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Algorithms have been developed that identify unusual behavior in satellite health telemetry. Telemetry from

solid-state power amplifiers and amplifier thermistors from 32 geostationary Earth orbit communications satellites

from 1991 to 2015 are examined. Transient event detection and change-point event detection techniques that use a

slidingwindow-basedmedian are used, statistically evaluating the telemetry stream compared to the local norm. This

approach allows application of the algorithms to any spacecraft platformbecause there is no reliance in the algorithms

on satellite- or component-specific parameters, and it does not require a priori knowledge about the data distribution.

Individual telemetry data streams are analyzed with the event detection algorithms, resulting in a compiled list of

unusual events for each satellite. This approach identifies up to six events of up to six events that affect 51 of 53

telemetry streams at once, indicative of a spacecraft system-level event. In two satellites, the same top event date

(4December 2008) occurs overmore than 10 years of telemetry fromboth satellites. Of the five spacecraft with known

maneuvers, the algorithms identify the maneuvers in all cases. Event dates are compared to known operational

activities, space weather events, and available anomaly lists to assess the use of event detection algorithms for

spacecraft monitoring and sensing of the space environment.

I. Introduction

A. Motivation

S ATELLITES provide communications and media distribution, meteorological information, global positioning and timing, reconnaissance,
and intelligence services. The reliability of geostationary Earth orbit (GEO) communications satellites (ComSats) is critical to many

industries worldwide, such as organizations remotely operating offshore oil and gas drilling facilities, where reliable connectivity is key for safety
and efficiency. GEO ComSats make up over 50% of the satellites on orbit (with more than 600 ComSats reported on orbit in 2015), totaling over
$208 billion in the services they provide in 2015 [1].

Given societal reliance on satellite services, satellite failures and other events that degrade performance can be highly disruptive [2,3]. Almost
all satellites will suffer some unexpected or unusual problems, often referred to as “anomalies”, during their lifetime due to a variety of sources
such as the space environment, human error in design or manufacturing, age of the component, or unanticipated software modifications or
operating scenarios. The key impacts on satellites due to space weather are 1) surface charging, 2) internal charging, 3) single-event effects or
single-event upsets (SEUs), and 4) total ionizing dose (TID) effects. Surface charging occurs due to a difference between ambient electron and ion
fluxes, resulting in possible electrostatic discharges. GEO and near-GEO satellites are most at risk due to their movement in and out of the
plasmasphere [4]. This can lead to anomalies such as component failures, degradation of sensors and solar panels, and serious physical damage to
materials. For a more detailed introduction to the ionizing radiation environment, space environment hazards, and how these hazards lead to
anomalies, the reader is referred to [4–6]. Anomalies can cause harmful interference or interruptions in service, reduce spacecraft functionality, or
cause complete spacecraft failure. Anomalies can be difficult to diagnose and even more difficult to resolve, draining operator and manufacturer
resources (i.e., time,money) in both the short and long term [7]. Quick anomaly identification and resolution canmitigate the effects of anomalies.
If there is a “soft” anomaly, like a single-event upset in a field-programmable gate array, the operator can power cycle the device, and nominal
operations can resume. For a “hard” anomaly, such as an electrostatic discharge in a power amplifier, the nominal device operation is not
recoverable, leading to outages and interruptions, the need to switch to a redundant unit, or a change in operations.

Spacecraft telemetry provides the primary source of health information available from a spacecraft and contains key information that can be
used in trying to recover from problems. The word “telemetry” has Greek etymology that means “measurement at a distance”. In the case of a
spacecraft, this means downlinking electrical signals proportional to the quantity being measured [8,9]. Spacecraft telemetry originates from
sensors from each subsystem, the payload (if applicable), and the attitude control system. Housekeeping data are monitored to check the health
and operating status of onboard components in subsystems. Housekeeping telemetry can be in the form of operational or redundancy on/off
statuses; sampled temperature, current, or pressure measurements; or deployment of mechanisms [10]. For a modern, large communications
satellite, there are typically many thousands of telemetry streams. Monitoring each telemetry stream individually provides the “pulse” of a
component or of a subsystem. In this study, we analyze GEO ComSat current and temperature telemetry from solid-state power amplifiers
(SSPAs) and thermistors.

B. Fault-Detection Techniques

Longer mission durations, with evolving component performance and reduced dependence on ground control, drive the need for updated
fault-detection and diagnosis techniques compared to those currently used on spacecraft. Additionally, the evolving component technology and
decrease in lithographic feature size for chips renders components potentially more susceptible to faults [11]. On the component-level, simple
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limit-checkingmethods called “thresholding” are used. Upper and lower numerical limits are set for a particular component. Current thresholding
techniques have evolved to include hard and soft limits (e.g., failures and warnings, respectively) and thresholds that are applicable for different
situations or operational modes (often called “rule-based”methods) [12,13]. However, component performance may change over time, making
certain thresholds no longer applicable. In addition, expert knowledge is necessary to decide the appropriate thresholds for each spacecraft
component.

On the system level, polling (or voting) schemes are used on spacecraft. These techniques include “consecutive occurrence counters” and
“persistence filters” [12,14], which are designed to quickly assess systemwide faults. Polling schemes also include rule-based methods, using
“if–then” rules encoded by system experts. Fault trees are commonly used to determine the actions that should be taken, given the occurrence of a
particular fault.

