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Abstract

The scattering diffusion coefficient between two points can theoretically be extracted
from a random distribution of sources. An improved ability to measure the dif-
fusion coefficient of the Earth's crust would simplify the process of characterizing
the fracture network for applications in geothermal energy. This has the potential
to make geothermal wells more economical to make, more efficient to operate, and
longer lived. Previous work has shown the diffusion coefficient can be extracted from
synthetic datasets in both one dimension and three dimensions using seismic interfer-
ometry. This paper attempts to recover the diffusion coefficient for a realistic source
distribution taken from a microseismic dataset from a geothermal field in Indonesia.
This dataset did not have an ideal distribution of sources, so the estimated diffusion
coefficient did not match the expected value. A better estimate of the expected diffu-
sion coefficient and an improved dataset with sources more evenly distributed in all
directions around the receivers would likely give a better result.
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Chapter 1

Introduction

1.1 Seismic Interferometry

Seismic interferometry is the process of analyzing the interference patterns of seismic

waves in order to estimate the properties of the interior of the Earth. [7, p. 1] Generally

this is done for acoustic waves by using cross correlation, but it can also be done with

deconvolution. [2] Seismic interferometry has evolved since 1968 when Jon Claerbout

first presented his noniterative approach to analyzing a one dimensional, acoustically

layered medium from seismogram data. [1] This process was successfully extended into

three dimensions in 1999 by Rickett and Claerbout who used data from the Sun to

reconstruct the Green's function between two points from the cross correlation of the

noise signals at those two points. [5] In 2000, this theory was also shown to be able to

investigate the interior of the Earth by Schuster and Rickett.[7, p. 16]

The Green's function is a fundamental characteristic of the medium between two

points. The Green's function between any points A and B gives the response at point

A to an impulse at point B. [3] This response is also the response at point B to an

impulse at point A. [8, p. 309] This effectively places a virtual source at the location of

a receiver.[12] This is a potentially important feature that could be applied to make

seismic data acquisition easier as a receiver is much smaller and has less of an impact

on the environment than a seismic source like dynamite.

The Green's function is dependent on D is the diffusion coefficient in units of
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kilometers squared per second, t is the time vector in seconds, and r is the distance

in kilometers between the two receivers. The one dimensional Green's function,

12
GF1D(r, t) -- ep(-- ) (1.1)

(47rDt)1/2  4Dt

is used for one dimensional cases.[2] The three dimensional equation for the Green's

function is
12

GF3D(T, t) - exp(-r (1.2)
(4 7rDt)d/2 4Dt

where d is the number of dimensions of the system. [4] The Paasschens paper included

an additional term in the exponent of f, where la is the absorption length. [4] This

term was ignored because it is a function of dispersion rather than diffusion and this

paper is focusing on diffusion.

Seismic interferometry has strict limitations on the source distribution. Equipar-

tition of sources in which having sources located in every direction is equally likely

is required in order to fully retrieve the Green's function.[12] This type of dataset

could be constructed by either having an impulsive source that is recorded for a long

enough period of time that the scatters enough that the scattered waves approach

equally from all directions or having a randomly distributed sources surrounding the

receivers. This even distribution is not generally the case in realistic data as re-

ceivers can rarely be surrounded by sources on all sides. This would depend on if the

dataset is a microseismic dataset where the sources are underground or a surface gen-

erated source that would for example use dynamite or a vibroseis truck. In 2009, Fan

and Snieder published a paper in which they examined the required source distribu-

tions for interferometry for diffusion. They determined that the one dimensional and

three dimensional curves could be reconstructed by using a regular array of sources

surrounding the pair of receivers.[2] Their paper was used as the basis for the one

dimensional and three dimensional cases presented in this paper.

14



1.2 Diffusion Coefficient

Diffusion is the scattering of acoustic waves as it passes through a medium. The

diffusion coefficient, D, with units of length squared over time, is given by

D C (1.3)
d

where c is the velocity of the signal through the rock in kilometers per second, I is

the mean free path for elastic, isotropic scattering in units of kilometers, and d is the

unitless dimension of the system.[4] As a result, the diffusion coefficient is directly

related to the mean free path of the material that the waves traveled through. The

mean free path is the average distance that the signal can travel before it interacts

with the medium and scatters.

These scattering events occur at a change of physical properties of the rock. This

can include such things as a fracture in the rock that interrupts the transmission of

the signal or a change of density or composition of the material. As a result, the

diffusion coefficient helps determine where the Green's function peaks and the speed

at which the Green's function subsides. The more that a signal scatters within a

medium, the longer it will take a signal to travel away from any particular receiver.

A large diffusion coefficient and the associated large mean free path will cause the

function to fall off quickly and a small diffusion coefficient and mean free path will

cause the function to fall off more slowly. This can be seen in Figure 1-1.

Assuming that scattering, as opposed to absorption, is the dominant source of

energy loss in the medium, the diffusion coefficient can be correlated with the amount

of fractures that are in the rock. As a result, the relative frequency of fractures in

the medium could be predicted from an accurately estimated diffusion coefficient.

