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Abstract

A model was created to form synthetic plots of sea surface height (SSH)
from monthly SSH statistics in the Gulf of Mexico generated from satellite laser
altimetry data. SSH is a signal of the upper ocean mixed layer heat content and
is an input for hurricane intensity models. A significant ocean feature in the Gulf
of Mexico is the Loop Current (LC) which sheds warm eddies into the Gulf of
Mexico at irregular intervals, which adds to the variability in monthly SSH
readings beyond seasonal change. Satellite laser altimetry data was used from
October 14 th 1992 to May 2 3rd 2007. The SSH data included an area of the Gulf
of Mexico (160 N-30*N latitude, 804W-1000W longitude) with a resolution of 1/34
by 1/30 on a Mercator grid. Monthly SSH averages, variances, and covariances
were created from a total of 763 samples, which allowed for approximately 65
samples per month. Once monthly SSH averages, variances, and covariances
were made, synthetic plots were made by using a Karhunen-Lobve transform,
the Singular Variable Decomposition of the SSH monthly covariance, and
random vector composed of random numbers in a Gaussian distribution.
Differences in synthetic SSH plots compared to individual SSH observations
could vary greatly; the average of all synthetic SSH plot nodes differed by no
more than plus or minus 10 cm. The difference between observed and synthetic
SSH variance was no more than 400 cm 2. The large differences occurred in the
in the eddy shedding region of the LC. To assess the effectiveness of the model,
the synthetic SSH model will need to be used in a hurricane intensity model.

1. Introduction

Over the past several decades, hurricane tracking and modeling have

become more sophisticated, but these models must still be improved because of

the economic implications of a destructive storm. In the recent past, several

large storms have hit communities on the Gulf of Mexico, causing billions of

dollars in damage. The storms in the 2004 hurricane season caused $24 billion

in damage to Gulf Coast communities (USA Today, 2005). In 2005, Hurricane

Katrina showed how costly a hurricane can be causing an estimated $125 billion

in damage (Emanuel, 2006) of which $40-$60 billion (Risk Management

Solutions, 2005) of that damaged was insured loss. Given the destructive power
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of these storms, as people continue to occupy the Gulf Coast region, it is

especially important for insurers to understand the risk associated with insuring

homes and businesses in the region. Without a good knowledge of risk, insurers

cannot develop proper capital reserves and re-insurance plans, thus risking

bankruptcy from major events. Also, there is a cost associated with evacuations.

If models cannot properly predict intensity or there is simply too much uncertainty,

then a weaker-than-predicted storm can lead to unnecessary evacuation and

thus loss of time and convenience for many residents, unnecessary costs to

government entities, and loss of economic activity (Emanuel, 1999).

Understanding the development of intense hurricanes will help in

developing hurricane intensity models and thus help to assess risk not only in the

Gulf Coast Region, but also in other coastal regions throughout the world. One

important input for developing hurricane intensity models is the interaction of

hurricanes with ocean eddies (Lin, 2005).

The interaction of ocean eddies and hurricanes have been observed to

greatly increase hurricane intensity in a short time frame (Lin, 2005). When they

passed over warm water eddies or other warm water features, Hurricanes in the

Atlantic, such as Hurricanes Opal, Mitch, and Bret rapidly intensified from Saffir-

Simpson category 1 to category 4 within 24-36 hours (Lin, 2005). Although

ocean features are not the sole factor in rapid intensification, their role in rapid

intensification of hurricanes in the Gulf of Mexico can pose a great threat to Gulf

Coast communities (Lin, 2005). Also, passage over cold eddies should lead to

potentially rapid weakening of the storms.
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2. Relationship of Ocean Features and Hurricane Intensity

