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Abstract

When humans fail to understand the capabilities of an autonomous system or its
environmental limitations, they can jeopardize their objectives and the system by
asking for unrealistic goals. The objective of this thesis is to enable consensus be-
tween human and autonomous system, by giving autonomous systems the ability to
communicate to the user the reasons for goal failure and the relaxations to goals
that archive feasibility. We represent our problem in the context of temporal plans,
a set of timed activities that can represent the goals and constraints proposed by
users. Over-constrained temporal plans are commonly encountered while operating
autonomous and decision support systems, when user objectives are in conflict with
the environment. Over constrained plans are addressed by relaxing goals and or con-
straints, such as delaying the arrival time of a trip, with some candidate relaxations
being preferable to others. In this thesis we present Uhura, a temporal plan diagnosis
and relaxation algorithm that is designed to take over-constrained input plans with
temporal flexibility and contingencies, and generate temporal relaxations that make
the input plan executable. We introduce two innovative approaches within Uhura:
collaborative plan diagnosis and continuous relaxation. Uhura focuses on novel ways
of satisfying three goals to make the plan relaxation process more convenient for the
users: small perturbation, quick response and simple interaction.

First, to achieve small perturbation, Uhura resolves over-constrained temporal
plans through partial relaxation of goals, more specifically, through the relaxation
of schedules. Prior work on temporal relaxations takes an all-or-nothing approach
in which timing constraints on goals, such as arrival times to destinations, are com-
pletely relaxed in the relaxations. The Continuous Temporal Relaxation method
used by Uhura adjusts the temporal bounds of temporal constraints to minimizes the
perturbation caused by the relaxations to the goals in the original plan.

Second, to achieve quick responses, Uhura introduces Best-first Conflict-directed
Relaxation, a new method that efficiently enumerates alternative options in best-first
order. The search space of alternative options to temporal planning problems is very
large and finding the best one is a NP-hard problem. Uhura empirically demonstrates
fast enumeration by unifying methods from minimal relaxation and conflict-directed
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enumeration methods, first developed for model based diagnosis. Uhura achieves two
orders of magnitude improvement in run-time performance relative to state-of-the-
art approaches, making it applicable to a larger group of real-world scenarios with
complex temporal plans.

Finally, to achieve simple interactions, Uhura presents to the user a small set of
preferred relaxations in best-first order based on user preference models. By using
minimal relaxations to represent alternative options, Uhura simplifies the options
presented to the user and reduces the size of its results and improves their expres-
siveness. Previous work either generates minimal relaxations or full relaxations based
on preference, but not minimal relaxations based on preference. Preferred minimal
relaxations simplify the interaction in that the users do not have to consider any irrel-
evant information, and may reach an agreement with the autonomous system faster.
Therefore it makes communication between robots and users more convenient and
precise.

We have incorporated Uhura within an autonomous executive that collaborates
with human operators to resolve over-constrained temporal plans. Its effectiveness has
been demonstrated both in simulation and in hardware on a Personal Transportation
System concept. The average runtime of Uhura on large problems with 200 activities
is two order of magnitude lower compared to current approaches. In addition, Uhura
has also been used in a driving assistant system to resolve conflicts in driving plans.
We believe that Uhura’s collaborative temporal plan diagnosis capability can benefit
a wide range of applications, both within industrial applications and in our daily
lives.

Thesis Supervisor: Brian C. Williams
Title: Professor
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Chapter 1

Introduction

As the performance of temporal planning algorithms improves over time, they have

been incorporated into many planning and scheduling applications. However, a plan

that can satisfy all of the user goals does not always exist. For example, a Mars

rover may encounter an unexpected battery failure, leaving little time to complete its

exploration task. Usually, planners will signal the user that a feasible plan that can

satisfy all the goals cannot be found. However, it is not enough for the system to just

signal a failure. When the complexity of the problem and plan increase, it becomes

extremely difficult for humans to identify the resolutions. Therefore, the autonomous

system or decision aid should explain the situation and propose alternative plans so

that the engaged human operator can find a more informed resolution without too

much effort. Specifically, the decision tool should offer key insights into the cause of

failure and preferred plan repair options to the operator. For example, in the context

of a Mars rover with a failed battery, we would expect the system to tell us which

goals need to be dropped in order to guarantee a safe return to the base

This thesis develops Uhura, a temporal plan relaxation algorithm and system

that addresses these issues. Uhura takes a mixed initiative approach that generates

preferred minimal relaxations to over-subscribed temporal planning problems. It

works with the human collaboratively towards the diagnoses of faulty plans. Uhura

has three significant features compared to previous approaches: quick response, simple

interaction and small perturbations. To support these features, we developed three
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new methods in this thesis:

• First, Uhura minimizes the perturbation of relaxations to the original planning

problem by continuously relaxing its goals specified by temporal constraints,

which preserves all the plan elements in the output relaxed problem. For ex-

ample, instead of about the mission completely, the rover informs the operator

about an extended completion time.

• Second, Uhura resolves over-subscribed temporal planning problems through a

conflict-directed diagnostic process, making it very efficient for relaxing large

scale applications. A conflict can be viewed as a summary of cause of failure. In

the Mars rover scenario, there is a conflict between the mission goals and limited

battery power that makes the problem infeasible. To resolve a conflict, one must

relax at least one goal in it, such as extending the mission completion time. A

valid relaxation restores the feasibility of a planning problem by resolving all

its conflicts.

• Third, Uhura only enumerates minimal relaxations, a compact representation of

relaxations to over-subscribed planning problems. It reduces the size of results

by orders of magnitude and significantly improves the run-time performance.

For example, the rover will only asks the operator for either an extended mission

time or a reduced set of goals, but not both.

We first provide an overview of the features and desired behaviors of Uhura

through the trip planning problem of a Personal Transportation System, which is

a form of robotic air taxi, in Section 1.1. Section 1.2 presents the current approaches

to each claim and the technical challenges of their implementations. Finally, we

describes the structure of the thesis in Section 1.3.
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1.1 Motivation: Over-subscribed Problems are Ev-

erywhere

Nowadays, autonomous planning systems have been widely used in people’s lives,

especially in the fields of transportation and manufacturing. They have been used to

generate the routes and schedules of flights, trains, buses and cars, and for generating

work plans. Modern planning algorithms have demonstrated superior capabilities,

especially for large scale problems that are beyond human decision making capabil-

ities. For example, a planning and scheduling algorithm, O-Plan, has been used to

generate production plans for Hitachi [6]. Their implementations have significantly

reduced the workload of human operators and for optimizing operation efficiency .

A significant open challenge is to decide what to do when the situation is over-

subscribed. For example, a Mars rover encounters an unexpected battery failure,

leaving insufficient power for the rest of its mission. If a problem is over-subscribed,

that is, no plan exists that can satisfy all the goals and requirements imposed by

either human operators or the environment, these planners cannot help resolve such a

problem. In this thesis, we introduce a novel approach to the over-subscribed problem

based on the metaphor of collaborative diagnosis. Handling over subscription through

collaborative diagnosis is based on two central claims:

• Handling over subscription is inherently a collaborative process. The operator

knows the relative importance of different goals. It is unreasonable to expect

that the operator will have presented this preference information to the planner

a priori, and hence the planner will be able to decide the appropriate relaxation

alone. Conversely, the human will need the planning tool to help explore the

space of possible goal relaxations. The planner will have expertise and brute

computational power that is better suited to this task.

• For the human to make informed decisions, the planner should be able to sum-

marize the results of its reasoning processes to the human decision maker, as

it pertains to the decisions that the human needs to make. This includes diag-
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nostic information, such as why a set of goals cannot be feasibly achieved, and

why a proposed relaxation addresses each of these identified concerns.

• We claim that over subscription can often be addressed with minimal disruption

by relaxing constraints partially. We refer to this as continuous relaxation.

The motivation is that the users usually want to minimize the perturbation to

their goals and constraints made by the resolutions. Resolving over-subscribed

problems by completely suspending user goals is unnecessary in most situations.

A better way would be to adjust the user goals accordingly. For example,

a student realizes that he cannot complete his problem set on time due to

an approaching exam. Instead of giving up the exam or the problem set, he

chooses to ask for an extension for his problem set, thus preserves his goals to

the maximum.

The vision of this thesis is to provide an autonomous system that can detect

the cause of failures in over-subscribed temporal plans, engage the human operators

and provide suggestions for the repairs. The following three features are necessary

for resolving over-subscribed problems: quick response, simple interaction, and small

perturbation.

Quick response

The algorithm implemented in the diagnosis system should be efficient. Usu-

ally, people would expect an instant resolution coming out from the system if

their plans are known to be broken, say within 1 to 2 seconds. Efficient algo-

rithms help to implement quick response, and hence make the diagnosis process

convenient for the users.

Simple interaction

The resolutions generated by the system must be compact and concise so that

they can be communicated to the users easily. For example, in the Mars rover

scenario, the operator would be more interested in the few goals that have to

be dropped, not the ones that remain achievable. If multiple resolutions are

20



available, the system should be able to select the leading candidates preferred

by the operator. Otherwise, it may take a long time for the operator to look

through the long list of possible resolutions to a large scale problem. Moreover,

the preference models should be easy to construct and evaluate.

Small perturbation

The resolutions generated by the system must minimize the perturbations made

to the original problem. In other words, if an over-subscribed temporal planning

problem can be resolved by removing one goal, the system should not suggest

the user to remove more than that.

Collaborative diagnosis supports the first two features. It enables autonomous

systems to provide quick response and simple user interaction. The extension to

continuous relaxation enables user goals to be preserved to the maximum degree

possible in the resolution to over-subscribed problems. We present a scenario in the

following subsection to demonstrate the challenges and our approaches to the solution.

1.1.1 Planning a Trip Home Using the Personal Transporta-

tion System

Throughout this thesis, discussion will center around the example of the Personal

Transportation System, a joint project between the Model-based Embedded and

Robotic System group at MIT, the Boeing Company and the Center for the Study

of Language and Information at Stanford University. This project aims at demon-

strating the concept of an autonomous Personal Air Vehicle (PAV, Figure 1-1), and

possibly on a vehicle similar in spirit to the Transition (Figure 1-2), in which the

passenger interacts with the vehicle in the same manner that they interact with a

taxi driver. To interact with a PAV, the passenger describes his/her goals and con-

straints in English. The autonomous system on-board the PAV checks the map and

weather conditions, generates a safe plan and flies the vehicle to the destination. If

there is a change in the weather condition or the destination airport is closed due
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to flow control, the system can automatically adjust the original plan to achieve the

passenger’s goals.

The Temporal Plan Relaxation system, Uhura1, is developed as he part of the

project that supports collaborative diagnosis of over-constrained temporal plans. The

state and temporal goals provided by the passenger may not be consistent for all times.

Both the lack of knowledge about the vehicle and changes in environment constraints

may cause inconsistency between the user’s goals. However, the scale and complexity

of the temporal plans are usually very large, making it difficult for a human being to

detect the cause of failures and to find resolutions. Uhura is developed to work with

the users collaboratively to resolve problems through schedule relaxations, similar to

a travel agent. Uhura will propose alternatives to the user when an over-subscribed

problem is identified, and negotiate with the user until an agreement is reached.

Figure 1-1: The Personal Air Vehicle simulated using X-Plane

Suppose that the passenger, John, just finished his work in the office and needs to

be home in 60 minutes for a friend’s birthday party. On his way back home, he would

like to have dinner at a sandwich restaurant. The restaurant options he has are Cosi,

Quiznos and Subway. Each restaurant has different waiting and dinner times, and

the driving distances required by them are different as well. With the integration of

a natural language dialog system developed by CSLI Stanford University [38], Uhura

1The name Uhura is from Star Trek.
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Figure 1-2: The Transition flying car (Courtesy Terrafugia)

can interact with the user and capture all the goals through a simple conversation:

John: This is John.

PAV: Authorization Confirmed.

John: I want to go home in 60 minutes.

PAV: OK.

John: I want to stop at a sandwich restaurant for dinner.

PAV: OK. I found three sandwich restaurants on your way back: Cosi,

Quiznos and Subway. Do you want to dine-in or take-out?

John: Both are fine.

PAV: Ok...

PAV: I cannot find a plan for you.

PAV: Your goal of arriving home in 60 minutes can not be achieved.

There appear to be three good options, given your preferences.

First, can you relax your goal to 85 mins?

John: No.

PAV: Then can you go home directly without having dinner?

John: No.

PAV: Can you accept a faster flying speed,
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say 40 mph?

John: Ok, I think I can accept it this time.

PAV: OK, I have found a feasible plan for you.

John: Thank you PAV.

First, the planning algorithm of Uhura detects that no plan exists that can sat-

isfy all of John’s goals. Uhura then identifies the cause of failure: the temporal

goal proposed by John (60 minutes) is too tight to complete all the tasks. Based

on this conflict, collaborative diagnosis starts enumerating resolutions and engages

John to negotiate for an alternative plan. For example, the PAV presents John an

option that changes the trip duration. John rejects its proposal and Uhura continues

the enumeration and looks for the next schedule relaxation that resolves the prob-

lem. Collaborative diagnosis continues proposing new resolutions until it reaches an

agreement with John.

To make the collaborative process efficient, that is, reaching an agreement with the

user as soon as possible, user preference models are used in the collaborative diagnosis

algorithm. The end goal is for the user to select a relaxation that best meets the user’s

needs. Typically the space of feasible options is too large for the human to consider;

instead the human would like to be presented with few good options. To do this

the collaborative diagnostic algorithm needs to know the passengers’ preferences. To

address this requirement, Uhura generates a list of preferable repair options based on

a metric cost function that encodes the passengers’ preference over restaurant choices

and the relaxations of schedule constraints. The user-preferred relaxations will be

generated and presented first, hence shorten the negotiation process.

Second, the continuous relaxation algorithm post-processes the resolutions gen-

erated by the collaborative diagnosis algorithm and tries to preserve the user goals

as much as possible. For example, the PAV notices that removing the duration con-

straint (60 minutes) can resolve the conflict in John’s plan. Continuous relaxation

then computes the minimal amount of adjustment to this constraint that is sufficient

to resolve John’s over-subscribed problem, without completely suspending this dura-
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tion constraint. In this case, the constraint is relaxed from 60 minutes to 85 minutes,

which is the resolution with the minimal perturbation.

In addition to the Personal Transportation System, Uhura has also been tested

within many other applications, including a robotic driving assistant system, AIDA

(for Affective Intelligent Driving Agent), that provides suggestions to help drivers

resolve timing conflicts in their trip plans (Figure 1-3).

(a) The AIDA Robot. (b) User interface of AIDA.

Figure 1-3: The AIDA robot (Courtesy MIT Media Lab [1]).
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1.2 Related Work and Challenges

We outlined three goals for Uhura: quick response, simple interaction, and small

perturbation, in Section 1.2. To address these goals, we introduce two innovative ap-

proaches to resolve over-subscribed temporal planning problems: Best-first Conflict-

Directed Relaxation (BCDR) and continuous relaxation. In this section we present

the technical challenges of implementing the approaches to satisfy these goals, and

related work in the literature.

1.2.1 The Search Space is Enormous

Planning problems are generally very hard to solve due to the large numbers of

possible states and activities, and their possible combinations. The same problem

exists during the resolution of over-subscribed temporal planning problems. The

number of possible resolutions is exponential: every state and temporal goal in the

plan may be relaxed. For example, the temporal planning problem of booking a trip

from Boston to Detroit has around 30 planning steps, and the number of possible

resolutions can be as large as 1010.

This enormous search space imposes a huge challenge to resolving over-subscribed

temporal problems efficiently and to providing a quick response to the users. In fact,

the problem of finding all the resolutions to an over-subscribed temporal planning

problem is NP-Complete [29], assuming that a polynomial algorithm exists that can

check if a temporal plan is executable.

Many techniques, especially the techniques developed to solve constraint satisfac-

tion problems, have been implemented to speed up the search for resolutions, includ-

ing standard and domain specific ones, such as forward checking, conflict-directed

back jumping, Dualize & Advance [4], removal of subsumed variables [27] and seman-

tic branching [3] (the last two techniques only apply to temporal problems). Temporal

planning problems can be encoded using CSP formulations, hence enable the use of

these techniques. One other approach is to give up the requirements on the com-

pleteness of the results and use a local search algorithm, like [5]. This approximate
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approach usually runs much faster than the systematic methods, however, cannot

guarantee the optimality or completeness of the results.

1.2.2 The Number of Resolutions is Far Beyond Human Rea-

soning Capability

The large numbers of results is also an issue for the users: facing thousands or even

millions of resolutions, it is difficult for a human to select the correct one from them.

This imposes a big challenge to resolving a problem through simple and efficient

human machineinteraction. The autonomous system must be able to filter out un-

necessary and less-preferred resolutions and only present a few preferred ones to the

user, in order to let the user make an informed decision. In [29], an approach is

presented to reduce the amount of resolutions generated by generating representa-

tive plan relaxations. It is based on the notion of representative set, in which all

resolutions generated cannot be dominated by any other resolutions in the set.

In addition, most approaches choose to implement preference models to help re-

solve this issue. In [30], a real-valued cost function is associated with all the plan

goals in order to evaluate and prioritize the resolutions generated by the algorithm.

However, its preference function is restricted to discrete domain variables, in which

constraints are either preserved or suspended. For continuously relaxed constraints,

the preference function is more complex, since the relaxation has infinite numbers of

states. For example, John’s preference over the relaxation of duration constraint may

depend on its extent. If the constraint is slightly relaxed, the relaxation is indifferent

for John. On the other hand, if the constraint is relaxed by 100%, John may give up

the whole trip due to his limited amount of time.

1.2.3 Perturbations to the User Goals Must Be Minimized

As stated before, the user would like to preserve his/her goals to the maximum, if

possible, in the resolutions to an over-subscribed temporal planning problem. This

challenge corresponds to the third requirement: small perturbation. As a valid reso-
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lution, it must relax some of the user’s goals on states and temporal constraints, like

delaying the arrival time or removing way points from the trip. The perturbation to

the user’s goals is unavoidable.

Most of the previous work takes an all-or-nothing approach, in which user goals

are suspended in order to resolve the over-subscription problem [16, 5, 31]. However,

suspending goals can perturb a problem a significant amount, and is often unneces-

sary. For example, in John’s trip, it would be unnecessary if the PAV asks him to

remove his constraint on trip duration, since slightly relaxing the duration is enough

to make his plan executable.

In [30], temporal relaxation is divided into several levels. For example, John’s

constraint on trip duration may be relaxed to 70, 80 or 90 minutes, depending on the

over-subscription and John’s preference. This approach preserves more plan elements

than complete constraint relaxation, however, the quality of its resolutions highly

depends on the discretization of the domain of users’ goals.
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1.3 Thesis Layout

This thesis presents two innovations that address the three challenges. First, we

present the collaborative diagnosis algorithm, Best-first Conflict-directed Relaxation

(BCDR), used in Uhura that enumerates minimal temporal relaxations and nego-

tiates alternative options to over-subscribed temporal planning problems with the

user. Through the implementations of conflict-directed best-first enumeration and

minimal temporal relaxations, BCDR addresses the second and third requirements

we presented in Section 1.1: simple interaction and small perturbation. It improves

the efficiency of enumerating relaxation by two orders of magnitude compared to

previous approaches. In addition, BCDR generates minimal relaxations, a compact

representation of all relaxations to over-constrained temporal planning problems. The

use of minimal relaxations significantly reduces the size of the search space and the

results.

We present the algorithm in two steps: first we present a simpler version of BCDR

that generates discrete relaxations. Then we present the continuous version of BCDR

that maximizes the preservation of user goals. Unlike discrete relaxations to tem-

poral constraints, continuous relaxations do not suspend any temporal constraint.

Instead, it adjusts temporal constraints continuously until an executable plan can

be generated. It can find the ’minimal’ relaxation that is necessary for resolving

over-subscribed problems, hence minimizes the perturbation to the users’ goals.

In this thesis, we relax over-subscribed temporal planning problems. We achieve

this by encoding them as inconsistent conditional temporal constraint networks, and

by relaxing these constraints continuously. We demonstrate that the relaxation to

the schedule of a planning problem is in fact equivalent to relaxing constraints in its

equivalent temporal constraint problem, since each schedule constraint in the planning

problem can be mapped to a unique temporal constraint in the constraint problem.

BCDR is developed as a general constraint programming algorithm that can resolve

any inconsistent conditional CSPs with discrete and continuous variables. It takes in

an inconsistent problem and resolve all of its conflicts, by relaxing one or more of its
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constraints.

In Chapter 2, we defines the related concepts used in this thesis, including the

description of user goals (Qualitative State Plans), solutions (Temporal Planning

Networks), cause of failure (Conflicts) and resolutions (Temporal Relaxations). In

Chapter 3, we present the Best-first Conflict-directed Relaxation algorithm that enu-

merates minimal discrete relaxations to over-subscribed temporal problems. In Chap-

ter 4, we describe the continuous version of BCDR and its integration with Uhura. In

Chapter 5, we present the experimental results of BCDR on various benchmark prob-

lems. Finally, in Chapter 6 we summarize our work and discuss possible extensions

to Uhura for future work.
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Chapter 2

The Problem of Continuous Plan

Relaxation

As discussed in Chapter 1, this thesis presents a general method for collaborative

plan relaxation through diagnosis, and a more general, underlying method for contin-

uously relaxing constraints on both discrete and real-valued variables. This method is

demonstrated in the context of user interaction with a robotic air taxi. This chapter

develops the problem statement, defines key supporting concepts and demonstrates

each in the context of the Personal Transportation System scenario from Chapter 1.

As humans we are often inclined to do too much, and as a result discover that

there is no way to achieve all of our goals. When this occurs, we consciously or

unconsciously relax some of those goals until what remains is do able. Our problem

is to provide an algorithm that aids a user in systematically exploring the space of

goal relaxations. To turn this into a formal problem statement, we need to make

precise the terms: goal, executable, relaxation and preference.

In our approach we view both goals and their executions as a form of temporal plan

comprised of a set of activities to perform, such as go to the store, and constraints on

their timing, such as depart in the next 30 minutes, and return within an hour. The

difference between the plans used to describe goals and executions is their specificity.

Goal plans provide general guidelines that are important to the user, such as have

groceries in a hour, while an executable plan specifies concrete activities that we know
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how to perform, such as turn in the car engine.

Given the central role of plans in goal relaxation, we begin by making precise these

different concepts of plan and their execution. In a general planning problem, the goal

is to generate a set of actions that can achieve all desired goals given a description

of the environment, allowed actions and initial state. Usually, a planning problem

involves three basic elements: A Planning Domain, A set of Goals and A Plan.

• A Planning Domain specifies a set of legal states and actions allowed in the

planning problem.

• The initial states specify the status of the agents at time t=0.

• The Goal of a planning problem is a set of desired states at different times.

• A Plan is the solution to a planning problem, which involves a set of legal

actions that, starting in the initial state, generate a set of states at different

times that entails the Goal.

In this thesis, we use Qualitative State Plans (QSP) [24] to describe time evolved

goal states given by the user. A QSP uses episodes and temporal constraints to specify

the user goals, where episodes are constraints on state trajectories, over a bounded

interval of time. An episode is our general term for an activity, whether it is abstract

or concrete. We assume that an algorithmic temporal planner is used that takes a

planning domain, initial states and a QSP as input, and returns a plan or a set of

plans if one exists, or a signal indicating that no plan exists.

We use Executable Temporal Plans (Temporal Plans for short) to represent the

solution to a planning problem. A temporal plan contains a set of activities, which

represent action sequences that can generate state trajectories to satisfy the goals

specified in QSPs. We say that a plan is complete if it logically entails all goals

in the QSP, and consistent if the plan itself is logically consistent, that is, all the

preconditions and maintenance conditions of all activities are satisfied. A planning

problem is feasible if a complete and consistent plan exists for it. In addition, we use
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Temporal Plan Networks [22] to encode a candidate set of temporal plans that may

be used to satisfy a QSP.

A planning problem is infeasible if no consistent temporal plan that entails all

goals in the QSP exists. That is, no plan can satisfy all the goals described in the

QSP. The cause of failure is the conflicts between the goals and planning domains,

that is, the allowed actions and states in the plan are insufficient for satisfying the

goals. For an inconsistent planning problem, there is either no complete plan that

entails the QSP, or all complete plans that entail the QSP are inconsistent.

To resolve an infeasible temporal planning problem, we need to remove or change

some of the goals in the QSP so that a complete and consistent plan can be generated.

In this thesis, we focus on restoring the consistency of an inconsistent temporal plan

by modifying some goals in the QSP. Such a modification is called a relaxation to a

QSP, and can be applied to either goals on states that are specified by episodes, or

goals on temporal relations that are specified by temporal constraints. More specifi-

cally, we focus in this thesis on schedule relaxations, which relax the users’ temporal

constraints, in this thesis.

In Section 2.1, we present the definition of the goal specifications in temporal plan-

ning problems using QSPs. In Section 2.2, we describe the solutions using temporal

plans and TPNs. Then we discuss the causes of infeasible temporal planning prob-

lems in Section 2.3. Finally, in Section 2.4, we present relaxations as the resolutions

to infeasible temporal planning problems.
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2.1 Modeling User Goals using Qualitative State

Plans

This section introduces a representation that captures the users’ desired goals in a

planning problem. In the PTS scenario, the passenger, John, propose a set of goals

he would like to achieve throughout his trip. These include his requirements on time,

such as Arrive home in 80 minutes, and requirements on the locations, like Dinner

at a sandwich restaurant. In general, all the goals and requirements of a user can be

described explicitly using a set of time evolved states and temporal constraints. The

desired evolution of goal states can be represented as a Qualitative State Plan (QSP):

Definition 1. A Qualitative State Plan (QSP) is a tuple < E , EPS, T C, estart, eend >>

where:

• E is a set of events. Each event e ∈ E can be assigned a non-negative real value,

and denotes a distinguished point in time.