1.3 Applications to Geothermal Energy

Geothermal energy comes from thermal energy that is in the Earth's crust. This

heat can be extracted by circulating water underground. This heated water can be

15



used directly as a heat source or indirectly to make electricity. Most of the United

States would be able to generate electricity from geothermal energy if they were

hydrofracked.[11] In the near future, this process could be implemented on a national

scale to produce electricity at a price competitive with fossil fuels.[11] This paper

discusses a technique that could make geothermal fields more productive by producing

cheaper, more accurate map of the fracture network in the ground.

Geothermal energy comes from residual heat from the accumulation of the Earth

and heat from radioactive decay. In the Earth's crust, the average thermal gradient

ranges from of 15 0C/km to 50'C/km. [11, p. 2-8] At 3.5 km, a depth commonly reach-

able by drilling, the rock in the continental United State ranges between 50'C and

1500C.[11, p. 2-15] Typically for large scale applications, this high temperature of the

rock is recovered by circulating a medium such as water through the hot rock and

back to the surface. The resulting hot water can be used to generate electricity.

There are other ways to take advantage of geothermal energy that work on a

smaller scale. Some of these methods store heat underground via single wells. This

type of energy may be appropriate for use in the seasonal cooling and heating of large

commercial buildings. However, this direct use of the hot water is not suited for use

on the national and global scale. I am focusing this paper on large scale applications,

so I will not be referring to these cases.

Geothermal energy is most often found at depths ranging from 200 to 2000 meters.

In order to extract the thermal energy from that depth at a commercial scale, multiple

wells must be drilled. At least one of these wells will then be used to pump relatively

cool water into the ground and at least one of these wells will be used to pump hot

water out of the ground. This cycle extracts heat from the Earth's crust. The hot

water that is extracted is then used either directly for heat or indirectly to generate

electricity. [10]

Geothermal energy is a sustainable energy source, but it has drawbacks. In order

to access the heat in the crust at the depths required, wells must be drilled. This

requires land to temporarily hold a drilling rig, roads for large equipment and trucks,

and an allowance for the noise and light pollution created from a drilling rig that

16



would be operated around the clock. If the hot rock is not permeable enough at the

depth required, the rock will also need to be hydrofracked in order to allow water to

circulate into and out of the ground on a timescale that is acceptable to the people

running the geothermal operation.

This process of stimulation is known as hydrofracking or fracking (also fraking,

fracing). The full effects of fracking are currently being debated. However, a properly

sealed well does not allow either fracking fluid or any other substance to return up the

well uncontrolled. This seal prevents any of these substances from coming into contact

with the water table. Fracking also requires a large amount of water and chemicals.

These chemicals could potentially spill into the environment at the surface. In drier

areas, the sheer volume of water required to frack a well can be difficult to obtain,

especially since most of the water is left in the well after fracking.

Once the well is actually constructed, geothermal energy has very little environ-

mental impact. Depending on how electricity is extracted from the hot water that

leaves the ground, the use of geothermal energy could have low to no carbon emis-

sions. A unit of geothermal energy also ends up costing about the same amount as

a unit of energy from fossil fuels. More research will need to be conducted prior to

implementation on a national scale, but geothermal energy, as opposed to wind or

solar, is competitively priced with respect to energy derived from fossil fuels.[11]

Geothermal energy is not widely used today partly because of the limited number

of ideal areas to locate geothermal fields, especially on a large scale. An ideal area for

geothermal energy needs to have hot rock, water, and a high porosity. Most of the

existing geothermal plants are located in this type of situation. Although there are a

relatively small number of areas with all three of these components, there are a large

number of areas that have both hot rock and water. In these cases, porosity can be

increased by hydrofracking to create and enhanced geothermal system (EGS). This

type of system requires more investment and there is more uncertainty involved.

Geothermal energy is already commercially viable in Australia and Europe where

the government financially supports geothermal energy.[11] However, more research

is necessary in order to make enhanced geothermal systems competitive on a national

17



scale. More research is required to develop more cost effective drilling techniques,

more reliable fracking technology, more accurate fracture characterization and more

efficient heat conversion systems.[11]

Geothermal energy is worth developing as geothermal energy could be as cheap

as energy from fossil fuels and it will not become scarce anytime in the near future.

There are three orders of magnitude more geothermal energy available in EGS than

the United States can use and the price of producing geothermal energy is competitive

with the price of producing energy from fossil fuels.[11]

A better knowledge of the fracture characterization of the hot rock will signifi-

cantly increase the efficiency of the geothermal plant. With a better knowledge of the

physical location of the fractures, new wells can be accurately placed for the highest

porosity. The high porosity will allow a larger volume of water to circulate through

the system, increasing the total rate of heat extraction. Maximizing the number of

fractures between wells will also maximize the amount of surface area that the water

can contact the rock, potentially increasing the life of the well and increasing the

total amount of heat that can be extracted. These factors increase the efficiency of

the system, which makes the geothermal plant more economical and more competi-

tive with other energy sources like fossil fuels. With geothermal energy as cheap to

produce as energy derived from fossil fuels, geothermal energy could begin to take

over the commercial sector. This would reduce pollution and the world's dependency

on oil.
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Figure 1-1: This figure shows the three dimensional Green's function for several
different values of the diffusion coefficient. The larger the value of the diffusion
coefficient, the earlier in time that the function peaks and the faster the curve falls
off.
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Chapter 2

Methods

2.1 Mathematical Calculation

For this paper, three different models were constructed based on the three different

distributions of sources. The three models are the one dimensional idealized model,

the three dimensional idealized model, and the three dimensional realistic model.