New fault-detection techniques are being developed for aerospace applications but are not yet widely employed on active spacecraft due to
the computational resource requirements and limitations of current models that are required for the techniques. Analytical model-based
methods compute residuals between measured and estimated values. Current work focuses on developing better dynamical models of
aerospace systems and components [15,16]. The European Space Agency’s SMART-FDIR study in 2003 uses the Gravity Field and Steady-
State Ocean Circulation Explorer satellite simulation environment for validation purposes [17]. For detection of faults, no training data are
used. The SMART-FDIR approach relies on fuzzy inductive reasoning using a model-based framework. The system behavioral model makes
decisions using possibilistic logic theory, meaning that the behavioral model represents the system knowledge about causal dependencies
between inputs and outputs, which are represented by logical formulation. Meitinger and Shulte have developed a technique that uses a
cognitive automation approach, which mimics human cognition. Goal-directed planning is implemented while considering the current
situation. The approachwas tested on a successful unmanned aerial vehicle flight experiment [18]. There are still challenges with theMeitinger
and Shulte cognitive automation approach because it depends on a priori knowledge (environment models, models of every subsystem, etc.),
increasing the system complexity.

C. Spacecraft as a Sensor

There are ongoing efforts to use the “spacecraft as a sensor”, most notably by the Aerospace Corporation in El Segundo, California, starting
in 1997. Bowman and DeSieno patented their work on the subject [19]. They have developed neural network-based methods that are able to
adapt to the dataset but rely on historically labeled training data. Training data instances must be classified as anomalous or nominal. Called
“supervised learning”, using labeled training data has advantages, such that basic trends and ranges of allowable values are captured and
incorporated in the algorithm.

With the algorithms we develop in this work, we aim to detect anomalous events without the use of training data due to lack of availability or
applicability. Often, there is not an identical (or similar) mission for reference training data, making labeled training data nearly impossible to
obtain or generate. Functional test data could be used from ground testing, but differences in the operational environments and procedures make
the performance degradation unpredictable. Although GEO ComSat components come from a small number of manufacturers, on-orbit
performance is not always well characterized. “Identical” satellites have varied workmanship, test, environmental exposure, performance
parameters, and settings, such as the linear channel amplification (preamp). In addition, “layouts” and possible influences, such as thermal effects,
are unique for each spacecraft (no two harnesses are the same, for example). Therefore, training data from a previous “identical”mission may not
be directly applicable. Dependence on labeled training data can potentially exclude the system detecting events that do not also exist in the
training data.

II. Approach

A. Overview

Using only housekeeping telemetry, our approach is to develop algorithms to extract unusual events. We develop transient
detection and change-point detection algorithms that statistically evaluate the telemetry stream compared to a local norm. The
algorithms can be applied to telemetry from any spacecraft platform because there is no reliance on satellite- or component-specific
parameters, and the algorithms do not require a priori knowledge of the data distribution. A high-level diagram of our approach can
be found in Fig. 1.

Events in a spacecraft system are identified, and the number of telemetry streams is increased at each level. First, the detection algorithms are
applied to each individual telemetry stream, identifying events in single telemetry streams at the component level. Then, the events detected from
all telemetry streams of a certain type or subsystem are examined, such as all of the temperature measurements from thermistors in the amplifier
system. Similar performance might be expected from components of the same type, or in the same subsystem, and so directly comparing and
compiling the events from that component type may reveal an event that affects the subsystem level.

At the system level, the detection of events from the telemetry streams for many subsystems (or the entire spacecraft system) is considered. The
intersection of the events may be indicative of an external (environmental) or internal (spacecraft-level) event. When combining and comparing
events in datasets from multiple satellites, the intersection of system-level events could be an environmental event (natural or manmade space
environment events that could affect a local environment). Detected events are comparedwith known operational activities, spaceweather events,
and publicly available anomaly lists, such as SpaceTrak from Serdata.

B. Data Used in this Analysis

GEO ComSat telemetry is evaluated in this analysis for two primary reasons. First, ComSats provide important services, requiring high
reliability that can be improved by fault-detection algorithms and an understanding of hazardous space environments. Second, ComSat operators
have decades of telemetry, providing a large quantity of data for analysis. For amodern, large communications satellite, there are typically several
thousand telemetry streams.

The design lifetime for a modern ComSat is 10–15 years, and many satellites operate beyond this nominal lifetime for return-on-investment
reasons, with increasing interest and development in technologies to extend satellite lifetime [20]. The long mission durations of the satellites,
which span the temporal variations in the space environment (mostly importantly, the 11-year solar cycle) and thousands of housekeeping
telemetry streams provide a long baseline of telemetry. The telemetry is typically archived by operators and only analyzed in the event of an
unexplained issue. Collaboratingwith GEOComSat operators whomaintain these telemetry archives enables scientific and statistical assessment
of events, trends, and relationships to known space and operational environments.
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C. Telemetry Characteristics and Algorithm Goals

To determine how the event detection algorithms should be designed and operate, we assess the characteristics of our telemetry dataset. We
survey anomaly detection techniques for time-series data and identify the algorithm characteristics relevant for our application to GEOComSats.
A key challenge is that it is difficult to apply techniques in one domain to another; the exact notion of an anomaly is often different when applied in
another domain. As a result, most existing anomaly techniques solve a specific formulation of the problem.Applications of anomaly detection that
are similar or relevant to the spacecraft telemetry event detection problem include intrusion detection, fraud detection, medical and public health
anomaly detection, and sensor networks. Common techniques for anomaly detection in time-series data include classification-based, nearest-
neighbor, and cluster anomaly detection. Detailed surveys of anomaly detection for time-series data can be found in [21–23].