• EPS is a set of episodes. Each episode specifies one or more allowed state

trajectories between a starting and an ending event.. They are used to represent

the state constraints. An episode is a tuple < eS, eE, l, u, SC > where eS and

eE in E are the start and end events of possible state trajectories, l and u are

lower and upper bounds on the time duration of the episode and SC is a set

of state constraints that must be true over the duration of the episode. In this

thesis, the set of state constraints SC is represented by a conjunction of PDDL

predicates.

• T C is a set of simple temporal constraints between events E. It is used to repre-

sent the temporal constraints in the QSP. A simple temporal constraint [12] is

a tuple < eS, eE, LB, UB > where: eS and eE in E are the start and end events

of the temporal constraint. LB and UB represent the lower and upper bounds

of the duration between events eS and eE, where LB ∈ R∪−∞, UB ∈ R∪+∞
such that LB ≤Time(eE) - Time(eS) ≤ UB.
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• estart and eend ∈ E are two distinct events that represents the first and last events

in the QSP.

For example, the QSP of John’s trip is summarized in (Figure 2-1).

Start

Leave
Office(at Home)

End
[0min,80min]

Arrive
Food

Service

Leave
Food

Service

(have sandwich)
[5min,35min]

Arrive
Home (at Home)

Figure 2-1: The Qualitative State Plan of John’s trip

The events in the graph are represented by circles, and episodes and temporal

constraints are represented by arrows. The QSP is a goal specification, comprised of

two types of constraints: state constraints and temporal constraints. They are

represented by episodes and simple temporal constraints. In (Figure 2-1), the episodes

are represented by blue arrows with a label indicating the state constraint. A state

constraint is a conjunction of propositions, where each proposition is a predicate

applied to one or more variables and constraints, such as location and temperature.

There are three types of state constraints that are allowed:

• Constraints on the states of the agents in a QSP, like locations, temperature

and velocity.

• Instantiations of primitive PDDL operators, like movements and deformation.

• A program which can be expanded to a QSP.

For example, (Figure 2-2) shows an example of a QSP episode that constrains the

location, which represents the user’s requirement of not staying at the office.

eS eE
(not (at office))

Figure 2-2: An example of episodes
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In John’s QSP, there are three episodes, specifying his three state constraints:

the trip starts from his home (at John home), needs to include a sandwich place for

dinner (have sandwich John) and finally returns home (at John home).

In addition, there are two temporal constraints: the dinner should last between 5

and 35 minutes, and the trip duration should be less than 80 minutes. These specify

the relation that John would like to achieve between his state constraints. Temporal

constraints in a QSP are described by Simple Temporal Constraints.

eS eE
[LB,UB]

Figure 2-3: A Simple Temporal Constraint

A simple temporal constraint is represented by labeled red arrows in the graph

(Figure 2-3). The constraint arrow starts from the start event (eS) and points to the

end event (eE). The lower bound of a simple temporal constraint is unconstrained

if it is set to LB = −∞. Similarly, its upper bound is unconstrained if UB = +∞.

There are several special forms of simple temporal constraints that are commonly

used while describing real world scenarios (Figure 2-4):

eS eE
[-infinity,0]

(a) eE no later than eS

eS eE
[0,+infinity]

(b) eE no earlier than eS

eS eE
[6min,+infinity]

(c) eE at least 6 mins later than eS

eS eE
[-infinity,+infinity]

(d) Constraint suspended

Figure 2-4: Special Simple Temporal Constraints
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2.2 Modeling Solutions to User Goals as Temporal

Plan Networks (TPNs)

This section reviews the representation of solutions to a temporal planning problem.

As mentioned in the intro section, the solution to a planning problem is a temporal

plan, which is a set of activities that satisfies all the state and temporal constraints

in a QSP. We present two key concepts that define a valid plan in this section:

Completeness and Consistency.

2.2.1 Encoding One Solution using Temporal Plans

A Temporal Plan is a formalism that specifies a set of activities that can satisfy all

state and temporal constraints in a QSP, which is a specification of users’ goals. Its

form is similar to that of QSPs, but the episodes in a QSP are restricted to activities.

Formally, a Temporal Plan is defined as:

Definition 2. A Temporal Plan is a tuple < E ,ACT , T C, estart, eend > where:

• E is a set of events. Each event e ∈ E is assigned a non-negative real value, and

denotes a specific instant in time. This is the same concept as event in QSPs.

• ACT is a set of activities between events. It is a specialization of an episode.

An activity is an episode in which its state constraint is expressed by an operator

instantiation. An activity is a tuple < eS, eE, l, u, act >. Each activity has a

start event eS, an end event eE, a minimal duration l, a maximum duration

u and an action act. In this thesis, act is an action that represents a state

transition, through its preconditions and its effect. More generally, an activity

represents a state trajectory over its duration. The duration of the activity will

be restricted by the temporal bounds, [l,u]. If u > l, this activity is a partial

operator instantiation since the duration of this activity is flexible. Otherwise

this activity is a full operator instantiation.
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• T C is a set of simple temporal constraints. Like QSPs, simple temporal con-

straints in temporal plans specify the allowed durations between events. In ad-

dition, T C and ACT entail the temporal constraints in the QSP.

• estart and eend ∈ E are two distinct events that represent the first and last events

in the temporal plan. We assume that the time assigned to estart, testart is al-

ways 0. estart and eend are always connected by activities or simple temporal

constraints, or a combination of both.

Temporal plans share the same structure as qualitative state plans. The difference

is that a temporal plan contains a set of activities, instead of episodes, that can satisfy

the required state trajectories stated in the QSP. In other words, a QSP contains a

set of goals and a temporal plan contains activities that will achieve those goals. For

example, if a state constraint in a QSP imposes a transition between two locations,

(at office) and (at home), then an activity, (Drive office home), may be found in the

temporal plan that satisfies this constraint.

Each activity in a temporal plan implies a fully or partially instantiated state

trajectory that entails some of the episodes in QSPs. This is because the start time of

each activity may be fully specified or flexible, depending on the temporal constraints.

If the activity has a firm start time and duration, then it will generate a set of fully

instantiated state trajectories. The temporal constraints in a plan represent the

temporal relations between activities, and entail the temporal constraints in its QSP.

A temporal plan is a feasible solution to a planning problem if it is Complete

and Consistent. A Complete temporal plan logically entails all the goals, which are

specified by state and temporal constraints in the QSP.

Definition 3. [Completeness of Temporal Plans] A temporal plan P for a QSP Q, is

complete if the activities and temporal constraints in P entail Q, P |= Q. In other

words, all the state and temporal constraints in Q can be satisfied by P.

A temporal plan is state complete if all the state constraints EPS in Q are

entailed by all activities and temporal constraints in P.
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A temporal plan is temporally complete if all the temporal constraints T C in

Q, are entailed by all activities and temporal constraints in P.

A temporal plan is complete if it is both spatially and temporally complete.

On the other hand, even though a complete plan achieves all the goals specified

in the QSP, it may not be a valid solution due to its inconsistency. The consistency

of a temporal plan is about the consistency of the elements in it. It is necessary in

order for the plan to be executed.

Definition 4. [Consistency of Temporal Plans] A temporal plan P is consistent

if the activities ACT and temporal constraints T C in P are logically consistent. In

other words, no logical contradiction can be derived from P.

A temporal plan is spatially consistent if all the activities ACT ∈ P, are con-

sistent. That is, two actions do not threaten each other. This correspond is enforced

through mutual exclusions.

A temporal plan is temporally consistent if all the temporal constraints T C ∈
P, are consistent and are satisfied by the durations of ACT .

The consistency of a temporal plan indicates whether it can be correctly executed.

In most cases, the state and temporal consistency of a plan are coupled, since the

preconditions and maintenance conditions of an activity may hold only during a

certain period of time. For example, assume that drinking a bottle of soda requires

two activities: Opening the bottle and Drinking. Then a temporal plan of these

activities is spatially consistent if and only if the temporal constraints allow Opening

the bottle to be executed prior to Drinking. In [25], a method is presented to check

the spatial consistency of activities with flexibility in execution time. In this thesis,

we assume that a set of temporal constraints has been introduced by the planner to

guarantee that the sequence of activities satisfy the pre- and maintenance conditions

of all activities at the times required.

In order to execute a temporal plan correctly, the activities of a temporal plan

must be executed at proper times that satisfy all temporal constraints in the plan.

The dispatch time of an activity is the same as the time assigned to its start event,

39



and the duration of the activity is the difference between the time assigned to its

start and end events. The time that activities are executed is specified by a schedule

for the temporal plan.

Definition 5. (Schedule for a Temporal Plan) A consistent schedule T for a

temporal plan P is a set of time assignments to all its events, E, such that all the

temporal constraints and activity durations in P are satisfied. Each event, e ∈ E, is

assigned a time point te. For each temporal constraint and activity duration in P, the

time assignments to its start and end events satisfies: TCLB ≤ tend − tstart ≤ TCUB.

TCLB and TCUB are the lower and upper bound of an activity duration or temporal

constraint.

For example, one temporal plan that can satisfy John’s goals is shown in (Figure

2-5). He may drive to Quiznos for dinner after he leaves his office. There are three ac-

tivities in this plan: ’Drive from Office to Quiznos’, ’Take-out sandwich from Quiznos’

and ’Drive from Quiznos to Home’, represented by green arrows in the graph. The

duration of each activity is different: ’Take-out Quiznos’ is fully instantiated and the

duration is fixed to 10 minutes, while the other activities are partially instantiated.

Driving from office to Quiznos may take any time between 30 and 40 minutes. The

definition of entailment between temporal plans and QSPs is presented in [25].

There is a temporal constraint that specifies the overall time requirement of the

QSP: [0min, 80min]. It connects the first and last events in the temporal plan and

restricts the duration of the whole trip. Similar to QSPs, temporal constraints are

represented by red arrows in temporal plan graphs.

Start

Leave
Office
t=0min

End
[0min,80min]

Arrive
Quiznos
t=30min

(Drive Office Quiznos)
[30min,40min] Leave

Quiznos
t=40min

(Take-out Quiznos)
[10min,10min] Arrive

Home
t=75min

(Drive Quiznos Home)
[35min,50min]

Figure 2-5: A schedule for a temporal plan

The time marked on each event shows a schedule for John’s trip plan back home:

• Leave home right now (0 minute).
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• Arrive at Quiznos 30 minutes from start.

• Ask for take-out and leave Quiznos 40 minutes from start.

• Arrive home 75 minutes from start.

It can be seen from the graph that all the temporal constraints and activity

durations are satisfied by this consistent schedule: John spends exactly 10 minutes

having dinner at Quiznos and the time assigned to two driving activities falls into the

allowed durations. For any temporal plan, we can use the existence of a schedule to

check its temporal consistency.

Definition 6. [Temporally Consistent Plans] A temporal plan P is temporally con-

sistent if there exists at least one consistent schedule, T to P. That is, there is at

least one set of time assignments to all events, E in P such that all the temporal

constraints, including activity durations, are satisfied.

For example, the temporal plan in (Figure 2-5) is temporally consistent, since it

has a consistent schedule that satisfies all temporal constraints. However, if John

reduces his expected arrival time from 80 minutes to 60 minutes (Figure 2-6), then

no consistent schedule can be found. Such a temporal plan is not consistent, and

more specifically, is defined as an over-constrained temporal plan.

Start

Leave
Office

End
[0min,60min]

Arrive
Quiznos

(Drive Office Quiznos)
[30min,40min] Leave

Quiznos

(Take-out Quiznos)
[10min,10min] Arrive

Home

(Drive Quiznos Home)
[35min,50min]

Figure 2-6: An over-constrained temporal plan

Definition 7. [Over-constrained Temporal Plan] A temporal plan P is over-constrained

if P does not have a consistent schedule. In other words, it is complete with regards to

a QSP, but there are no time assignments to the events in P such that all its temporal

constraints, including activity durations, can be satisfied.
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2.2.2 Encoding Multiple Contingent Solutions using Tempo-

ral Plan Networks

For a QSP, there might be more than one plan that is complete and consistent: several

temporal plans may be found to satisfy the goals in one QSP. Usually, this is a result

of two reasons:

• The goal specification in a QSP may be instantiated in different ways. For

example, in John’s scenario, the QSP only specifies his requirement of (Having

Dinner at a Sandwich Place), but does not indicate which restaurant to go to.

This episode can be instantiated with any sandwich restaurant that is on his

way back home, such as ’Dinner at Subway’. Therefore, a QSP may represent

multiple consistent executions if not all episodes in it are fully grounded.

• There may be multiple ways to satisfy one state constraint. For example, John

may ask the planner to find a plan back home from his office. The planner

identifies several different ways to commute: (Drive Office Home), (Taxi Office

Home) and (Bike Office Home). A temporal plan can be generated based on

each mode of commuting, hence multiple plans may be available to solve John’s

problem.

To represent a set of candidate plans that satisfy a QSP, we use the concept of

Temporal Plan Networks (TPN), a compact representation of multiple temporal plans

introduced by [22].

Definition 8. A Temporal Plan Network (TPN) is a tuple < E ,SP , T C,DE , estart, eend >

where:

• E is a set of conditional events. Each event e ∈ E is a plan element that can

be assigned to a specific point in time. A conditional event, e, may belong to

different sub plans. e will only occur and be scheduled if any of those sub-plans

are selected and executed.
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• SP is a set of sub-plans. Each sub-plan is either a temporal plan, or a TPN.

The start and end events of a sub-plan belongs to E, that is, es and ee ∈ E.

• T C is a set of simple temporal constraints. Like temporal plans, simple temporal

constraints in TPNs specify the allowed temporal durations between events, and

entail the temporal constraints of the QSPs.

• DE is a set of decision events in the TPN, and is a subset of E. A decision

event, de, is an event followed by a subset of sub-plans: only one of them can

be selected at a time. Its domain, DSP, is the set of all sub plans whose start

event is de.

• estart and eend ∈ E are two distinct events that represent the first and last events

in the TPN. We assume that the time assigned to estart, testart is always 0. Both

events are always connected by sub plans or simple temporal constraints, or a

combination of both.

A TPN is a nested set of non-deterministic choices between alternative sub plans

[23]. It is a compact representation of multiple temporal plans using choices: the

activation of sub plans depends on the choices made to the decision events. In this

thesis, we use TPNs to represent a combination of a (possibly incomplete) set of

candidate plans that may satisfy the users’ goals in a planning problem.

For example, (Figure 2-7) shows a TPN Of candidate plans for to John’s trip

problem. It encodes six temporal plans that may satisfy John’s goals. He can have

dinner at Quiznos, Subway or Cosi. At each restaurant, he has two options: take-out

and dine-in. Instead of creating one choice followed by six independent temporal

plans, the TPN uses nested sub plans to make the representation compact. John

will only eat at Quiznos if he chooses to drive to Quiznos after he leaves the office

(The Choice at event ”leave office”). Otherwise, the sub plan of activities ’Drive to

Quiznos’, ’Dine-in’ and ’Drive Home’ will not be activated and executed.

In the TPN, the activities are represented by green arcs with PDDL actions and

duration labels. There are four choices in the TPN: ’LeaveOffice’, ’ArriveCost’, ’Ar-

riveQuiznos’ and ’ArriveSubway’. They are represented by double circles in the graph.

43



Start

Leave
Office

End

[0min,80min]

Arrive
 Cosi (Drive Office Cosi)

[40min,50min]

Arrive
Quiznos

(Drive Office Quiznos)
[30min,40min]

Arrive
Subway

(Drive Office Subway)
[25min,35min]

Leave
 Cosi 

(Dine-in Cosi)
[15min,15min]

(Take-out Cosi)
[5min,5min]

Arrive
Home

(Drive Cosi Home)
[30min,35min]

Leave
Quiznos

(Dine-in Quiznos)
[25min,25min]

(Take-out Quiznos)
[10min,10min]

(Drive Quiznos Home)
[35min,50min]

Leave
Subway

(Dine-in Subway)
[35min,35min]

(Take-out Subway)
[10min,10min]

(Drive Subway Home)
[30min,35min]

Figure 2-7: The Temporal Plan Network for John’s trip

John can select one of the three restaurants to go to after leaving the office, and he

can choose to dine-in or take-out when he arrives at a restaurant.

In total, the tpn encodes six candidate temporal plans for John to choose from.

A temporal plan is like a TPN without any choices, therefore all activities and events

are activated. To extract a temporal plan from a TPN, one may make a set of Make

a set of assignments to the choices of the TPN to eliminate contingencies.

Definition 9. (An assignment of choices in TPNs) A choice to a TPN is a pair

< de, sp > where:

• de is a decision event with domain DSP.

• sp is a sub plan and sp ∈ DSP.

However, not all choice sets to a TPN result in a temporal plan. A set of choices

is valid only if it is complete.

Definition 10. (Assignments to TPNs) A set of assignments, θ, to a TPN is com-

plete if and only if:

• There is no decision event that is activated by θ but not assigned.

• All decision events in θ must be either always active or activated by one of

the choice in θ.
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A set of assignments to a TPN is incomplete or partial if there is a decision

event that is activated [14] but not assigned.

A set of assignments to a TPN is superfluous if there is a decision event that is

assigned but neither activated by one of the choice nor always active. An event is

always active if it is activated in all sub-plans regardless of the choices made to the

decision events.

Note that the completeness of A choice assignment is different from the complete-

ness of temporal plan. A complete set of choices to a TPN will result in a temporal

plan that supports the goals of the QSP. Such a temporal plan is called a candidate

temporal plan of the TPN:

Definition 11. (Candidate Temporal Plans of a TPN) A Candidate Temporal

Plan, P, of a TPN, N is a temporal plan where:

• P’s events, E, is a subset of the events in N .

• P’s sub plans, SP, is a subset of the sub plans in N .

• P’s temporal constraints, T C, is the same as the temporal constraints in N .

• E, SP and T C can be activated by one complete set of choices to N .

A TPN may have multiple candidate temporal plans, depending on the number

of choices and the domain size of each decision events. For example, (Figure 2-8) is a

candidate temporal plan of the previously mentioned TPN. It takes John to Quiznos

and has join dining in at the restaurant.

Further, the solution to a QSP can be defined as a complete and consistent TPN,

in which the state and temporal constraints specified in the QSP are satisfied by at

least one of the candidate plans of the TPN. For example, (Figure 2-7) is a consistent

TPN, and is complete with regarding to the temporal planning problem with John’s

goals specified in (Figure 2-1).

Definition 12. (Complete and Consistent Temporal Plan Networks)
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Figure 2-8: One temporal plan for John’s trip

A TPN is complete if at least one of its candidate temporal plans is complete.

A TPN is consistent if at least one of its candidate temporal plans is consistent.

Finally, similar to over-constrained temporal plans, we can define over-constrained

TPNs:

Definition 13. (Over-constrained Temporal Plan Networks) A temporal plan network

T PN is over-constrained if none of its candidate temporal plans is both complete

and consistent, but at least one of them is an over-constrained temporal plan.
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2.3 Failure When Generating Complete and Con-

sistent Plans

Recall that our problem of relaxing a QSP is driven by the fact that the QsP as given

can’t be solved. Specifically, there are some temporal planning problems for which

no temporal plan can be found to satisfy all state and temporal constraints in the

problem. Such a problem is called an infeasible temporal planning problem. In this

section, we define the feasibility of temporal planning problems using temporal plans.

Further, if a problem is infeasible, it indicates that there are conflicts between the

goals specified in its QSP. These conflicts provide useful clues about where to relax

the QSP. We discuss two possible causes of failure in this section based on the type

of conflicts.

2.3.1 Defining the Feasibility of Qualitative State Plans

Given a temporal planning problem, we define its feasibility based on the solution

that can be generated by a planner:

Definition 14 (Feasible QSPs). A QSP, Q, is feasible if and only if there exists a

temporal plan, P where:

• P is complete. It satisfies all the state and temporal constraints specified in

the QSP of Q: the state trajectories generated by the activities in P satisfy the

state constraints, and the state and end time of the state trajectories satisfy the

temporal constraints. In other words, P |= Q.

• P is consistent. There is no logical inconsistency between the activities and

temporal constraints in P. Every precondition has an action that precedes it,

which produces the effect that is desired by the precondition.

Otherwise the QSP is said to be infeasible.

We may separate the infeasible problems into three categories:
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• Given a planning problem, Q, no complete temporal plan can be found that

entails all the state and temporal constraints in Q.

• Given a planning problem, Q, there exists a complete temporal plans, P , that

can satisfy all the constraints inQ. However, none of the plans in P is consistent.

• Given a planning problem, Q, there is only a set of incomplete but consistent

plans, P . All plans in P are consistent, but cannot satisfy all the constraints

in Q.

We may further divide the second category based on the type of inconsistencies:

Q may have complete but temporally inconsistent plans, meaning that some of the

temporal constraints are violated; or complete but state inconsistent plans, meaning

that some of the preconditions or maintenance conditions of activities are violated.

2.3.2 Outputs of a Planner Given an Infeasible QSP

In this subsection, we discuss the reasonable outputs of temporal planners when giving

different QSPs. Throughout this thesis, we assume that there exists an algorithmic

planner that can differentiate these types of infeasible problems. More specifically,

given a temporal planning problem Q, there are four possible outputs:

• a complete and consistent temporal plan, if the problem is feasible.

• a complete but inconsistent temporal plan, if the problem is infeasible.

• an incomplete but consistent temporal plan, if the problem is infeasible.

• a signal of failure, if the problem is infeasible and no complete plan and consis-

tent plan exists.

A temporal planner will always try to give a complete and consistent temporal

plan as the solution to the planning problems. However, no such plan exists if the

problem is infeasible. An infeasible temporal planning problem is the result of the

conflicts between the goals specified by the user and the planning domains. In other
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words, what the user asks for cannot be supported by the planning domain. We list

three possible outputs of a planner above if the planning problem is infeasible.

First, if the planner cannot find a consistent plan that can satisfy all the con-

straints in the QSP, but only a subset of the constraints, it will return an incomplete

but consistent temporal plan. It indicates that the options in the planning domain

are insufficient for satisfying all the state and temporal constraints of the problem,

and it requires the user to supply more options in order to produce a plan.

For example, the robot in (Figure 2-9) is going to move from room A to room B.

There is a door in between, but the robot does not know how to open it: the action

’open door’ is not defined in its planning domain. Therefore, a planner would fail to

generate a plan that can take the robot from room A and room B. This is the case

where no complete plan exists given a planning problem.

A B

Figure 2-9: Plan failure caused by insufficient options

Second, if only complete but inconsistent temporal plans can be found with respect

to the QSP of Q, it indicates the planner can generate a set of activities that satisfies

the state and temporal constraints. However:

• A. Some of the preconditions or maintenance conditions of the activities do not

hold, or

• B. No schedule to these activities exists that can meet all temporal constraints.
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In case A, the activities in the temporal plan cannot be executed due to the

unsatisfied preconditions. This is likely to occur if a planner tries to satisfy each

constraint separately and ignore the dependencies between the generated activities. In

case B, the duration and sequence of the activities is incompatible with the temporal

constraints in the QSP. This usually occurs when the planner is unaware of the

temporal constraints in the planning process, that is, a non-temporal planner is used

on temporal planning problems.

Such a plan is framed as an over-constrained temporal plan in Section 2.2. For

example, John is late for work and would like to arrive at his office in ten minutes.

However, the traffic is heavily jammed hence driving there will take at least thirty

minutes (Figure 2-10). Here, the activity generated by the planner, ’(Drive home

office)’, satisfies John’s goal of arrive at his office, but the long time required for John

to drive to his office would violate the temporal constraints. Under this situation, the

user has to relax some of his/her goals in order to produce a feasible plan.

Leave
Home

Arrive
Office

[0min,10min]

(Drive Home Office)
[30min,60min]

Figure 2-10: Plan failure caused by conflicts between temporal constraints and activ-
ities

Finally, the planner may return nothing but a signal of failure, meaning that it

cannot satisfy even a subset of the constraints specified in the QSP. This is unlikely

since it indicates that the planning domain is not related to the planning problem at

all. In this thesis, we do not consider this as a reasonable output of a planner.
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2.4 Resolving Infeasible Problems By Relaxing Goals

In this section, we present the resolutions to infeasible temporal planning problems.

As stated in Section 2.3, no complete and consistent temporal plan can be found

to infeasible problems. An infeasible problem is the result of conflicts between the

constraints specified by the QSPs and the planning domains used by the planner.

There are few things the user could do with the planning domain, like adding more

actions, since it is usually determined by the environments. Therefore, to resolve an

infeasible temporal planning problem, we have to modify some of the goals, which

are specified by state and temporal constraints in its QSP.

In this section, we start by defining the QSP relaxation problem in its most general

form. We characterize different categories of relaxations to a QSP. Then we describe

a more specific problem of QSP relaxation and present the two specific instances

addressed in this thesis. We present the position of our work in the road map as well

as open problems for future research.

2.4.1 The Relaxation Problems for QSP

In this thesis, we focus on QSPs that are infeasible because one or more of its candidate

plans is over constrained. We achieve QSP feasibility through a relaxation of the

temporal constraints of the qsp that makes consistent one or more of the candidate

temporal plans. As presented in Section 2.2, an over-constrained temporal plan is

complete but temporally inconsistent. This could be generated by a planner that

is not aware of temporal constraints. Given an infeasible planning problem and its

over-constrained temporal plans, we can restore its consistency by modifying some

episodes and temporal constraints in the QSP to enable a complete and consistent

plan. Such a modification is called a Relaxation to a QSP:

Definition 15. [Relaxations to QSP] Given a QSP Q with a set of complete but

inconsistent temporal plans to it, TPN , a Relaxation is a pair < E , T >, where E
is a set of state constraints, and T is a set of temporal constraints. In addition,

• E |= E ′, where E ′ is the state constraints in Q.
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• T |= T ′, where T ′ is the temporal constraints in Q.

such that at least one candidate plan in TPN is now consistent and satisfies E ′ \ E
and T ′ \ T .