The one dimensional idealized model contains sources distributed symmetrically and

regularly around the receivers in a single line as shown in Figure 2-1. The three

dimensional idealized model contains sources distributed symmetrically and regularly

in a three dimensional grid around the receivers as shown in Figure 2-2. The three

dimensional realistic model takes the locations of both its receivers and its sources

from microseismic data from a geothermal field in Indonesia. This distribution can

be seen in Figure 2-3.

These three models are processed in the same general manner. The Green's func-

tion (GF) between the two receivers is calculated directly using the one dimensional

Green's function, Equation 1.1, or the three dimensional Green's function, Equation

1.2, as required by the model. This GF serves as the control to compare the result

of the empirical calculation of the Green's function (EGF). The EGF between the

two receivers is calculated using seismic interferometry. This EGF is then fit with a

Green's function called the fitted Green's function (FGF) for the diffusion coefficient

using nonlinear regression. The estimated diffusion coefficient of the FGF is then
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compared to the the diffusion coefficient of the GF in order to determine the accu-

racy that the EGF approximates the GF. This result determines the quality of the

source distribution.

For all of the following models unless otherwise specified time step of 0.005 seconds

and the maximum time was 400 seconds. This time step of 0.005 seconds was chosen

because 0.005 seconds is the time step of the waveforms from the microseismic dataset.

The maximum time of 400 seconds was chosen because of the edge effects associated

with the tail of the curve. This will be further examined in Section 4.1. The curves

will only be shown for a time range of 0 to 15 seconds because that is the approximate

range of waveforms for this dataset.

The values of the initial diffusion coefficient for the one dimensional case and

the three dimensional case used in this paper were approximated from the physical

properties of the region using Equation 1.3. The mean free path, 1, is the inverse of

the scattering coefficient, g0, which has units of inverse length.[7] For a volcano, g, =

1km- 1 [6, p. 7], which approximates the composition of the rock in the geothermal field

of the realistic data. Substituting a velocity of 3 km/s and a number of dimensions,

d, of 1 or 3 depending on the number of dimensions of the model into Equation 1.3,

the value for the diffusion coefficients are 3 km 2/s for one dimensional models and 1

km 2/s for three dimensional models.

The GF is calculated directly by using the diffusion coefficient, D, a time vector,

t, and the distance between the two receivers, r. The exact equation for the GF

that is used varies depending on the number of the dimensions of the model. One

dimensional functions use Equation 1.1, and three dimensional functions use Equation

1.2. The absolute value of all functions is taken and then they are normalized by their

maximum amplitude to a value of 1.

The EGF is calculated indirectly using cross correlation. The Green's functions

from the first receiver to all of the sources are cross correlated with the Green's func-

tions from the second receiver to all of the sources. In general, the cross correlation
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of two functions f(t) and g(t) is given by

f (t) * g(t) f (-t) * g(t), (2.1)

where * is the convolution.[7, p. 6] The convolution is defined as

f (t) * g(t) = j f (T)g(t - TF)dT, (2.2)

where T is a variable. [8, p. 229] These vectors were summed. The absolute value of

the resulting EGF was normalized and fit with a FGF using the diffusion coefficient,

D.

The EGF should approximate the GF. The accuracy of the EGF is determined

by the nearness of the estimated diffusion coefficient to the diffusion coefficient of

the GF. The amount that the estimated diffusion coefficient varies will determine

how accurately the diffusion coefficient can be recovered by this method for this

distribution of sources.

2.2 Idealized Models

The idealized models are used to determine the requirements of a regular source

distribution to derive an accurate fit for the EGF. Multiple cases of each model were

examined with different densities and ranges of sources.

2.2.1 ID Model

The physical setup of the one dimensional idealized model can be seen in Figure 2-1.

For all one dimensional models, the first receiver is at -1 and the second receiver is

at +1 with the sources arranged evenly about them. The parameters that control the

distribution of the sources are the total range of the sources in kilometers, L, and the

linear density of the sources in inverse cubed kilometers, p. Figure 2-1 shows Case 3

where L is 38 km and p is 1 km- 1. The parameters for the three cases presented in
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ID Model 1
Case 1

[km] p [km- 3] D0 [km 2 /s]
14 1 3

Case 2 38 0.5 3
Case 3 38 1 3

Table 2.1: The parameters used to determine the source distributions for each ideal-
ized ID case.

3D Model 1 [km] p [km- 3] D0 [km 2/s]
Case 1 3 1 1
Case 2 12 0.5 1
Case 3 12 1 1

Table 2.2: The parameters used to determine the source distributions for each ideal-
ized 3D case.

this section can be seen in Table 2.1.

