
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2018-009 February 1, 2012

Robust, Goal-directed Plan Execution with
Bounded Risk
Masahiro Ono

Robust, Goal-directed Plan Execution with Bounded Risk

by

Masahiro Ono

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2012

@ Massachusetts Institute of Technology 2012. All rights reserved.

% - ., A% " / Is //

Author

MASSCHUSETS INST IJTEOF TECHNOLOGY

APR IF

OJRARIES

ARCHIVES

. .
Department of Aeronautics and Astronautics

February 2, 2012
- / I

Certified by

Certified by

'/1

Certified by

Prof. Brian C. Williams
Thesis Supervisor

........

Prof.I lio Frazzoli
Thesis Committee Member

Dr. Lars Blackmore
Th sis Committee Member

Accepted by
rof. Eytan H. Modiano

Chair, Graduate Program Committee

Robust, Goal-directed Plan Execution with Bounded Risk

by

Masahiro Ono

Submitted to the Department of Aeronautics and Astronautics
on February 2, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

There is an increasing need for robust optimal plan execution for multi-agent systems in
uncertain environments, while guaranteeing an acceptable probability of success. For ex-
ample, a fleet of unmanned aerial vehicles (UAVs) and autonomous underwater vehicles
(AUVs) are required to operate autonomously for an extensive mission duration in an uncer-
tain environment. Previous work introduced the concept of a model-based executive, which
increases the level of autonomy, elevating the level at which systems are commanded. This
thesis develops model-based executives that reason explicitly from a stochastic plant model
to find the optimal course of action, while ensuring that the probability of failure is within
a user-specified risk bound.

This thesis presents two robust mode-based executives: probabilistic Sulu or p-Sulu,
and distributed probabilistic Sulu or dp-Sulu. The objective for p-Sulu and dp-Sulu is to
allow users to command continuous, stochastic multi-agent systems in a manner that is
both intuitive and safe. The user specifies the desired evolution of the plant state, as well
as the acceptable probabilities of failure, as a temporal plan on states called a chance-
constrained qualitative state plan (CCQSP). An example of a CCQSP statement is "go
to A through B within 30 minutes, with less than 0.001% probability of failure." p-Sulu
and dp-Sulu take a CCQSP, a continuous plant model with stochastic uncertainty, and an
objective function as inputs, and outputs an optimal continuous control sequence, as well
as an optimal discrete schedule. The difference between p-Sulu and dp-Sulu is that p-Sulu
plans in a centralized manner while dp-Sulu plans in a distributed manner. dp-Sulu enables
robust CCQSP execution for multi-agent systems.

We solve the problem based on the key concept of risk allocation, which achieves
tractability by allocating the specified risk to individual constraints and mapping the result
into an equivalent deterministic constrained optimization problem. Risk allocation also en-
ables a distributed plan execution for multi-agent systems by distributing the risk among
agents to decompose the optimization problem. Building upon the risk allocation approach,
we develop our first CCQSP executive, p-Sulu, in four spirals. First, we develop the Con-
vex Risk Allocation (CRA) algorithm, which can solve a CCQSP planning problem with a
convex state space and a fixed schedule, highlighting the capability of optimally allocating
risk to individual constraints. Second, we develop the Non-convex Iterative Risk Alloca-

tion (NIRA) algorithm, which can handle non-convex state space. Third, we build upon
NIRA a full-horizon CCQSP planner, p-Sulu FH, which can optimize not only the control
sequence but also the schedule. Fourth, we develop p-Sulu, which enables the real-time
execution of CCQSPs by employing the receding horizon approach.

Our second CCQSP executive, dp-Sulu, is developed in two spirals. First, we develop
the Market-based Iterative Risk Allocation (MIRA) algorithm, which can control a multi-
agent system in a distributed manner by optimally distributing risk among agents through
the market-based method called tatonnement. Second and finally, we integrate the capa-
bility of MIRA into p-Sulu to build the robust model-based executive, dp-Sulu, which can
execute CCQSPs on multi-agent systems in a distributed manner.

Our simulation results demonstrate that our executives can efficiently execute CCQSP
planning problems with significantly reduced suboptimality compared to prior art.

Thesis Supervisor: Prof. Brian C. Williams

This thesis is for my parents, Akira and Chisetsu.

Acknowledgments

First, I would like to express my most profound gratitude for my advisor, Prof. Brian C.

Williams. I learned from him not only about how to conduct interesting research, but

also how to tell a compelling story in writing and presentations. I am also very thankful

to him for granting me a large degree of freedom in my research. He encouraged me to

be creative, rather than commanding me to do specific tasks. He treated me as a mature

researcher, rather than merely a research assistant. With his guidance, support and trust, I

had a wonderful research experience at MIT.

I would also like to thank my committee members and readers, Prof. Emilio Frazzoli,

Dr. Lars Blackmore, Prof. Nicholas Roy, and Dr. Howard E. Shrobe, for giving me helpful

feedback on my thesis and defense. I particularly thank Lars for having been a great mentor

and collaborator throughout my PhD research. His advice helped me greatly in improving

this thesis.

I would like to thank all of my colleagues and collaborators. Alborz Geramifard, David

Wang, Hui Li, Julie Shah, and Peng Yu in the MERS group worked hard with me late into

the night in order to produce successful demonstrations for the Boeing project. Ronald

Provine and Scott Smith at the Boeing Company gave us wonderful feedback and support

on the project. I also thank all of my friends. I particularly thank Yoshiaki Kuwata for

encouraging me to come to MIT, as well as for being a great mentor after I arrived.

I thank the Voyger 2 spacecraft for inspiring me to pursue space engineering. Her

rendezvous with Neptune in 1989 was an unforgettable event in my childhood. I wish her

good luck in her never-ending journey out of the Solar System, as well as in her mission to

deliver the Golden Record to an extraterrestrial civilization. May the Force be with her.

I would not have been able to complete my PhD degree without all the love, support,

and respect I have received from my family members. My father has been the greatest

teacher in my life. He bought me a telescope, with which we spent hours every weekend to

discover the wonders of the universe, such as the craters on the Moon, the rings of Saturn,

and the tail of a comet. He gave me a box of electrical components, such as transistors,

resistors, and capacitors, and taught me how to put them together to create a radio. He

also gave me my first computer, which ran on the i486 CPU and MS-DOS, as well as a

book on the C Language. All of these childhood experiences become the cornerstones of

my achievements at MIT. My mother always cared about me, more than anyone else. She

never forgets to send me a birthday present, even after I left home and came to the U.S.

She often sends me packages filled with Japanese snacks, foods, and teas, and handwritten

letters. They helped me a lot to to go through tough times at MIT. My sister, Asumi, has

been a great friend of mine for nearly 25 years. My grandfathers and grandmothers are

the greatest cheerleaders in everything I do. My dog, Chiko, and my cat, Mimi, were my

mascots who comforted me a lot.

Finally and most importantly, I thank my wonderful wife, Eriko, who was a classmate

at MIT and became my lifelong partner. She have always greatly encouraged and supported

me, even though we have lived separately in Japan and the U.S. since last June, She watched

my thesis defense over the internet at 2 a.m. in Japan time, and wept with joy when I passed

it. Her love and trust are the essential ingredients of my success.

This research was funded by Boeing Company under contract MIT-BA-GTA-1 and the

National Science Foundation under Grant No. IIS-1017992. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the author and do

not necessarily reflect the views of the sponsoring agencies.

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Objective . 17

1.3 Required Capabilities . 18

1.4 Introduction of Robust Plan Executives 21

1.5 Overview of p-Sulu . 21

1.5.1 Inputs . 22

1.5.2 Output . 23

1.6 Approach to p-Sulu . 24

1.6.1 Risk Allocation . 24

1.6.2 Spiral Development of p-Sulu . 26

1.6.3 CRA: full-horizon CCQSP planning with a convex state space, a

fixed schedule . 26

1.6.4 NIRA: full-horizon CCQSP planning with a non-convex state space,

a fixed schedule . 28

1.6.5 p-Sulu FH: full-horizon CCQSP planning with a non-convex state

space and a flexible schedule . 29

1.6.6 p-Sulu: receding-horizon CCQSP execution with a non-convex state

space and a flexible schedule . 30

1.7 Innovations for p-Sulu . 31

1.8 Overview of dp-Sulu . 32

1.9 Approach to dp-Sulu . 36

1.9.1 Risk Allocation for Multi-agent Systems 36

8

1.9.2 Spiral Development of dp-Sulu . 36

1.9.3 MIRA: full-horizon multi-agent CCQSP planning with a convex

state space and a fixed schedule 37

1.9.4 dp-Sulu: receding-horizon multi-agent CCQSP execution with a

non-convex state space and a flexible schedule 38

1.10 Innovations for dp-Sulu . 39

1.11 Summary of Empirical Results . 40

1.12 Related Work . 42

1.12.1 Plan Execution with Temporally Extended Goals 42

1.12.2 Planning under Uncertainty . 43

1.12.3 Receding Horizon Control . 44

1.12.4 Chance-constrained Optimal Control 45

1.12.5 Distributed Planning and Distributed MPC 47

1.13 Thesis Organization . 48

2 Problem Statement 51

2.1 Definition of time step . 52

2.2 Definitions of Events .

2.3 Definitions of variables

2.3.1 Schedule .

2.3.2 state vector .

2.3.3 Control vector and control sequence

2.4 Definitions of inputs .

2.4.1 Initial condition

2.4.2 Stochastic plant model

2.4.3 Chance-constrained qualitative state plan (CCQSP)

2.4.4 Objective function

2.5 Definitions of outputs .

2.6 Problem Statement .

. 52

. 53

. 53

. 53

. 54

. 54

. 54

. 54

. 56

. 61

. 62

. 62

3 Encoding 63

3.1 Encoding of a CCQSP Planning/Execution Problem with a Non-convex

State Space and Flexible Schedule . 64

3.1.1 Encoding of Feasible Regions . 64

3.1.2 CCQSP Planning/Execution Problem Encoding 65

3.2 Encoding of a CCQSP Planning/Execution Problem with a Non-convex

State Space and Fixed Schedule . 66

3.3 Encoding of a CCQSP Planning/Execution Problem with a Convex State

Space and Fixed Schedule . 67

3.4 Encoding of CCQSP Planning Problems with Multiple Agents 68

4 Risk Allocation 69

4.1 Risk Allocation Approach . 71

4.1.1 Racing Car Example . 71

4.1.2 Formal Statement of the Risk Allocation Approach 72

4.1.3 Conversion to Deterministic Constraints 76

4.1.4 Deterministic Approximation of the Joint Chance-constrained Op-

timization Problem . 78

4.1.5 Conservatism of Risk Allocation Approach 79

4.2 Iterative Risk Allocation Algorithm . 83

4.2.1 Race Car Example . 84

4.2.2 A lgorithm . 85

4.2.3 Recursive Feasibility and Monotonicity 87

4.3 Conclusion . 89

5 CCQSP Planning with a Convex State Space and a Fixed Schedule 90

5.1 Convex Deterministic Approximation of Problem 4 90

5.1.1 Conversion to Deterministic Constraints 91

5.2 Convex Programming Solution to Problem 4 92

5.3 Conclusion . 93

6 CCQSP Planning with a Non-convex State Space

6.1 Deterministic Approximation .

6.1.1 Risk Selection Approach .

6.1.2 Decomposition of Conjunctive Joint Chance Constraint through

Risk Selection

6.1.3 Deterministic Approximation of Problem 4 . . .

6.2 NIRA: Branch and Bound-Based Solution to Problem 10

6.2.1 The NIRA Algorithm Overview

6.3 Branching .

6.3.1 Walk-through Example

6.3.2 Construction of Root Subproblem

6.3.3 Expansion of subproblems

6.4 Bounding .

6.4.1 Simple Bounding

6.4.2 Fixed Risk Relaxation

6.5 NIRA+BoostLP Algorithm

6.6 Conclusion .

. 97

. 98

. 99

. 99

. 101

. 101

. 102

. 103

. 104

. 105

. 105

. 107

. 109

7 CCQSP Planning with a Flexible Schedule 111

7.1 Algorithm Overview . 112

7.2 Branching with d-graph . 116

7.2.1 Enumeration of Feasible Time Step Assignments using d-graph . . 117

7.2.2 Efficient Variable Ordering of Branch and Bound Search 119

7.3 Bounding with Partial Schedule and FRR 120

7.3.1 Relaxed Optimization Problem with Partial Schedule 121

7.3.2 Further Bounding with FRR and BoostLP 123

7.4 C onclusion . 123

8 Receding Horizon Execution of CCQSP

8.1 p-Sulu with the Risk Budgeting Approach

8.1.1 Review of the Receding Horizon Approach

125

. . 126

126

8.1.2 Risk Allocation at Replanning

8.1.3 Risk Budgeting .

8.1.4 p-Sulu Algorithm .

8.2 Receding Horizon Modifications to the CCQSP Planning Problem

8.2.1 Receding Time Horizon

8.2.2 Risk Bound for Planning Horizons

8.2.3 Deferment of Episode Executions

8.2.4 Guidance Heuristic

8.3 Solving Finite-horizon CCQSP Problems with IRA

8.4 Heuristic Risk Spending Approach

8.4.1 Uniform-Amount Heuristic

8.4.2 Uniform-Proportion Heuristic

8.4.3 Combined Heuristic

8.5 Conclusion .

8.5.1 B. Guidance with obstacle avoidance . . .

. 135

. 136

. 138

. 139

. 140

. 141

. 142

. 143

. 144

. 144

. 146

9 Distributed CCQSP Planning with a Convex State Space and a Fixed

9.1 Overview of Market-based Iterative Risk Allocation

9.1.1 Risk allocation for multi-agent system

9.1.2 Market-based risk allocation using tatonnement

9.1.3 MIRA - Decentralized optimization of risk allocation . . .

9.2 Problem Formulation .

9.3 Decentralization .

9.3.1 The Decentralized Optimization Approach

9.3.2 Existence and Optimality of Decentralized Solution

9.3.3 Convergence to the Optimal Solution

9.4 The Algorithm .

9.4.1 Obtaining D'(0)(= A'ax) (Algorithm 13, Line 1-3) . . .

9.4.2 Obtaining A' (Algorithm 13, Line 1, 4, and 5)

9.4.3 Finding a root for Problem 17 (Algorithm 13, Line 7-12)

Schedule]149

. 151

. 151

. 152

. 154

. 155

. 158

. 158

. 159

. 161

. 167

. 168

. 169

. 169

. 129

. 130

. 133

. 135

9.5

9.6

9.7

Complexity Analysis . 170

Extension to Multiple Chance Constraints 173

Conclusion . 176

10 Distributed, Receding Horizon CCQSP Execution 177

10.1 CCQSP for Multi-agent Problems . 180

10.1.1 Categorizing Episodes . 181

10.1.2 Categorizing Chance Constraints 181

10.2 dp-Sulu Algorithm Overview . 183

10.3 Multi-agent Heuristic Risk Allocation: Decomposition of Chance Constraints 184

10.4 Bi-stage Robust Collision Avoidance: Decomposition of State Constraints . 187

10.4.1 Risk allocation approach . 190

10.4.2 First Iteration . 191

10.4.3 Second Iteration . 191

10.4.4 Proof of BRCA Feasibility . 194

10.5 Robust Feasible Temporal Constraint Decomposition 197

10.5.1 Obtaining Distributed Temporal Constraints 198

10.5.2 Updating Distributed Temporal Constraints 200

10.5.3 Relation to Strongly Controllable Simple Temporal Network with

U ncertainty . 201

10.6 Conclusion . 202

11 Simulation Results

11.1 Comparison with Prior Art

11.1.1 Prior Arts

11.1.2 Performance Criteria

11.1.3 Result Summary

11.1.4 Problem Settings

11.1.5 IRA

11.1.6 CRA

11.1.7 NIRA

204

. 2 0 4

. 2 0 5

. 2 0 7

. 2 0 8

. 2 0 9

. 2 1 1

. 2 14

. 2 19

11.1.8 NIRA+BoostLP 222

11.1.9 p-SuluFH . 226

11.1.10 p-Sulu . 229

11.1.11 MIRA 232

11.2 PTS Simulation 237

11.2.1 Plant Parameters . 237

11.2.2 Spiral 1: Single-agent, Stand-alone 238

11.2.3 Spiral 2: Single-agent, Integrated 242

11.2.4 Spiral 3: Multi-agent, Integrated 250

11.3 Application to Underwater and Space Vehicles 254

11.3.1 Depth Planning of an Autonomous Underwater Vehicle 254

11.3.2 Space Rendezvous . 258

11.3.3 Space Formation Flight . 265

11.4 Conclusion . 267

12 Thesis Conclusions 270

12.1 Thesis Contributions . 270

12.2 Future Work . 271

222

Chapter 1

Introduction

1.1 Motivation

The vision of our research is to develop technologies that overcome the risks of technolo-

gies. Why do airplanes have a risk of crashing? Why do power grids have a risk of black-

outs? We specify human error and uncertainty as two major factors in such risks. For

example, in 2004, pilot error was listed as the primary cause of 75.5% of fatal general avia-

tion accidents in the U.S., according to the 2005 Joseph T. Nall Report [3]. The 1987 Tokyo

blackout, which affected 2.8 million households, was due to an unexpected surge of elec-

tricity demand [76]. An essential cause of those risks is that, while our society is growing

ever more complex and becoming increasingly sensitive to uncertainty, optimal decision

making is becoming intractable for humans. Hence, an effective approach to overcome

those risks is to support human decision-making, which is largely based on intuitions and

experiences, by autonomous systems that optimize the behaviors by explicitly considering

statistical models of uncertainty.

A motivating example for this thesis is the Boeing concept of a future aerial personal

transportation system (PTS), as shown in Figure 1-1. PTS is a concept of a flying taxi

service. It consists of a fleet of small personal aerial vehicles (PAV) that enable the flex-

ible point-to-point transportation of individuals and families. Automated path planning,

scheduling, collision avoidance, and traffic management will significantly improve the

safety of PTS, as well as its efficiency. The challenges to operating such a system include

adapting to uncertainties in the environment, such as storms and turbulence, and coopera-

tively controlling a large number of vehicles, while satisfying various needs of users, such

as the arrival time, the preferred route, and the acceptable level of risk.

Figure 1-1: Personal Transportation System (PTS). (Courtesy of the Boeing Company)

Figure 1-2 shows a sample PTS scenario. A passenger of PAV 1 starts in Provincetown,

MA and wants to go to Bedford within 60 minutes. The passenger also wants to go through

a scenic area and remain there between 5 and 10 minutes during the flight. There is a no-

fly zone (NFZ) and a storm that must be avoided. However, the storm's future location is

uncertain; the vehicle's location is uncertain as well, due to control error and exogenous

disturbances. Thus there is a risk of penetrating the NFZ or the storm. The passengers want

to limit such risk to at most 0.0 1%.

Meanwhile, another passenger on PAV 2 starts in Hyannis, and wants to go straight to

Bedford. Since the passenger would like to arrive at the destination as soon as possible, she

accepts a relatively high 0.1% of risk to allow the vehicle to go through the narrow corridor

between the NFZ and the storm. Since the paths of the two vehicles cross, they are required

to limit the probability of collision to 0.001%. Additionally, the control tower of Bedford

Airport requires at least a five-minute interval between the two landings.

Figure 1-2: A sample plan for personal aerial vehicle (PAV)

1.2 Objective

The objective of this thesis is to develop robust plan executives that can operate real-world

systems, such as PTS, and achieve the temporally extended goals specified by a given

plan. The executives explicitly consider statistical model of uncertainty. This includes the

centralized goal directed control of individual agents, and the distributed control of teams

of agents. The resulting solutions must guarantee that the probability of failure is within

the specified risk bound.

There is a substantial body of work on plan execution under uncertainty that is relevant.

However, our approach is distinctive in three key respects. First, our executives allows users

to explicitly limit the probability of constraint violation. This capability is particularly im-

portant for risk-sensitive missions where the impact of failure is significant. Second, the

executive is goal-directed, by which we mean that it achieves temporally extended goals

within user-specified temporal constraints. Third, the executive works in a continuous state

space. A continuous state space representation fits naturally to many real-world applica-

tions, such as planning for aerial and underground vehicles.

1.3 Required Capabilities

In order to meet the objective, the robust plan executives provides the following five capa-

bilities: 1) goal-directed execution in a continuous domain, 2) stochastic plan optimization,

3) robust execution with risk bounds, 4) real-time execution with receding planning hori-

zon, and 5) distributed execution.

Goal-directed execution in a continuous domain The executives must execute actions

with continuous effects that achieve temporally extended goals specified by users. For

example, in the case of the PTS scenario in Figure 1-2, PAV 1 must sequentially achieve

two temporally extended goals, called episodes: going through the scenic area and then

arriving at Bedford. There are additional temporal constraints on the goals that are inherent

to the scenario; some temporal constraints come from physical limitations, such as fuel

capacity, and others come from passenger requirements.

Stochastic plan optimization Cost reduction and performance improvement are impor-

tant issues for any system. In the PTS scenario, passengers may want to minimize the trip

time or fuel usage. The executives optimize the control sequence and schedule according

to the user-defined objective function, while satisfying given constraints.

Robust planning with risk bounds Real-world systems are subject to various uncertain-

ties, such as state estimation error, modeling uncertainty, and exogenous disturbance. In

the case of PAVs, the position and velocity of the vehicle estimated by the Kalman filter

typically involve Gaussian-distributed uncertainties; the system model used for planning

and control is not perfect; and the vehicles are subject to unpredictable disturbances such

as turbulence. Under such uncertainty, the executed result of a plan inevitably deviates

from the original plan and hence involves risk of constraint violation. Deterministic plan

execution is particularly susceptible to risk when it is optimized in order to minimize a

given cost function, since the optimal plan typically pushes against one or more constraint

boundaries, and hence leaves no margin for error. For example, the shortest path in the PTS

scenario shown in Figure 1-2 cuts in close to the NFZs and the storm, or more generally,

constraint boundaries. Then, a tiny perturbation to the planned path may results in a pene-

tration into the obstacles. Such risk can be reduced by setting a safety margin between the

path and the obstacles, at a cost of longer path length. However, it is often impossible to

guarantee zero risk, since there is typically a non-zero probability of having a disturbance

that is large enough to push the vehicle out of the feasible region. Therefore, passengers

of the vehicle must accept some risk, but at the same time they need to limit it to a certain

level. More generally, users of an autonomous system under uncertainty should be able to

specify their bounds on risk. The planner must guarantee that the system is able to operate

within these bounds. Such constraints are called chance constraints [27].

Real-time execution with receding planning horizon The executives must generate

control sequences in real time, instead of preplanning, in order to adapt to the changes

in the environment. In order to be tractable for plans with long durations, the executives

employ the receding horizon approach, meaning that they plan for a finite duration at each

planning cycle.

In PTS, for example, the PAVs must continuously update the planned paths by consid-

ering the latest position of storms, as well as the latest predictions of future storm locations,

since the storms move over time. Real-time execution is particularly important when con-

trolling uncertain systems, since uncertainty accumulates over time. By updating informa-

tion continuously, the executive can minimize the uncertainty involved in the plan. In order

to intuitively explain this effect, look at the 5-day forecast of a cyclone in Figure 1-3, which

shows the 70% probability circles of the center position. Figure 1-3-(a) is the forecast as of

11 pm (UTC), July 19, 2011, while Figure 1-3-(b) is the one as of 11 pm (UTC), July 20,

2011. Note that the size of the circles grows over time in each forecast, showing a typical

tendency that a forecast for the distant future involves more uncertainty than a forecast for

the near future. Next, compare the probability circles for the same point of time in the two

predictions (find the circles with the same label; for example, "23/18 UTC"). The newer

forecast, Figure 1-3-(b), always has a smaller probability circle. This is because the uncer-

tainty of the forecast for a specific point of time decreases over time as new information

becomes available. The plan executive can take advantage of this feature of uncertainty and

(b) 11:00 m (UTC), July 20. 2011

Figure 1-3: Five-day forecasts of a tropical cyclone. The blue solid lines shows the past
trajectories of the storm's center, the crosses are the current positions as of the times of
the forecasts, and the dotted circles are the 70% probability circles of the center position.
The two numbers next to each probability circle mean day/time. Images are from the Japan
Meteorological Agency.

potentially achieve higher optimality by continuously replanning the control sequence.

The receding-horizon approach has an advantage with respect to tractability over full-

horizon planning, which can easily become intractable for a problem with a long duration.

Receding-horizon planners generate control sequences for a fixed, short duration at each

planning cycle. For example, in the PTS scenario, at t = 0, each PAV generates a control

sequence for the duration between t = 0 and = 10. It replans the path at t = 3, generating

another 10-minute control sequence from t = 3 till t = 13. This process is repeated until

the plan is completed. The two challenges are to guide the plant state towards goals beyond

the planning horizon, and to guarantee satisfaction of chance constraints.

Distributed Execution The PTS involves hundreds of PAVs flying at the same time, like

taxis on the street. Centralized control approaches can hardly scale to such large multi-

agent systems. Rather, the computational burden must be distributed among all agents.

Each agent in a system is responsible for generating its own control sequence and schedule.

The main technical challenge of distributed plan execution is the coordination of multiple

(a) 11:00 pm (UTC), July 19, 2011

agents. The control sequences and schedules, which are generates in a distributed manner,

must satisfy coupled state, chance, and temporal constraints. For example, in the PTS

scenario, the schedules of the two vehicles must be coordinated so that there is at least a

five-minute interval between their landing times. The paths of the two vehicles must be

planned so that the probability of collision is below the specified risk bound.

1.4 Introduction of Robust Plan Executives

In order to provide the five capabilities specified in Section 1.3, we develop two robust plan

executives in this thesis. One is a centralized executive called probabilistic Sulu' (p-Sulu),

and the other one is a distributed executive called distributed probabilistic Sulu (dp-Sulu).

The focus of p-Sulu is to control single-agent systems, while dp-Sulu is to scale to systems

with a large number of agents.

This thesis consists of two parts. The first part is concerned with p-Sulu, while the

second part deals with dp-Sulu. In this chapter, Sections 1.5 to 1.7 discuss p-Sulu, while

Sections 1.8-1.10 are concerned with dp-Sulu. Technical components of p-Sulu are devel-

oped through Chapters 5-8. Chapters 9 and 10 describe additional technical innovations

that enable distributed plan execution by dp-Sulu.

1.5 Overview of p-Sulu

We build p-Sulu upon prior work on the continuous-state model-based plan executive called

Sulu [62]. p-Sulu takes as an input a plan representation called a chance-constrained qual-

itative state plan (CCQSP)[17], which encodes both temporally extended goals and chance

constraints. A CCQSP is an extension of the deterministic qualitative state plans (QSP),

introduced by [62]. p-Sulu employs a continuous-state probabilistic planner that outputs an

optimal executable control sequence, an optimal state sequence, and an optimal schedule

that minimize cost given the state and chance constraints of the CCQSP. A control sequence

'Sulu is a deterministic plan executive developed by [61]. The name of the executive was taken from
Hikaru Sulu, a character in the science fiction drama Star Trek. In the story, Sulu serves as a helmsman of the
starship USS Enterprise. The plan executive was named after him because its role is to "steer a ship" in order
to achieve a given plan.

is an assignment to real-valued control variables, while a schedule is an assignment of dis-

crete execution time to events. In the remainder of this section we describe the inputs and

outputs informally. They are rigorously defined in Chapter 2.

1.5.1 Inputs

Initial Condition p-Sulu plans a control sequence starting from the current state, which

is typically estimated from noisy sensor measurements. Therefore, p-Sulu takes the proba-

bility distribution, instead of the point estimate, of the current state as the initial condition.

Stochastic Plant Model p-Sulu takes as an input a discrete-time, continuous-state stochas-

tic plant model, which specifies probabilistic state transitions in a continuous domain. This

is a stochastic extension of the continuous plant model used in [62]. Although we limit

our focus to Gaussian-distributed uncertainty, the algorithms presented in this paper can be

extended to broader classes of distributions.

Chance-constrained qualitative state plan (CCQSP) A CCQSP is our formalism to

express temporally extended goals and chance constraints. It is an extension of qualitative

state plan (QSP), developed and used by [18, 43, 62]. CCQSP specifies a desired evolution

of the plant state over time, and is defined by a set of discrete events, a set of episodes,

which impose constraints on the plant state evolution, a set of temporal constraints between

events, and a set of chance constraints that specify reliability constraints on the success of

sets of episodes in the plan.

A CCQSP may be depicted as an acyclic directed graph, as shown in Figure 1-4. The

circles represent events and squares represent episodes. Flexible temporal constraints are

represented as a simple temporal network (STN) [32], which specifies upper and lower

bounds on the duration of episodes (shown as the pairs of numbers in parentheses). The

figure describes the plan for PAV 1 in the PTS scenario depicted in Figure 1-4, which can

be stated informally as:

"Start from Provincetown, reach the scenic region within 30 time units, and

remain there for between 5 and 10 time units. Then end the flight in Bedford.

[0 301 [5 10] [0 40]

a, St in e 2 Remain in a3 End in
[Proivincetown [Scenic region] [Bedford]

eo1[0 60] e

a4 Remain in
[safe region]

Chance constraints: ci :LZZ - 8=1%
C2: -- =0.01%

Figure 1-4: An example of a CCQSP for a personal transportation system (PTS) planning
problem for PAV 1, illustrated in Figure 1-2. Passengers of the PAV would like to go from
Provincetown to Bedford, and fly over the scenic region on the way. The "safe region"
means the entire state space except the obstacles. Risk of the episodes must be within the
risk bounds specified by chance constraints.

The probability of failure of these episodes must be less than 1 %. At all times,

remain in the safe region by avoiding the no-fly zones and the storm. Limit the

probability of penetrating such obstacles to 0.01%. The entire flight must take

at most 60 time units."

A formal definition of CCQSP is given in Section 2.4.3.

1.5.2 Output

Optimal executable control sequence One of the two outputs of p-Sulu is an executable

control sequence that minimizes a given cost function and satisfies all constraints specified

by the input CCQSP. In the case of the PTS scenario, the outputs are the vehicle's actua-

tion inputs, such as acceleration and ladder angle, that result in the nominal paths shown

in Figure 1-2. In order for the control sequence to be executable, it must be dynamically

feasible. For example, the curvature of the PAV's path must not exceed the vehicles' ma-

neuverability.

Optimal schedule The other output of p-Sulu is the optimal schedule, a set of execution

time steps for events in the input CCQSP. In the case of the PTS scenario shown in Figure

1-4, a schedule specifies when to leave the scenic region and when to arrive at Bedford,

for example. Note that a CCQSP involves simple temporal constraints, which only impose

upper and lower bounds on the durations of episodes, instead of specifying exact execution

time steps of events. For example, a CCQSP requires arrival at the destination within 30

minutes, instead of specifying the arrival time as 10:11 p.m. Hence, a CCQSP allows

flexibility in schedule of plan events. p-Sulu finds a schedule that satisfies all the simple

temporal constraints specified by the CCQSP, and minimizes the cost function.

The two outputs - the optimal control sequence and the optimal schedule - must be

consistent with each other: the temporally extended goals are achieved on the optimal

schedule by applying the optimal control sequence to the given initial conditions.

1.6 Approach to p-Sulu

1.6.1 Risk Allocation

All the algorithms presented in this thesis are built upon a novel concept called risk al-

location. Risk allocation reformulates a chance-constrained optimization problem into a

resource allocation problem by distributing risk to individual constraints.

(a) (b) (c)
A=10% t=2 t=2

2% Goal oa G

1% x4

X3

XX Obstacle 5, %Obstacle
-_ -_1

x 3=3% x2

x, 3%x x

Figure 1-5: Overview of risk allocation approach. (a) The 10% of risk is allocated to
time steps in the plan. (b) The 4% of risk allocated to t = 2 is distributed again among
constraints (i.e., obstacles). (c) Safety margin is set around the constraints according to the
risk allocation.

Figure 1-5 gives an overview of the risk allocation approach in a simple path planning

problem. A chance constraint requires the vehicle to limit the probability of crashing into

the obstacles to 10%. In other words, the vehicle is allowed to take 10% risk throughout

the plan. The risk allocation approach distributes this risk among time steps in the plan, as

shown in Figure 1-5-(a). If the probabilities of a crash at each time step are within these

distributed risk bounds, then the original 10% risk bound is guaranteed to be satisfied. The

4% of risk that is allocated to the time step t = 2 is again distributed among constraints (i.e.,

obstacles) as in Figure 1-5-(b). Such a decomposition is obtained from Boole's inequality

[79]. For example, let A be an event of colliding with the left obstacle at t = 2, and B be

an event of colliding with the right obstacle at t = 2. Then,

Pr(A) + Pr(B) > Pr(A U B).

Therefore, by allocating the risk A and B so that the left-hand side is equal to 4%, the right

hand side is guaranteed to be less than or equal to 4%.

Once risk is allocated to every single constraint, a safety margin that guarantees the risk

bound can be found as in Figure 1-5-(c). By planning the nominal path outside of the safety

margin for all time steps, the executive can guarantee the satisfaction of the original chance

constraint. Note that planning a nominal path outside of safety margins is a deterministic

optimization problem, which can be solved efficiently using existing approaches. Such a

decomposition of a chance constraint makes the stochastic optimization significantly easier,

hence allowing the executive to compute the optimal control sequence efficiently.

The sensitivity of a constraint to risk varies from constraint to constraint and from time

step to time step. Hence, allocation of risk must be optimized in order to obtain the best

performance. In Section 4.2, we develop a novel algorithm called iterative risk allocation

(IRA), which can efficiently obtain near-optimal risk allocation. The subproblem solved in

each iteration is a deterministic optimization problem. Hence, IRA can be implemented on

top of existing deterministic optimizers, and turns them into chance-constrained stochastic

optimizers.

1.6.2 Spiral Development of p-Sulu

Robust CCQSP execution is a very difficult problem to solve optimally since it is a stochas-

tic problem that involves both combinatorial optimization of a discrete schedule and non-

convex optimization of a continuous control sequence. We develop the robust plan execu-

tive, p-Sulu, in four spirals. In the first spiral, we develop the convex risk allocation (CRA)

algorithm, which solves a special case of the full-horizon CCQSP planning problem where

the feasible state space is convex and the schedule is fixed, as shown in Figure 1-6-(a). A

path planning problem without obstacles typically has a convex state space. In the sec-

ond spiral, we develop the non-convex iterative risk allocation (NIRA) algorithm, which

extends the capability of CRA to solve problems with a non-convex state space. Hence,

NIRA can solve a robust path planning problem with obstacles, as shown in Figure 1-6-(b).

The limitation of NIRA is that it cannot handle a problem with a flexible schedule. The

third spiral removes this limitation by developing p-Sulu FH, a general full-horizon CC-

QSP planner, which can solve problems with a flexible schedule and obstacles, as shown

in Figure 1-6-(c). In the fourth and the final spiral, we develop p-Sulu, which executes

CCQSP in real time with a receding planning horizon, as in Figure 1-6-(d).

1.6.3 CRA: full-horizon CCQSP planning with a convex state space, a

fixed schedule

Starting with the first spiral, when the schedule is fixed and there are no obstacle in the

environment, the problem is reduced to a joint chance-constrained finite-horizon optimal

control problem. The first difficulty in solving this problem is that evaluating joint chance

constraints requires the computation of an integral of a multi-variable probability distribu-

tion function over an arbitrary feasible state region. This computation cannot be carried

out in closed form, and approximate techniques such as sampling are time-consuming and

introduce approximation error [16].

Our approach to solve the problem is two-fold. In the first step, we use risk allocation

to reformulate a chance constraint over a conjunction of state constraints (joint chance

constraint) into a conjunction of individual chance constraints, each of which only involves

(a) Single agent, convex, (b) Single agent, non-convex,
fixed schedule, full-horizon fixed schedule, full-horizon

p-Sulu FH (Section 7) p-Sulu (Section 8)

Simple temporal -- [2 4] Flexible temporal - [2 4]
constraints constraints

[13] Goal [13] Goal

Obstacle Obstacle
Waypoint Waypoint

Start [0 5] Start [05]

(c) Single agent, non-convex, (d) Single agent, Non-convex,
flexible schedule, full-horizon flexible schedule, receding-horizon

Figure 1-6: Spiral development approach to p-Sulu

a univariate probability distribution. Integrals over univariate probability distributions can

be evaluated accurately and efficiently. Hence, we can obtain the equivalent deterministic

form of the individual chance constraints. As a result, a stochastic optimization problem is

transformed into a deterministic optimization problem.

In the second step, we optimize the control sequence, as well as the risk allocation, by

solving the deterministic version of the convex chance-constrained optimal control prob-

lem. We show that the deterministic optimization problem is a convex problem. The convex

risk allocation (CRA) algorithm optimizes the control sequence and schedule together by

using a convex programming solver. The algorithm is explained in detail in Chapter 5.

Although these algorithms are very efficient, their convexity requirement, as well as the

fixed schedule assumption, strongly limits their application for CCQSP planning problems.

1.6.4 NIRA: full-horizon CCQSP planning with a non-convex state

space, a fixed schedule

Turning to our second spiral, the non-convex iterative risk allocation (NIRA) algorithm,

which is presented in Chapter 6, removes the above convexity requirement. This means

that the planner can plan a path that avoids obstacles, although the time steps to go through

waypoints must be fixed, as in Figure 1-6-(b).

Our approach to solve the problem is again two-fold. First, we decompose a chance

constraint on non-convex feasible state regions through risk allocation and risk selection.

Risk selection is added to address non-convexity and reformulates each chance constraint

over a disjunctive clause into a disjunction of individual chance constraints. If one of

the individual chance constraints is satisfied, the original chance constraint is guaranteed

to be satisfied. Intuitively, this decomposition allows the optimizer to select the individ-

ual chance constraint on which to impose the risk bound. Once the non-convex chance

constraints are decomposed into a set of individual chance constraints, we apply the same

deterministic transformation as in the convex, fixed schedule case. This bounding approach

was originally proposed by [18].

Second, we solve the resulting deterministic version of the non-convex chance-constrained

optimal control problem by the NIRA algorithm. The algorithm employs a branch-and-

bound approach, where each subproblem is a convex chance-constrained optimal control

problem. NIRA uses the IRA algorithm or a deterministic, convex program solver as a

subroutine to solve each subproblem. For example, when generating a path plan with ob-

stacles, the planner specifies for each subproblem the side of the obstacles that vehicle must

be on at each time step, so that the subproblem has only a convex set of constraints. The

branch-and-bound algorithm then searches for the side of obstacles at each time step that

minimizes the given cost function.

However, although the branch-and-bound algorithm is guaranteed to find an optimal

solution, it requires many subproblems to be solved. Since in our case the convex subprob-

lems are nonlinear programs, this means that the overall computation time can be large.

In order to speed up the algorithm, we propose a novel method called fixed risk relaxation

(FRR). An FRR of each subproblem is typically a linear program. FRRs can be solved

efficiently and gives a tight lower bound on an objective function value. NIRA obtains a

strictly optimal solution of Problem 10 by solving the subproblems exactly without FRR at

unpruned leaf nodes of the search tree, while other subproblems are solved approximately

with FRR in order to reduce the computation time.

We also present the NIRA+BoostLP algorithm, which achieves further speed-up. It

solves FRRs approximately by using a regression-based LP solver called BoostLP [10].

While NIRA+BoostLP solves the FRRs of the subproblems using BoostLP to enhance

computation speed, it solves the original subproblems without approximation at unpruned

leaf nodes in order to obtain an exact optimal solution. As a result, NIRA+BoostLP

achieves 10- to 25-fold reduction in computation time without any compromise in the op-

timality.

A limitation of the NIRA and NIRA+BoostLP algorithms is that the time steps to

achieve the temporally extended goals of a CCQSP must be pre-specified. However, in

real-world problems such as the PTS scenario presented in Section 1.1, the schedule is

required to be flexible. We consider this next.

1.6.5 p-Sulu FH: full-horizon CCQSP planning with a non-convex state

space and a flexible schedule

Turning to the third spiral, p-Sulu FH extends the general CCQSP planning capability by

allowing flexibility in the schedule. As shown in Figure 1-6-(c), it optimizes the schedule

to achieve the temporally extended goals within user-specified simple temporal constraints.

The p-Sulu FH algorithm is explained in detail in Chapter 7.

p-Sulu FH employs a branch-and-bound approach in two places. The first one is to solve

the scheduling problem, introduced by the addition of flexible temporal constraints. The

subproblems of the first branch and bound are non-convex chance-constrained optimal con-

trol problems. Each of the subproblems is solved by the NIRA algorithm, which employs

the second instance of the second branch-and-bound in order to deal with the non-convex

constraints. The first instance of branch-and-bound searches for the optimal schedule by

incrementally assigning execution time steps to each event in a depth-first manner. For

each subproblem, it fixes a schedule by specifying at which time step the vehicle achieves

each goal. Lower bounds on the objective function value are obtained by solving fixed-

schedule CCQSP planning problems with partial assignments to a schedule. p-Sulu FH

minimizes the search space by dynamically pruning the domain through forward-checking.

More specifically, after an execution time is assigned to an event at each iteration of the

branch-and-bound search, it runs a shortest-path algorithm to tighten the real-valued upper

and lower bounds on the execution time step of unassigned events according to the newly

assigned execution time step.

In order to enhance the speed of the algorithm, we propose the variable ordering where

the episodes with a convex feasible region are always considered before the episodes with

a non-convex feasible region. As long as only the convex constraints are considered in

a subproblem, p-Sulu FH solves the FRR of the subproblem, instead of the non-convex

chance-constrained optimization problem.

1.6.6 p-Sulu: receding-horizon CCQSP execution with a non-convex

state space and a flexible schedule

Turning to the fourth spiral, p-Sulu enables real-time execution of CCQSP using the re-

ceding horizon approach. As illustrated in Figure 1-6-(d), the entire plan is divided into

multiple segments or planning horizons, each of which is generated on the fly. The risk

needs to be distributed among those planning horizons. However, since the executive does

not generate plans beyond the current planning horizon, the risk allocation among planning

horizons cannot be decided at the beginning. Therefore, we develop an extension of risk

allocation, called risk budgeting. For example, consider the chance constraint c2 in the CC-

QSP shown in Figure 1-4, which imposes a 0.01% risk bound on PAV 1 to avoid obstacles.

We interpret this chance constraint to mean that PAV 1 has a 0.01% budget of risk at the

beginning. The vehicle "consumes" the risk budget by allocating risk to planning cycles.

For example, if PAV 1 allocates 0.002% of risk to the first path segment, then it has 0.008%

of remaining risk budget at the second planning cycle. The amount of risk allocated to the

current planning cycle is decided heuristically.

The optimization problem solved by each planning cycle in p-Sulu is essentially the

same as the full-horizon CCQSP planning problem, except for the following three differ-

ences. First, the fixed planning horizon is replaced with a receding horizon. Second, instead

of imposing hard constraints that require executing all the episodes within the current hori-

zon, p-Sulu imposes soft constraints that allow the executive to postpone the execution of

episodes for later time horizons, with a penalty. Third, a cost-to-go function is added to the

objective function in order to guide the plant state toward goals beyond the current planning

horizon.

In real-time execution, it is more important to obtain a feasible solution in a fixed com-

putation time, rather than pursuing optimality. Such a capability is provided by our IRA

algorithm. IRA is a feasible descent optimization algorithm, meaning that the solutions to

the subproblems are feasible throughout the iterations, and the cost function value mono-

tonically decreases throughout the iterations. Each subproblem of IRA is a deterministic

QSP planning problem without uncertainty, which is encoded in a mixed integer linear

programming (MILP) and efficiently solved by a commercial solver [61]. Hence, the com-

putation burden of one iteration of the IRA algorithm is equivalent to the deterministic

QSP planning problem. Once a feasible solution is obtained, IRA iterates the solution to

improve it until the time is up, instead of continuing the iteration until convergence to the

optimal solution.

1.7 Innovations for p-Sulu

In the development of p-Sulu, we have created nine major innovations presented in this

thesis.

First, in order to decompose a chance constraint over a conjunctive clause into a con-

junction of individual chance constraints, we introduce the risk allocation approach (Sec-

tion 4.1).

Second, in order to optimize risk allocation on a wide range of problems, we develop the

IRA algorithm, which can be implemented on top of existing deterministic optimizers and

give them a capability to solve corresponding chance-constrained optimization problems

(Section 4.2).

Third, in order to obtain lower bounds for the branch-and-bound search in NIRA, we

develop fixed risk relaxation (FRR), a linear program relaxation of the subproblems (Sec-

tion 6.4.2).

Fourth, in order to enhance the solution time of NIRA, we integrate a regression-based

optimizer, BoostLP, into the branch-and-bound algorithm to solve a chance-constrained

optimization problem. (Section 6.5).

Fifth, we minimize the search space for the optimal schedule in p-Sulu FH by intro-

ducing a forward-checking method that combines a d-graph with a branch-and-bound al-

gorithm (Section 7.2).

Sixth, in order to minimize the number of non-convex subproblems solved in the branch-

and-bound search, we introduce a variable ordering heuristic, namely the convex-episode-

first (CEF) heuristic, which explores the episodes with a convex feasible state region before

the ones with a non-convex state region (Section 7.2.2).

Seventh, in order to enhance the computation time of schedule optimization in p-Sulu

FH, we introduced a method to obtain a lower bound for the branch-and-bound by solving

fixed-schedule planning problems with a partial assignment of a schedule. (Section 7.3)

Eighth and finally, in order to find a feasible risk allocation in real-time execution in

p-Sulu, we develop a risk budgeting approach (Section 8.1).

1.8 Overview of dp-Sulu

Next, we turn to dp-Sulu, our distributed robust CCQSP executive. Although p-Sulu can

theoretically control multi-agent systems in a centralized manner, its computation time

exponentially grows as the number of the agent increases since p-Sulu involves non-convex

programmings. Therefore, it does not scale to systems with large numbers of agents in

practice. dp-Sulu addresses this issue by distributing the computational burden among

agents. Distributed planning also has an advantage in robustness since it can eliminate a

single point of failure from the system. Moreover, it is relatively easy to achieve plug-and-

play of system components in a distributed system.

Figure 1-7: Overall Structure of dp-Sulu

dp-Sulu takes the same inputs as p-Sulu: initial conditions, stochastic plant models, and

a CCQSP. Its outputs are also the same as p-Sulu: optimal executable control sequences

and schedules. The difference is that the computation of the output is conducted in a dis-

tributed manner. Figure 1-7 shows the overall structure of dp-Sulu. The input CCQSP is

decomposed by the central module and delivered to agents. The plan executive of each

agent takes the decomposed CCQSP as an input, and outputs a control sequence and a

schedule as outputs.

Figure 1-8 shows an example of a CCQSP for a personal transportation system (PTS)

planning problem, shown in Figure 1-2. The CCQSP involves plan specifications for both

PAVs 1 and 2. It can be stated informally in plain English as:

"PAV 1 must start from Provincetown, reach the scenic region within 30 time

units, and remain there for between 5 and 10 time units. It must end the flight

in Bedford. At all times, PAV I must remain in the safe region by avoiding the

no-fly zones and the storm. It must limit the probability of penetrating such

obstacles to 0.01%. The entire flight must take at most 60 time units.

"Meanwhile, PAV 2 must start from Hyannis and go to Bedford within 40

time units. At all times, it must remain in the safe region by avoiding the

no-fly zones and the storm, and must limit the probability of penetrating such

obstacles to 0.1%.

"Both vehicles must achieve the specified temporally-extended goals. The risk

of failure to achieve at least one of the goals must be less than 1%. PAV 2 must

land at Bedford at least five time units before PAV l's landing. Finally, both

vehicles must limit the risk of collision to 0.001%."

10 301 15 101 10 401

0-

Chance constraints: C2
C3i

C4

--- Al =1%

--- A2 =0.01%

- A3 =0.1%

--- A4 =0.001%

Figure 1-8: An example of a multi-agent CCQSP for a personal transportation system
(PTS) planning problem, illustrated in Figure 1-2.

-no

(a) Decomposed CCQSP for PAV 1

[0 301 15101
Vehicle I starts in e Vehicle I remains in e

[Provincetown] {Scenic region]

[40 60]

0o Vehicle 1 remains in
0 Isafe reioni |1

c
I

Chance constraints: c2

4

(b) Decomposed CCQSP for PAV 1
10 01

--- =0.6%

A -0.01%

--- F=0.0012%

10001

Chance constraints:

c 2

c 2c3
2

C4

--- A =0.4%

A=0.1%

--- T 0.0008%

Figure 1-9: The decomposition of the CCQSP shown in Figure 1-8. (a) Decomposed
CCQSP for PAV 1; (b) decomposed CCQSP for PAV 2.