In telemetry, as a univariate, time-series dataset, point anomalies and contextual anomalies can occur. Point anomalies arewhen individual data
instances can be considered anomalouswith respect to the rest of the data. Thresholding techniques can often detect point anomalies, given that the
point is a sharp departure from the rest of the dataset. Point anomalies for sequence data (linearly ordered), where data instances are related, can
often appear as a set or as collective anomalies [24,25], which are a more difficult detection problem.

Contextual anomalies occur if a data instance is only anomalous in a certain context [26,27]. A satellite temperature measurement of 50°Cmay
be allowable during certain times of the mission but may be contextually anomalous during eclipse periods, when the spacecraft is not directly
irradiated by the sun, for example. Context is important because component performance may change over time due to damage or degradation.
Defining a “normal” region or time period in the series that encompasses all normal behavior is difficult because boundaries between normal and
anomalous are often not well defined. Also, normal behavior can evolve; a current notion of normal behavior might not be sufficiently
representative in the future, leading for the need to detect contextual anomalies in time series.

Labeled training data, where dataset instances are labeled normal or anomalous, are difficult or impossible to obtain. In the case of satellite
telemetry, it is not guaranteed that even identical satellites will yield the same telemetry or performance. Even if a satellite is designed and built as
part of a fleet of identical satellites from one manufacturer, the operational demands and spacecraft environment are often different, making
labeled training data inaccurate or nonexistent. As a result, we have chosen to develop event detection algorithms that are unsupervised, meaning
that techniques do not require training data. Techniques in this category make the implicit assumption that normal data instances are far more
frequent than anomalous ones; if this assumption is not true, then the technique may suffer from a high false alarm rate [21].

Noise in the data is often difficult to identify, distinguish, and remove from the signal. Onboard processor interruptions for task-management
reasons, corruption of data, error during communication access, etc., can all affect the telemetry signal. For the telemetry in this analysis, there are
dropouts in the datawhere the values are zeros or a discontinuous jump to later time step. The data dropouts typically lasted between 12 and 24 h in
duration with a frequency of once or twice a year.

Because of the size of the dataset, the computational complexity of the detection algorithms is a key consideration, such as the time to run the
algorithm, memory available to run the algorithm, and onboard storage for the results. Complexity of the algorithms will affect whether real-time
(or near-real-time) algorithms can be used in the future or if the events will be detected retroactively in batch algorithms [23].

The desired output of an anomaly detection technique for telemetry is an “event score”, indicative of the degree to which a data instance is
anomalous. The scoring enables a ranked list of anomalies from which a user can select the scoring threshold for detection. Scoring can include
preferential weighting for telemetry streams that monitor critical payload or mission functions.

D. Spacecraft Telemetry

The GEO ComSat telemetry used in this analysis is from Massachussets Institute of Technology (MIT) collaborations with two commercial
operators: Intelsat and Inmarsat, two of theworld’s leading providers of global telecommunications. Headquartered inWashington, D.C., Intelsat
has operated satellites since 1965 and currently operates over 50 satellites.§ Since 1979, Inmarsat (headquartered in London) has operated
communications satellites, with a current fleet of 11 satellites.¶ A summary of the acquired telemetry can be found in Table 1.

Fig. 1 Approach for telemetry event detection algorithms. Telemetry from individual streams is input to the algorithms, and events are evaluated at
different levels: component, subsystem, system, and environment.

§Data available online at http://www.intelsat.com/about-us/overview [retrieved 19 June 2017].
¶Data available online at http://www.inmarsat.com/about-us [retrieved 19 June 2017].
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Collaboration with Inmarsat started in 2011. We have analyzed over 22 years of archived telemetry from 10 satellites in three fleets (from
different manufacturers, not identified here for proprietary reasons). The data acquired include solid-state power amplifier (SSPA) current and
temperature telemetry, solar array power and total bus loads, and anomaly and single-event upset (SEU) lists, totaling approximately 1GBof data.

In 2014, we began a collaboration with Intelsat. We have analyzed over 20 years of archived telemetry from 22 satellites in four fleets (from
different manufacturers, not identified here for proprietary reasons). We acquired current and temperature telemetry from SSPAs and traveling-
wave tube amplifiers (TWTAs), solar panel current, total bus power, shunt loads, and magnetometer measurements, totaling over 0.5 TB of data.
For this analysis, we focus on the SSPA current and temperature measurements. We also have SEU lists from four satellites.

Because of the proprietary nature of the data, the satellites and components have the following naming convention: COMPONENT-
OPERATOR-UNIQUEID.A plot of a nominally performing SSPA from Inmarsat is shown in Fig. 2, called SSPA-INMARSAT-1 in this analysis.
A plot of thermistor telemetry from the same amplifier can be found in Fig. 3 (THERM-INMARSAT-1). The sampling time for both figures is
hourly and had no reported anomalies (SEUs, etc.). For housekeeping data used in this study, the sampling rates are typically 30 s to 1 min

Table 1 Summary of telemetry acquired and analyzed from Intelsat and Inmarsat

Company Intelsat Inmarsat

Headquarters Washington, D.C. London
Number of satellites 21 10
Number of bus types 4 3
Time range 1996–2015 1991–2012
Years of data 20 22
Telemetry sampling rate Every hour, minute, minor frame (less than 1 min) Every hour
Data quantity >0.5 TB >500 MB
Telemetry obtained TWTA and SSPA current and temperature telemetry; solar panel current,

total bus power, shunt loads; magnetometer measurements
SSPA current and temperature telemetry; solar panel
current, total bus power; anomaly and SEU lists

Fig. 2 Nominally performing solid-state power amplifier from an Inmarsat satellite, SSPA-INMARSAT-1.