For each one dimensional distribution, the exact Green's function between the

two receivers is calculated directly using Equation 1.1. For this model, the diffusion

coefficient is 3 km2/s from Equation 1.3. The resulting GF is used as the control for

the EGF.

The EGF between the two receivers is calculated using seismic interferometry as

described in Section 1.1. Then the EGF is fitted with a Green's function to produce

the FGF. The estimated diffusion coefficient for FGF of this curve is compared to the

initial diffusion coefficient of 3 km2/s.

2.2.2 3D Model

The idealized model was expanded into three dimensions as shown in Figure 2-2.

The receivers are located at [-1,0,0] and [1,0,0] and the sources are symmetrically

arranged in a square grid centered around the two sources. The source distribution

is determined by the length in kilometers of a side of the grid, L, and the volume

density of sources in inverse cubed kilometers, p. In Figure 2-2, the parameters used

are L = 12 km and p = 0.5 km-3. The parameters for the three cases presented in

this section can be seen in Table 2.2
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-20 -15 -10 -5 0 5 10 15 20
x [km]

Figure 2-1: This figure shows the sources in red and receivers in blue for Case 2 of the
idealized one dimensional model. The sources in this figure have a range of L = 38
km and a linear density of p = 1 km- 1.

2.3 Realistic Model

The locations of the sources and receivers for the realistic model were selected from

a microseismic dataset. This dataset had multiple receivers operating at any point

in time. The volume density of sources, p, and the maximum range of the sources,

L, are important to be able to find the diffusion coefficient.[2] As a result, the pair

of receivers that were chosen for this study had the largest number of receivers and

the largest range. The locations of all of the events that occurred during the period

of time that these two receivers were active were compiled together. This realistic

distribution of sources that is used for this paper is shown in Figure 2-3.

With these locations, the model is processed as described in Section 1.1 using a
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-5

5 55
y (km]

x [km]

Figure 2-2: This figure shows the sources in red and receivers in blue for Case 2 of

the idealized 3D model. The sources in this figure have a range of L = 12 km and a

density of p = 0.5 km- 3 . The point of view of this figure is 450 from each major axis.

time step of 0.005 seconds, a maximum time of 400 seconds and an diffusion coefficient

of 1 km2 /s. The GF is calculated directly using Equation 1.2. The EGF is calculated

using seismic interferometry. The FGF is fit to the EGF and the estimated diffusion

coefficient from the FGF is compared to the diffusion coefficient.
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Figure 2-3: The distribution of the sources and receivers for the realistic model.
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Chapter 3

Results

3.1 Idealized Models

3.1.1 1D Model

The one dimensional model was completed for a series of different values of the range

of sources, L, and the linear density of sources, p, in order to determine the range

and density required to accurately reproduce the Green's function. The results for

the three one dimensional cases in this section are summarized in Table 3.1.

Case 1 is shown in Figure 3-1. This case has a relatively small range and high

density of sources. The EGF closely matches the part of the GF curve to the left

side of the maximum. The part of the EGF curve to the right side of the maximum

of the GF curve does not match as the EGF falls off more quickly. The FGF is very

inaccurate. The diffusion coefficient of the fit for this case is 14.45 km2/s, a 381.7%

error. This is a large total error even though the initial part of the EGF and GF

ID Model L [km] p [km- 1] D0 [km 2 /s] Dest [km2 /s] Percent Error
Case 1 14 1 3 14.45 381.7%
Case 2 38 0.5 3 3.41 13.7%
Case 3 38 1 3 3.09 3.0%

Table 3.1: The parameters and error of the estimated diffusion coefficient for each
idealized ID case using a time step of 0.005 seconds and a maximum time of 400
seconds.
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1
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~0.2
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Figure 3-1: This is Case 1 for the idealized 1D model with L = 14 km and p = I
km-'. The estimated diffusion coefficient is 14.45 km 2/s, a 381.7% error.

Case 2 can be seen in Figure 3-2. This case has 19 sources, five more than the Case

1 , though the sources are spread out at half of the density of Case 1. The resulting

set of curves is much more accurate than the first case. The EGF matches the GF on

the right side of the peak fairly closely, especially at larger times. However, the left

side of the peak of the EGF does not match the GF as well as it did in Case 1. The

peak of the EGF also occurs earlier than that of the GF. The FGF matches the GF

fairly closely. The estimated diffusion coefficient is 3.41 km 2/s. This is only 13.7%

different from the diffusion coefficient of 3 kM2/s.

30



1 G
GF

-EGF

FGF
0.8

0.6
CO)

0.2

0 5 10 15
Time [sJ

Figure 3-2: This shows the GE, EGF, and FGF of Case 2 for the idealized iD model
with L = 38 km and p = 0.5 km 1 . The FGF has an estimated diffusion coefficient
of 3.41 km2 /s, an error of 13.7%.

Case 3 had 38 sources and can be seen in Figure 3-3. This case has both a high

density of sources and a large range. In Case 3, the EGF most closely matches the

Ge. As a result, the EGe also closely matches the GE. The peak of the EGE still

peaks slightly earlier than the GF and the FGF. The estimated diffusion coefficient

is 3.09 km2 /s. This is only 3% larger than the diffusion coefficient.
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Figure 3-3: This shows the GF, EGF, and FGF for the Case 3 for the idealized
1D model with L = 38 km and p = 1 km- 1. The FGF has an estimated diffusion
coefficient of 3.09 km2 /s, and error of 3.0%.

