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Abstract:

First we study intertwining sesquilinear forms on the

spaces of C -vectors of two representations of a Lie
group in a Banach space and a Hilbert space respectively.
Using regularity methods such forms are identified with
certain closed densely defined intertwining operators for
the representations. This gives new criteria for irredu-
cibility and equivalence of unitary representations. The
results are applied to study families of representations

having a common space of Cw-vectors, and the theory is
illustrated by some examples.

Secondly we introduce C" -systems of imprimitivity
for a unitary representation of a Lie group. The usual
projection valued measure is replaced by a measure whose
values are (possibly unbounded) positive operators. A

00
C -system of imprimitivity gives rise to an induced
representation, and we give a complete classification of
such systems. The result is a generalization of Mackey's
imprimitivity theorem, and the proof is based on the
regularity of a certain sesquilinear form on the space of

00
C -vectors for the representation.
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Introduction.

Let A denote the Schwartz space of rapidly decreasing

C00 functions on IR. Let (U(t)f)(x) = f(x+t) and

(V(t)f)(x) = exp(itx)ef(x) for f E L (R ) and t E R.

It is well known that the system {U(s),V(t) I s,t EJR} is

irreducible in L2 ( )R) and that the two unitary groups

leave g invariant. Using some distribution theory one

can prove the following result:

If (*,.) is a continuous sesquilinear form on 9

which is invariant under the groups:

(Cp,*) = P(U(t)(PU(t)*) = (Vt) Ov(t)*)

for all cp, * E 9, t EIR, then P has to be a multiple

of scalar product

p(c,*) = const . cp(x) (x)dx for cp, * E .

On the other hand, assuming that the scalar product

is essentially the only continuous invariant sesquilinear

form on 9, it is easy to show that the system

[U(s),V(t) I s, t E R} is irreducible in L ( R).

Now, the unitary groups U(-) and V(,) form

restrictions of a certain continuous unitary representation
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of the Heisenberg group [23, Ch. 2, 1] and 4 is exactly

the space of C vectors for this representation. The

theorem then has an interpretation as a result about the

irreducibility of the group representation.

In the following we shall adopt this viewpoint. It

turns out that the corresponding result holds for any

strongly continuous unitary representation of a Lie group

( 3, Theorem 3.1). In fact, we show that all the usual

irreducibility criteria for the representation in the

Hilbert space remain valid if the representation is

restricted to the (Fr~chet) space of C" vectors.

In [29, 3] Segal proved an analogous result for the

action of a quantum process on the space of smooth vectors

for the energy operator. The result of Theorem 3.1 was

conjectured by Segal [29] on the basis of the many

similarities between quantum field theory and the theory

of group representations.

The result of Theorem 3.1 is derived from much more

general results on sesquilinear forms established in 2.

Here we study pairs (V,U) of representations of a Lie

group. V is a representation in a Banach space and U

is a unitary representation in a Hilbert space. We give

a complete characterization of continuous sesquilinear

intertwining forms on the spaces of C"-vectors in terms
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of certain closed densely defined intertwining operators

of the representations. (A more detailed description is

given in the introduction of 2). This is done by means

of a regularity method which is familiar from the Hilbert

space theory of partial differential operators.

In 4 we study families of Banach space representa-

tions having a common space of Co vectors. In case the

family contains an irreducible unitary representation we

get some additional information about various types of

irreducibility and equivalence of all representations in

the family.

5 contains some examples. First we consider

various Banach space representations of the Heisenberg

group to illustrate the theory developed in 4. We

characterize the space of C"-vectors for the regular

representations of a Lie group G in LP(G). In this

connection we prove a "Sobolev inequality" ( 5, Lemma 5.1)

which is of some independent interest.

Using elliptic operators Blattner [2] proved that a

C -vector for an induced representation UL (of a Lie

group) is a continuous function in case the representation

L of the subgroup is finite dimensional.

In 5 we use our "Sobolev inequality" to give a

complete characterization of the space of Cw-vectors of
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an arbitrary induced representation. In particular we

prove that a Co-vector is actually an infinitely differ-

entiable function, and an analytic vector is an analytic

function. Also we establish the fact that point evalua-

tion always defines a continuous linear mapping on the

(Frechet) space of C -vectors. As a consequence we get

a general version of Blattner's intertwining number

theorem - applicable to the case where L is not

necessarily finite dimensional.

In 6 we introduce Coo-systems of imprimitivity for

a unitary representation U of a Lie group. Roughly

speaking, the conventional projection valued measure is

replaced by a "measure" whose values are (possibly un-

bounded) positive operators. Using C -theory we show

that such a system gives rise to an induced representation

L
U . Moreover a Cw-system of imprimitivity P for U

canonically determines a "renormalized" system P such

that the pair (U,P0 ) is equivalent to the restriction

of the induced pair (UL ,pL ) to a UL(G)-invariant sub-

space. Our methods are inspired by but different from

those of Bruhat [6].

A system of imprimitivity in the sense of Mackey [18]

naturally gives rise to a Co-system of imprimitivity, and

as a special case of the main theorem we get a new proof of

Mackey's imprimitivity theorem (for the case of Lie groups).
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1. General results on CC vectors.

In order to establish the notation it is convenient

to recall some results on representation theory [6], [13],

[22], [26].

Let G be a Lie group with Lie algebra and let

g -> V(g) be a strongly continuous representation of G

in a Banach space B. A vector x E B is called a Co

vector for V if the mapping g -+ V(g)x is Co from

G to B or equivalently if the function g -+ <V(g)x,f>

is Cm on G for each continuous linear functional

f E B*. The set of Co vectors is clearly a linear sub-

space of B which we will denote by D or D (V).

On D we have a representation v of defined

by

v(X)x = V(exp(tX))x for X E J , x E D

The mapping X -> v(X) is a representation of as a

Lie algebra of operators having D as a common invariant

dense domain, and v has a unique extension to a represen-

tation, also denoted by v, of the universal enveloping

algebra U00)

Let [X ,X2,...,Xd} be a basis for , and let

v (Xk) denote the infinitesimal generator of the
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one-parameter group t -+ V(exp(tXQ)).

characterized in the following way [13, Th. 1.1]

d CO
D = n nD ,)n

k=1 n=1 ~ (Xk;

where Dvk(X)n denotes the domain of vl(Xk)n.

particular D coincides with "the maximal domain for

V" employed by Segal [27], [28].

Following Goodman [13] we topologize D.

following family of semi-norms p

lv(Xi
liik~d '1

... Xi )x!l
n

for n = 0,1,2,...

Then D.

(with the interpretation pO(x) = ixI).

is a Frechet space [13], and for g E G the

restriction V (g) of V(g) to D. is a continuous

linear operator on D . Using the relation

g-exp(tX).g~ = exp(Ad(g)-tX) this can be seen directly,

but it is also an immediate consequence of the closed

graph theorem.

In 2 we shall find it convenient to use a different

description of the topology on D . The following result

is due to Goodman (unpublished).

Lemma 1.1: Let L Ejk( 1) be an elliptic element and

Then D can be

In

by the

Pn(X) =
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let A = v(L) (cf. Corollary 1.1). Then

00

D = 0 D
~ n=O An

Furthermore, the topology on D. defined by the semi-

norms x - f1Anx!I n = 0,1,2,... is identical with the

topology defined by the family {pn I n = 0,1,...}.

Proof: The non-trivial inclusion follows from the

regularity theorem for elliptic differential operators on

the group. The proof is similar to the proof of Theorem

1.1 in [13]. To prove the last part we note that each

semi-norm fl-lnf is continuous in the topology defined by

the family {pn}, and since D. is a Fr4chet space in

both topologies they must coincide (the closed graph

theorem). Q.E.D.

Langlands [17] proved that A = v(L) is the

infinitesimal generator of a strongly continuous semi

group in B (if L is suitably normalized).

need this result only for the elliptic element

We shall

d 2A = Xk, and we remark that for uniformly bounded
k=l

representations there is a much simpler proof of this

case [22].

Proposition 1.1: For each x E D ,

g - V (g)x is C from G to D.

the mapping
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Proof: Let x E D

where a = (ala2''''

and let L = X

.'ad) is a set

. X E ()

of non-negative

integers. It suffices to show that the mapping

g + v(L)V(g)x from G to B is C, in a neighborhood

of the identity e

exp(tdXd) for t =

mapping g(t) -> t

in G. Let g(t) = exp(t1X1 )

(tlt2,. .. td)
dE IR Then the

is an analytic coordinate system in a

neighborhood of e in G [14, Ch. II]. Therefore the

mapping (s,t) -+ V(g(s).g(t))x

in a neighborhood

v(L)V(g(t))x =

of (0,0),

(4)

this completes the proof.

