful
analysis of both convergent and divergent moments can be used to
build a better understanding of design processes.





Contributions

During the course of this work, I have:

• compiled previous work on event segmentation and discussed
their scope and limitations,

• outlined a methodology enabling the comparative study of how
multiple observers observe how people design,

This is one of the first methodologies that examines how multiple
observers segment creative design events.

• developed a software enabling researchers to reliably collect
segmentation data from events,

Researchers can use this software to compose and execute differ-
ent experimental protocols related to the segmentation of visual
events. Furthermore, this software can be leveraged to collect
segmentation data from multiple annotators in order to create a
dataset comprised of better annotated videos. This can help us
produce learning algorithms that are competent enough to deal
with events in subtler ways.

• identified regularities in the perception of design events,

• demonstrated that the causes of the perceptual regularities can
be computed from the low-level features of image sequences
(videos),

• showed that the computational principles suggested by the ex-
perimental observation can be used to develop design assistants
that better understands designers’ actions and intentions.
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