3.1.2 3D Model

The three dimensional idealized model was repeated for various values of L and p.

The results from three examples included in this section are shown in Table 3.2. In a

similar manner to the one dimensional cases, Case 1 and Case 3 cases have the same

density and range over a much different volume. These two cases were compared with

the same GF that was calculated using a diffusion coefficient of 1 km2 /s, the distance

between the two receivers, and the time vector.

Case 1 can be seen in Figure 3-4. The sources for this case have a relatively small
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3D Model L [km] p [km- 3] Do [km 2 /s] Dest [km 2 /s] Percent Error
Case 1 3 1 3 1.36 36.34%
Case 2 12 0.5 3 0.83 16.6%
Case 3 12 1 3 1.01 1.16%

Table 3.2: The parameters and error of the estimated diffusion coefficient for each
idealized 3D case using a time step of 0.005 seconds and a maximum time of 400
seconds.

range. The FGF generally matches the EGF except for a small difference at times

larger than 4 seconds. These two curves do not match the GF. They are fairly close

on the left side of the peak. The GF falls faster than the EGF on the right side.

The peak of the EGF and FGF also lead the GF slightly. The estimated diffusion

coefficient is 1.36 km2/s. This has an error from the initial diffusion coefficient of

36.34%.

Case 2 is shown in Figure 3-5. The source distribution for this case has a large

extent and a smaller density. The FGF matches the EGF very closely. The EGF

more closely resembles the GF for this case. The three curves almost match on the

left side of the peak, but there is some separation in the curves from the peak through

the right side of the graph. The peak of the GF leads the peak of the EGF and FGF

and the GF falls off more steeply to the right of the peak. There is still a significant

difference between the FGF and the GF. The estimated diffusion coefficient of the is

0.83 km2 /s, an error of 16.6%.

Case 3 is shown in Figure 3-6. Case 3 has a source distribution that is both dense

and has a large range. The GF, EGF, and FGF all overlap for the range of this

graph. The estimated diffusion coefficient is 1.01 km 2 /s, only 1.01% different from

the original value of 1 km 2/s.

3.2 Realistic Model

The realistic distribution of sources was used for this section. The GF, EGF, and

FGF for this model can be seen in Figure 3-7. The EGF is not very similar to the

GF. The FGF also does not closely match the EGF, even though they meet at the
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Figure 3-4: This shows the GF, EGF, and FGF of Case 1 for the idealized 3D model
with L = 3 km and p = I km-3. The estimated diffusion coefficient of the FGF is
1.36 km2/Is, an error of 36.34%.

peak and the edges of the graph. The width of the EGF is wider than the GF. The

estimated diffusion coefficient is 2.49 km 2/s. This is an error of 149%.
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Figure 3-5: This shows the GF, EGF, and FGF of Case 2 for the idealized 3D model
with L = 12 km and p = 0.5 km-3 . The FGF has an estimated diffusion coefficient
of 0.834 km2 /s, an error of 16.6%.
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Figure 3-6: This shows the GF, EGF, and FGF of Case 3 for the idealized 3D model
with L = 12 km and p = 1 km- 3 . The FGF has an estimated diffusion coefficient of
1.01 km2/s, an error of 1.16%.
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Figure 3-7: These are the GF, EGF, and FGF curves for the realistic 3D model. The
estimation of the diffusion coefficient is 2.49 km2/Is, a 149% error.
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Chapter 4

Discussion

4.1 Time Dependence and Artifact

A fixed time vector length was used for this paper. The maximum time affects how

the EGF is ultimately shaped. The EGF curve in Figure 4-1 and Figure 4-2 that used

a maximum time of 15 seconds is compared against the original EGF curve with a

maximum time of 400 seconds. At a smaller maximum time value, the behavior of the

tail of the EGF curve with a maximum time of 15 seconds decreases and finally drops

quickly to zero near the maximum time due to the edge effects of cross correlation.

The 400 second curve also drops off, but it drops off around 400 seconds. The height

of the curve at 400 seconds is much smaller than it is at 15 seconds, so it has a much

smaller effect on the graph. Additionally, the 15 second curve begins to fall below

the 400 second curve around the 8 second mark. The 400 second graph does not fall

like this over the range graphed. It is a subtle difference, but this large time value

was used for this paper in order to prevent this processing artifact from affecting the

outcome of the study. The full range of the 400 second curve can be seen in Figure

4-3 and Figure 4-4.

The time step that is used in this paper was held constant for the paper at 0.005

seconds. Figure 4-5 shows Case 3 of the 3D idealized model in which the EGF and the

GF appear to overlap. The third curve is the EGF with a time step of 0.1 seconds.

The smaller time step causes the EGF to become less accurate, especially near the
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Figure 4-1: Two EGF curves for the 3D Case 3 that demonstrate the effects of using
a shorter maximum time. EGFong has a maximum time of 400 seconds and EGFsahrt
has a maximum time of 15 seconds.

origin.