The following result

2.5 in [29].

Proposition 1.2:

from IR2d to B is C,

but since

d
V(g(s) .g(t))x1s=00.* (a )

is a generalization of Lemma

Let D be any dense linear subspace of

B which is contained in D and invariant under the

E G. Then D is dense in D (i.e.

D -topology).

Since each VC, (g) is continuous

assume that D is a closed subspace of D , and hence

that D is complete in the D -topology. Then for

Proof:

in the

on D0 we can
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x E D and cp E C (G) we have C p(g)V(g)x dg E D

Ch. III, 3], and we want to show that each vector in

is a limit of a sequence of vectors

For x E B

V(cp)x =

of this form.

and cp E C (G) we use the notation

f cP(g)V(g)x dg.

Haar measure on G,

(dg denotes some left-invariant

and Cw(G) denotes the space of all

infinitely differentiable functions of compact support on

G).

If x E B there exists a sequence {x n)

such that x x in B. Then for

v(L)V(cp)xn = V(Lp)xn -+ V(Lp)x = v(L)V(cp)x

in B, but this means exactly that V(cp)xn -+ V(cp)x

the D -topology. Since D is closed we get V(cp)x E D

for all x E B and cp E Cw(G).

Now let x E D . Each v(L) is a continuous

operator, on D , so

v(L)V(cp)x = j cp(g)v(L)V(g)x dg

Therefore, if with 9n 0, f cpn(g)dg =

[26], we have

DM

[5'

in D

L E IA( ) we have

in

linear

1{cpn} C "(G)

and supp cP



v(L)V(cpn)x cp(g)v(L)V(g)x dg -+ v(L)V(e)x

in B for all L E (jC ). Since we always assume

V(e) = 1 this shows that V(cpn)x -+ x in D .

Corollary 1.1: Let D be a dense subspace of B which

is contained in D and invariant under the V(g),

g E G. Then for each L E Q(c ), v(L) has a closure

v(L) in B and v(L) = v(L)I .

A
Proof: Let V denote the contragredient representation

of V is the sense of Bruhat [6, p. 113], the correspon-

A
ding infinitisimal representation is denoted by V.

A
For x E D (V) and f E D (V) we have

A
Kv(L)x,f> = <x,V(L*)f> for all L E q(q),

where L-> L* is the usual *-operation in Q(9}).

Hence v(L)* D V(L*), and since D (v) is w*-dense in

B* [6] it follows that v(L) has a closure. The last

part of the statement is immediate from Proposition 1.2

since v(L) is continuous on D.. Q.E.D.

This result is a generalization of Theorem 1 in [28].

Remark: Proposition 1.2 has a natural analogue in case

- 14
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t -> V(t) is a strongly continuous semi group in a Banach

space. A simple modification of the proof gives the

following useful result (which is well known in the case

of a one-parameter unitary group in a Hilbert space.)

Corollary 1.2: Let t - V(t) be a strongly continuous

semi group in a Banach space B and let A be the

infinitesimal generator. Let D be a dense subspace of

B which is contained in D n (the domain of An) for

some n EIN and such that V(t)D C D for t E (Oo).

Then D is a core for A n i.e.

An = An

Proof: D is a Banach space in the graph norm and D
A

is dense in this space. Q.E.D.

Remark: Here (and several times in the following) we

implicitely made use of the fact that An is again a

closed densely defined operator. This is known to be true

for every closed densely defined linear operator (in a

Banach space) with a non-void resolvent set.

p. 602 and p. 648 of [11]).

(See e.g.

Now again let V be a continuous representation of
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G in a Banach space B.

A vector x E B is called an analytic vector for V

if the mapping g -+ V(g)x is analytic on G or

equivalently if the function g -+ <V(g)x,f> is analytic

on G for each f E B*. The subspace of analytic vectors

is clearly contained in D , and Nelson [21, Lemma 7.1]

showed that a C" vector x is analytic for V iff

0 sn

E - Pn(x)<+ for some s > 0.
n=O

In 3 we shall need the following result [13, Prop. 2.2].

Lemma 1.2: Let x be an analytic vector for V. Then

for some s > 0

V(exp(tXk))x E T v(Xk)x for Jt| < s, k = 1,2,...,d,
n=0

and the series converges absolutely in D.

Finally we shall need the fact that the set of analytic

vectors for V is dense in B [21].
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2. Sesquilinear Forms.

In this section we consider a continuous unitary

representation U of a Lie group G in a Hilbert space

H. The corresponding infinitesimal representation of

q(c ) on D(U) is denoted by u(-). Now let V be a

continuous representation of G in a Banach space B

and let B(-,-) be a (separately) continuous sesquilinear

form on D (V)xD (U), which is group invariant:

(V(g)x,U(g)y) = p(x,y) for all

(x,y) E DJ(V)xD.(U), g E G

The importance of the study of such intertwining forms was

established by Bruhat [6], and in the present section we

shall study the structure of p from a different point of

view. As observed by Bruhat there exists a unique

continuous linear mapping T : D (V) -+ D (U)* (the anti-

dual) such that P(x,y) = <Tx,y>, and we have

TV (g) = U (-g)*T for all g E G. (This is true for any

pair of representations in much more general spaces).

Now, because H is a Hilbert space we have natural

injections
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D (U) C H C D((U)*,

and it is of interest to know when T actually maps

D (V) into H.

We prove that this is always the case and in fact

T maps D,(V) into D (U) continuously. As the main

result we establish a 1-1 correspondance between group

invariant sesquilinear forms P and certain closed densely

defined intertwining operators from B to H. The method

is based on regularity properties of the resolvent of the

"elliptic" operator u(A) - a technique which is well

known in the theory of partial differential operators.

First we give a method of producing sesquilinear forms

of this type.

Proposition 2.1: Let V and V' be continuous represen-

tations of a Lie group G in Banach spaces B and B?

respectively. Let T be a closable linear operator from

B to B' such that

1) D ) D (V)

2) TV(g) D V'(g)T for all g E G.

Then T maps D(V) into D (V') continuously.

Proof: Since the closure of T also satisfies 1) and 2)



- 19 -

we may assume T is closed. If we know T maps D.(V)

into D (V') the closed graph theorem shows that T is

automatically continuous in the Frschet topologies of

these spaces. In any event we can consider the restric-

tion T : D (V) -+ B' which by the same argument is a

continuous operator from the Frechet space D (V) to the

Banach space B'. Then for x E D (V) the mapping

g -> T V.(g)x is C0 from G to B' by Proposition 1.1.

On the other hand V'(g)T x = T V (g)x, so T x is a

C -vector for V'. Q.E.D.

In case V1 is a unitary representation in a

Hilbert space B' we see that

p(x,y) = <Tx,y>

defines a continuous sesquilinear intertwining form on

D (V)xD (V').

Proposition 2.2: Let V and VI be as in Proposition

2.1, and suppose S is a continuous linear mapping of

D (V) into D (V') such that SV (g) = V'(g)S for all

g E G. Then S is closable.

Proof: In order to see that the closure of the graph of

S in B X B' is the graph of a linear operator we
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assume [xn c D (V), xn +O in B and Sxn-+y in

Bt. Then we have to show y = 0. For each cp E C (G)

we have (cf. proof of Prop. 1.2) V(cp)xn - 0 in

D0 (V) so SV(cp)xn = V '(cp)Sxn - 0 in D (V'). Hence

V?(cp)y = 0 for all cp E C (G), so y = 0. Q.E.D.

This observation could be used to give a more self-

contained proof of the following theorem. On the other

hand, the proof presented seems to give more detailed

information about the structure of T.

Now let U be a continuous unitary representation

of G in a Hilbert space H and V a continuous

representation of G in a Banach space B.

Theorem 2.1: Let p(-,-) be a continuous sesquilinear

form on D (V)xD (U) which is G-invariant:

p(V(g)x,U(g)y) = P(x,y) for all

(x,y) E D (V) x D (U), g E G

Then there exists a closed linear operator T from B

to H with D D D (V) and such that

1) T maps D (V) into D(U) continuously



2) P(x,y) = <Tx,y> for all (x,y) E D (V) x D (U)

3) TV(g) = U(g)T for all g E G.

If T is required to be the closure of its restriction

to D (V), T is unique.