As seen with Hurricanes Opal, Mitch, and Bret, ocean features have the

potential to rapidly intensify a hurricane. Heat from these features is a driving

force to create and intensify storms. A tropical cyclone may be described as a

heat engine in which the heat source is evaporation from the sea surface and the

efficiency is proportional to the difference between the sea surface temperature

and the much lower temperature at the top of the storm (Emanuel, 2003). Given

that hurricanes develop in warm tropical seas whose sea surface temperature

(SST) is greater than 26 degrees Celsius (Emanuel, 2003), warm tropical seas,

like the Gulf of Mexico, are areas of great storm producing potential. Should an

anomalous ocean feature, such as a warm eddy, occur in the path of a storm, the

heat engine cycle can become more efficient and intensify the storm.
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Figure 1. Schematic of hurricane formation. Hurricane formation is similar to a heat engine where
efficiency is proportional to the difference in SST and the top of the storm.

Important for the increase in hurricane intensity is not just SST, but also

the depth of the mixed layer in the upper ocean. Hurricanes will alter the

temperature profile of the upper ocean as seen by the decrease in ocean surface

temperatures after the passing of a hurricane, where SST falls up to 5 degrees

Celsius in the wake of the storm (Cione, 2003). Cooling SST is a result of

turbulent mixing of the upper ocean (Emanuel, 2003).
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Figure 2. September Sea Surface Temperatures (SST) in the Gulf of Mexico. SST in the Gulf of
Mexico during peak hurricane season is greater than the hurricane formation threshhold

temperature of 26 degrees Celsius. From NOAA.

Therefore, It is also important for hurricane development that the upper layer of

the ocean be well mixed to sufficient depth, rather than have just warm surface

temperatures with a sharp decline at depth (Leipper, 1972). As the storm cools

the surface waters, they become denser and sink to create a convective layer in

the upper ocean and the storm will continue to deepen this layer by turbulent

mixing (Emanuel, 2003). Unless this layer is deep, there will be little heat content

in the upper ocean to keep SST high enough to power convection in the

hurricane and promote the development of the storm and an increase in storm

intensity (Leipper, 1972).

One of the significant warm water features in the Gulf of Mexico that

increases the size of the upper ocean mixed layer and heat reservoir is the Loop

Current (LC) (Zavala-Hidalgo, 2005).
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3. Gulf of Mexico Upper Ocean Features - The Loop Current

A significant warm water feature in the Gulf of Mexico which can increase

the amount of heat content in the upper mixed layer which can greatly intensify

hurricanes is the Loop Current (LC).

The LC is a warm water current that is a main feeding branch of the Gulf

Stream (Zavala-Hidalgo, 2005). The current runs from the Yucatan Peninsula

through to the Florida Channel where it merges with the Gulf Stream. However,

the path through these two regions varies through time. The LC may have a

nearly straight path between those two points, but this path will evolve such that

the LC from the Yucatan rushes northward into the Gulf and follows an

anticyclonic path as it turns back to the South and exits through the Straits of

Florida. Once the current reaches a critical, horseshoe-like shape, it becomes

unstable and sheds an anticyclonic eddy of warm water (Hurlbut, 1980). Once

this eddy forms, it may circulate within the meander of the LC, so the eddy may

take several days to shed from the LC (Zavala-Hidalgo, 2005). The evolution of

the LC can be seen in figure 3.

8



Ste 2

74

EddyE

Figure 3. Loop Current Progression. The LC bends northward into the Gulf of Mexico where it
sheds an eddy. The LC returns to its original path while the eddy travels westward and the cycle

starts again. From NOAA.

The shed eddy has a diameter of around 250km and a depth of 800m.

This eddy moves westward at an average speed of 2.4 cm/s and dissipates far

from the LC (Hurlbut, 1980). Several of these eddies can exist within the Gulf

as they continue to decay with time (Oey, 2003). As the eddies diminish , their

heating potential decreases, but still provides an enhanced heat reservoir as

they travel westward and so can provide an area for potential rapid

intensification.