Several of the graphs that have been included in this paper have an obvious

anomaly near the origin. This anomaly, shown in Figure 4-6, is an artifact of pro-

cessing. It is likely caused by either processing by using circular cross correlation or

not setting the negative Green's function to 0 for negative times. It may also be an

artifact of the time window starting at zero. This artifact appears in the EGF for the

all of the one dimensional and three dimensional models. It is potentially affecting

the location of the peak of the EGF, which could in turn affect the error of the FGF

and the estimated diffusion coefficient.
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Figure 4-2: Two EGF curves for the 3D Case 3 that demonstrate the effects of using
a shorter maximum time. EGFion, has a maximum time of 400 seconds and EGFshort
has a maximum time of 15 seconds. This figure shows the curve from 10 seconds to
15 seconds.

4.2 Idealized Models

4.2.1 1D Model

Three cases for the idealized one dimensional model demonstrated in Section 3.1.1

demonstrate the one dimensional dependence of the estimated diffusion coefficient on

the source distribution. Case 1 has a small range and a high density of sources. Case

2 has a large range and a low density of sources. Case 3 has a large range and a large

density of sources. These different source distributions strongly affect the accuracy

of the EGF and FGF. The summarized one dimensional results can be seen in Table

4.1
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Figure 4-3: These are the full calculated curves from 0 to 400 seconds for the GF and
the EGF between the two receivers for Case 3 of the idealized 3D model.

In Case 1, as seen in Figure 3-1, the error of 381.7% is very high. This is the error

for both the estimation of the diffusion coefficient and the estimation of the mean

path length since the two variable are linearly related. The EGF matches the left

side of the GF peak closely, but the EGF falls off more quickly on the right side. The

result is a large difference in the value of the diffusion coefficient between the GF

and the FGF. The estimated diffusion coefficient of 14.45 km2 /s is much greater than

that of the initial diffusion coefficient of 3 km2 /s. Using Equation 1.3 and assuming

a velocity of 3 km/s, this means that instead of a mean free path of 1 km, the mean

free path would be 4.82 km.

The GF, EGF, and FGF curves in Case 2 in Figure 3-2 much more closely resemble

one another. In this case, the tails are very similar, but the EGF does not fit the GF

very well. The estimated diffusion coefficient for this case is 3.41 km2 /s as compared
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Figure 4-4: These are the full calculated curves from 0 to 400 seconds for y values
from 0 to 0.1 of the GF and the EGF between the two receivers for Case 3 of the
idealized 3D model.

with the diffusion coefficient for the GF of 3 km2 /s. This is a 13.7% error and this

FGF would result in a mean free path of 1.13 km.

Case 3 in Figure 3-3 has both a large range of sources and a high density of

sources. The EGF and FGF almost completely agree with the GF. Consequently,

the estimated diffusion coefficient of 3.09 km2 /s is only 3% larger than the diffusion

coefficient of 3 km2 /s. The resulting mean free path of the FGF would be 1.03 km.

In this case, the diffusion coefficient could be recovered from one dimensional sources

evenly spaced and distributed around the two receivers if the sources are spaced

closely together and for a large range.

Based on the results from these three cases, the source distribution determines the

accuracy of the fit to the GF. A high density of sources relatively near to the receivers
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Figure 4-5: Two EGF curves for the 3D Case 3 with different values for time steps
that demonstrates the effects of using a larger time step. EGFmaii has a time step

of 0.005 seconds like the curves in the rest of this paper. EGFrge has a time step of

0.1 seconds.

as found in Case 1 and Case 3 is necessary to accurately fit the left side of the curve.

A large extent of sources as found in Case 2 and Case 3 is necessary in order to match

the shape of the tails of the EGF. This agrees with the one dimensional results by

Fan and Snieder.[2] The most accurate fits will have both a high density of sources

near the receiver and a large extent of sources. The diffusion coefficients that are

recovered in this model from such accurately fitted curves are also very accurate.

4.2.2 3D Model

Three cases for the idealized three dimensional model in Section 3.1.2 demonstrate

the three dimensional dependence of the estimated diffusion coefficient on the source
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Figure 4-6: This is the first three seconds of Case 3 for the idealized three dimensional

model for 0 to 3 seconds. The feature from 0 to 0.2 seconds is an artifact of the
processing as discussed in Section 4.1.

distribution. The first case has a small range and a high density of sources. The

second case has a large range and a low density of sources. The third case has a large

range and a high density of sources. These different source distributions strongly

affect the accuracy of the EGF and FGF. The summarized three dimensional results

can be seen in Table 4.2

Case 1 had a high density of sources over a small extent. The curves for this

example are given in Figure 3-4. This distribution gave a much more reasonable

response than the similar distribution than the ID Case 1 as this case only had an

error of 36.4%.

Case 2, shown in Figure 3-5, demonstrates the effects of a distribution with a large

range and a small density. The FGF matches the EGF, but since the EGF does not
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ID Model L [km] p [km'] D. [km2 /s] Dest [km 2 /s] 10 [kin] 1est [kn] Percent Error
Case 1 14 1 3 14.45 1 4.82 381.7%
Case 2 38 0.5 3 3.41 1 1.14 13.7%
Case 3 38 1 3 3.09 1 1.03 3.0%

Table 4.1: The parameters and error of the estimated diffusion coefficient for each
idealized ID case using a time step of 0.005 seconds and a maximum time of 400
seconds.