Proof: Let (Xi,...,Xd} be a basis for the Lie algebra
d 2

01 and let A = Z X . Then the operators u(A) and
k=1

v(A) are infinitesimal generators of strongly continuous

semigroups in H and B respectively. Actually we know

that u(A) is a self adjoint operator in H [22], and

u(A) < 0. Since the spectrum of an infinitesimal

generator is contained in a left half-plane we can choose

a real number X > 0 such that the operator

C = v(XI-A) = XI - v(A)

has a bounded inverse in B.

This has the advantage that x -+ 11Cnxl is a norm on

D(V) for n = 0,1,2,..., and we have

Cll < IIC"1flflCxl < IC~1i2 flC2x l < ... for all x E D (V).

By Lemma 1.1 this family defines the topology on D (V).

We note that D n is a Banach space in the norm

xfn -=Cnx1l and by Corollary 1.2. D (V) is dense in

this space. The operator

A = u(xI-A) = xI-(6)

is self adjoint and A > XI. We note that D n is a
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Hilbert space in the scalar product

<xjy>n = <Anx,Any>, x, y E D n'

and D.(U) is dense in this space. (This is also clear

from spectral theory).

A has a bounded inverse (since X > 0) and the

norms y + !IAn Yl n = 0,1,2,... define the topology on

D (U).

Since ( is separately continuous it is

automatically continuous because we work with Frechet

spaces (see e.g. [12, p. 17] or [25, p. 88]). Hence for

some integers m and n

IP(x,y)I < const. !jCmxl -lAnyl

for all (x,y) E D (V) x D (U). By the properties of the

norms we can take m = n.

It follows that there exists a unique continuous

linear operator S from the Banach space (D n'f'!n

into the Hilbert space (D n'l.9 n) such that
A

P(xy) = KSxy>n

for all (x,y) E DO(V) x D (U). This means

P(x,y) = <A nSx,A ny>,

and we use the same notation for S as an operator from

B to H (S is then a possibly unbounded operator with

D S= D A)
- o ~An
Now we show that S has a "nice" restriction to
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D (V). For (x,y) E D (V) X D (U) and X E C1 the mapping

t - P(V(exp(tX))x,y) = (x,U(exp(-tX))y)

is a Cm function on hR (by Proposition 1.1). By

differentiation and use of the invariance of p(.,.) we get

P(Cmx,y) = P(x,Amy) for m = 1,2,3,...

For m = n this gives

SCnx,A 2ny> = <AnSx,A 2ny>

where we have used the fact that A is symmetric. (This

is precisely the step where the unitarity of U comes in).

Since A has a bounded inverse it is obvious that A

maps D (U) onto itself, and because this space is dense

in H we get

SC nx AnSx for x E D (V).

Since Cnx E D (V) the left hand side of this equation is

an element in D A, hence Sx E DA 2n whenever x E D (V).
An A

Repeating the argument we find that S maps D (V)

into D(U) = f Dn
n=1 A

By the continuity of S in the !lefln-norms we have

x AnSxfl K const. ,lCnxl for x E D (V)

Because C has a bounded inverse, C maps D (V) onto

itself, hence it follows that S has a unique extension

to a continuous linear operator, also denoted by S, of

B into H.
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2n
Let T0 = A S

D (V)
. Since S is continuous the

2n
operator A S is closed, so T has a closure T. It

is easily checked that T has the desired properties.

Q.E.D.

Corollary 2.1: The operator T of Theorem 2.1 can be

chosen to have the form T = A nS, where S is a bounded

linear mapping of B into H which maps D (V) into

D (U) continuously.

If U = V we can get more information about T. We

state the result for the case p is Hermitian.

Corollary 2.2: Let U be a continuous unitary represen-

tation of G in a Hilbert space H and let P be a

continuous Hermitian sesquilinear form on D which is

invariant under the U(g), g E G. Then there exists a

unique self adjoint operator T in H such that

P(x,y) = <Tx,y> for all x, y E D .

This operator has the following properties:

i) T leaves D invariant, and the restriction T |

is a continuous linear operator on D

ii) T is essentially self adjoint on D

iii) TU(g) = U(g)T for all g E G.

Proof: Even if P is not Hermitian we can get a limit
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on the possibilities of T. Since S is bounded (cf.

proof of theorem 2.1) and SA n c A 2nS we get SA C AS

(because A is a function of A 2n). Using the fact that

A2n is essentially self adjoint on D (clear from

spectral theory) a standard calculation shows

(SA2 n) = T c A 2 nS

In case p is Hermitian it follows from the construction

of S that S is self adjoint, and because S commutes

with A we get that SA2n is essentially self adjoint.

Therefore we must have

(SA n) = T = A n

so T is essentially self adjoint on D.

If T is any self adjoint operator in H such that

D(xy) = <T 1x,y> for all x, y E D we have T C T .

It follows that T c T and hence that T = T. QQ.E.D.
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3. Irreducibility and equivalence.

Recall that two representations V and U are

called weakly equivalent (in the sense of Naimark) [20]

in case they have a closed densely defined injective

"intertwining operator" T with a dense range. This

notion is unsatisfactory in general, and one could try

to restrict it by requiring T to have D (V) in its

domain. By the results of 2 (Prop. 2.1, 2.2) this makes

the relation transitive, but apparently it loses symmetry.

(Of course we could furthermore require T to have D (U)

in its range. Then V and U would be equivalent if and

only if V and U are equivalent).

As we have seen in 2, a representation V in a

Banach space is "equivalent to" a unitary representation

U in a Hilbert space if and only if there exists a non-

degenerate continuous sesquilinear intertwining form on

DW(V) x D.(U). This notion seems very reasonable for

certain types of representations. On the other hand it

is not strong enough to identify certain representations

of the Heisenberg group which ought to be identified.

Therefore we shall not discuss the problem any further.

Now we apply Theorem 2.1 to prove some results on

irreducibility of a unitary representation.

Let g -> U(g) be a strongly continuous unitary



- 27

representa

We recall

any one of

H / {0})

i) There

under

ii) If T

that

some

iii) Each

i.e.

tion

that

the

of a Lie group G in a Hilbert space H.

U is called irreducible if it satisfies

following equivalent conditions (suppose

is no closed subspace of H which is invariant

the U(g), g E G, other than (0) and H.

is a continuous linear operator on H such

TU(g) = U(g)T for g E G, then T = X-1 for

X E C.

non-zero vector x in H is cyclic for U

span (U(g)x g E G} is dense in H.

We will not be concerned with the notion of algebraic

irreducibility (there is no invariant subspace of H

other than (01 and H) for the following reason. If U

is algebraically irreducible we have D (U) = H and in

particular, the one-parameter groups t -+ U(exp(tXk)) are

uniformly continuous. Then it follows that g -+ U(g) is

uniformly continuous, and if G is a connected Lie group

this implies, that H is finite-dimensional [30].

The following results show that all the criteria for

irreducibility of U remain valid for the restriction

U of U to D.

Theorem 3.1: Let G be a Lie group and let g -+ U(g) be



- 28

a continuous unitary representation of G in a Hilbert

space H. Then the following statements are equivalent.

1) U is irreducible in H

2) There is no closed invariant subspace of D

than (0} and D.

other

Each non-zero vector x in D. is cyclic for U 00
If T is a continuous linear operator on D,

that TU,(g) = U (g)T for all g E G,

such

then

T = Xl for some X E C.

5) If P(-,.-) is a continuous invariant sesquilinear

form on D, then P(x,y) = X*<x,y> for all

x, y E D , and some X E C.

Remark: It follows from the proof that conditions 1), 2),

and 3) are equivalent if U is any strongly continuous

representation in a Banach space. This fact has been

proved earlier by Bruhat [6, Proposition 2.6] in the case

where G is generated by a compact neighborhood of e

(and even for more general representations.) In this case

our topology on D coincides with the topology used by

Bruhat.

Proof: 1) => 2): Let D be a closed invariant subspace

of D
00

and suppose D contains a non-zero vector x.

Since x is cyclic for U, D is dense in H, and by

3)

4)
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Proposition 1.2 D = D .

2) => 3): If x E D. is any non-zero vector,

D = span {u.(g)x I g E G} is a closed non-zero invariant

subspace of D . Hence D = D.
.- o--co

3) => 1): Let K C H be a closed invariant subspace

containing a non-zero vector x. Choose p E C*(G) such

that y = U(p)x / 0. Then the subspace span (U(g)y I g E G}

is contained in K and dense in D . Since D is dense
- -co-o

in H we get K = H.

1) => 5): Let B(.,-) be a continuous invariant

sesquilinear form on D . By Theorem 2.1 there exists a

closed linear operator T in H such that

(x,y) = <Tx,y> and U(g)T = TU(g) for g E G. Let

T = VITI be the polar decomposition of T. By uniqueness

of this decomposition V and the spectral projections of

ITI likewise commute with all the U(g), g E G. Hence

T = Xl for some X E C, and P(x,y) = X<x,y> for all

x, y E D .