Fig. 3 Nominally performing thermistor in the amplifier payload from an Inmarsat satellite, THERM-INMARSAT-3.
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onboard, and then they are averaged and telemetered to the ground with minute or hour sampling resolution. We received minor frame (less than
1 min) sampling resolution for only one satellite, and so we analyze the minute and hourly sampled data in this work.

E. Space Environment Data

Weanalyze the results of the algorithmswith respect to the space environmentmeasurements that are relevant inGEO.Both telemetry and space
environment datasets are necessary to quantify space on the satellites it is important to have datasets from the same time period and as spatially
colocated as possible [28,29]. We use the Geostationary Operational Environmental Satellites (GOES) >2 MeV electron flux (daily fluence),
GOES >10 MeV proton flux (daily fluence), the Kp index (measure of the geomagnetic activity), sunspot daily averages from the World Data
Center in Brussels, and solar wind data from the Advanced Composition Explorer (ACE). We have compared telemetry events to other notable
spaceweather events, such as coronalmass ejections (CMEs), interplanetaryCMEs, andmeteor showers. For all spaceweather datasets,we obtain
data over the entire span of theGEOComSat telemetry (from1991 to 2015), except the data fromACE,which became operational in 1998. Table 2
contains a summary of the datasets used.

1. Energetic Particle

GOES is operated by the U.S. National Environmental Satellite, Data, and Information Service, providing Earth severe storm tracking and
meteorological data. In addition, GOES supports space weather forecasting (see National Oceanic and Atmospheric Association, NOAA, Space
Weather Prediction Center**), using the solar x-ray imager and the space environment monitor (SEM), which provides nearly continuous
measurements of the energetic particle and magnetic environments in GEO. Because GOES is in GEO, GOES can provide spatially relevant data
to the GEOComSats (not the case for other spaceweather datasets discussed). The SEM contains an energetic particle sensor (EPS)/high-energy
proton and alpha detector used in this analysis, which measures the energetic particle flux (the number of particles through a unit area per unit
time). We use the GOES EPS >2 MeV electron flux channel data (daily fluence). Additionally, we use the GOES EPS P4 proton flux channel,
which measures protons between 15–40 MeV [30].

2. Geomagnetic Indices

TheGeomagnetic Equatorial Dst Data Service is hosted by theWorldData Center for Geomagnetism inKyoto, Japan (WorldDataCenter, Data
Analysis Center for Geomagnetism and SpaceMagnetism††). Several types of geomagnetic indices (Dst, Kp, Ap) are calculated at the center that
are then verified and archived for public access. This database was used for acquiring values of level 2 Dst and Kp for the duration of the ComSat
telemetry for determining dates for severe geomagnetic space weather events between 1991 and 2015.

3. Solar Environment

For the solar environment information, we use daily sunspot numbers from theWorldData Center Royal Observatory of Belgium inBrussels to
compare events with the strength of the solar cycle (for which the sunspot number is a proxy) (World Data Center, Royal Observatory of
Belgium‡‡). ACE makes measurements of the solar wind, including the bulk speed, proton density, and ion temperature. ACE has provided
operational data since January 1998 and is located at the first Lagrange point (L1), approximately 1.5 × 106 km from the Earth, always observing
local dayside. A benefit of ACE’s stationary location is that, in combination with the solar wind speeds, one can calculate the time at which the
solar wind carrying energetic particles should impact Earth (NOAA§§). The solar wind speeds also provide evidence for magnetopause
compression. If the solar wind speeds, and therefore pressure, are high (600–800 km∕s), then the magnetopause is likely to compress, placing
GEO ComSats outside of the magnetosphere where they are relatively unshielded from the space weather environment (ACE, Science Center¶¶).

F. Known Satellite Anomaly Lists

In addition to space environmentmeasurements,we also examine dates and types of reported satellite anomalies in or nearGEOat the same time as
events detected in the spacecraft telemetry. Although there is much interest in the creation and maintenance of a robust, open-access, centralized
repository of satellite anomalies, it does not exist [31,32]. There exist a handful of anomaly lists maintained by individuals and commercial vendors.
TheSolar-Terrestrial PhysicsDivision of theNOAANationalGeophysicalDataCenter database containsmore than5000 entries through1993, but is
no longer active, followingDr. JoeAllen’s retirement [33]. SatelliteNewsDigest (SND), an industrywebsite, collects information and analyses about
satellites, cataloging information for a variety of purposes (Satellite News Digest***). SND’s assembled information is largely available to industry
members through a subscription, which allows access to SND’s anomaly records, maintained by Peter C. Klanowski. Since 1994 (with an English
version starting in 1997), SND has maintained an archive of publicly available satellite failure information. SpaceTrak, supported by Seradata, is a
professionally maintained satellite information database that contains satellite and payload anomaly information from 1957 through today.††† The
information is available through a subscription. Information on the anomaly lists used in this analysis can be found in Table 3.