Here, TPN represents a set of temporal plans to the planning problem. Note that

this relaxation does not need to rely upon TPNs. TPN can be replaced with a set of

candidate plans that are considered by a planner. Given an infeasible QSP, we would

like to find a relaxed set of goals, E and T , that entails the original goals specified by

the QSP while enabling a complete and consistent plan to be generated. The problem

of generating relaxations to an infeasible QSP is defined as Relaxation Problems:

Definition 16. (Relaxation Problems) Given an infeasible temporal planning prob-

lem, Q. A Relaxation Problem is the problem of generating relaxations, E and

T for Q, such that a complete and consistent plan that satisfies E and T can be

generated.

In other words, to resolve an over-constrained plan, a relaxation modifies some

of the state and temporal constraints in its QSP. As stated in the definition, there

are two types of relaxations: 1) Modifying state constraints 2) Modifying temporal

constraints. This thesis only discusses the schedule relaxations, in which temporal

constraints of a QSP are modified in order to enable a complete and consistent plan

from an initially inconsistent planning problem.

2.4.2 Temporal Relaxation for QSP

Such a relaxation is called a Temporal Relaxation. Formally, a Temporal Relaxation

to a QSP is defined as:

Definition 17. (Temporal Relaxation to a QSP) A Temporal Relaxation, T R,

to a QSP Q is a set of temporal constraints modified from the subset of the temporal

objectives T where:

• T R |= T .
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• Replacing T in Q with T R enables a complete and consistent temporal plan to

be generated.

That is, the temporal relaxation modifies some of the temporal constraints in the

QSPs. As presented in Section 2.1, we use simple temporal constraints to represent

the users’ requirements on temporal relaxations, and each simple temporal constraint

restricts the times assigned to its start and end events. Therefore, relaxing a temporal

constraint is in fact modifying the temporal bound of it. In this thesis, we introduce

two restrictive forms of temporal relaxations for the temporal constraints in a QSP:

discrete relaxations and continuous relaxations. First, a temporal relaxation may

simply remove some of the temporal constraints in the QSP, generating a Discrete

Temporal Relaxation:

Definition 18. (Discrete Temporal Relaxation) A Discrete Temporal Relaxation,

DT , to an over-constrained QSP is a temporal relaxation in which a set of temporal

constraints DT R is modified where:

• DT R ⊆ T . T is the set of temporal constraints in the QSP.

• T = T \ DT R

For example, (Figure 2-11) shows an over-constrained temporal plan in which the

duration of activities is inconsistent with the temporal constraint, ’[0min,60min]’. If

this temporal constraint is removed, a schedule to all of the events can be found and

hence making the plan consistent.

Start

Leave
Office
t=0min

End
[0min,60min]

Arrive
Quiznos
t=30min

(Drive Office Quiznos)
[30min,40min] Leave

Quiznos
t=40min

(Take-out Quiznos)
[10min,10min] Arrive

Home
t=75min

(Drive Quiznos Home)
[35min,50min]

Figure 2-11: A discrete temporal relaxation to a John’s trip

The discrete temporal relaxation takes an all-or-nothing approach in which tempo-

ral constraints are either preserved or removed. For example, a student who realizes
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that he cannot complete the problem set on time decides not to do it. However,

a better solution would be to ask for an extension. By introducing the concept of

continuous temporal relaxation, a weakened version of the temporal constraints can

be preserved in the relaxed problem. Therefore, the perturbations introduced by the

relaxations to the user’s goals can be minimized.

Definition 19. (Continuous Relaxation to Temporal Constraints) A Continuous

Relaxation, Ct, to a simple temporal constraint, t, is a tuple < LB′, UB′ > where:

• LB′ and UB′ are the relaxed temporal bounds of LB,UB in t, where LB′ ≤ LB

and UB ≤ UB′.

Definition 20. (Continuous Temporal Relaxation for a Temporal Planning Problem)

A Continuous Temporal Relaxation, CT R, to a QSP with a set of infeasible

candidate plans, P, is a set of continuous relaxations to the temporal constraints of

the QSP where:

• CT R |= T . T is the set of temporal constraints in the QSP.

• Each tcr ∈ CT R, is a simple temporal constraint continuously relaxed from a

simple temporal constraint tg ∈ P.

• Replacing all tg ∈ P with tcr ∈ CT R enables a complete and consistent temporal

plan to be generated with regard to the QSP.

The continuous relaxation is a generalization of the discrete relaxation: discrete

relaxations can be viewed as relaxing the temporal constraints to [−∞,+∞]. For

example, (Figure 2-12) shows a continuous relaxation to John’s QSP: a consistent

plan exists if the temporal constraint of his trip duration can be extended from 60

minutes to 75 minutes.

In summary, given an infeasible planning problem with its over-constrained plans,

we may resolve it by relaxing the temporal constraints. More specifically, we resolve

the inconsistencies between the activities and the temporal constraints by generat-

ing relaxations to the temporal constraints. There are two types of temporal relax-

ations: discrete relaxations that completely suspend the constraints, and continuous
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Figure 2-12: A continuous temporal relaxation to a John’s trip

relaxations that partially relax the constraints by modifying their temporal bounds.

Compared to discrete relaxations, continuous relaxations preserve plan elements to

the maximum and minimize the perturbations to the users’ goals. However, knowing

discrete relaxation is a stepping stone to the continuous relaxation. We will present

the algorithm that generates discrete relaxations first in Chapter 3, and then present

the continuous relaxation algorithm build on the discrete one in Chapter 4.
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2.5 Chapter Summary

This chapter defines several important concepts for this thesis. In a temporal planning

problem, the users’ goals are specified by state and temporal constraints and encoded

in Qualitative State Plans. The solution to a planning problem is a Complete and

Consistent Temporal Plan, which contains a set of activities that entails the goal

evolution in its QSP. If there are multiple solutions, we can use a Temporal Plan

Network to encode them compactly.

A temporal planning problem is feasible if such a complete and consistent plan

exists. A planning problem is infeasible if the planner fails to return a complete

plan, or returns a complete but inconsistent plan. We say that a temporal plan is

over-constrained if it is complete, in that it entails each of its goal states, but is

inconsistent. An over-constrained temporal plan is complete in that it entails all the

goals in the QSP, but is temporally inconsistent.

Infeasible planning problems are the result of conflicting goals and the options

in planning domains, and different type of conflicts lead to different type of failures.

This thesis focuses on problems whose temporal plans are over-constrained, which is

a result of conflicting activity durations and temporal constraints. We can resolve the

problem by generating temporal relaxations, which modify the temporal constraints

to enable a consistent plan to be generated.

Two useful relaxations to over-constrained temporal plans are Discrete Temporal

Relaxations and Continuous Temporal Relaxations, in which the temporal constraints

in the QSPs are modified. Discrete temporal relaxations suspend a set of the temporal

constraints completely, while continuous temporal relaxations is its generalization

that preserves all the temporal constraints. Continuous temporal relaxations only

adjust the temporal bounds of temporal constraints in order to restore consistency.
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Chapter 3

Relaxing Inconsistent Temporal

Problems using Conflict-directed

Diagnosis

In this chapter we introduce a novel approach that enumerates preferred minimal

relaxations for over-constrained goals, which can be represented by over-constrained

temporal plans. We begin by mapping the temporal plans to Optimal Conditional

Simple Temporal Networks (OCSTN), a CSP formulation with conditional and linear

constraints. Our algorithm, called Best-first Conflict-directed Relaxation (BCDR),

can resolve inconsistent OCSTNs efficiently using pruning techniques adopted by CSP

solvers and conflict-directed enumeration algorithms. BCDR is the core technique

within Uhura that supports collaborative plan diagnosis.

In the context of TPNs, BCDR resolves over-constrained problems by relaxing

the temporal constraints, which can be viewed as a schedule relaxation when refer-

ring to temporal plans. It draws insights from other constraint satisfaction solvers

like CD-A* [37] and Dualize & Advance [4], and generates discrete relaxations that

resolve inconsistent OCSTNs by suspending temporal constraints. BCDR can also

generate continuous relaxations, which significantly reduce the perturbations to the

users’ original plans: constraints are not suspended but only minimally modified.

This chapter focuses on enumerating discrete relaxations. It is a stepping stone to
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enumerate continuous relaxations, which will be presented in Chapter 4.

Compared to current relaxation methods, BCDR is innovative in two ways:

• BCDR views over-subscription and its corresponding relaxation as an instance of

consistency-based diagnosis [10, 9]. It avoids redundant solutions by introducing

the concept of minimal temporal relaxations. For example, if A is a minimal

temporal relaxation and B is a superset of A, then B is not minimal and will

not be generated. Assuming that users prefer to relax as few constraints as

possible in any situation, then all proper supersets of A are less preferable and

unnecessary for the enumeration. This is in contrast to [27], which enumerates

full relaxations for over-constrained problems.

• BCDR efficiently enumerates only minimal relaxations in best-first order. It

scales relaxation to large problems by unifying algorithms for fast enumeration

based on conflict-directed A*, with algorithms for detecting minimal relaxation

from constraint explanations. This is in contrast to [4], which does not prioritize

the relaxations.

Recall from the Chapter 1, BCDR has been implemented as part of Uhura for

a robotic air taxi, the Personal Transportation System, to support the collaborative

diagnosis of over-subscribed plans. Through a rich set of benchmark tests, we demon-

strate that BCDR achieves nearly two orders of magnitude improvement in run-time

performance of temporal relaxations compared with previous relaxation algorithms.

The benchmark result is presented in Chapter 5.

Section 3.1 presents the mapping between TPNs and OCSTNs. We demonstrate

the equivalence of TPN and OCSTN consistency that enables us to resolve over-

subscribed TPNs as inconsistent OCSTNs. Section 3.2 presents the problem state-

ments for BCDR in the context of resolving inconsistent OCSTNs. We define dis-

crete relaxation problems for OCSTNs based on the relaxation problems of TPNs.

We present an overview of the BCDR algorithm in Section 3.3. BCDR contains

four major steps: consistency checking, conflict extraction, candidate generation and

selection. We elaborate and present the details of each step in Section 3.4-3.7.
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3.1 Modeling Temporal Plan Networks using Op-

timal Conditional Simple Temporal Networks

(OCSTNs)

As presented in Chapter 2, we use Temporal Plan Networks [22] to encode a set of

plans that can satisfy the users’ requirements. A TPN is a compact representation

of multiple temporal plans composed by decision events. Within each temporal plan,

there is a set of timed activities that can satisfy the state and temporal constraints

specified by the user.

In this section, we review the mapping between a TPN and an Optimal Condi-

tional Simple Temporal Network (OCSTN, [14]). In an OCSTN, all continuous vari-

ables have real-valued domains with set-bounded constraints and all discrete variables

determine the activation of these constraints. An OCSTN is an extension to a CSP,

which adds conditional and linear constraints, hence enabling the use of constraint-

based techniques in BCDR (Section 3.3). Note that an OCSTN simply lacks the

specification of activities and operator instantiation, but this does not matter for the

purpose of scheduling. We demonstrate that each TPN has its unique correspond-

ing OCSTN, and the temporal consistency of the TPN is the same as its equivalent

OCSTN.

3.1.1 The Definition of an OCSTN

An OCSTN [14] is a hybrid CSP formalism that combines the Optimal Constraint

Satisfaction Problem (OCSP) and the Conditional Simple Temporal Network (CSTN)

[35], Which are inn turn composed of Conditional CSPs [17] and STNs [12]. An

OCSTN has two important features:

• Conditional: it uses both conditional variables and constraints. Decision vari-

ables are specified to capture the disjunctive relations between sub-problems. A

decision is specified by a guard, which activates corresponding decision variables

and constraints that rely on this guard.
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• Optimal: It uses a utility function over decision variables and constraints to

capture the users’ preference towards different sub-problems and relaxations.

• Temporal: Its constraints are simple temporal constraints.

Both features are necessary to encode a TPN: a TPN is a compact representation

of multiple candidate temporal plans with decision events, and the user can spec-

ify his/her preference using real-valued utility functions. The definition of OCSTN

extends the Simple Temporal Network ([12]), and is presented in Definition 21:

Definition 21. (Optimal Conditional STN) An OCSTN is defined as a 6-tuple <

P,Pi, V, E,GC, f(P ) >. Where,

• P is a set of discrete decision variables. Each decision variable pi is a tuple

< pi, guard >. It may have an associated guard condition guard, which is an

assignment to a decision variable. A variable is active if it has no guard or if

the guard is satisfied by the current assignment to decision variables.

• Pi ⊆ P represents the decision variables that are always active.

• vi ∈ V is the domain of a decision variable pi ∈ P .

• E is a set of events whose domains are real-valued time points.

• GC is a set of guarded simple temporal constraints. Each guarded simple tem-

poral constraint is a 5-tuple, < eS, eE, LB, UB, guard >. eS, eE ∈ E are the

start and end events. LB,UB ∈ R are the lower and upper bounds. guard is

an assignment, pi, vik, to a decision variable pi ∈ P .

• f(P ) is a multi-attribute utility function that sums up the utility values of all

assignments made to P . This is accomplished by computing the sum of the cost

of each individual assignment: f(A) =
∑

iCost(ai : pi = vik).
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Intuitively, we make decisions by assigning values to decision variables. These

assignments are called guards. An assignment, which represents a decision, can ac-

tivate other decision variables and temporal constraints that have been guarded by

this assignment.

Definition 22. (Assignment) An assignment is a pair < p, vik > where:

• p ∈ P is a decision variable in the OCSTN.

• vik ∈ vi is a value in the domain of decision variable p.

• A guard is a single assignment to a decision variable.

When a decision variable is active, it either has no guard or its guard is satisfied.

Such a guard may activate other decision variables, if this assignment is identical to

their guard. On the other hand, no assignment should be made to a decision variable

that is not active. Note that an OCSTN has two sets of variables. The continuous

variables E have domain R and are constrained by the guarded STN. The discrete

variables P , also called decision variables, have a finite domain.

Similar to the selection of a candidate temporal plan from a TPN, by choosing a

proper set of assignments from the OCSTN, we can activate a subset of the guarded

constraints and instantiated the OCSTN as a regular, unguarded STN. Such a network

is called a component Simple Temporal Network of the OCSTN:

Definition 23. (Simple Temporal Network) A Simple Temporal Network (STN)

is a pair, < E , C > where:

• E is a set of variables. Each variable ei represents a time point and has a

continuous domain, R.

• C is a set of simple temporal constraints between the variables. Each constraint,

cj, imposes a temporal requirement between the assignments of two variables in

E. In other words, if there is a simple temporal constraint, ci, between variables

ei and ej, the time difference between these two variables, ei− ej, must fall into

the time interval li ≤ ei − ej ≤ ui.
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Given an OCSTN, we would like to find a set of assignments that grounds the

OCSTN into one component STN. Such a set is called a complete set of assignments

to this OCSTN. Intuitively, for a set of assignments, we would like it to eliminate all

the disjunctions in the OCSTN, which implies that all active decision variables must

be assigned. Formally, a complete set of assignments is defined as the following:

Definition 24. (Complete set of assignments to an OCSTN) A set of assignments,

A, to an OCSTN is complete if and only if it satisfies three conditions:

• For an assignment < pi, vik > in A, the decision variable pi must be active

either through another guard in A, or defined as always active.

• There is no decision variable pj that is activated but not assigned.

• There is no conflicting assignment in A. That is, two assignments that are

associated with the same decision variable.

The OCSTN formalism is useful in that it satisfies all our needs of encoding

TPNs: the decision events, temporal relaxations and user preferences of a TPN are

well preserved in its OCSTN encoding. The solution to an OCSTN must be a set

of assignments that grounds it into a STN, which maps the temporal plan grounded

from a TPN, too.

3.1.2 OCSTN Consistency

Remember that previously in Chapter 2 we talked about checking consistency of a

TPN: a TPN is consistent if one of its candidate temporal plans is consistent, meaning

that the durations of the activities in the plan satisfy all the temporal constraints.

We define the consistency of OCSTN in a similar manner: the OCSTN is consistent

if one of its grounded STNs is consistent.

Formally, if there exists a set of assignments to an OCSTN that is complete and

all active temporal constraints can be satisfied, then the set of assignments is said to

be a consistent solution to that OCSTN.
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Definition 25. (Consistent Solutions to an OCSTN) A consistent solution Sol to an

OCSTN is a complete set of assignments where all active simple temporal constraints

gci ∈ GC can be satisfied. That is, there is a schedule T to all events E in the

component STN that obeys all active constraints.

There might be multiple consistent solutions to an OCSTN. Using the utility

function f(P ) in the OCSTN, we may select one solution with the best utility value.

Such a solution is called the optimal solution to the OCSTN.

Definition 26. (Optimal Solutions to an OCSTN) An optimal solution, OpSol to an

OCSTN is one of its consistent solutions OpSol ∈ Sols where:

OpSol = arg mins∈Sols f(s) s.t. ∀gci ∈ ActiveGC is satisfied.

An optimal solution to an OCSTN has the best utility value among all consistent

solutions. There might be multiple optimal solutions that have the same utility value.

On the other hand, if a set of assignments is complete but not temporally consistent,

then it is said to be a conflict for its OCSTN. Intuitively, conflicts can be interpreted

as the ”cause of failure”, which leads to a set of active temporal constraints that

cannot be satisfied.

Definition 27. (Conflicts of an OCSTN) A conflict, Cfl, to an OCSTN is a complete

set of assignments where all activated simple temporal constraints gci ∈ GC can not

be satisfied at the same time.

Furthermore, we can define the minimal inconsistent subset of a conflict in an

inconsistent OCSTN as a minimal conflict.

Definition 28. (Minimal Conflicts of an OCSTN) A minimal conflict, MinCfl,

to an OCSTN is a complete set of assignments and an inconsistent set of temporal

constraints activated by the assignments, GC ′. In addition, if any constraint gci ∈
GC ′ is suspended, GC ′ \ gci becomes consistent.

Minimal conflicts are the ”core cause of failure”. If one can detect and resolve all

minimal conflicts in an OCSTN, the consistency of it can then be restored. Finally,
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we define the consistency of an OCSTN based on the complete sets of assignments

and conflict we just introduced.

Definition 29. (Consistent and Inconsistent OCSTNs)

• An OCSTN is consistent if and only if it has at least one consistent solution.

That is, among all its complete sets of assignments, there is at least one set that

is temporally consistent.

• An OCSTN is inconsistent if and only if it does not have a consistent solution.

In other words, all complete set of assignments to it are conflicts.

3.1.3 Encoding a TPN using an OCSTN

Now, we are going to present the connection between TPNs and OCSTNs. Remember

that there are two motivations for us to use OCSTNs to encode the TPNs: First,

OCSTN is structurally similar to the TPN so that we can preserve all the necessary

features; Second, OCSTN is a CSP-based formalism that enables us to use efficient

constraint-based search techniques. We will be focusing on the first motivation in

this section, and leave the second motivation for Section 3.3.

In [14], a mapping between Optimal Conditional CSP (OCCSP) was introduced

to encode TPNs. However, the OCCSP formalism is not compact for relaxation

problems in that it encodes the disjunctive episodes of a TPN as domain values

for decision variables: making an assignment to a decision variable is equivalent to

selecting a set of temporal constraints. Relaxing an over-constrained OCCSP would

be adding a domain value, which contains all but suspended temporal constraints,

to a decision variable. OCSTN is a more compact encoding for relaxation problems

in that a relaxation can simply be represented by a suspended temporal constraint,

regardless of the decision variables.

Intuitively, we make the connection between OCSTNs and TPNs through the

mapping of decision events and decision variables, guards, episodes and temporal

constraints. Recall that the decision events in TPNs encodes different sub-plans.
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Similarly, by choosing a set of assignments to apply to the decision variables in an

OCSTN, some of its guarded temporal constraints will be activated and ground the

OCSTN into a component STN that corresponds to a sub-plan in the TPN. In ad-

dition, we made an assumption in Section 2.4 that we only consider the schedule

relaxation of over-constrained TPNs in this thesis. Therefore, we only preserve the

temporal information in the encoding of TPNs while mapping the TPN episodes into

OCSTN constraints.

For example, to map John’s trip plan TPN (Figure 3-1) to an OCSTN (Figure 3-2),

all episodes are mapped to guarded temporal constraints. Each conditional constraint

is guarded with the decision required to activate it, like ”ArriveCosi:(Dine-in Cosi)

[15min,15min]”. The activation of this constraint depends on the assignment made

to decision variable ”ArriveCosi”: it will be respected only if ”ArriveCosi” is assigned

(Dine-in Cosi) instead of (Take-out Cosi).
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[0min,80min]
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 Cosi (Drive Office Cosi)

[40min,50min]
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Figure 3-1: John’s trip modeled as a Temporal Plan Network
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Figure 3-2: John’s trip modeled as an Optimal Conditional Simple Temporal Network
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Formally, we define the encoding between TPN and OCSTN as the following.

Definition 30. (OCSTN Encoding of a TPN) An OCSTN encoding of a TPN, P, is

a 7-tuple < P,Pi, V, E,GC,RGC, f(P ) > where:

• P is a set of decision variables corresponding to the decision events in P.

• Pi is a set of decision variables that are always active. It is used to represent the

decision events in P that do not depend on choices made to any other decision

events.

• V = v1, v2, ..., vi represents the domain of each decision variable pi ∈ P . Each

domain value vik ∈ vi corresponds to a choice in a decision event of P.

• E is the set of events in P. Each event can be assigned a real-valued time point.

• GC is the set of guarded simple temporal constraints. The guard is used to

indicate the choice required to activate this constraint in P. For constraints

that are always active, their guards are empty.

• RGC is a subset of GC which represents the simple temporal constraints that

can be relaxed to restore temporal consistency without violating the completeness

and consistency of the TPN.

• f(P ) is the utility function that maps a set of assignments to a real value num-

ber. f(P ) is defined for each choice in the decision events of (P ) such that a

utility value can be computed for any combinations of choices.

Finally, we present the equivalence of OCSTN and TPN consistency. In this thesis,

we focus on the temporal consistency and relaxations of temporal plans. We start

the proof with the equivalence between the temporal consistency temporal plans and

STNs, and then expand to TPNs and OCSTNs.

Theorem 1. A temporal plan, P, is temporally consistent if and only if its equiv-

alent STN is consistent.
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Proof. [Proof by contradiction]

Given a temporal plan, P , and its equivalent STN, S, assume that S is consistent

but P is temporally inconsistent.

• If S is consistent, then there exists a set of time assignments TAs to all variables

V in S such that all the simple temporal constraints C are satisfied.

• We can construct a schedule SC to P that is identical to TAs but with all the

assignments made to the events in P .

• Given that all the constraints in S are mapped from the activities and temporal

constraints in P , if TAs satisfies C ∈ S, then SC can satisfy ACT and T C ∈ P .

Hence P is temporally consistent. the assumption does not hold.

We can prove the other direction using the same approach. Further, the theorem

can be extended to TPNs and OCSTNs: if any of the candidate temporal plan in a

TPN is temporally consistent, its equivalent OCSTN must have a component STN

that is consistent. Therefore, we conclude that both the TPN and the OCSTN are

consistent. Given a TPN, we can determine its consistency by encoding it into an

OCSTN and checking the consistency of the OCSTN.

Theorem 2. A TPN, T PN , is consistent if and only if its equivalent OCSTN is

consistent.
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3.2 Discrete Relaxation Problems

In this section, we define the problem of generating discrete relaxations for inconsis-

tent OCSTNs. The goal is to find a set of preferred and minimal relaxations that

can resolve the conflicts in an inconsistent OCSTN so that a consistent solution can

be found.

3.2.1 Discrete Relaxations for OCSTNs

As presented in Chapter 2, a discrete relaxation for an over-subscribed TPN is a set of

simple temporal constraints whose suspension makes the TPN temporally consistent.

The discrete relaxation for an OCSTN can be defined in a similar manner.

Definition 31. (Discrete Relaxation for an inconsistent OCSTN) A discrete relax-

ation DR to an OCSTN P is a set of simple temporal constraints where:

• DR is a subset of the simple temporal constraints in the OCSTN, DR ⊆ RGC,

that can be relaxed without violating the completeness and consistency of its

equivalent TPN.

• Removing DR from the OCSTN, that is, GC = GC \DR, restores the consis-

tency of S.

Recall that the utility function in an OCSTN only maps the assignment to a

number. However, to compare two discrete relaxations for an OCSTN, the preference

model should specify the user preferences over the suspension of different temporal

constraints, as well as the preference between different outcomes of the decision events.

More specifically, we define the requirements of the preference model as follows:

Definition 32. (Preference Models over Discrete Relaxations) A preference model,

PM, for capturing the users’ preferences over the discrete relaxations for an incon-

sistent OCSTN, P, must satisfy the following guidelines:

• Domain: PM is defined over the complete domain of the events of P. That

is, PM can be used to evaluate any relaxation for any temporal constraint in
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P, including the combinations of relaxations and choices made to the decision

variables in P. Given a relaxation R, the result of the evaluation should be a

real value that can be used for comparison, or the preferred relaxation among

two or more relaxations.

• Comparison: Given any two discrete relaxations, DR and DR′, to P, PM
can be used to choose the one that is more preferred by the user, if not equally

preferred.

• Evaluation: For any temporal constraint in P, the user always prefers to pre-

serve the constraint rather than relax it.