Note that the two vehicles are coupled in three ways, through chance. First, there is

a coupling through the chance constraint ci since it involves both vehicles. Second, two

vehicles are coupled through the temporal constraint that requires a five time-unit interval

between the two landings. Third, there is also a coupling through the collision avoidance

[0 401

requirement.

dp-Sulu decouples such coupling constraints, and provide agents with decomposed CC-

QSPs. Figure 1-9 shows the decomposed CCQSPs. The decoupling is conducted so that

the satisfaction of the coupling constraints is guaranteed if each vehicle satisfies its own

decomposed CCQSP. For example, the decomposed CCQSP for PAV 1, shown in Figure

1-9-(a), requires PAV I to land at Bedford after 40 time units, while the CCQSP for PAV 2,

shown in Figure 1-9-(b), requires PAV 2 to land at Bedford before 35 time units. If both ve-

hicles satisfy these requirements, then the coupled temporal constraints that require a five

time-unit interval between two landings are guaranteed to be satisfied. The next section

presents the key insights underlying the decomposition. Chapter 10 explains in detail how

to obtain such decomposed CCQSPs.

1.9 Approach to dp-Sulu

1.9.1 Risk Allocation for Multi-agent Systems

The concept of risk allocation can be naturally extended to multi-agent systems. Consider

an example where two agents work together to complete a mission. Failure of one agent

results in a failure of the mission. The user of the multi-agent system imposes 1% risk

bound on the mission failure. Such risk can be distributed among agents. The two agents

can split the risk in many ways. As long as the risk allocations of both agents add up to

1%, the risk of mission failure is guaranteed to be less than 1%. If one agent has higher

sensitivity to risk than the other, then the overall performance of the multi-agent system

can be enhanced by allocating larger amounts of risk to the one with higher sensitivity. The

multi-agent extension of the risk allocation concept is discussed in detail in Section 9.1.1.

1.9.2 Spiral Development of dp-Sulu

We develop the distributed robust plan executive, dp-Sulu, in two spirals. In the first spiral,

we develop the market-based iterative risk allocation (MIRA) algorithm, which solves a

full-horizon multi-agent CCQSP planning problem with a convex state space and a fixed

schedule in a distributed manner, as illustrated in Figure 1-10-(a). In the second spiral, we

build the distributed robust CCQSP executive, dp-Sulu, upon p-Sulu. dp-Sulu executes a

multi-agent CCQSP in real time, with a non-convex state space and a flexible schedule, as

shown in Figure 1-10-(b).

CRA (Section 5) p-Sulu (Section 8)

Fixed schedule Flexible temporal [2 4]
constraints

[13]
GoalGoa

I-, Obstacle
> Waypoint Waypoint

COD)Stat _ _ - [0 5]
I Start start

Single agent, convex, Single agent, Non-convex,
fixed schedule, finite-horizon flexible schedule, receding-horizon

MIRA (Section 9) dp-Sulu (Section 10)
0) Flexible temporal constraints

Fixed schedule t 5 [0 2 021

t=3 aWaypoin oal 2

0. [0 4
0=t1 Goal

M Waypoint ypoint 2

- Start Start 13] [05]

(a) Multi-agent, convex, (b) Multi-agent, non-convex,
fixed schedule, finite-horizon flexible schedule, receding-horizonl

Figure 1-10: Spiral development approach to dp-Sulu

1.9.3 MIRA: full-horizon multi-agent CCQSP planning with a convex

state space and a fixed schedule

The first spiral deals with a special case of CCQSP planning problem, where there is no

obstacle in the environment and the schedule is fixed. We assume that the agents are cou-

pled only through chance constraints. The challenge here is how to find the optimal risk

allocation in a distributed manner.

MIRA addresses this challenge through a market-based approach. It creates a compu-

tational market of risk, where each agent can purchase risk in order to improve its own

performance. Agents are price takers. Given the price, each agent computes the optimal

amount of risk to take (i.e., demand for risk) by solving a convex optimization problem.

The optimal action sequence and the internal risk allocation are also determined by solving

the optimization problem, just as in the CRA algorithm. The demand from each agent can

be seen as a function of the price of risk (demand curve). Typically, the higher the price

is, the less each agent demands. Each agent has a different demand curve according to its

sensitivity to risk. The supplier of risk is the user. She supplies the fixed amount of risk by

specifying the upper bound on risk that the system can take.

The price of risk must be adjusted so that the total demand (aggregate demand) be-

comes equal to the supply. The equilibrium price is found by an iterative process called

tatonnement or Walrasian auction [92] as follows:

e Increase the price if aggregate demand exceeds supply,

9 Decrease the price if supply exceeds aggregate demand, and

e Repeat until supply and demand are balanced.

Our method obtains the price increment in each iteration by computing one step of Brent's

method, which is a commonly-used root-finding algorithm with fast and guaranteed con-

vergence [6]. The details of MIRA are described in Chapter 9.

To explain this approach mathematically, the price of risk corresponds to the dual vari-

able (or the Lagrange multiplier) for the risk allocation constraint. Each agent computes

the dual objective function value, while the central module optimizes the dual variables.

Such a decomposition approach is called dual decomposition.

1.9.4 dp-Sulu: receding-horizon multi-agent CCQSP execution with

a non-convex state space and a flexible schedule

Turning to the second and final spiral, we develop the distributed robust CCQSP executive,

dp-Sulu, which executes multi-agent CCQSP in real time with obstacles and a flexible

schedule. As is explained in Section 1.8, dp-Sulu consists of centralized and distributed

modules. The central module decouples the coupling constraints in a given CCQSP, and

provide agents with decomposed CCQSPs. Given the decomposed CCQSP, each agent runs

p-Sulu to generate its own control sequence and schedule (see Figure 1-7). The challenge

here is how to decompose couplings through chance, state, and temporal constraints.

The coupled chance constraints are handled by the Multi-agent Heuristic Risk Alloca-

tion approach. Multi-agent Heuristic Risk Allocation takes a set of coupled chance con-

straints as an input, and outputs a set of decomposed chance constraints for every agent

(Line 4 in Algorithm 14).

We propose a new approach called Bi-stage Robust Collision Avoidance (BRCA), in

order to address coupling through state constraints (collision avoidance constraints) ef-

ficiently. In BRCA, each agent solves the path planning problem without the collision

avoidance constraints in the first iteration. We call the resulting solution the proposal so-

lution. If the proposal solution satisfies the collision avoidance constraints, the executive

executes the control sequence of the proposal solution. Otherwise, the central module con-

structs decomposed chance constraints based on the proposal solution. Each agent plans

the path again with the decomposed constraints. We call the new solution the adjusted so-

lution. The adjusted solution is guaranteed to satisfy the collision avoidance constraints.

Hence, each agent executes the control sequence of the adjusted solution.

Temporal constraints couple agents essentially because they are binary constraints,

meaning that they impose upper and lower bounds on the duration between the execution

times of two events. Our novel approach, Robust Feasible Temporal Constraint Decom-

position, derives a set of unary temporal constraints for each agent by solving a linear

programming. The set of unary temporal constraints is a sufficient condition of the original

temporal constraints. The linear programming problem is guaranteed to have a feasible

solution if the given binary temporal constraints are feasible. Our approach is suitable for

real-time execution because it does not involve iteration or backtracking.

We present dp-Sulu in detail in Chapter 10.

1.10 Innovations for dp-Sulu

In the development of dp-Sulu, we have developed four major innovations presented in this

thesis.

First, in order to decompose a chance constraint over multiple agents, we develop a

multi-agent extension of the risk allocation approach (Section 9.1.1).

Second, in order to optimize risk allocation in a full-horizon CCQSP problem, we de-

velop a novel dual-decomposition algorithm MIRA (Section 9.3).

Third, in order for dp-Sulu to decompose collision avoidance constraints without itera-

tions, we develop a Bi-stage Robust Collision Avoidance method (Section 10.4).

Fourth, in order to decompose coupled temporal constraints without iterations or back-

tracking, we develop a Robust Feasible Temporal Constraint Decomposition method (Sec-

tion 10.5).

1.11 Summary of Empirical Results

In Chapter 11 of this thesis, we deploy the proposed planners and executives on aerial,

underwater, and space vehicles, as well as various benchmark problems.

The results chapter of this thesis consists of three parts. In the first part, we evaluate

the performance of each of the proposed planners and executives by comparing them with

prior art methods. The benchmark problems used for the evaluation are relatively simple

compared to real-world problems. Simulations are run multiple times with randomized set-

tings. Overall, our algorithms result in more efficient solutions (i.e., less cost) than prior art

methods. This is because all of our algorithms are build upon the risk allocation approach.

By optimally allocating risk among agents, time steps, and constraints, our planners and ex-

ecutives achieve improved solution efficiency compared to previously proposed algorithms

that do not flexibly allocate risk. However, in general the risk allocation-based algorithms

take relatively longer computation time than existing algorithms with fixed risk bounds.

Hence, a number of methods are proposed throughout this thesis to reduce the computation

time. As a result, the empirical results show that our algorithms are tractable for many

applications.

In the second part we apply our planners and executives to PTS. This part consists of

three spirals. In Spiral 1, we use p-Sulu FH as a stand-alone controller. In this spiral we

show that our approach can scale to real-world problems. In Spiral 2, we integrate p-Sulu

with other planners to create Integrated Plan Executive (IPE). Besides p-Sulu, IPE includes

Kirk (a temporally-flexible contingent planner) [37, 44, 50], Collaborative Diagnosis Sys-

tem (a plan conflict fixer) [107], and Dialog Management System (a natural language in-

terpreter) [63, 64]. The simulation results of this spiral demonstrate p-Sulu's capability of

adapting to environmental changes, such as the change in the location of storms. In Spiral

3, we replace p-Sulu in Spiral 2 with dp-Sulu. The simulation results of this spiral demon-

strate dp-Sulu's capability of controlling a multi-agent system in a distributed manner. The

simulation results are visualized by a flight simulator called X-Plane, as shown in Figure

1-11.

Figure 1-11: Visualization of dp-Sulu execution result by the X-Plane flight simulator

Finally, in the third part, we apply our planners and executives to the control of under-

water and space vehicles, both of which have significantly different plant models than the

PTS. The objective of this section is to demonstrate that our approach is applicable to a

wide range of real-world systems. For the underwater scenario, we used the plant model

of a Dorado-class autonomous underwater vehicle (AUV) [52] developed and operated by

Monterey Bay Aquarium Research Institute. For the space scenario, the plant model takes

orbital mechanics into account. We simulate an autonomous rendezvous of a cargo vehicle,

H-II Transfer Vehicle (HTV), which resupplies the International Space Station (ISS) [105].

We also apply dp-Sulu for a space formation flight scenario. In all of these scenarios, the

empirical results demonstrate that our algorithms can control the vehicles with improved

efficiency and bounded risk.

1.12 Related Work

1.12.1 Plan Execution with Temporally Extended Goals

Recall that the CCQSP planning problem is distinguished by its use of temporally extended

goals, continuous states and actions, stochastic optimal solutions and chance constraints.

While the planning and control disciplines have explored aspects of this problem, its so-

lution in total is novel, and our approach to solving this problem efficiently through risk

allocation is novel.

More specifically, there is an extensive literature on planning with discrete actions to

achieve temporally extended goals (TEGs), such as TLPlan [7] and TALPlan [60], which

treat TEGs as temporal domain control knowledge and prune the search space by progress-

ing the temporal formula. However, since these TEG planners assume discrete state spaces,

they cannot handle problems with continuous states and effects without discretization. Ig-

noring chance constraints, the representation of temporally extended goals used by TLPlan

and p-Sulu is similar. TlPlan uses a version of metric interval temporal logic (MITL) [5]

applied to discrete states, while p-Sulu uses qualitative state plans (QSPs) [43, 62, 66] over

continuous states. [66] shows that, for a given state space, any QSP can be expressed in

MITL. The key difference that defines p-Sulu is the addition of chance constraints, together

with its use of continuous variables.

Several planners, particularly those that are employed as components of model-based

executives, command actions in continuous state space. For example, Sulu [62] takes as

input a deterministic linear model and QSP, which specifies a desired evolution of the plant

state as well as flexible temporal constraints, and outputs a continuous control sequence.

Its approach is to encode the QSP execution problem into a mixed integer linear program

(MILP) and solve it using the CPLEX optimizer. Chekhov [43] also takes as input a QSP

and a nonlinear deterministic system model, and outputs a continuous control sequence.

Chekhov's design is driven by the need for compliance and fast response, hence it pre-

computes flow tubes, the sets of continuous state trajectories that end in the goal regions

specified by the given plan. A plan is executed by following a trajectory within each flow

tube. This approach is particularly effective for systems with complicated dynamics, such

as biped robots, and the need for fast response. Kongming [66] provides a generative

planning capability for hybrid systems, involving both continuous and discrete actions. It

employs a compact representation of hybrid plans, called a Hybrid Flow Graph, which com-

bines the strengths of a Planning Graph for discrete actions and flow tubes for continuous

actions. In artificial intelligence (Al) planning literatures, a planning domain description

language, PDDL+ [40], supports mixed discrete-continuous planning domains. A PDDL

planning problem with continuous linear numeric change can be efficiently solved by a

temporal planner, Colin [31].

1.12.2 Planning under Uncertainty

Plan executives mentioned in the previous subsection adapt to the effects of uncertainty, but

do not explicitly reason about the effects of uncertainty during planning. For example, Sulu

employs a receding horizon approach, which continuously replans the control sequence

using the latest measurements. Chekhov's flow tube representation of feasible policies

allows the executive to generate new control sequences in response to disturbances on-line.

p-Sulu is distinct from these continuous planners in that it plan with a model of uncertainty

in the continuous dynamics, instead of just reacting to it. Its solution guarantees the user-

specified probability of success by explicitly reasoning about the effects of uncertainty.

Most work within the Al community on probabilistic planning has focused on planning

in discrete domains and builds upon the Markov decision process (MDP) framework. A

growing sub-community has focused on extensions of MDPs to the continuous domain.

However, tractability is an issue, since they typically require partitioning or approximation

of the continuous state space. A straightforward partitioning of the continuous state and

action spaces into discrete states and actions often leads to an exponential blow-up of run-

ning time. Furthermore, when the feasible state space is unbounded, it is impossible to

partition the space into a finite number of compact subspaces. An alternative approach is

to approximate the value function using linear or nonlinear function approximators [21],

but it lacks the guarantee of convergence [8, 13]. Time-dependent MDPs [22, 38] can do

efficient partitioning of continuous state space, but make a relatively strong assumption that

the transition model and action space are discrete, and the state space is bounded. p-Sulu is

similar to MDPs in that it discretizes time. However, our approach is essentially different

from the MDP approaches in that the continuous state and control variables are directly

optimized through convex optimization instead of discrete dynamic programming. There-

fore, p-Sulu does not require any discretization of the continuous state space. Hence, the

continuity of the state space does not harm the tractability of p-Sulu.

A second point of comparison is the treatment of risk. Like p-Sulu, the MDP framework

offers an approach to marrying utility and risk. However, most MDP algorithms balances

the utility and risk by assigning a large negative utility to the event of constraint violation.

Such an approach cannot guarantee bounds on the probability of constraint violation. The

constrained MDP approach [4] can explicitly impose constraints. [34] showed that station-

ary deterministic policies for constrained MDPs can be obtained by solving a mixed inte-

ger linear program (MILP). However, the constrained MDP framework can only impose

bounds on the expected value of costs, and again, cannot guarantee strict upper bounds

on the probability of constraint violation. In contrast, p-Sulu FH allows users to impose

chance constraints, which explicitly restrict the probability of constraint violation. As far as

we know, [42] is the only work that considers MDPs with chance constraints. They devel-

oped a reinforcement learning algorithm for MDPs with a constraint on the probability of

entering error states. Our work is distinct from theirs in that p-Sulu FH is goal-directed, by

which we mean that it achieves temporally extended goals within user-specified temporal

constraints.

1.12.3 Receding Horizon Control

p-Sulu's capability for planning in continuous domains is built upon receding horizon con-

trol, also known as model predictive control (MPC). Initially developed for process in-

dustries, MPC is a closed-loop control approach that, at each time step, solves a finite-

horizon optimal control problem from the current initial state, executes the first step in the

resulting optimal control sequence, and then resolves at the next time step [41]. It has

also been successfully applied to vehicle path planning problems in continuous state space

[24, 49, 58, 80, 81]. MPC is distinguished from classical control approaches by its capabil-

ity to explicitly consider state constraints. This feature of MPC enables its application to

plan execution in continuous state spaces, since temporally extended goals can be encoded

into inequality constraints on the continuous plant state. Sulu is the first continuous plan

executive that applies the MPC approach [61]. Discrete plan executives that have employed

this approach include Remote Agent [74] and Aspen/Casper [29, 53]. Our plan executives,

p-Sulu and dp-Sulu, extend Sulu to deal with stochastic uncertainty.

Recently, a significant effort in the MPC community has been devoted to the develop-

ment of robust model predictive control (RMPC) algorithms. The main purpose of RMPC

is to guarantee stability under the existence of uncertainty. Most literature on RMPC as-

sumes a set-bounded model of uncertainty, meaning that the level of uncertainty at each

time step is upper-bounded [48, 54, 59, 67]. Under moderate conditions, set-bounded

RMPC is proved to be asymptotically stable, and a feasible solution is guaranteed to be

found at every planning cycle (this feature is called resolvability). An extensive review of

the literature on set-bounded RMPCs is given in [71]. Our algorithms are different from

the set-bounded RMPC approaches in that we use a stochastic model of uncertainty, as is

explained in detail in the following subsection.

1.12.4 Chance-constrained Optimal Control

Although set-bounded uncertainty is a common assumption in RMPC, stochastic uncer-

tainty is a more natural model for exogenous disturbances in practice. For example, Figure

1-12 shows the histogram of the wind speed observed in Uccle, Belgium, over a year.

Here, it is difficult to find a hard upper bound on wind speed. Rather, it is more plausible

to model the wind speed as a stochastic variable that follows a certain probability distribu-

tion. In fact, Vallde et al. [96] found that the Weibull distribution, shown by the dashed

line in Figure 1-12, gives a good approximation of the distribution of wind speed. Barr

et al. [11] found that low-altitude wind and turbulence can be approximated by Gaussian

distributions.

However, with stochastic uncertainty, it is often impossible to guarantee that state con-

straints are satisfied, since there is typically a non-zero probability of having a disturbance

that is large enough to push the state out of the feasible region. An effective framework

to address robustness with stochastic uncertainty is optimization with chance constraints.

Measured probability histogram and interpolation by a Weibull law for Uccle

0.1

0

0.08 -

0 0.06

0.04

0.02 -

0
0 2 4 6 8 10 12 14 16 18 20

Wind Speed (m/s)

Figure 1-12: Probabilistic histogram of the wind speed observed in Uccle, Belgium, over

a year (solid line), and an approximation with Weibull distribution (dashed line). The plots

are from Vallde et al., 2007 [96]

Chance constraints require that the probability of violating the state constraints (i.e. the

probability of failure) is below a user-specified risk bound.

Previous work [16, 25, 75, 97] studied a specific form of chance constraint, called a

joint chance constraint, which is defined on the conjunction of linear state constraints.

The method proposed by [97] turns a stochastic problem into a deterministic problem us-

ing a very conservative ellipsoidal relaxation. Although this algorithm is computationally

efficient, its result is highly suboptimal, since the ellipsoidal relaxation produces a very

conservative bound. [16] propose a sampling-based method called Particle Control, which

can directly optimize the control sequence without using a conservative bound. The advan-

tage of Particle Control over other approaches is that it can handle arbitrary distributions.

However, it is slow since the dimension of the decision vector grows proportionally with

the number of samples. [18] and [75] employed Boole's inequality to decompose a joint

chance constraint into individual chance constraints. Although Boole's inequality is less

conservative than the ellipsoidal relaxation, their approach still has non-negligible conser-

vatism, since it fixes each individual risk bound to a uniform value. Our risk allocation

approach builds upon this approach, with modifications to optimize individual risk bounds

in order to improve utility. The Bernstein approximations proposed by Prekopa [79] uses

Bonferroni's inequality, a generalizations of Boole's inequality with higher binomial mo-

ments. A special case of his approach with the first-order moment also involves optimiza-

tion of the individual risk bounds. This special case of [79] corresponds to a special case

of our risk allocation approach with convex state constraints. Hence, both our work and

[79] are generalization of the convex risk allocation but in different directions. In our work

the risk allocation approach is extended to non-convex problems, as well as to planning

with temporally extended goals. We also develop the IRA algorithm, which enables dif-

ferent deterministic planners under the risk allocation. [69] proposed a chance-constrained

rapidly-exploring random tree (CC-RRT) approach. The randomized algorithm efficiently

generates a dynamically feasible and probabilistically safe trajectory to the specified goal.

However, since its focus is to obtain a feasible trajectory quickly, it does not guarantee the

optimality of the resulting trajectory.

1.12.5 Distributed Planning and Distributed MPC

MIRA is build upon a market-based approach called tatonnement. Although tatonnement

has drawn less attention than other market-based approaches such as auctions, it has been

successfully applied to various problems such as the distribution of heating energy in an

office building [101], control of electrical power flow [45], and resource allocation in com-

munication networks [47]. In economics, a simple linear price update rule has long been

the main subject of study, but the convergence of price can only be guaranteed under a quite

restrictive condition [92]. In order to substitute the linear price update rule, various root-

finding methods have been employed in agent-based resource allocation algorithms, such

as the bisection method [103], Newton's method [106], and Broyden's method [101]. How-

ever, in general, it is difficult to guarantee quick and stable convergence to the equilibrium

price. We employ Brent's method [6] to provide guaranteed convergence with a superlinear

rate of convergence by exploiting the fact that a risk, which is treated as a resource in our

problem formulation, is a scalar value.

Another thread of research that is relevant is distributed model predictive control, which

is a branch in the larger area of cooperative control. For example, [36] developed a dis-

tributed MPC algorithm that cooperatively controls multiple agents, whose dynamics and

constraints are decoupled, but whose state vectors are coupled through the objective func-

tion. This algorithm is extended by [35] in order to consider coupling through dynamics.

[58] proposed a cooperative path planning algorithm, where agents solve their subprob-

lems in sequence in order to generate robust collision-free paths. Our work is distinct from

such distributed MPC approaches in that we explicitly consider stochastic uncertainty and

impose chance constraints. Recent research in cooperative control is summarized in [73].

1.13 Thesis Organization

Six algorithms are presented in this thesis. In order to organize the presentation, we char-

acterize the six algorithms by three properties, as shown in Table 1.1.

Table 1.1: Mappings of problems and solution approaches to the algorithms presented in
this thesis.

Centralized Decentralized
Full horizon Receding horizon Full horizon Receding horizon

Convex
fixed schedule CRA MIRA

(Problem 4) (Chapter 5) - (Chapter 9) -

Non-convex,
fixed schedule NIRA
(Problem 3) (Chapter 6) -

Non-convex,
flexible schedule p-Sulu FH p-Sulu dp-Sulu

(Problem 2) (Chapter 7) (Chapter 8) - (Chapter 10)

The first property is the level of generality of the CCQSP and environmental constraints

addressed. The most general problems considered in this thesis allow a non-convex state

space (hence allowing obstacles in environment) and a flexible schedule. p-Sulu FH, p-

Sulu, and dp-Sulu solve this type of problem. The second general form of problem also

allows a non-convex state space, but with a fixed schedule. NIRA solves a problem in this

category. The most restrictive problem only deal with a convex state space and a fixed

schedule. CRA and MIRA solve this class of problem. Chapter 2 provides the formal

problem statement of the most general problem. Chapter 3 derives the encoding of the

general problem as a chance-constrained optimization problem (Problem 2), as well as the

encodings of the two limited versions of the problem (Problems 3 and 4).

The second property is the type of planning horizon: full horizon or receding horizon.

The former is typically used for preplanning, while the latter is used for real-time plan

execution. Hence, we call the algorithms with full planning horizon (CRA, NIRA, MIRA,

and p-Sulu FH) planners, while calling the receding horizon algorithms (p-Sulu and dp-

Sulu) plan executives.

The third property is the optimization approach: centralized or distributed. The cen-

tralized algorithms include CRA, NIRA, p-Sulu FH, and p-Sulu, while the distributed al-

gorithms include MIRA and dp-Sulu.

All of the six algorithms are built upon the risk allocation approach, which is explained

in Chapter 4. The chapter also presents the general risk allocation optimization problem,

Iterative Risk Allocation (IRA). IRA is a key component of p-Sulu and dp-Sulu.

Figure 1-13 shows the technical dependencies between the six algorithms, as well as

risk allocation and IRA. We first present the four centralized algorithms. Starting from the

algorithm that solves the most restrictive problem, Chapter 5 presents the CRA algorithm.

Building upon CRA, we move towards more general solvers: Chapter 6 presents NIRA,

and Chapter 7 presents p-Sulu FH. The centralized CCQSP executive, p-Sulu, is presented

in Chapter 8.

We then present the two decentralized algorithms. Chapter 9 presents the simpler one,

MIRA. Then, finally, Chapter 10 presents our final product, dp-Sulu, the decentralized

robust CCQSP executive.

We present the empirical results in Chapter 11, and conclude the thesis and discuss

future work in Chapter 12.

Fundamental technologies

Full-horizon algorithms

Receding-horizon algorithms

Centralized algorithms

Distributed algorithms

Figure 1-13: Technical dependencies of the algorithms presented in this thesis.

Chapter 2

Problem Statement

As introduced in the preceding chapter, our plan executives, p-Sulu and dp-Sulu, generate

an executable optimal control sequence that achieves a set of temporally extended goals

within specified risk levels. In particular, the executives take as input linear stochastic plant

models, which specify the effects of actions; initial state descriptions, describing probabil-

ity distributions over initial states of the all agents in the system; a CCQSP, which specifies

desired evolutions of the state variables, as well as acceptable levels of risk; and an objec-

tive function. Their outputs are the optimal executable control sequences and schedules.

Recall that the difference between p-Sulu and dp-Sulu, or the difference between CRA

and MIRA, is not in the problem that the algorithms solve, but in the solution approach:

centralized or decentralized. Problem formulations of a single-agent problem and a multi-

agent problem are essentially the same. Therefore, in this chapter, we state single-agent

and multi-agent problems in a unified way.

The full-horizon planners (CRA, NIRA, MIRA, p-Sulu FH) and receding-horizon exec-

utives, introduced in this thesis, solve the same problem, but again in a different approach.

The former solves the planning problem in one shot, while the latter solves it by repeat-

edly solving subproblems with a shorter time horizon. Each subproblem of the receding

horizon approach is essentially the same as the full-horizon planning problem, with several

modifications. Such modifications are described in detail in Section 8.2.

We first define the variables and events used in the problem formulations. Then we

define elements contained in inputs and outputs. Notations defined in this chapter are

summarized in the Appendix.

2.1 Definition of time step

We consider a series of discretized finite time steps t = 0, 1, 2,--- N with a fixed time

interval AT, where integer N is the size of the planning horizon. Since the time interval

AT can take any positive real value, it suffices to consider time steps with only integer

indices to approximate the system's dynamics. We use the term "time step" to mean an

integer index of the discretized time steps, while using the term "time" to mean a real-

valued time. We define a set T as follows:

T := {0, 1, 2, ... N}. (2.1)

We denote by T- the set of all time step in T except for the last time step:

T~ := {0, 1, 2,- - -N - 1}.

We require that the duration of the given plan is upper bounded by the given CCQSP

(Assumption 2). When such a requirement is satisfied, we can always find a finite positive

integer N so that T covers the entire plan. The justification for the assumption is described

in Section 2.4.3.

2.2 Definitions of Events

An event denotes the start or end of an episode of behavior in our plan representation.

Definition 1. An event e C S is a instance that is executed at a certain time step in T .

We define two special events, the start event eo and the end event eE- We assume that

eo is always executed at t = 0. The end event eE represents the termination of the entire

plan.

2.3 Definitions of variables

Variables used in our problem formulation involves a discrete schedule, a continuous state

vector, and a continuous control vector.

2.3.1 Schedule

A schedule is a set of assignments of execution time steps to all the events in E as follows:

Definition 2. A schedule s : E 1- T is a map from events to their execution time steps.

We denote by s(e) the assignment of execution time steps to the event e E E. By

definition, the start event is executed at t = 0 i.e, s(eo) = 0.

In Section 7, we solve relaxed optimization problems with a partially assigned schedule

in order to obtain lower bounds of the optimal objective value. We define a partial schedule

as follows:

Definition 3. A partial schedule o- : S, -+ T is a map from a subset of events in a CC-QSP

to their execution time steps, where E, C E.

Note that a fully assigned schedule is also a partial schedule. Following the notation of

a schedule, we denote by o(e) the execution time of an event e E E. See also the definition

of a schedule (Definition 2).

2.3.2 state vector

We consider a continuous state space, where a state vector is defined as follows:

Definition 4. A state vector xt E R'x is a real-valued vector that represents the state of

the plant at time step t.

Note that xt is a random variable, in order to model a stochastic plant dynamics. We

also define a state sequence as follows:

Definition 5. A state sequence XO:N := [... XN is a vector of state variables from time

0 to N.

2.3.3 Control vector and control sequence

Our actions are assignments to continuous control inputs:

Definition 6. A control vector ut 6 U is a real-valued vector that represents the control

input to the system at time step t, where U C R"u is a compact set that represents the

continuous domain of the feasible control inputs.

Recall that one of two outputs of p-Sulu is the optimal control sequence:

Definition 7. A control sequence UO:N-1 := U0 .. UN-1] is a vector of control inputs

from time 0 to N - 1.

2.4 Definitions of inputs

This subsection defines the four inputs of p-Sulu: an initial condition, a stochastic plant

model, a CCQSP, and an objective function.

2.4.1 Initial condition

We assume that the initial state has a Gaussian distribution with a known mean x0 and a

variance Exo:

x0 ~ N(20, 140). (2.2)

The parameters in (2.2) are specifed by an initial condition, which is defined as follows:

Definition 8. An initial condition I is a pair I = (.o, Exo}, where to is the mean initial

state and Ex is the covariance matrix of the initial state.

2.4.2 Stochastic plant model

Traditional Al planning systems perform discrete actions that affect the values of discrete

variables or conditions, and whose behaviors are specified as state transitions, using a lan-

guage like Planning Domain Definition Language (PDDL) [39, 72]. p-Sulu controls dy-

namical systems in which actions correspond to the settings of continuous control vari-

ables, and whose effects are on continuous state variables. p-Sulu specifies these actions

and their effects through the plant model. p-Sulu employs a continuous-state, discrete-

time linear dynamics with additive disturbance. This is a standard plant model used in

chance-constrained stochastic optimal control [27, 75, 77, 97]. In Chapters 5-10, we as-

sume that the disturbance has a zero-mean Gaussian distribution with known variance. Our

use of Gaussian distribution is justified because many naturally occurring disturbances can

be well approximated by Gaussian distributions. We do not assume any specific type of

probability distribution in Chapter 4. Although we assume Gaussian distribution in most

part of this thesis, our methods can be extended to non-Gaussian disturbances.

We consider the following stochastic, discrete-time, continous-state linear plant model:

Vt E T, xt+1 = Atxt + Btut + wt, (2.3)

where wt E Rnx is the disturbance at t-th time step that has a zero-mean Gaussian distri-

bution with covariance matrix Et:

Wk ~ N(0, Ewt). (2.4)

The parameters in (2.3) and (2.4) are specified by a stochastic plant model, which is

defined as follows:

Definition 9. A stochastic plant model M is a three-tuple M = {AO:N-1, BO:N-1, EWO:N-1)

where AO:N -1 and Bo:N-1 are sets of N matrices Ao:N- 1 : A 0, A 1, * ' AN-1}, Bo:N-1

{B 0 , B 1 , ... BN-1 }, and EWO:N-1 is a set of N covariance matrices EwO:N-1 0 ,WO ElW 7 ... IN-1

Note that xt, as well as wt, is a random variable with Gaussian distribution, while ut

is a deterministic variable. Figure 2-1 illustrates our plant model. In a typical plant model,

the probability circles grow over time since disturbance wt is added at every time step, as

drawn in the figure. This effect represents a commonly observed tendency that the distant

future involves more uncertainty than the near future.

Figure 2-1: Illustration of the stochastic plant model used by p-Sulu. Note the similarity to
Figure 1-3.

2.4.3 Chance-constrained qualitative state plan (CCQSP)

A qualitative state plan (QSP) [62] is a temporally flexible plan that specifies the desired

evolution of the plant state. The activities of a QSP are called episodes and specify con-

straints on the plant state. A CCQSP, originally proposed by [17], is an extension of QSPs to

stochastic plans that involve chance constraints. It is comprised of a set of events, episodes,

temporal constraints, and chance constraints.

Definition 10. A chance-constrained qualitative state plan (CCQSP) is a four-tuple P =

(E, A, T, C), where E is a set of discrete events, A is a set of episodes, T is a set of simple

temporal constraints, and C is a set of chance constraints.

The four elements of a CCQSP are defined precisely in a moment. Like a QSP, a CC-

QSP can be illustrated diagrammatically by an acyclic directed graph in which the discrete

events in E are represented by vertices, drawn as circles, and the episodes as arcs with ovals,

as shown in Figure 1-4. A CCQSP has a start event eo and an end eE, which corresponds

to the beginning and the end of the mission, respectively.

For example, the CCQSP of the PTS scenario is shown in Figure 1-4. The state regions

and obstacles in the CCQSP are illustrated in Figure 1-2. It involves four events: E =

{e0, e1, e2, eE . Their meanings are described as follows.

1. The start event eo corresponds to the take off of the PAV from Provincetown.

2. The second event ei corresponds to the time step when PAV reaches the scenic

region.

3. Event e2 is associated with the time instant when the PAV has just left the scenic

region.

4. The end event eE corresponds to the arrival of the PAV in Bedford.

The CCQSP has four episodes A = {ai, a2, a3 , a 4 } and two chance constraints C

{c1, c2}.

A natural language expression of the CCQSP is:

" Start from Provincetown, reach the scenic region within 30 time units, and

remain there for between 5 and 10 time units. Then end the flight in Bedford.

The probability offailure of these activities must be less than 1%. At all times,

remain in the safe region by avoiding the no-fly zones and the storm. Limit the

probability of penetrating such obstacles to 0.0001%. The entire flight must

take at most 60 time units."

Below we formally define the three types of constraints - episodes, temporal constraints,

and chance constraint.

Episodes Each episode a E A specifies the desired state of the system under control over

a time interval.

Definition 11. An episode a = (esle ,Iaf(ts, tE), Ra) has an associated start event eaS

and an end event e E. Ra G RN is a region in a state space. Ha C T is a set of time steps at

which the state xt must be in the region Ra.

The feasible region Ra can be any subset of RN. We will approximate Ra with a set of

linear constraints later in Section 3.1.1.

Ha(ts, tE) is a subset of T given as a function of the start time step ts and the end time

step tE. Different forms of Ha(ts, tE) result in various types of episodes. The following

three types of episodes are particularly of our interest:

1. Start-in episode: Ua(ts, tE) {tS }

2. End-in episode: Ha(ts, tE) {tE }

3. Remain-in episode: fla(ts, tE) = {tS, tS + 1, ** - , tE}

For a given episode a, the set of time steps at which the plant state must be in the region

Ra is obtained by substituting s(es) and s(e), the execution time steps of the start event

and the end event of the episode, into ts and tE. In other words, an episode a requires that

the plant state is in Ra for all time steps in Ua (s(eS), s(e)). For the rest of the thesis, we

use the following abbreviated notation:

Ha(S) := Ha (s(ea), s(ea))

Using this notation, an episode is equivalent to the following state constraint:

A xt E Ra- (2.5)
tEra(s)

For example, in the CCQSP shown in Figure 1-4, there are four episodes: ai ("Start in

[Provincetown]"), a 2 ("Remain in [Scenic region]"), a3 ("End in Bedford"), and a4 ("Re-

main in [safe region]").

In Section 7, we solve a relaxed optimization problem with a partial schedule (Defi-

nition 3) in order to obtain a lower bound of the optimal objective value. In such relaxed

problems, only a subset of the episodes that are relevant to the given partial schedule are

imposed. We formally define a partial episode set of a partial schedule o- as follows:

Definition 12. Given a partial schedule -, A(o-) C A is its partial episode set, which

is a subset of A, that involves the episodes whose start event and end event are assigned

execution time steps.

A(or) ={a C AIes E S, A e E GS

Recall that S is a set of events to which the execution time steps are assigned by the

partial schedule a (Definition 3).

Chance constraint Recall that a chance constraint is a probabilistic constraint that re-

quires constraints to be satisfied within a user-specified probability. A CCQSP can have

multiple chance constraints. A chance constraints is associated with at least one episodes.

Let C C A be a set of episodes associated with the chance constraint c, and Ac be a

user-specified risk bound.

Definition 13. A chance constraint c = (Pc, Ac) is a constraint requiring that:

Pr A A xt c R, > 1 - Ac, (2.6)
LaETc tE-Ha(s)

In the chance-constrained optimization community, 2.6 is classified as a joint chance

constraint, meaning that it requires the satisfaction of all the associated constraints with a

given probability. On the other hand, a individual chance constraint requires the satisfaction

of a single constraint with a given probability. An individual chance constraint can be

considered as a special case of joint chance constraint, where the chance constraint only

involves one state constraint.

Every episode in a CCQSP must be associated with exactly one chance constraint.

Any episode in episodes must not be involved in more than one chance constraints or

unassociated with any chance constraint. To put it another way, there must be a onto map

from A to C.

For example, the CCQSP shown in Figure 1-4 has two chance constraints, ci and c2.

Their associated episodes are Pe1 = {ai, a2, a3 } and qIc 2 = {a 4}. Therefore, ci requires

that the probability of satisfying the three episodes ai, a2, and a3 (colored in green) is more

than than 99%, while c2 requires that the probability of satisfying the episode a4 is more

than 99.99999%.

We place the following requirement. This requirement is necessary in order to guaran-

tee the convexity of constraints in Section 5.2.

Requirement 1.

Ac < 0.5

In other words, the risk bounds are required to be less than 50%. We claim that this

requirement does not constrain practical applications, since typically the user of an au-

tonomous system would not accept more than the 50% of risk.

We note that the chance constraint (2.6) includes state constraints because our state

variable x is a random variable due to the stochastic uncertainty, given as (2.2), (2.3), and

(2.4). Temporal constraints cannot be included in (2.6) because the schedule s is not a

random variable in our problem formulation. In a scheduling problem where stochastic

uncertainty in execution time is considered, the chance constraint should include temporal

constraints.

Temporal constraint CCQSP includes simple temporal constraints (STCs) [33], which

impose upper and lower bounds on the duration of episodes and on the temporal distances

between two events in S.

Definition 14. A simple temporal constraint T = {eI, e , bmin", b"'*) is a constraint, speci-

fying that the duration from a start event es to an end event eE be in the real-valued interval

[bmin" bumx] C [0, +00]

Temporal constraints are represented diagrammatically by arcs between nodes, labeled

with the time bounds [bmi", b"mx], or by labels over episodes. For example, the CCQSP

shown in Figure 1-4 has four simple temporal constraints. One requires the time between

eo and ei to be at most 30 time unites. One requires the time between ei and e2 to be at

least 5 units and at most 10 units. One requires the time between e2 and eE to be at most

40 time unites. One requires the time between eo and eE to be at most 60 time unites.

A schedule s is feasible if it satisfies all temporal constraints in the CCQSP, 'T. The

number of feasible schedules is finite, since T is discrete and finite. We denote by SF the

domain of feasible schedules, which is formally defined as follows:

SF= {s E TP | VrT b""" < AT{f s(eE) _ S(e)} < bmx}, (2.7)

where |El is the number of events in the CCQSP. The temporal duration is multiplied by

the time interval AT because bli" and b"" are real-valued time while s is a time step in T.

Note that we separate the notion of time step from time (see Section 2.1).

We require that a CCQSP has a temporal constraint that imposes an upper bound on the

duration of the entire plan. With a slight abuse, this requirement is stated as follows:

Requirement 2. There is T E 'T such that

eS = co A eE = EA b"x < +00.

We place such a requirement because otherwise the solution to the planning problem

often become trivial. For example, consider a problem that require a vehicle to reach a

goal with minimum fuel consumption. If the plan duration is not bounded, then the optimal

solution is to stay at the start forever, assuming that the vehicle will reach the goal in the

infinite future.

2.4.4 Objective function

In this section, we formally define the objective function.

Definition 15. Given sequences of input variables U:N-1 and the expected state variables

X1:N, and given a schedule s for a set of events E, an objective function J: UN x XN X

SF H-4 R is a real-valued function over UO:N-1, X1:N, and s.

We assume that J is a convex function over X1:N and U0:N-1. Note that J is defined

over the expectation of X1:N, X1:N, since XO:N is a random variable. Since x1:N is a function

of U:N-1, J can be regarded as a function Of U:N-1-

A typical example of an objective function is the quadratic sum of control inputs, which

requires the total control efforts to be minimized:

N-1

0(U:N-1,51t:N S) 1 Ilt 2.

t=o

Another example is:

J(UO:N-1, X1:N S(eE), (2.8)

which minimizes the total plan execution time, by requiring that the end event eE of the

qualitative state plan be scheduled as soon as possible.

2.5 Definitions of outputs

The output of p-Sulu is an optimal solution, which consists of an optimal control sequence

0 :N-1 E UN and an optimal schedule s* E SF-

Definition 16. The optimal solution is a pair (U:N-1, s*). The solution satisfies all con-

straints in the given CCQSP (Definition 10), the initial condition I, and the stochastic plant

model M. The solution minimizes the given objective function J(U0:N -1, 1:N, s) (Defini-

tion 15).

2.6 Problem Statement

We now formally define the robust optimal CCQSP planning problem, which is solved by

p-Sulu FH.

Problem 1: Robust Optimal CCQSP Planning/Execution Problem

Given a stochastic plant model M = (Ao:N-1, BO:N-1, wN an initial condition

I = (ko, Exo), a CCQSP P = (S, A, T, C), and an objective function J(U0:N-1, 51:N, s),

a robust optimal CCQSP planning problem is to find an optimal solution (U*:N-1, S*) for

M, I, P, and J.

Chapter 3

Encoding

This section encodes the CCQSP planning and execution problem, stated in the preceding

chapter, as a mathematical programming problem. Recall that we develop our CCQSP ex-

ecutives, p-Sulu and dp-Sulu, in spirals, as explained in Section 1.6.2 and Section 1.9.2.

We start from planners that solve restricted instances of the CCQSP planning problem,

and then build general planners and executives upon them. In this section, we first present

the problem encoding of a general CCQSP planning/execution problem with a non-convex

state space and a flexible schedule (Figure 1-6-(c)) in Subsection 3.1. Then we present the

encodings of the two special cases of the CCQSP planning/execution problem in Subsec-

tions 3.2 and 3.3: one with a non-convex state space and afixed schedule (Figure 1-6-(b)),

and one with a convex state space and a fixed schedule (Figure 1-6-(a)). Each problem can

be solved either in a centralized or decentralized manner; each can also be solved by either

a full-horizon planner or a receding horizon executive. See the matrix shown in Table 1.1,

which indicates the problem that each algorithm solves.

3.1 Encoding of a CCQSP Planning/Execution Problem

with a Non-convex State Space and Flexible Schedule

3.1.1 Encoding of Feasible Regions

In order to encode Problem 1 into a mathematical programming problem, the geometric

constraint in (2.6), xt E Ra, must be represented by algebraic constraints. For that purpose,

we approximate the feasible state regions Ra by a set of half-spaces, each of which is

represented by a linear state constraint.

Figure 3-1 shows two simple examples. The feasible region of (a) is outside of the

obstacle, which is approximated by a triangle. The feasible region of (b) is inside of the

pickup region, which is again approximated by a triangle. Each feasible region is approxi-

mated by a set of linear constraints as follows:

3

(a) V hTx <gi
i=1

3

(b) Ah x > gi
i=1

We approximate the feasible regions so that the set of linear constraints is a sufficient

condition of the original state constraint xt E Ra-

h'x=g h Tx=g2 hx=g h2 xg 2

Feasible
region

(a) (b)

Figure 3-1: Representation of feasible regions by a set of linear constraints

We assume that the set of linear state constraints that approximates a feasible region

has been reduced to conjunctive normal form (CNF) as follows:

A V hak,j -- ga,kj 0, (3.1)
kEICa iEJa,k

where /Ca {1, 2, '-Cal} and J,, = {1, 2, - are sets of indices. By replacing

Xt E Ra in (2.6) by (3.1), a chance constraint c is encoded as follows:

Pr A A A ha,k,jXt - gc,a,k,j 0 ;1-ZAc, (3.2)
[aE lc tGla(s) kEKa jEJa,k

where Ca = {1, 2, ... 'Call and Jc,i = {1, 2, Jc,i|I} are sets of indices. In order to

simplify the notation, we merge indices a c We', t E Ha(s), and k E Ca into a new index

i E Ic(s), where Ic(s) = {1, 2,- .. I§c(s)|} and |Ic(s)| = Ca| -EEaI |la(S)|. We let ai,

ki, and ti the indices that correspond to to the combined index i, and let he,i,j = hc,a2 ,ki,j.

Using these notations, the three conjunctions of (3.2) are combined into one, and we obtain

the following encoding of a chance constraint:

Pr A V h To Xt- gc,, < 0 > 1 (3.3)
iEG"c(s) jEGJc,i

The specification of chance constraints given in (3.3) requires that all Ic(s)| disjunctive

clauses of state constraints must be satisfied with a probability 1 - Ac. The i'th disjunctive

clause of the c'th chance constraint is composed of Jc,i I linear state constraints.

3.1.2 CCQSP Planning/Execution Problem Encoding

Using 3.3, a robust optimal CCQSP planning/execution problem (Problem 1) is encoded as

follows:

Problem 2: General CCQSP Planning/Execution Problem

min J(UO:N-1, X1:N, s) (3.4)
UO:N-1 UNS

s.t. S E SF (3.5)

Vt E T, Xt+1 = Atzt + Btut + wt (3.6)

A Pr A V h xT,Xt - gc,,j < 0 ;> 1 - Ac. (3.7)
cEC iEIc(s) jcJc,i

Xo ~ N(to, EX 0) , Wk- (O, Ewt) (3.8)

Recall that SF, formally defined in (2.7) , is the set of schedules that satisfy all temporal

constraints in the given CCQSP. This CCQSP execution problem is a hybrid optimization

problem over both discrete variables s (schedule) and continuous variables UO:N-1 (control

sequence). Note that the temporal constraints Problem 2 is solved in Section 7.

3.2 Encoding of a CCQSP Planning/Execution Problem

with a Non-convex State Space and Fixed Schedule

A restricted version of a CCQSP planning/execution problem with a fixed schedule is ob-

tained by fixing s in Problem 2 as follows:

Problem 3: CCQSP Planning/Execution Problem with a Fixed Schedule

J*(s) min J'(UO:N--1, 1:N) (3.9)
UO:N-1 UN

s.t. Vt (E TJ, xt+1 = Atxt + Btut + wt (3.10)

APr L V h cXti -- gc,i,j < 0 ;> 1 - Ac, (3.11)

zo ~ N(No, Ez0), Wk ~ NA(0, Ewt) (3.12)

where J*(s) is the optimal objective value of the CCQSP Planning/Execution problem with

the schedule fixed to s. Note that the schedule s, which is a decision variable in Problem

2, is treated as a constant in Problem 3. Therefore, the objective function J' is now a

function of only control sequence and mean state, since we have fixed the schedule. Since

we assumed that J is a convex function regarding to UO:N-1 and t1:N, J is also a convex

function. Section 6 solves Problem 3.

3.3 Encoding of a CCQSP Planning/Execution Problem

with a Convex State Space and Fixed Schedule

A more restrictive version of a CCQSP planning/execution problem with a fixed schedule

and a convex state space is obtained by removing the disjunctions in the chance constraints

in Problem 3 as follows:

Problem 4: CCQSP Planning/Execution Problem with a Fixed Schedule and a Convex

State Space

min J'(UO:N-1, 51:N) (3.13)
UO:N-1 GUN

s.t. Vt E U-, xt+1 = Atxt + Btut + wt (3.14)

APr A hi4 Xt - gci < 0 > 1 - A_. (3.15)
cEC iElc(S)

x 0 ~ N(X 0 , EXo), Wk ~ N(0, E,) (3.16)

Note that the disjunctions in Problem 3 are removed in Problem 3.3. Section 5 solves

Problem 4.

3.4 Encoding of CCQSP Planning Problems with Multi-

ple Agents

CCQSP planning problems involving multiple agents are encoded in the same formulation

as Problems 2-4 by combining state and control variables of all agents into one state and

control variables as follows:

Nt Ut

where x' and u' are the state and control variables of the ith agent at tth time step, respec-

tively. Therefore, theoretically, any algorithms that can solve Problems 2-4 can also solve

their multi-agent variants in a centralized manner. However, in practice, such centralized

solutions of poorly scale to multi-agent problems with large number of agents. Moreover,

centralized approach has an issue of robustness since the central controller is a single point

of failure in terms of computation and communication. In order to address these issues, we

develop distributed algorithms in Chapter 9 and 10.