5) => 1): Let T be a continuous linear operator in

H and suppose TU(g) = U(g)T for g E G. Then

P(x,y) = KTx,y> is an invariant continuous sesquilinear

form on D . It follows that T = Xl for some X E C.

The same argument shows the implication: 5) => 4).

4) => 5): Let 3(.,-) be a continuous invariant
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sesquilinear form on Dw. By Theorem 2.1

P(x,y) = KTx,y> for some continuous linear operator

and T commutes with the U (g),

Therefore P(x,y) = X<x,y> for some X E C.

Corollary 3.1: If G is a connected Lie group the

ing statements are equivalent:

a) U is irreducible

b) If T is a continuous linear operator on D

that Tu(Xk) = u(Xk)T

T = Xl for some

for k = 1,2,...,d,

X E C.

Proof:

result

This follows from Theorem 3.1 and the

Proposition 3.1:

following

Let G be a connected Lie group and let

V be a continuous representation of G in a Banach space

Let T be a continuous linear operator on D (V) such

that Tv(Xk) = v(Xk)T for

V(g)T = TV(g) for all g

k = 1,2,...,d. Then

E G.

Proof: Let x be an analytic vector for

V(t) = V(exp(tXk))

V and let

for t E]R. By Lemma 1.2

oo n
V(t)x= t tn

nTn=O
v(Xk)nx for Itt < to (for some

and the series converges in D . Since T is continuous

we have

on D ,I

T

g E G.

follow-

such

then

B.

to > 0)
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N on t
TV(t)x = lim E n v(Xk nTX for It| < toN->o 0

In particular the series t (kn Tx converges in Bn T v(XQ xcnegsi

and from the Taylor expansion of V(t) it is clear that

the limit must be V(t)Tx. Hence V(t)Tx = TV(t)x for

It| < to.

Let I = (t EJR | V(t)Tx = TV(t)x} and let p0 E I.

Then V(p )x is again an analytic vector, so (for some

e > 0) V(t)TV(p0 )x = TV(t)V(p0 )x for It| < e. This

shows that I is open and since I is also closed we

have I =1R.

By Proposition 1.2 the set of analytic vectors is

dense in D , so TV(t)x = V(t)Tx for all t E]R and

x E D . Using the coordinate system g(t) -+ t for the

proof of Proposition 1.1 we get TV(g)x = V(g)Tx for all

x E D and all g in a neighborhood of e in G. Since

G is generated by any such neighborhood this relation

holds for all g in G. Q.E.D.

In particular we get the following (well known)

result

Corollary 3.2: Let G be a connected Lie group and let

g -> V(g) be a continuous representation in a Banach space

B. For each element Z in the center of 1( q) we have

v(Z)V(g) = V(g)v(Z) for all g E G.
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4. Some special Banach space representations.

In this section we study families of Banach space

representations having a common space of C* vectors.

If the family contains an irreducible unitary represen-

tation, the results in 2 give some additional information

about irreducibility of all representations in the family.

Theorem 4.1: Let g -> V(g) be a continuous representa-

tion of a Lie group G in a Banach space B. Let

-I' be a continuous norm on D(V) (i.e. in the D --4 V ( -00

topology) and suppose there exists a non-negative real

valued function c(-) on G which is bounded on some

neighborhood of e E G and such that

~V(g)xl' < c(g)lxl' for all g E G, x E D
00 t CD _-C0

Let B' denote the completion of D in the norm

and let V'(g) be the extension to B' of V (g) for

g E G. Then g-+ V'(g) is a continuous representation of

G in B', and D (V') D D (V).

Proof: For each g E G, V (g) has a unique extension to

a continuous linear operator V'(g) on the Banach space

B', and !1V'(g)l' < c(g) for g E G. In particular,

lV'(g)fl' < const. for all g in a neighborhood of e in

G. It is easily seen that V' has the group property

V'(g g2 ( 1 2), so in order to prove the
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continuity it suffices to show that the mapping

g > V'(g)x is continuous at e E G for each x E D .

By the continuity of 1 there exists a k > 0

such that (for some n > 0)

n
xl' < k pm(x) for all x E D .

m=0

Here pm denotes the semi-norm determined by V as

defined in 1. For each x E D
-03

V1(g)x = V (g)x,

the continuity is clear from Proposition 1.1. In fact

the mapping g -> V'(g)x is C, from G to B1. There-

fore D.(V) 2 D., and if v1 denotes the infinitesimal

representation on D (V') it is easily seen that

v'(L)x = v(L)x for x E D (V) and L E f1()).

Corollary 4.1: Let V be an irreducible representation,

and let 1.11' be a norm on D. which satisfies the

hypothesis of Theorem 4.1. Suppose that the topology on

D defined by the semi-norms x -+ lv(L)x1l', L E U(1)

is equivalent to the original one. Then VI is an

irreducible representation in B' and D (V') = Dp0 (V).

Proof: The original topology on D. is defined by the

semi-norms x +. 1v(L)xl, L E 1(O1). In the proof of

Theorem 4.1 we noticed that v(L)x = v'(L)x for x E D ,

hence it follows that D

so

is a closed subspace of
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D (V'). On the other hand Proposition 1.2 shows that D

is dense in Do(VI), so they must coincide. Since V is

irreducible it follows from Theorem 3.1 (see the remark

after the theorem) that VI is irreducible. Q.E.D.

Now we recall some definitions. Let V and V2 be

strongly continuous representations of G in Banach

spaces B and B2 respectively. A (separately) conti-

nuous sesquilinear form p on B X B is called an

intertwining form for V and V2  if

P(V1 (g)x, V2 (g)y) (xy) for all (x,y)EB x B2, g E G.

A continuous linear mapping T of B into B is

called an intertwining operator for V and V2  if

TV (g) = V2 (g)T for all g E G.

Let g -+ U(g) be a continuous irreducible unitary

representation of G in a Hilbert space H. Let -
an be 1w

and -12 be two (not necessarily distinct) norms on

D (U) each of which satisfies the conditions in Corollary

4.1. Let V and V2  denote the corresponding irreducible

representations in B and B, respectively. With this

notation we have the following result:

Corollary 4.2:

a) The vector space of intertwining sesquilinear forms for

V and V2 is at most one dimensional.

b) If V1 and V2 has a non-zero intertwining operator
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T, then B C B and there exists a X / 0 such that

Tx = Xx for all x E B .

Proof: Let P be an intertwining sesquilinear form for

V and V2 .
Then the restriction of P to D

continuous and it is invariant under the U (g), g E G.

By Theorem 3.1

p(x,y) = X<x,y> for all x, y E D .

Since p is uniquely determined by its values on D

this proves a).

Suppose T : B B, is an intertwining operator

lTx2 K c x for all x E B"9- < II' -1l

by Proposition 2.1 T leaves Do

restriction of T to D is a c

Then

invariant, and the

ontinuous linear operator

on this space. By Theorem 3.1 there exists a k E C such

that Tx = Xx for x E D . Hence IXI !Ix!! 2 K clxl on

D , and if T / 0 we have X / 0.

Therefore B 1 C12 and the inclusion map is continuous.

Clearly Tx = Xx for x E B

Note that if T maps B onto B2 the spaces

coincide and the two norms are equivalent.

is

for V 1 and V 2 .
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5. Examples.

It is known that many of the spaces used in the

theory of partial differential operators have a natural

connection with group representations. As an illustration

of the theory in 4 we choose some of these spaces as

examples.

Example 1: Let G be the Heisenberg group, i.e. the group

of all real 3 x 3-matrices of the form

(1 a c

g =0 1 b

0 0 1)

The Lie algebra is generated by elements X, Y and Z

satisfying the commutation relations

[X,Y] = Z, [XZ] = [YZ] = 0.

The standard representation (or Schrodinger representation)

of G is realized in L (IR) in the following way:

(U(g)f)(x) = eic ibxf(x+a), f E L2 (IR).

Using Goodman's theorem (cf. 1) it is easily seen that

the space of C vectors for the representation g -> U(g)

is exactly the Schwartz space 9. On 9 the infinitesimal

representation u is given by

u(X) iP = d , u(Y) iQ = ix, u(Z) = il

where we have introduced the conventional operators P and

Q, and the topology on 9 can be defined by the semi-

norms
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n + nmI2, n,m = 0,1,2,...

The following discussion is easily modified to

include the case p = +co, but for simplicity we will

assume 1 < p < o.