However, eddies are not shed in regular intervals and present a problem

for hurricane intensity models. The frequency of eddy shedding is anywhere

from 3 to 17 months (Oey, 2003). This irregularity can introduce errors in the

hurricane intensity model since they provide an influx of warm water in the

Western Gulf and thus variability in the depth of the mixed layer and size of the
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heat reservoir. However, the variability that the eddy intrusions provide is not

well documented, so intensity models must rely on seasonal mean upper-ocean

thermal structure such as from Levitus (1982).

Given that the Loop Current (LC) can deepen the mixed layer by

introducing warm water eddies (Hurlbut, 1980), in order to relate the LC and

eddies to hurricane intensity modeling, we must understand how the LC adds to

the variability of the mixed layer in the Gulf of Mexico.

4. Measurement of Upper Ocean Features - Sea Surface Height

One measurement that can be used to deduce the location of warm water

features such as eddies is the measurement of sea surface height (SSH) relative

to the geoid of the Earth. Changes in SSH can indicate changes in the thermal

and salinity structure (Willis, 2004) as well as ocean floor topography from

changes in gravity (Smith, 2001). However, the dominant factor in causing

seasonal changes in SSH is oceanic heat content and temperature (Willis, 2004).

The change in upper ocean heat content causes an expansion of the water

column and thermosteric sea level rise. Since the bulk of change in ocean heat

content occurs in the upper ocean, SSH can show us changes in upper level

oceanic heat content and deepening of the mixed layer (Willis, 2004), which, as

discussed earlier, is a factor important for the development of hurricane intensity.

Since an increase in SSH shows an area of higher oceanic heat content, SSH

altimetry can be used to find warm water features such as the LC.
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In order to measure the location and depth of the LC and its shed eddies,

two measurement networks were developed: Argo floats and satellite laser

altimetry missions, such as Poseidon/TOPEX. The Argo network is comprised of

3000 floats deployed around the world, providing measurements of salinity and

temperature at various depths of the water column up to 2000m (Roemmich,

2000). The Argo network also works in tandem with the Poseidon/TOPEX, which

provides measurements of average SSH and ocean surface topography using

laser altimetry. By using changes in SSH, one can infer aspects of the

subsurface water column such as its temperature structure (Fu, 1994).

TOPEX/Poseidon was one of the first satellite missions to map SSH around the

globe, but several other missions were carried out over the last decade to map

SSH, including Jason-1, Envisat, GFO, ERS-1 & 2, and Geosat. Using a

combination of datasets from these missions will allow us to estimate variability in

the depth of the mixed layer.

5. Intensity Model

The hurricane intensity model that will be used to incorporate SSH

variability in the Gulf of Mexico is the one described by Emanuel et al. (2006).

Synthetic hurricanes are developed as a function of spatial probability based on

historical hurricane data. Once an origin is determined, hurricanes move based

on a weighted average of ambient flow at 850 mb and 250 mb, which varies

randomly with time, but is constrained to have the correct monthly means and
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covariances. A constant drift correction is also applied. These factors set the

path of the synthetic storm.

A deterministic numerical simulation is used along the storm's path to

determine wind intensity, which depends on both atmospheric and oceanic

conditions. Emanuel et al. (2004) describes this technique in more detail.

In order for this model to predict wind intensity, it must be initialized with

estimates of potential intensity, upper-ocean thermal structure and wind shear

along the storm's path. In particular, we will be looking at how variability of the

upper-ocean thermal structure can have a significant influence on hurricane

intensity.

The measure that will be used to examine and estimate upper ocean

thermal structure is SSH. Based on historical observed monthly average Gulf of

Mexico SSH data, synthetic SSH data will be generated. This synthetic SSH

data will aid in providing an input for upper ocean thermal structure in the

hurricane intensity model.

6. Sea Surface Height Dataset

In order to create synthetic SSH data, we obtained observations of SSH.