The following chapters present algorithms that solve the CCQSP planning and execu-

tion problems defined above.

Chapter 4

Risk Allocation

This chapter presents the key concept of this thesis, risk allocation, as well as the iterative

risk allocation (IRA) algorithm, a general algorithm that optimizes the allocation of risk.

The concept of risk allocation can be intuitively explained by an analogy of resource allo-

cation. When allocating resources, a limited amount of resource is allocated to individual

entities. The overall cost is minimized by optimizing the allocation of the resource. Like-

wise, we show that risk can be allocated to individual risk factors, and that the allocation

of risk needs to be optimized in order to minimize the overall cost. We then show that the

IRA algorithm can improve the risk allocation through iteration.

This risk allocation approach provides a convenient quantitative tool to break down

risk into multiple risk factors. Typically, one failure mode can be caused by multiple risk

factors. Consider, for example, a multi-vehicle system in an environment with multiple

obstacles, which conducts a mulit-day mission. A collision can occur by any agent in the

system, with any obstacle in the environment, on any day during the mission. The risk

of collision can be distributed among agents, obstacles, or days. Assuming there are two

agents in the system, if a user wants to limit the probability of collision to 1%, she can

assign 0.4% risk bound to Vehicle A and 0.6% risk bound to Vehicle B, for example. We

will later show that the overall 1% risk bound is satisfied if both vehicles satisfies their

own individual risk bounds. Alternatively, she can allocate the 0.4% of risk to Obstacle A

and the 0.6% of risk to Obstacle B. By ensuring that the probability of each obstacle being

hit by any vehicles is below its own risk bound, the overall risk bound is guaranteed to be

satisfied. She can also assign 0.4% risk bound to Day 1 and 0.6% risk bound to Day 2 (here

we assume that there are two days in the mission). If the probability of collision on each

day is within its individual risk bound, the overall risk bound for the two-day mission is

guaranteed to be satisfied.

In order to maximize the performance of the system (i.e., minimize the system cost), the

risk allocation must be optimized. For example, if Vehicle A's sensitivity to risk is higher

than Vehicle B, allocating larger portion of risk to Vehicle A would result in better perfor-

mance. The newly proposed IRA algorithm provides a method to automatically decide the

allocation of risk to each risk factor in order to obtain better performance. The IRA algo-

rithm can be implemented on top of existing deterministic optimizers and give them a capa-

bility to solve corresponding chance-constrained optimization problems. p-Sulu (Chapter

8) and dp-Sulu (Chapter 10) are built upon IRA. IRA is an anytime algorithm, meaning

that it can return a feasible solution at any time, and the cost function value of the solution

monotonically decreases through iteration. Although IRA outperforms existing algorithms

in a wide range of practical problems, it does not have theoretical guarantee for optimality.

On the other hand, CRA (Chapter 5), NIRA (Chapter 6), and MIRA (Chapter 9) are theo-

retically guaranteed to find optimal solution for specific full-horizon planning problems.1 .

Although this thesis focuses on the CCQSP planning problems, the risk allocation ap-

proach and the IRA algorithm can be applied to broader classes of problems with multiple

risk factors. Hence, we consider a general joint chance-constrained optimization problems

in this chapter. The application of risk allocation approach to specific CCQSP planning

problems are discussed after Chapter 5.

'More precisely, The CRA, NIRA, and MIRA algorithms solve the deterministic approximation of chance
constrained optimization problems optimally. The IRA algorithm gives a feasible, but non-optimal solution
to the same deterministic approximation of chance constrained optimization problems

4.1 Risk Allocation Approach

4.1.1 Racing Car Example

We first offer readers an intuitive understanding of the risk allocation approach using an

example.

Consider the race car example, shown in Figure 4-1. The dynamics of the vehicle have

Gaussian-distributed uncertainty. The task is to plan a path that minimizes the time to

reach the finish line, with the guarantee that the probability of crashing into a wall during

the race is less than 0.1% (chance constraint). Planning the control sequence is equivalent

to planning the nominal path, which is shown by the solid lines in Figure 4-1. To limit

the probability of crashing into the wall, a good driver might set a safety margin, which

is colored in dark gray in Figure 4-1, and then plan the nominal path outside of the safety

margin.

The driver wants to set the safety margin as small as possible to make the nominal path

shorter. However, since the probability of crashing during the race is bounded, there need

to be a certain lower bound on the size of the safety margin. We assume here that a lower

bound on the total area of the safety margin is suitably set. Given this constraint, there are

different strategies of setting a safety margin; in Figure 4-1(a) the width of the margin is

uniform; in Figure 4-1(b) the safety margin is narrow around the corner, and wide at the

other places.

An intelligent driver would take the strategy of (b), since he knows that going closer to

the wall at the corner makes the path shorter, while doing so at the straight line does not. A

key observation here is that taking risk (i.e., setting a narrow safety margin) at the corner

results in a greater reward (i.e. time saving) than taking the same risk at the straight line.

This gives rise to the notion of risk allocation. A good risk allocation strategy is to save

risk when the reward is small, while taking it when the reward is great. As is illustrated

in this example, the risk allocation must be optimized in order to minimize the objective

function of a joint chance-constrained stochastic optimization problem.

Start Start

(a) Uniform risk allocation (b) Optimal risk allocation

Figure 4-1: Risk allocation strategies on the racing car example

4.1.2 Formal Statement of the Risk Allocation Approach

General Problem Statement

We next formally present the risk allocation approach. Since risk allocation is a general

approach whose application is not limited to CCQSP planning problems, in this chapter

we consider a general joint chance-constrained programming problem, which is a gener-

alization of the CCQSP planning problems stated in the previous chapter (Problems 2, 3,

and 4). We construct the problem formulation by extending the following deterministic

constrained optimization problem:

Problem 5: General Deterministic Constrained Optimization

min p(u)UEU
s.t. A A qc,i(u) < 0, (4.1)

cEC iE2c

where u is a deterministic decision vector, and p and qe,i are deterministic real-valued

functions of u. C is a set of constraints that are imposed on the optimization problem.

Next, we consider a stochastic version of Problem 5 where the constraint functions have

uncertainty. Let

qc,i(u) = co(u) + wc,j, (4.2)

where we,i is a continuous random variable that has a zero-mean probability density func-

tion fe,i(w). Note that qc,i(u) is a random variable. The assumption that we,i has a zero-

mean distribution implies that the expected value of qc,i (u) is qc,i (u):

c,i-(u) = E [qc,i(u)] .

The general formulation of joint chance-constrained optimization can be obtained as

follows:

Problem 6: General Joint Chance-Constrained Optimization

min p(u) (4.3)
uEU

s.t. APr Aqc,i(u) < 0 > 1 - Ac, (4.4)
cEC _iJE_

where Ac is the upperbound on the probability of violating any of the constraints in the

cth group.

Problem 6 is a generalization of the CCQSP Planning problems (Problems 2, 3, and 4).

Note that, although we only include conjunction of constraints, the disjunctive constraints

in Problems 2, 3 can be equivalently transformed into a single inequality constraint as

follows:

V qj (u) < 0 min qj(u) < 0.
jcJ jEJ

The constraint on the right hand side is satisfied if at least one of the function qj(u) is

less than or equal to zero; therefore, it is equivalent to a disjunctive constraint on the left.

Hence, Problem 6 can be considered as a generalization of Problems 2, 3, and 4. In Section

6.1.1, we present the risk selection approach, which can handle such a disjunctive chance

constraints. Also note that Problem 6 do not assume Gaussian distribution, as opposed to

Problems 2, 3, and 4.

Risk Allocation Approach

Each joint chance constraint in (4.4) requires that the probability of violating any of multi-

ple inequality constraints is less than the user-specified risk bound. Hence, such a chance

constraint is called a joint chance constraint. Although the joint chance constraint is typ-

ically convex [79], evaluating its left hand side requires computing an integral of a multi-

variate probability distribution over an arbitrary region. Such an integral cannot be obtained

in closed form. Although the sampling-based approach can compute the integral approxi-

mately, using sampling iteratively makes computation significantly slower [19].

We address this issue by decomposing the intractable joint chance constraint (4.4) into

a set of individual chance constraints, each of which involves only a univariate probability

distribution. The key feature of an individual chance constraint is that it can be transformed

to an equivalent deterministic constraint, which can be evaluated analytically. As we dis-

cussed earlier, this decomposition can be considered as an allocation of risk. Through the

decomposition, the risk bound of the joint chance constraint is distributed to the individual

chance constraints.

More specifically, the risk allocation approach uses Boole's inequality, also known as

the union bound, in order to obtain a set of individual chance constraints that is a sufficient

condition of the original joint chance constraint. Let Ci be a proposition that is either true

or false. Then the following lemma holds:

Lemma 1.

N N N

Pr A c, 21-A + APr [Ci] > 1 - 6_ / 6i < A

i=1 i=1 =

Proof:

' N ~ N~

Pr AC 1>I-A e Pr [V-,Cj A (4.5)

N

+ A Pr [,Ci] < A (4.6)
cC i=1

N N

1 >og 20 APr [,Ci] < 6i A 6 < A
i=1 i=1

N N

16i > 0 A Pr [Ci] > 1 - 6i A 6i < A. (4.7)
i=1 i=1

We denote by -,C the negation of C. We use the following Boole's inequality to obtain

(4.6) from (4.5):

Pr [V Cc,i < Pr[Cc,i].
i=1 i=1

The following result immediately follows from Lemma 1 by substituting an inequality

constraint qc,i (u) < 0 for C for each chance constraint c.

Corollary 1. The following set of constraints is a sufficient condition of the joint chance

constraint (4.4) in Problem 6:

1oc,i > 0 A APr [qc,i(u) 0] > 1 - oc,i A E c,4 < Ac (4.8)
cEC icle iGIC I

The newly introduced variables 6c,i represent the upper bounds on the probability of

violating each atomic constraint. We refer to them as individual risk bounds. The individual

risk bound ,, can be viewed as the amount of risk allocated to the i constraint. The

fact that oc,i is a bound on probability implies that 0 < 3 < 1. The second term of

(4.8) requires that the total amount of risk is upper-bounded to the original risk bound Ac.

Here we find an analogue to the resource allocation problem, where the allocation of a

resource is optimized with an upper bound on the total amount of resource. Likewise, the

allocation of risk oc,i must be optimized in order to minimize the cost. Therefore, we call

this decomposition method a risk allocation [78].

Note that the set of constraints (4.8) is a sufficient condition for the original chance

constraint (4.4). Therefore, any solution that satisfies (4.8) is guaranteed to satisfy (4.4).

Furthermore, although (4.8) is a conservative approximation of (4.4), the conservatism

introduced by risk allocation is typically small for practical applications. Section 4.1.5 ex-

plains the reason for the smallness of the conservatism. Our claim is validated by extensive

empirical results presented in Section 11.

4.1.3 Conversion to Deterministic Constraints

Each individual chance constraint in (4.8) only involves a single inequality constraint,

where qc,i (u) has a univariate probability distribution. Such an individual chance constraint

can be transformed to an equivalent deterministic constraint.

We need some additional setup to proceed. We denote the cumulative distribution func-

tion of we,i by Fc,i(.):

Fe,i(x) := Pr[wc,i < x] = fi(x') dx'.

We also denote by FeJ (3) the inverse function of the cumulative distribution function:

Fe,i(x) = <-> Fcj(6) = x

Given these notations, the following lemma transforms an individual chance constraint

into an equivalent deterministic constraint that involves the mean c,i (u), instead of the

random variables qc,i(u):

Lemma 2. The following two conditions are equivalent.

Pr [qc,i(u) < 0] ; 1 - o, < c,i(u) < -Fe-'(1 -

Proof:

Pr [qc,i(u) < 0] > 1 - ci Pr [qe,i(u) + we,i(u) < 0] > 1 - oc'i

Pr [we,i(u) < -qc,z(u)] > 1 - c0

Fe,j(-qc,j(u)) > 1 - 6c,4

qC,i(u) -Fc-(1 - cj)

The last equivalence is derived from the fact that a cumulative distribution function is al-

ways a non-decreasing function. U

Figure 4-2 provides an intuition of this proof. The integral of the probability distribution

function of qc,i(u) above zero represents the probability of constraint violation. In order to

satisfy the individual chance constraint in (4.8), this area must be less than cj. Such a con-

dition can be met by leaving a margin between the mean and the constraint boundary, and

the necessary width of the margin is F- 1 (1 - 6c,). This margin Fc- (1 - 6c,i) corresponds

Constraint violation

F-qc(u) 0

00

CC

.0
0

q(U) 0

Mean state (deterministic variable)

Figure 4-2: Transformation of an individual chance constraint into an deterministic con-
straint.

to the safety margin used in the Race Car Example in Section 4.1.1.

4.1.4 Deterministic Approximation of the Joint Chance-constrained

Optimization Problem

We obtain a tractable approximation of the joint chance-constrained optimization problem

(Problem 6) by replacing the joint chance constraints (4.4) with deterministic constraints

using Corollary 1 and Lemma 2. We denote by 6 the vector that contains risk allocations to

all constraints:

6 := 161,1, 61,2,1 6lci,|I1cl|

Let >- be the componentwise inequality. Then, the approximation of the joint-chance con-

straint optimization problem is given as follows:

Problem 7: Deterministic Approximation of Problem 6

min pU) (4.9)
UEU,6>-0

s.t. A A qc (u) < -F-,i (1 - oc,i) (4.10)
cEC iGc

AE2 oci < c(-1
cEC iCIc

It follows immediately from Corollaries 1 and 2 that a feasible solution to Problem 7 is

always a feasible solution to Problem 6. When p(u) and c,i (u) are convex functions, this

approach corresponds to the Bernstein approximations [79].

Example

Consider the following joint chance-constrained optimization problem with two decision

variables, Ui, U2 e R, and two random variables w1, w2 :

min Ui + U2
U1,U2 ER

s.t. Pr [u+ wi > 0 A U2 + w 2 > 0] ;> 1 - A.

We assume that the random variables, w and w2 , have the standard Gaussian distribution:

W1 , w2 ~ A(O, 1).

The inverse of the cumulative distribution function of the standard Gaussian distribution is

given as follows:

F- 1() = x/2 erf 1 (26 - 1),

where erf-1 (.) is the inverse of the Gauss error function. Using this F-1, the joint chance-

constrained optimization problem above is approximated by the following deterministic

optimization problem:

min Ui + U 2
U1 U2 6 R,6i,62>0

S.t. u1 > -F- 1 (1) A u2 > -F-'(62)

J1 + J2 <-A-

4.1.5 Conservatism of Risk Allocation Approach

As mentioned in Section 4.1.2, the risk allocation approach gives a conservative approxi-

mation (4.8) of the original chance constraint (4.4). This subsection evaluates the level of

conservatism of the risk allocation approach.

Let Pfail be the true probability of failure, defined as the probability that a solution

violates the constraints (4.1). Since (4.8) is a sufficient but not necessary condition for

(4.4), Pfail is smaller than or equal to the risk bound A in general: A > Pfail. Hence, the

conservatism introduced by risk allocation is represented as

A - Pfail.

The best-case scenario for the risk allocation approach is when the violations of all con-

straints are mutually exclusive, meaning that a solution that violates one constraint always

satisfies all the other constraints. In that case, (4.8) becomes a necessary and sufficient

condition for (4.4) since

Pfaui = Pr A qc,i(u) 01 = Pr [qc,i(u) 0],
.Elc. icIc

and hence, risk allocation does not involve any conservatism. If the chance constraints are

active for the optimal solution, then

A - Pfail = 0.

On the other hand, the worst-case scenario is when all constraints are equivalent, mean-

ing that a solution that violates one constraint always violates all the other constraints. In

such a case,

Pfaia = Pr A qc,i(U) < 0 = Pr [qc,i(u) 0],
.EIc. iEIc

where N is the number of constraints. Therefore, the worst-case conservatism is:

A - Pfa =N A.
N

Most practical problems lie somewhere between the best-case scenario and the worst-

case scenario, but typically closer to the best-case than to the worst-case scenario. For

example, if there are two separate obstacles in a path planning problem, collisions with

the two obstacles are mutually exclusive events. Collision with an obstacle at one time

step does not usually imply collisions at other time steps. A rough approximation of such

a real-world situation is to assume that the satisfaction of constraints are probabilistically

independent. With such an assumption, the true probability of failure is:

Pfail = Pr Aqc, i() 5 0 = Pr [qci(u) < 0] < 1 - J(1 - 6j).
iGc iEc iCIc

In such a case, the risk bound of the risk allocation approach (4.8) gives the first-order

approximation of the true probability of failure around 6 = 0. Also note that og < A.

Therefore, the conservatism introduced by risk allocation is at the second order of A:

A - Pfail O(A 2).

For example, if A = 1%, the true probability of failure is approximately Pfail 0.99%. In

most practical cases, the users prefer to set very small risk bounds, typically less than 1%.

In such cases, the conservatism introduced by risk allocation becomes very small.

Comparison with existing bounding approaches

As far as we know, there are three existing approaches that can solve optimization problems

with joint chance constraint (4.4): Particle Control, the fixed risk allocation approach, and

the ellipsoid relaxation approach. We claim that the risk allocation approach has the least

conservatism among the algorithms that guarantee satisfaction of chance constraints.

Particle Control [20], or a scenario approach [25], is a sampling-based method, which

uses a finite number of samples to approximate the joint chance constraints in (4.4). Al-

though this approach converges to the exact solution as the number of samples approaches

infinity, it becomes intractable with only 100 to 1,000 samples in many practical cases.

With a finite number of samples, the solution of Particle Control is not guaranteed to sat-

isfy chance constraints. On the other hand, the solution of the risk allocation approach is

guaranteed to satisfy chance constraints. This claim is empirically validated in Sections

11.1.5, 11.1.6, and 11.3.1.

Although the Fixed risk allocation approach employed by [18] and [75] is similar to

the risk allocation approach in that it uses Boole's inequality to decompose joint chance

constraints, it does not optimize risk allocation. Instead, it fixes the risk allocation to a

uniform value. Hence, although its solution is guaranteed to satisfy chance constraints,

it is more conservative than the risk allocation approach. The cost function values of the

solutions of the fixed risk allocation approach are always higher than or equal to that of the

risk allocation approach. This claim is empirically validated in Section 11.1.7.

Finally, the elliptical relaxation approach, developed by [97], turns joint chance con-

straints into deterministic constraints using a conservative ellipsoidal relaxation. Like the

risk allocation approach, the elliptical relaxation approach guarantees the satisfaction of

chance constraints. Theoretically, this approach can result in less conservative solution

than the risk allocation approach, particularly when state constraints are very tight. How-

ever, in most practical cases, it ends up with a significantly more conservative solution

than the risk allocation approach. For example, in the simulations in Section 11.1.5 where

A = 5%, the risk allocation approach resulted in a probability of failure Pfail = 3.78%,

while the elliptical relaxation approach results in Pfail < 0.001%.

Figure 4-3 explains the reason behind this effect. In the example in the figure, two

linear constraints on a 2-D variable u are considered: hAu gA and hBu gB. The

chance constraint (4.4) is equivalent to

Pr[A U B] < A,

where A and B correspond to the regions shown in the figure.

The risk allocation approach (4.8) imposes a conservative constraint:

Pr[A] + Pr[B] < A.

Hence, the conservatism of risk allocation is represented by:

A - Pfai = Pr[A n B]. (4.12)

On the other hand, the elliptical relaxation approach finds an ellipsoid E, as shown in

Figure 4-3, that satisfies:

Pr[E] = 1 - A,

and requires E to be in the feasible state space. Therefore, the conservatism of the elliptical

relaxation approach is represented by:

A - Pjai Pr [, (A U B U E)], (4.13)

as shown by the shadowed region in Figure 4-3-(b).

As can be seen from Figure 4-3, (4.13) typically results in larger probability than (4.12),

particularly when the dimension of the decision variable is high. A typical CCQSP plan-

ning problem involves at least 10 time steps with two-dimensional control variables for

each. Hence, the dimension of the decision variable is at least 20. This accounts for the

significantly greater conservatism of the elliptical relaxation approach compared to the risk

allocation approach. This claim is empirically validated in Sections 11.1.5, 11.1.6, and

11.3.1.

(a) Risk allocation approach (b) Ellipsoid relaxation approach

1-A probability ellipsoid

h u < gA

Conservatism

Conservatism - - B

Pr[A]+Pr[B] A Pr[-,E] A

Conservatism= Pr[A n B] Conservatism = Pr[-,(A u B u E)]

Figure 4-3: Conservatism of the risk allocation approach and the elliptical relaxation ap-
proach. Typically, the latter results in a significantly more conservative solution than the
former.

4.2 Iterative Risk Allocation Algorithm

In this section we develop the iterative risk allocation (IRA) algorithm, which can solve

Problem 7 in Section 4.1.4 by iteratively solving the corresponding deterministic problem

(Problem 5) while improving the risk allocation at each iterative. Hence, the IRA algorithm

can be implemented on top of any existing deterministic solvers and turn them into a joint

chance-constrained programming solvers. This feature is important since Problem 7 is

often hard to solve directly due to the nonlinearity of F- 1 (.) (often it cannot be evaluated in

a closed form). Although the IRA algorithm does not provide a guarantee of the optimality

of the solution, the iterations typically converges quickly.

The IRA algorithm requires the following three assumptions:

* Assumption 4-1: The corresponding deterministic optimization problem (Problem

5), which shares the same function p(n) and qc(u), can be solved optimally

* Assumption 4-2 F-f5 (.) can be evaluated

* Assumption 4-3 A feasible initial risk allocation 6' is provided

Assumption 4-2 does not require that a closed-form expression is available for F- 1 (.). Nu-

merical evaluation using a look-up table is enough to satisfy the assumption. The algorithm

starts from the initial risk allocation, and improves it over iterations.

The algorithms presented in Chapters 5-7 and 9 give direct solutions for specific types

of problems. Such algorithms give a strictly optimal solution to Problem 7, but often have

slower convergence. Therefore, IRA is suitable for real-time execution or receding horizon

control, where computation time is more critical than optimality.

4.2.1 Race Car Example

The IRA algorithm starts from an arbitrary feasible risk allocation, such as the one in

Figure 4-1-(a), and improves the risk allocation through iterations until the path coincides

the boundary of the safety margin as in Figure 4-1-(b). We first offer readers the intuition

behind the algorithm using the race car example, as shown in Figure 4-4.

First, IRA sets the safety margins according to the current risk allocation. (Recall that

the width of the margin for each constraint is given by F,- (oc,).) A deterministic solver is

used to obtain the optimal nominal path that does not violate the safety margin, as shown

in Figure 4-4-(a). Observe that the boundary of the safety margin touches the nominal path

only at the corner. In other words, the constraint at the corner is active while all other

constraints are inactive. (Precisely speaking, the constraint is active at the time step when

the vehicle passes at the corner, and it is inactive at all other time steps.) This means that

risk is redundant at the inactive constraints, while the path may be improved by allocating

more risk for the active constraint.

(a) (b) (c)
Constraint is active Inactive Active

Goal Goal

Optimal nominal path
given the safety margin Inactive

Start Start rt
constraint is inactive

Figure 4-4: Intuitive explanation of the iterative risk allocation (IRA) algorithm. Risk is
reallocated from inactive constraints to active constraints at each iteration.

To improve cost, IRA removes the risk from the inactive constraints, and reallocates it

to the active constraint. Note that reducing risk allocation results in a wider safety margin,

while increasing risk allocation results in the opposite. Thus, the new risk allocation results

in the safety margin shown in Figure 4-4-(b). The algorithm then calls the deterministic

solver again to obtain the optimal feasible path that does not violate the new safety margin,

as shown in Figure 4-4-(c). Note that the new nominal path is shorter than the previous

path. With the updated path and the safety margin, three constraints are active. In the

next iteration, the algorithm reallocates the risk again from the inactive constraints to the

three active constraints. It repeats this process until all constraints become active. It also

terminates if all constraints are inactive. Note that the path length monotonically decreases

through the iterations.

4.2.2 Algorithm

Algorithm 1 presents the IRA algorithm. It is essentially a descent algorithm that updates

the risk allocation, 6 := 61,1, 612, - -* oc cIl , through iterations. The algorithm requires

solving an inner-loop optimization problem, denoted by P 8 (jk). The formulation of P8(6 k)

is given in Problem 8.

In Line 1, the algorithm is initialized with a known feasible risk allocation 61 provided

by Assumption 4-3. At each iteration, the following Problem 8 is solved with a fixed risk

Algorithm 1 Iterative Risk Allocation (IRA)

1: Set feasible risk allocation 6' so that Vcec r c=

2: p 0 +- 00

3: k <- 1

4: repeat
5: uk +- optimal solution of p 8 (6 k)
6: pk < P(uk)
7: for all c E C do
8: Nc +- number of active constraints in the cth chance constraint
9: if 0 < Nc < Ic then

10: 6 residual - 0
11: for all i such that the constraint with index (c, i) is inactive do
12: 61kfl +- aoci + (1 - a) {1 - Fc,i(-gc,i(Uk)

13: 6 residual +~ 6 residual + (ci ~ kc

14: end for
15: for all i such that the constraint with index (c, i) is active do
16: k1 c,i + 6residual/Nc

17: end for
18: end if
19: end for
20: k <- k + 1
21: until |pk - pk-1l < E or Vccc Nc = 0 or Vcec Nc =|c|

allocation 6 k (Line 5).

Problem 8: P8 (6) - Inner-loop optimization

min p(u)
uEU

s.t. A A qc,(u) < -F-(1 - 6c,i)
cEC iETc

Problem 8 is essentially the same as Problem 5 since F-,-(1 - oc,i) is a constant with

a fixed 6c,i. The constant right hand side can be incorporated in qc,i(u) without increasing

the complexity of the optimization problem. Since we assume that there is a deterministic

solver that can optimally solve Problem 5, Problem 8 can also be solved optimally by the

same solver.

The optimal objective function value is stored in pk in Line 6. Then, the algorithm

reallocates risk from inactive constraints to active constraints in Lines 7-19. A constraint

with index (c, i) is considered as active if the following condition holds for a small constant

(u) + F-- 1(1 - 6c,i)| < .

The algorithm first reduces the risk allocation to the inactive constraints. Note that

the current risk allocation to the constraint (4.10) with the index (c, i) is 6 k, while the

actual probability that uk violates the constraint is 1 - Fe,i(-qc,i(uk)), which represents the

amount of risk actually needed. In Line 12, the algorithm chooses the new risk allocation
k-1 so that

1 - Fci-c~~) < 6kt1 <6k

with an interpolation coefficient 0 < a < 1. In Line 13, the algorithm deposits the amount

of risk removed from the inactive constraints in 6residual. Then algorithm reallocates the

amount of risk saved in 'residual to the active constraints. It splits the deposit of risk equally

to the Nc active constraints in Line 16. By going through one iteration, the risk allocation

is updated from 6k to ok+1
Since the IRA algorithm improves risk allocation by reallocating risk from inactive

constraints to active constraints, it cannot work if all the constraints are active, or all the

constraints are inactive. The algorithm is terminated at Line 21 in such cases. If all the

constraints are inactive, the solution is in fact an optimal solution. Having all constraints

active is a necessary condition for optimality, although not sufficient.

4.2.3 Recursive Feasibility and Monotonicity

The algorithm has two issues to be addressed. First, it is not obvious that P8 (6 k) has a

feasible solution for all iterations. Second, we need a guarantee that this iterative process

improves the risk allocation. The next lemma is the key to address these two issues.

Lemma 3. If p 8 (6 k) is feasible, then p 8 (6k+1) is also feasible.

Intuitively, we prove the lemma by showing that the nominal path in Figure 4-4-(a) does

not violate the updated safety margin in Figure 4-4-(b).

Proof: Let u* be a feasible solution for p 8 (6k). We prove that u* is also a feasible

solution to P(6k+1)

Let lA be the set of index (c, i) where the constraint (4.14) is active in P8 (6 k), and 1,

be a set of index (c, i) where the constraint is inactive in p 8 (6 k)

As for (c, i) E 1A, Line 16 guarantees that 6 k11 > 6k . Hence, u* satisfies the constraint

(4.14) of p8(6 k+1) as well because

gei(uk) < -F,- 1 (1 - 6k) -F- 1 (1 - o).

Note that the inverse cumulative distribution function F- 1 is a monotonically increasing

function.

As for (c, i) E 1j, since u* satisfies the constraint (4.14) in P8 (ki),

qc,i(u) -F- 1(1 - 6) <--> 1 - Fc,(-cF(uk)).

Since o ±, is an interpolation of 5 and 1 - Fc,(,

6 k±1 > 1 _F~

<==> F- (Fe i (e,i(Uk))F-(-)< F,(qc,j(u k)) 1 - 6 k±)

SFc-j1 (F§Q(- c~k~

k_ < _-J1(1 _-kt

hence the u* satisfies the constraint (4.14) of ps(6 k+1) as well.

Therefore, u* satisfies all constraints, and hence is a feasible solution to P8 (k+1) .

It immediately follows from the lemma that p 8 (6 k) has a feasible solution for all itera-

tions, since we assume that the initial risk allocation 61 is known to be feasible (Assumption

4-3). The following theorem, which guarantees that the risk allocation is improved by each

iteration of the IRA algorithm, is also derived from Lemma 3.

Theorem 1. pk < pk-1 for all k > 1

Proof: Let uk and uk+1 be optimal solutions to P8 (6 k) and p 8 (6 k+1), respectively.

Lemma 3 guarantees that uk is a feasible solution to P 8 (6k+1). Since uk+1 is an optimal

solution to the same problem, its objective function value with uk+1 is less than or equal to

the objective function value with uk. Hence,

p k+1 _ Ppkk+ k) _ k

In sum, given a feasible initial risk allocation, the IRA algorithm generates a sequence

of risk allocations that monotonically decreases the objective function value. In other

words, IRA is an anytime algorithm.

4.3 Conclusion

We presented the risk allocation approach, which enables an efficient solution of general

joint chance-constrained optimization problems. The key idea was to distribute risk among

individual constraints in order to obtain a tractable deterministic approximation of the orig-

inal problem. All planners and executives presented in this thesis are built upon the risk

allocation approach. We also developed the IRA algorithm, a general algorithm that opti-

mizes risk allocation. IRA can be implemented on top of any existing deterministic solvers

and turns them into a joint chance-constrained programming solvers. IRA is a key building

component of the p-Sulu and dp-Sulu plan executives, presented in Chapters 8 and 10. The

simulation results of IRA are presented in Sections 11.1.5 and 11.3.1.

In the next chapter, we deploy the risk allocation approach on a CCQSP planning prob-

lem with fixed schedule and convex state constraints.

Chapter 5

CCQSP Planning with a Convex State

Space and a Fixed Schedule

This chapter presents the convex risk allocation (CRA) algorithm, which solves the CC-

QSP planning problem with a convex state space and a fixed schedule (Problem 4). When

there are no obstacles in the environment and the execution time steps to achieve tem-

porally extended goals are fixed, the CCQSP planning problem is reduced to a convex

chance-constrained finite-horizon optimal control problem. The application of the risk al-

location approach to such a convex chance-constrained finite-horizon optimal control prob-

lem results in a deterministic convex optimization problem. The CRA algorithm solves the

convex optimization problem using a off-the-shelf solver, such as SNOPT. The advantage

of this algorithm compared to the IRA algorithm is that it has a theoretical guarantee of

optimality.

5.1 Convex Deterministic Approximation of Problem 4

The CRA algorithm decomposes the joint chance-constraint (3.15) by using the risk al-

location approach introduced in Section 4.1.2. The following result immediately follows

from Lemma 1 by substituting a linear constraint h T xti - gc, < 0 for C for each chance

constraint c.

Corollary 2. The following set of constraints is a sufficient condition of the joint chance

constraint (3.15) in Problem 4:

, A{A Pr [hxt, - gc,i < 0] > -6 c,j A 6,2 'Ac (5.1)
cec iErc(s)isc)

Recall that the newly added variable 0 < 6c, 1 represents the risk allocated to the

state constraint specified by the index (c, i). Also recall that the vector of risk allocations is

denoted by 6:

6 := [61,1, 61,2, 6 Il1c (s)l

The set of constraints (5.1) is a sufficient condition for the original chance constraint (3.15).

Therefore, any solution that satisfies (5.1) is guaranteed to satisfy (3.15).

5.1.1 Conversion to Deterministic Constraints

The CRA algorithm applies Lemma 2 to convert the individual chance constraints in (5.1) to

deterministic constraints. Since Problem 4 assumes linear state constraints and Gaussian-

distributed uncertainty, the specific form of the deterministic approximation can be ob-

tained.

The application of Lemma 2 to the the individual chance constraints in (5.1) immedi-

ately results in the following Corollary:

Corollary 3.

Pr [h Tjxti - gc,i < 0] > 1 - ci h T - (5.2)

where

me,-(ci) = Fc-(1 - oc,i) = - 2h T erf- 1 (26c,i - 1). (5.3)

Note that erf-1 is the inverse of the Gauss error function and E2,t, is the covariance

matrix of xt,. Intuitively, mej(oc,j) represents the width of the safety margin in the Race

Car Example in Figure 4-1.

5.2 Convex Programming Solution to Problem 4

Using Corollaries 2 and 3, the CRA algorithm replaces the stochastic optimization problem,

Problem 4, with the deterministic convex optimization problem as follows:

Problem 9: Deterministic Approximation of Problem 4

min J'(Ul:N, 51:N) (5.4)
U1:N GUN ,6_

SAt. Vt E T- ,tt+1 = Attt + Btut (5.5)

S5 -, - i) /\ S c, < Ac (5.6)
CEC {icc(s) iEIc(s)

It follows immediately from Corollaries 2 and 3 that an optimal solution to Problem 9 is

always a feasible solution to Problem 4. Furthermore, [19] showed that an optimal solution

to Problem 9 is a near-optimal solution to Problem 4. The following lemma guarantees the

tractability of Problem 9.

Lemma 4. Problem 9 is a convex optimization problem.

Proof: The inverse error function erf-1 (x) is concave for x. Since we assume in

Section 2.4.3 that A < 0.5, the feasible range of 6 is upperbounded by 0.5 (6c,i < 0.5).

Since the safety margin function me,i) is convex for 0 < oc,i < 0.5 as shown in Figure

5-1, the constraints (5.6) are convex within the feasible region. All other constraints are

also convex since they are linear. The objective function is convex by assumption (Section

2.4.4). Therefore, Problem 9 is a convex optimization problem. U

Also note that me,i (.) is a nonlinear constraint. Therefore, Problem 9 is a nonlinear

convex optimization problem. It does not belong to more specific form than the convex op-

timization, such as the semidefinite programming or the second-order cone programming.

Hence, the CRA algorithm solves Problem 9 using a general convex programming solver,

such as SNOPT.

4

3-

2-

0-
E

-1-

-2-

-3-

-4
0 0.2 0.4 0.6 0.8 1

5 .
C,1

Figure 5-1: The plot of the safety margin function mej(,,). It is a convex function for
0 < c, < 0.5.

5.3 Conclusion

We obtained the CRA algorithm by deploying the risk allocation approach on the fixed-

schedule CCQSP planning problem with convex state constraints. We proved that the re-

sulting deterministic approximation of the problem is also a convex optimization problem.

In the next chapter we extend CRA to non-convex state constraints. The CRA algorithm is

empirically validated in Section 11.1.6.

Chapter 6

CCQSP Planning with a Non-convex

State Space

Next, we consider the second spiral, comprised of Problem 3 in Section 3.2, a variant of the

CCQSP planning problem involving a fixed schedule and non-convex constraints, such as

obstacles, as shown in Figure 1-6-(b). Once again, this is encoded as a chance-constrained

optimization problem, but the addition of the obstacle avoidance constraints requires dis-

junctive state constraints. Hence, the problem results in a non-convex, chance-constrained

optimization. This chapter introduces a novel algorithm, called Non-convex Iterative Risk

Allocation (NIRA), that optimally solves a deterministic approximation of Problem 3. We

also present an extension of NIRA, called NIRA+BoostLP, which significantly reduces

computation time without making any compromise in the optimality of the solution by

incorporating with a regression-based LP solver, called BoostLP [10].

The solution to a CCQSP planning problem with a non-convex state space is two-fold.

In the first step, we obtain a deterministic approximation of Problem 3. Recall that a con-

vex, fixed-schedule CCQSP planning problem (Problem 4 in Section 3.3) is mapped to a

deterministic convex programming problem (Problem 9 in Section 5.2) through risk alloca-

tion. Likewise, we map a non-convex, fixed-schedule CCQSP planning problem (Problem

3 in Section 3.2) to a deterministic disjunctive convex programming problem (Problem 10

in Section 6.1.3). The challenge is that the risk allocation approach presented in Section 4.1

cannot decompose the chance constraints (3.11), because it involves a disjunction of con-

straints. In order to handle such disjunctive chance constraints, we incorporate an additional

decomposition approach called risk selection, which reformulates each chance constraint

over a disjunction of constraints into a disjunction of individual chance constraints. Once

the chance constraints in (3.11) are decomposed into a set of individual chance constraints

through risk allocation and risk selection, the same technique as in Section 4.1.3 is used

to obtain equivalent deterministic constraints. As a result, we obtain a disjunctive convex

program problem (Problem 10 in Section 6.1.3) that approximates the CCQSP planning

problem with obstacles and a fixed schedule (Problem 3). An optimal solution to Problem

10 is guaranteed to be a feasible solution to the original problem with regarding to sat-

isfying the chance constraints (Problem 3). Furthermore, we empirically demonstrate in

Section 11 that it is a near-optimal solution to Problem 3 in our applications.

In the second step, we solve the deterministic disjunctive convex programming problem

through a branch-and-bound algorithm, which requires computing bounds on its convex

subproblems. The subproblems correspond to the convex, fixed schedule CCQSP planning

problem (Problem 4), which was solved in the previous section. However, the computation

time of the naive branch-and-bound approach is not sufficiently fast for our applications,

such as robust path planning with obstacles. We introduces the NIRA algorithm (Algo-

rithm 2) that significantly reduces the computation time without making any compromise

in the optimality of the solution. The reduction in computation time is enabled by our new

bounding approach, Fixed Risk Relaxation (FRR). FRR is a linear relaxation of nonlinear

constraints in the subproblems of the branch-and-bound algorithm with linear constraints.

In many cases, FRR of the nonlinear subproblems is formulated as a linear program (LP) or

approximated by an LP. NIRA obtains a strictly optimal solution of Problem 10 by solving

the subproblems exactly without FRR at unpruned leaf nodes of the search tree.

We also present the NIRA+BoostLP algorithm, which achieves additional speed-up. It

solves FRRs approximately by using a regression-based LP solver called BoostLP [10].

Again, NIRA+BoostLP obtains a strictly optimal solution of Problem 10 by solving the

subproblems exactly without FRR and BoostLP at unpruned leaf nodes of the search tree,

while other subproblems are solved approximately with FRR and BoostLP in order to re-

duce the computation time.

6.1 Deterministic Approximation

6.1.1 Risk Selection Approach

As in Section 5, we first obtain a deterministic approximation of Problem 3 by decomposing

the non-convex joint chance constraint (3.11) into a set of individual chance constraints,

through risk allocation and risk selection. We revisit the race car example to explain the

concept of risk selection intuitively.

0.1% risk bound for (a)

Start O' Goa

0.1% risk bound for (b)

Figure 6-1: In the racing car example, the risk selection approach guarantees the 0.1% risk
bound for both paths, and lets the vehicle choose the better one.

Racing Car Example We consider the example shown in Figure 6-1, where a vehicle

with uncertain dynamics plans a path that minimizes the time to reach the goal. The vehicle

is allowed to choose one of the two routes shown in Figure 6-1. We impose a chance

constraint that limits the probability of crashing into a wall during the mission to 0.1%.

The satisfaction of the chance constraint can be guaranteed by the following process.

First, for each of the routes, we find a safety margin that limits the probability of crash

throughout the route to 0.1% from the start to the goal. Then, we let the vehicle plan

a nominal path that operates within the safety margins. Since both routes have a 0.1%

safety margin, the chance constraint is satisfied no matter which route the vehicle chooses.

Therefore, the vehicle can optimize the path by choosing the route that results in a smaller

cost.

The optimization process can be considered as a selection of risk; the vehicle is given

two options as in Figure 6-1, routes (a) and (b), both of which involve the same level of risk;

then the vehicle selects the one that results in less cost. Hence, we name this decomposition

approach as the risk selection.

6.1.2 Decomposition of Conjunctive Joint Chance Constraint through

Risk Selection

In this subsection, we derive the mathematical representation of risk selection by reformu-

lating each chance constraint over a disjunction of constraints into a disjunction of indi-

vidual chance constraints. Let C be a proposition that is either true or false. Then the

following lemma holds:

Lemma 5.

N ~
Pr \/ C' > I - A

_i=1 -

N

V Pr [Ci] 1 - A
i=1

Proof: The following inequality always holds:

V N ~
Vi Pr \/ Ci ;> Pr [Ci] .

_i=1

Hence,

N ~
Pr \/ C, > 1 - A <- EI Pr [CQ > 1 - A <>

_i=1 -

N

V Pr [Ci] > 1 - A.
i=1

The following corollary follows immediately from Lemmas 1 and 5.

Corollary 4. The following set of constraints is a sufficient condition of the disjunctive

joint chance constraint (3.11) in Problem 3:

16o > 0 A A \ Pr [h Xti- gc,i,j < 0] >1 -_c,i A oc, < A, (6.3)
cEc ic(s) jJci i1

(6.1)

(6.2)

Note that the resulting set of constraints (6.3) is a sufficient condition for the original

chance constraint (3.11). Therefore, any solution that satisfies (6.3) is guaranteed to satisfy

(3.11).

Furthermore, although (6.3) is a conservative approximation of (3.11), the conservatism

introduced by risk selection is generally small in many practical applications. This claim is

empirically validated in Section 11.

6.1.3 Deterministic Approximation of Problem 4

The individual chance constraints in (6.3) can be transformed into equivalent determinis-

tic convex nonlinear constraints by applying Lemma 2 in Section 4.1.3. As a result, the

non-convex fixed-schedule CCQSP planning problem (Problem 3) is approximated by the

following deterministic convex optimization problem. For later convenience, we label each

part of the optimization problem as 0 (objective function), Al (plant model), C (chance

constraints), and R (risk allocation constraint).

Problem 10: Deterministic Approximation of Problem 3

min (0:) J'(U1:N,51:N) (6.4)
U 1 :N EUN,6c,i>O

s.t. (M:) Vt E U~, Xt+1 = Atxt + Btut (6.5)

(C:) A A \/ hiti - gc,i,< (c,4) (6.6)
cEC iEIc(s) jEJc,i

N

(R :) AZ de < Ac, (6.7)
ccC i=1

It follows immediately from Corollary 1, Corollary 4, and Lemma 2 that a feasible

solution to Problem 10 is always a feasible solution to Problem 4.

6.2 NIRA: Branch and Bound-Based Solution to Problem

10

We next present the Non-convex Iterative Risk Allocation (NIRA) algorithm. Recall that

NIRA optimally solves Problem 10 by a branch and bound algorithm. The standard branch-

and-bound solution to Problem 10 uses a bounding approach, whereby the nonlinear con-

vex relaxed subproblems are constructed by removing all non-convex constraints below the

corresponding disjunction. This approach was used by [9] and [65] for a different prob-

lem known as disjunctive linear program, whose subproblems are LPs instead of convex

programs. However, although the standard branch-and-bound algorithm is guaranteed to

find a globally optimal solution to Problem 10, its computation time is slow because the

algorithm needs to solve numerous nonlinear subproblems.

Our new bounding approach, Fixed Risk Relaxation (FRR), addresses this issue by

computing lower bounds more efficiently. The use of FRR results in significant reduction

of the computation time of the branch-and-bound algorithm without any loss in optimal-

ity. We observe that the relaxed subproblems are nonlinear convex optimization problems.

FRR relaxes the nonlinear constraints to linear constraints. Particularly, when the objective

function is linear, an FRR of a subproblem is an LP, which can be very efficiently solved.

The optimal objective value of an FRR of a subproblem is a lower bound of the optimal

objective value of the original subproblem.

NIRA solves the FRRs of the subproblems in order to efficiently obtain the lower

bounds, while solving the original subproblems exactly without relaxation at unpruned leaf

nodes, in order to obtain an exact optimal solution. As a result, NIRA achieves a significant

speed-up without any compromise in optimality.

6.2.1 The NIRA Algorithm Overview

Algorithm 2 shows the pseudocode of the NIRA algorithm. The input to the algorithm is the

deterministic approximation of a non-convex chance-constrained optimal control problem

(Problem 10), which is a four-tuple (0, M, C, R), as well as a fixed schedule s. Its output

Algorithm 2 Non-convex Iterative Risk Allocation (NIRA) algorithm

function NIRA(problem) returns optimal solution

1: Set up queue as a FILO queue
2: Incumbent <- oc
3: e <- BoostLP error bound

4: rootSubproblem <- obtainRootSubproblem(problem)

5: queue <- rootSubproblem

6: while queue is not empty do
7: subproblem <- queue.removeLastEntryo

8: lb <- obtainLowerBound(subproblem)

9: if lb < Incumbent + E then
10: if subproblem is a leaf node then
11: (J, U) <- Solve(subproblem)

12: if J* < Incumbent then
13: Incumbent <- J; U* <- U //Update the optimal solution

14: end if
15: else

16: for j C J,i do
17: queue.add(Expand(subproblem,problem))
18: end for
19: end if
20: end if
21: end while
22: return U*

is an optimal control sequence U*.

Overall, Algorithm 2 is a standard branch-and-bound algorithm. Our main contribu-

tions are the new branching and bounding methods, presented in following sections. Each

node of the branch-and-bound search tree corresponds to a subproblem that is a convex

chance-constrained optimization problem (Problem 11 in Section 6.3.3). We use a FILO

queue to store subproblems so that the search is conducted in a depth-first manner (Line 1).

At each node, the corresponding subproblem is solved to obtain a lower bound of the objec-

tive value of all subsequent subproblems (Line 8). The details of the bounding approaches

are explained in Subsection 6.4. If the lower bound is larger than the incumbent by the

tolerance c, the algorithm prunes the branch. Otherwise, the branch is expanded (Line 17).

If a branch is expanded to the leaf without being pruned, subproblems are solved exactly

(Line 11). Subsection 6.3 explains our expansion procedure in detail.

NIRA exploit the structure of the branch-and-bound algorithm so that an exact optimal

100

solution to Problem 10 is obtained with significantly less computation time. Specifically, at

non-leaf nodes, it solves FRRs of the subproblems to obtain lower bounds efficiently, while

solving the subproblems without relaxations at leaf nodes in order to ensure that the final

solution of the branch-and-bound algorithm is exact.

The parameter c (Lines 3 and 9) is set to zero in NIRA. In NIRA+BoostLP, which is

presented in Section 6.5, c is set to a positive value in order to accommodate the estimation

error of BoostLP.

6.3 Branching

This subsection explains how NIRA constructs the root subproblem (Line 3 of Algorithm

2), as well as how it expands nodes (Line 17 of Algorithm 2). The root subproblem is

a convex CCQSP planning problem without any chance constraints. When a node is ex-

panded, the subproblems of its children nodes are constructed by adding one constraint in

a disjunction to the subproblem of the parent node. In order to simplify notations, we let

Cc,i,j represent each individual chance constraint (6.6) in Problem 10:

T T cij~t
C =i' True (if hC'ij -Mo - c45e m,,(6c,2))

False (otherwise).

6.3.1 Walk-through Example

We first present a walk-through example to intuitively explain the branching procedure. The

example is an instance of Problem 10, which involves four individual chance constraints:

A h6 i ztt - gVi i'j < -mi,, (61i,) (6.8)
iE{1,21 jC{1,2}

Using this notation defined above, the set of individual chance constraints (6.6) is repre-

sented as follows:

(C1,1,1 V C1,1,2) A (C1 ,2,1 V C1,2,2) (6.9)

101

Figure 6-2-(a) shows a tree obtained by dividing the original problem into subproblems

sequentially. The subproblems corresponding to the tree's four leaf nodes (Nodes 4-7 in

Figure 6-2-(a)) exhaust all conjunctive (i.e., convex) combinations among the chance con-

straints (6.9). On the other hand, the subproblems corresponding to the three branch nodes

(Nodes 1-3 in Figure 6-2-(a)) involve disjunctive (i.e., nonconvex) clauses of chance con-

straints. We relax such non-convex subproblems to convex subproblems by removing all

clauses that contain disjunctions in order to obtain the search tree shown in Figure 6-2-(b).