3D Model L [kin] p [kn-3] D. [km2/s] Dest [km2/s] 10 [km] 1est [kin] Percent Error
Case 1 3 1 1 1.36 1 1.36 36.34%
Case 2 12 0.5 1 0.83 1 0.83 16.60%
Case 3 12 1 1 1.01 1 1.01 1.16%

Table 4.2: The parameters and error of the estimated diffusion coefficient for each
idealized 3D case using a time step of 0.005 seconds and a maximum time of 400
seconds.

match the GF well, there is error in the fit. The error for this case is 16.6%. This

is a relatively small error in general and it gives a reasonable approximation of the

initial diffusion coefficient. However, given the choice of data, the third case would

be a much better option.

Case 3 had a very effective distribution of sources that resulted in a very good

approximation of the estimated diffusion coefficient, as seen in Figure 3-6. For this

distribution, the estimated diffusion coefficient between the two receivers could be

extracted using seismic interferometry. Ideally, this is the type of distribution that a

real dataset would have in order to accurately extract the diffusion coefficient. This

third case was also run with the receivers at the top of the three dimensional grid of

sources instead of in the center of the grid. These two cases did not differ significantly

from each other, however this is likely due to the fact that the plane containing the

two receivers still had many sources in it.

These results demonstrate that, like the one dimensional model, the three dimen-

sional model needs both a high density and a large extent in order to accurately

approximate the EGF.
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Realistic Time Time D, Dest 1, lest Percent
Model Min [s] Max [s] [km2 /s] [km2 /s] [km] [km] Error
FGF 0 400 1 2.49 1 2.49 149%
FGFeft 0.2 1.9 1 3.35 1 3.35 235%
FGFright 2.5 15 1 2.28 1 2.28 128%

Table 4.3: The parameters and error of the estimated diffusion coefficient for the

realistic case using a time step of 0.005 and a maximum time of 400 seconds.

4.3 Realistic Model

The EGF in Figure 3-7 is not an accurate model of the GF. The FGF matches the

EGF at both its peak and edges of this graph. Fitting the left and right sides of

the peak of the EGF instead of the entire curve do not give a better value for the

diffusion coefficient. The fit of the left side of the peak from 0.2 to 1.9 seconds is

shown in Figure 4-7 and has an estimated diffusion coefficient of 3.35 km2 /s and an

error of 235%. The fit for the right side in Figure 4-8 for 2.5 to 15 seconds is shown

in Figure 4-8 and has an estimated diffusion coefficient of 2.28 km2 /s and an error

of 128%. The estimated diffusion coefficient for the full FGF curve was 2.49 km2 /s,

so fitting the individual sides does not allow an estimation of the diffusion coefficient

to be significantly closer to 1 km2 /s, the value of the diffusion coefficient for the GF.

These results are summarized in Table 4.3.

The potential to accurately fit a Green's function to part of the EGF could help

extract a more accurate estimated diffusion coefficient from a less than ideal dataset

in terms of either its density or its extent. The EGF from a dataset that had a

dense number of events relatively close to the receivers is reasonably well fit by the

diffusion model for the left side of the peak. The EGF from a dataset that had

less densely spaced sources that extended over a greater distance appears to give an

accurate estimate of the diffusion coefficient for the right side of the peak of the curve.

Targeting the time window to be fit in this manner depending on the dataset could

lead to more accurate estimations of the diffusion coefficient in cases where the type

of data limits the ability of seismic interferometry to extract the estimated diffusion

coefficient from the data.
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Figure 4-7: The FGF for the left side of the EGF for realistic data. The estimated
diffusion coefficient of the FGF is 3.35 km2/s, an error of 235%.

The difference between the diffusion coefficients for the GF and the FGF is very

large at 149%. Using Equation 1.3 and holding the velocity and the number of

dimensions constant, the relative mean free path for each value can be calculated. A

diffusion coefficient of 2.49 km 2 /s is equal to a mean free path of 2.49 km. A diffusion

coefficient of 1 km 2/s is equal to a mean free path of 1 km. the mean free path is the

average distance between the points at which the signal is scattered. Assuming that

these scattering event represent fractures, the GF is predicting that the fractures are

1 km apart and the approximation is predicting that the fractures are 2.49 km apart,

an error of 149%.

The range of measured values for go ranges from 1-6 km-1 in the lower mantel to

10-3 in the lithosphere to 1 km-1 in the case of a volcano.[6, p. 7] The lithosphere
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Figure 4-8: The FGF of the right side of the EGF for realistic data.The estimated
diffusion coefficient of the FGF is 2.28 km2 /s, an error of 128%.

extends as much as 100 km into the Earth's crust and the mantle is even deeper.[6,

p. 1] This is well below the depth of the events from the microseismic dataset in the

geothermal field used for this study where the deepest event was at 15 kilometers

with most events much shallower. As a result of this depth and relative scale of

scattering, these measurements are generally taken at lower frequencies than the

frequencies that are important in the geothermal field. The lower frequencies have

a longer wavelength which is suitable for resolving images on a larger scale. Higher

frequencies have shorter wavelengths and are suitable for resolving images on a finer

scale. This higher frequency measurement will detect more scattering events. As a

result, the mean free path would be much smaller than it currently is. This would

make the initial diffusion coefficient of the GF even smaller and move the GF even
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farther away from the FGF and the EGF.