Our acquired observed SSH data is a composite of several satellite altimetry

missions from Ssalto/Duacs, an AVISO-distributed product. This multi-mission

data processing system contains data produced from several satellites, including

Jason-1, TOPEX/Poseidon, Envisat, GFO, ERS-1 & 2, and Geosat. The
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combination of data from these missions allows for more homogeneous results

by reducing differences between altimetry in separate missions. All SSH

readings were taken relative to the mean SSH for the 7-year period from 1993-

1999.

The Ssalto/Duacs data have resolution of 1/30 latitude by 1/30 longitude on

a Mercator grid, which places it within the diameter of a typical hurricane eye wall

(Marks, 1985). The area of the Gulf of Mexico Ssalto/Duacs data we sampled

was from 160N-30ON latitude, 804W-1004W longitude. The total number of grid

nodes was 2684; these were placed on a 44 by 61 grid node matrix. A single

SSH measurement is located at each grid node.

Ssalto/Duacs observation data span from October 14 th 1992 to May 23 rd

2007. Each observation time step was approximately 7 days, providing over 60

SSH observations for each month over the 15 year period for an overall total of

763 individual observations for the Gulf of Mexico region.

7. Sea Surface Height Data Processing

Our goal was to be able to create synthetic SSH maps for the Gulf of

Mexico within the bounds of the variability of the average SSH for each month.

In order to create the synthetic SSH grid-node matricies to deduce the SSH

variability for each month, each individual sample observation within the

collection of observations for a month of the year was converted from a grid node

matrix to a row vector. Each row vector was then strung into a column vector
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containing all of the observed sample row vectors to create a matrix of all

observed samples for a particular month. Using all of the observed samples, the

mean SSH for each node of the row vector was computed to produce a vector for

the monthly mean SSH. To compute this, all observations were added within a

node and divided by the number of observations for that particular node.

Once the monthly mean SSH was computed and the observed sample

matrix was created, the spatial covariance of SSH within our observed samples

was determined. This process produced a covariance matrix in which the row

and column lengths were equal to the number of grid nodes within each

observed sample, yielding 2684 by 2684 grid nodes. From the diagonal of this

covariance matrix, a variance vector for the particular month was built, which was

then converted to a 44 by 61 grid node matrix to produce the variance matrix.
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Figure 4. Schematic of the calculation observed mean monthly SSH. Individual observations
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taking the average for all grid nodes. Lastly, the row vector was converted back to a matrix.
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Figure 5. Observed Monthly Variance Calculation Schematic. Once multiple observations have
been strung into a matrix, the covariance matrix is calculated. The variance matrix simply is

derived from the diagonal of the covariance matrix.

16

1 1 1

2 2 2

6

2

7

6

7

2

7



Singular value decomposition (SVD) of this matrix was calculated and

divided into its input, output, and scalar components.

The covariance matrix SVD components were then applied to a Karhunen-

Lobve transform to create a synthetic SSH sample using the equation,

SSHsvn = SSHme uon.

Where 'SS Hmean' is the vector for mean sea surface height, 'u' is the output

control vector from the SVD of the covariance matrix, 'a' is the scalar component

matrix of the SVD of the covariance matrix, and 'n' is a vector that replaces the

input vector calculated by the SVD of the covariance matrix with a set of random

numbers generated by a random number generator.

To generate n, the 'randn' function in MATLAB was used with SSHmean as

its input. The randn function produced a vector of the of the same size as the

input, with a Gaussian distribution of scalar values, where a value of 0 is

equivalent to the mean while a value of 1 is equivalent to one standard deviation

away from the mean. Positive and negative values indicate values greater and

less than the mean, respectively.