19
(a) (c 11 V C,1 2) A (C, 2 1 V C122) Nonconvex (b)

problem (Problem 10) with ~ ~~~constraints68.()Teofn-cvxsupbemb)re

2 ,3 2

of~~~one reaxd covxsbrbes

whch are soved inCca v Hecetenncnexpolm(rbem1)cnb)p

presented in Chapter 5. The followingsubsecaxtionsinrdcthalotmshtcntut

6.3.2 ~ ~ ~ C11. Costucio o oo Sbpob

4 6 4 5
6~ 77

Tc fuctio p inc c2Algrih 3 is C uc in2 ineA3 Cof the NIA algoith (Algorith

Figure 6-2: Branch-and-bound search tree for a sample disjunctive convex programming
problem (Problem 10) with constraints (6.8). (a) Tree of non-convex subproblems, (b) Tree
of relaxed, convex subproblems.

Nothe sat allete subproblems in Figure 6-2-(b) are convex programming problems,

which are solved in Chapter 5. Hence, the non-convex problem (Problem 10) can be op-

timally solved by repeatedly solving the convex subproblems using the CRA algorithm

presented in Chapter 5. The following subsections introduce the algorithms that construct

a search tree with convex subproblems, such as the one in Figure 6-2-(b).

6.3.2 Construction of Root Subproblem

The function presented in Algorithm 3 is used in Line 3 of the NIRA algorithm (Algorithm

2) to construct the root subproblem of the branch-and-bound tree. The root subproblem

has the same objective function O and plant model M as the input non-convex chance-

constrained optimization problem (Problem 10), but has no chance constraints. The result-

ing root subproblem is as follows:

102

Algorithm 3 Construction of the root subproblem of NIRA
function obtainRootSubproblem(problem) returns root subprob-
lem

1: rootSubproblem.0 <- problem.0

2: rootSubproblem.M <- problem.M
3: rootSubproblem.C +- #
4: for c E |CI do
5: rootSubproblem.Re.lhs <- 0
6: rootSubproblem.Re.rhs <- problem.Re.rhs
7: rootSubproblem.c -- 1, root Subproblem.i <- 1
8: end for
9: return rootSubproblem

min (0:) J'(Ul:N, X1:N)

Ul:N EUN,3c,i>O

s.t. (M:) Vt G T-, t+1 At2 + Btut

(R :) 0 <; Ac

6.3.3 Expansion of subproblems

In order to create a child subproblem of a subproblem, the function described in Algorithm

4 is used in Line 17 of the NIRA algorithm (Algorithm 2). It increments the indices (c, i)

(Lines 1-4), and adds the individual chance constraint specified by the indices (c, i, j) as a

conjunct (Lines 5-6). Note that the resulting child subproblem is still a convex optimiza-

tion because the individual chance constraint is added conjunctively. The NIRA algorithm

(Algorithm 2) enumerates children nodes for all disjuncts in J, (Lines 16-18).

The formulation of the convex relaxed subproblems is given in Problem 11. We denote

the index J as j(c, i) since the convex relaxation chooses only one disjunct for each dis-

junction specified by (c, i). We denote by J*p the optimal objective value of the relaxed

subproblem for later convenience.

Problem 11: Convex Relaxed Subproblem of NIRA

103

Algorithm 4 Expansion of a subproblem of NIRA

function Expand(subproblem, problem, j)
lem

1: c <- subproblem.c; i <- subproblem.i + 1

2: if i > Ic(s)| then
3: C 4-- C + 1

4: end if
5: subproblem.C +- subproblem.C A problem.(

6: subproblem. Re.lhs <- subproblem. Re.l hs +
7: subproblem.c +- c; subproblem.i <- i
8: return subproblem

Jsp min
U1:NGUN,c,i'>O

s.t.

(0:)

(M:)

(C :)

returns a child subprob-

,C,2~

J '(1:N, 51:N)

Vt E T7 , t+1 = Att + Btut

A A hC'ijc(Citje - gc,i,j(c,i) ; -mC,1,11 C,)(6 c,2)
cEC iElc(s)

(6.10)

(6.11)(R:) A Z c,i <; Ac.
cEC icl'(s)

Note that Problem 11 is identical to Problem 9. Hence, the algorithms introduced in

Section 5 can be used to solve the relaxed subproblems.

6.4 Bounding

In this subsection, we present two implementations of the obtainLowerBound function in

Line 8 of Algorithm 2. The first one uses the optimal solution of the convex subproblems

(Problem 11) as lower bounds.

This approach typically results in extensive computation time. The second one solves

an LP relaxation of the convex subproblems, called fixed risk relaxation (FRR). FRR dra-

matically reduces the computation time compared to the first implementation. The NIRA

algorithm employs the second implementation.

104

Algorithm 5 A simple implementation of the obtainLowerBound function in Line 8 of
Algorithm 2
function obtainLowerBound-Naive(subproblem) returns a lower
bound

1: Solve subproblem using algorithms presented in Section 5.2
2: return the optimal objective value

6.4.1 Simple Bounding

Algorithm 5 shows the most straight-forward way to obtain lower bounds. It simply solves

the convex relaxed subproblems (Problem 11) using the methods presented in Section 5.2.

The optimal objective value of a relaxed subproblem gives a lower bound of the optimal

objective value of all the subproblems below it. For example, the optimal solution of the

relaxed subproblem at Node 2' in Figure 6-2-(b) gives a lower bound of the objective value

of the subproblems at Nodes 4 and 5. This is because the constraints of the relaxed sub-

problems are always a subset of the constraints of the subproblems below. Note that opti-

mization problems are formulated as minimizations.

However, despite the simplicity of this approach, its computation time is slow because

the algorithm needs to solve a myriad of subproblems. For example, a simple path plan-

ning problem with ten time steps and one rectangular obstacle requires the solution of

410 = 1, 048, 576 in the worst case, although the branch-and-bound process often sig-

nificantly reduces the number of subproblems to be solved. Moreover, the subproblems

(Problem 11) are nonlinear convex optimization problems, because the constraints (6.10)

are nonlinear due to the nonlinearity of the inverse of a Gaussian cumulative distribution

function me,i,j (6c,5). A general nonlinear optimization problem requires significantly more

solving time than more specific classes of optimization problems, such as linear program-

mings (LPs) and quadratic programmings (QPs).

6.4.2 Fixed Risk Relaxation

Our new relaxation approach, fixed risk relaxation (FRR), addresses this issue. FRR lin-

earizes the nonlinear constraint (6.10) of the branch-and-bound subproblems (Problem 11)

by fixing all the individual risk allocations oc,i to its upper bound A. When the objective

105

function is linear, an FRR is an LP. An FRR with a convex piecewise linear objective func-

tion can also be reformulated as an LP by introducing slack variables (see Section 11.1.4

for an example). A general convex objective function can be approximated by a convex

piecewise linear function. Hence, in many cases, the FRRs of subproblems result in LPs,

which can be solved very efficiently.

The fixed risk relaxation of a convex relaxed subproblem (Problem 11) is as follows:

Problem 12: Fixed Risk Relaxation of Problem 11

JRR = min J(Ul:N, X1:N)Ul:NEUN,3c '>O

s.t. Vt E TU-, xt+1 = Attt + Btut

A A hCjist - gc,% -mc,i(Ac) (6.12)
cEC iElc (s)

Note that the nonlinear constraint (6.10) is turned into a linear constraint (6.12) since

the nonlinear term m', becomes constant by fixing 6c,i to Ac, which is a constant.

The optimal objective value of the FRR of a subproblem provides a tightest lower bound

in the branch-and-bound search among the linear relaxations of constraints (6.10). The

following lemmas hold:

Lemma 6. Problem 12 gives a lower bound to the optimal objective value of Problem 11:

J*RR _ JSP

Proof: mei, (.) is a monotonically decreasing function. Since 6 c,i < Ac, all individual

chance constraints (6.12) of the Fixed Risk Relaxation are less stricter than the first conjunct

of (6.10). Therefore, the cost of the optimal solution of the Fixed Risk Relaxation is less

than or equal to the original subproblem. U

Lemma 7. FRR gives the tightest lower bound among the linear relaxations of constraints

(6.10).

106

Algorithm 6 An FRR implementation of the obtainLowerBound function in Line 8 of
Algorithm 2
function obtainLowreBound-FRR(subproblem) returns lower
bound

1: for V(c, i, j) in subproblem.C do
2: subproblem.Cc,ij.rhs <- -me,ij(Ac) /Apply fixed risk relaxation
3: end for
4: Remove subproblem.R
5: Solve subproblem using an LP solver
6: return the optimal objective value

Proof: The linear relaxation of (6.10) becomes tighter by fixing , to a less value.

However, setting ,,i to the value less than Ac make the constraint tighter than the original

constraint since there can be a solution that sets 6c,i = Ac for some (c, i). Hence, FRR is

the tightest linear relaxation of (6.10), resulting in the tightest lower bound. U

Note that the optimal solution of Fixed Risk Relaxation (Problem 12) is an infeasible

solution to Problem 11 in general, since setting ,i = Ac violates the constraint (6.11). In

a special case where I-c(s) = 1, the Fixed Risk Relaxation is equivalent to the original

problem.

Algorithm 6 implements the fixed risk relaxation. It constructs an LP relaxation by

substituting a constant Ac for a variable oc,i, and thus replacing the nonlinear right-hand

side of (6.10) with a constant value -me,ij(Ac). The LP relaxation is solved by an LP

solver, and its optimal objective value is returned. We use e = 0 in Line 9 of Algorithm 2.

6.5 NIRA+BoostLP Algorithm

When the objective function J'(Ul:N, t1:N) is linear, additional reduction in computation

time can be achieved by the NIRA+BoostLP algorithm, an extension of NIRA. NIRA+BoostLP

incorporates the regression-based approximate LP solver, BoostLP, developed by [10]. We

observe that the NIRA algorithm (Algorithm 2) repeatedly solves FRRs, and the repeated

solution to the FRRs dominates the computation time. We also observe that FRR problems

in a particular branch-and-bound tree often share multiple common constraints and always

contain the same objective function and number of decision variables.

107

Algorithm 7 An implementation of the obtainLowerBound function in Line 8 of Algorithm
2 with FRR and BoostLP
function obtainLowreBound-FRR-BoostLP(subproblem) returns approximate lower
bound

1: for V(c, i, j) in subproblem.C do
2: subproblem. Cc,i,jrhs <- -mc,i,j(Ac) //Apply fixed risk relaxation
3: end for
4: Remove subproblem.R
5: Solve subproblem approximately using Boost LP
6: return the estimated optimal objective value

These observations justifies the use of a regression-based approximate LP solver called

BoostLP [10]. BoostLP takes an LP problem as an input, and outputs an approximate

solution with a known error bound on the objective value. In order to construct a regression

model, BoostLP uses a set of similar LP problems and their solutions as learning data. The

concept of "similarity" between LP problems is defined in [10].

The NIRA+BoostLP algorithm is obtained through two modifications on NIRA. Firstly,

the obtainLowerBound function in Line 8 of Algorithm 2 is replaced by the obtainLowreBound-

FRR-BoostLP function shown in Algorithm 7. Lines 1-4 of Algorithm 7, which are iden-

tical to Algorithm 6, construct an FRR of the input subproblem. Line 5 solves the FRR

approximately using the BoostLP algorithm. The estimated object value obtained from the

BoostLP is returned.

The second modification is on E in Line 9 of Algorithm 2, which is set to zero in NIRA.

NIRA-Boost LP sets this parameter to the worst-case error bound of BoostLP (Line 3 of

Algorithm 2). BoostLP provides a fixed worst-case error bound for a given system of

similar LP problems. The error bound is constant for a given training data set and regression

model and is applicable for any test FRR that belongs to the same space of similar LP

problems. In other words, there exists a positive finite real number E such that:

JFRR - JFRR < C1

where JFRR is the estimated optimal cost of the FRR. The existence of a hard error bound

allows the branch-and-bound algorithm to solve the problem optimally, since there is no

danger of pruning the branch that includes the optimal solution. Hence, NIRA-BoostLP use

108

JFRR + c as the lower bound in the branch-and-bound optimization (Line 9 of Algorithm

2).

Although FRRs are solved approximately by BoostLP, the subproblems at unpruned

leaf nodes of the search tree are solved exactly without FRR and BoostLP. Hence, the

solution of NIRA+BoostLP is a strictly optimal solution to Problem 10. Empirical Results

presented in Section 11.1.8 shows that the computation time of NIRA-BoostLP is less than

NIRA by 10-25 times.

A limitation of NIRA+BoostLP is that it can only solve problems with the same num-

ber of non-convex constraints as the problems used for learning. As a result, problems

with different numbers of obstacles or with different number of edges in each obstacle

cannot be solved by the same regression model. This is because BoostLP can only solve

problems with the same number of decision variables as the learning problems. Since non-

convex constraints are convexified by introducing slack variables, different numbers of non-

convex constraints for NIRA+BoostLP results in different numbers of decision variables for

BoostLP. Extending NIRA+BoostLP for a flexible number of non-convex constraints is our

future work.

6.6 Conclusion

In this chapter we developed the non-convex iterative risk allocation (NIRA) algorithm,

which can plan in a non-convex state space with a fixed schedule. NIRA employs a branch-

and-bound algorithm to solve the disjunctive convex program. Its subproblems are fixed-

schedule CCQSP problems with a convex state space, which can be solved by the CRA

algorithm introduced in Chapter 5. We developed a novel relaxation method called fixed

risk relaxation (FRR), which provides the tightest linear relaxation of the nonlinear con-

straints in the convex subproblems. We also developed the NIRA+BoostLP algorithm

by integrating a regression-based LP solver, BoostLP, into NIRA. Compared to NIRA,

NIRA+BoostLP achieved 10- to 25-fold reduction in computation time without any com-

promise in solution optimality. Simulation results of NIRA and NIRA+BoostLP are pre-

sented in Sections 11.1.7 and 11.1.8, respectively.

109

In the next chapter, we extend NIRA to a problem with aflexible schedule.

110

Chapter 7

CCQSP Planning with a Flexible

Schedule

This chapter presents the full-horizon probabilistic Sulu or p-Sulu FH algorithm, which

efficiently solves the general CCQSP planning problem with aflexible schedule and a non-

convex state space (Problem 2 in Section 3.1.2). The problem is to find a schedule of events

s (defined in Section 2.3.1) that satisfies simple temporal constraints, as well as a control

sequence UO:N-1 that satisfies the chance constraints and minimizes cost. Our approach is

to first generate a feasible schedule and then to extend the schedule to an optimal control

sequence for that scheduling, while iteratively improving the candidate schedules using

branch and bound.

We build our CCQSP planner, p-Sulu FH, upon the NIRA algorithm presented in the

previous section. Recall that NIRA optimizes the control sequence UO:N-1 and computes

the optimal objective function value, given a fixed schedule s. p-Sulu FH uses NIRA as a

subroutine that takes a schedule s as an input, and outputs the optimal objective value as

well as the optimal control sequence. We denote the optimal objective value for a given

schedule s as J*(s), highlighting that it is a function of s. Using this notation, the CC-

QSP planning problem with aflexible schedule (Problem 2) can be rewritten as a schedule

optimization problem as follows:

min J*(s). (7.1)
sGSF

111

Recall that the domain of feasible schedules SF (defined by (2.7) in Section 2.4.3) is a finite

set, since we consider a discretized, finite set of time steps T (see Section 2.1). Hence, the

schedule optimization problem (7.1) is a combinatorial constraint optimization problem

(COP), where the constraints are given in the form of simple temporal constraints.

7.1 Algorithm Overview

Our idea is again to use a branch-and-bound approach to solve the schedule optimization

problem (7.1). In the branch-and-bound search, p-Sulu FH incrementally assigns an execu-

tion time step to each event in order to find the schedule that minimizes J*(s) in (7.1). The

objective function value is evaluated by solving the fixed schedule CCQSP planning prob-

lems using the NIRA algorithm, presented in Chapter 6. Hence, p-Sulu FH uses NIRA as a

function that takes a schedule as an input and returns an optimal control sequence and the

optimal objective value. Although the combination of the two branch-and-bound searches

in p-Sulu FH and NIRA are equivalent to one unified branch-and-bound search in practice,

we treat them separately for ease of explanation.

As shown in Figure 7-3, the branch-and-bound algorithm searches for an optimal sched-

ule by incrementally assigning execution time steps to each event in a depth-first manner.

Each node of the search tree corresponds to a partial schedule (Definition 3), which assigns

execution time steps to a subset of the events included in the CCQSP. The partial schedule

at the root node only involves an assignment to the start node eo. The tree is expanded

by assigning an execution time step to one new event at a time. For example, the node

o(ei) = 2 in Figure 7-3-(a) represents a partial schedule that assigns the execution time

step t = 0 to the event eo and t = 2 to ei, while leaving eE unassigned.

p-Sulu FH obtains the lower bound of the objective function value J*(s) by solving a

CCQSP planning problem with a partial schedule that can be extended to s. p-Sulu FH

minimizes the search space by dynamically pruning the domain through forward-checking.

More specifically, after an execution time is assigned to an event at each iteration of the

branch-and-bound search, p-Sulu FH runs a shortest-path algorithm to tighten the real-

valued upper and lower bounds of the execution time step of unassigned events according

112

Algorithm 8 p-Sulu FH
function pSulu(ccqsp) returns optimal schedule and control se-
quence

1: Incumbent = oo

2: Set up queue as a FILO queue
3: E,0 = {eo}, uo(eo) = 0 /initialize the partial schedule
4: queue +- (Eo ,oo)
5: while queue is not empty do
6: (EK, a) <- queue.removeLastEntryo;
7: [J*, UO:N-1] <- obtainLowerBound(ccqsp, E, a);
8: if J* < Incumbent then
9: if E, = S then

10: Incumbent <- J*; OptCtIlSequence <- Uo:N-1; OptSchedule or
11: else
12: expand(ccqsp, queue, E", a)
13: end if
14: end if
15: end while
16: return OptCtlSequence, OptSchedule

to the newly assigned execution time step.

Algorithm 8 shows the pseudocode of the algorithm. At each node of the search tree,

a fixed-schedule CCQSP planning problem is solved with the given partial schedule. If the

node is at the leaf of the tree and the optimal objective value is less than the incumbent, the

optimal solution is updated (Line 10). If the node is not at the leaf, the optimal objective

value of the corresponding subproblem is a lower bound for the optimal objective value

of subsequent nodes. If the lower bound is less than the incumbent, the node is expanded

by enumerating the feasible execution time assignments to an unassigned event (Line 12).

Otherwise, the node is not expanded, and hence pruned. Details of this branch and bound

process are described in later subsections.

Walk-through example We present a walk-through example to give readers insight into

the solution process. We consider a CCQSP shown in Figure 7-1-(a). The CCQSP specifies

a mission to go through a waypoint A and get to the goal region B while avoiding the

obstacle C, as shown in Figure 7-1-(b). We assume that the time interval is AT = 1.

113

(a)
[0.8 4.1] [1.6 3.81

End inA e End inB

eo [0 5.5] eE

Remainin R2\C

(b)

Goal
t= 5

Waypoint
Obstacle

Start

Figure 7-1: (a) An example of CCQSP; (b) a plan that satisfies the CCQSP in (a)

4.1 3.8 3.9 3.8 2 3.8
-0.8 -1. -0.8 -1.6 -2 -1.6

e0 5.5 E: 5.5 eE e0 :E
0 -2.4 -3.6

(a) (b) (c)

Figure 7-2: (a) The directed distance graph representation of the CCQSP in Figure 7-1-(a);
(b) the d-graph of (a), which shows the shortest distances between nodes; (c) the updated
d-graph after the execution time t = 2 is assigned to the event ei.

-(eO) = 0 ------

0-(eE) o (e)

(b)

Figure 7-3: Branch-and-bound search over a schedule s. We assume that the time interval
is AT = 1. (a) The node a(eo) = 0 is expanded; De, (a) = {1, 2, 3} given a-(eo) = 0, since
[diax(u), di"(o-)] = [0.8,3.9] from Figure 7-2-(b); (b) the node o-(ei) = 2 is expanded;
DeE(o-) = {4,5} given o-(eo) = 0 and o(ei) = 2, since [dmax(a) dmin(a)] = [3.6,5.5]
from Figure 7-2-(c).

114

Figures 7-2 and 7-3 illustrate the solution process. The p-Sulu FH algorithm is ini-

tialized by assigning the execution time 0 to the start event eo. Figure 7-2-(a) is the dis-

tance graph representation of simple temporal constraints of the CCQSP. Note that a simple

chance constraint is equivalently represented as a pair of inequality constraints as follows:

s(e) - s(e') E [1, U] y s(e) - s(e') < u A s(e') - s(e) < -1.

The two inequality constraints are represented by two directional edges between each two

nodes in the distance graph. p-Sulu FH runs an all-pair shortest-path algorithm on the

distance graph to obtain the d-graph shown in Figure 7-2-(b). The d-graph represents the

tightest temporal constraints. Then the algorithm enumerates the feasible execution-time

assignments for the event ei using the d-graph. According to the d-graph, the execution

time for the event ei must be between 0.8 and 3.9. Since we consider discrete time steps

with the time interval AT = 1, the feasible execution time steps for ei are {1, 2, 3}, as

shown in Figure 7-3-(a). The idea behind enumerating all feasible execution time steps is

to assign an event, and thus to tighten the bounds of all unassigned events in order to ensure

feasibility.

At the node u(ei) = 1 in Figure 7-3-(a), p-Sulu FH solves the FRR of the fixed-

schedule CCQSP planning problem only with the "End in A" episode and the execution

schedule a(ei) = 1. In other words, it tries to find the optimal path that goes through A at

t = 1, but neglects the goal B and obstacle C. If a solution exists, its optimal cost gives a

lower bound on the objective value of all feasible paths that go through A at t = 1. Assume

here that such a solution does not exist. Then, p-Sulu FH prunes the node u(ei) = 1, and

goes to the next node a(ei) = 2. It solves the FRR of the corresponding fixed-schedule

subproblem to find the best path that goes through A at t = 2. Assume that p-Sulu FH finds

a solution.

Then, p-Sulu FH expands the node in the following process. First, it fixes the execution

time o(ei) = 2 in the d-graph, and runs a shortest-path algorithm in order to tighten the

temporal constraints (see Figure 7-2-(c)). Then p-Sulu FH uses the updated d-graph to

enumerate the feasible execution-time assignments for the event CE, which are {4, 5}, as

115

shown in Figure 7-3-(b). It visits both nodes and solves the fixed-schedule subproblems

exactly with all episodes and a fully assigned schedule. For example, at the node U(eE) =

5, it computes the best path that goes through A at t = 2 and reaches B at t = 5 while

avoiding the obstacle C, as shown in Figure 7-1-(b). Assume that the optimal objective

values of the subproblems are 10.0 for u(eE) = 4 and 8.0 for O(eE) = 5. The algorithm

records the solution with a(eE) = 5 and its cost 8.0 as the incumbent.

The p-Sulu FH algorithm then backs up and visits the node a(ei) 3, where a relaxed

subproblem with only the "End in A" episode is solved to obtain the lower bound of the

objective value of subsequent nodes. The lower bound turns out to be 9.0, which exceeds

the incumbent. Therefore, the branch is pruned. Since there are no more nodes to expand,

the algorithm is terminated, and the incumbent solution is returned.

The order of node expansion is very important. Note that we visited the event ei be-

fore the event eE in this example. This is because the "End in A" episode only involves a

convex state constraint, while "Remain in R2\C" (2D plane minus the obstacle C) is non-

convex. Therefore, the subproblems at nodes a(ei) = 1, 2, 3 that impose only the "End in

A" episode are convex optimization problems, which can be solved much more efficiently

than the non-convex relaxed subproblems with only the "Remain in R2\C" episode. Fur-

thermore, the fixed risk relaxation (Section 6.4.2) can be applied to obtain a lower bound

even more efficiently when the problem is convex. Therefore, we can enhance the speed of

the branch-and-bound search by sorting the events so that the episodes with a convex fea-

sible region are always considered before the episodes with a non-convex feasible region.

7.2 Branching with d-graph

This subsection presents the implementation of the expand(...) function in Line 12 of Al-

gorithm 8. Recall that each non-leaf node of the search tree represents a partial schedule

(Definition 3), where some of the events are not assigned an execution time step.

Algorithm 9 outlines the implementation of the expand(...) function in Algorithm 8. It

takes a partial schedule a as an input, and adds to the queue a set of schedules that assign an

execution time step to an additional event e'. In other words, the domain of the newly added

116

Algorithm 9 Implementation of expand function in Line 12 of Algorithm 8
function expand(ccqsp, queue, S, o-)

1: for e E E, do
2: Fix the distance between eo and e to o(e)AT on the d-graph of ccqsp;
3: end for
4: Update the d-graph by running a shortest-path algorithm;
5: Choose e' from S\E, /choose an unassigned event
6: E,,-/ := S, U e'
7: De,(a) := { t E T 1 d"i"(o) < tAT < dfa(x)}
8: for t in D,(a) do

9: c'(e) : (e) (e E') /update the partial schedule

10: queue - (So ')
11: end for

schedules E,, has one more assigned event than the domain of the input partial schedule

S,. The details of Algorithm 9 are explained in the following parts of this subsection.

7.2.1 Enumeration of Feasible Time Step Assignments using d-graph

When enumerating all feasible time steps, the simple temporal constraints must be re-

spected. To accomplish this, we use a d-graph to translate the bounds on the durations

between two events into the bounds on the execution time step of each event. It is shown

by [33] that the set of feasible execution times for an event e is bounded by the distance

between e and eo on the d-graph. A d-graph is a directed graph, where the weights of

the edges represent the shortest distances between nodes, as in Figure 7-2-(b). In order to

obtain the d-graph representation, we first translate the simple temporal constraints into a

directed distance graph, as in Figure 7-2-(a). The weight of an edge between two nodes

(events) corresponds to the minimum duration of time from the origin node to the destina-

tion node, as specified by the corresponding simple temporal constraint. The distance takes

a negative value to represent lower bounds. The d-graph (Figure 7-2-(b)) is obtained from

the distance graph (Figure 7-2-(a)) by running an all-pair shortest-path algorithm [33].

Forward-checking with d-graph The p-Sulu FH algorithm incrementally assigns an ex-

ecution time step to each event, as explained in the walk-through example. p-Sulu FH

117

minimizes the search space through forward-checking using the d-graph. What is different

here from normal forward checking is that no back tracking is performed, due to decom-

posability of d-graph. The forward-checking is conducted in the following process.

Once an execution time step t is assigned to an event e (i.e., a(e) = t), the distance

from eo to e is fixed to tAT, and the distance from e to eo is fixed to -tAT on the distance

graph (Line 2 of Algorithm 9). Recall that t is an index of discretized time steps with a

fixed interval AT, while the temporal bounds are given as real-valued times (see Section

2.1). We then run a shortest-path algorithm to update the d-graph (Line 4). Given a partial

schedule o-, we denote the updated shortest distance from the start event eo to e' on the

d-graph by deax(l), and the distance from e' to eo by dl" (a).

For example, the execution time 2 is assigned to the event ei in Figure 7-2-(c) (i.e.,

a(ei) = 2), so the distance between eo and ei is fixed to 2 and the distance in the opposite

direction is fixed to -2. Then we run a shortest-path algorithm again to update the d-graph.

As a result, we obtain updated distances dmax(,) = 5.5 and dm"(a) = 3.6.

[33] showed that deax(u) corresponds to the upper bound of the feasible execution time

for an unassigned event e', while din"(a) corresponds to the negative of the lower bound.

Hence, after a partial schedule a is assigned to events e E E, the updated domain for an

unassigned event e' (E, is bounded by del"(a) and deax(l). Note that the domain of the

execution time steps e' is included in, but not equal to [de"(l), deax(l)], because we only

consider discrete execution time steps in a finite set T. In the forward-checking, p-Sulu

FH only computes the real-valued bounds [dm"(o) dIax(u)]. The feasible values of an

unassigned variable e' are not enumerated until the search tree is expanded to e'.

Enumerating the domain of execution time steps for an unassigned event We can

readily extract the feasible execution time steps for any unassigned event e' (S, from the

updated d-graph with a partial schedule o. Let Der(a) be the domain of execution time

steps for an unassigned event e' (S, given a partial schedule T. The finite domain Del (a)

is obtained as follows:

De (o) := { t E T | d"""(a) < tAT < d /ax

118

where AT is the fixed time interval of the discretized time steps (Line 7). Note that De(o-)

may be empty when the temporal constraints are tight, even though they are feasible. The

user of p-Sulu FH must make AT small enough so that De is not empty.

For example, Figure 7-2-(b) is the d-graph given the partial schedule {a(eo) = 0}. Ac-

cording to the d-graph, ei must be executed between 0.8 and 3.9. Assuming that AT = 1,

the set of feasible execution time steps for ei is Dei (o) = {1, 2, 3}, as shown in Figure 7-3-

(a). Likewise, Figure 7-2-(c) is the d-graph given the partial schedule {(eo) = 0, o(e1) =

2}; the feasible execution time of eE is between 3.6 and 5.5. Hence, the set of feasible

execution time steps for eE is DE (-) = {4, 5}, as shown in Figure 7-3-(b).

The enumeration is conducted in Line 7 of Algorithm 9. Then the algorithm creates

extensions of the input partial schedule by assigning each of the time steps to e' (Line 9),

and puts the extended partial schedules in the queue (Line 10).

7.2.2 Efficient Variable Ordering of Branch and Bound Search

When choosing the next event to assign a time step in Line 5 of Algorithm 9, two variable

ordering heuristics are found to be effective in order to reduce computation time.

The first heuristic is our new convex-episode-first (CEF) heuristic, which prioritizes

events that are not associated with non-convex constraints. The idea of the CEF heuris-

tic is based on the observation that subproblems of the branch-and-bound algorithm are

particularly difficult to solve when the episodes in A(,E,) involve non-convex state con-

straints. The "Remain in R 2\C" episode in the walk-through example in Figures 7-1 is an

example of such non-convex episodes. Therefore, an effective approach to reduce the com-

putation time of p-Sulu FH is to minimize the number of non-convex subproblems solved

in the branch-and-bound process. This idea can be realized by sorting the events so that

the episodes with a convex feasible region are always examined in the branch-and-bound

process before the episodes with a non-convex feasible region.

The second one is the well-known most constrained variable heuristic. When p-Sulu

FH expands a node, it counts the number of feasible time steps in De, (o) for all unassigned

events e' C E\, and chooses the one with the least number of feasible time steps in Line

5 of Algorithm 9.

119

7.3 Bounding with Partial Schedule and FRR

This subsection presents the implementation of the obtainLowerBoundO function in Line

7 of Algorithm 8. The Branch-and-bound process depends on the ability to compute a

bound on the optimal objective value of those subproblems that lie below each node in the

search tree. The p-Sulu FH algorithm obtains the lower bound by solving a relaxed CCQSP

planning problem with a fixed partial schedule.

Algorithm 10 outlines the implementation of the obtainLowerBoundO function. It takes

a partial schedule o as an input, and outputs the lower bound of the objective function, as

well as the optimal control sequence given the partial schedule a. It constructs a relaxed

optimization problem, which only involves episodes whose start and end events are both

assigned execution time steps (Line 1). If the optimization problem involves non-convex

constraints, the NIRA algorithm is used to obtain the solution to the problem (Line 3).

Otherwise we solve the FRR of the convex optimization problem to obtain the lower bound

efficiently (Line 5). If the input is a fully assigned schedule (e, = 8), the corresponding

node is a leaf node. In such case we obtain an exact solution to the CCQSP planning

problem with the fixed schedule a by running the NIRA algorithm (Line 3). The details of

Algorithm 10 are explained in the subsequent part of this section.

Algorithm 10 Implementation of obtainLowerBound function in Line 7 of Algorithm 8
function obtainLowerBound(ccqsp, ES, o) returns optimal objective value and control se-
quence

1: subprblem +-- Problem 13 with o given ccqsp;

2: if E, = E or A(u) has episodes with non-convex state regions, then
3: [J*, UO:N-1] <- NIRA(subprblem) //Algorithm 2
4: else
5: J* <-obtainLowreBound-FRR(subprblem) - c //Algorithm 7
6: UO:N-1

7: end if
8: return [J* UO:N-1

120

7.3.1 Relaxed Optimization Problem with Partial Schedule

In Line 1 of Algorithm 10, we construct a relaxed optimization problem that only involves

episodes whose start and end events have both been assigned execution time steps:

Problem 13: Relaxed Optimization Problem for a Partial Schedule o

J*(o) min J(UO:N-1, 5l:N, 0) (7.2)
UO:N-1 GUN

s.t. Vt E T1 , t+1 = Atitt + Btut (7.3)

A A A A V h-, -mc,a,k,(6c,a,k)
cEC aE('IcnA(a)) tEra(a) kEK jJa a,k

(7.4)

6 c,a,k > 1 - Aci (7.5)
kEKa,aE(qIcA(a))

where J* (a) is the optimal objective value of the relaxed subproblem with a partial sched-

ule a. Recall that A(a) is the partial episode set of o, which only involves the episodes

whose start and end nodes are both assigned execution time steps by the partial schedule

a (Definition 12). In Section 3.1, we obtained a simplified notation of a chance constraint

(3.3) from (3.2) by merging indices. Likewise, we merge the three conjunctions of (7.4)

and obtain the following:

A A V hizjt - gc,i,j < -mec, 3 (c,4).
cEC iEc(a) jEJc,i

Note that this chance constraint is exactly the same as (6.6), except that a partial schedule

a is specified instead of a fully assigned schedule s. Hence, Problem 13 is an instance of

a non-convex CCQSP planning problem with a fixed schedule (Problem 10), and can be

optimally solved by the NIRA algorithm. Also note that a is a fully assigned schedule at

the leaf node of the branch-and-bound search tree.

The optimal objective value of Problem 13 gives a lower bound of the optimal objective

value of all the subsequent subproblems in the branch-and-bound tree. This property is

121

formally stated in Lemma 8 below. In order to prove this feature, we first define the concept

of an extension of a partial schedule as follows:

Definition 17. A schedule s : S -* if is an extension of a partial schedule 0- : E, H-+ T if

and only if both assign the same time steps to all the events in the domain of -:

o0(e) = s(e) Ve E E,.

For example, in Figure 7-3-(b), a fully assigned schedule {s(eo) = 0, s(ei) = 2, s(eE) =

4} and {s(eo) = 0, s(ei) = 2, s(eE) = 5} is an extension of a partial schedule {(eo) =

0, o(ei) = 2}.

The following lemma always holds:

Lemma 8. If a schedule s is an extension of a partial schedule o-, then the optimal objective

value of Problem 13 with o- is a lower bound of the optimal objective value with s:

J*(o-) < J*(s).

Proof: Since o- is a partial schedule, S, C E, and hence A(-) C A. Also, since

a(e) = s(e) for all e E ES, all the state constraints in the chance constraint (7.4) of Problem

13 with a partial schedule o- are included in the problem with a full schedule s. This means

that the feasible state space of the problem with s is a subset of the one with o. Hence, if the

chance constraint (3.7) of the problem with s is satisfied, the chance constraint (7.4) of the

problem with - is also satisfied. Therefore, the problem with o always results in a better

(less) or equal cost than the problem with -', because the former has looser constraints. N

For example, in Figure 7-3-(b), ei has been assigned an execution time step but eE has

not. Therefore, at node o(ei) = 2, the chance-constrained optimization problem with only

the "End in A" episode is solved with the partial schedule {o(eo) = 0, o-(ei) = 2} (see

Figure 7-1-(a)). It gives a lower bound of the cost of the problems with the fully assigned

schedules {s(eo) = 0, s(ei) = 2, s(eE) = 4} and {s(eo) = 0, s(el) = 2, s(eE) = 5}.

Algorithm 10 obtains a lower bound by solving Problem 13 exactly using the NIRA

algorithm, if it involves episodes with non-convex state regions (Line 3). If the function

122

is called on a leaf node, Problem 13 is also solved exactly by NIRA even if it does not

involve non-convex state constraints. This is because the solutions of leaf subproblems are

candidate solutions of an optimal solution of the overall problem. Hence, by solving them

exactly, we can ensure the optimality of the branch-and-bound search.

7.3.2 Further Bounding with FRR and BoostLP

If the relaxed subproblem (Problem 13) is convex, then p-Sulus solves the FRR of the sub-

problem approximately, instead of solving it exactly with NIRA, in order to obtain a lower

bound more efficiently (Line 5 of Algorithm 10). Furthermore, if the objective function is

linear, BoostLP (see Section 6.5) can be used to solve FRR even more efficiently. In such

case, the worst-case estimation error of Boost-LP, E, is subtracted from the estimated lower

bound in order to accommodate the estimation error of BoostLP.

Many practical CCQSP execution problems have only one episode that has a non-

convex feasible region. For example, in the CCQSP planning problem shown in Figures 1-2

and 1-4, only the "safe region" (R2 minus the obstacles) is non-convex, while "Province-

town" (start region), "Scenic region," and "Bedford" (goal region) are convex. In such a

case subproblems are solved exactly only at the leaf nodes, and their lower bounds are

always evaluated by approximate solutions of FRRs of the subproblems at the non-leaf

nodes.

7.4 Conclusion

In this chapter, we developed p-Sulu FH, which can solve a CCQSP planning problem with

aflexible schedule. The scheduling problem was formulated as a combinatorial constrained

optimization problem, which is solved by a branch-and-bound algorithm. Each subprob-

lem of the branch-and-bound search is a CCQSP planning problem with a fixed schedule,

which is solved by NIRA, introduced in Chapter 6. The domain of the feasible schedule

is pruned by running a shortest-path algorithm on the d-graph representation of the given

temporal constraints. The lower bounds of the optimal objective value of the subproblems

are obtained by solving fixed-schedule CCQSP planning problems where a subset of the

123

state constraints are imposed. We proposed an efficient variable ordering heuristic called

the convex-episode-first (CEF) heuristic, which prioritizes convex subproblems over non-

convex ones. The simulation results of p-Sulu FH are presented in Sections 11.1.9, 11.2.2,

and 11.3.2.

In the next chapter we develop a real-time CCQSP executive, p-Sulu, which employs

the receding-horizon planning approach.

124

Chapter 8

Receding Horizon Execution of CCQSP

This chapter presents a novel online plan executive, probabilistic Sulu or p-Sulu, which

executes a CCQSP in real time with a non-convex state space and a flexible schedule.

The purpose of p-Sulu is to support real-time execution of CCQSPs. Our approach

is to employ the receding horizon planning approach [41]: at each planning cycle, the

executive computes a control sequence over a short, fixed duration, which is called the

planning horizon; the vehicle applies the control inputs of the first few steps in the plan-

ning horizon, which we refer to as the execution horizon; and the executive computes the

control sequence for the next planning horizon while the control sequence of the current

execution horizon is being executed. At each planning cycle, p-Sulu repeatedly solves a

finite-horizon CCQSP planning problem by the IRA algorithm, presented in Section 4.2. A

finite-horizon CCQSP planning problem is essentially the same as a full-horizon CCQSP

planning problem, which is solved by p-Sulu FH, except for several modifications. Such

repeated replanning allows the executive to adapt to environmental changes in real time.

Moreover, unlike full-horizon planning, receding horizon planning allows the executive to

use the posterior distribution of the future state based on a current state estimate. This

is particularly important for controlling stochastic systems, since uncertainty accumulates

over time. Although the receding horizon planning approach is not new, it has not been

used for chance-constrained planning problems. The main technical challenge in receding

horizon CCQSP execution is how to find feasible risk allocation without detailed analysis

of the planning problem beyond the current planning horizon.

125

We address this issue by the newly developed risk budgeting approach. In this approach,

we view the risk bound as a "budget" that can be spent over the plan duration to achieve

the given temporally extended goals. At every planning cycle, the executive spends risk

out of the budget. The executive keeps track of the availability of risk so that it does not

overspend the budget. Such a risk budgeting approach guarantees the satisfaction of chance

constraints.

Since p-Sulu does not plan beyond the current planning horizon, the amount of risk

spent at the current horizon must be decided heuristically. We present a risk spending

heuristic that allocates the risk approximately uniformly over planning horizons while

guaranteeing that the executive does not run out of budget during the execution. The risk

spending heuristic is particularly suitable for CCQSP planning problems that involve path

planning, but can also be used for other domains.

This chapter is organized as follows. Section 8.1 presents the risk budgeting approach,

and develops the p-Sulu algorithm. Section 8.2 formulates the finite-horizon CCQSP plan-

ning problem, which is solved by p-Sulu at every planning cycle. Section 8.3 presents the

solution method of the finite-horizon CCQSP planning problem using IRA. Finally, Sec-

tion 8.4 develops heuristics for risk budgeting, as well as for guidance. The appendix of

this chapter includes technical notes on the implementation of p-Sulu.

8.1 p-Sulu with the Risk Budgeting Approach

As introduced above, the key enabler of p-Sulu is the risk budgeting approach. We first

present a brief review of the receding horizon approach in Section 8.1.1. Section 8.1.2

presents the key insights behind risk budgeting, and Section 8.1.3 presents the risk budget-

ing approach. Using this approach, we develop the p-Sulu algorithm in Section 8.1.4.

8.1.1 Review of the Receding Horizon Approach

A receding horizon planner plans for a fixed number of time steps at every planning cy-

cle, and sequentially extends the plan until all temporally extended goals are achieved, as

shown in Figure 8-1. The receding horizon approach has two time horizons: planning

126

horizon and execution horizon. A planning horizon means the length of time for which

the executive computes a sequence of control inputs at each planning cycle; an execution

horizon means the length of time for which the planned control inputs are executed. The

control inputs within a planning horizon but beyond the execution horizon are not applied.

The computation for the next planning horizon must be finished while executing the control

inputs of the current execution horizon. For example, in Figure 8-1-(b), the control inputs

for t = 2 ... 5 must have been computed between 0 < t < 2. Therefore, the length of

the execution horizon imposes an upper bound on the computation time. The notion of

the receding horizon approach was originally developed for the model predictive control

(MPC) [41], where the execution horizon length is typically set to one. Sulu [61] adopts

this approach for model-based plan execution, with an extended execution horizon length.

The receding horizon approach allows the executive to use the up-to-date measurement

of the system's state. This is a particularly important feature for plan execution under

uncertainty since the system under control may reach a different state than predicted due to

uncertainty.

127

(a) 1 st horizon; t = 0

Available risk: A' A 1%

Used risk: A'h = 0.1%

jGo

41

0.5% -A

al

t = 0.1%

Start

(b) 2nd horizon; t = 2
Available risk: A = 0. .9%% 0.1

Used risk: A = 0.4% t= 5 t=6

0.4% t=4

Goal
t=3t

'~0.

t=

t=0 ' 0.1%

Start

(c) 3rd horizon; t s4

Available risk: A , = 0.5% 0. %
0.1%

Used risk: A3 = 0. 3%0, t= 5 t0/-

0.4% t=4

/ G oal

t =2 ,'

t =I

t = 0 0 .1%

Sta rt

Figure 8- 1: Overview of the receding horizon approach with risk budgeting.

128

8.1.2 Risk Allocation at Replanning

How should we allocate risk to each time step when the receding horizon planning approach

is employed?

Consider an example where the user requires the plan executive to reach a goal safely

with 99% of probability (hence, the risk bound is A = 1%), as in Figure 8-2. Assume

the executive allocated 0.3% of risk to the first execution horizon, and the plan in the

first execution horizon is successfully executed. The executive then replans for the second

horizon. However, what risk bound should be used for replanning is not straightforward.

There are two possible policies, both of which are seemingly valid:

(a) Since the executive has already "consumed" 0.3% of risk, it leaves the remaining

0.7% of risk bound for the rest of the plan.

(b) Since the executive already knows that the execution of the first horizon was success-

ful and the 0.3% risk of failure in the first execution horizon was not realized, it uses

the 1% risk bound again for the rest of the plan.

The two policies above is generally stated as follows:

(a) The prior probability of failure at the beginning of the plan should be bound by A.

(b) The posterior probability of failure at each replanning cycle should be bound by A.

We show that only (a) is valid for receding horizon planning with chance constraints.

This conclusion is derived from the fact that the users of the plan executive can know in

advance about which policy the executive uses for replanning. A receding horizon plan-

ner, such as p-Sulu, is an algorithm that repeats replanning in a scheduled manner with a

predetermined policy. Therefore, the replanning policy programmed in the algorithm can

be known to the users before the beginning of execution. For example, assume that the

executive allocates the 0.3% of risk for the first horizon, as in Figure 8-2. Also assume

that the user of the executive knows, at the beginning of the execution of the first horizon,

that the executive employs the (b) replanning policy, and hence it takes the 1% of risk after

the second horizon. Then the user can reason that, at the beginning of the initial execution

129

A=1%
Ap= (a) 0.7% ?

(b) I1% ?
Goal

0.3%

Start

Figure 8-2: Two policies of risk allocation in the replanning. (a) considers that the 0.3% of
risk has been "consumed," so the rest of the plan can spend at most the remaining 0.7% of
risk. On the other hand, (b) puts the 0.3% of risk back in and uses the 1% risk bound for
replanning since the executive knows that the past control sequence has been successfully
executed, and the 0.3% risk was not realized. We conclude that the (a) policy is appropriate
for p-Sulu.

horizon, the probability of failure throughout the plan is:

0.003 + (1 - 0.003) x 0.01 = 0.01297,

which exceeds the specified risk bound, 1%. On the other hand, if the user knows that the

executive employs the (a) policy, then the user can reason that the probability of failure

throughout the plan is:

0.003 + (1 - 0.003) x 0.007 = 0.009979,

which is below the specified risk bound.

A formal discussion follows shortly in the next subsection.

8.1.3 Risk Budgeting

In order to simplify the notation, we consider a problem with only one chance constraint in

the following discussion, and hence omit the subscript c from the risk bound Ac (Definition

130

13). It is straightforward to apply the following discussion to the problem with multiple

chance constraints. We use the following notations:

" An - The amount of risk allocated to the nth execution horizon, and

a' - The amount of risk that is available at the nth planning cycle.

The (a) policy described in the previous subsection is formally stated by the following

procedure, which we call risk budgeting:

Algorithm 11 Risk Budgeting

1: A' 4- A, n <

2: loop

3: Choose A' so that 0 < A' < A'.

4: An~l *An _-An

5: n - n +1

6: end loop

Before starting a formal discussion, let us intuitively explain the risk budgeting ap-

proach using an example.

Example

We consider the example shown in Figure 8-1 with the risk bound A = 1%. Consider that

A is the budget of risk that can be spent over the plan duration to achieve the specified goal.

At the beginning, the available amount of risk is equal to the budget. Hence, A' = A =

1% (Line 1 of Algorithm 11). At the first planning cycle, the receding horizon executive

allocates A' = 0.1% to the first execution horizon (Line 3). Since we "used" the 0.1% of

risk, the available risk at the second planning cycle is A' = 0.9% (Line 4). Then, at the

second planning cycle, the executive allocates A' = 0.4% to the first execution horizon

(Line 3). Since we "used" the 0.4% of risk out of A' = 0.9%, the available risk at the

third planning cycle is A' = 0.5% (Line 4). In this way, the risk budgeting approach keeps

track of the availability of risk so that the executive does not overspend the budget.

131

Justification

We next formally justify the risk budgeting approach.

Assume that the given CCQSP can be executed within a finite number of planning

cycles, N. We do not have to know the value of N; it suffices if we know that such N

exists. A' is a lower bound of the conditional probability that the plan execution fails at

the nth horizon, given a successful execution before the nth horizon. We denote by S" an

event where the plan is successful at the nth horizon. Then, at the beginning of the plan

execution, the probability that the entire plan is successfully executed, denoted by P,0.cces

is given as follows:

Psuccess Pr[SN I SN-1 A ... S Pr[SN-1 I SN-2 A ... S] ... Pr[SI]
N

> rl(1 - Ang).(8)

n=1

We prove the following lemma:

Lemma 9. The risk budgeting approach (Algorithm 11) guarantees that PS0,een. > 1 - A.

Proof: We first prove that the following inequality holds:

N N

17(1-a) 1 - ai (0 ai < 1, Vi) (8.2)
i=1 i=1

It is trivial when N = 1. When (8.2) holds for N = k, it also holds for N = k + 1 because:

k+1 k

l(1 - i) > ai (1 - ak+1)
i=1 k+1 k k+1

i= 1 i=1

Therefore, by recursion, (8.2) holds for N = 1, 2, -

At the nth planning cycle, the risk budgeting approach guarantees the following in-

equality:
n-1

<A < A - Ak. (8.3)
k=1

132

It follows from (8.3) with n = N that:

N

n=1

Furthermore, the existence of such A' - - -A' is recursively implied by (8.3) with n

1 ... N - 1. Hence, using (8.1) and (8.2),

N N

P"ncess E 1-Ag - E~ 1-A

n=1 n=1

U

On the other hand, the (b) policy in Section 8.1.2 only requires that As n A. This is

not sufficient to guarantee Psuccess 1 - A.