It is well known that the L -norm 1.-l is
p

continuous on g, and using a Sobolev lemma it is

easily seen that the topology on g can be defined by

the semi-norms

cp +* TQnpmfl , n,m = 0,1,2,...

By Theorem 4.1 and Corollary 4.1 the representation

U in 9 has an extension to a strongly continuous

irreducible representation Vp in LP(E) and

DM(V ) = 1.

If 1 is a non-zero intertwining sesquilinear form

for V and V we get from Corollary 4.2 that
p q

P( ,f) = X-. cp(x)*(xdx for all cp, $ E 9.

This is possible if and only if 1 + 1.
p q

If T is an intertwining operator for V and V
p q

it follows from Corollary 4.2 that T = 0 or p = q in

which case T = Xl for some X E C.

So although the representations all have the same

space of C0 vectors they are far from being equivalent

in the classical sense. The example could be generalized

by introducing a tempered weight function in the definition
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of the L -norm. Instead of doing this we consider a

slightly different situation.

Let k be a tempered weight function on JR in the

sense of H*rmander [15, pp. 34-37], i.e. k is a positive

real function and there exist constants C and N such

that

k(x+y) < (l+CxI)N k(y) for x, y E]R.

For 1 < p < co we let Bp,k denote the space of all

tempered distributions f such that the Fourier trans-
A

formed f is a function and

f pV k (,f Ik(x)f(x) dx} < CO

Then Bp,k is a Banach space with the norm

-!pjk, and 9 is dense in this space. The norm

11pk is continuous on 9 and in fact the topology on

9 can be defined by the semi-norms:

e + Qngm9 pk, n,m = 0,1,2,...

For p E 9 we have !U (g)Clpk (pk

It follows from Theorem 4.1 and Corollary 4.1 that

the representation in 9 has an extension to a strongly

continuous irreducible representation V in Bp,k and

D (V) = S.

Again one can compare the different representations.

Properties of the spaces Bpqk can be found in [15].

The same results hold for all the different
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irreducible representations of G [23], and they remain

valid for any (finite) number of degrees of freedom. For

other examples of a similar nature see [10].

dExample 2: Let G =f d and let V denote the regular
p

representation of G in Lr(IR d 1 K p <

(V p(t)f)(x) = f(x+t), f E LP.

Then it is easily seen that

D (V) = {f E C(I Rd) D f E LP for all a) ;

here = (i ) ... ( ) and a = ) is
1 d

any set of non-negative integers.

For q > p 11*11 is a continuous norm on D (V p).
The representation given in Theorem 4.1 is just Vq, and

we have D (V ) c D (V ) and the inclusion map is
-__O p --- 0 q

continuous.

Again the spaces D (V ) are well known. For

details we refer to Schwartz [24, p. 199].

This example can be generalized to arbitrary Lie

groups. The description of D remains valid but the

analogy is complete only if G is unimodular.

(Proposition 5.1).

Let G be a Lie group and let 1 < p <o. We form

LP(G) for some right invariant Haar measure on G. The

(right-) regular representation V in LP(G) is
P
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defined by (V (g)f)(x) = f(x-g)
p C

Then 11V (g)fflp = ff ,

for g E G, f E LP(G).

and g -> V (g) is a strongly

continuous representation of G in LP(G).

Each X in 0 defines a left invariant differen-

tial operator X on G in the usual way

d
(Xf)(x) = Tt f(x-exp(tX))|t=0

if f is a differentiable function on

(Xl,

notation

G. Let

.Xd} be a basis in . W( use the multi-index

~V ~1
X =X 1

*Xd if = l'''''ad) is a

set of non negative integers. As usual

al = a 1 + a

function

equation:

on

+ . + ad. We let

G. Specifically, A

A denote the modular

is defined by the

G cp(g *x)dx =
G

g E G and cp E C (G).

space of continuous

(Here

functions with

C0 (G) denotes the

compact support).

Then we have the following Sobolev inequality.

Lemma 5.1:

such that

For 1 < p < o there exists

1O
K C a

a constant

l! !
E ~

for all differentiable functions f for which the right

hand side is finite.

for

cp(x)dx
G

C > 0
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Proof: Suppose we had the following inequality:

If(e)I < C- Z
- aI<d

xXj f fl

Then by left invariance of the operators

If(g)I < C 2 (V
IaI<d G

for all

X

|Xf(g.x)|pdx}l/P = A(g)

1

PC E
jaj<d

g E G.

Hence it suffices to study the situation in a neighbor-

hood of e in G.

Let (UCp) be a local coordinate system in a

neighborhood of e in G

(P(g) = (xl(g), . xd(g))

Using the notation f* = foc~'

d
(Xif)(g) = E (Xi

j=l

we have [14, p. 10]

x )(g)( f* )j) (~)iCP(g)

The vector fields X1,.. .,Xd} induce a basis

the tangent space at each point of

the matrix

g E U.

G. In particular,

is non-singular for

Now, define
d

Y. = E
: j=l

x j )*(x) ox

Then Y is an analytic vector fiel

each

is linearly independent at each point(Y 1,...,Y d}

in p(U). We

(Xf)* 1

have Y.f*
1

000 Yd f* fo:
d

so

r all a.

fli%1

E]Rd

in

on cp(U).

d, and the set

x

((Xixj)(g)l

(X f),
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Let x = zp(e) and let K c U be a compact set such

that p(K) = {y EJRd

r 'xf(g)IPdg =
K

where the density F

function

I Ix-yj < r

cpK) 'Y1

} for some r > 0.

SYd pf*(y)IF(y)dy,

is a positive non-vanishing

[14, Ch. X].

Therefore it suffices to prove the following

inequality:

If*(x)I < C Ed
|alid

{ I|Y l
CP(K)

. Ydf (y) IpF(y)dy}

By changing the constant C the function F can be

neglected,

Lemma 5.2:

Suppose Y

so the following lemma completes the proof.

Let V C]Rd_

, . . . ,Y d a r e

are linearly independent

be an open set and let x E V.

C vector fields

at each point of

on

V.

V which

Then for

and r > 0 with K(x,r) = ty I fx-yj < r} C V

there exists a constant

If(x)I

for all

Proof:

for all

< C-
IacId K(

C > 0 such that

r) Y .. Ydd f(y)IPdy}l/P
x,r)

f E Cd (v).

Let Y.
y

y E V.

d
7 a. (y) -

j=1 a

Let (b . (y)} = (a (y)l .

where det (a .(y)}

Then the b are Cm

functions on V

Then

C0

1/p

1 < p < o

/ 0

and
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d
E b. .(y)Y.

i:=1 j

Let f E Cd (V). Choose g E COO(V)
0

supp g C K(x,r) and such that g(y) = 1

hood of x. Then h= f-g

supp h C K(x,r), so

xl

f(x) = h(x) = 'r

in a neighbor-

E Cd(V) and

Xd

-00
h (y) dy

Therefore

If(x)| <
K(x,r) y 1 .' d

< C. E
- aJ<d (x, r)

... Ydf(y)|dy,

where C depends only on the behavior of derivatives

g and the b i,j = 1,2,.. .,d.

Then H*lder's inequality completes the proof.

Now we are ready to characterize the space of

vectors for the regular representation in LP(G).

of

Q.E.D.

C00

Proposition 5.1: Let

tion of G in LP(G)

V
p

denote the regular

for 1 < p < o.

representa-

Then

D (V ) = [f E C'(

and C (G) is dense in

G) I Xf

D (Vp).

E L (G)

If G is unimodular we have D (V )

and the inclusion map is continuous.

for all

C D (V )

=

with

h(y) Idy

for q > p

)d

y . ay-1 d



Proof: Since the proof of the first part is similar to

the proof of Theorem 5.1 (below) we omit the details.

The second part follows from Lemma 5.1 and the Riesz

convexity theorem [11].

Example 3: The space of smooth vectors of an induced

representation of a Lie group.

In [2] Blattner developed the basic theory of in-

duced representations of not necessarily separable

groups. The theory was applied to study the intertwining

number of two representations of a Lie group. Blattner's

methods are based on properties of the space of Coo

vectors of the induced representation, and in this section

we give a complete characterization of this space

(Theorem 5.1).

Since we use some definitions and results from

Blattner's paper, it is convenient to follow Blattner's

notation [2].

Let G be a Lie group and let H be a closed sub-

group. We choose some right invariant Haar measures on

G and H and we let A and 5 denote the respective

modular functions. Let M = G/H denote the right coset

space and let v be the projection of G onto M.