By using this formula, synthetic SSH plots were created within the bounds

of the variance of each month of SSH observed samples. Any changes in SSH

were based on a Gaussian distribution centered on the average SSH for the

particular month. The process was repeated for all months to produce synthetic

SSH plots throughout the year.
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In order to evaluate our results, for each individual month, we took the

difference between the observed and synthetic SSH plots for monthly mean,

variance, and covariance. Although we looked at individual SSH observation

plots and individual SSH synthetic plots to get an idea of how close both those

plots could be, given that some of the synthetic SSH plots could be wildly

different from the observed plots, we made sure that as a whole, the variance,

mean, and covariance of each observed month was closely related in each

synthetic month. Since values within the synthetic SSH plots were based on a

Guassian distribution of values, it was best to look at plots in terms of their

monthly averages.

8. Results

Our data processing method allowed us to create synthetic SSH plots

from the calculated monthly averages and variability of SSH in the Gulf of Mexico.

A sample of observed plots compared to synthetic plots can be seen in Appendix

E. Our intermediate steps, monthly plots of average SSH and SSH variance, can

be seen in Appendices A and B, respectively. Our plots of the changes in the

synthetic monthly mean and variance from the observed monthly mean and

variance can be seen in appendices C and D, respectively.

In general, our plots of monthly mean SSH, both observed and synthetic,

had their highest SSH values during the fall months of September and October
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and their lowest values during spring in March and April. This seasonal variation

was an expected consequence of solar heating of the upper ocean.

The synthetic and observed SSH monthly variance plots show areas of

large variance in the same general area near the western edge of Cuba (the

approximate area between 22-28*N and 84-90*W); the area where the LC bends

and sheds warm water eddies. Areas of moderate SSH variance occur in the

middle of the Gulf of Mexico, where shed eddies travel westward and dissipate.

Their dissipation leads to less heat being transported into the western Gulf of

Mexico, resulting in a decrease in variance at those grid nodes.

Looking at the difference between the observed and synthetic SSH mean,

changes in mean SSH were on the order of plus or minus 5 cm with some

anomalous areas up to plus or minus 10 cm. These anomalous regions were

typically centered on the area of the eddy shedding region of the LC (near 25*N,

870W).

The difference between the observed and synthetic SSH variance had

little change except near the eddy shedding region of the LC. The area near the

LC eddy shedding region had a difference in variance of 150-400 cm 2 , although

December and April had variance less than 150 cm 2 in this region. Away from

the LC, the change in variance is considerably less and was in the range of 0-

100 cm 2 . The least change in variance occurred in the months of December and

April while the greatest change occurred in the months of May and July.
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9. Data Analysis

The synthetic SSH plots bear a good resemblance to the observed plots in

that they have the same trends. Appendix E shows a sampling of observed plots

compared to synthetic plots of SSH. The first page shows August samples while

the second shows January samples. In the winter and spring months, SSH stays

relatively low compared to SSH in the summer and fall months. However, areas

showing considerably more variability, such as the eddy shedding region and

region containing westward-travelling eddies, show significant differences

between individual SSH plots. However, this should reflect the constantly

changing influx of warm water into Gulf of Mexico based on the shedding of

eddies from the LC. Given that eddies do not shed at regular intervals, one

expects to see changes in the presence of new and old LC eddies. It can also

reflect the change in the path of the LC. Increased SSH in the northeastern

corner of the Gulf of Mexico can be a result of the LC bending to the north.

If one looks at large scale trends over the monthly average of SSH in both

observed and synthetic datasets, the differences between both datasets are less

pronounced. Appendix C shows the difference in observed and synthetic mean

monthly SSH, while Appendix D shows the difference between observed and

synthetic monthly SSH variances. Given that the differences between mean

observed and mean synthetic SSH is considerably less than the difference

between the SSH of individual observed and synthetic samples, on average,

synthetic samples will be generated closer to the topography of the observed

20



samples. Given that the synthetic samples were generated using a Gaussian

distribution, were more synthetic samples generated, their mean SSH and SSH

variance should be closer and their difference plots should be near zero.