8.1.4 p-Sulu Algorithm

We build p-Sulu algorithm upon the risk budgeting approach introduced in the previous

subsection. Recall that a deterministic receding horizon controller obtains the control se-

quence for the next execution horizon by solving a finite-horizon optimal control prob-

lem. p-Sulu obtains the control sequence as well as the risk allocation, AE, by solving a

finite-horizon CCQSP planning problem. We denote by p"(A"4) the finite-horizon CCQSP

planning problem solved at the nth planning cycle, highlighting that it takes the currently

available risk A"n as a parameter. We view P"(An4) as a function that returns the control

sequence and the risk allocation at the nth planning cycle:

where

n := U(n-1)NE '.. U(n-1)NE+Np-1-

Furthermore, we require that An returned by Pn(A4) satisfies the condition in Line 3 of

the risk budgeting approach (Algorithm 11). The formulation of Pn(A"4n) is presented in

Section 8.2.

133

The p-Sulu algorithm is outlined in Algorithm 12 as below:

Algorithm 12 p-Sulu algorithm
function pSuluRH(ccqsp)

1: A' <-- A, n

2: while eE in ccqsp is not executed do

3: Wait until t = (n - 1)NE + 1

5: Put U" in the execution queue.

6: AA+1 _ An _ n

7: n <- n +1

8: end while

9: return U*

At the beginning of the p-Sulu algorithm, the available amount of risk for the first

planning cycle A' is equal to the risk bound specified by the user (i.e., risk budget). At

each planning cycle, the algorithm solves the CCQSP planning problem, P"(AA4) (Line

4). As a result, the algorithm obtains the optimal control inputs, U", as well as the risk

allocation for the next execution horizon, An. The control inputs are put in the execution

queue (Line 5). The control inputs in the execution queue are executed by a different thread

at the specified time. Following the risk budgeting approach, the algorithm considers that

the risk allocated to the current execution horizon, An, is used. Hence, we deduct An from

the risk availability, Azn (Line 6). The algorithm is terminated if all the events in the given

CCQSP are executed (Line 2).

In the next section we present the formulation of the finite-horizon CCQSP planning

problem, p"(AZ).

134

8.2 Receding Horizon Modifications to the CCQSP Plan-

ning Problem

Although the finite-horizon CCQSP planning problem solved at the nth planning cycle,

P"(A,), is essentially the same as the full-horizon CCQSP planning problem (Problem 2

in Section 3.1), it requires four modifications in order to solve the problem in a receding

horizon manner. The four modifications are summarized below. They are described in

detail shortly.

1. The fixed time horizon T in Problem 2 is replaced with a receding time horizon.

2. The risk bound A is replaced by A", a risk bound for the nth planning horizon.

3. The constraints (3.7), which require executing all the episodes within the current

horizon, is relaxed so that the executive can postpone the execution of episodes for

later time horizons.

4. A cost-to-go function is added to the objective function as a guidance heuristic.

The first and the fourth are the standard methods for receding horizon control. The third

modifications is used by Sulu [61]. We newly added the second modification in order to

respect the chance constraints. The four items will be formally discussed in the following

four subsections.

8.2.1 Receding Time Horizon

In this subsection we present the first modification, which introduces a receding time hori-

zon.

We denote by NE and Np the number of time steps in an execution horizon and a

planning horizon, respectively. In P"(An), the receding time horizon,

T" : {(n - 1)NE, (n - 1)NE + 1, (n - 1)NE + 2,- (n - 1)NE + Np}, (8.4)

135

is used instead of the fixed time horizon T. For later convenience, we denote by To and T7

the first and the last time steps in the nth planning horizon T:

T (n - 1)NE

T = (n - 1)NE + Np.

8.2.2 Risk Bound for Planning Horizons

Next, we explain the second modification, which replaces the risk bound A by the risk

bound for each planning horizon.

If you spend all the money you have today, you will be in trouble tomorrow. Likewise,

when using the risk budgeting approach, the executive must leave sufficient risk budget for

future planning horizons.

More concretely, the risk bound A in the finite-horizon CCQSP planning problem

(Problem 2 in Section 3.1) is replaced by A, in pR(An), where A" is a constant that

satisfies:

0 <A", <An. (8.5)

The constant A' represents the risk bound for the nth planning horizon. Note that it is

different from An, which is the amount of risk allocated to the nth execution horizon. In

the nth planning cycle, p-Sulu solves a finite-horizon CCQSP planning problem, Pn(A n),

and obtains the risk allocation within the planning horizon. Let 6" be the risk allocated to

the tth time step by solving Pn(An). Then, 6n must satisfy the following constraint:

T;

Then, let 6"* be the optimal solution obtained by solving P"(A"n). The amount of risk used

in the n th horizon, A', is given as follows:

To+NE -1

t=To

136

This A' obtained as above is returned in Line 4 of p-Sulu (Algorithm 12).

There is one remaining question: how to choose A'?

Theoretically, it can be any value that satisfies (8.5). However, if A' is too close to

A', little risk is left for future planning cycles, and in the worst case, the future CCQSP

planning problems may become infeasible. On the other hand, if A' is too close to zero,

the CCQSP planning problem at the current planning cycle may become infeasible, or at

best, the resulting plan for the next execution would be overly risk-averse. It is very hard

to optimize the choice of Ay for a general problem. Hence, it must be chosen heuristically

for each specific problem. We pick a heuristic function 0 < a(xTrg,) < 1, and let

A", = a(XTg)A'A. (8.6)

In Section 8.4, we present such a heuristic function o(xTg) for path planning problems.

Example

Consider again the example shown in Figure 8-1, where NE = 2, Np = 4, and A = 1%.

At the first planning cycle, p-Sulu solves P1 (1%) with A' = 0.6% (Line 4 in Algorithm

12). As a result, the algorithm obtains the plan shown in Figure 8-1-(a), which allocates

A' = 0.1% of risk to the first execution horizon.

While the control inputs for the first execution horizon are being executed, p-Sulu goes

through the second planning cycle. Since 0.1% of risk has been consumed in the first

execution horizon, the remaining risk is 0.9%. p-Sulu solves P 2 (0.9%) with A 2 = 0.7%,

and obtains the solution shown in Figure 8-1-(b). This time, A' = 0.4% of risk is allocated

to the second execution horizon.

During the execution of the control inputs in the second execution horizon, p-Sulu

plans for the third planning cycle. Since 0.4% of risk has been consumed in the previous

execution horizon, the remaining risk is 0.5%. p-Sulu solves P 3(0.5%) with A 2 = 0.4%,

and obtains the solution shown in Figure 8-1-(c). Since the goal is reached within the

execution horizon, the algorithm is terminated after the execution of the control inputs in

the third execution horizon.

137

8.2.3 Deferment of Episode Executions

Next, we present the third modification, which allows deferments of episode executions.

Recall that the chance constraints (3.7) in Problem 2 require that all the episodes in a

CCQSP must be executed within a time horizon T with the probability Ac. However, in a

receding horizon approach, the failure to execute an episode within the current time horizon

does not mean the failure of plan execution, since it can be executed in later time horizons.

Therefore, the constrains must allow executives to postpone the execution of an episode if it

cannot be executed in the current time horizon. Such a constraint is called a soft constraint

since it allows deferments of episode execution. At the same time, whenever an episode can

be executed at the current horizon, the executive must not postpone its execution since there

is no guarantee that the episode is still feasible with regard to state and chance constraints

at future time steps. Therefore, we penalize deferments of episode execution. By setting

the penalty sufficiently large, we can assure that the executive defers episode executions

only when it is impossible. Recall that the formulation of each chance constraint in (3.7)

is obtained by simplifying the notation of (3.2). In P', (3.2) is replaced with the following

soft constraint:

Pr A A A V hTa,k,jot - gca~k~ j < V (s(eE) > TF A Pa = M) >
aExIc I tGna(s) kG/Ca jGla,k

where the variable Pa > 0 represents the penalty of postponing the execution of the episode

a, and M is a large positive constant number. This constraint requires that, for each episode

a, its state constraints must be satisfied, or the execution time of its end event s(ea) must

be after the current planning horizon with an penalty M, with the probability of 1 - Ac.

The penalty, Pa > 0, must be added to the objective function (3.4) as follows:

min J(UO:N -1 i 51:N, S) + ZPa
UO:N-1 GUN ,SGSF,Pa>O aEA

Note that Pa > 0 is included in the decision variables.

138

8.2.4 Guidance Heuristic

Finally, we turn to the fourth modification, which introduces a guidance heuristic.

Consider that a goal Ra7 should be achieved next, but it is unreachable in the current

planning horizon. In such case, the soft constraint explained above allows the executive to

postpone the execution of a ext. The issue here is that the soft constraint does not guarantee

that the plant state evolves towards the goal region Ran ext; it might go in the wrong direction

away from Rant.

In order to guide the plant state towards the next goal Ranext, we introduce to the objec-

tive function a cost-to-go function d(eT, Ra...), which approximates the required cost-

to-go from the final state of the current planning horizon iT to the next goal region Ranext,

as follows:

min J(UO:N-1, 51:N, S) EPa + d(tT; , Rane)
U:N NSCOF,Pa>O aEA

The next episode anext is chosen in the following process. As explained in 8.2.2, each

episode must be executed at the earliest possible time step since its feasibility with regard to

state and chance constraints at future time steps is not guaranteed. Hence, the next episode

to be executed is likely to be the one that has the lowest lower bound of the execution

time. p-Sulu updates the temporal bounds at each planning cycle by running a shortest-

path algorithm, as described in Section 7.2.1. Then it sorts all unexecuted episodes by

the lower bound of the execution time of their start events in ascending order. Among

them, p-Sulu chooses the first episode whose goal region Raex cannot be reached in the

current planning horizon as anext. For example, in Figure 8-3, there are two unachieved

(i.e., unexecuted), unreachable goals. p-Sulu chooses the one that is allowed to be executed

earlier as the next goal.

Then, what function should we use to approximate the cost-to-go? There are special

cases where the exact cost-to-go can be obtained. An example is an optimal control prob-

lem with a quadratic cost and no constraints on state or control. In that case, the cost-to-go

is obtained by solving the algebraic Riccati equation. However, when there are state con-

straints, the cost-to-go cannot be obtained in a closed form in general. The temporal and

139

Unachieved,
unreachable goals

xoa

E8(x - x) ' d

End of the
planning horizon

Unachieved,
reachable goal

Current state

Figure 8-3: Guidance heuristic for receding horizon path planning problem, which guides
the vehicle to the next goal.

chance constraints in CCQSP further complicate the problem. Hence, a guidance heuristic,

d(T; , Ranext), must be used. Guidance heuristics is a well studied subject in receding

horizon control literatures. We present the heuristic used for p-Sulu in Appendix A of this

chapter.

8.3 Solving Finite-horizon CCQSP Problems with IRA

Recall that p-Sulu solves a finite-horizon CCQSP planning problem, P", at every planning

cycle (Line 4 of Algorithm 12). Such a problem can be solved in two ways. The first one

is to use p-Sulu FH (Chapter 7), and the second one is to use the IRA algorithm (Chapter

4) on top of Sulu [61]. The former has an advantage with regard to optimality, while the

advantage of the latter is the fast rate of convergence. We choose to use IRA since com-

putation time is more important than optimality in the real-time execution, as we discussed

in the introduction to this chapter. Moreover, we cannot expect optimality even if we use

p-Sulu FH at each iteration, since the risk allocation between planning horizons cannot be

optimized, as explained in Section 8.4. IRA fits to the receding horizon planning since

140

it is an anytime algorithm. Therefore, p-Sulu runs as many iterations of IRA as possible

within each planning horizon to obtain the best available solution for a given replanning

frequency.

Recall that IRA can be implemented on top of any existing deterministic solvers to turn

them into joint chance-constrained programming solvers (See Section 4.2). The determin-

istic version of the CCQSP planning problem lP has been solved by the QSP executive

Sulu by encoding the problem into a mixed integer linear programming (MILP) [61], as-

suming that the objective function is linear. Hence, the CCQSP planning problem 'P" can

be solved by the IRA algorithm by replacing Problem 5 with the MILP encoding of the

deterministic QSP planning problem. See Section 5 of [61] for detailed description of the

MILP encoding.

8.4 Heuristic Risk Spending Approach

Although p-Sulu can solve general CCQSP planning problems, there are two components

in the algorithm that must be tuned for each specific problem. One is the heuristic function

a(xT) to choose the risk bound of planning horizons A' (see (8.6) in Section 8.2.2),

and the other one is the guidance heuristic d(xrT;, R,,ex) (see Section 8.2.4). Although the

latter has been studied extensively in the receding horizon control literatures (e.g., [57, 61]),

there is no prior work on the former topic to the best of our knowledge. This section

proposes a risk spending heuristic that allocates the risk approximately uniformly over

planning horizons while guaranteeing that the executive does not run out of budget during

the execution. Since our main application of p-Sulu is a CCQSP execution problems that

involves path planning, such as the planning for PTS, we focus on path planning problem

in this section. The guidance heuristic used for p-Sulu is explained in Appendix A of this

chapter.

In order to find a suitable heuristic, we take an approach to combine two elementary

heuristics that have complementary features: one that allocates a constant amount of risk,

and another one that allocates a constant proportion of the remaining risk. We first present

the two elementary heuristics, and then combine the two.

141

8.4.1 Uniform-Amount Heuristic

If you have a $100 budget for a 10-day long project, a plausible spending schedule is to use

$10 each day. Likewise, if we know the number of planning cycles required to complete

the given plan a priori, then a plausible heuristic is to allocate risk uniformly among the

planning cycles so that

or equivalently, at the nth planning cycle,

1
P N - n + 1 A'

where N is the number of the planning cycles. Recall that An4 is the remaining risk at the

nth planning cycle (see Algorithm 11 in Section 8.1.3). The reason for this strategy is that,

without additional analysis of the planning problem beyond the current planning horizon,

there is no basis for allocating more risk to one horizon over another.

However, N is usually not known a priori. Assuming that the path is close to a straight

line and a vehicle travels at its maximum speed in order to minimize the flight duration,

the fraction N1 can be approximated by the ratio of the maximum length of the path

within the current planning horizon, dhorizon, to the distance to the final destination, dGoal,

as shown in Figure 8-4. Hence, we approximate the above heuristic by the following:

dhorizon n
dGoal

The maximum traveling distance in a planning horizon can be obtained as follows:

dhorizon = vmaxNPAt, (8.7)

where vmax is the maximum speed of the vehicle.

Since this heuristic allocates risk approximately uniformly, the vehicle does not become

too risk-averse or too risk-taking at each planning cycle. A drawback of this heuristic is that

" can exceed A"4; another drawback is that, since a vehicle does not always fly straight

142

Reachable state region within
the current planning horizon

dGoal

d
n:Available risk

H oriZoPn _ = mi dHorizon

A \ Goal

Figure 8-4: Heuristic to determine the risk allocation to the current planning horizon.

at its maximum speed, it often overestimates the uniform amount of risk, A' = A/N,

particularly near the end of the plan.

8.4.2 Uniform-Proportion Heuristic

If you spend half of the remaining budget every day (i.e., $50 on the first day, $25 on

the second day...), you never run out of money even if you don't know the duration of

the project, although the amount you can spend decreases over time. Likewise, the second

elementary heuristic allocates the uniform proportion of the remaining risk at each planning

cycle as follows:

where # is a constant in(O, 1). This heuristic does not require any knowledge about the plan

duration. Moreover, An never exceeds An by definition. A drawback of this heuristic is

that, since it allocates decreasing amount of risk towards the end of the plan, the vehicle is

risk-taking at the beginning but becomes increasingly risk-averse.

143

8.4.3 Combined Heuristic

We can have the best of the two worlds by combining the two elementary heuristics as

follows:

A", = min dhorizon
mm(dGoal /

We still need to tune the constant #. Empirically, # = 0.5 works well for most path

planning problems demonstrated in Chapter 11.

In the path planning domain, we use the Euclidean distance for dhorizon and dGoal-

This heuristic would be applicable to other domains by using an appropriate definition of

distance.

8.5 Conclusion

This chapter introduced a CCQSP executive, p-Sulu, which can solve a flexible-schedule

CCQSP planning problem with non-convex constraints and a receding planning horizon.

The key enabler for p-Sulu was the risk budgeting approach, which guarantees the satisfac-

tion of chance constraints with the receding planning approach. The simulation results of

p-Sulu are presented in Sections 11.1.10 and 11.2.3. This is the last chapter that deals with

centralized algorithms. Starting from the next chapter, we present decentralized algorithms

for multi-agent problems.

Appendix

A. Guidance Heuristic for Path Planning Problems

A standard choice of the guidance heuristic d(xT;, Ranext) in vehicle path planning prob-

lems is the distance between the final state of the current planning horizon erg and the

center of the next goal region Rane.x (e.g. [57, 61]). More specifically, let XGoal be the ge-

ometric center of Raext and || - || be the Euclidean norm; then the distance-based guidance

144

heuristic is given as follows:

d(xT, Ra,,et) = YI|XGoal - Ts1||, (8.8)

where a constant -y is the weight, which tunes the balance between the cost within the

current planning horizon J' and the heuristic cost. The weight must be set appropriately

for each application.

Piecewise linear approximation As is explained in the next section, p-Sulu reformulates

P' into a mixed integer linear programming (MILP). Hence, we need to obtain a piecewise

linear approximation of the non-linear guidance heuristic function (8.8). A piecewise linear

objective function can be equivalently replaced with a linear objective function, with an

additional set of linear constraints. As a result, we use the following objective function and

the additional constraints, with a slack variable d:

min J(U0:N-1,X1:N, S) Pa d (8.9)
UO:N-1 UN,SGSF,pa>0,d aGA

st. 8(XGoal - tT") < di (8.10)

where 8 is an m-by-two matrix:

cos(0) sin(0)

cos(') sin('"-)

8 = cos(" sin(m) -

Intuitively, as shown in Figure 8-3, 8(x - xT7) < d represents a regular m-sided polygon

centered at Xt whose circumscribed circle has the radius d. The constraint (8.10) requires

that XGoal is inside of the polygon. Since the objective function includes d, the optimizer

places T; so that the radius of the circle can be small. Observe that d is an approximation

of the distance between xT; and XGoal. Hence, XT; navigates towards the goal region in

145

order to reduce d.

Again, we use the Euclidean distance in the path planning domain. This heuristic is

applicable to other domains by using an appropriate definition of distance.

8.5.1 B. Guidance with obstacle avoidance

The distance-based guidance heuristic may not work when there are obstacles in the envi-

ronment. Consider a situation in Figure 8-5-(a), where there is a large obstacle between the

current position and the next goal. In such case, the vehicle may get stuck in front of the ob-

stacle as shown in Figure 8-5-(a), since it simply tries to minimize the distance between the

tip of the planning horizon and the next goal. We avoid this problem by running a global

path planner, such as Dijkstra's algorithm with a visibility graph, to place waypoints' at

the corners of the obstacles, as shown in Figure 8-5-(b). In the demonstration on the PTS

scenario in Chapter 11, we use the Kirk planner [51] to generate such waypoints.

(a) Xci (b)51oa

Figure 8-5: (a) The vehicle may get stuck in front of an obstacle when using the distance-
based heuristic. (b) This issue can be addressed by placing waypoints at the corners of the
obstacle.

Alternatively, more complicated guidance heuristic can achieve obstacle avoidance

without the help of a global path planner. Examples of such cost-to-go functions include

'Precisely speaking, we convert the waypoints generated by a global path planner into intermediate goal
regions.

146

Obstacle 7stacl7eml

the distance map [61] and the potential field [88]. However, application of such a complex

guidance heuristic is beyond the scope of this thesis.

C. Exclusion of Unreachable Obstacles and Goals

We introducing a technique to reduce the computational burden of p-Sulu by excluding

unreachable obstacles and goals. This technique is discussed extensively in Chapter 5 of

[61]. Here we present a brief overview of the technique.

Obstacle reachability Recall that an obstacle is represented by a disjunctive set of linear

constraints as follows (see Figure 3-1):

V hx Xg 3 0.
iEJ

Without loss of generality, we can assume that |h 1. Let Xcurrent be the current state,

and vmax be the maximum speed. The obstacle is unreachable if:

V h Xcurrent - 9 < -vmax - NEAt.

Note that NEAt is the duration of the planning horizon. The above condition means that

an obstacle is unreachable if at least one of the boundary conditions of the obstacle cannot

be violated within a planning horizon.

Goal region reachability Recall that a goal region is represented by a conjunctive set of

linear constraints as follows:

A hTx - gj < 0.
jA=r

Again, we assume that Ihj 1. Then, the goal region is unreachable if:

V h Xcurrent - 9j - Vmax NPAt.
jej

147

The above condition means that a goal region is unreachable if at least one of the boundary

conditions of the region cannot be satisfied within a planning horizon.

At each iteration, p-Sulu checks the reachability of all obstacles and goal regions, and

includes only the reachable ones in the optimization problem P7.

148

Chapter 9

Distributed CCQSP Planning with a

Convex State Space and a Fixed

Schedule

This chapter presents the market-based iterative risk allocation (MIRA) algorithm, which

solves the full-horizon CCQSP planning problem with multiple agents in a distributed man-

ner.

Multi-agent CCQSP planning has a wide range of applications, in addition to our main

motivating example, PTS. Consider as an example the problem of planning and control of a

power grid [12]. A power grid consists of a number of generators and electric transformers

whose control should be carefully planned in order to maximize efficiency. A significant

issue that arises for power grid planning is the uncertainty in demand for energy by con-

sumers. As the use of renewable energy, such as solar and wind power, becomes more

popular, uncertainty in supply increases due to weather conditions. Another example is

the Autonomous Ocean Sampling Network (AOSN) [93], which consists of multiple au-

tomated underwater vehicles (AUVs), robotic buoys, and aerial vehicles. AOSN should

maximize science gain while avoiding risks of losing vehicles that are exposed to external

disturbances, such as tides and currents.

The chance-constrained optimization problem is particularly made challenging when

multiple agents are coupled through a joint chance constraint, which limits the combined

149

probability of constraint violation by any of the agents in the system. In order to address

this issue, we extend the concept of risk allocation to multi-agent systems by using the

metaphor of risk as a resource that is traded in a computational market. The equilibrium

price of risk that balances the supply and demand is found by an iterative price adjustment

process called tatonnement (also known as a Walrasian auction).

Such a market process can be mathematically framed as a dual decomposition, which is

an extension of the method of Lagrange multipliers. In the dual decomposition framework,

the price of risk is represented by the dual value, or equivalently the Lagrange multiplier. A

central module of MIRA announces a price to the agents. Each agent computes its optimal

demand for risk at the price, and conveys the demand to the central module. Then, the

central module updates the price based on the balance of the supply and the aggregate

demand. The problem of finding the equilibrium price is mathematically framed as a root-

finding problem on the aggregate demand function, which also corresponds to the dual

optimization problem. The control sequence is obtained by solving an optimal control

problem with a price as a parameter. Such a control sequence is optimal at the equilibrium

price.

MIRA gives exactly the same optimal solution as the centralized optimization approach

since it reproduces the KKT conditionsi of the centralized approach. Although the algo-

rithm has a centralized part, it typically uses less than 0.1% of the total computation time.

We give a proof of the existence and optimality of the solution of our decentralized problem

formulation, as well as a theoretical guarantee that MIRA can find the solution. We also

provide a complexity analysis of MIRA to demonstrate its advantage in scalability over a

centralized approach.

'Although KKT conditions are necessary conditions for optimality in general, in our case they are neces-
sary and sufficient conditions for optimality since our optimization problem is convex.

150

9.1 Overview of Market-based Iterative Risk Allocation

9.1.1 Risk allocation for multi-agent system

We first present the concept of risk allocation for multi-agent systems intuitively, using

an example shown in Figure 9-1. The example involves a multi-agent system with two

unmanned air vehicles (UAVs), whose mission is to extinguish a forest fire. A water tanker

drops water while a reconnaissance vehicle monitors the fire with its sensors. The loss of

either vehicle results in a failure of the mission. Two vehicles are required to extinguish the

fire as efficiently as possible, while limiting the probability of mission failure to a given risk

bound, say, 0.1%. The water tanker can improve efficiency by flying at a lower altitude,

but it involves risk. The reconnaissance vehicle can also improve the data resolution by

flying low, but the improvement of efficiency is not as great as the water tanker. In such a

case a plausible plan is to allow the water tanker to take a large portion of risk by flying

low, while keeping the reconnaissance vehicle at a high altitude to avoid risk. This is

because the utility of taking risk (i.e. flying low) is greater for the water tanker than for the

reconnaissance vehicle.

Reconnaissance vehicle

Water tanker

Forest fire

Figure 9-1: Risk allocation for multi-UAV fire-fighting system. The water tanker is allowed
to fly low since it is allocated larger risk than the reconnaissance vehicle.

As shown in Figure 9-2, the risk allocated to each agent is reallocated internally to its

constraints. The control sequence is optimized so that it is consistent with the internal risk

allocation.

151

AUser specifies 0.1% Risk bound for system

ai tonnemen
Brent's method

Agent 1 Agent 2

0.08% 0.02 %
C

Constraint 3 - 0.01% Constraint 1 0.001%
Constraint 2 - 0.05% Constraint 2 -0.015%
Constraint 3 - 0.02% Constraint 3-0.004%

Control 1 - u = 0.1 Control 1 - u, = - 0.2
Control 2- u2= 0.8 Control 2 - U2= - 0.4
Control 3- u3= 0.5 Control 3 - U3= 0-1

Figure 9-2: Distribution of risk in MIRA. A: The user specifies the risk bound for the
multi-agent system. B: The specified risk bound is distributed among agents. C: Each
agent optimizes internal risk allocation. D: Each agent optimizes the control sequence so
that it is consistent with the internal risk allocation.

The optimal risk allocation for a multi-agent system can be found in a centralized man-

ner by applying the same algorithm as the single agent problems, such as IRA (Chapter

4), CRA (Chapter 5), or NIRA (Chapter 6). The objective of this chapter is to develop

a decentralized algorithm that finds the globally optimal risk allocation among multiple

agents.

9.1.2 Market-based risk allocation using titonnement

Our dual decomposition-based approach is interpreted intuitively as a market-based algo-

rithm. We assume a computational market that sells the risk specified in the joint chance

constrains; in the market, each agent demands risk in order to improve its own performance.

However, an agent cannot take risk for free; it has to purchase it from the market at a given

price.

Agents are price takers, meaning that each agent takes a price as an input, and computes

the optimal amount of risk to take (i.e., demandfor risk) by solving the optimization prob-

lem, where the objective function is the agent's utility minus the payment for the risk. The

optimal action sequence and the internal risk allocation are also determined by solving the

152

optimization problem, just as in the single-agent case described before. The demand from

each agent can be seen as a function of the price of risk (demand curve). Typically, the

higher the price is, the less each agent demands. Each agent has a different demand curve

according to its sensitivity to risk. The supplier of the risk is the user; she supplies the fixed

amount of risk by specifying the upper bound of risk that the multiple agent system can

take.

The objective of the market is to find an equilibrium price. At the equilibrium price,

the system utility, which is the sum of the utilities of all agents, is maximized. To this

end, the market iteratively adjusts the price so that the total demand (aggregate demand)

becomes equal to the supply. The equilibrium price is found by an iterative process called

tdtonnement or a Walrasian auction [92] as follows:

1) Increase the price if aggregate demand exceeds supply, or

decrease the price if supply exceeds aggregate demand.

2) Repeat until supply and demand are balanced.

In the classical titonnement approach, the price increment is obtained by simply multiply-

ing the excess aggregate demand by a constant. However, an upper bound value on this

constant that guarantees convergence is problem specific and hard to determine. The slow

convergence rate of the approach is also an issue.

We observe that finding an equilibrium price is a root-finding problem; the problem

is to find a price that brings the excess demand, which is a function of the price, to zero.

We solve the problem by Brent's method, a commonly-used root-finding algorithm with a

fast and guaranteed convergence [6]. At each iteration, the price increment is obtained by

computing one step of Brent's method.

Figure 9-3 gives the graphical interpretation of the market-based risk allocation for a

system with two agents. Assume that Agents 1 and 2 have different utilities associated with

the same risk, and hence have different demand curves. The aggregate demand curve is

obtained by adding the two demand curves horizontally. The supply curve is a vertical line

since it is constant. The equilibrium price p* lies at the intersection of the aggregate demand

curve and the supply curve. The optimal risk allocation for the two agents corresponds to

their demands at the equilibrium price (A* and A* in Figure 9-3).

153

In our approach, each agent is self-interested, meaning that it considers to minimize its

own cost. Nonetheless, it is proven in Section 9.3.2 that the cost of the entire system is

minimized at the equilibrium price, even though all the agents behave in a self-interested

way. The only information that the central module and the agents need to communicate in

each iteration is price and demand.

Aggregate
C.. demand curve

Demand from

*---------------D (p)D 2)2 Agent 2

D2i(P)

A* A* A Quantity D, S

Figure 9-3: Market-based risk allocation in a system with two agents. Note that we fol-
lowed the economics convention of placing the price on the vertical axis. The equilibrium
price is p*, and the optimal risk allocation is A* = Di(p*) for Agent 1 and A* = D2 (P*)
for Agent 2.

9.1.3 MIRA - Decentralized optimization of risk allocation

Our proposed algorithm, MIRA (Market-based Iterative Risk Allocation), concurrently op-

timizes risk allocation between agents, internal risk allocation of each agent, and action

sequences of each agent.

Figure 9-4 illustrates the Market-based Iterative Risk Allocation (MIRA) algorithm.

The tatonnement process is repeated until it converges to the equilibrium price. Risk is

not allocated until the algorithm converges. At each iteration, the optimal demand for risk

is computed by solving an optimization problem. The optimal action sequence and the

internal risk allocation for each agent are also obtained by solving the same optimization

154

problem (Step 2 in the Figure 9-4).

Risk bound (supply of risk): 0.1%

1. Auctioneer announces the price 2. Agents bid the demand for risk

P e-) 0.08%

My optimal plan:
P % ~U1=0.1, u2=0.2,... My optimal pla:0.04% u1=03, u2-0.5,...

Agents compute the
demand by solving the plan9 Poptimization problem

3. Auctioneer adjusts the price dengeroble icnxaeo

em4 n th e is capess c n d r s e a c e

coulin btwen aenshough statweed constaints stt-os ri lcpin isadrse

n C derom the icea s o

After conergne equilibriumc

shue94 Ilsrtoul be MIowelred m Optimis alae ris alloctio is rug

tiatonnement; their continuous action sequences are also optimized in the loop when com-

puting the demand at the given price.

9.2 Problem Formulation

MIRA solves in a distributed manner a CCQSP planning problem with convex state con-

straints and a fixed schedule. As described in Section 3.4, such a multi-agent problem is

formulated as Problem 4. In this chapter, we consider a special case where there is no

coupling between agents through state constraints; state-constraint coupling is addressed

in Chapter 10. In order to simplify the discussion, we assume for now that there is only one

chance constraint. We present the extension to multiple chance constraints in Section 9.6.

In order to define the multi-agent problem, we let

155

be the set of indices of M agents in the system. We use a superscript I to specify an agent.

We also let I1 be the set of state constraints imposed on the lth agent. In this chapter we

denote the overall risk bound by As, instead of A, in order to highlight that it corresponds

to the supply of risk. The multi-agent CCQSP planning problem discussed in this chapter

is formulated as follows:

Problem 14: Multi-agent CCQSP Planning Problem with a Fixed Schedule and a

Convex State Space

UMmY J1 (UO1:N-, Xl':N)m1in JG(N NM> -N (9.1)
O:Z-1ggN-M E

s.t. VtE T7,cLE, I AY + Bu + w1 (9.2)

Pr AA h 1xT. - gl < o > 1 - AS (9.3)
.lEL iGEl .

This problem formulation requires the minimization of the system cost (9.1), defined as

the total cost of individual agents J. Note that the joint chance constraint (9.3) requires that

the probability that all state constraints of all agents are satisfied must be at least 1 - As.

We use the risk allocation approach to solve Problem 14. Recall that, in Section 5.1, we

obtain Problem 9, the deterministic approximation of Problem 4, by using Corollaries 2 and

3. Likewise, we apply Corollaries 2 and 3 to Problem 14 in order to obtain the following

approximated deterministic optimization problem, defined on the mean state t':

Problem 15: Centralized deterministic optimization with decomposed chance con-

straints

156

min E J (U0:N-1 (9.4)
U1:_1eUN-M'61:M'~

s.t. Vt E T , G CE , 2 = A t' + B u (9.5)

AA h7Txt, - gl -n (o) (9.6)
EGL icI

t

Z Z As. (9.7)
IEL icIl

As we discussed in Section 5.1, the optimal solution to Problem 15 is a feasible and

near-optimal solution to Problem 14. It is not an exactly optimal solution since (9.7) is

a conservative approximation of (9.3). Problem 15 is tractable since it is a deterministic

convex optimization problem.

The new variable 61 > 0 is the risk bound imposed on the ith constraint of the lth agent.

We denote by o1 the risk vector of the lth agent:

Similar to before, m$(.) represents the width of the safety margin for the ith constraint of

the lth agents:

m - 2h'T1 h' erf 1(261 - 1) (9.8)

where erf-1 is the inverse of the Gauss error function. Recall that m4 (o1) is a convex,

monotonically decreasing, and non-negative function for o1 E (0, 0.5]. Also note that it is

strictly convex for o1 E (0, 0.5). Our assumption that As < 0.5 guarantees 1 < 0. 5.

Problem 15 can be solved in a centralized manner by the CRA algorithm, presented

in Chapter 5. In such a solution method, the control sequences and risk allocations of all

agents are optimized by a single solver. In this chapter, we seek a decentralized solution

method for Problem 15. For that purpose, we reformulate Problem 15 in the next section

so that optimization can be conducted in a decentralized manner.

157

9.3 Decentralization

We propose a decentralized method for solving Problem 15, based on a dual decomposition.

This method has each agent solve a decomposed convex optimization problem while a

central module solves a root-finding problem.

9.3.1 The Decentralized Optimization Approach

Each individual agent solves the following problem, Problem 16, which involves a convex

optimization:

Problem 16: Decomposed optimization problem for l'th agent

min J(UN- :N (9.9)
O.N 1 N,61>_O JIi'N-,''lN0:N-1s N l

s.t. Vt C T , + = At + Bln (9.10)

A h Ixt, - g < -m (6) (9.11)
iGI

1

where p > 0 is a constant given by the central module and shared by all agents. This

constant p can be interpreted as the price of risk, as discussed in Section 9.1.2. Problem 16

is completely decoupled from other agents, since it does not include the coupling constraint,

chance constraint (9.7).

Note that E.-1 oM, the total amount of risk the lth agent takes, is not bounded in Prob-

lem 16. Instead, the agent's objective function is penalized by the risk it takes with a fac-

tor p in (9.9). Given p, the agent finds o1*(p) that minimizes the penalized cost. Since

the total amount of risk that each agent takes is also a function of p, we denote it by

D'(p) := Ei1 ' o*(p). In Section 9.3.3, we will give a more formal definition of DI(p),

and prove that it is a single-valued, continuous, monotonically decreasing function. D' (p)

can be interpreted as the lth agent's demandfor risk given the price p.

The central module finds an optimal price p* that minimizes the system cost E1 J1

158

in (9.4). It turns out that the optimal price corresponds exactly to the equilibrium price,

which equalizes the aggregate demand and supply. In other words, the optimal price is the

solution to the following root-finding problem:

Problem 17: Root-finding problem for the central module

Find p > 0 where ZD'(p) = AS, (9.12)
1cL

where D' (p) is the demand of the lth agent at the price p, as defined above. We note that,

in a special case where p = 0, the optimal price does not correspond to the equilibrium

price 2 . We treat the special case separately.

9.3.2 Existence and Optimality of Decentralized Solution

The following theorem holds:

Theorem 2. (a) If Problem 16 has an optimal solution (Ui*, 61*) for all = 1= - M with

p* > 0 that is a root of Problem 17, then (Ul'*, 61:A*) is a globally optimal solution for

Problem 15.

(b) If Problem 16 has an optimal solution (Ui*, SI*) with p = 0 for all I = 1 ... M that

satisfies ECLe D'(0) < As, then (Ul'*, 61:I*) is a globally optimal solution for Problem

15.

In other words, this theorem states that if a decentralized solution (i.e., solution for

Problems 15 and 17) exists, then it is an optimal solution for the centralized problem (Prob-

lem 15).

Proof: We prove by showing that (Ul:I*, 61:i*) and p* satisfy the KKT conditions of

Problem 15. Although Problem 16 shares most of the constraints of Problem 15, it misses

(9.7). Therefore we need to pay attention to the KKT conditions that are related to (9.7)

2 This is because p = 0 satisfies the complementary slackness condition: p (D'(p) - As) = 0

159

and 6':

dm,
p 15 +-p = 0 (9.13)'dol

Z Z < As (9.1-4)
IEL iGEV

p(6 - As = 0 (9.15)
\lEL iGI /

p > 0 (9.16)

where pj and p are the dual variables corresponding to (9.6) and (9.7), respectively. The

KKT conditions are the necessary and sufficient conditions for global optimality of Problem

15 since J1 and ml are convex functions, and the equality constraint (9.5) is linear. The

optimal solution of Problem 16 (Ui*, 51*) satisfies (9.13) because it is also a part of the

KKT conditions of Problem 16. In the case of (a), 61:"* satisfies (9.14) and (9.15) since p*

is a root of (9.12). In the case of (b), (9.14) and (9.15) are satisfied since Ef, D'(0) < As

and p = 0. Since the cost function of the centralized optimization (9.4) is a sum of the

individual cost functions (9.9) and the constraints (9.5)-(9.6) are the same as (9.10)-(9.11),

the partial derivatives of the Lagrangians of Problem 15 and 16 respect to ul0N-1 and

x are the same. Therefore, their stationary constraints regarding to un.N-1 and x . are

the same. Problem 15 and 3 also share the same primary feasibility, dual feasibility, and

the complementary slackness conditions regarding to ul.N-1 and x since (9.5)-(9.6) and

(9.10)-(9.11) are the same.

Since all KKT conditions of Problem 15 are satisfied by (U1 1 *, 61:M*), which satisfies

the KKT conditions of Problem 16 together with p*, (U1 1 *, o1:m*) is an optimal solution

of Problem 15. 0

Recall that Theorem 2 guarantees the optimality of a decentralized solution. The fol-

lowing Theorem 3 guarantees the existence of a decentralized solution if there is an optimal

solution for the centralized problem.

Theorem 3. If Problem 15 has an optimal solution (UlI*, 1:M*)

(a) (Ui*, 61) is an optimal solution of Problem 16 for all 1 - ... M given p > 0, which

160

is a root of Problem 17, or

(b) (Ui*, 61*) is an optimal solution of Problem 16 for all 1 = 1 -M with p = 0 and

ElEcD'(0) < As.

Proof: The KKT conditions of Problem 16 are the necessary and sufficient conditions

for its optimality since J' and ml are convex functions, and the equality constraint (9.10)

is linear. Since the KKT conditions of Problem 16 are the subset of the KKT conditions

of Problem 15, the optimal solution of Problem 15 always satisfies all KKT conditions of

Problem 16 for all 1 -. M; hence it is an optimal solution of Problem 16. When p > 0,

it is a root of Problem 17 since the second term of (9.15) must be zero. When p = 0,

EKEED1(0) < As because (9.14) is satisfied. E

Although the following Lemma 10 is just a contraposition of Theorem 3, it is useful

when checking the feasibility of Problem 15.

Lemma 10. If both Theorem 3(a) and (b) do not apply, Problem 15 does not have an

optimal solution.

9.3.3 Convergence to the Optimal Solution

Although the existence of a decentralized solution is established by Theorem 3, it does not

specify how to find it. The objective of this subsection is to guarantee that the MIRA algo-

rithm converges to the solution. Recall that we use Brent's method to solve the root-finding

problem. The convergence of Brent's method is guaranteed for a continuous function.

Hence, it suffices to prove the continuity of the demand function D' (p) in order to guaran-

tee the convergence of MIRA. Additionally, we also prove in this subsection that D'(p) is

a monotonically decreasing function. This feature is important since it allows us to find the

absence of a root by checking the feasibility conditions at the boundaries.

We first derive the optimal cost as a function of a risk bound. Observe that the following

161

optimization problem gives the same solution as Problem 16:

mm mm J'(U':Nl1 t{N) + pA' (9.17)
Al <0.5 Ul:-1UN'61lo0

St. (9.10) - (9.11)

6 < Al (9.18)

Therefore, Problem 16 is equivalent to solving the following:

min Jl*(AI) + pA' (9.19)
A1 <0.5

where

Jl*(Al) = min J(U0:N -1 1:N) (9.20)
U1 EI1T'61 >-ut:N-1ENlg

s.t. (9.10) - (9.11), (9.18)

The conditions (9.10)-(9.11), (9.18) define a compact space. If it is non-empty, (9.20)

has a minimum since Jl(U0N-1, tl:N) is a proper convex function by assumption. We

denote by A' the smallest A' that makes (9.10)-(9.11),(9.18) non-empty. Then it is non-

empty for all A' > Ali since m (o1) is a monotonically decreasing function. Therefore

Jl*(AI) is a single-valued function for all A' > Ali. Since As < 0.5, any feasible solu-

tion of Problem 15 has A' < 0.5. Therefore we limit the domain of Jl*(A') to [A'in, 0.5]

without the loss of generality. The convexity of ml(6f) is implied by A' < 0.5.

Lemma 11. J*(Al) is a convex, monotonically decreasing function for its entire domain.

Proof: Let A' and A' be real numbers that satisfy Al Ai < A < 0.5. Since

larger A' loosens the constraint (9.18) by allowing larger o1, Jl*(A') > JI*(Al). Therefore

Jl* is monotonically decreasing.

Let A be a real scalar in [0, 1]. Let also U1* and U1* be optimal solutions of (9.20) with

162

A' and A', respectively. Note that we use an abbreviated notations:

U1* :=U e* N-1,1 N-1* .. U1,1]

U2 :nO N-1,2 02 N1,2

Since the feasible space defined by (9.10)-(9.11), (9.18) is convex, AUI + (1 - A)U1* is a

feasible (but not necessarily optimal) solution of (9.20) with AA1 + (1 - A)A'. Therefore,

J*(AAi + (1 - A)Al) < J'(AU'* + (1 - A)U'*)

< A J'(U*) + (1 - A) J1(U2)

AJ'*(A1) + (1 - A)J1*(A 2).

The second inequality holds since Jl(ul:N-1, I:N) is a convex function of Ul:N-1

It immediately follows from Lemma 10 that JI*(AI) is continuous, and differentiable

at all but countably many points.

We then prove the strict convexity for a portion of the domain of J'* where it is strictly

decreasing. We define Ajax as follows:

A' min [0.5,sup{Al I aJ'*(AI) < 0.}]

where OJI* is the subdifferencial of Jl*. The inequality means that all subgradients are less

than zero. See Fig. 9-5 for graphical interpretation.

Lemma 12. JI*(AI) is strictly convexfor all A' a < A' < A'ax-

Proof: Fix A', A', and A such that A' i < A' < A' < A' 0 < A < 1. Letm 2m - 1 2- max'

(U1* X* 61*) and (U*, Xl*, 6*) be optimal solutions of (9.20) with A' and A', respec-

tively. Note that we use an abbreviated notations:

U* 1 [,*T l*T]T

1*T mTT
* :=,2 .. XN12

1 :N,2

163

Also note that 1 * is linearly tied to U1* by (9.10). Since ml(of) in (9.11) is strictly convex,

Vi c Ih T (AXI + (1 - A)A <g - m1 (A6*1 + (1 - A)61*)

In other words, the constraints (9.11) are inactive for all i E I at AX + (1 - A)Xk (hence,

at AUI* + (1 - A)Ul*) and A6*1 + (1 - A)1*

Also, the following inequality holds:

J(AU'* + (1 - A)Ul*) > J*(AA' + (1 - A)A') > Jl*(Ai) J'(Ui*).

The second inequality follows from the mean-value theorem and the definition of Amax-

Note that by assumption, A > 0 (hence, AAM + (1 - A)A' < A') and A' < A'ax-

As for the first inequality, refer to the proof of Lemma 11. It is implied by (9.3.3) that

AU1* + (1 - A)Ul* is not a globally optimal solution; hence, it is not a local optimal

solution either.

Therefore, there exists a non-zero perturbation 6U' to AU1* + (1 - A)Ul* that satisfies

the constraints (9.11) with AXj* + (1 - A) 6*, and results in strictly less cost. Hence, we

have:

Jl*(A Ai + (1 - A)A2) < J'(AU'* + (1 - A)U* ±

<J(AU'* + (1 - A)U'*) < AJ'(U*) + (1 - A)J'(U2)

AJl*(A1) + (1 - A)J'*(A2). (9.21)

Therefore, Jl*(Al) is strictly convex for all A', < A' < Aax-

Since Jl*(Al) is strictly convex and monotonically decreasing, there is a unique mini-

mizer of (9.19) for p > 0. When p = 0, the optimal solution of (9.19) may not be unique.

Then, we define the demand function as follows so that D' (p) is a single-valued function

for all p > 0:

164

Ji*(Ai)

A D i (p) A'nax 0.5 0 Pmin Pnax P

Figure 9-5: Sketch of the functions J* (A') and DI (p) (demand function of lth agent). Note
that in many practical cases 'Amax = 0.5.

Definition: Demand function

arg mini <0 5 JI*(Al) + pA' (p > 0)
'AlaD (p) :=

Amax (p= 0)

This definition is natural since A' is an optimal solution for p = 0 if it exists. Moreover,

in such a case, A' is the smallest optimal solution. This feature is important since we

need to check the condition (9.14), which is equivalent to E1, D'(0) < As, against the

smallest optimal solution in order to tell if Theorem 2(b) applies.

Proposition 3: Continuity and Monotonicity of Demand Function

(a) D' (p) is a continuous, monotonically decreasing function for p > 0.

(b) D'(p) = A' for 0 p pin, and D'(p) = A' ia for p ;> pax

Proof: We define pi and pmax as follows:

p1max sup -DJ*(Al)

pmm inf -J*(A'), (9.22)
M'(Zrin Irnax)

where JI*(A') is the subdifferential of J'*.

We first prove the continuity and monotonicity in (plmin, pmax). Since D'(p) is the opti-

165

mal solution for (9.19), the following optimality condition is satisfied:

- p E 8J'* (D'(p)) . (9.23)

It follows from the Conjugate Subgradient Theorem (Proposition 5.4.3 of [15]) that

D'(p) E O(J*)*(-p)

where (J*)* is the conjugate function of J*. Since the minimum of Jl*(Al) + pA'

is uniquely attained, (J'*)* is differentiable everywhere, and hence continuously differ-

entiable, in (pmin,pnax) (Proposition 5.4.4 of [15]). Therefore D'(p) is continuous in

(piin,pmax). Also, since (J*)* is a convex function (Ch. 1.6 of [15]), D'(p) is mono-

tonically decreasing in (pfi, p1ax)-

Next, we show that D'(p) - Ajax for 0 < p < plin. When A'ax < 0.5, it follows

from the definition of Ajax and p that aJI*(Amax) = [0, -Pi']. Therefore, A is

an optimal solution of (9.19) for 0 < p < plin, since the optimality condition (9.23) is

satisfied. This result agrees with the definition of D'(p) at p = 0. When diax = 0.5,

it follows from (9.22) that plin < -OJ1*(,A) in (Amin, 0.5). Therefore, the minimum of

JI*(Al) + pAl is attained at the upper bound of A', which is A' = 0.5 = A' and hence

D'(p) = Amax. By definition, D'(0) = A ax. The continuity at p = 0 is obvious.

Then we show that Dl(p) = Ain for p > p' ax. It follows from (9.22) that pax >

-J 1 *(Al) in (A'i,, A'ax). Therefore, the minimum of Jl*(Al) + pA' is attained at the

lower bound of the domain of Jl*, which is A = A'min Therefore, D'(p) = mi

Finally, we prove that D'(p) is continuous at plin and Plax. Since D'(p) is constant

for 0 p < pmin and p > piax, we only have to show that it is upper semi-continuous

at plnin and lower semi-continuous at pnax. Consider a sequence Pk E (pmin, Pmax) with

Pk _ pmin. It follows from the definition of pmin (9.22) and the convexity of Jl* that we

can find a sequence D' such that

pk(E -9J* (D') , D -+ Aax

166

Since D' satisfies the condition for optimality for pk, D'(pk) Di. Therefore,

lim D'(pk) - Amax-
Pk--+pmin

Hence, D(p) is continuous at pl in. In the same way, it is lower semi-continuous at pa

Therefore, D1 (p) is a continuous, monotonically decreasing function for p > 0. U

See Fig. 9-5 for the sketch of D'(p).