Suppose L is a continuous unitary representation

of H in a Hilbert space V, and let F* be the set of
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functions f

conditions:

i) f(.)

from G to V satisfying the following

is measurable

ii) f( 'x) = for E H and

x E G.

iii) ff(*)!l 2 is locally integrable

Each such function f defines a Radon measure u

M via the equation

1 f(x)! 2 y(x)dx =
G M

where p E C(G)

1/2
ifl = r(M)

identify functions in

and ( TC)(V(x)) =
H

and F = (f E F* I ffl < C0).

We set

If we

F which are equal locally almost

everywhere (l.a.e.) we get a Hilbert space

representation of G is defined in the following

way:

(U L(g)f)(x) = f(x-g) Lfor f E H

Let C (G,V) denote the space of infinitely

differentiable functions from G to V. Then we have

the following result:

Theorem 5.1:

= (f E C"(G,1) I Xf E HL for all a}

and X E I and suppose

on

H , and the

D (U)
.00
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( TQ) (p )dp (p)

Qp( x)d .

Proof : Let f E C' (GV)
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and Xf E H L. Then for

t

= ~ 0
Hence by H*lder's ineauality

t / 0

Xf(y-exp(sX) )ds

(suppose t > 0):

- Xf(y)l

y 2Xf(yeexp(sX))-Xf(y)l! ds.

If cp E C (G)0

G

< f
G

1-

we get

f(y-

t

0

' fXf(y-

By definition of the

t

t r0

exp(tX))-f(y)] - Xf(y)jcp(y)dy

Xf(y-exp(sX))-Xf(y)! dsp(y)dy

exp(sX))-Xf(y)!, cp(y)dy ds

norm in HL this gives

t [ UL(exp(tX))f-f] - Xf I

lUL )expsXXff2ds + 0 as t - 0,

since the integrand is a continuous function of s.

In other words, Xf is in the domain of the

infinitesimal generator

group t - U L(exp(tX))

Xf E HL for all

of the one parameter

and (X)f = Xf. If

a, it follows that f is

domain of all powers of the operators u1 (X),

Then by Goodman's theorem we have f E D

in the

X E .

and

u(D)f = Df for all D E q(q) (For D E U( 1) we

let D denote the corresponding left invariant

fEHL

1

T[f (y-exp(tX))-f (y)]

1 t

t ,0

U 1



4' -

differential operator on G).

In order to prove the other inclusion we introduce

the functions s(cp,v), cp E C (G) and v E V [2, p. 82]
0

defined as follows:

e (Cp, v) (x) = (x) 2 L( C )v dF ,
H

and we let D = span {e(cp,v) I cp E C (G), v E V}.
0_

Then D C D [2, Lemma 6] and clearly D is

invariant under the U L(g), g E G. On the other hand D

is dense in H [L [2, Lemma 2], so by Proposition 1.2 we

get that D is dense in D .

It is easy to see that e(zp,v) E C (G,V) for all

E C C (G) and v E V, so all functions in D are

infinitely differentiable. To complete the proof we need

the following result:

Lemma 5.3: There exists a constant C > 0 such that

ax1/2-f(x)ll < C, 7"~ f
~~ a|<d

for all x E G, f E D.

The proof will be given later.

Let f E D (U L). Then there exists a sequence

{f } C D such that for all D E Q(Ck):
ffn - u(D)fl + 0 as n +o.

It follows from the proof of Proposition 1 in [2] that

for each D E U( 1) there exists a subsequence { fnk



(depending on

Let S(G,lI_) denote Cw(GlI) as a topological vector

space (with the usual topology). By Lemma 5.3 (f n is a

Cauchy sequence in 3(G,ts), so there exists a unique

function

Df + Dfn

Then Df0

f 0 E 8(GI_) such that fn -> ;

uniformly on compact sets for all

= u(D)f 1.a. e., so we may assume

Hence f is infinitely differentiable and

for all

i.e.

D E

f =f
0

Df u u(D) f

D E JA().

Proof of Lemma 5.3: By the proof of Lemma 5.1

exists a

constant

compact neighborhood

CK > 0 such that:

K of e in G and a

ff(e)!! < C K

for all differentiable functions from G to V.

cp E C (G) such that

C = CK f1cPo K2

and

cp0 = 1 on

and cp = IlTcp
0 , 1 00 P

K. Taking

we have 0 < Tcp < 1

f (e)!l < C E
Ial<d

left invariance of

G Xf(Y)I,2cp(y)dy) /2
G

we get

f(x) < C z
|a I<d

= A(x)~ 2 C E { r.
Iac<d G

ljXaf(y) ,2 CP(-ly)dy}-1/2

Dfn k
-+ u(D)f 1.a.e.

there

Iaj<d
K2dy)l/2

K

Let

By the
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D) such that

1f Xf(x-,y)]II2cp(y)dy3 1/2
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If Xf E H fo

f (x) o(x)

r all a
1/2

<C
- a

with Ial

I<d

< d this gives

for all x E G.

Corollary 5.1: For all f E D(UL)

< C Z2
|a|<d

In particular, for each fixed

1Xafl

we have

for all

x E G, f -> f x

x E G.

) is

continuous linear mapping from

Corollary 5.2: If f is an analytic vector for

then f is an analytic function from G to V.

Proof: By Nelson's characterization of the analytic

vectors (cf. 1) there exists a constant C > 0

that

. . X
I n
f < Cn -n! for all n

Let K C G be any compact set. By Corollary 5.1 we

have (we can neglect 6

< const.sup
x EK

< const. CIa+PI Ia+ I 1
IP I<d

Therefore there exists a constant CK > 0

sup
xEK

1X%1(x)f l < CI lal

such that

for all a.

This completes the proof (see e.g. [1] or [21, Th. 2]).

Q.E.D.

Q.E.D.

D to V.

a

UL,

such

on K)

Ed
|@ I<d

1ISX~f1

for all

i (x )1/2f~xl
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Remark: The "converse" is not true. There exists an

analytic function f on JR such that f(n) E L2(IR)

for n = 0,1,2,..., but f is not an analytic vector

for the regular representation. (For example one can

show that the function F given in [16, p. 177] has

these properties).

Blattner's intertwining number theorem:

As an application of our Sobolev lemma we get a

version of Blattner's intertwining number theorem. We

have the following situation [2, Q5, Th. 3]:

For i = 1,2 H is a closed subgroup of G with

modular function 5. L. is a unitary representation of
L.

H. in a Hilbert space i, and U denotes the

corresponding induced representation of G. Let
L1  L2

( (U , U ) denote the space of intertwining operators

of UL and UL2 and let I(U ,UL2) = dim R(U ,U L2.

For each T E R (U Lu L2) we define a linear mapping

F from Cw(G) into as follows:T 0~G 1 k) flos

FT(cp)v = (T e(cp,v))(e) for v E V, and ep E Cw(G)

If f is any function on G and ( 1, 2 )E H 1X H2

we let

(p 1'2 f)(x) = 1f(1 x 2 for x E G.

For each relatively compact open set 0 C G we
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give Cw(o) the topology induced by the norm

la I<d
and we give Co (G) the corresponding

inductive limit topology.

Theorem 5.2: Let Ve, denote the subspace of maps

F E 4(C (G),4(Vl' 2)) such that

F(p
1'q2

P) = 
- i

for all ( l,2) E H X H. and all

the map T -> FTL LT
l(U lU ) int

L L
I(U A,U ) < di

Proof:

cp E C (G). Then

is a faithful linear map of

om

mn.

In particular we have

Blattner's proof applies word for word, using

the inequality from Corollary 5.1 instead of the elliptic

inequality used by Blattner.

)(2 ( 2~1 L 2 2 )F((9)L ( )

Q.E. D.

00g| ,
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6. Co-systems of imprimitivity.

In [18] Mackey introduced "systems of imprimitivity"

for unitary representations of locally compact groups,

and it is well known that Mackey's imprimitivity theorem

gives a rather complete analysis of certain important

types of group representations. Mackey proved the theorem

in the separable case using measure theoretic arguments,

and the theorem was later proved in general by Loomis

and Blattner [4].

In this section we introduce Cw-systems of imprimi-

tivity for unitary representations of Lie groups, and we

show that such a system gives rise to an induced represen-

tation. Roughly speaking the conventional projection

valued measure is replaced by a "measure" whose values

are (possibly unbounded) positive operators. Similar

systems have been introduced by Davies [7] who has also

given a discussion of the possible physical applications

of the theory (see also [8]).

A system of imprimitivity in the sense of Mackey

naturally gives rise to a C -system of imprimitivity,

and as a special case of the main theorem of this section

we get a new proof of Mackey's imprimitivity theorem

(for the case of Lie groups). First we recall Mackey's

definition of a system of imprimitivity for a given group

representation.