Table 2 Summary of space environment datasets used in the analysis

Types of data Energetic particle data Geomagnetic indices Solar environment

Measurement/index >2 MeV electron flux,>10 MeV proton flux
(daily fluences)

Kp index Solar wind speeds and densities

Source GOES World data center for Geomagnetism
(Kyoto)

ACE

Time range 1991–2015 1991–2015 1998–2015
Space environment hazard Deep dielectric charging; SEUs, TID Noise or anomalies in power and

communications systems
Particle event enhancement

**Data available online at http://www.swpc.noaa.gov [retrieved 12 June 2017].
††Data available online at http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html [retrieved 12 June 2017].
‡‡Data available online at http://www.sidc.be/silso [retrieved 12 June 2017].
§§Data available online at http://www.swpc.noaa.gov [retrieved 12 June 2017].
¶¶Data available online at http://www.srl.caltech.edu/ACE/ASC/level2/new/intro.html [retrieved 12 June 2017].
***Data available online at http://www.sat-nd.com/info/about.php [retrieved 05 June 2017].
†††Data available online at http://seradata.com/products/spacetrak [retrieved 05 June 2017].
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III. Algorithm Descriptions

Algorithms developed for this analysis include a method for detecting transient events (or “spikes”, jumps, drops) and for detecting change
points in the telemetry. Figure 4 shows an example of both types of events. Each event detected has an event date and an event score, which is a
metric for the magnitude of the event relative to what is normal in the telemetry. We use a statistical technique consisting of sliding median
windows (a variant on Tukey’smethod [34]) to find transients and change points.We also considered other statistical methods, such as Bonferroni
andDurbin–Watson, but determinedTukey’smethods fit our requirements; no domain knowledge is required, and the algorithms do not contain or
impose any component or satellite-specific parameters or thresholds. There is no assumption about the underlying distribution of the telemetry,
and no training data are required. Sections III.A and III.B describe the algorithmparameters, scoringmetrics, and exampleswith telemetry for both
transient and change point detection algorithms, respectively. A summary description of both algorithms is given in Table 4.

To determine the appropriate statistical representation of awindow of data (central tendency), we test the data with a one-sample Komolgorov–
Smirnov test [35]. The test rejects the null hypothesis at the 5% significance level that the data are normally distributed (the test result states that the
data distribution is not Gaussian). Figure 5 shows the empirical cumulative distribution function (CDF) compared to the standard normal CDF. If
the data were normally distributed, they should align with the standard normal CDF. Telemetry streams from other components were also tested
and yielded the same result, rejecting the null hypothesis that the data are normally distributed. Therefore, for both algorithms, nonparametric
statistical parameters are used; the median is chosen as the statistical metric instead of the mean. The median is more robust to outliers, which is
advantageous if the outliers are what we are interested in detecting.

A. Transient Event Detection

Transient event detection is based on the Tukeymethod, relying on statistics of the dataset to identify deviants [34,36]. In our algorithm, the data
are segmented into bins (or windows) that allow for the definition of normal to change over the dataset. The window is shifted along the dataset,
comparing each telemetry data point to the rest of the data points in the window. This approach is similar to that used by Hewlett-Packard in their
online anomaly detection in data center management, which also uses a variant of the Tukey method [36].

We choose a constant segmentation scheme (same duration window sizes) of seven days. One orbit of a GEO satellite is one day, and so seven
days mitigates effects of the orbit. The telemetry sampling rate is hourly, which is 168 data points per window. The one-week window is a tunable
parameter: the routine can accept an integer number of data points as the window size (making it dependent on the data resolution). We have
analyzed the data with different window durations and have found no impact on the results.

Each telemetry data point xi is compared to the local medianX. For each data point, the number of standard deviations from the local median is
recorded. The number of standard deviations is the event score S, which is calculated as follows:

S � jxi −median�X�j
σ

(1)
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Fig. 4 Plot of solid-state power amplifier telemetry, SSPA-INTELSAT-3. The large transient events and change points aremarked as examples of events
detected by the two algorithms.

Table 3 Anomaly lists used in this analysis for comparison to ComSat telemetry events

Anomaly list Description

NOAA National Geophysical Data Centera Maintained by Dr. Joe Allen through individual relationships with operators and vendors, more than
5000 entries up to 1993

Satellite News Digestb Maintained by Peter Klanowski, assembles anomalies from industry starting in 1994
SpaceTrakc Professionally maintained database of satellite information from 1957 to the present, maintained by Seradata

aData available online at https://www.ngdc.noaa.gov/stp/satellite/anomaly/doc/5jsumm.txt [retrieved 05 June 2017].
bData available online at http://www.sat-nd.com/failures [retrieved 05 June 2017].
cData available online at http://seradata.com/products/spacetrak [retrieved 05 June 2017].
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Selecting the events that have the highest event scores (those that “deviate themost”) or selecting the events with scores higher than a threshold
lets a user choose how many events to keep.

In Fig. 6, the transient events detected by the algorithm are marked with dashed purple lines on an example of SSPA telemetry, SSPA-
INTELSAT-4. The event dates are plotted with standard deviation (in purple, right y axis) and overlaid with the raw telemetry (in blue, left y axis)
for greater than three standard deviations from the “local median” (99.73% of the values lie within three standard deviations of the bin median).
The transient event identification method detects all noticeable spikes, performing as intended.