9.4 The Algorithm

Now we present the Market-based Iterative Risk Allocation (MIRA), that finds the solution

for Problems 3 and 4. Algorithm 13 (see the box below) shows the entire flow of the MIRA

algorithm. Exploiting the fact that risk is a scalar, we use Brent's method to efficiently find

the root of Problem 17.

Algorithm 13 Market-based Iterative Risk Allocation

1: Each agent computes Ajax and A'.i;

2:~ Al < A'then2: if ElcL max -

3: p = 0 gives the optimal solution; terminate;

4: else if ElEE min > As then

5: There is no feasible solution; terminate;

6: else

7: while I EIL D'(p) - AS| > c do

8: The central module announces p to agents;

9: Each agent computes Dl(p) by solving Probl

10: Each agent submits D'(p) to the central mod

11: The central module updates p by computing

12: end while

13: end if

em 16;

ule;

one step of Brent's method;

167

9.4.1 Obtaining D'()(= na) (Algorithm 13, Line 1-3)

As we explained earlier, we need to treat the spacial case, p = 0, separately. To this end,

the algorithm first computes D'(0) (= A') in order to find if Theorem 2(b) applies. If so,

p = 0 is the optimal price. D'(0) is obtained through the following process:

1. Relax Problem 16 by fixing all risk bounds at o1 = 0.5. This relaxation makes

m1(61) = 0. The relaxed problem is a convex optimization problem with only linear

constraints, which can be solved efficiently. If it does not have a feasible solution,

Problem 16 is infeasible, and Problem 15 is also infeasible (Lemma 10). The algo-

rithm terminates in this case.

2. Compute oa* using the following equation with the optimal solution X * obtained

from the relaxed problem:

61* = cdf 1(h i - g1)

where cdf (-) is a cumulative distribution function of univariate Gaussian distribution

with variance h1T Exih, or in other words, the inverse of -ml(-).

3. Obtain D'(0) by:

D'(0) = min 0.5, E 6*

Each agent computes D'(0) and sends it to the central module. The central module

checks if K t D' (0) < As holds. If so, the optimal solution of the relaxed problem is the

solution of Problem 15 by Theorem 2(b). Proposition 3 guarantees that there is no positive

root of Problem 17, and hence, the algorithm terminates. Otherwise the algorithm looks

for a solution with p > 0.

168

9.4.2 Obtaining A$, (Algorithm 13, Line 1, 4, and 5)

Each agent also computes A' i by solving the following convex optimization problem:

Al. = min Al (9.24)mn Al<0.5,Ul 61 >-0
O :N-1

s.t. (9.10) - (9.11), (9.18)

If Ej: Alin > As, then it follows from Proposition 3 that EaG D'(p) > As for all

p > 0. In this case, since both Theorem 2(a) and (b) do not apply, there is no feasible

solution (Lemma 10), and the algorithm terminates. Otherwise, Proposition 3 guarantees

that a solution exists in (0, max, piax]- Pnax can be computed from the solution of the

optimization problem (9.24).

9.4.3 Finding a root for Problem 17 (Algorithm 13, Line 7-12)

If the algorithm has not terminated in the previous steps, we have EaG D'(0) > As and

EZii D'(Pmax) ; As. Therefore, the continuity of D'(p) (Proposition 3) guarantees that

Brent's method can find a root between (0, max, Pinax]. Brent's method provides superliner

rate of convergence [6]. It is suitable for our application since it does not require the

derivative of D'(p), which is generally hard to obtain. In many practical cases, it is more

efficient to incrementally search p that is large enough to make >Ej D'(Pmax) < As,

rather than initializing Brent's method with [0, max, P ax]-

The algorithm updates (Ul*, 61*) (hence, D'(p)) and p alternatively and iteratively. In

each iteration, each agent computes D' (p) (Line 9) in a distributed manner by solving

Problem 16 with p, which is given by the central module (Line 8). Since Problem 16 is a

convex optimization problem, it can be solved efficiently using interior-point methods. The

central module collects D'(p) from all agents (Line 10) and updates p by computing one

step of Brent's method (Line 11).

The communication requirements between agents are small: in each iteration, each

agent receives p (Line 8) and transmits D'(p) (Line 10), both of which are scalars.

The central module can be removed by letting all individual agents solve Problem 17

169

to update p simultaneously. However, since the computation of p is duplicated among the

agents, there is no advantage of doing so in terms of computation time.

9.5 Complexity Analysis

The purpose of this section is to demonstrate the advantage of MIRA over the decentralized

approach by comparing computational complexity. We show that the worst-case total com-

putational complexity of MIRA grows only linearly with the number of agents. Moreover,

when computation is distributed over all the agents, the worst-case parallel computational

complexity is constant. This is a clear advantage over the centralized approach, whose

worst-case complexity grows at least cubically with the number of agents.

We consider two kinds of complexity concepts in this subsection: total computation

complexity and parallel computation complexity. Roughly speaking, the total computation

complexity represents the computation time of the algorithm if all computation is con-

ducted by a single processor. The parallel computation complexity represents the computa-

tion time when the computation is conducted in parallel using the processors of all agents.

For ease of analysis, we assume that every agent owns the same number Nv of decision

variables and is subject to the same number Nc of constraints.

The following theorem presents the main result of this section:

Theorem 4. The worst-case total computational complexity of MIRA is 0(L |), where | |

is the number of agents. Moreover; the worst-case parallel computational complexity is

constant with |1.

Compare this result with the following:

Remark 1. The worst-case computational complexity of the centralized optimization of

Problem 15 is 0(|13-307 log 2 |L|), assuming that matrix inversion is computed by using

the Strassen algorithm.

Proof: MIRA has three computational layers. On the top is Brent's method, which is

run by the central module to solve the root-finding problem (Problem 17) to optimize the

price of risk (dual variable). The middle layer is the outer loop of an interior point method,

170

which is run by each agent to solve the decomposed convex optimization problem (Problem

16) to obtain an optimal control sequence. The bottom layer is the inner loop of the interior

point method, typically Newton's method, which is called by the outer loop (See Chapter 11

of [23] for the details of interior point methods). We evaluate the computational complexity

of MIRA by combining the complexity of the three layers. The computational complexity

of the centralized approach is obtained by considering the middle and the bottom layer.

Top layer: Brent's Method The complexity of the top layer of MIRA is constant be-

cause the root-finding problem (Problem 17) involves only one variable (the price of risk),

regardless of the number of agents. In fact, the number of iterations required for Brent's

method to solve Problem 17 depends only on the initial error and the numerical tolerance

[6], and is independent of the number of agents. This fact is empirically validated in Sec-

tion 11.1.11: as shown in Figure 11-21, the number of iterations of Brent's method is

almost constant at 40. Although the computation time per each iteration step grows with

the number of agents, the computation time of the top layer (< 50 milliseconds; see Figure

11-21) is negligible compared with the computation time of the middle and the third layers

(10-100 seconds; see Figure 11-20).

Middle layer: Outer loop of an interior point method Here we assume the use of a

specific form of iterator point methods, the barrier method, with a self-concordant cost

function. This assumption allows us to analytically obtain the following worst-case bound

on the total number of Newton steps:

Number of Newton steps < N = (v 1og 2 m/t()

where m is the number of constraints, t(0) is the initial coefficient of the logarithmic barrier,

and e is the tolerance on duality gap. See Section 11.5 of [23] for the derivation.

Bottom layer: Inner loop of an interior point method In each Newton step, the com-

putation of the inverse of the KKT matrix dominates the computation time. KKT matrix

is a (m + n)-by-(m + n) matrix, where n is a number of variables. The complexity of

171

inverting an N-by-N matrix is O(N 2 .so) when using the Strassen algorithm, which is a

typical choice for practical computations. Hence, the complexity of the bottom layer is

0 ((m + n)2.8 0 7)

Complexity of the Centralized Approach We first prove Remark 1. As mentioned pre-

viously, the centralized approach corresponds to solving Problem 15 by the middle and

the bottom layers of MIRA in a single process. Since every agent has Nv variables and

NC constraints by assumption, n = NvILI and m = NcLf|. Therefore, the worst-case

computational complexity is:

0 ((Nv + Nc)|1|}2 .8 07 I NclI log 2 (Ncl t(0))

Hence, the complexity regarding the number of agents |LI is:

0 (|2|3.307 10l 2 (|L|)) -

This result agrees with the empirical result in Section 11.1.11. In Figure 11-20, the

computation time of the centralized approach appears to grow about cubically with the

number of agents.

Complexity of MIRA We then prove Theorem 4 by combining the complexity of the

three layers. Recall that, in MIRA, every agent runs an interior point method with only its

own variables and constraints. Therefore, n = Nv and m = NC for each agent. Hence, the

worst-case computational complexity of the middle and bottom layers of each agent is:

0 ((Nv + Nc) 2.807 Ng10 2 Nc/t(o)

which does not involve the number of agents ILI. As mentioned before, the number of

iterations in the top layer is constant. Therefore, the worst-case parallel computational

complexity of MIRA is constant regarding | L1.

In MIRA, the parallel computation is conducted by ILI processors. Hence, the worst-

172

case total computational complexity of MIRA grows linearly with ILE.
U

Note that Theorem 4 is concerned with the worst-case bound. Practically, parallel

computation time typically grows with ILI, although significantly more slowly than the

centralized approach. In fact, in Figure 11-20, the parallel computation time of MIRA

appears to grow about linearly with the number of agents. This is because iterations must

be synchronized among all agents. When each agent computes its demand for risk by

solving the non-linear optimization problem, the computation time diverges from agent to

agent. In each iteration, all agents must wait until the slowest agent finishes computing its

demand. As a result, MIRA slows down for large problems, as the expected computation

time of the slowest agent grows.

9.6 Extension to Multiple Chance Constraints

This section presents an extension of MIRA that can solve a problem with multiple chance

constraints.

In such a problem, we consider multiple markets, each of which deals with each chance

constraint. Risks associated with different chance constraints are treated as different goods,

which are traded in the corresponding markets. Each risk has its price; each agent takes as

an input a set of the prices of all risks. At each iteration, each agent computes the demands

for every risk given the set of prices. The central module solves a multiple root-finding

problem to find equilibrium prices that equalize the aggregate demands and supplies at all

markets.

Let C be the set of chance constraints. A multi-agent CCQSP planning problem with

multiple chance constraints is formulated as follows.

173

Problem 18: Centralized deterministic optimization with multiple chance constraints

min EJ (U:N-1 :NA
us;N_16N-M'61:My-O1g

s.t. VtEU-lL Ti , i E E 2 +1

AA~h -Ttt g c < -m 1C(61 c)
cEC 1CL 6

AZ ,c <As
cEC 1CL iczl

where As is the risk bound for the chance constraint c.

We obtain a decentralized optimization method for Problem 18 in the same manner as

in Section 9.3. Let Pc be the price of risk with regard to the chance constraint c. At each

iteration, agents receive the prices Pc for all c E C, and solve the following optimization

problem:

Problem 19: Decomposed optimization problem for lth agent with multiple chance

constraints

(9.25)min E (J:-1:Np cmm EN61_ J'(UO:N-1, XIt':N) + S C (i' K
0O:N 1 EUN,1 ly CEc iEI

SAt. Vtc G1 + Blu

Ahl7itt2 - g~c < -T
~i C i01C

The main difference from the problem with a single chance constraint (Problem 16) is

the penalty term in the objective function (9.25). Each risk with regard to c penalizes the

objective function with a factor Pc; the objective function adds up the penalties regarding

all chance constraints.

Let p := {pc I c E C} be the price vector, which includes all prices. Given p, the agent

174

finds the optimal risk allocation j*p) that minimizes the penalized cost. We denote it by

D1(p) := 6 *(p) the lth agent's demand for risk regarding the chance constraint c.

In general, the prices are coupled in Problem 19, meaning that the price of one risk affects

the demand for other risks3 . Hence, D1 (p) is a function of a price vector.

The central module finds an optimal price vector p* that minimizes the system cost

Z1ef J1 in (9.25). As in MIRA with a single chance constraint, the optimal price vector

corresponds exactly to the equilibrium price vector, which equalizes the aggregate demands

and supplies at all markets. In other words, the optimal price is the solution to the following

root-finding problem:

Problem 20: Root-finding problem for the central module with multiple chance con-

straints

Find p >- 0 where 3D(p) =A, Vc E C.
leL

As in the single chance-constraint case, an optimal solution to Problems 19 and 20 is

guaranteed to be an optimal solution to Problem 18. Furthermore, if a solution to Problem

18 exists, then Problems 19 and 20 also have solutions.

However, the convergence guarantee in the single chance-constraint case does not apply

to the multiple chance-constraint case. This is because the root-finding problem (Problem

20) involves a vector p. Brent's method, the root finding algorithm used for the single

chance-constraint case, can only take a scalar variable. Instead, other root-finding meth-

ods, such as Newton's method or the subgradient method, are used to solve Problem 20.

Convergence of these root-finding methods can also be guaranteed, but with stronger con-

ditions than Brent's method in general. See [6] for further discussions on convergence.

31n economics terminology, the market has non-zero cross-elasticity of demand.

175

9.7 Conclusion

This chapter presented the MIRA algorithm, which can solve a full-horizon CCQSP plan-

ner with convex state constraints in a decentralized manner. We proved that MIRA gives

exactly the same optimal solution as the centralized optimization approach. We also proved

that MIRA converges to the optimal solution, if one exists. These theoretical results are

validated by simulations presented in Section 11.1.11. In the next chapter, we present a

receding horizon CCQSP executive, dp-Sulu, which can handle couplings through chance,

state, and temporal constraints in a decentralized manner.

176

Chapter 10

Distributed, Receding Horizon CCQSP

Execution

In this chapter we develop dp-Sulu, a distributed model-based executive that solves a multi-

agent plan (CCQSP) execution problem with a receding-horizon planning approach. We

consider the general form of the CCQSP execution problem (Problem 2), which includes

a non-convex state space and a flexible schedule. The three main challenges in distributed

CCQSP planning are how to decompose coupled temporal constraints, chance constraints,

and state constraints. These three challenges are overcome by three innovations: Multi-

agent Heuristic Risk Allocation, Bi-stage Robust Collision Avoidance, and Robust Feasible

Temporal Constraint Decomposition. Using the three methods, the central module of dp-

Sulu decomposes a coupled CCQSP into decoupled CCQSPs for each agent. Then each

agent executes its own CCQSP using p-Sulu, presented in Chapter 8.

For example, consider the multi-vehicle CCQSP planning scenario shown in Figure 10-

1-(a), where two aerial vehicles are going to land at the same airport. We assume that the

control tower allows Vehicle 1 to land first. See the temporal constraints in the CCQSP in

Figure 10-1-(b). Both vehicles take at least 10 time units to get to the airport, and must

land within 20 time units due to fuel constraints. In order for Vehicle 2 to land safely, the

two landings must be separated by an interval of at least four time units. Such a temporal

constraint introduces coupling since it involves the two vehicles. The CCQSP specifies

four chance constraints. The first two, ci and c2, require each vehicle to stay away from

177

the no-fly zone with the probability of A' and A', respectively. The third one, c3 , requires

that the two vehicles arrive at the airport within the temporal bounds with the probability

of AD- Such a chance constraint introduces coupling since the risk is defined over the

two vehicles. See the fire-fighting scenario in Section 9.1 for another example of coupled

chance constraints. The fourth chance constraint, c4, requires that the two vehicles do not

collide with each other with the probability of Ac. Such a chance constraint involves a

coupled state constraint, since collision avoidance requires the two vehicle positions to be

separated from each other by a certain margin.

(a) Vehicle 1

Vehicle 2Air ort
zone

110 201
(b) Vehicle I ends in

IAirport]

nCoupling through
Vehicle 1 remains e, temporal constraint
in [Safe Region] llo

110 201

eVehicle 2 ends in eE[Airport]

Vehicle 2 remains Coupling through
In [Safe Region] chance constraint

0 ' =0.1%

AvW zo" 16 nC2 A , = 0. 1%
Coupling through Chance constraints: _

state constraint C3 AD =1%
C4 AC = 0.0001%

Figure 10-1: A sample multi-vehicle CCQSP planning scenario where two vehicles must
land at the same airport with at least four minutes intervals. Two vehicles are coupled
through state, temporal, and chance constraints in this scenario. "Safe Region" means the
entire space except the no-fly zone.

Figure 10-2 shows the overall architecture of dp-Sulu. Like the Market-based Itera-

178

tive Risk Allocation (MIRA) algorithm presented in the previous chapter, dp-Sulu consists

of a centralized and decentralized part. A central module, which executes the centralized

portion of dp-Sulu, takes a CCQSP with coupled constraints as an input, and outputs CC-

QSPs with decoupled constraints for each agent. Each agent takes the sub-CCQSP as an

input, and outputs its own control sequence and schedule by using p-Sulu. The decoupled

CCQSPs are updated by the central module at every planning cycle. Since the most com-

putationally intensive part of dp-Sulu (MILP optimization) is distributed among the agents,

its scalability is significantly improved compared to the centralized CCQSP execution.

Central module Agent 1

C Multi-agent Heuristic Risk Allocation p (Cu,

(Decomposing chance constramtsn

Agent 2

Agent 3
Robust Feasible Temporal Constraint -,

Decomposition (Decomposing temporal constraints) p-Sulu-

Figure 10-2: Structure of the dp-Sulu algorithm

The central module of dp-Sulu decomposes a coupled CCQSP by using three innovative

methods. See Figure 10-2 for the three types of couplings and the three decoupling meth-

ods. Firstly, coupled chance constraints are decomposed by the Multi-agent Heuristic Risk

Allocation approach, which is an extension of the Heuristic Risk Spending approach pre-

sented in Sections 8.2.2 and 8.4. Secondly, coupled state constraints (collision avoidance

constraints) are decomposed by the Bi-stage Robust Collision Avoidance (BRCA) method.

In BRCA, each agent solves the path planning problem without the collision avoidance

constraints in the first iteration. If the resulting solution satisfies the collision avoidance

constraints, the agents executes the control sequence of the solution. Otherwise, the central

module constructs decomposed chance constraints using the solution of the first iteration,

and each agent plans the path again with the decomposed constraints. Finally, coupled

temporal constraints are decomposed by the Robust Feasible Temporal Constraint Decom-

position approach. This approach takes a set of simple temporal constraints as an input,

179

and outputs a set of absolute temporal constraints for every agent. The absolute temporal

constraints impose temporal bounds on the execution time of each atomic event, instead of

the duration between two events. Therefore, each agent can execute its own events inde-

pendently from the execution schedules of other agents.

As with p-Sulu, computation time and solution feasibility is more important than opti-

mality for dp-Sulu, since it runs in real time. The computation time at every planning cycle

must be within the planning horizon, and the obtained solution must be feasible. For this

purpose, we design dp-Sulu so that it does not require agents to iteratively solve planning

problems. In dp-Sulu, each vehicle has to solve p-Sulu at most twice, and the resulting

solution is guaranteed to be feasible.

10.1 CCQSP for Multi-agent Problems

The CCQSP, defined in Section 2.4.3, is expressive enough to describe plans that involve

any number of agents. However, we find it is more convenient to define substructures of

CCQSP when expressing a multi-agent plan. More specifically, these substructures divide

episodes and chance constraints that are specific to an individual agent, and those that

couple to multiple agents. Note that the introduction of the CCQSP substructures does not

extend or reduce the expressiveness of a CCQSP.

We consider a multi-agent problem with M agents. The state vector xt E RN of the

multi-agent problem consists of the state vectors of all agents:

xt

2xt

XMLxtJ

The superscripts represent the indices of the agents. We denote by X1 the subspace in RN

that involves the components of x1 . Hence, x E X 1 and [] X1 = RN

Recall that a CCQSP is a four-tuple P = (S, A, T, C), where E is a set of discrete

events, A is a set of episodes, T is a set of simple temporal constraints, and C is a set of

180

chance constraints. Below, we define substructures of A and C.

10.1.1 Categorizing Episodes

We consider the following categories of episodes.

* A' C A: A set of episodes that only involve the lth agent.

* Ac C A: A set of episodes that involve multiple agents.

In other words, episodes in A' impose constraints that are decoupled from other agents,

while episodes in Ac impose state constraints that are coupled. We refer to the chance

constraints in A' and Ac as decoupled episodes and coupled episodes, respectively.

There are four decoupled episodes in Figure 10-1: "Vehicle 1 ends in [Airport]" and

"Vehicle 1 remains in [Safe Region]", which are categorized to A', and "Vehicle 2 ends

in [Airport]" and "Vehicle 2 remains in [Safe Region]," which are categorized to A'. The

"Avoid collision" episode is an example of a coupled episode that is categorized into Ac.

More formally,

A' : E{aE A |Vk i RaO Xk - Xk}.

Ac := {a E A V a A'}.

In other words, an episode a is categorized into A' if and only if its state constraint does

not constrain the values of the states of other agents than 1. An episode a is categorized into

Ac if it does not belong to any of A%.

Among various types of coupled episodes Ac, our particular interest in this chapter is

collision avoidance. A collision avoidance is a special case of the remain-in episode, where

the feasible region is the entire space except a hyperdimensional obstacle that contains the

origin point.

10.1.2 Categorizing Chance Constraints

In this section we classify the chance constraints in C into the following four categories:

181

Ci C C: Chance constraints that involve only decoupled episodes of the lth agent.

* CD C C: Chance constraints that involve only decoupled episodes but multiple

agents.

" Cc C C: Chance constraints that involve only coupled episodes between multiple

agents.

" CM C C: Chance constraints that involve both coupled and decoupled episodes.

In Figure 10-1, ci E C' and c2 C C2, since they only involve a single vehicle. c3 is an

example of a chance constraint categorized into CD. Such a chance constraint introduces a

coupling between the two vehicles, although its episodes (state constraints) are decoupled.

When we say "a coupling through chance constraints," we refer to a coupling between

agents caused by the chance constraints in this category. This type of chance constraints is

also considered in Section 9. The collision avoidance requirement c4 is classified into Cc.

Such a chance constraint involves coupled episodes, which introduces a coupling through

state constraints. We don't consider chance constraints in Cm in this chapter, in order

to simplify the discussion. It is straightforward to extend the Bi-stage Robust Collision

Avoidance approach, explained in Section 10.4, to such chance constraints.

Recall that a chance constraint c is a pair (Te, Ac), where Tc C A is a set of episodes

associated with the chance constraint c, and Ac is a user-specified risk bound (Definition

13 in Section 2.4.3). The four categories are formally defined as follows:

C :={c E C | Te C A'}
M

CD := c E C I V1 c CI, c UA
i=1

Cc : {c E C | Te C Ac}
M

Cm :={c E C | c UC UCD UCc}.
1=1

A single-agent chance constraint in C1 only involves decoupled episodes of a specific agent.

A chance constraint in CD involves decoupled episodes of multiple agents. A chance con-

182

straint in Cc involves coupled episodes. Any chance constraints that do not belong to the

above three categories fall into Cm, which involves both coupled and decoupled episodes.

10.2 dp-Sulu Algorithm Overview

We outline the dp-Sulu algorithm in Algorithm 14.

As discussed in the introduction, agents can be coupled in three ways: by sharing

chance constraints in CD, by sharing episodes (state constraints) in Ac (hence, sharing

chance constraints in Cc), or by sharing simple temporal constraints in T. These couplings

are decomposed by the three new methods proposed in this chapter, as shown in Figure

10-2.

The coupled chance constraints, CD, are handled by the Multi-agent Heuristic Risk

Allocation approach. Multi-agent Heuristic Risk Allocation takes a set of coupled chance

constraints as an input, and outputs a set of decomposed chance constraints for every agent,

CAI, with a feasible risk allocation among agents (Line 4 in Algorithm 14). The Multi-

agent Heuristic Risk Allocation approach is explained in detail in Section 10.3.

Bi-stage Robust Collision Avoidance (BRCA) addresses the coupling through state con-

straints (collision avoidance constraints). In BRCA, each agent solves the path planning

problem without the collision avoidance constraints in the first iteration (Line 8). We call

the resulting solution (fI i4MA) the candidate solution. If the candidate solution sat-

isfies the collision avoidance constraints, the executive executes the control sequence of

the candidate solution (Line 12). Otherwise, the central module constructs decomposed

chance constraints C', which involves decomposed episodes C' , using the candidate so-

lution. Each agent plans the path again with the decomposed constraints (Line 18). We

call the new solution the adjusted solution. The adjusted solution is guaranteed to satisfy

the collision avoidance constraints. Hence, each agent executes the control sequence of the

adjusted solution (Line 12). The BRCA approach is explained in detail in Section 10.4.

Simple temporal constraints, T, couple agents essentially because they are relative con-

straints, meaning that they impose upper and lower bounds on the duration between the

execution times of two events. The Robust Feasible Temporal Constraint Decomposition

183

approach derives a set of absolute temporal constraints for each agent, denoted by T' in

Figure 10-2, by solving a linear programming. The set of absolute temporal constraints is a

sufficient condition of the original simple temporal constraints. This approach takes a set of

simple temporal constraints T and a partially assigned schedule o- as an input, and outputs

a set of absolute temporal constraints for every agent, Tl (Line 5). The absolute tempo-

ral constraints impose temporal bounds on the execution time of each atomic event. The

linear programming problem is guaranteed to have a feasible solution if the given simple

temporal constraints are feasible. Our approach is suitable for real-time execution because

it does not involve iteration or backtracking. The Robust Feasible Temporal Constraint

Decomposition approach is explained in detail in Section 10.5.

10.3 Multi-agent Heuristic Risk Allocation: Decomposi-

tion of Chance Constraints

In this section, we present the Multi-agent Heuristic Risk Allocation approach, which de-

composes coupled chance constraints with decoupled episodes CD. The implementation

of the MultiAgentHeuristicRiskAllocation function in Line 4 in Algorithm 14 is shown in

Algorithm 15. The algorithm is explained in detail later in this section.

Recall that we developed a heuristic risk spending approach in Section 8.4, which al-

lows an agent to take risk at an approximately uniform rate over time. We extend this

approach to a multi-agent problem. The amount of risk the multi-agent system can take

at each planning cycle is determined by the heuristic risk spending approach. Then, the

agents divide that portion of risk in proportion to the remaining distances to the goal. For

example, in Figure 10-3, Vehicle 2 is allocated a larger portion of risk since it has a longer

distance to the goal.

More formally, a coupled chance constraint with decoupled episodes, c E CD, is de-

scribed as follows:

M
Pr A A hTxl g < 0 > 1 - AD,

[=1 iCIzs)

184

Algorithm 14 dp-Sulu algorithm

function dp-Sulu(ccqsp = (S, A, T, C))

1: AA - AD;
2: o 1 (eo) = 0 //Initialize the schedule
3: while eE in ccqsp is not executed do
4: C'j" +- MultiAgentHeuristicRiskAllocation(CD); /Decompose coupling chance

constraints
5: Ti"' & RobustFeasibleTemporalConstraintDecomposition(T, al:M); //Decom-

pose coupling temporal constraints
6: for l = 1 -.. M do
7: ccqsp' <- (S, A, T, C, U C)

8: (,i A',c) <- agent[l].runPSulu(ccqspl); //Obtain a candidate solution

9: end for
10: if ;lm satisfies all chance constraints in Cc then
11: for l = 1 -.. M do

12: agent l].execute(i4);
13: end for
14: else
15: (C1 Al-f) <- DecomposeCollisionAvoidanceConstraint(Cc, z l); //Decom-

pose coupling state constraints
for 1 = 1 -M do

ccqsp' (E A' U A'cTC' U Cl U C)

(xo, u , a-, Ac) <- agent[l].runPSulu(ccqspl); /Obtain an adjusted solu-

tion
agent[l].execute(ut);

end for
end if
for c E CD do

A, - AC - Ez'c
end for

end while

where I is the index of agents and AD is the risk bound. At the beginning of the algorithm,

we set the available risk AA equal to AD (Line 1 in Algorithm 14). At the nth planning

cycle, dp-Sulu allocates the A"' of risk for the current planning horizon using the following

rule:

= min (dorizon-) An (10.1)

(E=1 NGoal

where 0 < # < 1 is a constant, M is the number of agents, dGoal is the distance from the

current position to the final destination, and dhorizon is the maximum distance the vehicle

can travel in the nth planning horizon. Refer to Equation (8.7) for the derivation of dhorizon.

185

Algorithm 15 Implementation of MultiAgentHeuristicRiskAllocation function in Line 4
of Algorithm 14
function MultiAgentHeuristicRiskAllocation(CD)

1: for c E CDdo

2: for I = 1 -.. M do
3: AP' 4- min orz A;

(=1 d(,)l

4: <- {a E a E A ;

5: Cl <-_ Cl U (DAg)

6: end for
7: end for
8: return CDIj

Equation (10.1) corresponds to Line 3 in Algorithm 15.

The rationale behind the heuristic (10.1) is as follows. The available risk AA should be

distributed among the agents according to the remaining distance to the final destinations.

Hence, let A' be the risk that should be allocated to the lth vehicle, and

di
Al = MGoal A (10.2)

1=1 dGoai

Then, a portion of A' should be allocated to the current planning horizon in proportion

to the ratio of the maximum length of the path within the current planning horizon to the

distance to the lth agent's final destination:

A d orizonAl. (10.3)
Goal

By substituting (10.2) into (10.3), we have:

~ or~ zo An

zl=1 Goal

The constant # in (10.1) imposes an upper bound on the risk allocation at each planning

horizon.

The episodes involved in the chance constraints in CD are decoupled from the begin-

ning. For each agent, dp-Sulu constructs decomposed chance constraints by combining the

decoupled episodes and the risk allocation Ang' (Lines 4 and 5). The function returns the

186

AA : Available risk

d"; _~ d',,a
Horizon ~ _= m in Horizon ,

A A d(0,a +d2 '., 2
IP 1

= min dinon _0Vehicle 1 A d'oal 2A, dG +d(;.,' 2

- doal

Reachable state region within Goal-I
the current planning horizon Goal-2

An,2x 2

dGoal

Vehicle 2 d2
Horizon

Figure 10-3: Multi-agent Heuristic Risk Allocation

set of decomposed chance constraints (Line 8). As with p-Sulu, the available risk bound is

reduced by the amount of risk allocated to the execution horizon at every planning cycle.

This operation is implemented in Line 23 of Algorithm 14.

Next, we consider the coupling state constraints.

10.4 Bi-stage Robust Collision Avoidance: Decomposition

of State Constraints

In this section, we present the Bi-stage Robust Collision Avoidance (BRCA) approach that

decomposes a chance constraint in Cc, which is defined over coupled state constraints Ac.

In order to simplify the mathematical discussion, we assume that there is only one chance

constraint in Cc, with a risk bound Ac. The full algorithm that can handle multiple chance

constraints in Cc is shown in Algorithms 14 and 15. Since our main application is vehicle

187

path planning, we particularly consider robust collision avoidance constraints.

The outline of the BRCA approach is shown in the flow chart in Figure 10-4. At the

first iteration, each agent solves the path planning problem without the collision avoidance

constraints in order to obtain a candidate solution. If the candidate solution satisfies the

collision avoidance constraints, the executive executes the control sequence of the candi-

date solution. Otherwise, the central module constructs decomposed collision avoidance

constraints C&. Each agent plans the path again with the decomposed constraints in order

to obtain an adjusted solution. The control sequence of the adjusted solution is executed by

each agent.

Obtain candidate solution
-1'-1

Candidate solution
satisfies collision No

avoidance
constraints? Obtain adjusted solution

xx ,u

Yes
(

Apply Apply (x

Figure 10-4: Multi-agent Heuristic Risk Allocation

The BRCA approach is implemented in Lines 6 - 21 of Algorithm 14. The imple-

mentation of the DecomposeCollisionAvoidanceConstraint function in Line 15 is shown in

Section 10.4.3.

Suppose there are M agents, and superscripts k and 1 represent the indices of the agents.

The constraint we consider in this section is represented as follows:

Pr [A k / yh'(x' - x') 2 gi > 1 - (10.4)

-1<k<M 1<1<k t ET" i

188

where A' is the risk allocated to the current planning horizon. As before, An is found

heuristically as follows:

S=mind horizon

dGoal
(10.5)

Note that the numerator of (10.5) includes the summation of dorizon of all agents. This is

because the collision avoidance constraint (10.4) involves the state variable of all agents.

The chance constraint (10.4) requires that any two vehicles in the system satisfy the

constraint

(10.6)V h(xk - x) > gi

for all time steps within the planning horizon with the probability of 1 - An. Figure 10-5

illustrates the constraint (10.6). hi h4 are four direction vectors. The state constraint

hT(Xk -- xI) > gi requires that the distance in the directions hi is more than gi. We have

a disjunction in (10.6) since at least one of these constraints must be satisfied in order to

avoid collision.

Vehicle 2

I h(xt -x)

Vehicle 1

h (xI - x2)

Figure 10-5: Robust collision avoidance constraint

Note that the state constraint

state variables of the two agents.

h(k - xl) > gi couples two agents since it includes the

189

10.4.1 Risk allocation approach

As always, we apply the risk allocation approach to (10.4) to obtain:

A A A V hT(t _-l > g, + m4 k,1(60) (10.7)

1<k<M 1<1<k tE T" i

' (10.8)
1<k<M 1<1<k t ET"

where

m () = - 2hT (E, + E)hi erf- 1(26t' - 1). (10.9)

Note that the covariance of x k - x1 is Ek + E,1. Corollary 4 in Chapter 6 guarantees that

the solution that satisfies 10.8 always satisfies 10.4. Hence, the constraint (10.4) can be

safely replaced with (10.8).

In the newly proposed Bi-stage Robust Collision Avoidance (BRCA) approach, each

agent finds its own paths that satisfy the constraint (10.4) by solving p-Sulu problem at

most twice, as illustrated in Figure 10-6.

Vehicle 2 h2

~h3 hi

2X

2 v

g2
2 2

Candidate solution
Vehicle 1 Adjusted solution

Figure 10-6: Overview of the Bi-stage Robust Collision Avoidance (BRCA) approach. If
the candidate solutions do not satisfy the collision avoidance constraint, it deviates the
solutions to create enough safety margin.

190

10.4.2 First Iteration

In the first iteration, each vehicle solves its own problem without imposing the collision

avoidance constraint (10.7) and (10.8) (See Algorithm 14, Line 8). As a result, each agent

obtains a candidate solution (1:M, i:M), which is reported to the central module. The

dashed lines in Figure 10-6 represent the candidate solution.

Then, the central module evaluates whether the candidate solution satisfies the collision

avoidance constraint (10.4). There are two evaluation methods:

1. Numerical evaluation of (10.4) using a Monte-Carlo simulation

2. Analytical evaluation of the approximated constraints (10.7) and (10.8)

The analytical evaluation is more conservative but computationally efficient than the nu-

merical evaluation.

If the candidate solution satisfies the collision avoidance constraint, each agent executes

its own control sequence of the candidate solution i (Line 12).

10.4.3 Second Iteration

Computation of minimum conflict direction If the candidate solution does not satisfy

the collision avoidance constraint, the central module decomposes the collision avoidance

constraint, and each agent solves a p-Sulu problem again with the decomposed constraint.

Roughly speaking, the decomposed collision avoidance constraints can be considered as

an imaginary "wall" between the two agents. The thick horizontal line in Figure 10-6

represents the wall. It goes through the midpoint of the two vehicles' location in the can-

didate solution at each time step. The "wall" is perpendicular to the direction vector hk'*

that maximizes the probability of satisfying the individual chance constraint (10.7). More

specifically,

kh * := h1* (t,k,1),

191

where the index i*(t, k, 1) is chosen for each t, k, 1 such that

i*(t, k, l) :=arg max Pr hT~i-i); i

1 hi t - ;i) - giarg max - 1 + erf (. (10.10)
2 2h((Ex + Exi)hi

In the example of Figure 10-6, hl, 2* = h2 . Intuitively, hkl* is the direction in which the

minimum deviation is required for the candidate solution, in order to satisfy the collision

avoidance constraint. Hence, we refer to h * as the minimum conflict direction. We denote

by m't*(-) the safety margin function in the minimum conflict direction:

Decomposed collision avoidance constraint For every (t, k, 1) such that k > 1, the cen-

tral module imposes the following constraint on the vehicle k:

h k,l*T X/ gi +IMkl
h ('* 2 + mi'(7t,),(1.)

while it imposes the following on the vehicle 1:

ik -

ht' -* 2 2 t xk --) + mk,l*(,). (10.12)

In the example in Figure 10-6 where k = 1 and 1 2, (10.11) requires Vehicle 1 to

stay above the "wall" with the margin L + 1 m*k() at the time step t, while (10.12)

requires Vehicle 2 to stay below the wall with the margin 2 + 1m k,l* (71,) at the same

time step. Note that the midpoint of the candidate solution is a constant. Therefore,

(10.11) only involves variables associated to the kth agent, while (10.12) only involves

variables associated to the lth agent. Hence, these constraints are handled by each agent in

a distributed manner.

It is very important to note that both (10. 11) and (10. 12) share the same safety margin

function im i'*(.), instead of using the safety margin based on their own covariance. In

192

other words, although xt has the covariance Ez,, the safety margin is computed using

a different covariance (Ek + Exi)/4. This covariance is typically smaller than the real

covariance. This mathematical trick plays an important role in proving later that the de-

composed collision avoidance constraints (10.11) and (10.12) are the sufficient condition

of the original collision avoidance constraint.

The newly introduced variable 7y; is a pseudo risk bound of collision. Although the

pseudo risk bounds are in a very similar form to the risk bounds, they do not have physical

meaning since each vehicle assumes a different covariance than the real one. Note that

kyb, which belongs to the kth vehicle, is a different variable than , which belongs to the

lth vehicle. The two pseudo risk bounds k tI are independent from each other, hence

allowing the two agents to optimize pseudo risk allocation in a distributed manner.

Each vehicle k is allowed to optimize its pseudo risk allocation yti with the following

constraint:

7 i , (10.13)
1st-k tETn

where the set L-k is defined as follows:

L-k := {1 -.. k - 1,k + 1 - MI}.

The constant F1 c'k is the pseudo risk allocated to the kth vehicle for the nth planning hori-

zon. The central module is responsible for allocating the pseudo risk among the agents so

that
M

ZFk < 2 A. (10.14)
k=1

Note that the summation of the pseudo risk over all agents is bounded by the double of the

overall risk bound. This factor is essential in the feasibility proof (10.19).

Then the second iteration replans the path with the decomposed collision avoidance

constraints C5 that require the two vehicles to stay on the different sides of the "wall" with

sufficient safety margins (Line 18). We call the new solution the adjusted solution, which

is represented by the solid curves in Figure 10-6. The second iteration moves the path from

the candidate solution so that the two vehicles stay away from each other with a necessary

193

margin in between. The adjusted solution is guaranteed to satisfy (10.4). Hence, each agent

executes the control sequence of the adjusted solution (Line 12).

The following equations summarize all the constraints imposed on the kth agent:

S >* - + ± km'*(7) (10.15)
1<1<k-1 t ETn

A 1< h -thl*T t + m) '* k (10.16)
k+1<1<M tETn 2

7 < c'jW (10.17)
1sL-k tET"

Algorithm 16 shows the implementation of DecomposeCollisionAvoidanceConstraint

function in Line 15 of Algorithm 14. The coupled collision avoidance episode is decom-

posed by using (10.15) and (10.16) (Line 3). The risk bound for each vehicle is allocated

by Line 4, using the Multi-agent Heuristic Risk Allocation presented in the previous sec-

tion. The factor of 2 in the left-hand side corresponds to (10.14). A decomposed chance

constraint is constructed for each agent in Line 5, and returned in Line 8.

Algorithm 16 Implementation of DecomposeCollisionAvoidanceConstraint function in
Line 15 of Algorithm 14
function DecomposeCollisionAvoidanceConstraint(Cc)

1: for c E CD do
2: for l =1 -. M do
3: <DV +- (10.15) A (10.16);

4: r - m in o ,i#)Ac;
CY=1 dGoal

5: C1 <- C1 U (<D), I);

6: end for
7: end for
8: return CAIm

10.4.4 Proof of BRCA Feasibility

The following theorem holds:

Theorem 5. If a solution satisfies (10.14), (10.15), (10.16), (10.17) for all agents (k

1 - - -M), the solution satisfies the collision avoidance constraint (10.4).

194

Proof: Since (10.7) A (10.8) is a sufficient condition of (10.4), it suffices to prove that

Vk(10.14) A (10.15) A (10.16) A (10.17) -> (10.7) A (10.8).

Note that satisfying (10.15) and (10.16) for all k is equivalent to satisfying (10.11) and

(10.12) for all combinations of (k, 1) such that k < 1. Using (10.10), we have

(10.7) S A A VPr [h T(Xx) ; g] > 1 -6,l
1<k<M 1<1<k t ET" i

<- A A A maxPr [hT(xf-xo) ;gt] > 1 - '
1<k<M 1<1<k t &T

- A A A Pr [h!'*T(Xo - x1) > g] 1 - 6k
1<k<M 1<<k t E T g

<- A nht * (2 -2) t; m*o')
1<k<M 1<1<ktET n

(10.18)

The bound on the left-hand side of (10.18) is found by using (10. 11) and (10. 12) as follows:

ht t t - gi
gih T(X

1 Mkl*_k
>-2 \t t J)

> Mt'~

gi:h(bkx

k 1*

_ kl+ 'Yt,k

2

k 1*
The last inequality is derived from the convexity of mt' . Therefore, (10.18) is satisfied by

setting

k,1 _ tl + -yt,k
2

195

,i:k ;- It + Vt

2 t)

and hence (10.7) is satisfied. Such ot'" also satisfies (10.8) because

<
1<k<M

t

1<1<k tcETna 1<k<M 1<1<k tST
k

1+ -Yt, k

2

k

1<k<MIGL-kt'cTI

Fn,k

1<k<M

An (10.19)

See Figure 10-7 to understand the conversion from the first line to the second line. We use

(10.17) to bound the second line by the third line, and (10.14) to bound the third line by the

fourth line. M

I<< I <k

I1kM 1i<k

Figure 10-7: Conversion from the first line of (10.19) to the second line

Intuitively, in Figure 10-6, the proof shows that the combined margin of the decom-

posed collision avoidance constraint

±i mt' i J~) Yi mn jQ-4 tk)
2 2 2 2

is thicker than the margin in the original collision avoidance constraint gi + mtk' (6f') by

setting
k 1

6k,l _7t l + 'Y,k

t 2

196

10.5 Robust Feasible Temporal Constraint Decomposition

Recall that the distributed CCQSP execution requires decoupling chance, state, and tempo-

ral constraints. We addressed the problem of decoupling chance and state constraints in the

previous two sections. In this section we present the Robust Feasible Temporal Constraint

Decomposition approach, which decouples temporal constraints.

Recall that simple temporal constraints are relative constraints that impose upper and

lower bounds on the duration between the execution times of two events. Our approach is

to obtain a set of absolute temporal constraints on the execution time of every atomic event,

which is a sufficient condition of the original simple temporal constraints.

For example, consider a CCQSP shown in Figure 10-8-(a). The temporal plan involves

two aerial vehicles that are going to land at the same airport. Both vehicles take at least 10

time units to get to the airport, and must land within 20 time units due to fuel constraint.

The control tower allows Vehicle 1 to land first. In order for Vehicle 2 to land safely, two

landings must be separated by an interval of at least four time units. This requirement

causes a coupling between the temporal constraints on two vehicles.

The decoupled absolute temporal constraints are shown in Figure 10-8-(b). Constraints

are directly imposed on the execution time of each event, instead of on durations. Observe

that any execution times of ei and e2 that satisfy the absolute constraints in Figure 10-8-

(b) always satisfy all the temporal constraints in Figure 10-8-(a). In other words, Vehicle

1 does not have to consider the temporal constraints on Vehicle 2, as long as it makes

sure that it land at the airport within its own temporal constraint, shown in Figure 10-8-(c).

Likewise, Vehicle 2 can land anytime within the temporal bounds shown in Figure 10-8-(d),

regardless of the landing time of Vehicle 1.

The absolute temporal constraints can be relaxed on the fly. For example, consider that

Vehicle 1 landed on the airport at t = 12, as in Figure 10-8-(e). Then, the central module

fixes the execution time of ei to 12 and relaxes the temporal constraints on eEto [16, 20],

as shown in Figure 10-8-(f). As long as Vehicle 2 lands at the airport within the updated

time bound, all temporal constraints in Figure 10-8-(a) are satisfied.

197

(a) Coupled simple temporal constraints

[10201

Vehicle 2 ends in eE
[Airport]
110201

(c) Temporal Constraint for Vehicle 1

110131
Vehicle 1 ends in

[Airport]

(e) Plan execution by Vehicle 1

t= 12
Vehicle 1 ends in e

[Airport]

7 2 1 1v i

(b) Decoupled temporal constraints

[102131

[Airport]

Vehicle 2 ends in
[Airport] n fE

117201

(d)'Iemporal constraint for Vehicle 2

[17 20]

Vehicle 2 ends in'

(Airport raints

(0) Updated temporal constraints

1 12

116 201

Figure 10-8: Decomposition of simple temporal constraints

10.5.1 Obtaining Distributed Temporal Constraints

In Line 5 of Algorithm 14, the absolute temporal constraints are obtained by running the

RobustFeasibleTemporalConstraintDecomposition function. The implementation of the

function is described in Algorithm 17 below.

The function takes the simple temporal constraints T and a partially assigned schedule

o- as inputs. s(e) and 9(e) are the lower and upper bounds on s(e), the execution time of an

episode e. An absolute temporal constraint on e is expressed as follows:

s_(e) <- S(e) < §(e).

198

Algorithm 17 Implementation of RobustFeasibleTemporalConstraintDecomposition func-

tion in Line 15 of Algorithm 14

function RobustFeasibleTemporalConstraintDecomposition(T, o)

1: Solve Problem 21 with a;
2: for e c S do
3: T <-(eo, e, S(e), se)
4: 1 <- the index of vehicle that is associated with e;

5: T' -T U T;

6: end for
7: return Tim;

The absolute constraint is equivalently expressed as a simple temporal constraint between

eo, the start event of the CCQSP, and e, as shown in Line 3 (see also Definition 14 in Section

2.4.3). In Line 1, the absolute temporal constraints are obtained by solving the following

linear programming.

Problem 21: Obtaining Distributed Temporal Constraints

max
st >0

S. A t < s(e) - S(e)
ecE \E'

A s(e) = s(e) bmm A 9(e') - A(Cs) < bmx

TET

(10.20)

(10.21)

(10.22)

(10.23)

Recall that E, is the set of events that are assigned execution time steps by the partial

schedule a (see Definition 3 in Section 2.3.1). E\S, is the complement S, which is formally

defined as follows:

{e E E | e E}.

Note that sets of absolute constraints that are sufficient conditions of the given simple

temporal constraints are not unique. For example, besides the absolute constraints shown

in Figure 10-8-(b), [10 11] for ei and [15 20] for eE, or [10 15] for ei and [19 20] for eE,

199

are also valid. However, we prefer not to have particularly short feasible durations, since

dp-Sulu will be hard to find a feasible assignment for very tight constraints. The objective

function of Problem 21 is designed to find a "balanced" solution, such as the one in Figure

10-8-(b). The slack variable t > 0 represents the shortest duration of feasible execution

time among all events. Hence, the objective function of Problem 21 maximizes the feasible

duration of the tightest constraint.

Lemma 13. If the set of simple temporal constraints is feasible, Problem 21 has a feasible

solution.

Proof: Since the set of simple temporal constraints T has a solution, there is a sched-

ule s that satisfies all temporal constraints in T. Then,

VeG §(e) = S(e) = s(e)

is a feasible solution for Problem 21.

The decomposed temporal constraints are grouped by the indices of agents (Line 4) and

returned (Line 5).

10.5.2 Updating Distributed Temporal Constraints

Note that Robust Feasible Temporal Constraint Decomposition takes a partially assigned

schedule o- as an input. This is to specify the execution time of the events that have already

been executed.

For example, in Figure 10-8-(a), the only executed event is eo, the start event. Hence,

at the beginning of the dp-Sulu algorithm, a has an assignment only to eo:

O-(eo) = 0.

In Figure 10-8-(e), the event ei has also been assigned an execution time. Hence, when

updating the absolute constraints, the input partial schedule has the following two assign-

ments:

o-(eo) = 0, o-(ei) = 12.

200

Solution of Problem 21 with this o- results in the updated bounds shown in Figure 10-8-(f).

In Line 2 of Algorithm 14, the partial schedule o- is initialized with a sole assignment

to or(eo). In every planning cycle, each agent returns a schedule of the executed events

(Lines 12 and 19 in Algorithm 14). In the next planning cycle, the decomposed temporal

constraints are updated by taking in the latest schedule o- (Line 5 in Algorithm 14).