The EGF and the GF with the diffusion coefficient that was examined in Section

3.2 are very different from one another. The approximate peak of the EGF leads the

peak of the GF by about three seconds. The GF or the EGF or both curves could be

responsible for the error. From the results of the idealized models, the approximation

should fit the value of the Green's function between the two receivers, given a source

distribution that is both dense and broad enough.

The GF could have the wrong diffusion coefficient. The diffusion coefficient was

calculated from Equation 1.3 in Section 2.3 from the values of c = 3 km/s, I = 1 kin,

and d = 3. If the true value of the velocity of the mean free path is larger, the diffusion

coefficient would also be larger. This would bring the exact curve in Figure 3-7 closer

to the approximate fit that was calculated from the actual data. The velocity of the

acoustic waves underground could be as high as 4-6 km/s rather than the 3 km/s that

was used for this paper. If the velocity is actually 6 km/s, then the initial diffusion

coefficient would be 2 km 2/s and the estimated diffusion coefficient would only have

an error of 49%.

A potentially more accurate approximation of the diffusion coefficient could be

obtained by using the multiple lapse-time window analysis (MLTWA). This method

uses the amplitude of the early part of the S-wave seismogram that is dominated by

the direct S-wave to determine the attenuation of the medium and the amplitude of

the coda of the S-wave to approximate the total scattering coefficient. [61 This method

is based on using information from real data to find the diffusion coefficient rather

than the roughly estimated value that was used for this paper, so the multi-window

method would likely give a more accurate result for the diffusion coefficient. The

more accurate estimation of the diffusion coefficient would likely move the GF closer

to the EGF.

The diffusion coefficient for the GF could also be calculated by using the cross

correlation method to find the diffusion coefficient between a source and a receiver.

However, this would likely be inaccurate for the same reason that obtaining the fitted

diffusion coefficient did not work well.
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This method of approximating the diffusion coefficient from microseismic events

has potential for application to the real world in the future after further research.The

model as it currently stands can give a very limited amount of information from

the approximated diffusion coefficient. The diffusion coefficient is not well estimated

with the dataset used for this paper, although better datasets may yield better results.

The strict source distribution requirements necessary to be able to derive the diffusion

coefficient from the distribution of events could make it difficult for this model to be

applied in the same manner as this paper. Further study could result in modifications

to this model that would make it able to handle more sparse datasets that more

accurately reflect a realistic dataset.

4.4 Future Work

The realistic model in this paper could be improved with better information. More

sources could be included in the model. The dataset that the source locations were

taken from included additional data that was not included in this study because

information on the which receivers were active during that time period were not

readily available. If this information could be found and included in the model, the

increased number and potentially wider distribution of the sources could make the

EGF more accurate.

Alternatively, the source distribution could be too biased. Equipartition of energy

in the source distribution is important for extracting an accurate diffusion coefficient

in models.[12] Given the high density of sources near the two receivers and especially

concentrated below the receivers, it might prove worthwhile to either select a certain

number of sources per area or weight the contributions of sources from different areas.

This could better approximate a random distribution of sources with an equipartition

of energy for the receivers.

A different dataset that has a source distribution that is more similar to the

source distribution of the third case for the three dimensional model could have more

accurate results. The first order difference between the sources that were used for

51



this paper and the sources for the third case of the three dimensional model was the

location of the receiver with respect to the sources. The three dimensional model had

receivers distributed equally both above and below the two receivers. The receivers

for the realistic model were centered much closer to the top of the source distribution.

This could account for at least some of the inaccuracy of the EGF.

The relationships between the source distribution and the approximation of the

Green's function was only examined qualitatively in this paper. Further work could be

focused on creating a quantitative description of the relationships between the source

distribution and their affect on the EGF. This would not be a straightforward problem

as there are likely several more variables that need to be taken into consideration

including angular location of the sources with respect to the receivers, the distribution

of sources between the two receivers, and the density and extent of the sources that

were examined in this paper. Such quantitative work could be used to determine

exactly what this model is calculating. The EGF could be calculated for different

initial diffusion coefficients in order to determine if there is a constant factor between

the initial diffusion coefficient and the estimated diffusion coefficient or if this method

always overestimates the estimated diffusion coefficient or if there is any relationship

at all. Determining the source of the artifacts and negating them could also make

this method significantly more reliable. This information could be used to make

the estimated diffusion coefficient approximate the initial diffusion coefficient more

accurately. This knowledge would help the geothermal industry be able to have

a better understanding of their fields, which would help improve production and

decrease costs. This would help make geothermal energy competitive with energy

derived from fossil fuels both on cost and volume.
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