Figure 7 shows another example of amplifier telemetry with transient events detected (SSPA-INMARSAT-2). Figure 7 shows the entire dataset
in the top panel (2006–2011) and a zoomed-in region fromDecember 2007 toOctober 2008 in the bottompanel. There aremore events detected in
the first half of the data (210 spikes detected before January 2009) than in the second half of the data (115 spikes detected after January 2009). This
is because the standard deviation in the data is small (0.02276) before a change between December 2008 and February 2009. The data become
noisier after 2009 and contain larger changes in median. This change is seen across all Inmarsat datasets examined and may be indicative of a
systemwide internal and/or external effect for those satellites.

B. Change Point Event Detection

Change point detection is used in industries including finance, medicine, and sociology. Techniques for change point detection, such as those
for climate change detection, genetic time series analysis, and intrusion detection in computer networks, can be found in the literature [36–39].

Table 4 High-level description of transient and change point event detection algorithms

Algorithm description Transient event detection Change point event detection

Approach Use single sliding window Use two adjacent windows, slide windows one data point at a time
Detection Each telemetry data point is compared to the local median Compare median between two adjacent windows
Event scoring Number of standard deviations telemetry data point is from local

window median
Percent change in median between two adjacent bins

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Empirical CDF
Standard Normal CDF

Fig. 5 Empirical CDF compared to the standard normal (Gaussian) CDF for a one-sample Kolmogorov–Smirnov test on an example telemetry stream.
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Fig. 6 Transient event detection in SSPA-INTELSAT-4 telemetry stream (blue). Events detected are marked (dashed purple lines), the height of which
are measures of the events' deviation from local normal.
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A common way to detect the change points and determine trends in time series data are by representing the data using piecewise linear
approximations (PLAs) or piecewise linear representations [40]. We use PLAs and approximate the data in bins (or windows). The median
statistics for each bin are compared. Bin size selection, or segmentation, is an active area of research [41,42] and will be explored in future
development of the telemetry event identification algorithms.We currently do not use dynamic bin sizing.We choose to keep thewindow size the
same and optimize its range in time using a moving window technique [43].

The change point detection algorithm employs an optimization scheme for finding the events, or “change dates.” The data are initially
segmented into seven-daywindows (or “bins”), and theweekly bin statistics (median, standard deviation, etc.) are computed. The rationale for the
seven-daywindow is the same as for transient event detection; a GEO orbit is one day, and so a seven-day windowmitigates some of the variation
during an orbit. For bins that show large changes inmedian between adjacent bins, an optimization routine is employed using a combination of two
moving windows, one data point at a time (telemetry is in hourly resolution) to maximize the difference in the median between two adjacent
windows in the local time frame of the originally large change inmedian.When the change inmedian ismaximized locally, the date of the “event”
is recorded as the boundary between the two moving windows.

Figure 8 shows an example of a section of amplifier telemetry from SSPA-INTELSAT-5 after median change detection and optimization. The
event score is determined by the magnitude of the change in median at the event date, which is calculated as follows:

S � jmedian�X1� −median�X2�j
jmedian�X1�j

× 100 (2)

The change point detection algorithm reports the largest changes in median using the event score S and numbers the events by their event score
in descending order.We select the number of changes to be reported (e.g., 30 changes detected in Fig. 8). The event datewith the largest change in
median is “#1”; the second largest is “#2”, etc. As a result, when compiling all events together, the output is a list of median change event dates
ordered by significance, fromwhich one can then select a minimum threshold after evaluating the entire dataset (i.e., we do not want to restrict an
amplifier, for example, to only detecting 15 events if many other amplifiers or components have 20 ormore events detected, andwe do not want to
have the algorithm identify 15 event dates from a second amplifier if only 10 have notable changes in median).

The large change occurring in January 2009 is, indeed, detected, identified, ranked #2 for the amplifier. The sharp drop in current at the very
beginning of the telemetry (during commissioning) is ranked #1. In Fig. 8, the slight change seen by eye between the #9 ranked event and the #12
ranked event does not have a large-enough change in median to be ranked in the top 30 events selected. For example, if the number of events to
detect is increased to 40, the change between the #9 ranked event and the #12 ranked event is detected and ranked #39. The transient detection
method did identify the spike between the #9 ranked event and the #12 ranked event.

IV. Results and Event Analysis

We are looking for events that are detected on the same dates from components on the same satellite and event dates common to multiple
satellites, whichmay be indicative of a system-level event and an environment-level event, respectively.We find certain event dates whenmany if
not all of the components of a particular subsystem or satellite have an event detected. To try to explain the common event dates, we compare the
events to known spacecraft activity, space weather, and anomaly data sets.
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Fig. 7 Transient event detection in SSPA-INMARSAT-2 telemetry. The bottomplot is a zoomed in onDecember 2007 toOctober 2008demonstrating the
algorithm's ability to identify spikes from the local median.
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A. Compiling Events from Individual Types of Components

When comparing the events detected for a type of component on a satellite, we find clusters of events at dates that seem unlikely to be random.
For example, for a set of 54 thermistor telemetry streams from one satellite, INTELSAT-A, we have plotted the date and event score for each
telemetry stream (each thermistor with a different color). Figure 9 shows that there are dates where there are large transient events across many,
if not all, of the telemetry files. Large events (dates when many telemetry streams have high event scores) in December 2007 and December 2008
are annotated in Fig. 9. This suggests that there is some relationship between the transients in the telemetry and system-level events.

THERM-INTELSAT-1 and THERM-INTELSAT-2 in Fig. 9 (shown in red and red-orange) do not show clustering with the other thermistor
events. The dispersion exhibited by the event dates from THERM-INTELSAT-1 and THERM-INTELSAT-2 could be due to the physical
locations of the thermistors with respect to the others. THERM-INTELSAT-1 andTHERM-INTELSAT-2 are from the propulsion system, located
near the thrusters, whereas all the other thermistors analyzed are from the high-power amplifier payload.