10.5.3 Relation to Strongly Controllable Simple Temporal Network

with Uncertainty

The proposed Robust Feasible Temporal Constraint Decomposition has an interesting con-

nection to the controllability theory on a Simple Temporal Network with Uncertainty (STNU)

[100]. An STNU is an extension of a simple temporal network that contains contingent

events, whose execution time is bounded but uncertain. Regular events, whose execution

time can be determined by an executive, are called executable events. An STNU is strongly

controllable if there exists a set of execution times for all executable events that is consis-

tent with any realization of the execution times of the contingent events [99].

The decoupled temporal constraints generated by Robust Feasible Temporal Constraint

Decomposition can be viewed as a strongly controllable STNU, by considering the events

of other agents as contingent events. For example, the decoupled temporal constraints

shown in Figure 10-8-(b) can be viewed as an STNU shown in Figure 10-9-(a) from a

standpoint of Vehicle 1 by considering the event of Vehicle 2 (eE) as a contingent event,

drawn as a square. Observe that the STNU in Figure 10-9-(a) is strongly controllable

because an assignment of an execution time in [10 13] to ei is consistent with any realization

of the execution time of the contingent event, eE, within the bound [17 20]. Likewise, the

same decoupled temporal constraints can also be viewed as another STNU shown in Figure

10-9-(b) from a standpoint of Vehicle 2 by considering the event of Vehicle I (ei) as a

contingent event. Again, the STNU in Figure 10-9-(b) is also strongly controllable because

an assignment of an execution time in [17 20] to eE is consistent with any realization of the

execution time of the contingent event, ei, within the bound [10 13]. Note that, in Figure

10-9, contingent events are represented by squares while executable events are represented

201

by circles.

(a) STNU representation for Vehicle 1 (b) STNU representation for Vehicle 2

110 13]
Vehicle 1 ends in el [10 13] e,[Airport)

0o 04o [o17 20] 4

[17 20] gE Vehicle 2 ends in eE[Airport]

Figure 10-9: STNU representations of the decoupled temporal constraints shown in Figure
10-8-(b), which are generated by Robust Feasible Temporal Constraint Decomposition.
The STNU representation for each agent is obtained by considering the events of other
agents as contingent events. Note that both STNUs are strongly controllable.

The Robust Feasible Temporal Constraint Decomposition approach is also closely re-

lated to the work by Stedl [91] on decoupling distributed systems. He uses strong decom-

posability to generate a set of absolute temporal constraints from an STNU. There are two

differences between our approach and Stedl's. Firstly, Stedl's work is concerned with de-

coupling of STNU, while our approach focuses on decoupling of an STN, although the

resulting decomposed temporal constraints can be viewed as STNUs, as discussed above.

Secondly, Stedl builds the decomposition approach upon the strong controllability algo-

rithm introduced by [98], while we obtain the decoupled temporal constraints directly by

solving an LP.

10.6 Conclusion

In this section we presented a distributed CCQSP executive, dp-Sulu. dp-Sulu was enabled

by the three innovations: Multi-agent Heuristic Risk Allocation, Bi-stage Robust Collision

Avoidance, and Robust Feasible Temporal Constraint Decomposition. The three methods

decompose coupling chance, state, and temporal constraints. The central module of dp-

Sulu provides decomposed CCQSPs to each agent, which solves its own planning problem

using p-Sulu. The empirical results of dp-Sulu are presented in Section 11.2.4.

202

This chapter completes the theoretical part of this thesis. The next chapter presents

empirical results.

203

Chapter 11

Simulation Results

This section presents empirical results. We deploy the proposed planners and executives

on aerial, underwater, and space vehicles, as well as various benchmark problems. This

chapter consists of three sections. Section 11.1 evaluates the performances of the proposed

planners and executives by extensive simulations with randomized conditions on bench-

mark problems. The focus of this section is to highlight the new capabilities of each algo-

rithm by comparing with prior art methods. Next, in Section 11.2, we deploy the proposed

planners and executives on the personal transportation system (PTS), which is introduced

in Section 1.1. The focus of this section is to demonstrate that our plan executives can

solve real-world scale problems. Finally, in Section 11.3, we apply our planners and ex-

ecutives to the control of underwater and space vehicles, both of which have significantly

different plant models than the PTS. The focus of this section is to show that our approach

is applicable to a wide range of real-world systems.

11.1 Comparison with Prior Art

In this section we evaluate the performances of the proposed planners and executives (IRA,

CRA, NIRA, NIRA+BoostLP, p-Sulu FH, p-Sulu, and MIRA) by comparing with prior art

methods. This section is structured as follows. In Section 11.1.1, we introduce the prior art

methods against which our planners and executives are compared. Section 11. 1.2 presents

the performance criterion used to compare the performances of algorithms. Section 11.1.3

204

presents the general results that are shared among all planners and executives. Section

11.1.4 presents the plant models and other simulation settings. Then, Sections 11.1.5 to

11.1.11 present the simulation results specific to each algorithm.

11.1.1 Prior Arts

Table 11.1 lists the prior arts against which the performance of proposed planners/executives

are compared.

Table 11.1: Mapping of proposed planners/executives and corresponding prior arts.

Algorithms Prior art methods Chapter/Section

IRA Subgradient, Elliptical Relaxation, Particle Control Sec. 4.2

CRA Elliptical Relaxation, Particle Control Ch. 5

NIRA Fixed Risk Allocation, Particle Control Ch. 6

NIRA+BoostLP NIRA Sec. 6.5

p-Sulu FH Sulu Ch. 7

p-Sulu Sulu Ch. 8

MIRA CRA Ch. 9

Recall that NIRA+BoostLP results in exactly the same solution as NIRA, but with

less computation time. Hence, NIRA+BoostLP is compared against NIRA. Also recall that

MIRA obtains exactly the same solution as CRA, but in a decentralized manner. Therefore,

computation time of MIRA is compared against CRA with various numbers of agents.

Below, we briefly introduce the prior arts listed in Table 11.1.

Subgradient Methods

The subgradient method is a standard method used to solve general convex optimization

problems [14]. When constraints are convex, it can be used to optimize risk allocation.

Hence, we compare IRA with subgradient methods on convex problems. There are two

types of subgradient methods that we consider:

205

" Subgradient method with diminishing step size: step size is reduced over iterations;

" Subgradient method with constant step size: a costant step size is used throughout

iterations;

The one with constant step size achieves faster convergence, but only the diminishing step

size can guarantee the convergence to the optimum [14, 89]. Since subgradient methods

do not monotonically reduce the cost, the stop condition is hard to define; therefore we

computed a fixed number (300) of iterations.

Elliptical Relaxation

The elliptical relaxation approach, developed by [97], solves joint chance-constrained op-

timal control problems. The relaxation approach turns a stochastic problem into a deter-

ministic problem using a very conservative ellipsoidal relaxation. Although this algorithm

is computationally efficient, its result is highly suboptimal, since the ellipsoidal relaxation

produces a very conservative bound.

Particle Control

Particle control [20], or a scenario approach [25], is a sampling-based method, which uses a

finite number of samples to approximate the joint chance constraints. The control sequence

is optimized so that the number of samples that violate constraints is less than N, -A, where

A is the risk bound and N, is the total number of samples. The optimization problem is

reformulated into a mixed-integer linear program (MILP), with an assumption that the cost

function is linear.

Fixed Risk Allocation Approach

The fixed risk allocation approach [18] can solve a non-convex chance-constrained optimal

control problem. The approach is to fix the risk allocation to a uniform value. As a result,

with an assumption that the cost function is linear, the non-convex chance-constrained opti-

mal control problem is reformulated into a MILP. The fixed risk allocation approach solves

the MILP problem using a MILP solver, such as CPLEX.

206

Sulu

Sulu [62] is a deterministic counterpart of p-Sulu. It takes as input a deterministic plant

model and a qualitative state plan (QSP), which specifies a desired evolution of the plant

state as well as flexible temporal constraints, and outputs a continuous control sequence.

Its approach is to encode the QSP execution problem into a mixed integer linear program

(MILP) and solve it using the CPLEX optimizer.

11.1.2 Performance Criteria

The performances of the algorithms are evaluated by the following three criteria.

Probability of failure

The probability offailure, denoted by Pfail, means the probability that the resulting solution

violates at least one of the given state constraints. We use Monte Carlo simulation to

evaluate the probability of failure. Note that the joint chance constraint only requires that

the probability of failure is below the risk bound A. Due to the conservativeness of the

approximation of the joint chance constraint, the probability of failure is typically smaller

than A. Hence, the difference between the probability of failure and the risk bound, A -

Pfail, is used as the measure of the degree of conservativeness of each algorithm. If A >

Pfail, it indicates that the solution violates the chance constraint.

Cost function value

All of our benchmark problems are framed as minimization problems. Hence, less cost

means better solution. Note that a strictly optimal solution to a joint chance-constrained

optimization problem is unavailable in general, since there is no algorithm to solve such

a problem exactly. Therefore, the optimal cost is not known. Hence, although the cost

function value can be used to compare two algorithms, it cannot be used to evaluate the

conservativeness of each algorithm. Instead, we evaluate the conservativeness of each al-

gorithm by its probability of failure, as discussed above.

207

Computation time

It is crucial for planning and execution algorithms to obtain solutions within a reasonable

computation time, particularly when applied to real-world problems. In all benchmark

results, we present the solution time of each algorithm.

11.1.3 Result Summary

Since the proposed planners and executives solve different problems in different ways, each

has different advantages and disadvantages. Nevertheless, since all planners and executives

are built upon the risk allocation approach, there are common tendencies in their simula-

tion results. The objective of this subsection is to extract from the simulation results in

Sections 11.1.5 - 11.1.11 insights about the common properties shared by all the proposed

algorithms. Results specific to each algorithm are presented in Sections 11.1.5 - 11.1.11.

Our empirical results demonstrate that all planners and executives presented in this

thesis share the following two properties:

Soundness

The risk allocation-based algorithms are sound with regard to the chance constraints. The-

oretically, the solutions of the algorithms built upon the risk allocation approach are guar-

anteed to satisfy the chance constraints. This is because, as presented in Section 4.1, the

risk allocation approach provides sufficient conditions of the given chance constraints.

This theoretical claim is empirically validated in all of our simulation results. For each

algorithm, we run randomized simulations hundreds of times with various simulation set-

tings. All of them result in solutions with Pail < A, i.e., satisfaction of the chance con-

straints. On the other hand, Particle Control and Sulu tend to result in violations of chance

constraints. This is because the former employs a sampling-based approximation, which is

not a sufficient condition of the chance constraints if the number of samples are finite, and

the latter does not explicitly reason about the effects of uncertainty during planning.

208

Near-optimality

The risk allocation approach provides a tighter bound of the chance constraints than prior

art methods, such as the elliptical relaxation and the fixed risk allocation approach. This is

because the risk allocation approach allows flexibility of optimally distributing risk among

agents, time steps, and constraints. Therefore, it is predicted theoretically that the risk

allocation-based algorithms result in a solution that is closer to the strictly optimal solution

compared to the prior art methods.

Our empirical results validate this theoretical prediction in two ways. Firstly, the pro-

posed algorithms always result in lower cost function value than the prior art methods.

Secondly, recall that the difference between the risk bound and the resulting probability of

failure, A - Pfail, indicates the level of conservativeness; the proposed algorithms always

result in significantly lower values of A - Pfaia than prior arts. These results support our

claim that, although the risk allocation is a conservative bound, its conservativeness is less

than prior arts.

We note that Particle Control and Sulu can result in lower cost function values than the

proposed algorithms. This is because the solutions of Particle Control and Sulu can violate

the chance constraints. On the other hand, as we mentioned above, the proposed planners

and executives respect the chance constraints. Therefore, the fact that our algorithms result

in more cost than Particle Control or Sulu does not mean the inferiority of our algorithms.

11.1.4 Problem Settings

Plant Model

This subsection explains the plant model used throughout this section. The same plant

model is also used for the PTS demonstration in Section 11.2. Section 11.3 uses different

plant models for underwater and space vehicles.

We consider a point-mass double-integrator plants, shown in (11. 1)-(11.2). Parame-

ters, such as Umax, Vmax, a-, and AT are set individually for each problem. This plant

model is commonly assumed in the literatures on unmanned aerial vehicle (UAV) path

planning (e.g., [57, 58, 61, 102]). The state vector xt of an n-dimensional point-mass

209

double-integrator plants consists of 2n variables; the first n variables represent position,

while the other n variables represent velocity. The control vector ut consists of n vari-

ables, which represent the acceleration. Note that the acceleration is proportional to the

force applied to the point mass. We consider an additive uncertainty in the position.

The plant model is given as follows:

A= In A T - In AT 2/2 -In o.2 - In On (1

On in AT -In On On

Vt E T, ||ut||p Umax, ||CXtJJp Vmax, (11.2)

where In and On are the n-dimensional identity matrix and zero matrix, respectively. The

matrix C is defined as follows:

C (On In).

In (11.2), we denote by 11 . 11p a p-norm. The first constraint in (11.2) represents the limit

the acceleration, while the second constraint bounds the velocity. When we consider the

1-norm or oo-norm, these constraints are linear. When we consider the 2-norm (Euclidean

norm), they becomes nonlinear constraints. When solving the problems using LP or MILP

solvers, such as CPLEX, we approximate the nonlinear constraints in (11.2) by the follow-

ing set of linear constraints:

Vt C T, rn*ut < umax (n 1,2,... ,Nr)

27rn. 27rn
Trn= Cos sin -

Nr' Nr

Objective Function

We use two types of cost functions, both of which are commonly used in path planning

literatures (e.g. [61, 85, 102]). The first one is the 1-norm (Manhattan norm) of the control

inputs over the planning horizon. For example, in a two-dimensional case, the objective

210

function is:

T

J(2tt, U, s) = (IuX,t| + luy't| .
t=1

Note that a minimization problem with the piece-wise linear cost function above can be

equivalently replaced by the following minimization problem with a linear cost function

and additional linear constraints:

T

min (px,t + py,t)

t=1
s.t. Vt E T1, px,t > ux,t A px,t > -ux,t A py,t > uy,t A py,t > -uy,,

where px,t and -y,t are slack variables.

The second objective function is the quadratic objective function, such as the following:

T

J(4i, U, s) = 2-,t + U2
t=1

Since this is a convex function, a convex program solver can handle such an objective

function.

Implementation

The IRA, CRA, NIRA, and MIRA algorithms are implemented using Matlab and Yalmip

[68], while NIRA+BoostLP, p-Sulu FH, p-Sulu, and dp-Sulu are implemented in C/C++.

We use CPLEX to solve LPs and MILPs. SNOPT is used to solve general nonlinear con-

vex optimization problems. The computing environments used for the simulations are de-

scribed at each section.

11.1.5 IRA

This subsection presents the simulation results of the IRA algorithm, introduced in Section

4.2.

211

Simulation Settings

In this simulation we use the one-dimensional point-mass double-integrator plant presented

in 11.1.4, with AT = 0.5, Umax = 0.0066, and oU = 0.001. The Manhattan norm objective

function is employed, and the planning horizon length is set to N = 2. The initial condition

is:

0.01 0.001 0

0 0 0

We impose the following joint chance constraint:

Pr A A hT gt -g < 0 > 1 - Ac,
LtE T iefi,2}

where ht,i = (1, 0), ht,2 = (-1, 0), and the bounds gt,i are randomly generated. The

constant a in Line 12 of Algorithm 1 (Section 4.2.2) is set to 0.7 - 0.98', where n is the

iteration index. This means that we reduce a over iterations. The simulation is conducted

on a machine with a Pentium 4 processor clocked at 2.80 GHz and 1.00 GB of RAM.

Performance Evaluation

We compare IRA with four prior art methods: the subgradient method with diminishing

step size (abbreviated as SM(d) in Table 11.2 below), the subgradient method with constant

step size (SM(c)), the elliptical relaxation approach (ER), and Particle Control with 20

samples (PC). Note that IRA, SM(d), and SM(c) optimize risk allocation, while the other

two do not. The performance of the five algorithms is compared in Table 11.2. The values

in the table are the average of 237 randomly generated problems. The three risk-allocation

approaches (IRA, SM(d), and SM(c)) result in Pail that is significantly closer to the risk

bound A = 0.05 compared to the ellipsoidal relaxation approach, indicating that these

algorithms are much less conservative. The three algorithms also achieve a significant

speed-up compared to Particle Control. Among the three, IRA outperforms the other two

according to all three criteria.

212

Table 11.2: Performance of two-stage optimization methods with risk allocation and two
prior arts; values are the average of 237 randomly generated problems. Names of the
algorithms are abbreviated as follows - IRA: Iterative risk allocation, SM(d): subgradient
method with diminishing step size, SM(c): subgradient method with constant step size, ER:
elliptical relaxation, PC: particle control.

Algorithm IRA SM (d) SM (c) ER PC
Risk bound A 0.05

Probability of failure Pal 0.0378 0.0183 0.0306 < 10 - 0.0281
Cost function value J* 0.0906 0.0978 0.0957 0.3502 0.0959
Computation time [sec] 0.33 26.4 30.7 0.05 212.2

0.016

0.014

, 0.012

0.01

0.008

0.006
0 1 2 3 4 5 6

Time [sec]

Figure 11-1: Convergence of IRA and the subgradient methods

Figure 11-1 compares the convergence speed of IRA and the subgradient methods on

a typical problem. The convergence of IRA is significantly faster than the subgradient

methods. The weakness of IRA is a lack of the theoretical guarantee of convergence to the

optimal. However, the empirical result shows that the suboptimality is considerably small.

Table 11.2 shows that IRA yields even better solutions than the subgradient methods after

300 iterations on average. Figure 11-2 is the histogram of the difference between the cost

function values of IRA and the subgradient methods, JIRA - min(JSM(d), ISM(c)) (note that,

among the two subgradient methods, the one with better cost is compared with IRA). The

objective function value of IRA is smaller or equal to the objective function value of both

subgradient methods in most cases; IRA yields worse solutions in several cases, but the

difference is less than 0.01 in those cases; on the other hand, the subgradient methods may

213

100

50 F

0 -

-0.08 -0.06 -0.04 -0.02 0

JI*A-min(!s'(,), is*Me)

Figure 11-2: Histogram of the difference in the objective function value of IRA and both
subgradient methods.

be worse than IRA by up to 0.08.

11.1.6 CRA

We next show simulation results demonstrating the CRA algorithm, developed in Chapter

5.

Simulation Settings

The system to be controlled has state xj = [Xt yt]' and the system parameters are defined

by:

A=(

S-0.5 0

The constraints on the state are:

0.001
, EW = 0

-0.25 < yt < 0.25 Vt.

The cost is defined as:

f(X, U) = Z(t
t=o

- x')'(i - Xr)

214

0

0.001
(11.3)

In other words, we try to minimize the squared distance of the expected state from some

reference state x', averaged over the planning horizon. Optimization was performed on a

MacBook Pro with a 2.4GHz processor and 4GB RAM.

Example Solutions

Figure 11-3 shows the solution to the finite-horizon optimal control problem using the CRA

algorithm. In this case, x' = [1 0]', N = 20 and A = 0.01. The CRA algorithm optimizes

the allocation of risk at each time step, while ensuring that the probability of failure over

the entire horizon is less than A. As shown in Figure 11-5, risk allocation values 6i are tiny

(< 10-8) for all constraints except for 5 of the 42 constraints. The non-negligible values

correspond to the bound yt < 0.25 at time steps t = 1,. . . , 5. This implies that optimizing

risk allocation can lead to significant gains over an elliptical relaxation approach, which

uses an a priori fixed backoff from the constraints.

We compare the performance of CRA with the elliptical relaxation approach and Par-

ticle Control. In this simulation, we use the implementation of [25] for Particle Control.

Figure 11-4 shows a solution to the same problem using the elliptical relaxation approach.

Notice that the state means are very far from the constraints compared to the solution in

Figure 11-3, indicating a great deal of conservatism. This is because the elliptical relax-

ation approach assumes a 'worst-case' allocation of risk to each of the constraints over the

time horizon, rather than optimizing the risk allocation. Table 11.3 compares the conser-

vatism of the CRA algorithm with that of elliptical relaxation and Particle Control. In this

case xr = [1 0]', N = 20 and A = 0.1. For elliptical relaxation and Particle Control,

optimization was performed using SDPT3[94], which is able to more efficiently exploit the

structure of the Second Order Cone Programs that result from the approach. For Particle

Control we used # = 0.001, resulting in 2615 scenarios (samples) being used to ensure that

P(P(X (Fx) > 0.1) < 0.001. Table 11.3 shows that CRA is orders of magnitude less

conservative that the elliptical relaxation approach, and as a result the cost of the optimal

solution is reduced by 40%. Compared to Particle Control, CRA is both less conservative

and far less computationally expensive. It should be noted, however, that Particle Con-

trol applies to arbitrary uncertainty distributions, whereas both CRA and the elliptical set

215

bounding approaches are restricted to Gaussian distributions.

Algorithm IRA ER PC

Risk bound (A) 0.1

Probability of failure Pfail 0.097 2 x 10-6 0.0022

Cost function value 3.15 5.26 3.76

Computation Time (s) 3.38 1.76 1.41 x 104

Table 11.3: Comparison of the CRA algorithm with elliptical relaxation for a single exam-
ple. CRA is orders of magnitude less conservative that the elliptical relaxation approach,
and as a result the cost of the optimal solution is reduced by 40%. Also shown are results
for Particle Control, which is more conservative than CRA and requires orders of magni-
tude greater optimization time. Names of the algorithms are abbreviated as follows - IRA:
Iterative risk allocation, ER: elliptical relaxation, PC: particle control.

0.25

0.2 -

0.15
0.1 --

0.05-

0 -

-0.05-

-0.1 -

-0.15-

-0.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

X

Figure 11-3: Single solution using new convex optimization approach for x' = [1 0]',
N = 20 and A = 0.01. The red dots show the state mean k for t = 0,. . . , N. The blue
ellipses show the 3-sigma ellipses for xt. The state constraints are shown as thick black
lines. The new approach optimizes the allocation of risk at each time step, while ensuring
that the probability of failure over the entire horizon is less than A.

Conservatism Against A and Horizon Length

Figure 11-6 shows how the conservatism of CRA depends on the allowable maximum

probability of failure, A. For this example we used N = 10 steps and xr = [1 0]', and

216

0.25

0.2-

0.15-

-0 1-0.15 -
-0.15

-0215
-0.2 -

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

X

Figure 11-4: Single solution for x' = [1 0]', N = 20 and A 0.01, using elliptical
relaxation approach of [97]. The state means are very far from the constraints compared to
the solution in Figure 11-3, indicating a great deal of conservatism.

10' Monte Carlo simulations were used to estimate the true probability of failure in the

returned solution. Risk allocation yields probabilities of failure very close to the allowable

value, indicating very little conservatism. Critically, the conservatism does not increase

appreciably as A decreases. For comparison Figure 11-6 also shows the estimated proba-

bility of failure for elliptical set bounding. Note that this approach is highly conservative,

and the conservatism increases as A decreases. This conservatism prevents elliptical set

bounding from finding a feasible solution for A < 0.01, even though feasible solutions

exist for much smaller A.

Figure 11-7 shows how the conservatism of CRA depends on the horizon length, N.

For this example we used A = 0.1 and xr = [1 0]', and 107 Monte Carlo simulations were

used to estimate the true probability of failure in the returned solution. Risk allocation

gives solutions with very little conservatism, and the conservatism increases only slightly

as the horizon length, N, increases; for N = 5, the estimated probability of failure is

0.0974, while for N = 20 the estimated probability of failure is 0.0970. By contrast the set

bounding approach is highly conservative, and the conservatism increases as the horizon

length increases. This conservatism prevents set bounding from finding a feasible solution

for N > 10.

217

0.007

0 ocosi0.005.2

S0.002

00013-

0 5 10 15 20 25 30 35 40 45
Constraint Number

Figure 11-5: Risk allocation in optimal solution of Figure 11-3. The bars show the value
og, i.e. the risk allocation, for each constraint in the problem. The allocated risks add to the
maximum probability of failure for the entire horizon, A, shown as the dashed line. Only a
handful of the 6 are non-negligible.

Average performance

In order to assess the average performance of the new algorithm, we generated random

instances of the control problem by setting x' = [n 0]' with n uniformly distributed in the

range [0, 1]. Again we used N = 20 and A = 0.01. The average results for 20 solutions are

shown in Table 11.4. Since we are interested in the conservatism of CRA, we have removed

instances where the chance constraints were not tight. In the globally optimal solution, we

would expect the true probability of failure to be the same as A. The results show that the

new convex optimization approach is many orders of magnitude less conservative than the

elliptical relaxation approach for a small penalty in solution time.

Table 11.4: Optimization time and estimated probability of failure averaged for 20 ran-
domized problem instances with A = 0.01. Instances where the chance constraint is not
tight have been removed. The convex optimization approach is orders of magnitude less
conservative than the elliptical relaxation approach for a small penalty in solution time.

218

Algorithm Time (s) P(f ail)

Risk Allocation 1.03 0.0079

Elliptical Relaxation 0.22 < 10-6

- Desired
- - - Risk Allocation

10 - - Eliptica10

102

10

10
a)

E

-6

10

-5
10

10 1 10-2 10-3 104
Max P(fail)

Figure 11-6: Comparison of maximum allowable probability of failure A and estimated
probability of failure as a function of A. Risk allocation yields probabilities of failure
very close to the allowable value, indicating very little conservatism. Furthermore this
conservatism does not increase as A decreases. By contrast the set bounding approach is
highly conservative, and the conservatism increases as A decreases. In fact set bounding
fails to find a solution for A < 0.01, even though feasible solutions exist for much smaller
A.

11.1.7 NIRA

This subsection compares the performance of NIRA, introduced in Chapter 6, with prior

arts.

Problem Settings

We consider a 2-D path planning problem with a randomized location of an obstacle, as

shown in Figure 11-8. A vehicle starts from [0, 0] and heads to the goal at [1.0, 1.0], while

avoiding a rectangular obstacle. The obstacle with edge length 0.6 is placed at a random

location within the square region with its corners at [0, 0], [1, 0], [1, 1], and [0, 1]. We

consider ten time steps with the time interval AT = 1.0. We require that the mean state at

t = 10 is at [1.0, 1.0]. The risk bound is set to A 0.01. We set the standard deviation of

the disturbance as o- = 0.01. The simulations are conducted on a machine with a quad-core

Intel Core i7 CPU clocked at 2.67 GHz, and with 8 GB of RAM.

219

10

102

10

10

E

W -5
10

106 - Desired
- - - Risk Allocation

Elliptical

5 10 15 20
Horizon Length

Figure 11-7: Comparison of maximum allowable probability of failure A and estimated
probability of failure as a function of horizon length. Risk allocation gives solutions with
very little conservatism, and the conservatism increases only slightly as the horizon length,
N, increases. By contrast the set bounding approach is highly conservative, and the con-
servatism increases as the horizon length increases. Set bounding fails to find a solution for
N > 10.

Performance Evaluation

We compare NIRA with the fixed risk allocation approach and Particle Control. Table

11.5 compares the performance of the three algorithms. The values in the table are the

averages and the standard deviations of 100 runs with random locations for the obstacle.

The probability of constraint violation, Pfai, is evaluated by Monte-Carlo simulations with

106 samples.

Comparison with the fixed risk allocation approach Recall that the difference between

A and Pfail represents the conservativeness of the algorithm. Table 11.5 shows that NIRA

results in the average probability of failure Pfail = 0.00984, which is smaller than the user-

specified risk bound A = 0.01 only by 1.6% difference. On the other hand, the fixed risk

allocation approach results in Pfail = 0.000228, which is 98% smaller than A. This result

indicates that the solution by NIRA is significantly closer to the exactly optimal solution.

In fact, the NIRA algorithm results in less cost than the fixed risk allocation approach in all

220

1 - NIRA
--- Fixed Risk Allocation

Particle Contrl

0.8

0.6-

0.4

0.2

0-

0 0.2 0.4 0.6 0.8 1
x

Figure 11-8: An instance of the 2-D path planning problem used in 11.1.7. The obstacle
with a fixed size is randomly placed within the unit square for each run.

the 100 runs. This is because it optimizes the risk allocation while the fixed risk allocation

approach uses the predetermined risk allocation.

Figure 11-9 plots A/Pfail with different settings of the risk bound A. For all values

of A, the conservativeness of NIRA is significantly smaller than the fixed risk allocation

approach. The graph shows a tendency that the conservativeness of NIRA gets smaller for

less A, while the conservativeness of the fixed risk allocation approach is approximately

constant.

NIRA achieves the improvement in solution optimality with a cost of computation time;

Table 11.5 shows that NIRA takes significantly longer computation time than the risk allo-

cation approach. Hence, NIRA and the fixed risk allocation approach provide users with a

trade-off between suboptimality and computation time.

Comparison with the Particle Control Table 11.5 shows that the average probability of

failure of the Particle Control approach is higher than the risk bound A = 0.01, meaning

that the approach tends to generate infeasible solutions. In fact, 96 runs out of 100 violate

the chance constraint. On the other hand, NIRA guarantees the satisfaction of the chance

221

Table 11.5: The averages and the standard deviations of the the probability of constraint
violation (faii), the cost function value, and the computation time of the three algorithms.
We use 100 particles for the Particle Control. Each algorithms are ran 100 times with ran-
dom location of an obstacle. The second row shows the resulting probability of constraint
violation. The risk bound is set to A = 0.01. Note that Particle Control results in less
cost than the other two methods because its solutions violate the chance constraint. Names
of the algorithms are abbreviated as follows - IRA: Iterative risk allocation, FR: fixed risk
allocation, PC: particle control.

Algorithm NIRA FR PC
A 0.01

Pfail 9.84 x 10-3 2.28 x 10- 4 3.48 x 10-2
Cost 0.638 0.664 0.631

Comp. time (s) 43.9 sec 0.938 sec 129.2 sec

constraint since it employs a conservative approximation of the joint chance constraint.

As opposed to NIRA, Particle Control has a guarantee that its solution converges to an

exactly optimal solution when increasing the number of samples to infinite. However, using

a large number of samples is impractical since computation time and memory usage grow

exponentially as the number of samples increases. For example, we used only 100 samples

in the analysis in Table 11.5. When using 300 samples, it took 4,596 seconds (about 1.5

hours) to solve the same problem with the obstacle's center at [0.5, 0.5]. Computation with

1000 samples could not be conducted because of the shortage of memory. On the other

hand, the computation time of NIRA is significantly shorter than PC while guaranteeing

the feasibility of the solution.

11.1.8 NIRA+BoostLP

We next demonstrate NIRA+BoostLP, introduced in Section 6.5.1 Recall that NIRA+BoostLP

results in exactly the same solution as NIRA, but with less computation time. Hence, we

focus on the comparison of computation time with NIRA.

'This research is conducted in collaboration with Dr. Ashis Gopal Banerjee and Prof. Nicholas Roy at
Robust Robotics Group, CSAIL, MIT.

222

1 -NIRA

0.99 -A-- Fixed Risk Allocation

0.96-

0.97

0.96-

0.95-

PfaiI/A
0.05-

0.04-

0.03-

0.02 -

0.01-

01

10~4 10~3 102 10

Figure 11-9: Suboptimality of NIRA and the fixed risk allocation approach. Strictly op-
timal solution has A/Pfai = 1. A smaller value of A/Pfail indicates that the solution is
suboptimal.

Simulation Settings

We tested our approach on 2D path planning problems under Gaussian uncertainty with a

single chance constraint, involving obstacle avoidance and finding paths through waypoints

at desired time instants. A vehicle starts from [1, 1] and heads to the goal at [12, 12], while

avoiding a rectangular obstacle. The obstacle with edge length 0.6 is placed at a random

location within the square region with its corners at [0, 0], [1, 0], [1, 1], and [0, 1]. A discrete-

time, point-mass plant model with AT = 0.5 and umax = [5,5] is used. The standard

deviation of the disturbance is varied in o-, o-y E [0.1, 0.001]. The Manhattan norm of the

control inputs is used as the objective function. The risk bound is set to A = 0.01. The

parameters in BoostLP is set as follows: the total number of regression trees, M, is always

chosen as 1000, the number of leaf nodes in any tree, Q, as 16, and the shrinkage factor,

v, as 0.1. The simulations are conducted on a machine with a quad-core Intel Core i7 CPU

clocked at 2.67 GHz, and with 8 GB of RAM.

223

Table 11.6: Performance evaluation on different planning problem scenarios. The proposed
algorithm uses regression for approximately solving FRRs whereas the previous algorithm
solves FRRs exactly using CPLEX optimizer. All the reported data are for average values;
standard deviation values are not presented as they are of the order of 0.1% of the average.

Scenario # 1 2 3 4
NR+ N ±A NR+ NR+

Algorithm BoostLP NIRA BoostLP NIRA BoostLP NIRA BoostLP NIRA
Comp. time (s) 7.51 135.21 8.14 219.76 6.15 79.99 5.73 80.15

Speed-up 18X 27X 13X 14X
Cost 4.23 4.23 5.86 5.86 3.45 3.45 3.60 3.60

Performance Evaluation

Table 11.6 enumerates the performance of our algorithm for four different planning scenar-

ios. Scenario 1 deals with planning in an environment consisting of two obstacles, scenario

2 with avoiding two obstacles and passing through two waypoints at specified time instants,

scenario 3 with different levels of disturbances (Gaussian distribution variance) in the ve-

hicle location, and scenario 4 with varying maximum limits on the vehicle acceleration

respectively. One obstacle and one waypoint are used in the last two scenarios. All the

obstacles and waypoints are rectangular except in the case of scenario 1. N is always se-

lected as 20 in all the scenarios; a, and uy are both chosen to be 0.01 in all the scenarios

excepting 3 and umai and uma, are taken to be -2.5 and 2.5 respectively in the first three

scenarios.

Optimum solutions of feasible FRRs arising in 16 different problem instances are used

as the training data set and the FRRs occurring in 4 new instances are utilized for testing

purposes in each of the four scenarios. The locations of the obstacles and the waypoints are

varied randomly in the first two scenarios, whereas the values of the location disturbance

variance and the maximum acceleration are altered randomly in the next two scenarios,

keeping the obstacle and waypoint locations fixed. The generated trajectories for one of

the training and test problem instances for scenario 1 are shown in Fig. 11-10.

Table 11.6 shows that significant speed-up is obtained by using the proposed algorithm

as compared to the previous one for all the different scenarios. At the same time, identical

224

10 10

4 -4

2 -2

2 4 6 8 10 12 2 4 6 8 10 12

(a) Sample training problem (b) Test problem

Figure 11-10: Trajectories generated by NIRA+BoostLP for planning with obstacle avoid-
ance using non-convex chance constrained optimal control algorithm. The obstacles are
displaced in the test problem from their locations in the sample training problem, showing
that regression models learnt from different but similar problems can be utilized to compute
the optimum solutions for new problems.

cost (objective) function values are returned by both the algorithms. This fact clearly in-

dicates that the optimality of the overall branch and bound algorithm is strictly preserved,

even though its LP subproblems are solved approximately.

Figures 11-11 and 11-12 show the enhanced effect of computational speed-up for greater

number of obstacles and longer planning time horizons respectively. The values of o-, U,

Umin, umax, as well as the number of training and test problem instances are identical to

those used for the scenarios in Table 11.6. N is chosen as 20 for all the problem instances

in Fig. 11-11, only one obstacle is present for the problem instances in Fig. 11-12, no

waypoints are present, and all the obstacles are rectangular.

It may be noted here that although solving FRRs approximately using regression does

not prevent the exponential growth in computational time, it does reduce the rate of ex-

ponential growth. This happens because the regression inference time remains the same

(for identical model complexity) at the internal nodes of the branch and bound trees in all

the problem instances, unlike the CPLEX optimizer, whose running time increases signif-

icantly with the number of constraints and decision variables. The plots are not extended

any further as the trends do not change and the computation time of the proposed algorithm

225

E

r

0 103

10

10m1

-- NIRA
NIRA+BoostLP

2 3 4
No. of obstacles

Figure 11-11: Computation time comparison for varying number of obstacles. Note that
the plot is in semi-log scale and error bars are not shown as they are negligibly small.

0~

5

1 102-E

0
I &

0

15 20
Planning time horizon

Figure 11-12: Computation time comparison for varying planning time horizons. Note that
the plot is in semi-log scale and error bars are not shown as they are negligibly small.

also becomes significantly more than a few seconds, thereby rendering the approach less

useful for practical applications. Again, it should be noted here that even though individ-

ual FRR problems are solved approximately, we ensure that we obtain an optimal solution

to the overall control problem by conservatively pruning branches and invoking the exact

convex optimization solver at the leaf nodes.

11.1.9 p-Sulu FH

Next we present the simulation results of p-Sulu FH on two problems. The simulations are

conducted on a machine with a quad-core Intel Xeon CPU clocked at 2.40 GHz, and with

16 GB of RAM.

226

-<+- NIRA
NIRA+BoostLP

Path Planning with Obstacles

Figure 11-13: A sample CCQSP for a personal aerial vehicle's path planning and schedul-
ing problem.

0 5 10 15 20 25

Figure 11-14: Output of p-Sulu FH for the CCQSP in Figure 11-13 with three different
settings of the risk bound Aobs, compared to the path planned by a deterministic planner,
Sulu, which does not consider chance constraints.

In this simulation we test p-Sulu FH on a path planning problem in the environment

shown in Figure 11-14. The input CCQSP is shown in Figure 11-13. The CCQSP requires

a vehicle to arrive at the goal region within 15 minutes, by going through Waypoint 1 and

Waypoint 2 with the temporal constraints specified in Figure 11-13. It also imposes two

chance constraints: one that requires the vehicle to achieve the temporally extended goals

with 90% certainty, and another that requires the vehicle to limit the probability of violating

the obstacles to Asbs. We set AT = 1 and o2 = 0.0025.

Figure 11-14 shows the plans generated by p-Sulu FH with three different risk bounds:

Aobs = 10%, 0.1%, and 0.001%. The computation times were 79.9 seconds, 86.4 seconds,

227

and 88.1 seconds, respectively. Figure 11-14 also shows the plan generated by Sulu, a

deterministic planner that does not explicitly consider uncertainty [62]. Observe that Sulu

leaves no margin between the path and obstacles. As a result, the Sulu path results in a

94.1% probability of hitting obstacles, as estimated by a Monte-Carlo simulation with 107

samples. On the other hand, p-Sulu FH leaves margins between the path and the obstacles

in order to allow for uncertainties, and the margins are larger for the plans with smaller risk

bounds. The probabilities of obstacle avoidance failure for the three p-Sulu FH plans, esti-

mated by Monte-Carlo simulations with 107 samples, are 9.53%, 0.0964%, and 0.00095%,

respectively. Hence the chance constraints are satisfied. The schedule optimized by p-Sulu

FH is {s(eo) = 0, s(ei) = 5, s(e 2) = 10, s(eE) = 15}, which satisfies all the temporal

constraints in the CCQSP.

In Figure 11-13, it appears that the path cuts across the obstacle. This is due to the

discretization of the time; the optimization problem only requires that the vehicle locations

at each discrete time step satisfy the constraints, and does not consider the state in between.

This issue can be addressed by a constraint-tightening method [56].

Path Planning in an Indoor Environment

We next give p-Sulu FH the CCQSP shown in Figure 11-15, which simulates a path plan-

ning problem in an indoor environment. A vehicle must get to the goal region at the other

side of the room in three to five seconds. The "Remain in safe region" episode requires

the vehicle to stay within the room and outside of the obstacle during the five-second plan-

ning horizon. The CCQSP imposes two chance constraints shown in Figure 11-15. We set

At = 0.5 and or = 5.0 x 10 5 .

Given this CCQSP, the planner faces a choice: heading straight to the goal by go-

ing through the narrow passage between the left wall and the obstacle minimizes the path

length, but involves higher risk of constraint violation; making a detour around the right

side of the obstacle involves less risk, but results in a longer path.

Figure 11-16 shows p-Sulu FH's outputs with Aob, = 10%, 1%, and 0.1%. The compu-

tation times were 35.1 seconds, 84.5 seconds, and 13.3 seconds, respectively. The result is

consistent with our intuition. When p-Sulu FH is allowed a 10% risk, the planner chooses

228

Figure 11-15: A sample CCQSP for a path planning problem in an indoor environment.

1.2 - -A= 10%

-+ - A=1%

1 0 1.2 0.1%

Goal

0.8

0.6

0.

0

-0.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 11-16: Output of p-Sulu FH for the CCQSP in Figure 11-13 with three different
settings of the risk bound Aob.

to go straight to the goal, resulting in the cost function value of 1.21; when the user gives a

1% or 0.1% risk bound, it chooses the risk-averse path, resulting in the cost function values

of 3.64 and 3.84, respectively. This example demonstrates p-Sulu FH's capability to make

an intelligent choice in order to minimize the cost, while limiting the risks to user-specified

levels.

11.1.10 p-Sulu

We demonstrate p-Sulu on a path planning problem shown in Figure 11-17. The input

CCQSP is shown in Figure 11-18. The simulations are conducted on a machine with a

quad-core Intel Xeon CPU clocked at 2.40 GHz, and with 16 GB of RAM.

229

(a) A2 =10%
15 - - - - - - - -- - - - - -

-10 - - -

5 --. -.. -

Obstacle ost

0 -.. .. -. . ..

-5 - -.-.-.

100 5 10 15 20 25 30

(b) A2 50%
15 - - -

10-- - -

et stc 01obsta e92
0 - - - --

-10
0 5 10 15 20 25

Figure 11-17: Simulation results of p-Sulu with (a)A = 0.1 and (b) A= 0.5. Each graph
shows the paths of 100 runs with randomly generated disturbance.

Start in g1End in
pStart]l [Goal)

0o [060] > E
Remain in
[Safe Zone]

Chance constraints: ... Al =50%

c2.'' A2

Figure 11-18: CCQSP for the path planning problem shown in Figure 11-17.

230

Each graph in Figure 11-17 shows the paths of 100 runs. Note that, although the paths

go between the two obstacles most of the times, they sometimes go below the triangular

obstacle. This is because p-Sulu can plan optimally based on the latest observation. When

it finds that it is too risky to go between the two obstacles due to the disturbance, it guides

the vehicle to the safer but longer path . Hence, when it is allowed to take higher risk, it

is more likely to choose the riskier path, as shown in Figure 11-17-(b). In fact, it can be

observed in Figure 11-1 7-(b) that some of the paths penetrate the obstacles.

Table 11.7 shows the resulting probabilities of failure with (a) A 2 = 0.1 and (b),A 2

0.5, evaluated by Monte-Carlo simulations with 1000 runs each. In both cases, the proba-

bilities of failure are below the given risk bounds. This demonstrates the satisfaction of the

chance constraints.

Table 11.7: Risk bounds and the probability of failure of p-Sulu. The probabilities of failure

are evaluated by Monte-Carlo simulations with 1000 runs.

Scenario (a) (b)
A1 0.5

ci (Goal achievement) Pfal,1 0.058 0.119

a 2 0.1 0.5
c2 (Obstacle avoidance) Pfai,2 0.007 0.055

Note that the probabilities of failure are significantly less than the risk bounds. In other

words, solutions of p-Sulu have substantial suboptimality. The suboptimality is mainly

resulted from the fact that p-Sulu executes only the first few steps in a planning horizon

and abandons the rest. Since uncertainty accumulates over time, the state vectors at the

abandoned time steps have more uncertainty than the executed ones. Since p-Sulu need to

guarantee constraint satisfaction at all time steps in a planning horizon, resulting plans tend

to be overly conservative. On the other hand, in off-line planning, the gaps between the

probability of failure and the risk bound are comparably small (See Tables 11.3 and 11.5).

Hence, it appears that the off-line planning is less conservative than the on-line planning.

However, recall that off-line planners do not use observations on the fly, like walking with

eyes closed. Therefore, these simulation results do not imply that on-line planning is less

efficient than off-line planning.

231

We choose 10% and 50% risk bounds, although in practical problems the risk bound

should be much smaller, such as 10-6. This is not because p-Sulu cannot take a realistically

small risk bound, but because otherwise statistical evaluation of the probability of failure

becomes very difficult due to time limitations. Recall that p-Sulu is a receding horizon

planner that runs in real time. Since it uses observations obtained on the fly, each run of

the algorithm results in different control inputs. Hence, it must be run numerous times

to evaluate the probability of failure; the probability cannot be evaluated by the ex-post

Monte-Carlo simulation conducted for off-line planners, which runs a planner just once to

obtain a nominal path and then enumerates samples around the nominal. If the risk bound

is 10-6, we must run the simulation at least 106 times to evaluate the probability. Since an

execution of the CCQSP in Figure 11-18 takes up to 1 minute, 106 runs takes about 2 years.

Simulation results with more realistic settings (i.e., more complex CCQSPs with smaller

risk bounds) are presented in the next section.

11.1.11 MIRA

Next we demonstrate the MIRA algorithm, presented in Chapter 9, on two problems. One

is the UAV altitude control problem in the fire-fighting scenario introduced in Section 9.1,

and the other is a general altitude control problem with randomized constraints (we refer to

this problem as the randomized problem).

Simulation Settings

In this simulation we consider the one-dimensional point-mass double-integrator plant pre-

sented in 11.1.4, with A T = 1, Umax =0.2, and a2 = 0.001. We impose state constraints

hix < g', where h = - [1 0] and the superscript I is the index of agents. The bounds

of the state constraints gi are set to zero for the fire-fighting problem. For the randomized

problem, gj are generated by a random walk starting from g' = 0, and gi±i - g is sampled

from a uniform distribution in [-0.3, 0.3] for the randomized problem. This problem can

be considered as an altitude planning problem of aerial vehicles. The first component of the

state vector x represents the altitude of the lth vehicle at time t. Assuming that the vehicles

are flying at a constant horizontal speed, t is proportional to the horizontal distance traveled

232

by the vehicles. The ground level is represented by gt±1 . Hence, the state constraint above

means that the altitude must be above the ground level.

The cost functions of the fire-fighting problem are:

Jw = E [[100 0] (X6,W + X7,w)]

JR = E [[1 0] (X6,R + X7,R)],

where subscript W and R indicate the water tanker and the reconnaissance vehicle respec-

tively. The cont functions of the randomized problem are:

10

J1 = E 1 0 (I)-
t=1

Note that the expectation of Xt is a function of Ui:t-1. Therefore J is a function of Ul:N-

The simulations are conducted on a machine with a quad-core Intel Core i7 CPU

clocked at 2.67 GHz, and with 8 GB of RAM.

UAV Fire-fighting Example

We first test MIRA on the multi-UAV altitude planning problem for the fire-fighting sce-

nario (Figure 9-1). Figure 11-19 shows the simulation result. Two vehicles fly at the

constant horizontal speed, starting from t = 0 at altitude 0.5. The mission is to extinguish

the fire at t = 6, 7. Both vehicles minimize the flight altitude above the fire, although the

water tanker is given 100 times more penalty (cost) of flying at high altitude than the re-

connaissance vehicle. Both have uncertainty in altitude, so flying at lower altitude involves

more risk. The total risk must be less than 0.1%.

The optimal plan allocates 99.2% of the total risk to the water tanker, while only 0.8%

to the reconnaissance vehicle. This is because the utility of taking risk (i.e. flying low) is

larger for the water tanker than for the reconnaissance vehicle. As a result, the water tanker

flies at a lower altitude.

Both vehicles optimize the internal risk allocation as well. For example, the water

tanker takes 99.9% of the allocated risk above the fire, at t = 6 and 7 (the middle graph in

233

1.2

1

- 0.8

0.6

0.4

0.2

0

4

C: 2
0
CO 0
0

Cu
I j

Water tanker
-.-. Reconnaissance vechicle

Total risk bound: S= 0.1%

0 2 4 6 8 10

x(10~4 Horizontal distance t

Water tanker
A*= 0.0992%

x 10-6

3- Reconnaissance vehicle
2- A* = 0.0008%
0
0 1 2 3 4 5 6 7 8 9 10

Horizontal distance t

Figure 11-19: Simulation result of flight altitude planning problem for multi-UAV fire-
fighting scenario (see Figure 9-1). Upper graph: Optimized altitude profile; Lower graphs:
Internal risk allocation of each vehicle.

Figure 11-19).

The optimal action sequence is planned according to this risk allocation; both vehicles

dive before the fire, and climb as fast as possible, after they pass the fire (the top graph in

Figure 11-19). This is because there is no benefit of conducting risky low-altitude flight

before and after the fire.

These results conform with intuition. The optimality of MIRA is validated by the result

that the difference in the optimized cost between MIRA and the centralized algorithm is

less than 0.0 1%, which is accounted by numerical error.

234

Performance Evaluation

We then compare the performance of MIRA with the centralized optimization approach,

on the problems with randomly generated constraints. Fig. 11-20 shows the average com-

putation times of 100 runs of the MIRA algorithm with 2 to 128 agents, compared against

the centralized approach that directly solves Problem 15. Demands for risk are computed

in parallel by each agent.