3.2.2 Minimal Discrete Relaxations for OCSTNs

The number of all possible relaxations for an inconsistent OCSTN is exponential

in terms of the constraints. Therefore, it would be computationally prohibitive to

iterate through all of them to find the best one. Given an inconsistent OCSTN, we

would like to generate the minimal discrete relaxation, a compact representation of all

relaxations. By using the minimal relaxation, we can reduce the number of results by

several orders of magnitude and speed up the enumeration process. In this section, we

define the Minimal Discrete Relaxation for OCSTNs based on the discrete relaxations

for TPNs presented in Chapter 2.

Definition 33. (Minimal Discrete Relaxation) A Minimal Discrete Relaxation,

MDR, for an inconsistent OCSTN, P, is a set of simple temporal constraints where:

• MDR ⊆ RGC. RGC is the set of relaxable simple temporal constraints in P.

• Suspending MDR from P, that is, GC = GC \MDR, restores the consistency

of S.

• Given a proper subset of MDR′ ⊂ MDR, GC = GC \MDR′ cannot restore

the consistency of S.
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A minimal discrete relaxation is minimal in that none of its subsets can restore the

consistency of the inconsistent OCSTN. In other words, we do not need to consider

the proper supersets of any discrete relaxations. This is the key concept that reduces

the number of results generated by BCDR. For example, if we know that John’s

problem can be resolved by removing his temporal constraint on the trip duration,

then we will not ask him to do anything beyond suspending this one constraint, like

suspending both temporal constraints of trip duration and dinner time.

3.2.3 The Discrete Relaxation Problem for an OCSTN

Finally, we define the discrete relaxation problem of inconsistent conditional OCSTN:

Definition 34. (Preferred Minimal Discrete Relaxation Problem) Given an inconsis-

tent OCSTN P and a user preference model UPM, a discrete Relaxation Prob-

lem is a problem of finding a discrete relaxation, DR, such that three conditions

hold:

• DR suspends a set of relaxable simple temporal constraints in P and makes P
consistent.

• DR is a minimal discrete relaxation.

• DR is the most preferred minimal discrete relaxation. That is, according to

UPM, DR is preferred to any other minimal relaxation.

In summary, a discrete relaxation problem is composed of an inconsistent OCSTN

and a preference model over its constraints and decision variables. The preference

model can be used to compare two relaxations with different constraint suspensions.

The desired solution to the problem is the most preferred minimal discrete relaxation.

It is the most preferred discrete relaxation according to the preference model and is

minimal in that we cannot simplify it by reducing any suspended constraint.
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3.3 Enumerating Temporal Relaxations using Best-

first Conflict-Directed Relaxation (BCDR)

If an OCSTN is inconsistent, we may apply a discrete relaxation that suspends some

temporal constraints and makes the constraint network consistent. In this section,

we present our Best-first Conflict-directed Relaxation algorithm, the core algorithm

in Uhura that generates preferred and minimal discrete relaxations for inconsistent

OCSTNs.

BCDR solves discrete relaxation problems by detecting conflicts in the OCSTN

and generating preferred minimal temporal relaxations that restores consistency.

BCDR combines ideas from the Conflict-directed A* algorithm (CD-A*) [37] and

the minimal relaxation the Dualize & Advance algorithm (DAA) [4]. It uses the tech-

nique in DAA to explore the space of minimal discrete relaxations and the best-first

conflict-directed technique in CD-A* to guide the search.

CD-A* is an Optimal CSP solver and was originally developed to enumerate likely

diagnoses for hardware failures. It supports a domain independent theory of model-

based diagnosis. This diagnosis process is framed as a form of resolving inconsistent

finite domain constraint satisfaction problems. CD-A* uses conflicts detected in the

problem to guide its best-first enumeration process. It exploits the duality between

conflicts and minimal diagnoses, which was first noted by [10], and enumerates solu-

tions that resolves known conflicts in best-first order.

DAA was designed to detect minimal conflicts in infeasible constraint satisfaction

problems. It incrementally generates minimal conflicts and relaxations using the dual-

ity between them. Similar techniques are introduced in the General Diagnosis Engine

(GDE) and Sherlock [10, 11]. This helps DAA reduce the search space and keeps the

results compact. DAA also specifies the termination condition for the incremental

minimal conflicts and relaxations enumeration process. The unification of CD-A*

and DAA enables BCDR to (1) generate compact and parsimonious relaxations; (2)

response to user queries quickly; (3) produce user preferred resolutions.

In this section, we describe the BCDR method top down, first describing the
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outer loop of the method, then dive into the details of its functions. We begin by

presenting an overview of BCDR. Then we describe the background and related work

of conflict-directed search methods in Section 3.4. Its four major procedures: con-

sistency checking, conflict detection, conflict resolution and the selection of preferred

candidate relaxations will be discussed in Section 3.5-3.7.

In the development of BCDR, we leverage off the best-first enumeration of CD-A*

and the incremental conflict detection of DAA. Both CD-A* and DAA use conflict-

directed techniques: it uses conflicts to incrementally generate new candidate relax-

ations and discover new conflicts by testing these candidates. They are different

in that CD-A* can enumerate the candidates in best-first order, while DAA can

guarantee that all candidate relaxations generated are minimal. By combining their

capabilities, BCDR is able to satisfy all the objectives we proposed in Introduction:

• Simple interaction: we generate only minimal relaxations to inconsistent tem-

poral problems; Enumerate minimal relaxation sets in best-first order according

to a preference model. Present the cause of failure (minimal conflicts) to the

user.

• Quick response: We use conflicts to guide the enumeration of temporal relax-

ations and prune search space. The minimal relaxations are generated incre-

mentally.

The program flow of BCDR is shown in (Figure 3-3). BCDR enables the incremen-

tal generation of relaxations to OCSTN. BCDR can be terminated at any time, and

the first K relaxations generated are the K best ones. It adapts the conflict-directed

search techniques used in CD-A* and DAA to guide the search over candidate space.

The pseudo code of BCDR is given in (Algorithm 1). Similar to CD-A*, BCDR

starts with the generation of the best candidate minimal temporal relaxation, cur-

rCand (Step Select Candidate), which suspends no constraints and makes the

optimal assignments to each decision variable (Function BestCandidate, Line 1).

In Line 7, the function ConsistencyCheck tests currCand for consistency (Step

Check Consistency). If currCand is consistent, it will be added to the results
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Figure 3-3: The program flow of Conflict-directed Relaxation Enumeration

DMRs (Discrete Minimal Relaxations, Line 8). Then in Line 6, the function De-

queueBestCandidate (Step Select Candidate) tests the next most preferred

candidate from CANDs.

If currCand is inconsistent, BCDR will extract a minimal conflict (Function Ex-

tractMinConflict, Line 11, Step Extract Conflicts) and update all existing

candidates using the newly discovered conflict (Function UpdateCandidates, Line

12, Step Extend Set Covering). This function implements an incremental hit-

ting set algorithm to generation minimal candidate relaxations. We also developed

a new inference based conflict extraction algorithm for temporal problems that works

one order of magnitude faster than the standard technique used in DAA. Finally,

the minimal relaxations generated by BCDR will be mapped back to the temporal

constraints in the TPN before being presented to the user.
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input : OCSTN, an inconsistent OCSTN
input : UPM, the user preference model associated with the temporal

constraints and decision events in OCSTN
input : K, number of minimal relaxations required by the user
output: DMRs, K discrete minimal relaxations to OCSTN or all available

discrete minimal relaxations, whichever is larger.

// Initialize.

1 CANDs ← {BestCandidate(UPM,OCSTN)}: Assign the best domain
value to each decision events without any relaxation.;

2 DMRs ← {}: No results generated yet;
3 CFLTs ← {}: No conflicts found yet;
4 i = 0: Reset result counter;

// Generate new candidate and test until the maximum number is

reached, or run out of candidates.

5 while i < K do

6 currCand ← DequeueBestCandidate(CANDs,OCSTN,UPM);

// If consistent, record the current candidate; Otherwise

extract new conflict and update existing candidates

7 if ConsistencyCheck(currCand) then
8 DMRs ← DMRs ∪ currCand ;
9 i← i+ 1;

10 else
11 CFLTs ← CFLTs ∪ ExtractMinConflict(currCand);

// Generate new minimal relaxation candidates.

12 CANDs ← UpdateCandidates(CFLTs,CANDs);

13 end

// If all candidates have been checked and are consistent,

no more minimal relaxations can be generated. Return the

DMRs.

14 if CANDs = DMRs then
15 return DMRs;
16 end

17 end

18 return DMRs;

Algorithm 1: Main Algorithm of BCDR: the discrete relaxation version
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3.4 Related Work

In this section, we present two conflict-directed algorithms that were developed to re-

solve inconsistent discrete domain constraint satisfaction problems: Conflict-directed

A* [37] and Dualize & Advance [4]. We start with a brief review of the algorithms,

then discuss their limitations when being applied to inconsistent conditional temporal

problems. Finally, we present the ideas that are leveraged off by our BCDR algorithm

in resolving over-constrained OCSTNs.

3.4.1 Conflict-directed A*

Conflict-directed A* was developed to solve Optimal CSPs. It can be applied to

generate the likely diagnoses to a faulty system if we view diagnosis as a form of

constraint suspension [9, 10]. CD-A* uses a best-first search strategy while making

use of the conflicts to prune the search space and guide the search. Compared to

a constraint-based best-first enumeration algorithm (constraint-based A* and [14,

18, 17]), the conflict-directed technique speeds up the process by almost one order

of magnitude [37]. Here we demonstrate CD-A* through a diagnosis problem, one

important application of this algorithm. It uses the failure likelihood of components,

represented by metric probabilities, to enumerate likely diagnoses in best-first order.

For example, (Figure 3-4) shows a set of cascaded inverters: A, B, C and D. They

have different rates of failure, from 1% to 4%. Both the input and output of the

system are one. One measurement in the middle of the system indicates zero. If one

inverter is working properly, the output of it will be the negation of the input. But,

if one inverter is broken, the output can be either positive or negative one, regardless

of its input.

Figure 3-4: Cascaded inverters with different rates of failure

75



Diagnosis proceeds by making mode assignments, guessing and checking the be-

havior mode of each component. In this simple example an inverter can be GOOD

or BROKEN. Here, making a mode assignment to one component can be viewed as

imposing a constraint between the input and output of the component. Due to the

identical input and output value, there must be something broken in the system. To

find the most likely diagnosis, CD-A* starts with the candidate of the highest prob-

ability: A,B,C,D = Good. It has a probability of 90.3%, but is inconsistent with the

negative measurement in the middle of the system. Given this inconsistency, CD-A*

may extract a conflict from this mode assignment, A,B = Good.

Next, to resolve this conflict, at least one component in A and B has to be broken.

CD-A* chooses the one with the higher likelihood, B, and generates a full assignment

from it: A,C,D = Good and B = Broken. This assignment is still inconsistent, since

C,D=Good is inconsistent with the measurements at the middle and the end.

Finally, CD-A* generates an assignment that can resolve both known conflicts at

the same time: A,C = Good and B,D = Broken. It chooses D to resolve the conflict,

since D’s rate of failure is higher than C. This assignment, is consistent with all the

measurements and observations, and is the most likely diagnosis among all consistent

diagnoses.

However, using CD-A* to enumerate relaxations raises one important issue: CD-

A* would enumerate full relaxations instead of minimal relaxations, hence the number

of results generated by CD-A* is usually large and makes it hard to effectively com-

municate with the users. For example, considering the simple diagnosis problem we

presented in (Figure 3-4), nine different full diagnoses can be generated. On the

other hand, only four minimal diagnoses exist for the problem. Therefore, we are

only interested in generating minimal relaxations. For two relaxations A and B , we

will always prefer B over A if B is a proper subset of A, that is, B is non-minimal.

Hence we never present non-minimal relaxations to the users. However, non-minimal

relaxations, like the supersets of existing relaxations, may be generated by CD-A*

due to its use of tree expansions: if some assignments are redundant but are located

at the root of the search tree, CD-A* won’t be able to remove them from the results.
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The key idea we leveraged from CD-A* is the conflict-directed search strategy.

Consistency-based diagnosis using constraint suspension [9] is a form of relaxation

problems with discrete domains: inconsistent mode assignments are the conflicts and

diagnoses are discrete relaxations to the problems. CD-A* avoids all known conflicts

while generating relaxation candidates. CD-A* starts with the best candidate and

tests consistency. If inconsistent, a conflict will be extracted and used to split the

tree expansion: the new candidate generated must resolve this conflict by flipping at

least one assignment to the variables of the broken system.

3.4.2 Dualize & Advance

The Dualize & Advance algorithm generates discrete minimal relaxations to incon-

sistent constraint satisfaction problems. Given an inconsistent problem, Dualize &

Advance extracts a conflict by iterating through all constraints. It explores the dual-

ity between minimal conflicts and minimal relaxations, that is, minimal relaxations

are the hitting sets of minimal conflicts, and vice versa. Similar concepts has been

implemented in the General Diagnosis Engine (GDE) and Sherlock [10, 11], a con-

straint relaxation algorithm which uses the hitting sets of known conflicts between

mode assignments to generate candidate diagnoses. However, neither GDE nor Sher-

lock guarantees the minimality of the relaxation. Using this principle, DAA computes

both minimal conflicts and relaxations incrementally: known minimal conflicts are

used to computer candidate relaxations through hitting sets, while candidate relax-

ations are used to discover unknown conflicts until all conflicts in the problem are

revealed.

For example, if we apply DAA on the previous diagnosis problem, it will start by

testing candidate A,B,C,D = Good. Assume that we find all two minimal conflicts in

the cascaded inverters problem through testing this candidate (Figure 3-4): A,B =

Good and C,D = Good. DAA can then generate all minimal relaxations by computing

the hitting sets of the conflicts (Figure 3-5):

However, DAA is insufficient to solve relaxation problems due to the following two

reasons:
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Minimal Conflicts

Minimal relaxation sets

A = Good ,B = Good C = Good ,D = Good

A,C = Broken A,D = Broken B,C = Broken B,D = Broken

Figure 3-5: Duality between minimal conflicts and minimal relaxation sets

• First, DAA does not consider the users’ preferences. Unlike CD-A*, it cannot

generate results in best-first order.

• Second, DAA cannot solve conditional CSPs. It requires a conjunctive set of

constraints.

BCDR leverages two ideas from DAA in solving relaxation problems. First, DAA

takes an incremental approach to detect conflicts and generate valid relaxations. For

example, given a set of known conflicts, CFLTs, It computes a set of candidate

relaxations, CANDs, using the hitting sets of CFLTs. If one of the candidates

in CANDs, candi, is still inconsistent, it implies that at least one conflict has not

been detected yet. DAA then extracts one minimal conflict from candi, update all

candidates in CANDs through the incremental hitting set algorithm, and check their

consistency.

Second, DAA terminates its enumeration if all candidates in CANDs are con-

sistent, which signals that no more minimal conflicts can be found and all minimal

relaxations have been discovered.
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3.5 Generating Candidate Relaxations from Con-

flicts

First, we present the core procedure of BCDR, the incremental generation of candi-

date relaxations. This procedure is implemented as function UpdateCandidates,

which computes all consistent candidates based on known conflicts in an OCSTN. In

this section, we start with the generation of relaxations to one single minimal conflict,

then describe our expansion that resolves multiple conflicts incrementally.

3.5.1 Generating the Constituent Relaxation of a Conflict

To resolve a conflict, one or more temporal constraints in the conflict need to be

relaxed. Recall that if any constraint is removed from a minimal conflict, the

minimal conflict will be resolved. This is the key property of minimal conflicts, and

is used by BCDR to resolve conflicts detected in inconsistent temporal problems.

For example, in (Figure 3-6), constraints ’Drive to Quiznos’, ’Have dinner’, ’Drive

home’ and ’Time Constraint’ form a minimal conflict. To resolve the conflict, we can

suspend any one of its constraints, such as the temporal constraint that specifies the

overall duration, ’Time Constraint [0min,60min]’ (Figure 3-6).

Start

Leave
Office

End
[0min,60min]

Arrive
Quiznos

(Drive Office Quiznos)
[30min,40min] Leave

Quiznos

(Dine-in Quiznos)
[25min,25min] Arrive

Home

(Drive Quiznos Home)
[35min,50min]

Figure 3-6: Resolving a minimal conflict by suspending one temporal constraint

In addition, for a minimal conflict detected in an OCSTN, one may resolve it by

changing the decision that supports the constraints involved in the conflict. Recall

that if the label of an OCSTN constraint is not satisfied, the constraint will not be

active. It is equivalent to suspending constraints and can resolve the conflict, too. For

example, the previously mentioned minimal conflicts require the following decisions:
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’LeaveOffice:Drive Office Quiznos’, ’ArriveQuiznos: dine-in’.

Modifying either decision would resolve the minimal conflicts, since some of the

labeled temporal constraints in the conflict are no longer active. BCDR uses both

of these two methods to resolve minimal conflicts detected during the enumeration

process, and generates constituent relaxation candidates to inconsistent OCSTNs.

3.5.2 Generating the Constituent Relaxations of Multiple

Conflicts Incrementally

Next, we describe the approach that resolves multiple conflicts. As stated in Chapter

2, a valid relaxation must resolve all conflicts in an inconsistent temporal problem.

Given multiple minimal conflicts, the relaxation must suspend at least one constraint

in each conflict, which makes it a covering set of all minimal conflicts. Therefore, a

discrete minimal relaxation can be defined as the minimal covering set of all minimal

conflicts in an inconsistent problem [10, 4].

However, it is difficult to accurately identify all minimal conflicts in a problem prior

to the enumeration. Detecting all the minimal conflicts requires a lot of computation:

for example, in the case of an OCSTN, the algorithm goes through each negative

cycle in each component STN. A better approach is to use an incremental search

strategy that constructs candidate relaxations based on known conflicts, and updates

the candidates when new conflicts are detected. This procedure includes the following

steps:

• Generate candidate temporal relaxations based on known conflicts.

• If the candidate is consistent, return as a valid minimal relaxation and move to

the next candidate. This is different from CD-A*, which continues extending

the search tree. In addition, this minimal relaxation is added to the collection

of known conflicts so that the same relaxation will not appear again.

• If the candidate is inconsistent, extract a new minimal conflict from it and
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update existing candidates using the conflict (Function UpdateCandidates).

Through the update procedure, we can guarantee that all candidates can resolve

at least known conflicts.

• If all candidates are tested to be consistent, terminate the enumeration. It indi-

cates that no more conflicts can be discovered, and hence all minimal relaxations

have been found.

This is very similar to an incremental repair procedure: a candidate is repeatedly

improved by newly discovered conflicts until it makes the over-constrained problem

consistent. CD-A* focuses minimal covering by performing expansion in best first

order. In BCDR, an incremental set covering algorithm is used to generate candidate

minimal relaxation sets using sequentially discovered minimal conflicts (Algorithm

2).

input : NewMinCFLT, newly discovered minimal conflict
input : PrevCandidates, previous candidate minimal relaxation sets
output: UpdatedCandidates, updated candidate minimal relaxation sets

// Generate constituent relaxations of the minimal conflict

1 ConstituentRelaxations ← ResolveConflict(NewMinCFLT);
// Start with the cross product of previous candidates and the

new conflict.

2 UpdatedCandidates ← PrevCandidates ⊗ ConstituentRelaxations;

// Remove redundant (non-minimal) candidates.

3 UpdatedCandidates ←
RemoveRedundantCandidates(UpdatedCandidates);

4 return UpdatedCandidates

Algorithm 2: UpdateCandidates

For example, assume that BCDR tests the first candidate and gets a minimal

conflict (highlighted arcs in Figure 3-7).

This minimal conflict contains four temporal constraints, ’Drive Office Cosi’, ’dine-

in Cosi’, ’Drive Cosi Home’, ’TimeConstraint’, and two decisions, ’LeaveOffice:Drive

Office Cosi’, ’ArriveDD:dine-in Cosi’. To resolve it, we can suspend any one temporal
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Figure 3-7: A minimal conflict in John’s trip plan

constraint or switch one of the decisions. In total, five candidate minimal relaxations

can be generated:

Suspend: ’dine-in Cosi’ or ’TimeConstraint’

Switch

choice:
’ArriveDD:take-out Cosi’ or ’LeaveOffice:Drive Office Quiznos’

or ’LeaveOffice:Drive Office Subway’.

Next, assuming that BCDR takes the last candidate, it will expand the candi-

date to ’LeaveOffice:Drive Office Subway ArriveSubway:Take-out Subway’. The con-

sistency check will then indicate that the candidate is still inconsistent and a new

minimal conflict can be extracted (Figure 3-8).
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Figure 3-8: Another minimal conflict in John’s trip plan

With the discovery of this new minimal conflict, BCDR then updates the current

list of candidate temporal relaxations by removing ineffective candidates and adding
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new ones. It computes the minimal covering sets of all minimal conflicts found so far,

making sure that each candidate resolves all of them. If one candidate has conflict-

ing decisions, for example, ’LeaveOffice:Drive Office Subway’ and ’LeaveOffice:Drive

Office Quiznos’, the candidate will be removed from the list, too.

Suspend: ’TimeConstraint’ or ’dine-in Subway’ or ’dine-in Cosi’

Assign: ’LeaveOffice:Drive Office Quiznos’ or ’ArriveSubway:take-out Subway’

or’ArriveCosi:take-out Cosi’

Note that this process is different from iterative repair algorithms, which are

stochastic in that they cannot guarantee the completeness and optimality of the re-

sults. Function UpdateCandidates guarantees that BCDR finds all minimal con-

flicts and corresponding minimal temporal relaxations to an inconsistent OCSTN,

given enough iterations. It terminates when all the candidates in CANDs are con-

sistent. It indicates that all minimal conflicts in the inconsistent problem have been

detected, and no more minimal relaxation can be generated.

Finally, we prove the completeness and soundness of BCDR in resolving over-

constrained OCSTNs.

Theorem 3. [Completeness of BCDR] BCDR can find all minimal relaxations given

an over-constrained OCSTN.

Proof. [Proof by contradiction]

Let MR be a minimal relaxation to an OCSTN P , and BCDR fails to generate

it.

• Since the incremental set covering method used by BCDR is complete, if MR

is not generated by BCDR, at least one minimal conflict, MinCFLT , has not

been detected by BCDR yet. Otherwise all minimal relaxation sets to P must

have been generated.

• IfMinCFLT is unknown to BCDR, some of the candidate relaxations generated

by BCDR must be inconsistent when BCDR terminates, since not all of the

candidate relaxations can resolve the unknown MinCFLT .
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• However, this contradicts with the termination condition of BCDR: BCDR will

only terminate if all candidates are minimal relaxations that resolve all conflicts.

Hence the assumption is faulty. BCDR is complete.

Theorem 4. [Soundness of BCDR] All the results generated by BCDR are minimal

relaxations that resolve all conflicts in an OCSTN.

Proof. A minimal relaxation generated by BCDR is correct in two aspects:

1. Must be a valid relaxation: since all relaxations generated by BCDR must

pass consistency check before being returned to the user, they have to resolve all the

conflicts in the over-constrained OCSTN.

2. Must be minimal: this is guaranteed by the minimal set covering process. All

candidates generated are the minimal covering sets of known conflicts.

Hence all minimal relaxations returned by BCDR are correct, that is, are minimal

and resolve all conflicts.

In summary, we presented the candidate generation method used in BCDR. Given

an inconsistent OCSTN, the method is guaranteed to find all discrete minimal relax-

ations that resolve all its conflicts. We make use of the property of minimal conflicts,

for which a conflict can be resolved by suspending any one constraint in it. We then

compute candidate relaxations through a minimal set covering process. In addition,

to improve the performance in real world applications, we developed the incremental

approach UpdateCandidates that generates candidate based on known conflicts,

then makes updates when new conflicts are detected. Therefore, the first minimal

relaxation will be generated as early as possible, and even prior to the discovery of

all conflicts.
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3.6 Selecting Preferred Candidates

The problem we are addressing in this section is: given a set of candidate relaxations

and a user preference model, select the most preferred one from the set. We present

the candidate selection procedure of BCDR, GenerateCandidate, which evaluates

the candidates and selects the most preferred one from all candidates generated in

Section 3.4. It guides the enumeration towards the most preferred relaxation and

guarantees that BCDR enumerates minimal relaxations in best-first order, according

to predefined user preference models.

The users usually have preferences over temporal constraints in the problems.

For example, John may have a very important party at home, thus he would rather

shorten his dinner time to delay this arrival. Considering user preferences during

the relaxation process can significantly improve the efficiency while communicating

the temporal relaxations to the user: if resolutions are generated in best-first order

according to the user’s preferences, there will be a much higher chance that the

passenger can find his preferred relaxation without going through too many iterations

with Uhura. This is one of the key enablers of simple interaction in collaborative plan

diagnoses.

In Section 3.2, we defined the preference models that could be used in relaxation

problems. Here we present one such model that satisfies the requirements: a metric

cost function over constraints and decision events. Section 3.6.1 describes the outer

loop function, GenerateCandidate, and in Section 3.6.2 we present a quantitative

preference model that can be integrated with BCDR.

3.6.1 Selecting the Most Preferred Candidate

The key to improving user interactions is to find the preferred resolution as quickly

as possible. Therefore, BCDR enumerates temporal relaxations in best-first order to

increase the opportunity that the user agrees to one of the first several resolutions.

Given a list of candidate minimal relaxations and a user preference model, Function

DequeueBestCandidate finds the most preferred candidate in that list. This
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problem is formally defined as the following:

Definition 35. (Find the Most Preferred Candidate) Given a list of candidate mini-

mal temporal relaxations CANDs and a preference model UPM, return the candidate

that is most preferred by the user compared to all the other candidates in the list

according to UPM.