There appears to be a rough periodicity of eventswith event scores between 3 and 4. This periodicity is likely explained by the eclipse seasons of
the satellite. Figure 10 shows the same thermistors plotted in Fig. 9with the eclipse seasons highlighted. The light-green periods are spring season
eclipses, and the light-red periods are fall season eclipses. The events appear to be related tomoving in and out of eclipse. It should be noted that the
largest events (highest event scores) and thermistors exhibiting dispersion do not appear to be associated with the eclipse seasons.

B. Compiling Events from Components on One Satellite

We find, when compiling the event dates from all components from one satellite, that there are common event dates, regardless of component
type. The occurrence of these events indicates possible system-level events. Binned in days, we have summed the event scores from all the events

Fig. 9 Transient eventsdetected in54 thermistor telemetry (TLM)streams inone satellite (INTELSAT-A) from1998 to2012.Each thermistor isauniquecolor.
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Fig. 8 Median change detection algorithm applied to amplifier telemetry from SSPA-INTELSAT-5 (blue) zoomed into a region (June 2009 to
December 2009) with the detected median changes (dashed purple) using weekly bins.
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detected in amplifier and thermistor telemetry that we obtained from INTELSAT-A (185 telemetry streams). Figure 11 shows the summed event
scores by date. The amplifier events are in blue, and the thermistor events are in green. The top events (dates with the highest summed event scores
on that day) are marked with upside-down purple triangles.

For the top event dates, we have compared the date to the space environment, known spacecraft operations, and anomaly lists. Figure 12 shows
the events and event scores plotted with space weather metrics identified in Sec. II.E. The events are from an analysis of 199 telemetry streams
from INTELSAT-B. Table 5 summarizes the findings of the top events. For each satellite that had a maneuver during its lifetime, the maneuver is
detected as one of the top 5 events for each of the satellites. This is a significant finding because this information could be useful for groups
interested in a satellite’s activity, such as for a space situational awareness application.

For four of the Intelsat satellites, we haveSEUdates and times. There are two instanceswhere the event detected in the telemetry occurswithin a
couple of days of an SEU (see Table 5). We find no statistically significant relationships between the SEUs and the events detected by the
algorithms.

C. Compiling Events from Multiple Satellites

The same event detection algorithms were deployed on the other satellites in the dataset. We find that there are dates where the top events from
one satellite coincide with a top event from another satellite (INTELSAT-A and INTELSAT-E). From one satellite, we see a top event date of
3December 2008 (as shown in Fig. 9). In another satellite, we see a top event data of 4December 2008. The algorithms currently sum event scores
by day, summing the event scores for the 12:00 a.m. to 11:59 p.m. time period, allowing for quick examination of data when over a decade of
telemetry is analyzed. Upon closer investigation, the events from INTELSAT-A and INTELSAT-E occur at 3 December 2008 23:25:59 and
4 December 2008 04:59:59, respectively. (Note that this analysis is using hourly telemetry, and so the times listed here are not exact to the digits
reported. The time reported in this analysis is the time that the telemetrywas sampled that hour.) Telemetry from each satellite spans over a decade,
and so it is unlikely that these events are unrelated. It could be indicative of an environment-level event.

We have examined the locations and separation of these two satellites on orbit with respect to morning/daylight sector passing the terminator.
Because of the proprietary nature of the telemetry and the spacecraft from which the telemetry originates, we cannot comment on the precise

Fig. 10 Events detected in INTELSAT-A thermistor telemetry annotatedwith eclipse seasons. The light green and red shaded regions are spring and fall

eclipse seasons, respectively.

Fig. 11 Daily summed event scores for 185 telemetry streams from one satellite, INTELSAT-A. The amplifier events and thermistor events are summed
to show the coinciding top events.
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locations of the spacecraft, but INTELSAT-A is located to the east of INTELSAT-E. INTELSAT-A is the first to experience the event, and then
about 5 h later, INTELSAT-E experiences the major event (having moved eastward toward INTELSAT-A's initial position). The time spacing
between the locations is roughly 2 h. The top events are recordedwithin 5 h of each other. It seems very unlikely that these events are unrelated, and
there is likely an environmental reason for the largest events for both satellites to occur within a few hours of one another. Further analysis is
required to determine the cause of this potential environmental event.

We compare the high-energy electron fluence accumulated before the largest events. Build up of high-energy electrons can lead to charging of
dielectric materials, potentially causing catastrophic discharges [44,45]. Comparing the fluence accumulated 1, 7, 10, 14, and 21 days before the
large-event dates to a randomMonte Carlo sampling of days, we find no statistically significant relationship between accumulated fluence and the
events detected by the algorithms [45].

Ten out of the top 20 events for INTELSAT-A and 11 out of the top 20 events for INTELSAT-E detected occur when there is a sharp increase in
solar wind speed. This could be due to such events as the passing of a fast CME from a coronal hole, or a slower CME being overtaken by a faster
CME. Future work includes a more detailed investigation of the timing of the solar wind changes compared to the event times, and Monte Carlo
experiments as a part of a more rigorous study to interpret the findings.