However, the difference plots in Appendices C and D show their greatest

differences in the eddy shedding region. These differences are expected

because of the non-regular frequency at which the LC changes direction and

sheds eddies.

There may be some issues with the dataset relating to the resolution and

land masking. It is very apparent that the land mask is rather approximate and

does not take into account smaller land masses that exist in the Gulf of Mexico,

for example, Florida and Cuba. Both of these land masses are larger than the

resolution of the SSH data and thus should be included. On each plot, Mexico

and the US Gulf Coast are part of the land mask, but Cuba and Central Florida

are not included and SSH readings are located where land should exist. Thus,

should a synthetic hurricane pass over these areas where land should be located,

a hurricane intensity model will err since that area will be interpreted as ocean.

The land masking problem is part of the problem of needing more

resolution. Without better resolution, parts of coastlines and islands will not be

included and those areas will be interpreted as ocean, adding to error in

hurricane intensity models. In addition, more resolution will allow for a more

accurate account of the amount of heat content in the upper ocean mixed layer;

the heat needed for hurricane formation and development. A better measure of
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heat content in the upper ocean will allow for better accuracy in determining

hurricane intensity.

10. Discussion

The model was able to generate synthetic plots of SSH that can provide

another step in improving hurricane intensity modeling. Now with monthly

averages of SSH along with the variance and covariance of SSH in the Gulf of

Mexico, more specific hurricane intensity models can be made for the month

instead of the season. With monthly synthetic estimates of SSH, better

estimates of hurricane intensity can be made and thus one can discover the risk

associate with storms in a particular month instead of an entire season.

However, the generation of these synthetic plots only takes into account

SSH observations from the last 15 years and may not be representative of

average SSH readings over the longer term. Since satellite laser altimetry

measurement has only existed for the past couple decades, SSH trends for the

past century or beyond can only be speculated upon. One way possible way to

extrapolate from past values is to use sea surface temperature (SST). SST

measurements have been around since the age of sailing vessels, but more

complete SST data started in the 1970 with the advent of infrared satellites

(Emery, 2001). Using SST data, one could try to estimate heat content in the

upper ocean and SSH, but SST does not give a clear picture of the temperature

structure in the upper ocean since infrared satellites can only penetrate 10 pm
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beyond the surface of the ocean while ships and buoys generally make

measurements between 0.5m-5m (Emery, 2001). Argo floats have only been

placed in the last few years, but will give us a better picture of upper ocean

temperature structure (Roemmich, 2000). Thus, a model could be made to

estimate past SSH with SST, but there will still be uncertainty about the

temperature profile, which will generate uncertainty and inaccuracy in estimating

past SSH values.

Not only can we only speculate about the specific SSH values in past

decades, but there is also some uncertainty in modeling SSH in the future.

Global climate change can have implications for SSH readings in the future.

Given that global climate change has the potential to significantly heat the

oceans, additional oceanic heat content and thermosteric sea level rise will also

increase SSH values (Willis, 2004). In order for the synthetic SSH model to be

more accurate in the future, it must take into account climate change.

In the short term, the model described here is a starting point in

quantifying monthly fluctuations of SSH in the Gulf of Mexico. However, with

continued SSH observation from laser altimetry satellite missions, we can hope

to understand more of the SSH variability throughout the year. In addition, we

can also understand more about long term changes in SSH. With better

estimations of past and future SSH, the synthetic SSH model can be improved

and will provide a better input for hurricane intensity models. Improved hurricane

models will lead to improved risk assessments for coastal communities

throughout the world and will help reduce the economic problems associated with
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large storms by giving governments, companies, and individuals proper

preparation.
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Appendix A - Observed Monthly SSH Averages
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Appendix B - Observed Monthly SSH Variance
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Appendix C - Difference Plots Between Observed and Synthetic Average
SSH Data
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Appendix D - Difference Plots Between Observed and Synthetic SSH
Variance Data
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Appendix E - Observed and Synthetic SSH Samples
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