• The user preference of a minimal relaxation, MR, is evaluated based on the best

relaxation covered by MR. In other words, the user preference over MR is the

preference of the best temporal relaxations among its supersets.

• The preference model, UPM, can be used to compare two candidate temporal re-

laxations and return the preferable one. If two candidates are equally preferable

or not comparable, UPM returns both candidates or signal failure.

Any preference models that can be used to compare two relaxations can be used

in BCDR. Given such a preference model, DequeueBestCandidate is guaranteed

to find the most preferred candidate in a list of candidates. In this section, we

demonstrate BCDR using a metric cost function over the temporal constraints and

decision events in an OCSTN.

Function DequeueBestCandidate (Algorithm 3) selects the best candidate

through a series of binary comparisons (Function Better?, Line 3). It takes an

A* like approach: instead of comparing the partial choices and relaxations gener-

ated by the minimal set covering process, it expands both candidates to the best

full candidates that subsume them before the comparison. This guarantees that

DequeueBestCandidate generates the candidate that leads to the best minimal

relaxation to the problem.

The additional expansion step is implemented in (Function Expand of Algorithm

3). Due to the inherent property of the minimal set covering procedure (Algorithm

2), the candidates generated from conflicts are usually incomplete relaxations, such

as selecting ’LeaveOffice:(Drive Office Quiznos)’ and suspending ’Time Constraint’.

There might be unassigned decision variables in the candidate.
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input : CANDs, a list of candidate discrete minimal relaxation sets
input : TPN, the over-constrained TPN
input : UPM, the user preference model
output: BestCandidate, the best candidate in CANDs

// Initialize BestCandidate with the first candidate in the

list.

1 BestCandidate ← GetFirst(CANDs);

// Loop through the list of candidates; select the best one

through a series of binary comparisons.

2 for currCandidate in CANDs do
3 if Better?(Expand(currCandidate),Expand(BestCandidate)) then
4 BestCandidate ← currCandidate
5 end

6 end

7 return BestCandidate

Algorithm 3: DequeueBestCandidate

Therefore, BCDR uses a standard A* approach: instead of comparing the costs of

partial candidate, it compares the best complete candidate that subsumes the partial

candidate. This is similar to the admissible heuristics that provides a bound on the

cost of extending this partial candidate. The expansion procedure involves two steps:

• First, BCDR expands a partial candidate by adding all necessary decisions to

activate the constraints in it.

• If there are decision variables in the OCSTN left unassigned after the first step,

BCDR will make choices to them until the candidate is complete. In the second

step, all choices made by BCDR select the best option within the domain of

decision events.

For example, a partial candidate from the previous example is ’LeaveOffice:(Drive

Home Quiznos)’ and suspending ’Time Constraint’ (Figure 3-9(a)). The decision at

’ArriveQuiznos’ needs to be made. The expansion step selects the domain value with

the lowest cost for this unassigned decision event, ’(dine-in Quiznos)’, and avoids

suspending any more constraints to minimize the cost. (Figure 3-9(b)).
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(a) Incomplete Candidate
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(b) Expanded candidate

Figure 3-9: Examples of expanding incomplete candidates

We now prove the optimality of BCDR.

Theorem 5. Given an inconsistent OCSTN, P, and a valid preference model, UPM,

the first minimal relaxation returned by BCDR is the most preferred one according to

UPM, given that Function DequeueBestCandidate always returns the best can-

didate.

Proof. [Proof by contradiction]

Assume that the minimal relaxation generated by BCDR, MR, is not the best

one. There is another minimal relaxation, MR′, which is more preferred by the user.

Both MR and MR′ are valid relaxations. Therefore, they resolve all the conflicts,

allCFLTs, in P .

Next, MR must be generated from a set of minimal conflicts, knownCFLTs, which

is a subset of allCFLTs. Given that DequeueBestCandidate returns the most
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preferred candidate in the list, MR is the best relaxation that can resolve all the

conflicts in knownCFLTs.

However, MR′ also resolves knownCFLTs, since it is a valid relaxation and must

resolve all conflicts.

Therefore, MR′ cannot be better than MR. The assumption does not hold.

BCDR generates the best minimal relaxation given an over-constrained OCSTN.

Finally, the preference model is implemented in the Better? function, and must

satisfy the requirement specified in this section. The model is only used to compare

two complete candidate relaxations, and it is the only preference model specific part

of Function DequeueBestCandidate.

3.6.2 Modeling Preference using Metric Costs

We now demonstrate a preference model in temporal relaxation problems, the metric

cost function. It models the users’ preference with quantitative values: each constraint

is given a cost value and the planner is designed to find the plan with the lowest cost

[28]. The metric cost function is useful in that it accurately captures the relative

preference over different relaxations, and is easy to compute.

In temporal relaxation problems, the goal is to satisfy as many user preferred

constraints as possible [30]. The metric cost model associates each decisions and

constraints with real numbers: the cost of a decision is received if one relaxation

makes the choice; and the cost of a constraint is received if the temporal constraint

is suspended in a relaxation. This is similar to a weighted constraint in MaxSAT

problems [2].

Definition 36. (Simple Metric Cost Functions) A metric cost function of an OCSTN,

F , is a mapping from constraints and decisions in the OCSTN to real values where:

• Each temporal constraint, tci, is mapped to a real value ctci ← F(tci) represent-

ing the cost if this temporal constraint is suspended. The cost is zero if tci is

preserved.
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• Each label, dej, of an each decision variable, DEi, is mapped to a real value

cdej ← F(dej) representing the cost of choosing dej.

• The total cost of a temporal relaxation is defined as the sum of the costs of deci-

sions and all suspended temporal constraints: Cost←∑m
1 F(tci) +

∑n
1 F(dej).

• Given two temporal relaxations, T Ca and T Cb, the users prefer T Ca if Cost(T Ca) <

Cost(T Cb), and vice versa.

The term ’received’ implies that the cost is incorporated into the overall cost of

the solution. In this subsection, we demonstrate the enumeration process using an

additive objective function. For example, in (Figure 3-10), decision variable ’Leave-

Office’ has three labels with different costs: ’(Drive Office Cosi)’(10),’(Drive Office

Quiznos)’(20) and ’(Drive Office Subway)’(30). The label with the lowest cost, ’Leave-

Office:(Drive Office Cosi)’ is the most preferred one. The same principle applies to

constraints: suspending ’(dine-in Cosi)’(30) is preferred to suspending ’TimeCon-

straint’ (100).
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Figure 3-10: A real valued objective function for John’s trip plan TPN

The cost of a minimal relaxation is computed by summing up the costs of all

decisions and suspended temporal constraints in it. For example, (Figure 3-11) shows

a relaxation in which John will go and have dinner at Cosi without satisfying the

overall time constraint. The cost of this solution is:
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F (Drive Office Cosi) + F (dine-in Cosi) + F (suspend ’TimeConstraint’)

10 + 30 + 100 = 140

Start

Leave
Office

End
[0min,80min] → [-∞,+∞]

Cost:100

Arrive
 Cosi 

(Drive Office Cosi)
[40min,50min]

Cost:10

Arrive
Quiznos

(Drive Office Quiznos)
[30min,40min]

Cost:20

Arrive
Subway

(Drive Office Subway)
[25min,35min]

Cost:30

Leave
 Cosi 

(Dine-in Cosi)
[15min,15min]

Cost:30

(Take-out Cosi)
[5min,5min]

Cost:60

Arrive
Home

(Drive Cosi Home)
[30min,35min]

Leave
Quiznos

(Dine-in Quiznos)
[25min,25min]

Cost:30

(Take-out Quiznos)
[10min,10min]

Cost:60

(Drive Quiznos Home)
[35min,50min]

Leave
Subway

(Dine-in Subway)
[35min,35min]

Cost:30

(Take-out Subway)
[10min,10min]

Cost:60

(Drive Subway Home)
[30min,35min]

Figure 3-11: The real valued cost for a minimal relaxation set

To compare two candidates with metric cost, one may simply compare the sum

of their costs of choices and constraint suspension. For example, the cost of the

candidate in (Figure 3-9(b)) is 150, which is larger than the cost of (Figure 3-11).

Hence, F (Drive Home Cosi) + F (Dine-in Cosi) + F (suspend Time constraint) is

a more preferred resolution to F (Drive Home Quiznos) + F (Dine-in Quiznos) +

F (suspend Time constraint).

In summary, we presented the method that selects the best candidate. Given

a list of candidate relaxations, the Function DequeueBestCandidate is able to

return the best one according to a preference model. Using this method, we proved

that BCDR generates minimal relaxations for over-constrained temporal problems in

best-first order.
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3.7 OCSTN Consistency and Conflict Detection

In this section, we present the method that checks if an OCSTN is consistent and

detects the cause of failure (conflicts) if the OCSTN is inconsistent. We first give a

brief review of the negative cycle detection algorithm, a standard method for consis-

tency checking of temporal constraint networks. Then we present a domain-specific

inference-based method, ExtractMinConflict, which extracts minimal conflicts

from inconsistent OCSTNs. It explores the connection between conflicts and negative

cycles in a temporal constraint network, and performs one order of magnitude faster

than the methods used in ([4, 29]) for STNs.

BCDR implements the Incremental Temporal Consistency algorithm [20] and

Bellman-Ford algorithm [7] in the ConsistencyCheck function to check the con-

sistency of Simple Temporal Networks. Both algorithms look for negative cycles in

the equivalent distance graphs of STNs to determine consistency. If a STN is incon-

sistent, there must be negative cycles in the network, which indicates the existence of

conflicts between the constraints. ExtractMinConflict then maps the negative

cycles to conflicting sets of constraints and reveal the core cause of inconsistency.

3.7.1 Consistency Checking as Negative Cycle Detection

We start with a review of consistency checking of simple temporal networks. A

STN can be viewed as a special case of a linear programing problem, in which linear

constraints are replaced by simple temporal constraints. One may use general LP

algorithms, such as Simplex algorithm [8] and interior-point method [21], to find

solutions to simple temporal networks. However, these algorithms are designed to

find the optimal solutions of LP problems instead of checking consistency, hence not

efficient if we only want to know about the consistency of a temporal network. In

fact, it has been shown that due to the special formulation of STNs, an equivalent

distance graph always exists for any STN and the consistency can be determined by

negative cycle detection algorithms, which are significantly more efficient.

A STN can be converted to an equivalent directed constraint graph. The
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equivalent distance graph, DG, of a STN has the same set of variables. The directed-

arcs in DG are generated from the simple temporal constraints in the STN. Each

constraint ci is converted into two directed arcs: one marked with upper bound

pointing to the end variable, and the other one marked with the negation of lower

bound and pointing to the start variable (Figure 3-12).

ej ei
[l,u]

(a) A simple temporal constraint

ej ei
u
-l

(b) its equivalent arcs in distance graphs

Figure 3-12: Convert a simple temporal constraint to arcs in a distance graph

Following this rule, we can convert the STN in (Figure 3-13(a)) to its equivalent

distance graph and check its consistency as a negative cycle detection problem.

Leave
Office

Arrive
Restaurant

Drive to restaurant
[20min,40min]

Arrive
Home

Time Constraint
[0min,60min]

Leave
Restaurant

Have dinner
[30min,30min] Drive home

[30min,40min]

(a) An inconsistent STN of John’s trip back home
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Restaurant40

Arrive
Home

60
-20

Leave
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30
-30 40

0

-30

(b) The corresponding inconsistent temporal
graph

A negative cycle is a cycle in a distance graph whose weighted directed arcs sum to

a negative value. For example, the highlighted arcs in (Figure 3-13) forms a negative

cycle, since the sum of the weights of all arcs is -20.

Negative cycles in distance graphs can be detected by many shortest-path algo-

rithms, like Floyd-Warshall [15] and Bellman Ford [7]. For an equivalent distance

graph of a STN, its existence indicates that the STN is inconsistent [12]. For refer-

ence, the Floyd-Warshall algorithm is provided in (Algorithm 4).
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Figure 3-13: A negative cycle in a distance graph

input : V, the set of vertices in a distance graph
output: E, the set of edges in a distance graph

1 for i in V do
2 for j in V do
3 for k in V do
4 if Eij > Eik + Ekj then
5 Eij ← Eik + Ekj

6 end

7 end

8 end

9 end

10 for i in V do
11 if Eii < 0 then
12 return false
13 end

14 end

15 return E

Algorithm 4: The ConsistencyCheck function using Floyd-Warshall All-
Pairs Shortest Path algorithm

For OCSTNs, one can determine if it is temporally consistent by grounding it

into component STNs and check the consistency of each component STN using neg-

ative cycle detection algorithms. According to the definition (Section 3.1), if one

of the component STNs is consistent, so is the OCSTN. Otherwise, the OCSTN is

over-constrained, since no guard set can be found that activates a consistent set of

constraints. A faster and incremental approach to check the consistency of OCSTNs,

Incremental Temporal Consistency, is presented in [19, 13].
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3.7.2 Extracting Conflicts

Now we present the ExtractMinConflict method that extracts minimal conflicts

from inconsistent OCSTNs using inference. It uses an approach that extracts mini-

mal conflicts quickly using the negative cycle detection algorithms, without looping

through all constraints in the problem, like the conflict extraction algorithm used by

Dualize & Advance. We first describe its implementation on STNs, then present an

expansion to ExtractMinConflict that extracts conflicts from OCSTNs.

Conflicts in STNs

First, we define the conflicts of an inconsistent STN:

Definition 37. A conflict CFLT of a STN < V , C > is a subset C ′ ⊆ C such that C ′

is inconsistent. A minimal conflict of a STN is a conflict C ′ whose proper subsets

are not conflicts.

In other words, if one constraint is removed from a minimal conflict, MinCFLT ,

then it is no longer a conflict. Given an inconsistent STN, there must be conflict in

the STN so that no schedule can satisfy all constraints. For example, in John’s trip

plan, his time constraint is too small compared to the time required by his trip: the

sum of driving and dinner durations is at least 80 minutes, which is much larger than

the time constraint (60 minutes).

The set of all constraints of an inconsistent STN forms a conflict. However, in

most cases it is more useful to consider conflicts that are minimal: A conflict is an

inconsistent set of constraints; A minimal conflict is a conflict such that no subset of

it is a conflict. Hence, the removal of any constraint in a minimal conflict restores

its temporal consistency. Intuitively, the minimal conflicts can be interpreted as the

core causes of failure. In addition,

For example, constraints ’Drive to restaurant’, ’Have dinner’, ’Drive home’ and

’Time constraint’ in (Figure 3-13(a)) form a minimal conflict. if John removes his
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goal of trip duration, that is, the ’Time Constraint’ in the STN, the conflict will be

resolved (Figure 3-14).

Leave
Office

Arrive
Restaurant

Drive to restaurant
[20min,40min] Leave

Restaurant

Have dinner
[30min,30min] Arrive

Home

Drive home
[30min,40min]

Figure 3-14: John’s trip without the temporal goal of duration

Detecting Minimal Conflicts of unconditional STNs

Conflicts can be detected through search, inference or a mix of both. There are mul-

tiple ways to detect a minimal conflict in an inconsistent STN. DAA uses a search

based approach that iterates through all constraints in a problem and tests which

constraint can be removed, while keeping the problem inconsistent. (Function Ex-

tractMinConflict) works in the same way as the GROW function in the Dualize

& Advance algorithm (Algorithm 5). This general method works for all constraint

satisfaction problems with either discrete or continuous variables. However, it re-

quires K (the number of constraints in the problem) consistency checks regardless

of the type of problem. This significantly decreases the efficiency of the relaxation

generation process.

There are conflict detection algorithms that largely use inference, and are much

faster than algorithms based on search. The most common example is the conflict

extraction based on unit propagation and is performed by Truth Maintenance Systems

[11]. For problems with simple temporal constraints, we developed a faster way to

extract the minimal conflict using negative cycles. This is an inference approach that

is similar to the conflict extraction method implemented in GDE [10], which detects

conflicts through propagating observations through mode assignments.

The existence of a negative cycle indicates that the set of constraints correspond

to the cycle is inconsistent. Therefore, if a set of constraints correspond to a negative

cycle, they form a conflict. ITC and Bellman Ford algorithms detect negative cycles
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input : currCAND, an inconsistent candidate relaxation set
output: minCFLT, a minimal conflict

// Initialize.

1 minCFLT ← UnsuspendedConstraints(currCAND): Start with the
unsuspended constraints in the inconsistent candidate, which is a
non-minimal conflict;

// Loop through all constraints that are active in minCFLT

2 for Constraint in minCFLT do
3 if ¬ConsistencyCheck(minCFLT\Constraint) then

// If the removal of Constraint cannot restore temporal

consistency, remove it from the conflict

4 minCFLT←minCFLT\Constraint;

5 end

6 end

7 return minCFLT;

Algorithm 5: ExtractMinConflict

to determine inconsistency. However, neither ITC nor Bellman-Ford guarantees the

minimality of the conflicts extracted. They may return non-simple cycle such as the

one shown in Figure 3-15(a). A non-simple cycle is a cycle in a distance graph with

repeated vertices, and may correspond to a conflict that is non-minimal. We present

the ExtractMinConflict function used by BCDR that extracts minimal conflicts

from inconsistent STNs. It adds a post-process to the negative cycles and minimizes

them using (Theorem 6).

Theorem 6. A set of simple temporal constraints that forms one and only one neg-

ative cycle without repeating vertex is a minimal conflict.

Proof. If T is a set of temporal constraints that contains a negative cycle NC, mean-

ing that T is a conflict. There is no consistent schedule to the events in T , EVT ,

that can satisfy all the temporal constraints.

Next, if there is no repeated vertex in NC, one and only one cycle of edges exists

in this negative cycle. If one edge is removed, NC will be broken: no negative cycle
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in T exists any more.

Therefore, for a negative cycle without any repeating vertex, the removal of any

temporal constraint will break the negative cycle. Hence the corresponding constraint

set of a negative cycle is a minimal conflict.

BCDR does not need to iterate through all temporal constraints to minimize a

conflict. It only needs to look for a set of simple temporal constraints that form a

negative cycle where each vertex has exactly one incoming and one outgoing arc (a

simple cycle). If there are repeating vertices in a negative cycle, then at least one of

the sub-cycles is a minimal conflict. The update function ExtractMinTemporal-

Conflict splits the negative cycle at the repeating vertex, checks all the sub-cycles

until one without repeating vertex is found.

For example, in (Figure 3-15(a)), there are six simple temporal constraints between

five variables: a, b, c, d and e. This set of constraints is inconsistent, since a negative

cycle can be detected by consistency checking algorithms in its equivalent distance

graph (red arcs in Figure 3-15(b)). This cycle goes through all variables and visited

c twice. Therefore, this set of all six temporal constraints is not a minimal conflict.

To extract the minimal conflict from this set of temporal constraints, Function

ExtractMinTemporalConflict splits the negative cycle at the repeating node,

c, and generates two sub-cycles (Figure 3-15(c) and 3-15(d)). Neither of the sub-cycles

has repeating node, and only (Figure 3-15(d)) remains a negative cycle. Therefore, the

minimal conflict is ’a-b [10min,30min]’, ’b-c [10min,20min]’ and ’a-c [00min,10min]’.

Although the worst case complexity of ExtractMinTemporalConflict (Al-

gorithm 6) is still N (the number of constraints in the conflict), it usually finds the

minimal conflict within the first or second iteration in real world scenarios. Because

the number of negative cycles in a conflict is usually much less than the number of

constraints. It saves many consistency checks and makes the enumeration process of

BCDR nearly one order of magnitude faster, in practice.
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Figure 3-15: Examples of splitting negative cycles with repeating vertices

Detecting Minimal Conflicts of OCSTNs

We presented the definition of conflicts and minimal conflicts of OCSTNs in Section

3.1. In addition to temporal constraints, the conflicts of OCSTNs also include guards,

since its temporal constraints may depend on one or more decisions represented by

guards.

For example, if John wants to get home in 60 minutes, (Figure 3-16) becomes a

conflict in the conditional STN:

Start

Leave
Office

End
[0min,60min]

Arrive
Quiznos

(Drive Office Quiznos)
[30min,40min] Leave

Quiznos

(Dine-in Quiznos)
[25min,25min] Arrive

Home

(Drive Quiznos Home)
[35min,50min]

Figure 3-16: An OCSTN with a conflict
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input : NCycle, a negative cycle in an inconsistent candidate relaxation set
output: minCFLT, a minimal conflict

// Recursively splitting negative cycles if there is repeating

vertex.

1 if HasSubCycles(NCycle) then
2 NegativeCycles ← SplitNegativeCycle(NCycle);
3 for SubCycle in NegativeCycles do
4 return ExtractMinTemporalConflict(SubCycle);
5 end

6 else
7 if ¬ConsistencyCheck(NCycle) then

// A negative cycle is a minimal conflict if there is no

repeating vertex in it.

8 return NCycle;

9 end

10 end

Algorithm 6: ExtractMinTemporalConflict using negative cycles

Constraints: ’Drive to Quiznos’, ’Have dinner’, ’Drive home’, ’Time Constraint’

Choices: ’LeaveOffice:Drive Office Quiznos’, ’ArriveQuiznos: dine-in’.

’(Drive Office Quiznos)’, ’(Dine-in Quiznos)’, ’(Drive Quiznos Home)’ and ’[0min,60min]’

forms an inconsistent set of constraints: the trip takes at least 90 minutes, while

the temporal goal is at most 60 minutes. Guard ’LeaveOffice:Drive Office Quiznos’

and ’ArriveQuiznos: dine-in’ are required to activate these conflicting temporal con-

straints.

The method of detecting conflicts in OCSTNs is the same as the one presented in

Section 3.7.2. Given an inconsistent OCSTN, we first extract the minimal conflicts

detected in one of its component STNs. Then we record it with the guards required to

activate these constraints in the minimal conflicts. The minimal conflict in an OCSTN

is slight different from the minimal conflict in a STN in that it can be resolved by either

removing one constraint or changing the decision made to one of the guards. More

specifically, if a decision is necessary to enable some of the constraints in the minimal

conflict, then changing it will resolve the minimal conflict, since the constraints that

are guarded by the decision are no longer activated.
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In this section, we presented an innovative approach to detect minimal conflicts

in temporal problems. Minimal conflicts are defined as inconsistent sets of guarded

temporal constraints and are the core causes of failure for over-constrained OCSTNs.

Our inference-based method extracts minimal conflicts using the negative cycles de-

tected by temporal consistency algorithms. Compared to the search-based conflict

extraction method implemented in Dualize & Advance, our method improves the

run-time performance by nearly one order of magnitude, enabling BCDR to resolve

larger scale problems.
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3.8 Chapter Summary

In this chapter we presented the concept and design of Best-first Conflict-directed

Relaxation, an algorithm that generates preferred discrete minimal relaxations to

inconsistent OCSTNs. It is the core method in Uhura that supports the collaborative

diagnosis of over-constrained temporal plans. We developed two innovative methods

in BCDR that bring it two distinct features compared to previous approaches: quick

response and simple interaction.

First, to improve the efficiency in the generation of relaxations, BCDR only enu-

merates minimal relaxations, a compact representation of all relaxations that signifi-

cantly reduces the size of the search and result space. Previous work can enumerate

full relaxations in best-first order or generate all minimal relaxations. BCDR is novel

in that it can 1) return the preferred minimal relaxation and 2) the leading N preferred

minimal relaxations. BCDR is directly inherited from conflict-directed A* with simple

modifications and ideas from Dualize & Advance and other CSP solvers to enumerate

relaxations efficiently by (1) using a domain-specific inference-based conflict extract

algorithm, (2) guiding the search with minimal conflicts detected in the enumeration

and (3) generating relaxations from the hitting sets of minimal conflicts. With the

implementation of incremental relaxation generation, BCDR can return relaxations

prior to the discovery of all conflicts, which further improves its efficiency in response

to the user.

In addition, BCDR generates minimal relaxations in best-first order. It uses a

metric cost function over constraints and decisions to prioritize the relaxations. The

prioritized results greatly reduces the information exchange between the users and

autonomous systems, making the collaborative diagnosis process simpler and more

efficient.

BCDR has been implemented in Uhura to support collaborative temporal plan

diagnosis through a mapping between TPNs and OCSTNs. We claim that BCDR

achieves nearly two orders of magnitude improvements in terms of the run time per-

formance. The benchmark results are presented in Chapter 5.
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Chapter 4

Continuous Temporal Relaxations

The discrete relaxation to inconsistent OCSTNs is presented in Chapter 3. This is

similar to prior works, which have focused on discrete, rather than partial relaxation

of temporal constraints in temporal problems. It simplifies the relaxation process by

taking an all-or-nothing approach in which constraints are either preserved or sus-

pended. For example, John realizes that he cannot arrive at the party on time and

decides not to go at all. However, a better solution would be to partially relax the

constraint by calling his friends and asking for a later starting time. By introducing

the concept of continuous relaxation, a weakened version of users’ goals can be pre-

served in the relaxed problem, and no constraint will be suspended but only adjusted.

Continuous relaxation addresses the full problem of temporal relaxations. Note that

in this example there might be a penalty for being late, which increases with the

length of the delay. Similar to generating preferred discrete relaxations, we want to

use preference models to generate the most preferred continuous relaxations.

In this chapter we present an innovative method for partial relaxations based on

preferences on continuous variables, Continuous BCDR. This addresses the third

requirement of collaborative diagnosis: small perturbation. Continuous BCDR

resolves inconsistent OCSTNs by relaxing the temporal bounds of constraints. This

is a first method that enables the continuous relaxation of temporal problems, in

which temporal constraints can be preserved in the relaxations. We present continu-

ous relaxation as a generalization of discrete relaxation, and use the discrete version
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of BCDR as a stepping stone to Continuous BCDR. With a continuous user pref-

erence model over temporal constraints, Continuous BCDR enumerates minimal

continuous temporal relaxations in best-first order.