Let G be a Lie group and let M = G/H where H c G

is a closed subgroup. As usual C0 (M) denotes the space

of complex valued continuous functions with compact support

on M, and C (M) denotes the subspace of infinitely

differentiable functions. Here M is given the usual ana-

lytic structure [14, Ch. II], and G acts (on the right)

as a Lie transformation group of M. We let g -+ R(g) de-

note the corresponding representation of G in C0 (M), i.e.

(R(g)$)((a)) = *((a g)) for g E G, $ E C0 (M)

Assume g - U(g) is a continuous unitary representation

of G in a Hilbert space K.

Definition 6.1: A system of imprimitivity for U based

on M is a *-homomorphism P(s) of the *-algebra

C (M) (under the pointwise operations) into the *-algebra

&(K) of all continuous linear operators on K such that

i) P(C 0 (M))K is dense in K

ii) U(g)P(4)U(g~ 1 = P(R(g)*) for 4 E C(M), g E G.

As an example, let L be a continuous unitary

representation of H and let UL be the corresponding in-

duced representation of G in HL (cf. 5, Ex. 3). For

$ E C (M) we define PL (fl on H by setting

(P L (lf)(a) = 4(w(a))4f(a).
(P

Then P () is well-defined, and it is easily seen that

L L
P () is a system of imprimitivity for UL. We note

some important properties of the pair (UL PL).

- -)3
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If p E C0 (G) and f ,f2 E it follows from the

definition of the scalar product in HL that

<PL ( Cp)f 1Vf2> = f cp(a)<fl(a),f 2 (a)>da

Here T is the mapping of C0 (G) onto C (M)

in 5, Example 3, and we remark that T

Cco (G)
0

onto C (M)

defined

also maps

[6].

By Corollary 5.1 P(f1,f2 ) = <f e l'f2(e)>

a continuous sesquilinear form on

<fl(a),f2 (a)> = p(UL a)f1 ,UL(a)f2 )

D (UL ), and

for all a E G,

defines

f Yf2 E D Finally

Theorem 5.1 that

if

P ()M

$ E C (M)

leaves D

it follows from

invariant and hence

defines a continuous linear operator on this space. The

following definition as well as the proof of Theorem 6.1

grew out of these observations.

U be any continuous unitary representation

of G in a Hilbert space K. We let v(D ) denote the

space of all continuous linear operators

Definition 6.2: A Cw-system of imprimitivity for

based on M is a linear mapping from Cw (M)

into ?(D.) such

1) P(Cw(M))D is

2) U(g)P(*)U(g~ )

that

dense in K

= P(R(g)4) for all g E G, E Cw (M)

3) For each x E D

<P(*)x,x> > 0, and

and * > 0 we have

sup < P(*)xx> < 03.

0<4<1

Now let

on D = D (U).

U
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P is called normalized in case

sup <P(*)xx> =
0< t<l

for all x E RO .

First we show that this is a generalization of the

usual notion.

Lemma 6.1: Let P(,) be

U based on M. Then for

a system of

$ E Ca (M)

imprimitivity for

the operator

leaves D invariant, and the map $ + P($)|

normalized C -system of imprimitivity for

Since P(.) is a *-homomorphism it is

that P(.)

known that

is positivity preserving, and it

for all

From ii) we see that the kernel of

$ E C 0 (M)

P(.)

is well

[9].

is invariant

under the g E G. Since is non-trivial,

application of the Stone-Weierstrass theorem shows that

P(-) is injective,

E = sup{P(*)

seen that

P(W)x = 0

I 1$

so we get

E C (M),

IP($) = H*!1100 [9].

0 < $ < 11.

E is a projection.

for all $ E C (M).

Let

Then it is easily

If Ex = 0 we get

Then by i) x = 0, so

E = I.

For X E q

vector field on

A
we let X denot

M. Then for $'

[R (exp (tX))-]

e the corresponding

E C 0 (M)
A

-X4

we have

uniformly on M as t -> 0. Now let x E D and

Proof:

P($)

is a

U.

clear

an

!IP(O)l < !!! $CO



- 56 -

4 E C'(M). Then

U(exp(tX))P(*)x = P(R(exp(tX))$)U(exp(tX))x

and since the right hand side is differentiable at t = 0

it follows that P($)x is in the domain of ul(X), and

u1 (X)P(*)x = P(X)x + P(*)u(X)x

Then (by induction) it follows from Goodman's theorem

that P($)x is a Cm-vector for U. Thus P(*) leaves

D invariant, and by the closed graph theorem P(4) is

continuous on D . Q.E.D.

Remark: Suppose P is a system of imprimitivity for U

in the sense of Davies [7], i.e. P is a positivity pre-

serving linear map from C0(M) into -4(K) satisfying

2) (or rather ii) of Def. 6.1). Then P is automatically

continuous from the inductive limit topology on C0 (M) to

the norm topology on &(K). Therefore, for E C(M),

the proof of Lemma 6.1 shows that P(f) leaves D in-

variant and P($)ID is a continuous linear operator on

D .

In such cases we shall not distinguish between the

operator P($) and its restriction to D . Also we call

P a Co-system of imprimitivity for U in case the

restrictions give such a system.

If P(.) is a C'-system of imprimitivity for U

the P(*) can be unbounded operators in K, and
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examples show that it is no longer true that U is

equivalent to an induced representation. Therefore the

natural question arises: "What is the structure of the

pair (U,P)". We shall now describe a method of produc-

ing Co-systems of imprimitivity which will turn out to

be the most general one.

Example 6.1: Let L be a continuous unitary representa-

tion of the subgroup H and let UL be the corresponding

induced representation of G. If UL is reducible we

obtain a new pair (U1 ,P ) by restricting (UL p ) to a

UL (G)-invariant subspace H of H L, i.e. we let

U (g) = UL(g) for _ E G
IH

Pl($) = EPL() for E Cw(M)
H0

where E is the projection of HL onto H. Then P1

is a normalized C"-system of imprimitivity for the

subrepresentation U1 , and if E does not commute with

the PL () P1  is not an algebra homomorphism.

(Lemma 6.2). Now suppose T is a continuous linear

operator on D (U1 ) which commutes with the U (g),

g E G and let

P = TP,($)T for 4 E Cw(M)

Then if T is symmetric in H and 0 is not an

eigenvalue for T* it can be verified that P2 is a
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Cw-system of imprimitivity for U1 , and the operators

P2() are possibly unbounded.

Before we state the main theorem of this section we

recall that two pairs (U 1,P) and (U2,P2 ) are called

unitarily equivalent if there exists a unitary operator

W such that

WP (*)W~ = P2 (*) for all $ E C 0 (M)

and

WU1 (g)W~ = U2 (g) for all g E G.

Now let U be a continuous unitary representation

of G in a Hilbert space K and let M = G/H where H

is a closed subgroup of G.

Theorem 6.1: Let P be a C -system of imprimitivity

for U based on M. Then there exists a normalized Cw-

system of imprimitivity P0  for U and a continuous

unitary representation L of H such that the pair

(UP0) is unitarily equivalent to the restriction of
L L L L

(U P) to a U (G)-invariant subspace H of H

Moreover P can be chosen in such a way that

P($) = TP (*)T for all $ E C'(M),0 0

where T is a continuous linear operator on D which

is essentially self adjoint in K, T* is 1-1 and

TU(g) = U(g)T for all g E G.

the map cp -> <P(Tp)x,x> is aProof: For each x E D m
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positive linear functional on Cw(G). By a well known

result [5] it extends uniquely to a non-negative measure

pj on G. Therefore (by polarization) there exists a

family {pX I x,y E D.} of Radon measures on G such

that

<P(TP)x,y> = GcP(a)dp (a) for p E C'(G)G X.9'

For g E G we have

G (a.g)d4 (a) = <P(TC)U(g~ )xU(g~ )y>

For X E this gives

G (Xcp)dA = - <P(T)u(X)x,y> - <P(TP)x,u(X)y>

G pdpu(X)x,y - G cdPAxu(X)y

Therefore, if D is any left-invariant differential

operator on G it follows that there exists a Radon

measure p on G (depending on x, y and D) such

that

D4)d = p d4 for all p E C0(M).
x,y 0

Thus all distribution derivatives of u are

measures, so by a result due to Schwartz [24, p. 191]

4 X is an infinitely differentiable function on G.

In other words, there exist Cw-functions h on G
x,y

such that

dpt (a) = h (a)da for xy E D .