D. Algorithm Performance–Computational Resources

Because the transient detection algorithm involves comparing each individual data point to the local median, the execution time is expected to
be linearly dependent on the size of the telemetry file. Running the algorithm on our dataset confirms this expectation of a linear relationship
between computational time and the number of data points. For example, for an Inmarsat telemetry file with hourly resolution (6.14 years,
1,284,144 data points), the algorithm takes 0.0721 s. For reference, the total time to run the transient detection algorithm is 0.572 s on 18
telemetry files.

Running the change point detection algorithm on our dataset shows a linear, nearly constant relationship between execution time and number of
telemetry data points. For example, for an Inmarsat telemetry file with hourly resolution (6.14 years, 1,284,144 data points), the algorithm takes
0.576 s and the average time is 0.553 s for all telemetry files. For reference, the total time to run the change point detection algorithm on 18
telemetry files is 9.950 s. The transient and change point detection algorithms were run on a MacBook Pro with OSX version 10.9.5, 2.5 GHz
processor, 16 GB memory, and MatLab version 8.4.0.150421 (R2014b).
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Fig. 12 Plots of daily summed event scores for 199 telemetry streams from one satellite, INTELSAT-B, compared to space weather metrics: sunspot
number, daily electron fluence, daily proton fluence, and Kp index.

Table 5 Top event date analysis for one satellite, INTELSAT-Ba

Event date Space environment Spacecraft operations Other reported anomalies

3 Dec. 2008 None, quiet Transponder SEU, 7 Dec. Thruster anomaly with GOES-12
9 Sept. 2004 Fast solar wind from coronal hole arrived at

Earth, 6–7 Sept. 2004
None Thaicom outages 12 Sept. 2004

2 July 1999 Moderate Kp � 4 None Echostar IV fuel system anomalies, July 1999,
ABRIXAS failure, of onboard batteries

28 Oct. 2013 Handful of powerful CMEs starting 25 Oct.,
several associated X-class flares

None Unknown

4 Nov. 1997 None, quiet Maneuver in progress Unknown
28 Feb. 2010 28 Feb. 2010 large CME (not Earth-directed) Maneuver in progress, Transponder

SEU, 27 Feb.
AMC-16 further degradation of solar arrays early

March 2010

aThe event dates are compared to the space weather environment, spacecraft operations, and reported spacecraft anomalies.
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V. Conclusions

Change point detection and transient detection algorithms have been developed that identify deviations from normal, avoiding component- or
satellite-specific conditioning. Although the metrics are well established, these first-step methods are not currently used to evaluate spacecraft
health using telemetry. Analyzing housekeeping telemetry from 32 geostationary Earth orbit (GEO) ComSats from 1991 to 2015, we find
transient and change point events that occur in many or all of the telemetry files, indicating potential system-level effects on certain dates.
Spacecraft maneuvers are detected in five out of five cases. Events from thermistor telemetry show periodicity with eclipse season. At the
environment level, a top event date is found that occurs in two satellites: 4 December 2007. The space environment has been considered as well as
available operational information and anomaly reports from other spacecraft in GEO. The present findings have been shared with the satellite
operators, whowere interested in the results and are using the approach to improve anomaly management in their systems. Government agencies
were also interested in these findings, and requests for additional information have been supported. Further analysis with the events detected is
required to determine if a relationship exists. The top event dates from all satellites analyzed from 1991 to 2015 are:

The authors are actively engaged in pursuing more GEO ComSat telemetry and spacecraft operational information for testing and validation
and to continue algorithm development. They would like data from components other than the amplifier system with accompanying operational
procedures, command logs, and reported anomalies. It would be expected to find that certain components are more or less sensitive to external
environment effects or to systemwide effects, either by their location within the spacecraft or their design and function. Therefore, it is planned to
obtain larger datasets that are representative of the entire spacecraft.

In addition, the authors are interested in telemetry from orbits other than GEO. They are in the process of getting access to telemetry from the
VanAllen Probes, Lunar ReconnaissanceOrbiter, andU.S. Air ForceResearch Laboratory spacecraft. These spacecraft are selected because each
is equipped with dedicated space environment monitoring technology, which will allow for better validation of algorithms. Events that are
detected in the telemetry can be directly compared to the local space weather environment as detected onboard. The data providers have also
indicated that they would be able to supply command logs and other operational information.

Using the change point and transient event detection algorithms, larger window sizes will be investigated, which may allow detection of events
that are anomalous in more of a seasonal context. Adding other detection routines is also being explored, such as changes in the slope or noise
envelope (or variance) in the telemetry. The detection algorithms are retrospective, “batch” algorithms, looking back at previous windows of data
and analyzing them. For eventual use in operations, it is planned to enable real-time (or near-real-time) detection, moving the algorithms “online”.
There are severalways that these algorithms could be transitioned into real-time (or near-real-time) use. One of the simplest wayswould be to have
the seven-day window be a “lookback”window instead of having the data point in the middle of a window. This would work for transient event
detection. For change-point detection, one could shorten the first window to perhaps a couple of hours or so, depending on the response time
required and the tolerance to false positives.

The authors are also looking into integrating learning algorithms for use after a certain period of time on orbit. Although they do notwant to rely
on it for early operations or for changing or new environments, learning could be beneficial once in a nominal orbit. The training does not have to
be in advance or real time. They are looking into techniques that, after a certain amount of elapsed mission time, can use learning by modeling
previously seen telemetry. The response to hazards using the initially proposed algorithms can be fast, but the learning can be slow, supplementing
algorithms if there are nominal operating periods. This will require increasing the computational speed of the algorithms as well.
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