Continuous BCDR avoids unnecessary relaxations of temporal constraints: it

minimally relaxes the temporal bounds only to the degree that is necessary for restor-

ing temporal consistency. Compared to discrete relaxations, continuous relaxations

to temporal problems can avoid unnecessary utility loss compared to discrete relax-

ations. It further improves the quality of the resolutions generated by discrete BCDR,

and minimizes the perturbation to the users’ goals.

We begin in Section 4.1 by defining the problem of generating continuous re-

laxations to inconsistent OCSTNs. Then in Section 4.2 we present an overview of

Continuous BCDR, which enumerates continuous temporal relaxations in best-

first order. We then describe the new method that generates continuous relaxation

candidates from conflicts in Section 4.3. Finally, we present the preference models

that can be used with Continuous BCDR to generated preferred relaxations in

Section 4.4.
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4.1 Problem Statement

In this section, we define the problem of generating continuous relaxations to in-

consistent OCSTNs. Similar to discrete relaxation problems, the goal of continuous

relaxation problems is to find a set of preferred and minimal continuous relax-

ations that can resolve the conflicts in an inconsistent OCSTN. However, continuous

relaxation problems are different from discrete relaxation problems in that their so-

lution spaces are infinite. The discrete relaxation to a temporal constraint only has

two states: preserved and suspended. Therefore, the number of possible discrete

relaxations to a OCSTN is countable, though exponential in the size of constraints.

On the other hand, the continuous relaxation to a temporal constraint has an

infinite number of states: its temporal bounds can be relaxed to any consistent pair

of numbers inR. For example, (Figure 4-1) shows three sample continuous relaxations

to a temporal constraint. As a result, the number of continuous relaxations to an

inconsistent OCSTN is infinite, making it difficult to apply the concept of minimality

and preference models we defined in Chapter 3.

EndStart

Time Constraint
[0min,60min]

(a) The original constraint

EndStart

Time Constraint
[0min,70min]

(b) Sample relaxation 1

EndStart

Time Constraint
[-10min,60min]

(c) Sample relaxation 2

EndStart

Time Constraint
[-20min,100min]

(d) Sample relaxation 3

Figure 4-1: Examples of continuous relaxation to a temporal constraint

In this section, we address these problems by proposing a new preference model

and definition of continuous temporal relaxations, such that:

• The preference models can be used to compare two or more continuous relax-

ations in terms of their modified constraints and degrees of relaxation.
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• A minimal continuous relaxation can be used to represent a set of continuous

relaxations. Then, a finite set of minimal continuous relaxations can represent

the infinite number of continuous relaxations to an inconsistent OCSTN.

The continuous relaxation problem is formally defined as:

Definition 38. (Continuous Relaxation Problem) Given an inconsistent OCSTN P
and a user preference model UPM , a Continuous Relaxation Problem is a prob-

lem of finding a continuous relaxation, CR, such that:

• CR makes P consistent.

• CR is the most preferred continuous relaxation according to UPM .

• CR is a minimal continuous relaxation.

We will define the term preferred and minimal precisely in the following sub-

sections, building upon the definitions of minimal and preferred discrete relaxations

given in Chapter 3.

4.1.1 Continuous Preference Models Over Temporal Con-

straints

This subsection defines the preference models that can be used to enumerate preferred

continuous relaxations. In Chapter 3, we defined the preference model for discrete

relations, which specifies the user’s intent towards the suspension of temporal con-

straints. It is a preference model over a finite set of discrete states. For continuous

relaxation, the preference model has to cover an infinite set of states: it must specify

the user’s willings towards different degree of relaxation to a simple temporal con-

straint. The domain of a simple temporal constraint can be relaxed to any valid pair

of real numbers, and the preference model for continuous relaxations must cover a

continuous domain.

Definition 39. (Preference Models over Continuous Relaxations) A preference model,

UPM , for an inconsistent OCSTN, P, must satisfy:
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• Domain: UPM is defined over the complete scope of P. That is, UPM can be

used to evaluate any relaxation to any temporal constraints in P, including the

combinations of relaxations and choices made to the decision events in P.

• Comparison: Given any two continuous relaxations, CR and CR′, to P, UPM

can be used to choose the one that is more preferred by the user, if not equally

preferred.

• For any temporal constraints in P, the users would always prefer no relaxation

than any temporal relaxations.

In [32], several examples of preference models over temporal constraints are pro-

vided, including linear, step and quadratic functions. Its model of semi-convex prefer-

ence functions over temporal constraints is adopted by Uhura to represent the cost of

continuous relaxations over temporal constraints. The semi-convex functions involve

linear, convex and step functions: the outputs monotonically increase on the upper

bound of the simple temporal constraints, and monotonically decrease on the lower

bound. Therefore, the original constraints without any relaxation will always cost

zero.

The semi-convex preference functions satisfy all three requirements for the pref-

erence model of continuous relaxations. First, the range of such a function is defined

overR, hence covers all continuous relaxations to temporal constraints. Second, these

functions return a metric value for each evaluation of temporal constraints so that

two continuous relaxations can be compared. Finally, given that the semi-convex

functions are monotonically decreasing on the lower bound and increasing on the up-

per bound of any temporal constraints, any continuous relaxations will incur a cost

higher than no relaxation, whose is always zero. In this thesis, we define a continuous

metric cost function over continuous relaxations to simple temporal constraints. It is

a semi-convex function constructed using linear functions.

Definition 40. (Continuous metric cost function of continuous relaxations) Let CRk

be a continuous temporal relaxation that relaxes a simple temporal constraint, stck,
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to stc′k. The cost of CRk is defined through a function f(stck, stc
′
k) → R that maps

CRk to a cost where:

• f(stck, stc
′
k) = CLB+CUB = fLB(LB(stck), LB(stc′k))+fUB(UB(stck), UB(stc′k)).

fLB and fUB are linear functions that map the difference between the lower

bounds and upper bounds of stck and stc′k to two real values, CLB and CUB,

representing the costs of relaxing the lower bound and upper bound.

• fLB(lb, lb′) = aLB(lb′ − lb) + bLB where aLB and bLB ∈ R− ∪ 0.

• fUB(lb, lb′) = aUB(ub′ − ub) + bUB where aLB and bLB ∈ R+ ∪ 0.

• BC = bLB + bUB is called the basic cost of CRk, which is the lower bound of the

relaxation cost.

In (Figure 4-2), several examples of preference functions are presented. The bold

parts in the graphs of the functions represent the original span of the temporal con-

straints. Figure 4-2 (a), (b) and (c) are considered as semi-convex while (d) and (e)

are not. Among these three, only (b) fits our definition of preference model: the cost

must be linear with regards to the degree of relaxation. Neither (a) nor (c) has a

linear relationship between cost and the relaxation to lower/upper bound. The metric

cost function we used is a simple type of semi-convex preference functions, in which

the functions on the lower bound and upper bound sides are both linear. We assume

that aLB is always negative, and aUB is always positive. Therefore, the metric cost

function we defined is semi-convex, which implies that the user prefers strictly smaller

relaxations to the upper and lower bounds of the temporal constraints.

Similar to the metric cost functions for discrete relaxations, the cost of a con-

tinuous relaxation to an inconsistent OCSTN is the sum of the costs of all relaxed

temporal constraints, plus the cost of decisions. It represents the user’s intent towards

the relaxation of multiple constraints as well as the decisions made by the algorithm.

Definition 41. (Cost of continuous relaxations) Let CR be a continuous relaxation

to an inconsistent OCSTN, P. Its cost is defined as Cost(CR) = Crlx +Cdec where:
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(a) (b) (c)

(d) (e)

Figure 4-2: Examples of semi-convex preference functions (a)-(c) and non-semi-convex
functions (d)-(e)

• Crlx = crlx1 + crlx2 + ...+ crlxm is the sum of the costs of all continuously relaxed

temporal constraints.

• Cdec = cdec1 + cdec2 + ...+ cdecn is the sum of the costs of all decisions in CR.

The discrete metric cost function presented in Chapter 3 can be viewed as a special

case of the continuous metric cost function. The cost of the discrete relaxation to a

temporal constraint is a fixed value, since there is one and only one possible discrete

relaxation. By setting the aLB and aUB to zero, the value of a continuous metric cost

function is fixed to bLB + bUB, which is its basic cost.

Example: Continuous Relaxation of John’s Trip

We demonstrate the difference between discrete and continuous relaxations in this

subsection. In Chapter 3, we presented an over-constrained scenario of John’s trip

from office to home: he would like to stop by a sandwich restaurant for dinner and then

arrive home in 60 minutes. The planner generated a TPN that encodes six different

sequences of activities that can satisfy his requirements about food and destinations.

However, none of the plans are temporally consistent, since they all require more than

60 minutes. The corresponding OCSTN is shown in (Figure 4-3).

In the previous chapter, we described two relaxations to the inconsistent OCSTN:

suspending the TimeConstraint [0min,60min] or (dine-in Cosi) [15min,15min] (Fig-

ure 4-5(a) and 4-5(b)). The latter one is preferred since the cost of suspending the
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Figure 4-3: An inconsistent OCSTN

temporal constraint (dine-in Cosi) is much less than the former one. Neither option

sounds ideal to John due to the nature of discrete relaxations: the temporal con-

straints, which represent users’ goals, are removed completely. In such a situation,

continuous relaxations provide a better resolution that minimizes the perturbation to

John’s plans.
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Figure 4-4: Cost functions over constraints TimeConstraint and Dinner at Cosi

Assume that the preference functions over the relaxations of both constraints,

TimeConstraint and (dine-in Cosi), are (Figure 4-2). It can be seen from the graph

that John is not willing to increase the TimeConstraint, since the basic cost of chang-

ing the temporal bounds is already 100, and keeps increasing with the increase of the

upper bound. On the other hand, he is ok if the dinner time is extended, since the
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cost of extending the dinner time is only 10 and does not increase regardless of the

increase of the upper bound. However, John will be very unhappy if the dinner time

gets reduced, since the cost of lowering the lower bound of his dinner time increases

rapidly.
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(a) A discrete relaxation that suspends TimeConstraint
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(b) A discrete relaxation that suspends (Dine-in Cosi)

Figure 4-5: The discrete temporal relaxations to John’s trip

Two continuous relaxations to John’s problem are shown in (Figure 4-6(a) and

4-6(b)): the TimeConstraint constraint has to be relaxed to 85 minutes, while the

(dine-in Cosi) constraint is shorten to 10 minutes.

According to the preference function, we can evaluate the costs of both continuous

relaxations. Relaxing the overall temporal constraint costs less than shorten the

dinner time: the cost of relaxing the upper bound of TimeConstraint to 85 is 125,

while the cost of relaxing the lower bound of (dine-in Cosi) is 150 (Figure 4-7).

Therefore, the continuous relaxation to TimeConstraint is a better resolution for

John.
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(a) A continuous relaxation of TimeConstraint
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(b) A continuous relaxation of (dine-in Cosi)

Figure 4-6: The continuous temporal relaxations to John’s trip

4.1.2 Minimal Continuous Temporal Relaxations to OCSTNs

This subsection defines minimal continuous relaxations to an inconsistent OCSTN.

We present this concept as a generalization to the minimal discrete relaxations: in

addition to the minimality in terms of the relaxed temporal constraints, a minimal

continuous relaxation also makes minimal modifications to each temporal constraints.

As stated before, the goal is to use a finite set of minimal continuous relaxations to

represent the infinite number of continuous relaxations to an inconsistent OCSTN.

Recall from chapter 3 that minimal discrete relaxations are computed as the min-

imal covering sets of all minimal conflicts in an inconsistent OCSTN. A discrete re-

laxation is minimal in that if any suspension of temporal constraints is removed from

it, the relaxation is no longer consistent. Therefore, minimal discrete relaxations is a

compact representation of all valid discrete relaxations to an inconsistent OCSTN.

For example, (Figure 4-8(a)) shows an inconsistent STN with two temporal con-
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Figure 4-8: Examples of discrete relaxations

straints and two events. (Figure 4-8(b)) is one of its minimal discrete relaxations

that suspends the Time constraint [0min,20min]. This relaxation is minimal in that

if Time constraint [0min,20min] is not suspended, the STN will be inconsistent. On

the other hand, (Figure 4-8(c)) shows a non-minimal discrete relaxation. It suspends

both temporal constraints in the problem, which is unnecessary, since suspending one

of them is enough for making the STN consistent.

We define minimal continuous relaxations to an inconsistent OCSTN based

on minimal discrete relaxations.

Definition 42. (Minimal continuous relaxation) A minimal continuous relaxation,

MCR, is a continuous relaxation to an inconsistent OCSTN, P, where:
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• If MCR relaxes a set of temporal constraints, TCs, then there does NOT exist

a continuous relaxation, MCR′, that only relaxes a proper subset of TCs but

makes P consistent. MCR satisfies the requirements of a minimal discrete

relaxation.

• If MCR relaxes the temporal bounds of a set of temporal constraints, TCs, to

TBs = [lb1, ub1], [lb2, ub2], ..., [lbk, ubk], then there does NOT exist a continuous

relaxation, MCR′′, that relaxes the temporal bounds of TCs to a set of narrower

bounds, TBs′ = [lb1 +δlb1, ub1−δub1], [lb2 +δlb2, ub2−δub2], ..., [lbk +δlbk, ubk−
δubk], but makes P consistent. δlbi ≥ 0, δubi ≥ 0 and

∑
1...k δlbi+ δubi > 0.

The first criteria is similar to that of discrete relaxations: none of the subsets of

a minimal continuous relaxation resolves all conflicts in the inconsistent problems.

For example, in (Figure 4-9), the continuous relaxation that relaxes both Have a

nice dinner and Time constraint is the superset of the other continuous relaxation,

which only relaxes Time Constraint. Therefore, (Figure 4-9(b)) is not a minimal

continuous relaxation.
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(c) Another non-minimal continuous relax-
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Figure 4-9: Examples of continuous relaxations

The second criteria requires reasoning on temporal bounds: a minimal continuous

relaxation must minimally relaxes the temporal constraints in an inconsistent tempo-

ral problem. In other words, there is no unnecessary relaxations of temporal bounds:

if a conflict can be resolved by relaxing [a, b] to [a, b + 10], then any continuous re-
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laxations that relaxes the constraint to [a, c] where c > b + 10 are not considered

minimal.

For example, (Figure 4-9(c)) is not considered as a minimal continuous relaxation,

even though it only relaxes one temporal constraint: there is another relaxation set

(Figure 4-9(a)) whose continuous relaxation provides a tighter bound ([0min,40min]

vs [0min,50min]).

Therefore, we can use a finite set of minimal continuous relaxations to represent

the infinite number of continuous relaxations to an inconsistent OCSTN. In fact,

given a minimal discrete relaxation, we can find a minimal continuous relaxation by

minimally relaxing the suspended constraints. Hence the number of minimal con-

tinuous relaxations to an inconsistent OCSTN is equal to that of minimal discrete

relaxations. By using this property in the enumeration of minimal continuous relax-

ations, we can continue to use the methods we developed for discrete BCDR, including

conflict extraction and updating candidates.

Lemma 1. [Number of Minimal Continuous Relaxations] Given an inconsistent OC-

STN, P, the number of minimal continuous relaxations to P is equal to that of min-

imal discrete relaxations. For any minimal discrete relaxation MDR to P, we can

find a minimal continuous relaxation MCR by minimally relaxing the suspended con-

straints in MDR.
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4.2 Conflict-directed Enumeration of Continuous

Relaxations

In this section, we present the continuous relaxation algorithm, Continuous BCDR,

that has been integrated with Uhura to support the enumeration of continuous relax-

ations. We develop Continuous BCDR based on the discrete version of Best-first

Conflict-directed Relaxation, with new continuous preference models and conflict res-

olution techniques. We will continue to use the conflict extraction method introduced

in Chapter 3. We first give an overview of the algorithm in this section. The details

of the conflict resolution and candidate generation functions are presented in Section

4.3 and 4.4.

4.2.1 An Overview of Continuous BCDR

The Continuous BCDR algorithm is shown in (Algorithm 7). It takes in an incon-

sistent OCSTN, detects the conflicts and generates preferred continuous relaxations.

Similar to the enumeration of discrete relaxations, there are four major steps in Con-

tinuous BCDR.

• Generate candidate: select the most preferred candidate continuous relaxation

from all available ones.

• Check consistency: given a candidate relaxation, check if it resolves all conflicts

in the inconsistent temporal problem.

• Extract conflicts: if a candidate fails the consistency check, extract minimal

conflicts from the candidate.

• Extend candidate: generate candidate continuous relaxations from the known

conflicts and update all existing candidates with newly discovered minimal con-

flicts.

The first two steps are identical to those in the generation of discrete relaxations.

Function CheckConsistency checks the consistency of candidate continuous relax-
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input : OCSTN, an inconsistent OCSTN
input : UPM, the user preference model associated with the temporal

constraints and decision events in OCSTN
input : K, number of minimal relaxation sets needed
output: MCRs, K continuous minimal relaxation sets to OCSTN or all

available discrete minimal relaxation sets, whichever is larger.

// Initialize.

1 CANDs ← {BestContinuousCandidate(UPM,OCSTN)}: Generate
the best candidate.;

2 MCRs ← {}: No results generated yet;
3 CFLTs ← {}: No conflicts found yest;
4 i = 0: Reset result counter;

// Generate new candidate and test until the maximum number is

reached, or run out of candidates.

5 while i < K do

6 currCand ←
DequeueBestContinuousCandidate(CANDs,OCSTN,UPM);

// If consistent, record the current candidate; Otherwise

extract new conflict and update existing candidates

7 if ConsistencyCheck(currCand) then
8 MCRs ← MCRs ∪ currCand ;
9 i+ +;

10 else
11 CFLTs ← CFLTs ∪ ExtractMinConflict(currCand);
12 CANDs ← UpdateContinuousCandidates(CFLTs,CANDs);

13 end

// If all candidates have been checked and are consistent,

no more relaxation sets can be generated. Return the

MCRs.

14 if CANDs = MCRs then
15 return MCRs;
16 end

17 end

18 return MCRs;

Algorithm 7: Continuous BCDR
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ations using negative loop detection algorithms. If inconsistent, function Extract-

MinConflict will extract minimal conflicts from the candidate by splitting the

negative loops. These methods have been presented in Chapter 3.

Check
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Conflicts

Generate
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inputIOCSTN BestIcandidateI
minimalIrelaxationIset

ConsistentU
returnItoIuser

ConsistentU
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newIminimalIconflict

UpdatedI
candidates

Figure 4-10: The program flow of Continuous BCDR

The third and the fourth steps are different between the enumerations of discrete

and continuous relaxations. They are highlighted in (Figure 4-10). For the third step,

we use a different strategy for conflict resolution. To resolve a minimal conflict using

discrete relaxation, we may simply suspend one temporal constraint in the conflict.

On the other hand, for continuous relaxation, we have to minimally relax the temporal

bounds of one constraint until the conflict is resolved.

For the fourth step, the process of evaluating preference between candidate re-

laxations is different. For discrete relaxation, each temporal constraint has only two

states: preserved and suspended. The user preferences over each state are encoded

explicitly in the preference models using real numbers (metric cost functions). For

continuous relaxations, each simple temporal constraint may be relaxed to any pair

of real numbers. We need to compute the cost using the simple semi-convex func-

tions defined through the preference model. Finding the best candidate continuous

relaxation is more like optimizing a Linear Programming problem, in which both
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constraints and utilities are linear functions over variables.

4.2.2 Proving the Correctness of Continuous BCDR

The Continuous BCDR algorithm is guaranteed to find all minimal continuous relax-

ations in best-first order, given a user preference model. We state two lemmas here in

order to prove the completeness and soundness of Continuous BCDR. We use these

two lemmas in the proof of the Continuous BCDR algorithms. Both lemmas will

be proved later in Section 4.3.

Lemma 2. [Completeness of UpdateContinuousCandidates] (Algorithm 7, 9)

Given a set of minimal conflicts, MinCFLTs, function UpdateContinuousCan-

didates generates all candidate continuous relaxations to MinCFLTs.

Lemma 3. [Soundness of UpdateContinuousCandidates] (Algorithm 7, 9) Given

a set of minimal conflicts, MinCFLTs, the candidate continuous relaxations gen-

erated by function UpdateContinuousCandidates are all valid candidate con-

tinuous relaxations. That is, all the candidates can resolve all known conflicts in

MinCFLTs.

First, we show that Continuous BCDR is complete in that it generates all

minimal continuous relaxations given an inconsistent OCSTN.

Theorem 7. [Completeness of Continuous BCDR] Given an inconsistent OC-

STN, P, Continuous BCDR can find all minimal continuous relaxations, MCRs,

to P.

Proof. [Proof by contradiction] Assume that Continuous BCDR generate a set of

minimal continuous relaxations, MCRs, that missed one minimal continuous relax-

ation, MCR∗, to P . By Lemma 2, if one minimal relaxation is not generated by Up-

dateContinuousCandidate, then there must be a minimal conflict, MinCFLT ,

that has not been detected by Continuous BCDR yet.
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Therefore, there must be at least one candidate continuous relaxation generated

by UpdateContinuousCandidate that cannot resolve MinCFLT . However, it

contradicts our assumption: all the minimal continuous relaxations in MCRs can

resolve all conflicts in P . Hence the assumption does not hold: Continuous BCDR

generates all minimal continuous relaxations given an inconsistent OCSTN.

Next, we demonstrate that Continuous BCDR is sound in that all the minimal

continuous relaxations generated are valid, that is, are minimal and can resolve all

the conflicts given an inconsistent OCSTN.

Theorem 8. [Soundness of Continuous BCDR] Given an inconsistent OCSTN,

P, all the minimal continuous relaxations, MCRs, generated by Continuous BCDR

resolve P.

Proof. A minimal continuous relaxation generated by Continuous BCDR, MCR,

is valid in two aspects:

• MCR must resolve all conflicts in P . Since MCR passes the consistency check

(Function ConsistencyCheck), it must resolve all the conflicts in the incon-

sistent OCSTN.

• MCR must be minimal. By Lemma 3, all candidate continuous relaxations

generated by UpdateContinuousCandidates are minimal. Further, all the

continuous relaxations are generated by UpdateContinuousCandidates.

Therefore, MCR is a minimal continuous relaxation.

Therefore all the minimal continuous relaxations, MCRs, generated by Contin-

uous BCDR resolve P .

In summary, the Continuous BCDR algorithm can be viewed as the discrete

BCDR algorithm with new conflict resolution and candidate selection techniques. It

resolves continuous relaxation problems by enumerating minimal continuous relax-

ations in best-first order. Like the discrete version of BCDR, Continuous BCDR
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is also complete and sound in that it can find all minimal continuous relaxations to an

inconsistent OCSTN, and guarantees the correctness of the results. This algorithm

is made incremental so that the relaxations can be returned prior to the detection of

all conflicts.
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4.3 Generating Candidates from Conflicts

This section presents the third step in Continuous BCDR: given a set of minimal

conflicts, MinCFLTs, generate candidate minimal continuous relaxations that can

resolve MinCFLTs. This is achieved through two functions. First, function Con-

tinuouslyResolveConflict generates constituent continuous relaxations that re-

solve each minimal conflict individually. Then we generate minimal relaxations that

resolve all conflicts by combining the constituent relaxations. This is similar to the

Discrete BCDR and CD-A* algorithm. The process is made incremental by func-

tion UpdateContinuousCandidates so that we do not have to recompute all con-

stituent relaxations when a new conflict is detected, which is the same as Discrete

BCDR.

4.3.1 Resolving Conflicts Using Constituent Relaxations

To resolve a minimal conflict, it is necessary and sufficient to fully relax one constraint

in order to resolve that conflict. The individual constraint that resolves the conflict

are called constituent relaxations of that conflict. As we stated in Section 4.1, a

discrete relaxation can be viewed as a special case of a continuous relaxation, and

suspending one constraint is equivalent to relaxing its temporal bound to [−∞,+∞].

Because continuous relaxation problem requires the minimal amount of modification

made to the temporal constraints, we have to compute the tightest temporal bounds

for the temporal constraints that can resolve the conflicts.

We address this challenge using a 2-step approach: first, we over-relax the conflict

by generating discrete constituent relaxations to it. Then we check each constituent

relaxation and compute the tightest bound for it. For example, (Figure 4-11) shows

an example of such a relaxation process. The temporal bound of constraint a is first

over-relaxed (Figure 4-11(b)). Then the continuous constituent relaxation of a is

computed based on constraints b and c (Figure 4-11(c)).

This procedure is implemented in (Function ContinuouslyResolveConflict

Algorithm 8). We first change the temporal bounds of one temporal constraint in
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Figure 4-11: Two steps in the generation of constituent relaxations

the minimal conflict to [−∞, +∞] (Line 2). By now, the minimal conflict has been

resolved due to the property of minimal conflicts: suspending any temporal constraint

in a minimal conflict will resolve it.

Next, we tighten the over-relaxed constraint, since a feasible temporal bound

smaller than [−∞, +∞] always exists. ContinuouslyResolveConflict uses the

Floyd-Warshall algorithm (All-Pair-Shortest-Path) to tighten the temporal bound

of the relaxed temporal constraint (Line 3-10). Floyd-Warshall checks all temporal

constraints in the minimal conflict and computes the tightest temporal bounds of the

over-relaxed constraint.

Note that we are relaxing only one temporal constraint in each constituent relax-

ation to a minimal conflict. This is because of the requirements on the minimality

of relaxations: Continuous BCDR only generates minimal continuous relaxations.