Here da denotes some right invariant Haar measure.
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P(x,y) -h y (e) for x,y E D .

P(O,.) is a sesquilinear form on D.

=-h (g)

This gives the following fundamental formula:

<P(T)x,y> = I
G

cp(a)P(U(a)x,U(a)y)da

x,y E D and p E C (G).

Let _n} I CC (G) be the usual 6-sequence.Let (n - 0
Then

<P( TCPn)XIY> -- P(x,y) for all x,y and by the

principle of uniform boundedness P is a continuous

sesquilinear form on D . Also note that P(xx) > 0

for all x

Pick a right invariant Haar measure on H and let

8 be the modular function. L denotes the modular

function on G, and we let

E H. By the definition of

have Tq =

cp E C (G).

( ( ~1) C 1 ))

T (see 5, Ex. 3)

for all E H

we

and

Thus

c(a)p(U(a)x,U(a)y)da =
G G

G

Using a 6-sequence {pn} I Cw (G) we get the relation

= p(W)P(xy)

for E H, x,y E Dh.

As already noted P is a continuous pseudo scalar

so ker P = [x ED 0 i

Now let Then

and

for all g E G.

for all

E D .

p(C) for all

P(U(g)XU(g)y)

= ( ) A( ~-1 )

Cp( ~ a)6( ~1)t3(U(a)xU(a)y)da

(*) P(U(Wx,U(Cy)

| P(x,x) = 0} is aproduct on D..,



- 61 -

closed linear subspace of

is a Frechet space and for

D . Then = D /ker P

x E D we let

[x] = x + ker P denote the corresponding equivalence

class. Also U is a pre-Hilbert space with the scalar

product

<Ixllyl>= P(xy)

and we let V denote the Hilbert space completion of

in the corresponding norm.

It is obvious from the relation (*) that ker n is

invariant under the U( ), g E H, and we let

L ( )[x] = [p( )-l/2U( )x] for ? E H, x E D.

is a well defined isometric linear operator

=L ) Take L( ) = L ()

for ; E H. Then ' -> L() is a unitary representation

of H in V, and since

L( )[x],[y]> =

for all x,y E D , it follows that L is continuous.

For each x E DO we define a function f
x

G to V as follows: f (a) = [U(a)x] for a E G.

Then f (a.g) = fU(g)x(a)

has the properties:

for a, g E G,

f is infinitely differentiable from

ii) f ( .a) = p(g)l/ 2 L(g)f7(a) for 9 E H,

G to i

a E G

iii) 11f (s)II 2 = P(U(*)x,U(e)x) is locally integrable.

if

Then L ()

on V and Lo(, )Lo( 2)

from

i)

and f
x
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Therefore the mapping C : x -+ f is a linear mapping

of D into F* (cf. 5, Ex. 3). Actually C maps

L L
D into H , and by definition of the norm in H we

have

llCxII2 = sup { cp(a)flf (a)Jd =
O<TCp<l

sup KP(T p)x,x>
O<Tcp<l

for all x E D . Furthermore

KP(TCp)xy> = <PL ( Tp)Cx,Cy> for x,y E D , cp E Cw(G)-o0 0

Let H denote the closure of C D Lin H .it

follows that C has a closure as a mapping from K

into H. Therefore C has a closure C as a mapping

Lfrom K into HL. If Ty = 0 we have y . P(C" (M))D,

hence y = 0.

Now the rest of the proof is standard. Let C = WT

be the polar decomposition. Then T is a positive self

adjoint operator in K such that TU(g) = U(g)T for

g E G, and W is an isometry of K into HL such

that W*W = I and WW* = E where E is the projec-

tion of HL onto H. By the definition of C we have

CU(g) = U L(g)C for all g E G,

and the same is true for C. Therefore H is invariant

under the U L(g), g E G, and because W has the same

intertwining property as C we have

WU(g)W 1 = UL (g)H for all g E G.

Here we consider W as a unitary mapping of K onto H.
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Since D D D we know (cf. 2) that T leaves D=-T - C_--)

invariant and T is a continuous linear operator

on D . Also T is essentially self adjoint on D .

Now let

P1(IJ= E PL( H for $ E C (M)

If we let P () = w 1 Pl()W it is clear that P0  is

a normalized Cw-system of imprimitivity for U and

since P() = C*PL(f)C it is easily verified that

P($) = TP0( )T on D. Q.E.D.

For the sake of completeness we include a discussion

of the uniqueness of such representations, leaving out

some of the computational details.

First we note that P0 is canonical in the follow-

ing sense. If PI is any other normalized CcO-system
0

for U such that P($) = T'PI(4)Tt for all $ E M),

where T' is an operator having the same properties as

T (in Theorem 6.1), then the pair (U,P) is unitarily

equivalent to the pair (U,P0 ). In fact, the operator

T'T~ extends uniquely to a unitary operator.

Now suppose the pair (U,P0 ) (of Theorem 6.1) is

unitarily equivalent to two restrictions (U ,P ) of
L. L.

(U ,P 1) to closed group invariant subspaces H. of
L. L.

H , where (f.(e) If. E H. fl D(U ')} is dense in

the representation space i of L. for i = 1,2.



Then L and L2 are unitarily equivalent.

In order

of H

Since U

D (U ) =

onto H2

to see this let

which maps

V be a unitary mapping

(U , 1P)

is a subrepresentation of
L.

H fl D, (U ') i = 1,2, and V

into (U2 ,P2).

U we have

maps Do(U )
onto D(U2). Let f E D0(U1 ) i = 1,2. Then for

cp E C (G) we have
0L2

<P (T)Vf ,f2> = p(a)(Vfl)(a),f 2 (a)>da
L

= <P l(T)f,V*f2> = p(a)<f (a),(V*f2 )(a)>da

Using an approximate identity we get

<(Vf 1 )(e),f2 (e)> = <f2(e),(V*f9(e)>

Therefore V
0

: f,(e) -+ (Vf )(e) is a well defined

closable and invertible linear mapping from a dense

space of V onto a dense subspace of V2.-2 Using the

relations
L.

(U '()f

(i = 1,2)

(e))(e) = fi( ) = p( ) L ( )f for E H

it is easy to see that

= L2 ()v 0f1 (e) for all E H.

Using the polar decomposition it follows that and

L2 are unitarily equivalent. This completes the dis-

cussion. Before we turn to the usual case we prove the

following simple result.

Lemma 6.2: Let OZ be a *-algebra of bounded linear

operators in a Hilbert space B and let E

sub-

(e)V oL ( )f 1

be a
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projection in B such that the mapping A -+ EAE is a

*-homomorphism of Ob into -(EB). Then E E OLI.

Proof: If we represent operators in B as 2 x 2-

matrices relative to the decomposition B = EBG(I-E)B

it is easy to see that OL must be represented by

diagonal matrices. Hence EA(I-E) = (I-E)AE for all

A E OM. Q.E.D.

In case P is an ordinary system of imprimitivity

for U we get a much stronger result, known as Mackey's

imprimitivity theorem [4], [18].

Corollary 6.1: Let U be a continuous unitary represen-

tation of G in a Hilbert space K and let P be a

system of imprimitivity for U based on M = G/H. Then

there exists a continuous unitary representation L of

H (unique up to equivalence) such that the pair (U,P)

is unitarily equivalent to the pair (UPL ).

Proof: By Lemma 6.1 P defines a normalized Cw-system

of imprimitivity for U (also denoted by P), so we

already know L exists. In the following we use the

notation from the proof of Theorem 6.1.

The mapping C : x - f is now isometric and C = W.

Therefore we have

1 - L for all $ E Cw(M).
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Because P is a *-homomorphism Lemma 6.2 shows

EP L(4) PL( *)E for all $ E Cw(M). We know already E
L0

commutes with the U L(g), g E G, thus E is induced

from a bounded operator in V [3]. In fact there exists

a unique projection E in V such that
0L

(Ef)(a) = E0f(a) for f E HL.

On the other hand (Ef )(e) = f (e) for x E D., and

we have constructed V as the completion of such vectors.

Hence E = I and W is the desired unitary mapping.

The uniqueness of L is clear from our general dis-

cussion. Q.E.D.

Remark: It is not necessary to appeal to Blattner [3] in

order to get the projection E . We have already seen

that we can define a mapping E as follows

E f(e) = (Ef)(e), f E D0(UL

Using the relation

PL(TcP)Ef K2 < i1El2 ,PL (TIp)f l cp E C'(G)

it is easily seen that

E f(e) < fEll *1lf(e)l for all f E D (UL)

Therefore E extends uniquely to a bounded linear

operator in V, and it is clear that this extension is

a projection.
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