If a conflict can be resolved by relaxing one constraint, we will not consider any

relaxations with two or more relaxed constraints. This may bring a problem when

the user is looking for an optimal resolution, since slightly relaxing two constraints

may be more preferred compared to relaxing one constraint by a lot. We address this

problem in Section 4.4.

4.3.2 Incrementally Updating Candidate Relaxations

Next, we combine the constituent relaxations generated in the previous step into

candidate minimal relaxations. The problem can be defined as: Given a set of con-
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input : NewMinCFLT, newly discovered minimal conflict
output: ConstituentRelaxations, a set of constituent relaxations that can

resolve the minimal conflict

// Generate continuous constituent relaxations of the minimal

conflict

1 for Constraint in RelaxableConstraint(NewMinCFLT) do
// Reset the temporal bounds of the relaxable constraint to

[-infinity,+infinity]

2 ResetTemporalBounds(Constraint);
// Compute the tightest feasible bound of Constraint using

Floyd-Warshall

3 for M in Events(NewMinCFLT) do
4 for S in Events(NewMinCFLT) do
5 for E in Events(NewMinCFLT) do
6 UB(S,E) = Min(UB(S,E), UB(S,M) + UB(M,E));
7 LB(S,E) = Max(LB(S,E), LB(S,M) + LB(M,E));

8 end

9 end

10 end
11 ConstituentRelaxations ← ConstituentRelaxations ∪ Constraint

12 end

13 return ConstituentRelaxations

Algorithm 8: ContinuouslyResolveConflict
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stituent relaxations, CR1, CR2, ..., CRn, to a set of minimal conflicts, MinCFLTs =

conflict1, conflict2, ..., conflictn, generate a set of candidate minimal continuous re-

laxations, CandMCRs, that resolves all conflicts in MinCFLTs.

This can be viewed as a minimal set covering process. Each candidate relax-

ation CandMCR must resolve all conflicts in MinCFLTs. The candidate relax-

ation contains at least one constituent relaxation from each set in CR1, CR2, ..., CRn.

Moreover, we would like CandMCR to be minimal so that none of the constituent

relaxations can be removed from CandMCR without making it inconsistent.

Theorem 9. The minimal covering sets (hitting sets) of the constituent relaxations,

CR1, CR2, ..., CRn, to a set of minimal conflicts, MinCFLTs = conflict1, conflict2, ..., conflictn,

are the minimal continuous relaxations to MinCFLTs.

This property is presented as the duality between minimal conflicts and relax-

ations in [10, 4, 34]. We use a similar approach in Chapter 3 to generate candidate

discrete relaxations from known conflicts. However, there is a difference between dis-

crete and continuous relaxations in the process of combining constituent relaxations.

For discrete relaxation, if two constituent relaxations suspends the same temporal

constraint, tck, then only one constituent relaxation needs to be combined into the

relaxations.

For continuous relaxations, even though two constituent relaxations, cra and crb,

relax the same temporal constraint, tck, they may assign different relaxed bounds to

tck. Therefore, when combining two constituent relaxations like cra and crb, we have

to merge their temporal bounds from [lba, uba] and [lbb, ubb] to [MIN(lba, lbb),MAX(uba, ubb)],

such that the resulting continuous relaxation is guaranteed to resolve all conflicts.

In the Chapter 3, we introduced an incremental minimal set covering method used

by BCDR: the candidate relaxations can be updated using newly detected conflicts

without re-computing the constituent relaxations to all known conflicts. We use the

same approach to compute continuous candidates in Continuous BCDR (Function

UpdateContinuousCandidates, Algorithm 9). It generates all combinations of

constituent relaxations that can resolve all known conflicts (Line 2), then minimize
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the candidates by removing all redundant continuous relaxations (Line 3).

input : NewMinCFLT, newly discovered minimal conflict
input : PrevContCandidates, previous candidate minimal relaxation sets
output: UpdatedContCandidates, updated candidate minimal relaxation

sets

// Generate constituent relaxations of the minimal conflict

1 ConstituentRelaxations ←
ContinuouslyResolveConflict(NewMinCFLT);
// Start with the cross product of previous candidates and the

new conflict.

2 UpdatedContCandidates ← PrevContCandidates ⊗ ConstituentRelaxations;

// Remove redundant (non-minimal) candidates.

3 UpdatedContCandidates ←
RemoveRedundantCandidates(UpdatedContCandidates);

4 return UpdatedContCandidates

Algorithm 9: UpdateContinuousCandidates

In Section 4.2 we present two Lemmas of the completeness and soundness of Func-

tion UpdateContinuousCandidates to prove the completeness of Continuous

BCDR. Here we present the proof of these Lemmas. First, we show that Update-

ContinuousCandidates is complete in that it generates all candidate minimal

relaxations given a set of conflicts.

Proof. [Completeness of UpdateContinuousCandidates. Proof by contradiction]

Assume that given a set of minimal conflicts, MinCFLTs, UpdateContinu-

ousCandidates generates all candidate minimal continuous relaxations except for

one, CandMCR∗.
Since the minimal set covering procedure is complete and sound [4], missing

CandMCR∗ is the result of the conflict resolution procedure. In other words, at

least one constituent relaxation, cr∗ to the conflict conflictk, is not generated by

Function ContinuouslyResolveConflict.

However, ContinuouslyResolveConflict loops through every temporal con-

straint in conflictk to generate constituent relaxations. There is no possibility that

one temporal constraint is skipped that leads to the missing of cr∗.
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Therefore the assumption does not hold. UpdateContinuousCandidates is

complete.

Second, we show that all candidates generated by UpdateContinuousCandi-

dates are valid minimal continuous relaxations that can resolve all known conflicts.

Proof. [Soundness of UpdateContinuousCandidates]

Given a set of minimal conflicts, MinCFLTs, the candidate continuous relax-

ation generated by UpdateContinuousCandidates, CandMCR∗, is valid in two

aspects:

• CandMCR∗ is minimal. This is guaranteed by the minimal set covering proce-

dure [4]: all candidates are minimal covering set of the constituent relaxations.

• CandMCR∗ resolves all conflicts in MinCFLTs. According to the property of

covering sets, CandMCR∗ contains at least one constituent relaxation to each

minimal conflict in MinCFLTs. Hence, all conflicts in MinCFLTs can be

resolved by CandMCR∗.

Therefore UpdateContinuousCandidates is sound.

In summary, this section presented an innovative method that can generate min-

imal continuous relaxations from the conflicts in an inconsistent OCSTN. Given a

minimal conflict, it can be resolved by continuously relaxing one of its constraints.

We use the Floyd-Warshall algorithm to compute the tightest bound of each relaxed

constraint. Given a set of minimal conflicts in an inconsistent temporal problem, we

generate all minimal continuous relaxations to it by computing the minimal cover-

ing sets of the constituent relaxations to each conflict. By using an incremental set

covering algorithm, we can update current candidates with newly detected conflicts

without recomputing all constituent relaxations.
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4.4 Generating Preferred Continuous Relaxation

Candidates

In this section, we present the method that finds the best candidate from all candi-

date continuous relaxations generated in the previous step: Given a list of candidate

continuous relaxations to an inconsistent OCSTN, MCRs, and a preference model,

UPM , select the most preferred candidate MCR∗ ∈ MCRs. Further, we will prove

that the MCR∗ generated using this 2-step approach, first generating all candidate

relaxations then selecting the most preferred candidate from the collection, is also the

best candidate continuous relaxation that can resolve all known conflicts.

4.4.1 Selecting the Most Preferred Candidate

To select the most preferred candidate continuous relaxation from a list of candidates,

we use a similar approach to the one that is used in discrete relaxations: iterating

through all candidates in the list, evaluating the cost of each candidate using the con-

tinuous preference models, and selecting the one with the lowest cost through binary

comparisons. The procedure is implemented in Function DequeueBestContinu-

ousCandidate (Algorithm 10).

DequeueBestContinuousCandidate takes in a set of candidate continuous

relaxations, CANDs, and returns the most preferred one, BestContinuousCandidate,

according to a continuous preference model cUPM. It starts by randomly selecting a

candidate as the Currently Best one (Line 1) and recording its utility as the currently

lowest cost (LeastCost, Line 2). Next, DequeueBestContinuousCandidate it-

erates through all candidates in CANDs (Line 3): if a candidate currCandidate

costs less than LeastCost (Line 5), currCandidate will be recorded as the ’Currently

Best’ candidate (Line 6) and its cost is recorded as LeastCost (Line 7).

The Function GetCost evaluates each continuous relaxation using the utility

functions defined in the preference model (Algorithm 11). It computes the cost of

each temporal constraint relaxed by CR using the linear preference functions over
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input : CANDs, a list of candidate continuous minimal relaxation sets
input : cUPM, the continuous user preference model
output: BestContinuousCandidate, the best candidate in CANDs

// Initialize BestCandidate with the first candidate in the

list and the incumbent value.

1 BestContinuousCandidate ← GetFirst(CANDs);
2 LeastCost ← GetCost(Expand(BestContinuousCandidate),cUPM);

// Loop through the list of candidates; select the best one

through a series of binary comparisons.

3 for currCandidate in CANDs do
// Only proceed with the evaluation if the candidate may

have a lower cost

4 if GetBasicCost(Expand(currCandidate),cUPM) < LeastCost then
// Update the current best candidate and incumbent value

if the candidate is better than the best candidate

found so far

5 if GetCost(Expand(currCandidate),cUPM) < LeastCost then
6 BestContinuousCandidate ← currCandidate;
7 LeastCost ←

GetCost(Expand(BestContinuousCandidate),cUPM);

8 end

9 end

10 end

11 return BestContinuousCandidate

Algorithm 10: DequeueBestContinuousCandidate
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their lower and upper bounds. The sum of all costs is recorded as the cost of CR.

input : ContRlx, a candidate continuous relaxation
input : cUPM, the continuous user preference model
output: Cost, the cost of CR according to cUPM

// Initialize the cost value.

1 Cost ← 0;

// Loop through all relaxed temporal constraint in ContRlx.

2 for RC in ContRlx do
// Check the modification made to the lower and upper bounds

of RC.

3 ∆UBRC = RelaxedUB(RC)-UB(RC);
4 ∆LBRC = RelaxedLB(RC)-LB(RC);

// Compute the cost of the relaxed constraint.

5 Cost = Cost + aRC
LB∆LBRC + bRC

LB ;
6 Cost = Cost + aRC

UB∆UBRC + bRC
UB;

7 end

8 return Cost

Algorithm 11: GetCost

To find the candidate with the lowest cost, DequeueBestContinuousCandi-

date has to compute the cost of each continuously relaxed temporal constraints in

each candidate. To avoid redundant computation, we are using a Branch and Bound

approach here with an incumbent value to prune candidates that cannot provide a

lower cost, hence avoid the evaluation process of them. DequeueBestContinu-

ousCandidate uses LeastCost as an incumbent value. Each time LeastCost is

updated, all candidates whose basic costs are larger than the incumbent will be

excluded from the cost evaluation. The basic cost of relaxing a temporal constraint

is the lowest cost of a relaxation that relaxes it. If the basic cost of a candidate is

larger than the incumbent, it cannot be a better candidate since its total cost must

be larger than the incumbent value.

Next, DequeueBestContinuousCandidate evaluates one of the remaining

candidates. If the remaining candidate costs less than the incumbent, the incumbent

will be updated and used to prune more candidates. Otherwise this candidate will
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be excluded from the evaluation.

4.4.2 Proving the Optimality of Continuous BCDR

Given an inconsistent OCSTN, P , we claim that Continuous BCDR generates the

most preferred minimal continuous relaxation to P , given a semi-convex preference

function over P . We prove the optimality of Continuous BCDR in three steps:

• ContinuouslyResolveConflict generates the most preferred minimal con-

stituent relaxation to a single minimal conflict.

• UpdateContinuousCandidates and DequeueBestContinuousCandi-

date generate the most preferred minimal continuous relaxation candidate

to a set of minimal conflicts.

• Continuous BCDR generates the most preferred minimal relaxation to

an inconsistent OCSTN.

The Optimality of ContinuouslyResolveConflict

Given a set of minimal conflicts, MinCFLTs, we would like to generate the most pre-

ferred minimal continuous relaxation that resolves all the conflicts using a 2-step ap-

proach: UpdateContinuousCandidates and DequeueBestContinuousCan-

didate. We make the assumption that the user preference functions over the re-

laxations to temporal constraints are semi-convex. Further, the cost of a relaxation

increase linearly with ∆LB and ∆UB.

This can be framed as a linear optimization problem: we select the values of

∆LB and ∆UB to each temporal constraint so that all the constraints imposed by

MinCFLTs can be satisfied. The standard approach to the problem is a LP solver

which computes the optimal relaxations to each temporal constraint that minimize

the cost.

In this thesis, we take another approach that makes use of the property of semi-

convex functions. Instead of using an optimization algorithm, we use a shortest path
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algorithm (Function ContinuouslyResolveConflict) to generate the continuous

relaxation that minimize the cost.

Theorem 10. Given a semi-convex preference function, UPM, and a minimal con-

flict, MinCFLT , the tightest continuous relaxation to a temporal constraint, TCR to

TC, computed by Floyd-Warshall has the least cost among all continuous relaxations

of TC against MinCFLT .

Proof. [Proof by contradiction]

Assume that there is a continuous relaxation to MinCFLT , TCR′, which relaxes

constraint TC and has a lower cost than TCR.

1. If TCR′ has a lower cost compared to TCR, given that all cost functions

are semi-convex, the relaxation made by TCR′ must have a smaller modification

compared to TCR.

2. However, TCR indicates the tightest bounds to TC computed by APSP, which

means that any bounds smaller than that in TCR will not resolve the minimal conflict.

Hence the assumption does not hold. TCR is the best continuous temporal relax-

ation.

The shortest path algorithm provides the tightest bound of a relaxation that can

resolve a conflict. Therefore, the relaxed temporal bounds in any other relaxation

must be wider. Given that semi-convex functions prefers less modifications to the

temporal bounds, the tightest bound computed by ContinuouslyResolveCon-

flict is the most preferred one.

The Optimality of the Candidate Relaxations

Next, we prove that the BestContinuousCandidate generated by UpdateContinu-

ousCandidates and DequeueBestContinuousCandidate is the most preferred

candidate continuous relaxation to all known conflicts based on Lemma 4.

Lemma 4. [Optimality of UpdateContinuousCandidates] Given a set of min-

imal conflicts, MinCFLTs, and a minimal candidate continuous relaxation CMR
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generated by UpdateContinuousCandidates that relaxes a set of temporal con-

straints TCs, CMR is the most preferred candidate minimal relaxation among all

continuous relaxations to MinCFLTs that relaxes TCs, according to a semi-convex

preference function UPM .

Proof. [Proof by contradiction]

Assume that there exists another candidate minimal relaxation, CMR′, toMinCFLTs

that also relaxes TCs but costs less than CMR′.

• Given that UPM is a semi-convex preference function, if MCR′ costs less then

MCR, then at least one of the relaxed temporal bounds in MCR′ is narrower

than that in MCR.

• However, all the temporal bounds in MCR are computed by Floyd-Warshall

and are minimal in that they cannot be made narrower to resolve all conflicts

in MinCFLTs.

Therefore, the assumption does not hold and MCR is the most preferred min-

imal continuous relaxation that relaxes TCs.

Theorem 11. [Optimality of BestContinuousCandidate] Given a new set of mini-

mal conflicts, MinCFLTs and a semi-convex preference function, UpdateContin-

uousCandidates generates all candidate minimal continuous relaxations MCRs to

MinCFLTs. There is a candidate MCR in MCRs that is the most preferred can-

didate to MinCFLTs, and is selected by DequeueBestContinuousCandidate.

Proof. [Proof by contradiction]

Assume that there is another minimal continuous relaxation, MCR′, that resolves

MinCFLTs and costs less than MCR.

• First, since function DequeueBestContinuousCandidate is complete, MCR′ /∈
MCRs. Otherwise MCR′ will be returned by the function.
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• Second, function UpdateContinuousCandidates is complete in that it gen-

erates all minimal continuous relaxations to MinCFLTs. In other words,

MCRs covers all minimal combinations of continuous relaxations to the tem-

poral constraints in MinCFLTs.

• Therefore, even though MCR′ /∈MCRs, it must relax the same set of temporal

constraints, TCs, with one of the candidate MCRk in MCRs.

• However, by Lemma 4, MCRk has the lowest cost compared to all other con-

tinuous relaxations that relaxes TCs. Hence the cost of MCR′ cannot be lower

than MCRk and then hence MCR, which is the most preferred candidate in

the set MCRs.

The assumption does not hold and MCR is the candidate minimal continuous

relaxation that can resolve MinCFLTs.

Therefore, we have proven that the candidates generated during the enumeration

process are always optimal in terms of the known conflicts.

The Optimality of Continuous BCDR

Finally, we show that Continuous BCDR generates the optimal minimal continu-

ous relaxation to an inconsistent OCSTN, given a semi-convex preference model.

Theorem 12. [Optimality of Continuous BCDR] Given an inconsistent OCSTN,

P, and a continuous preference model, UPM , over P, the first continuous relaxation

generated by Continuous BCDR is the most preferred minimal continuous relax-

ation, CMR, to P.

Proof. There are two possible cases.

First, if all conflicts in P , MinCFLTs, have been detected when CMR is re-

turned, then CMR is the most preferred continuous relaxation according to Theorem

11.
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Second, if only a subset of all conflicts, MinCFLTs′ ⊂ MinCFLTs, has been

detected when CMR is returned, then CMR is the best candidate to MinCFLTs′,

according to Theorem 11.

Further, if there is another minimal continuous relaxation, CMR′, that resolves

all conflicts in MinCFLTs, its cost must be larger than CMR. The reason is that

CMR′ also resolves MinCFLTs′, to which CMR is the best relaxation.

Therefore, Continuous BCDR generates the best minimal continuous relax-

ation to an inconsistent OCSTN.

Note that the best minimal continuous relaxation to an OCSTN may not be

the continuous relaxation with the lowest cost. In other words, the best minimal

continuous relaxation may cost more than the best continuous relaxation due to

its requirements on minimality. For example, (Figure 4-12) shows two continuous

relaxations, one minimal (Figure 4-12(a)) and one non-minimal (Figure 4-12(b)).

End
Eating

Start
Eating

Have a nice dinner
[40min,50min]

Time Constraint
[0min,20min] -> [0min,40min]

(a) A continuous temporal relaxation set of one
relaxation

End
Eating

Start
Eating

Have a nice dinner
[40min,50min] -> [30min,50min]

Time Constraint
[0min,20min] -> [0min,30min]

(b) A continuous temporal relaxation set of
two relaxations

Figure 4-12: Examples of continuous temporal relaxations

Assume that the cost functions over constraints Have a nice dinner and Time Con-

straints are (Figure 4-13). Relaxing Time Constraint from [0min,20min] to [0min,40min]

is the best minimal continuous relaxation that costs 100. However, relaxing both Time

Constraint and Have a nice dinner by ten minutes costs only 90. This case demon-

strates that sometimes slightly relaxing two constraints may cost less than relaxing
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one constraint only, and the best minimal continuous relaxation may not be the best

continuous relaxation.
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Figure 4-13: Continuous preference functions over the constraints

As a result, the minimality of continuous relaxations may prevent Continuous

BCDR from generating the most preferred relaxation to an inconsistent temporal

problem. On the other hand, if we drops the requirement on minimality, there will be

infinite number of continuous relaxations to an OCSTN and they are impossible to

be enumerated. For example, the second best continuous relaxation following (Figure

4-12(b)) may be relaxing Time Constraint by 11 minutes and Have a nice dinner by

9 minutes. The third best may relax the constraints by 12 and 8 minutes. Without

the requirements on the minimality, the collaborative diagnosis process may become

extremely inefficient due to the endless ’next best’ resolutions. Hence we sacrifice the

global optimality of the results generated for a more compact and efficient interaction

between the user and Uhura.

In summary, we presented a new approach that generates the most preferred can-

didate continuous relaxation to inconsistent temporal problems. This is a 3-step

method that first resolves each individual conflict using the minimal relaxation, then

generates the most preferred relaxation candidate to all known conflicts during the

enumeration and finally produce the best minimal continuous relaxation when enu-

meration terminates. In addition, we described an innovative method that compute

the optimal relaxations efficiently: using a semi-convex preference function, the re-
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laxation generated by shortest path algorithms has the lowest cost. Finally, given an

inconsistent OCSTN and a semi-convex preference model, we proved that the Con-

tinuous BCDR algorithm enumerates minimal continuous relaxations in best-first

order.
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4.5 Chapter Summary

In this chapter we presented the concept and design of the Continuous BCDR al-

gorithm used in Uhura. It is an innovative approach to the best-first enumeration

of minimal continuous relaxations to inconsistent OCSTNs. Instead of suspending

constraints, continuous relaxations preserve all the temporal constraints in the prob-

lem and resolves conflicts by minimally relaxing the temporal bounds of constraints.

It addresses the third requirement of collaborative plan diagnosis: small perturba-

tion. Compared to the discrete BCDR algorithm presented in Chapter 3, Continuous

BCDR preserves the elements in the input problem to the maximum. It not only

minimizes the constraints that are relaxed, but also minimizes the adjustments made

to relaxed constraints.

Continuous BCDR is the first method that can generate continuous temporal re-

laxations to inconsistent OCSTNs. With the use of continuous preference models,

Continuous BCDR generates the most preferred minimal continuous relaxation to an

inconsistent OCSTN. The property of a semi-convex preference function guarantees

that for each minimal conflict, the tightest relaxation of one simple temporal con-

straint is in fact the optimal relaxation. Continuous BCDR implements this property

to compute minimal continuous relaxations efficiently using a shortest path algorithm.

Similar to discrete BCDR, we implement Continuous BCDR using incremental set

covering method, similar to CD-A* and DAA [10, 37, 4]. It makes Continuous BCDR

preserve the anytime capability of discrete BCDR and provide quick responses to the

users queries in real world applications.
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Chapter 5

Experimental Results

Uhura has been incorporated within a model-based executive called Kirk [22] and a

dialogue manager system [38, 36] in order to support collaborative diagnosis of over-

constrained temporal plans. Kirk was developed as a model based plan executive that

can generate threads of execution through the TPNs that are temporally consistent,

and execute the partially ordered plan. The addition of Uhura enables Kirk to work

with over-constrained TPNs: if no consistent thread of execution is found in a TPN,

Kirk will call Uhura to initiate the collaborative diagnosis process and engage the

user to resolve the conflicts.

In this chapter, we present the experiment results of Uhura on different test cases

constructed based on the personal transportation scenario. Section 5.1 presents the

experiment setup and the results of Discrete BCDR on discrete relaxations. In

Section 5.2 we present the results of Continuous BCDR on continuous relaxation

problems.
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5.1 Generating Discrete Relaxations

In this section, we evaluate the effectiveness of BCDR on the basis of two criteria.

First, we test the scalability of BCDR by benchmarking it with structured incon-

sistent OCSTNs with randomly selected parameters. The run-time performance is

compared with AllRelaxation and Dualize & Advance. AllRelaxation is the base-

line algorithm which enumerates all possible temporal relaxations using a brute force

strategy. It demonstrates the cost of exploring the complete search and result space

of a relaxation problem. Dualize & Advance uses conflict-directed techniques to enu-

merate all discrete minimal relaxations. It demonstrates the effectiveness of using

minimal relaxations in terms of search space and size of results, and the problem of

not considering user preferences.

Second, we evaluate the run-time performance of BCDR against problems with

various levels of difficulty. The difficulty of a relaxation problem is measured by the

percentage of episodes that need to be relaxed in order to restore the consistency

of over-constrained OCSTNs. Section 5.1.1 describes the design of our experiments.

The results of two experiments are presented in Section 5.1.2 and 5.1.3.

5.1.1 Experiment Setup

We ran two sets of experiments in the evaluation. The first one tests the scalability

of the three algorithms using OCSTNs with various numbers of temporal constraints.

The second one tests the performance of BCDR against OCSTNs of various difficul-

ties.

Tests on Scalability

The complexity of a relaxation problem highly depends on the structure of the OC-

STN: given a fixed number of temporal constraints, the number of minimal temporal

relaxations increases linearly against the number of choices, and exponentially against

the number of temporal constraints activated by each decision. The test cases are

generated in a semi-randomized manner. We define seven classes of OCSTNs: the
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OCSTNs in each class has the same number of temporal constraints, and the number

varies from 20 to 300. For a problem with 300 temporal constraints, the number of

possible temporal relaxations can be as large as 1045. This is the biggest test set-

ting we have seen in literature, and should be able to push all the algorithms in the

experiment to the limit.

Within each class of problem, a set of problem configurations is defined. A problem

configuration is a set of parameters that defines a certain problem structure. For

example, a configuration of 20 constraints, 2 decisions and 10 constraints per decision

defines a type of problem similar to (Figure 5-1). We cover most possible problem

structures using configurations with different numbers of choices. For example, for

20-constraint class test cases, the number of choices can be any integers between 2

and 10. The number of temporal constraints per decision is adjusted accordingly so

that the total number of constraints is around 20.

Within each configuration, ten different problems are randomly generated by

varying the temporal bounds of temporal constraints and cost functions. For exam-

ple, within the 20-constraint class, ten different configurations are available, ranging

from 2 decisions and 10 constraints/decision (Figure 5-1) to 10 decisions and 2 con-

straints/decision (Figure 5-2). Note that we use dummy constraints with temporal

bounds of [0,0] in the graph to separate the effective constraints. The dummy con-

straints have no effect on the result and are not counted towards the total number of

constraints in each problem configuration. Overall, we created 1460 test cases using

the following parameters:

Number of temporal constraints: 20,50,100,150,200,250,300.

Number of decision events: between 2 and 150.

Number of temporal constraints in each decision: between 2 and 150.

Number of Events: Equal to the number of constraints.

Number of preference levels: Equal to the number of constraints.

Constraint Domain: between 0 and 100
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Figure 5-1: 20-constraint test case: 2 decisions with 10 constraints
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Figure 5-2: 20-constraint test case: 10 decisions with 2 constraints

There is a special constraint called controller constraint that governs all disjunc-

tions in each OCSTN, such as the temporal constraint between the start and end

events in (Figure 5-1). The controller constraints are used to adjust the consistency

of the OCSTN. Within each disjunction, the temporal bounds of each temporal con-

straints are randomly selected between 0 and 100. In order to make all test cases

inconsistent, we adjust the upper bounds of the controller constraints, UBcontroller,

such that the lower bounds of all temporal constraints in each decision sum up to

80% of UBcontroller.

For example, in (Figure 5-2), the sum of constraint ’4-5 [65,69]’ and ’6-7 [34,42]’

is ’[99,111]’. Compared to the controller constraint, ’0-1 [0,80]’, the lower bound of

the sum exceeds by 20%. The use of controller constraints guarantees that all test

cases are inconsistent, and in general one-fifth of the temporal constraints in each

disjunction have to be relaxed in order to make the OCSTN consistent. Table 5.1
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Constraint number Number of configurations Number of random problems
20 10 100
50 11 110
100 17 170
150 21 210
200 25 250
250 30 300
300 32 320

Table 5.1: Specification of benchmark Optimal Conditional Simple Temporal Net-
works

summarizes the specs of test cases in each class.

All test cases in this experiment are structured following this guidelines. Note that

an unstructured random temporal problem generator is described in literature [33].

Given a fixed number of events, Ne, and the ratio between the number of temporal

constraints (Nc) and Ne, R = Nc/Ne, the generator creates temporal problems by

creating temporal constraints of random durations and disjunctions between events.

It is shown in [27] that the percentage of inconsistent problems created by this gen-

erator for R = 2, 3, 4, 5, 6, 7 were (0%,0%,0%,12%,72%,94%), respectively. In other

words, the generator can hardly create inconsistent problems when Nc is less than

four times of Ne. However, in our problem settings of the Personal Transportation

system scenario, the value of R is usually lower than 2. The inconsistent OCSTNs

are usually the result of one or several user defined constraints that are too tight

compared to the restrictions imposed by the environment. The generator in [33] can

hardly provide any inconsistent OCSTNs in our settings. Therefore, we choose to

take the structured approach to generate test cases for BCDR.

Tests on Difficult Problems

The second group of tests focuses on the effect of difficult problems on the run-time

performance of BCDR. To evaluate the difficulty of a OCSTN, we define a parameter

Over-constrained Level of the OCSTN as:

Definition 43. The Over-constrained Level, OC, of a OCSTN, P , is OC =

Nrtc/Ntc, where
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• Nrtc is the average number of relaxed temporal constraints in the minimal relax-

ations to P .

• Ntc is the number of temporal constraints in each decision of P .

This parameter is used to evaluate the difficulty of a temporal relaxation problem,

since it affects the number of possible minimal relaxations to the inconsistent OC-

STN. For example, given a 10% over-constrained OCSTN in the 100-constraint class,

the number of minimal relaxations to it is around 106. For a 50% over-constrained

OCSTN, the number may rise to 1014.
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[0,0]

15

Cost: 200
[ 36 , 45 ] 16[0,0] 17

Cost: 210
[ 63 , 66 ] 18[0,0]

[0,0]

20

Cost: 300
[ 69 , 76 ] 21[0,0] 22

Cost: 310
[ 30 , 34 ] 23[0,0]

[0,0]

25

Cost: 400
[ 66 , 72 ] 26[0,0] 27

Cost: 410
[ 33 , 38 ] 28[0,0] [0,0]

30

Cost: 500
[ 77 , 84 ] 31[0,0] 32

Cost: 510
[ 22 , 31 ] 33[0,0]

[0,0]

35

Cost: 600
[ 58 , 59 ] 36[0,0] 37

Cost: 610
[ 41 , 42 ] 38[0,0]

[0,0]

40

Cost: 700
[ 50 , 59 ] 41[0,0] 42

Cost: 710
[ 49 , 49 ] 43[0,0]

[0,0]

45

Cost: 800
[ 34 , 38 ] 46[0,0] 47

Cost: 810
[ 65 , 69 ] 48[0,0]

[0,0]

50

Cost: 900
[ 1 , 9 ] 51[0,0] 52

Cost: 910
[ 98 , 101 ] 53[0,0]

[0,0]

Figure 5-3: 20-constraint test case: 80% over-constrained

In this group of test cases, this parameter is controlled by the upper bounds of

the controller temporal constraint: the over-constrained level is the ratio between the

sum of the lower bounds of all temporal constraints in one choice, SumLB, and the

upper bound of the controller temporal constraint, UBctc. If SumLB/UBctc = OC,
then the problem is said to be 100OC% over-constrained.

For example, (Figure 5-1) is a 20% over-constrained problem, while (Figure 5-3)

is a 80% over-constrained problem. In this group of experiments, we define three
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Constraint # Over-constrained Levels # of configurations # of random problems
20 20,30,40,50,60,70,80 10 700
50 20,30,40,50,60,70,80 11 770
100 20,30,40,50,60,70,80 17 1190

Table 5.2: Specification of over-constrained level test cases

classes of test cases: 20 constraints, 50 constraints and 100 constraints. Within each

class, the test cases varies in the structures and over-constrained levels. We created

2660 test OCSTNs using parameters in (Table 5.2).

All algorithms are benchmarked based on the number of temporal consistency

checks called during the relaxation process to eliminate the variation caused by com-

puters. AllRelaxations is set to generate all full temporal relaxations. Dualize &

Advance is set to generate all minimal temporal relaxations. BCDR is set to generate

the 10 most preferred minimal temporal relaxations, if available.

5.1.2 Analysis of Scalability

All tests are completed on a Core i7 computer with 12GB RAM. The result of each

class is an average number of consistency checks, which is averaged from the numbers

of all test cases in that class. The maximum number of consistency checks allowed

on each test run is 104. Each dot in the graph represents an individual test run, and

the line shows the average number in each class of test cases.

As shown in (Figure 5-4), AllRelaxations (the brute force algorithm) performs

the largest number of consistency checks, which times out on the 50-constraint prob-

lem. The reason for its poor performance is that it tries to enumerate and test all

candidate temporal relaxations. The number of candidate temporal relaxations to a

20-constraint OCSTN is around 103, and it quickly rises to 1015 for an OCSTN in the

100-constraint class.

Compared to AllRelaxation, only enumerating minimal relaxations using Dualize

& Advance significantly reduces the run time: inconsistent OCSTNs with less than

50 constraints are solved in less than 1000 consistency checks, which is roughly equal

to 1 second of computation time on a regular desktop computer. The improvement
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in performance is due to two factors. First, DAA uses conflicts to guide the search

away from infeasible relaxations, and towards feasible relaxations. Second, it avoids

generating non minimal relaxations. Both factors improve performance, and the

second factor also reduces the number of options presented. The candidate minimal

relaxations to a 100-constraint OCSTN is around 1010, which is 100,000 less than that

of AllRelaxations (1015). Note that the Dualize & Advance algorithm is implemented

with the general minimal conflict extract method, which does not make use of the

negative loops in temporal problems to generate conflicts (such as [19]).

The computation time of Dualize & Advance algorithm is still impractical in most

real-world scenarios. The number of consistency checks required exceeds 105 when

the number of temporal constraints in the OCSTN is larger than 100. As stated in

Chapter 1, to enable collaborative diagnosis, the autonomous decision system should

respond quickly to inconsistent temporal problems. The waiting time for the user

should not exceed 1 second, which is roughly equal to 103 consistency checks.

Compared to AllRelaxation and Dualize & Advance, Uhura (using the BCDR al-

gorithm) with an improved minimal conflict extraction algorithm and user preference

models achieves 102 higher run time performance. In this experiment, BCDR only

generates the ten most preferred minimal relaxations. It runs significantly faster on

all problems than AllRelaxation. Compared to Dualize & Advance, BCDR reduces

the number of consistency checks by more than two orders of magnitude. It avoids

the minimization process of DAA that iterates through every temporal constraints

in an inconsistent candidate. This saves nearly 90% of the consistency checks. In

addition, the number of minimal temporal relaxations that needs to be enumerated is

nearly 100 times less than that of DAA due to the use of preference models. BCDR

stops enumeration when the tenth relaxation is generated.

Finally, (Figure 5-5) shows the run-time performance of BCDR against inconsis-

tent OCSTNs with different numbers of choices. Each line in the graph represents

the result with regarding to a problem with a certain number of choices. Given a

fixed number of constraints, the number of temporal constraints per choice decreases

when the number of choices increases.
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Figure 5-4: Runtime on randomly generated temporal problems with different num-
bers of constraints

As can be seen in the figure, BCDR’s performance improves when the number

of choices increases (or, the number of temporal constraints per choice decreases),

regardless of the total number of episodes in the problem. As stated in the previous

section, the complexity of a relaxation problem increases linearly against the number

of choices, and exponentially against the number of temporal constraints in each

disjunction. Therefore, given a fixed number of temporal constraints, an OCSTN

with a smaller number of choices is generally more complex and harder to resolve

than an OCSTN with more choices.
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Figure 5-5: Runtime of Uhura (using BCDR) on temporal problems with different
numbers of choices

5.1.3 Analysis of Performance on Difficult Problems

(Figure 5-6) shows the runtime of Uhura (using BCDR) on inconsistent OCSTNs

with different difficulties (over-constrained levels). The dots in the graph represent

the result of each individual test case and the solid lines represent the average across

all test cases in each category. The vertical axis represents the number of consistency

checks for each test case, and the horizontal axis represents the over-constrained

levels. Recall that the over-constrained level of an over-constrained OCSTN indicates

how many simple temporal constraints need to be relaxed on average to restore the

temporal consistency.

It can be seen from the graph that the number of consistency checks required by

BCDR increases with the over-constrained levels. As stated in the previous section,

the number of minimal temporal relaxations to a OCSTN may increase if its over-

constrained level increases, since a harder problem usually has more conflicts and

requires more consistency checks to resolve. In addition, for best-first enumerations,
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problems with higher over-constrained levels usually require many more computations

than slightly over-constrained problems. This is the result of our assumption that

the user prefers relaxations that relax fewer temporal constraints. Based on this

assumption, BCDR will always test candidates that relax less constraints first, hence

steer the enumeration away from the correct resolutions.
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Figure 5-6: Runtime of Uhura (using BCDR) on temporal problems with different
over-constrained levels
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5.2 Generating Continuous Relaxations

In this section, we evaluate the performance of Continuous BCDR on continuous

relaxation problems. We continue to use the structured inconsistent OCSTNs pre-

sented in Section 5.1 to benchmark Continuous BCDR. Recall that the number

of simple temporal constraints, choices and temporal bounds vary in each test case.

The test results are compared to Discrete BCDR, which generates discrete relax-

ations and is supposed to be faster due to the direct suspension of constraints. We

use the runtime of the algorithms in milliseconds to compare their performance. All

experiments are done on a Core i7 computer.

5.2.1 Analysis of Scalability

As we presented in Chapter 4, the generation of continuous relaxations can be viewed

as generating discrete relaxations plus temporal bounds tightening. Given that we

use the Floyd-Warshall algorithm to compute the tightest constraint bounds of each

candidate, which is a polynomial algorithm in terms of the events, the additional

runtime required by continuous relaxations should be polynomial, too.

We use the scalability test cases presented in Section 5.1, which are constructed

based on the PTS scenario. Recall that there are seven classes of tests, each repre-

senting a number of constraints ranging from 20 to 300. Within each class, we define

several subclasses of tests with different numbers of choices. For a given structure,

we randomly generate five test cases by varying the temporal bounds of constraints.

Therefore, we have in total 1600 test cases that cover most daily trip scenarios of the

Personal Transportation System.

There is a major difference between this experiment and the one in Section 5.1: we

use run time instead of consistency checks to benchmark the algorithm. The numbers

of consistency checks are usually identical in both discrete and continuous approaches,

since the Continuous BCDR is only different from Discrete BCDR in that it

has an additional temporal bounds tightening process for constituent relaxations.

We would like to know the additional computation required for doing continuous
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Figure 5-7: Runtime of continuous BCDR on relaxation tests

relaxation compared to discrete relaxation. The run time performance of Discrete

BCDR and Continuous BCDR is presented in (Figure 5-8 and 5-7).
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Figure 5-8: Runtime of discrete BCDR on relaxation tests

In these experiments, we constrain both algorithms to generate the first ten re-

laxations to the inconsistent test cases. The blue dots in the graph represent the run
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time of each individual experiment, and the red lines show the average run time of

each class of test cases. The horizontal axis represents the number of constraints in

the problem, and the vertical axis represents the run time of the algorithm in millisec-

ond. As can be seen from the graph, the run time of Continuous BCDR increases

exponentially against the number of constraints in the test case. This coincides with

the result we get from Discrete BCDR: the run time is dominated by the number

of consistency checks, and the number of consistency checks required is exponential

in terms of the constraints.

The slope of the continuous relaxation curve is larger than the curve of discrete

relaxations. In other words, it takes more time to generate ten continuous relaxations

than discrete relaxations. As we presented in Section 5.2, there is an additional step

in Continuous BCDR that computes the minimal relaxed temporal bounds of

suspended constraints. It uses a polynomial algorithm, Floyd-Warshall, that runs in

O(n3), where n is the number of events in the conflicts. On the other hand, Discrete

BCDR resolves conflicts through constraint suspension, which saves the extra time

spent on computing continuous constituent relaxation when a conflict is detected.

The time difference between (Figure 5-8) and (Figure 5-7) is increasing with re-

gards to the number of constraints due to the increasing size of conflicts: the addi-

tional time required to compute the temporal bounds is longer on large conflicts. It

starts from 5 ms on 20-constraint problems to nearly 500 ms on 300-constraint prob-

lems. If the user is sensitive to the runtime and needs a quick response, generating

the discrete relaxations using Discrete BCDR would be a better approach, if he is

not critical about the quality of the result. On the other hand, if the user wants to

minimize the modification to the plan requirements, he may spend 2 to 5 times more

time and get continuous relaxations using Continuous BCDR.
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5.3 Chapter Summary

In this chapter, we present the benchmark results of Uhura. There are two groups

of tests performed on discrete and continuous relaxation generation. We tested Dis-

crete BCDR and Continuous BCDR algorithms separately, then compared their

run time performance. Within each group of tests, we analyzed the scalability of the

algorithms, as well as their performance on problems of different difficulty.

The experiment results show that BCDR achieves significant improvement in run-

time performance on large and difficult temporal problems compared to previous

approaches. The conflict-directed technique efficiently prunes the search space in

enumeration process. In addition, the inference based conflict extraction method and

best-first enumeration strategy make BCDR nearly two orders of magnitude faster

than Dualize & Advance. In addition, the use of minimal relaxations reduced the

result spaces compared to the baseline algorithms, AllRelaxation, by several orders

of magnitude.

Finally, we compared the discrete and continuous version of BCDR in terms of

run time performance. As presented in Chapter 4, Continuous BCDR requires an

additional polynomial time process of temporal bounds tightening. The experiment

results verified our hypothesis on the difference between their performance: Contin-

uous BCDR is one to two orders of magnitude slower than Discrete BCDR due

to the additional step. As a result, we recommend using Discrete BCDR if the

user is more sensitive to quick response. If the user asks for a higher quality results,

then Continuous BCDR would be a better fit.
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Chapter 6

Summary and Future Work

This chapter begins by presenting several ideas for future extensions of the research

presented in this thesis. We then conclude this thesis and discuss our contributions

in Section 6.2.
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6.1 Future Work

In this section, we present ideas for extending the capabilities of Uhura and its BCDR

algorithm and new applications as future work. This section is divided into two

parts. First, we describe the open questions in the current approach to discrete and

continuous relaxations that have not been addressed. Second, we present possible

extensions to Uhura that provide new capabilities and applications.

6.1.1 Open Questions Within the Current Approach

Repairing Dependencies of Relaxed Constraints

Usually, in a temporal plan, the presence of some constraints are conditioned on the

presence of other constraints. For example, the constraint on John’s dinner duration

and the driving time to restaurants are only valid if he decides to go out for dinner.

If he chooses not to have dinner on his way back home, none of these constraints

still makes sense. As a result, there is dependency between constraints that are

relaxed in that the relaxation of some constraints should imply the relaxation of

other constraints.

In our current approach, this dependency is not considered during relaxation:

Uhura only checks the temporal consistency of conditional constraints guarded by

choices. To add the dependencies between constraints, we need a new encoding

of conditional constraints as well as a dependency checking method: each time a

constraint ck is relaxed, Uhura should be aware of the other constraints Cdk that

depend on the existence of ck, and generate corresponding relaxations to them.

A possible approach to addressing this issue is to improve the existing encoding of

conditional constraints. Recall that Uhura is capable of relaxing OCSTNs, in which

the activation of temporal constraints may depend on the choice made to decision

events. By including the choices in both conflict and relaxation representations, Uhura

can guarantee the consistency between choices and activated temporal constraints.

We can add the dependencies between constraints as an additional requirement for

activating conditional constraints. For example, if the activation of constraint ck
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requires both choice D ← k and the activation of constraint cj, then Uhura will

deactivate ck whenever cj is relaxed. In other words, ck can only be preserved if cj is

activated and preserved.

Generating Good English Explanations

In this thesis, we have discussed the challenges and approaches of generating tempo-

ral relaxations to inconsistent problems. However, Uhura is designed as an interface

between the user and a temporal planner, and is supposed to communicate the al-

ternatives to the users using natural languages. As a passenger of PTS, John will be

expecting the explanation from Uhura in the form of plain English, not a statement

consisting of temporal constraints and events. To achieve this, we have to address

another challenge of generating good English explanations back to the user.

An explanation is good in three aspects. First, as stated before, the explanation

must be presented using plain English. Uhura is developed as an automatic taxi

driver system. The target users of Uhura are general public without any background

in constraint programming and artificial intelligence. It is unrealistic to expect a

non-AI expert to understand temporal constraints, conflicts and minimal relaxations.

Therefore, the explanations should avoid this jargon and use descriptive expression

to describe the problems and alternative plans.

Second, the expression must be at the appropriate level of abstraction. The tem-

poral plan can be as large as thousands of constraints, and simply presenting it to

the user may cost a lot of time. To make the explanation succinct, Uhura has to

identify the key elements of a relaxation that must be communicated to the user, the

supporting reasons for these relaxations and the elements that remains unchanged or

not related. While presenting relaxations, Uhura should only communicate the key

modifications in the alternative plans, provide reasons when asked and hide the un-

related details from the user. A key enabler to this capability is a shared knowledge

model between Uhura and the user, so that Uhura can evaluate each piece of informa-

tion and avoid telling the user what he or she already knows, or missing supporting

evidences that may cause confusion.
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Finally, generating an explanation is not all about language. In most situations,

it would be more efficient if the explanation can be presented using both graphical

interfaces and verbal communications. For example, to describe a flight path from

Boston to Detroit, it may take Uhura several minutes to speak out each navigation

and check points on the route. On the other hand, the passenger may get the message

in ten seconds if a route map is presented. This is a challenge similar to the second

one, for which Uhura has to choose the most efficient way to present each part of an

alternative plan.

6.1.2 New Capabilities and Applications

Relaxing Constraints on States

In this thesis, we discussed the resolution of over-constrained temporal problems using

continuous and discrete temporal relaxation. Uhura adjusts the temporal bounds of

constraints in an inconsistent OCSTN in order to restore its consistency, which is

equivalent to relaxing the temporal goals in the QSP. However, another way is to

modify the user’s state goals in the QSP in order to enable a consistent plan to be

generated. For example, if all of the sandwich restaurants are too far away from John’s

office to meet his temporal goal, it is natural to ask him if he can relax his requirements

of the restaurant type. say from sandwich restaurant to any fast-food restaurant.

Therefore, more alternative restaurants will be available for John, and some of them

may be closer to his route home. If again no plan to these restaurants satisfies the

temporal goal, we can further relax the state goal from fast-food restaurant to any

restaurants until a consistent plan is generated.

This feature requires a new capability that is not available in Uhura at the moment.

Uhura have to identify the type of the state goals and construct the relaxation type

hierarchy for them. Then relax the state goals following the type hierarchy, from

lower levels to upper levels. For example, Cosi is a sandwich restaurant, and a

sandwich restaurant is a type of fast-food restaurant. If no feasible plan is found

that achieves all the user’s goals, Uhura may relax this state goal from Cosi to any
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sandwich restaurant and then to any fast-food restaurant. This type of relaxation

introduces more options into the planning problem. Hence it increases the chance of

generating a feasible plan: there may be one restaurant that is close enough to John’s

route home that will save him a lot of time on driving.

To enable this capability, we have to solve two problems: when to relax and

how to relax a state goal, given an inconsistent plan. To address the first problem,

we need to introduce a new way to resolve a known conflict: modifying its state

constraints. Currently we are using two ways to resolve conflicts detected in an

inconsistent OCSTN: relaxing some temporal constraints, leaving the state constraints

unchanged; or changing the choice to deactivate some state and temporal constraints

in the conflict. The later method may be modified to provide this capability. For

each state constraint in the plan, we may encode an alternative that represents its

relaxation using a decision event. Therefore, when a minimal conflict is detected,

BCDR can generate a constituent relaxation that asks for a relaxation over the state

constraint.

The second problem, how to relax a state goal, may be addressed by introducing

a structure that can store type information and answer queries about relaxations. A

similar method has been used in WordNet [26], a lexical database of English that

groups words into sets of synonyms and are organized into hierarchies. It can be used

to answer queries like the classes of a word, such as dog → mammal → animal.

Interactive Plan Diagnosis

In Chapter 3, we presents Uhura using a simplified user-robot interaction model,

in which the only job of John is to make decisions while the robot sends back a

proposed temporal relaxation. If John accepts the proposal, Uhura will terminate

the enumeration and implement the relaxations. If John rejects, Uhura continues to

look for the next best relaxations to John’s inconsistent problem.

However, in real world scenarios, human and robots are usually working together.

They may not have the complete set of information of the task, and need to provide

explanations and feedbacks to each other in order to generate a shared plan. For
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example, Uhura may ask John if he can postpone the arrival time, while John may

ask Uhura if he can drop by a grocery store and pick up snacks for his party.

To solve the over-constrained situation, both human and robot have to make

contribution: the operator has to tell the robot his or her preferences over the options,

while the robot need to communicate the environment constraints and evaluate the

feasibility of all goals proposed by the operator. This capability will require a different

collaboration model, in which the human and robots work like peer-to-peer instead

of leader-assistant.

To satisfy this requirement, Uhura must be able to update the model it used

to enumerate relaxations online. Currently Uhura only accepts ’yes’ or ’no’, which

decides if it should continuous the enumeration or terminate. If the user asks for more

goals or changes the preference models, Uhura should be able to incorporate these

modifications into its enumeration process decides the next alternative to present.
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6.2 Summary

In this thesis we presented Uhura, a collaborative temporal plan diagnosis system.

Uhura is designed to take over-constrained user goals with temporal flexibility and

contingencies, specifically Qualitative State Plans, and work with the user to generate

temporal relaxations that enable a complete and consistent temporal plan to be gen-

erated that achieves a relaxed set of goals. We frame the problem of relaxing goals

in QSPs as a temporal relaxation problem of inconsistent OCSTNs: all goals and

durations of activities that achieve the state goals are represented as conditional tem-

poral constraints, and the inconsistent OCSTNs are resolved through the relaxation

of these constraints.

Building upon prior work on conflict-directed search techniques, Uhura introduces

three innovations to address the challenges in the collaborative diagnoses of over-

constrained problems: quick responses, simple interaction and small perturbation.

The first innovation, quick response, is supported by the Best-first Conflict-Directed

Relaxation algorithm, which enumerates minimal temporal relaxations in best-first

order. This is the first method that generates minimal relaxations to over-constrained

temporal problems with contingencies, making the results compact and expressive for

the user. BCDR extends the Conflict-directed A* algorithm and achieves nearly two

orders of magnitude improvement in run-time performance relative to the Dualize

& Advance algorithm in the generation of minimal temporal relaxations, making it

applicable to a larger group of real-world scenarios with hundreds of constraints.

Second, BCDR simplifies the user interaction by using minimal relaxations. Mini-

mal relaxations are compact representations of all relaxations. It can reduce the result

space of relaxation problems by several orders of magnitude. BCDR only enumerates

and generates minimal relaxations, which greatly reduces the amount of information

exchange required during the collaborative diagnoses process.

Third, we introduce the Continuous BCDR method that generates continuous

relaxations to inconsistent temporal problems. It is a generalization of the discrete

relaxation method taken by all previous approaches. Prior works take an all-or-
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nothing approach in which temporal constraints are suspended in the relaxations.

Continuous BCDR continuously adjusts the temporal bounds of temporal constraints

in OCSTNs until the consistency is restored, hence preserves the original plan ele-

ments to the maximum. Compared to discrete relaxations, continuous relaxations

avoid the unnecessary lose of utility. We presented a continuous preference function

over temporal constraints that can be used to enumerate continuous relaxations in

best-first order.

Uhura has been incorporated within an autonomous executive that collaborates

with the operators in order to find the best alternative plans in over-constrained

situations. It has been demonstrated in simulation and in hardware on a Personal

Transportation System concept. In addition, Uhura has also been used in a driving

assistant system to resolve conflicts in driving plans. We believe that Uhura’s collab-

orative temporal plan diagnosis capability can benefit a wide range of applications,

in both the industries and daily lives.
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