The computation time of the centralized algorithm quickly grows as the problem size

increases. Although MIRA, the proposed algorithm, is slower for the problems with less

than eight agents, it outperforms the centralized algorithm when the number of agents is

more than eight. The exponential fits to the average computation time of MIRA and the

centralized approach are 15.2e" 0160 " and 0.886e. 3 2 8n, respectively, where n is the number

of agents. MIRA has a 20 times smaller exponent than the centralized approach, which

means a significant improvement in scalability.

A counterintuitive phenomenon observed in the result is that MIRA also slows down

for large problems, although not as significantly as the centralized algorithm. This is be-

cause iterations must be synchronized among all agents. When each agent computes its

demand for risk by solving the non-linear optimization problem, the computation time di-

verges from agent to agent. In each iteration, all agents must wait until the slowest agent

finishes computing its demand. As a result, MIRA slows down for large problems, as the

expected computation time of the slowest agent grows. Our future work is to develop an

asynchronous algorithm to improve scalability.

The computation time of the central module (CM), which is shown in Figure 11-21,

is at most 0.1% of the total computation time of MIRA. Figure 11-21 also shows that the

number of iterations are almost constant. Moreover, the computational complexity of the

root finding algorithm used for the CM does not increase with the number of agents. As

a result, the computation time of the CM (Figure 11-21) grows less significantly than the

computation time of the entire algorithm (Figure 11-21). Therefore, the existence of the

central module does not harm the scalability of MIRA. The growth in the computation time

of the CM is mainly due to computational overhead of handling the data from multiple

agents.

235

~102
a)

a)

E

o 101

Centralized
E -E MIRA (Decentralized)

0 10

2 4 8 16 32 64 128
Number of agents

Figure 11-20: Computation time of MIRA compared to the centralized method. Plotted
values are the average of 100 runs with randomly generated constraints. Note that plot is
in log-log scale.

U60 0.03 V~
S-e Number of iterations .

Comp. time of CM [sec]
a 40 -0.02

0 A01
20 -0.01 E

E -A3 A

z 0''''' 0 E
2 4 8 16 32 64 128 0

Number of agents

Figure 11-21: Number of iterations and the computation time of the central module (CM)
of MIRA. Plotted values are the average of 100 runs with randomly generated constraints.

Additional Notes on Simulation Settings

In the decentralized approach (MIRA), a convex optimization solver SNOPT is used to

solve Problem 16 (computation of D'(p)), and the Matlab implementation of Brent's method

(fzero) is used to find the root p* of Problem 17. In the centralized approach, Problem

15 is solved by SNOPT. Since it is hard to set exactly the same optimality tolerances

for centralized and decentralized approaches, we set a stricter tolerance for the decen-

tralized approach than the centralized approach. Specifically, the optimality tolerance of

SNOPT is defined in terms of the complementary slackness normalized by dual variables

Pl~T I ED' (p) - SI < c, where 7r is the vector of all dual variables. In the decentralized

approach, we set the tolerance of fzero as | D' (p) - S| < e. This tolerance is stricter

than the previous one since p/|17rII < 1. We set c = 10-6. MIRA is simulated by a single

236

processor; however, we counted the computation time of the agent that is slowest to com-

pute the demand in each iteration, so that the result shown in Fig. 11-20 corresponds to the

computation time when running MIRA with parallel computing. Communication delay is

not simulated in our result.

11.2 PTS Simulation

Next, we demonstrate the proposed plan executives on the PTS scenarios.2 Our demonstra-

tion is developed in three spirals.

In Spiral 1, we use p-Sulu FH as a stand-alone controller. The goal of Spiral 1 is to

show that our approch can scale to real-world problems.

In Spiral 2, we integrate p-Sulu with other planners to create Integrated Plan Execu-

tive (IPE), in order to augment the capabilities of high-level decision making and natural

language processing. Besides p-Sulu, IPE include Kirk (a temporally-flexible contingent

planner), Collaborative Diagnosis System (a plan conflict fixer), Dialog Management Sys-

tem (a natural language interpreter), and Coordinator (a GUI interface). The goal of Spiral

2 is demonstrate p-Sulu's capability of adapting to environmental changes, such as the

change in the location of storms. The simulation result of Spirals 2 is visualized by a flight

simulator called X-Plane.

In Spiral 3, we use dp-Sulu to control three PAVs. The goal of Spiral 3 is to demon-

strate dp-Sulu's capability of controlling a multi-agent system in a distributed manner. We

also demonstrate its capability of avoiding inter-vehicle collisions through Bi-stage Robust

Collision Avoidance.

11.2.1 Plant Parameters

The 2-D point-mass double-integrator plant, introduced in Section 11.1.4, is used in all

spirals of the PTS simulations. The plant parameters are chosen to approximate a real

aircraft. We set the maximum speed, Vmax, to 250 m/s, which approximates the maximum

2 We acknowledge Michael Kerstetter, Scott Smith, Ronald Provine, Hui Li, and the Boeing Company for
their support and collaboration.

237

cruise speed of private jet airplanes, such as Gulfstream V. The maximum acceleration is

determined from the maximum bank angle. Assuming that an aircraft is flying at a constant

speed, the lateral acceleration a is given as a function of the bank angle # as follows:

a = g - tan #,

where g is the acceleration of gravity. Typically passenger aircrafts limit the bank angle

to 25 degrees for passenger comfort, even though the aircrafts are capable of truing with a

larger bank angle. Hence, we use:

Umax = 9.8 m/s 2 - tan(250) = 4.6 m/s 2

The standard deviation of disturbance is set to o- = 100 m and the time interval is set to

AT = 60 seconds. We set such an unrealistically high level of uncertainty in order to

make the uncertain dynamics visible (Observe in Figure 11-30, for example, that paths are

disturbed.) In order to allow such large uncertainties, we set relatively high risk bounds.

In Spiral 1 and 2 the simulations are conducted on a machine with a quad-core Intel

Xeon CPU clocked at 2.40 GHz, and with 16 GB of RAM. In Spiral 3, we deploy dp-Sulu

on a PTS with three vehicles. The central module of dp-Sulu are run on a machine with

a quad-core Intel Core i7 CPU clocked at 2.67 GHz and with 8 GB of RAM, while the

distributed component (i.e., p-Sulu) of the three vehicles are run on three machines: the

first one with a quad-core Intel Xeon CPU clocked at 2.40 GHz and with 16 GB of RAM,

the second one with a dual-core Intel Xeon CPU clocked at 1.69 GHz and with 512 MB of

RAM, and the third one with a quad-core Intel Core i7 CPU clocked at 1.60 GHz and with

8 GB of RAM.

11.2.2 Spiral 1 : Single-agent, Stand-alone

In Spiral 1, we deploy p-Sulu FH on PTS without integrating other planners. We manually

generate input CCQSPs to represent the scenarios described below.

238

Scenarios

We consider three scenarios, specified by the CCQSPs shown in Figure 11-22. Scenarios 1

and 2 are similar to the scenic flight scenario introduced at the beginning of this thesis (see

Figure 1-1). In Scenario 1, a PAV takes off from Runway 7 of Provincetown Municipal

Airport (KPVC) in Provincetown, Massachusetts3 , flies over a scenic region, and lands on

Runway 23 of Hanscom Field (KBED) in Bedford, Massachusetts. The vehicle is required

to stay within the scenic region at least for 2 minutes and at most for 10 minutes. The entire

flight must take more than 13 minutes and less than 15 minutes. Scenario 2 is the same as

Scenario 1, except for the runways used for take-off and landing.

Scenario 3 simulates a leisure flight off the coast of Massachusetts. A PAV takes off

Runway 7 of Provincetown Municipal Airport, and flies over two regions where whales are

often seen. Then the vehicle lands on Runway 11 of Hanscom Field.

We place three no-fly zones, as shown in Figure 11-23. The entire flight must take more

than 13 minutes and less than 15 minutes. Each scenario has three chance constraints,

{cI, c2 , c3}, as shown in Figure 11-22. The first one, ci, is concerned with the vehicle's

operation; it requires the vehicle to take off from and land on the right runways at the right

airports with less than 10 % probability of failure. The second chance constraint, c2 , is

concerned with the leisure activities; it requires the vehicle to fly over the scenic regions

with less than 10 % probability of failure. Finally, c3 is concerned with the passenger's

safety; it requires the vehicle to limit the risk of penetrating the no-fly zones to 0.01 %.

Simulation Results

Figure 11-23 shows the paths planned by p-Sulu FH for the three scenarios. In all the

scenarios, all the episode requirements in the CCQSPs in Figure 11-22 are met within the

specified temporal constraints.

Table 11.8 compares the performance of Sulu and p-Sulu FH. As expected, Sulu's plans

result in excessive probabilities of failure in all scenarios. This is because Sulu does not

consider uncertainty in the planning, although the PAV is subject to disturbance in real-

3 A runway of an airport is specified by a number, which represents the clockwise angle from the north.
For example, Runway 7 points 70 degrees away from the north.

239

ity. On the other hand, p-Sulu FH successfully limits the probability of failure within the

user-specified risk bounds for all the three scenarios. Furthermore, although p-Sulu FH

significantly reduces the risk of failure, its cost function value is higher than that of Sulu

only by 9.5 - 12.8 %. Such a capability of limiting the risk and maximizing the efficiency

at the same time is a desirable feature for PTS, which transport passengers.

Such robust planning capability of p-Sulu FH is obtained with a cost of computation

time; as shown in Table 11.8, p-Sulu FH typically takes several minutes to compute the

plan. This length of computation time would be allowed for PTS applications, since we

assume that p-Sulu FH is used for preplanning in Spiral 1.

In Spiral 2, the real-time plan executive, p-Sulu, is deployed.

240

Scenarios 1 and 2

Scenairo 3

All unlabeled edges has the temporal constraint j0 xo]

Figure 11-22: The CCQSPs for the PTS scenarios in Spiral 1.

x 104

-2 0 2 4 6 8 10
x [m] x 104

Figure 11-23: The paths planned by p-Sulu FH.

241

Table 11.8: Performance Comparison of the prior art, Sulu, and the proposed planner, p-
Sulu FH. Risk bounds Ac and Pfail,c of three chance constraints are presented. The three
chance constraints are concerned with the PAV's operation (ci), leisure activities (c2), and
safety (cs).

Scenario # 1 2 3
Algorithm Sulu p-Sulu FH Sulu p-Sulu FH Sulu p-Sulu FH

A1 0.1
Ci Pfail,1 0.999 9.12 x 10 0.996 9.14 x 10-2 0.999 9.23 x 10-2

A2 0.1
C2 Pf a,2 0.807 8.46 x 10-2 | 0.813 8.59 x 10- 0.603 7.65 x 10-2

A3 10-4
c3 Pail,3 0.373 2.74 x 10- 0.227 2.62 x 10 0.372 2.81 x 10
Cost function value J* 24.2 27.5 21.0 23.7 20.0 22.3
Computation time (s) 2.58 60.2 2.00 390 5.17 198

11.2.3 Spiral 2 : Single-agent, Integrated

Turning to Spiral 2, we demonstrate the on-line risk-sensitive planning capability of p-

Sulu, integrated into IPE (Integrated Plan Executive). The goal of Spiral 2 is demonstrate

p-Sulu's capability of adapting to environmental changes, such as changes in the location

of storms.

Overview of Integrated Plan Executive

The objective of IPE is to operate PAVs within a risk bound, while allowing passengers

to command in an intuitive manner. As shown in Figure 11-24, the passenger commu-

nicates his requirements in natural language. If the requirements are infeasible, IPE pro-

poses alternative plans. Once the passenger and IPE agree on a plan, IPE starts controlling

the PAV. The robust control commands are generated by p-Sulu. Recall that p-Sulu is a

receding-horizon executive, meaning that it adapts to changes in environment (e.g., mov-

ing obstacles) through continuous replanning. Hence, IPE continuously receives updates

on the environment state, as well as the plant state.

242

Natural language

Requirements(, Collaborative
' ' "diagnosis

Passenger

State Control inputs
update %

PAV

Figure 11-24: Integrated Plan Executive.

Integration

As shown in Figure 11-25, IPE consists of p-Sulu and four other components: Dialog Man-

agement System (DMS), Collaborative Diagnosis System (CDS), Kirk, and Coordinator.

The functions of the four components are summarized below.

" Dialog Management System (DMS) [63, 64], developed by Stanford and Boeing

Research & Technology, provides the capability of communicating with users in

natural language. Through this software, the passenger communicates to PTS his

requirements on the arrival time, preferred route, and acceptable level of risk.

* Collaborative Diagnosis System (CDS) [107] detects infeasibilities in the passen-

ger's requirements, and if there are infeasibilities it proposes alternative feasible

plans. For example, if the passenger requires the PAV to fly above a scenic region

and arrive at a destination within three minutes but such a plan is infeasible, CDS

proposes to allow a longer flight time, or to go to the destination directly.

" Kirk [37, 44, 50] is a temporally-flexible contingent plan executive, which is capa-

ble of making high-level choices. For example, when the destination airport becomes

243

unavailable unexpectedly, it can choose the best alternative landing site among nu-

merous options.

* Coordinator serves as a graphical interface that visualizes the user's requirements,

the plan generated by Kirk, and the path generated by p-Sulu. It also serves as a

communication hub. It receives a flight plan from Kirk, encodes the plan in a CCQSP,

and sends it to p-Sulu.

Figure 11-25: Integrated Plan Executive.

Scenario

We set our scene in the Greater Seattle area, as shown in Figure 11-27. The passenger of

the PAV is an employee of the Boeing Company, who lives near Sanderson Field. His plan

is to start from Sanderson Field, stop by Leisureland Airpark to pick up his colleague, and

go to his office, within six minutes.

Simulation Settings

We consider the real no-fly zones in the Greater Seattle area. The blue and pink dashed lines

in Figure 11-27 represent the boundary of the no-fly zones around airports. Additionally,

there is a military-related no-fly zone near the top of the map, shown by the pink solid

244

lines. We also consider a moving obstacle that simulates a storm, as shown in Figure 11-

28. The storm moves from left to right during the simulation. In order to test the executive's

capability of adapting to contingency, we make the destination airport unavailable during

the flight, forcing the IPE to choose an alternative landing site.

A CCQSP is automatically generated by IPE. Kirk creates a high-level plan, and Co-

ordinator encodes the plan in a CCQSP. When Kirk changes the flight plan, the CCQSP is

updated accordingly.

We impose three chance constraints, as shown in the CCQSPs in Figures 11-27 to 11-

29. The first chance constraint requires that the intermediate goals set by Kirk are achieved

with 90% certainty. The second chance constraint requires that the PAV reaches the final

destination on time with 99% certainty. Finally, the third chance constraint requires the

PAV to limit the risk of penetrating into the no-fly zones and the storm region to 0.01%.

The same plant model is used as in Spiral 1. We set AT = 1.0 second. Execution hori-

zon is set to 5.0 seconds, and the planning horizon is set to 10.0 seconds. The simulations

are conducted on a machine with a quad-core Intel Xeon CPU clocked at 2.40 GHz, and

with 16 GB of RAM.

Simulation Result

Figure 11-26 shows the natural-language input to IPE, as well as IPE's response to the

passenger. IPE found that the passenger's request to reach the destination in six minutes

was infeasible. Hence, it proposed an alternative to allow a nine-minute flight time, to

which the passenger agreed.

Figure 11-27 shows the flight plan generated by Kirk at the beginning of the flight,

as well as its CCQSP representation. The original plan was to go to the Boeing Company

within 9 minutes with a stop at Leisureland Airpark. The initial CCQSP is shown in Figures

11-27.

During the execution of this CCQSP by p-Sulu, a storm cut across the planned path.

As a result, Kirk changed the flight plan as shown in Figures 11-28, and updated the CC-

QSP. p-Sulu responded to this plan change, and planned a dynamically feasible path that

avoids the storm with a sufficient margin in order to guarantee the satisfaction of the chance

245

constraints. This replanning process was repeated five times during the flight as the storm

moved. Since the storm moved away eventually, p-Sulu reoptimized the path to reach the

goals on time, resulting in the path shown in Figure 11-29.

Figures 11-27 to 11-29 shows the execution result. After successfully avoiding the

storm and stopping by Leisureland Airpark, the PAV found that the destination airport was

closed. As a result, Kirk made a decision to land on the back-up landing site, Harvey

Field, and updated the CCQSP again, as shown in Figure 11-29. p-Sulu adapted to the

plan change, and generated a path that avoided the no-fly zone around Snohomish County

Airport and guided the PAV to Harvey Field.

Passenger: I want to go to the Boeing Company.

PTS: There are four back-up landing sites: Firstair Field, Heineck Farm, Ed Large Field, and
Harvey Field. Which is your preferred alternate?

Passenger: Harvey Field.

PTS: Any other requirements? There is a small storm between Sanderson Field and the
Boeing Company.

Passenger: I want to be there in 6 minutes.

PTS: Any other requirements?

Passenger: I want to stop at Leisureland.

PTS: Any other requirements?

Passenger: No.

PTS: So you want to get to the Boeing Company in 6 minutes, with a stop at Leisureland.
(PTS checks plan feasibility)

PTS: We cannot get there in 6 minutes, but we can get there in 9 minutes.
Passenger: That's fine.

PTS: OK, I have a valid plan.

Passenger: Execute the plan.

Figure 11-26: The natural-language inputs to Integrated Plan Executive and its responses.

246

Boeing Company

N Sanderson Field

Start in e End in Chance constraints:
[Sanderson] |Leisureland] - 0.1%

eo [0540] e -0.01%
Remain in

[safe regionj 0-0001 %

Figure 11-27: The flight plan generated by Kirk before the take-off, shown as the green
solid line, and its CCQSP representation. The blue and pink dashed lines represent the
boundaries of no-fly zones.

247

Harvey Field

Boeing Company

' Sanderson Field

Start in e, End in e2 End in e3 End in
[Current Pos] [Obs Pt3] [Obs Pt2] Liuead

eo [0 4261 E

Remain in Chance constraints:
Isafe region] -01r -0.1%

- 0.01%

-0.0001%

Figure 11-28: The updated plan after the storm's approach, and its CCQSP representation.

The storm moves from left to right. Kirk and p-Sulu react to the changes in the storm's

position.

248

Harvey Field

Boeing Company Harvey Field

N Sanderson Field

Start inl End in Chance constraints:
[Current Pos] [Obstacle Pt9] - 0.1%

eo [0 255] e W -0.01%
Remain in-0.0001%

[safe region] .01

Figure 11-29: Completed path after landing. Since the original destination become un-
available, the PAV landed at an alternative landing site.

In the next spiral, we present a PTS demonstration with multiple PAVs, using dp-Sulu.

249

robabliity of collision: 0.0
hance constraints are satisfied

Figure 11-30: A PTS scenario with three PAVs, on which dp-Sulu is deployed.

11.2.4 Spiral 3 : Multi-agent, Integrated

Turning to Spiral 3, we demonstrate the capability of dp-Sulu to control multiple vehicles

in a distributed manner.

Scenario

We revisit the PTS scenario presented at the very beginning of this thesis (Figure 1-2 in

Section 1.1), with an additional vehicle. Figure 11-30 shows the environment of the sce-

nario, while Figure 11-31 shows the plan. In the plan, PAV 1 takes off from Runway 7

of Provincetown Municipal Airport (KPVC) in Provincetown, Massachusetts, flies over a

250

Figure 11-31: The CCQSP for the PTS scenario shown in Figure 11-30.

scenic region, goes through two waypoints, and lands on Runway 23 of Hanscom Field

(KBED) in Bedford, Massachusetts. PAV 2, which takes off from Runway 6 of Barnsta-

ble Municipal Airport (KHYA) in Hyannis, Massachusetts, also heads to Hanscom Field.

Meanwhile, PAV 3 starts from Hanscom Field and flies to Barnstable Municipal Airport,

taking the opposite way of PAV 2. Each vehicle is required to satisfy its own chance con-

straints on avoiding obstacle and achieving goals, as shown in Figure 11-31. Additionally,

the vehicles are required to limit the probability of collision below 0.1 %. (Strictly speaking,

we bound the probability that any vehicle approaches within 100 meters of another vehicle,

instead of directly bounding the probability of collision.) All flights must be completed

within 30 minutes. Since PAV 1 and PAV 2 land at the same airport, it is required to have

at least a three minute interval between the two landings.

251

Simulation Results

Figure 11-30 is a screen capture of the central module of dp-Sulu, which plots the paths of

the three PAVs. The main window on the left shows the overall paths, while the three small

windows on the right show close-up views of the PAVs. Note that paths are disturbed by

uncertainties. Despite the uncertainties, all three vehicles successfully achieve all goals.

On the way, PAVs 1 and 3 approach so close that the probability of collision exceeds

the risk bound, 0.1%, as shown in Figure 11-32-(a). The paths of the two vehicles are

immediately adjusted by Bi-stage Robust Collision Avoidance (Section 10.4), as shown in

Figure 11-32-(b). Notice that, in the middle right window of 11-32-(a), the last waypoint

of 'Plane 1' (shown in purple) is very close to a waypoint of 'Plane 3'. In 11-32-(b), the

two waypoints are separated with a sufficient margin in order to make the probability of

collision below the given risk bound.

252

(.q)
lianel and Plane3 will collide with probability of 0.0058386...
teplanning the path...

'aths are modified to avoid collision
:hance constraints are satisfied

Figure 11-32: Demonstration of Bi-stage Robust Collision Avoidance (BRCA). (a) The
central module finds that Planes 1 and 3 will collide with a probability above the risk
bound. (b) BRCA adjusts the paths to avoid collision.

253

11.3 Application to Underwater and Space Vehicles

The application of our planners and executives are not limited by a specific plant model.

The objective of this section is to demonstrate that our approach is applicable to a wide

range of real-world problems. Section 11.3.1 apples the IRA algorithm to the depth plan-

ning of an autonomous underwater vehicle. Section 11.3.2 deploys p-Sulu FH on a space

rendezvous scenario, and 11.3.3 applies dp-Sulu to space formation flight.

11.3.1 Depth Planning of an Autonomous Underwater Vehicle

In this subsection, we demonstrate the IRA algorithm on an autonomous underwater vehicle

(AUV) depth navigation scenario4 .

Problem Setting

We consider an AUV that conducts scientific observations of the sea floor. Approach-

ing to the sea floor improves the quality of observation, but increases the risk of crashing

into the sea floor. Hence, we frame the problem as a minimization of the average altitude

from the sea floor, while limiting the probability of crash. The plant model is taken from

a Dorado-class AUV [52], which is developed and operated by Monterey Bay Aquarium

Research Institute (Figure 11-33). We use the real bathymetry data (i.e., underwater land-

scape) of Monterey Bay. We discretize the plant model with the time interval AT = 5.

The deterministic planner that solves the subproblem (Problem 5 in Section 4.1.2) has been

demonstrated in the actual AUV mission. The AUVs horizontal speed is assumed to be

constant at 3.0 knots, so only the vertical position needs to be planned.

The AUV's plant model has six-dimensional state vector and takes one-dimensional

control input, which corresponds to the elevator angle. A Gaussian-distributed disturbance

w with the standard deviation - = 10 [m] acts only on the third component of the state

vector, which refers to the depth of the vehicle. The AUVs elevator angle and pitch rate are

deterministically constrained.

4 We acknowledge Monterey Bay Aquarium Research Institute for providing us with the plant model and
the bathymetry data.

254

Figure 11-33: A Dorado-class autonomous underwater vehicle. Image courtesy of Mon-

terey Bay Aquarium Research Institute.

The depth of the AUV is required to be less than the seafloor depth for the entire mission

(1 < t < 20) with probability A = 0.05. The objective is to minimize the average of AUVs

nominal altitude above the floor.

The simulation is conducted on a machine with a Pentium 4 processor clocked at 2.80

GHz and 1.00 GB of RAM.

Compared Algorithms

We compare the performance of the following three algorithms:

(a) Ellipsoidal relaxation approach [97],

(b) Iterative Risk Allocation, and

(c) Particle Control (20 particles) [16]

Result

The three algorithms are run on 50 cases with different segments of the Monterey Bay sea

floor. Figure 11-34 shows a typical result of the three algorithms with 6 = 0.05. Ellipsoidal

relaxation yields a large safety margin, which touches the nominal path (i.e. constraint is

active) only at a few points, just as Figure 4-1-(a). This is because ellipsoidal relaxation

uniformly allocates risk to each step. On the other hand, the IRA algorithm generates a

nominal path that touches the safety margin at most points, just as Figure 4-1-(b). This

255

implies that risk is allocated efficiently such that a large portion of risk is allocated to the

critical points, such as the top of the seamount.

Figure 11-35 shows the optimal risk allocation computed by IRA algorithm on the same

case as Figure 11-34 with 6 = 0.05. A large portion of the risk is allocated to the time steps

when AUV go above the sea mountain, just as taking a large risk at the corner in the race

car example.

- -Nominal path

Safety margin
Seafloor

(A) Ellipsoidal relaxation approach

-1500

-1550

-1600

-1650
0 50 100 150

(B) Iterative Risk Allocation

-1500 -

-1550 -- -0

04

-1600

4J -1650
Q) 0 50 100 150

(C) Particle Control

-1500-

-1550

-1600

-165 0
0 50 100 150

Horizontal position [m]

Figure 11-34: Nominal path of AUV and safety margin planned by three algorithms. Safety
margin is not shown in (c) since Particle Control does not explicitly compute it.

The performance of the three algorithms is compared in Table 11.9. Values in the ta-

ble are the average of 50 cases. The resulting probability of failure PFaii is evaluated by

Monte Carlo simulation with 100,000 samples. The plan generated by the ellipsoidal re-

256

0.02

Q 0.015
E

0.01

0.005

0 - -
0 50 100 150

Horizontal position [m]

Figure 11-35: Risk allocation of Figure 11-34 (b)

Table 11.9: Performance comparison on the AUV depth planning problem with chance
constraint PFail < 0.05. Values are the average of 50 runs on different segments of the
Monterey Bay sea floor. Planning horizon is 20 steps (100 seconds). The names of the
algorithms are abbreviated as follows - ER: Ellipsoidal relaxation approach, IRA: Iterative
Risk Allocation, PC: Particle Control

Algorithm ER IRA PC
Risk bound A 0.05

Probability of failure PFail < 10- 0.023 0.297
Cost J 88.6 64.1 56.2

Computation time (s) 0.093 1.36 915.6

laxation approach (ER) results in nearly zero probability of failure although the bound is

PFail < 0.05, which shows its strong conservatism. The IRA algorithm (IRA) is also con-

servative, but much less so than ER. On the other hand, the probability of failure of Particle

Control (PC) is higher than the bound, which means violation of the chance constraint.

This is because Particle Control is a sample based stochastic algorithm that does not have

guarantee that the chance constraint is strictly satisfied.

The ellipsoidal relaxation approach fail to find a solution in one case out of 50, while

IRA find solutions in all 50 cases. This is because the strong conservatism of the ellipsoidal

relaxation(i.e. large safety margin) makes the optimization problem infeasible.

The value of objective function J is a measure of optimality. Note that this problem is a

minimization, hence smaller J means better performance. The true optimal value of J lies

between (b) IRA and (c) Particle Control, since the former is suboptimal and the latter is

"overoptimal" in the sense that it does not satisfy the chance constraint. The suboptimality

257

of the IRA is 14% at most, while the ellipsoidal relaxation has 57% suboptimality at most.

The computation time of Particle Control is longer than the planning horizon (100 sec).

Although IRA is slower than the ellipsoidal relaxation approach, it is approximately one

thousand times faster than Particle Control.

11.3.2 Space Rendezvous

In this section we consider an autonomous space rendezvous scenario of the H-IT Transfer

Vehicle (HTV) [105], shown in Figure 11-36, as our subject. HTV is an unmanned cargo

spacecraft developed by the Japanese Aerospace Exploration Agency (JAXA) 5, which is

used to resupply the International Space Station (ISS). Collision of the vehicle with the

ISS may result in a fatal disaster, even if the collision speed is low. For example, in Au-

gust 1994, the Russian unmanned resupply vehicle Progress M-34 collided with the Mir

space station in a failed attempt to automated rendezvous and docking. As a result, one

of the modules of Mir was permanently depressurized. In order to avoid such an accident,

HTV is required to follow a specified safety sequence during the automated rendezvous, as

described in the following subsection.

HTV Rendezvous Sequence

In HTV's autonomous rendezvous mission, the final approach phase starts from the Ap-

proach Initiation (Al) point, which is located 5 km behind the ISS, as shown in Figure

11-37. First, HTV moves to R-bar Initiation (RI) point, which is located 500 m below the

ISS, guided by the relative GPS navigation. At the RI point, HTV switches the navigation

mode to Rendezvous Sensor (RVS) Navigation. In RVS Navigation, HTV measures the

distance to ISS precisely by beaming the laser to the reflector placed on the nadir (earth-

facing) side of the ISS. Then, HTV proceeds to the Hold Point (HP), located 300 m below

the ISS. HTV is required to hold at HP in order to perform a 180-degree yaw-around ma-

neuver. The new orientation of HTV allows the vehicle to abort the rendezvous quickly in

case of emergency. After the yaw-around maneuver, HTV resumes the approach, and holds

5 We note that this work is not supported by, nor conducted in collaboration with, the Japanese Aerospace
Exploration Agency

258

Figure 11-36: H-II Transfer Vehicle (HTV), a Japanese unmanned cargo vehicle, conducts
autonomous rendezvous with the International Space Station. Image courtesy of NASA.

again at the Parking Point (PP), which is 30 m below the ISS. Finally, HTV approaches at

a distance of 10 meters from the ISS, and stops within the Capture Box (CB) of the ISS's

robotic arm. The robotic arm then grabs HTV and docks it to the ISS. This rendezvous

sequence is described in detail in [46].

The rendezvous sequence described above is represented by the CCQSP shown in Fig-

ure 11-38. In addition to the temporally extended goals specified in the actual rendezvous

sequence, we specify temporal constraints and chance constraints in the simulation, as

shown in Figure 11-38. We require HTV to hold at each intermediate goals for at least

240 seconds. The transition between the goals must take at least 600 seconds, in order to

make sure that the vehicle moves slowly enough. The entire mission must be completed

within 4800 seconds (1 hour 20 minutes). We require HTV to stay within the Safe Zone,

a conic area below the ISS, during the RVS navigation phase with 99.5% probability, since

otherwise the laser may not be reflected back to HTV properly. We assume that the goals

are square regions, with 10 m sides for RI and HP, 2 m sides for PP, and 1 m sides for

CB. Finally, we require that HTV achieves all the temporally extended goals with 99.5%

certainty.

259

RI HP PP CB

-500

Earth

AI: Approach Initiation
RI: R-bar Initiation
HP: Hold Point
PP: Parking Point Al Point
CB: Capture Box -5000 m

Figure 11-37: HTV's final approach sequence. The figure is created based on the informa-
tion in [46].

Orbital Dynamics

The rendezvous can be considered as a two-body problem, where a chaser spacecraft (e.g.,

HTV) moves in relation to a target spacecraft (e.g., ISS), which is in a circular orbit. In

such a problem, it is convenient to describe the motion of the chaser spacecraft using a

rotating frame that is fixed to the target space craft, known as a Hill coordinate frame [84].

As shown in Figure 11-37, we set the x-axis pointing away from the center of the earth and

the y-axis along the orbital velocity of the target spacecraft. Since HTV's path is within the

x-y plane, we don't consider the z-axis.

It is known that the relative motion of the chase spacecraft in the Hill coordinate frame

is described by the following the Clohessy-Wiltshire (CW) equation [95]:

= 2wi+3w2 x+ Fx

2wQ = + Fy

where w is the angular speed of the target spacecraft's orbit, and Fx and Fy are the force

per unit mass, or the acceleration in x and y directions. The first terms on the right-hand

sides represent the Coriolis force.

260

[240 o] 1600 rc] 1240 x] 1600ro1 1240 o]0

Chance constraints: { I - A, = 0.5%- A2 =0.5%

Figure 11-38: A CCQSP representation of the HTV's final approach sequence. We as-
sume the same temporally extended goals as the ones used for actual flight missions. The
temporal constraints and the chance constraints are added by the authors.

An object that follows the CW equation moves in an unintuitive manner. Its unforced

motion is not in a straight line due to the Coriolis effect; in general, an object cannot stay

at the same position without external force. For example, Figure 11-39 shows the fuel-

optimal path to visit two waypoints, A and B, and come back to the start. As can be seen in

the figure, the optimal path is not typically a straight line. The virtue of p-Sulu is that it can

handle such irregular dynamic systems in the same way as regular systems, just by setting

the A and B matrices of our plant model (2.3) appropriately.

0.5

0.4

0.3

0.2-

0.1 -
Sta rt

0~ 0

-0.1-

-0.--

-0.

-0.-
B

-0.

-0.2 0 0.2 04 0.6 0.8 1
x

Figure 11-39: A typical motion of spacecraft in the Hill coordinate frame. The solid line is
the fuel optimal path to visits A and B and returns to the Start in 30 minutes. Note that the
optimal path is not a straight line in the Hill coordinate frame.

261

[1800 2400]1 [600'o]

The state vector is consists of positions and velocity in the x - y plane:

x = [x y vx vY]

We obtain the discrete-time CW equation using the impulse-invariant discretization:

Xk+1 = Axk + Buk,

where

4 - 3 cos(wAT) 0 sin(wAT)
W

-6{wAT - sin(wAT)} 1 -2{1-cos(wAT)}
W

3w sin(wAT) 0 cos(wAT)

-6w{1 - cos(wAT)} 0 -2sin(wAT)

sin(wAT) 2{1-cos(wAT)}
W W

-2{1-cos(wAT)} 4sin(wAT)
WJ L) A

cos(wAT) 2 sin(w AT)

-2 sin(wAT) 4 cos(wAT) - 3

2{1-cos(wAT)}
W

4sin(w.AT) - 3AT

2 sin(wAT)

4 cos(wAT) - 3

We use the ISS's orbital angular speed, w = 0.001164 rad/sec, at which the station goes

around the Earth in 90 minutes. We choose the interval AT = 120 seconds. The number of

time steps N is set to 40. Hence, the entire plan is 4800 seconds (1 hour and 20 minutes).

In the discretization, we assumed impulse inputs as follows:

N-1

= 6(t - AT -kuk ,
k=O

where 6(-) is the Dirac delta function. Such an assumption is justified because the thrusters

of the Reaction Control System (RCS) of spacecraft, which are used for the final approach

maneuver, operate for a very short duration (0.01 - 5.0 seconds) at each burn [104].

262

A-

B=

We consider stochastic uncertainty w, added to the discrete-time dynamic equation:

Xk+1 = Axk + Buk + W.

Such an assumption of additive uncertainty is commonly used in past research on au-

tonomous rendezvous and formation flight in space, such as [87, 90, 26]. We assume that

w has a zero-mean Gaussian distribution, with the following covariance matrix:

10-6 0 0 0

0 10-6 0 0

0 0 0 0

0 0 0 0

Objective Function

We employ an objective function J that requires for p-Sulu to minimize the fuel consump-

tion. It follows from the Tsiolkovsky rocket equation that the fuel consumption of space-

craft is proportional to the total change in velocity, called Delta-V or AV [104]. The total

fuel consumption is the summation of the fuel consumption of reaction jets in x and y

directions for all time steps. Hence our objective function is described as follows:

J(UO:N) AVx + AVy

/(N-1)AT |Fx\ + |Fy~dt

k=N -1 (N-1)AT (N-1),AT

E J6t - AT - k)ux,kdt + /0 6t - AT - k)uy,kdt
k-- 0o

k=N-1

E l3Ux~kj + IUy,kI.
k=O

Simulation Result

Figure 11-40 shows the planning result of p-Sulu FH. We compare the result with Sulu, as

well as a nominal planning approach. In the nominal planning approach, we assume that

HTV moves from Al to RI using a two-impulse transition (called "CW guidance law"),

263

which is commonly used in space rendezvous [70, 95]. From RI to CB, it follows a prede-

termined path that goes through the center of the Safe Zone, as shown in Figure 11 -40-(b),

with a constant speed.

(a) (b) RI point Hold point (HP) pSulu
t =2280 t=3120 -,e -oinl-b-Nominal

0Earth
00

-500 - -- -20
ISS -600 500 -400 -300 -200 -100 0

-1000 .Safe
Zone

-1500o

(c)
-2000 30

2500 -0

25 Parking point (PP) Capture 3ox (CB) 1-3000 -=3960 t = 4800 o
20-

-4500
10-

-5000
'S--Al Point 5--2000 -1000 0 oin 5

x [in]t=0

-35 -30 -25 -20 -15 -10 -5 0 5 10
x (in]

Al: Approach Initiation, RI: R-bar Initiation, YA: Yaw-around

Figure 11-40: Planning results of Sulu, p-Sulu FH, and a nominal planning approach. The
input CCQSP is shown in Figure 11-38.

As shown in Figure 11-40, the optimal paths generated by p-Sulu FH and Sulu are not

straight. Such curved paths exploit the Coriolis effect to minimize fuel consumption.

Table 11.10 compares the performance of the three planning approaches. The two rows

regarding the probabilities of failure correspond to the two chance constraints specified

in the CCQSP, shown in Figure 11-38. The probabilities are evaluated by Monte Carlo

simulations with one million samples.

As expected, the probabilities of failure of the path generated by p-Sulu FH are less than

the risk bounds specified by the CCQSP, shown in Figure 11-38. On the other hand, Sulu's

path results in almost 100% probability of failure. This is because Sulu minimizes the

fuel consumption without considering uncertainty. The resulting path pushes against the

boundaries of feasible regions, as is evident in Figure 11-40-(c). Also note that, although

264

p-Sulu FH significantly reduces the probability of constraint violation compared with Sulu,

its cost (Delta V) is higher than Sulu only by 0.2%. p-Sulu FH results in a significantly

smaller cost (Delta V) than the nominal planning approach. The 1.42 m/sec reduction in

Delta V is equivalent to an 11.9 kg saving of fuel, assuming the 16, 500 kg mass of the

vehicle and the 200 sec specific impulse (Isp) of the thrusters. Although p-Sulu FH takes

longer to compute the plan than the other two approaches, the 11.4 second computation

time is negligible compared with the 1 hour and 20 minute plan duration.

Table 11.10: Performance comparison of Sulu, p-Sulu FH, and the nominal approach on

the HTV rendezvous scenario.

Algorithm Sulu p-Sulu FH Nominal

c1 (Navigation) Risk bound A1
0.005

Probability of failure Pfaui,l 0.92 0.0024 < 10-
(Goals) Risk bound A2 0.005

c2 (G Probability of failure Pfail,2 1.0 0.0029 < 10-6

Cost function value (Delta V) J* (m/s) 7.30 7.32 8.73
Computation time (s) 3.9 11.4 0.09

11.3.3 Space Formation Flight

We next consider flying multiple space crafts in formation using dp-Sulu. Space forma-

tion flight has important applications ranging from astronomical interferometry to military

surveillance. Guidance and control for space formation flight is an area that has been ac-

tively studied for decades. A comprehensive review of this field is provided by [83] and

[82]. An import challenge is to precisely maintain specified formulations while avoiding

collisions. Minimizing fuel consumption is another important challenge since it is very

difficult to refuel space vehicles.

Scenario

Figure 11-41 shows the environment of the scenario and Figure 11-42 shows the plan.

Initially the three satellites are put on the parking orbits, in which the satellites can maintain

their relative positions without consuming fuel. The parking orbits are on the reference

265

orbit, which is depicted as the vertical white line in Figure 11-41. The satellites start from

the parking orbits and form a triangular formation, specified by the three locations labeled

as 'Formation 1', 'Formation 2', and 'Formation 3' in Figure 11-41. During the formation

flight the three satellites exchange their positions in order to equalize fuel consumptions.

Satellites are required to stay within each position for at least 10 minutes and at most 12

minutes. Transition between positions must take 20 to 22 minutes. After one rotation, the

satellites go back to their parking orbits.

Simulation Settings

We use the CW equation-based plant model presented in Section 11.3.2. For collision

avoidance, we require that any satellite does not approach within 100 meters of another

satellite. The chance constraint c4 in Figure 11-42 limits such a risk to be below 0.1%. The

central module of dp-Sulu are run on a machine with a quad-core Intel Core i7 CPU clocked

at 2.67 GHz and with 8 GB of RAM, while the distributed component (i.e., p-Sulu) of the

three satellites are run on three machines: the first one with a quad-core Intel Xeon CPU

clocked at 2.40 GHz and with 16 GB of RAM, the second one with a dual-core Intel Xeon

CPU clocked at 1.69 GHz and with 512 MB of RAM, and the third one with a quad-core

Intel Core i7 CPU clocked at 1.60 GHz and with 8 GB of RAM.

Simulation Results

Figure 11-41 shows the paths of the three satellites. Three satellites successfully completed

a formation flight, within the specified temporal bounds. During the formation flight, there

are several times when two satellites approach so close that the probability of collision

exceeds the risk bound, 0.1%. For example, in Figure 11-43-(a), Satellites 1 and 2 would

be within 100 meters from each other. The paths of the two satellites are immediately

adjusted by Bi-stage Robust Collision Avoidance, as shown in Figure 11-43-(b). As a

result, probability of collision is reduced below below the given risk bound. Note that

the probability of collision shown in Figure 1l-43-(a) exceeds 1. This is because dp-Sulu

actually evaluates an upper bound of the probability using risk allocation; the upper bound

is obtained by summing up the probabilities of collision at all times step within the current

266

horizon. It follows from Lemma 1 in Section 4.1.2 that if the summation is below the risk

bound, then the original chance constraint is guaranteed to be satisfied.

11.4 Conclusion

This chapter presented simulation results of the planners and executives developed through-

out this thesis. We demonstrated the proposed planners and executives in three ways. First,

we evaluated their performances by extensive simulations with randomized conditions on

benchmark problems. These simulations demonstrated the risk-sensitive planning capabil-

ity to operate uncertain systems within user-specified risk bounds. Second, we deployed

the proposed planners and executives on the personal transportation system (PTS). The

PTS simulations demonstrated that our planners and executives can solve real-world scale

problems. Third and finally, we applied our planners and executives to the control of un-

derwater and space vehicles, both of which have significantly different plant models than

the PTS. These simulation results showed that our approach is applicable to a wide range

of real-world systems.

267

Probability of collision: 0.0
Chance constraints are satisfied

Figure 11-41: A space formation flight scenario with three satellites, on which dp-Sulu is
deployed. The Earth illustrated on the right is not to scale.

Satellite 1

Figure 11-42: The CCQSP for the space formation flight scenario shown in Figure 11-41.
The time is displayed in minutes.

268

atellitel and Satelllte2 will collide with probability of 1.9999898572...
eplanning the path...

(IU
iths are modified to avoid collision
iance constraints are satisfied

Figure 11-43: Collision avoidance performed by dp-Sulu during the formation flight. (a)
The central module finds that Satellites 1 and 2 will collide with a probability above the
risk bound. (b) dp-Sulu adjusts the paths to avoid collision.

269

Chapter 12

Thesis Conclusions

12.1 Thesis Contributions

We have developed risk-sensitive model-based plan executives, p-Sulu and dp-Sulu, which

operate within user-specified risk bounds. p-Sulu and dp-Sulu optimize a continuous con-

trol sequence and a discrete schedule, given as inputs a continuous stochastic plant model,

an objective function, and a newly developed plan representation called a chance-constrained

qualitative state plan (CCQSP). A CCQSP involves temporally extended goals, simple tem-

poral constraints, and chance constraints, which specify the user's acceptable levels of risk

on subsets of the plan.

p-Sulu and dp-Sulu have been enabled by our new concept of risk allocation (Chapter

4). The risk allocation approach achieves tractability by allocating the specified risk to

individual constraints and mapping the result into an equivalent deterministic constrained

optimization problem. Risk allocation also enables a distributed plan execution for multi-

agent systems by distributing the risk among agents.

The centralized CCQSP executive, p-Sulu, has been built upon the risk allocation ap-

proach in four spirals. In the first spiral (Chapter 5) we have solved a limited version of

the CCQSP planning problem: a problem with only a convex state space, a fixed schedule,

and a full planning horizon. Such a problem has been efficiently solved by the convex risk

allocation (CRA) problem. In the second spiral (Chapter 6), we have developed the non-

convex iterative risk allocation (NIRA) algorithm, in order to remove the above convexity

270

requirement. In the third spiral (Chapter 7), we have extended NIRA to handle flexible

schedule, and developed a full horizon CCQSP planner, p-Sulu FH. Finally, in the fourth

spiral (Chapter 8), we have developed a receding horizon CCQSP executive, p-Sulu, which

has enabled an online execution of CCQSP in a centralized manner.

Next, we have developed the distributed CCQSP executive, dp-Sulu, in two spirals. In

the first spiral of this part (Chapter 9), we have developed the Market-based Iterative Risk

Allocation (MIRA) algorithm, which can solve a multi-agent CCQSP planning problem

in a distributed manner with a convex state space, a fixed schedule, and a full planning

horizon. Then, in the final spiral (Chapter 10), we have created the distributed receding-

horizon plan executive, dp-Sulu, which can execute CCQSP in real time with a nonconvex

state space and a flexible schedule.

The capabilities of the plan executives have been demonstrated by extensive simula-

tions (Chapter 11). We have deployed the executives on aerial, underwater, and space

vehicles, as well as various benchmark problems. Among the total of 1,120 simulations

with various settings, none of them violated the chance constraints. The simulation re-

sults have demonstrated the executives' capability of robustly achieving the temporally

extended goals while respecting the user-specified risk bounds and continuously adapting

to environmental changes. Furthermore, our algorithms have been successfully deployed

on three different plants: personal aerial vehicles (PAVs), autonomous underwater vehicles

(AUVs), and autonomous cargo spacecraft. These results demonstrate the generality of our

approach.

12.2 Future Work

Receding-horizon chance-constrained plan execution with resolvability

Recall that our proposed plan executives solve CCQSP planning problem repeatedly with

a receding planning horizon. The solution at each planning horizon is guaranteed to satisfy

chance constraints, if one exists. However, the existence of a solution is not guaranteed. A

plan executive will be more robust if it can also guarantee the existence of a solution during

the execution. In other words, the executive should be guaranteed to avoid a situation where

271

it cannot find any feasible control sequence in the middle of execution.

Such a guarantee can be obtained by making the planning problems resolvable or re-

cursively feasible. The issue of resolvability has been extensively studied in the robust

model predictive control (RMPC) community (e.g., [1, 2, 28, 30, 55, 59, 86]). However,

most RMPC algorithms with a resolvability guarantee assume set-bounded uncertainties,

meaning that the level of uncertainty at each time step is upper-bounded. To the best of

our knowledge, there is no MPC algorithm that can guarantee resolvability with the more

general assumption of unbounded, stochastic uncertainty. Therefore, it is our future work

to develop a chance-constrained MPC algorithm with resolvability, and leverage that tech-

nology for CCQSP execution with guaranteed resolvability.

Extension of risk allocation approach to other planning domains

In this thesis we focused on a planning problem with continuous state variables, formulated

as constrained optimization problems. However, the concept of risk allocation is more gen-

eral than this specific form of planning problems. In particular, when Assumptions 4-1 to

4-3 in Section 4.2 are satisfied, the iterative risk allocation (IRA) algorithm proposed in

Section 4.2 can be implemented on top of existing deterministic optimizers and give them

a capability to solve corresponding chance-constrained optimization problems. Therefore,

application of the risk allocation approach and the IRA algorithm to existing planning ap-

proaches is a promising direction of future research.

Deployment on hardware

In this thesis the capabilities of the proposed planners and executives are demonstrated by

simulations. They need to be tested on real-world hardware in order to be more credible.

Our algorithms are model-based, meaning that we assume that we have a perfect knowledge

of plant models, including the probability distributions of uncertainties. Therefore, we need

to combine our approach with model identification and/or learning techniques in order to

obtain the plant model. A branch of robust model predictive control (RMPC) considers

uncertainty in plant parameters. This approach would also be useful in order to deploy our

algorithms on real-world hardware.

272

Bibliography

[I] B. Agikmee and J. M. Carson III. A nonlinear model predictive control algorithm

with proven robustness and resolvability. In Proceedings of American Control Con-

ference, 2006.

[2] B. Agikmege, J. M. Carson III, and D. S. Bayard. A robust model predictive con-

trol algorithm for incrementally conic uncertain/nonlinear systems. International

Journal of Robust and Nonlinear Control, 21(5):563-590, 2011.

[3] Aircraft Owners and Pilots Association Air Safety Foundation. 2005 Joseph T. Nall

Report - accident trands and factors for 2004, 2005.

[4] E. Altman. Constrained Markov Decision Processes. Chapman and Hall/CRC, 1999.

[5] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. Journal

of the ACM, 43, 1996.

[6] K. E. Atkinson. An Introduction to Numerical Analysis, Second Edition. John Wiley

& Sons, 1989.

[7] F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals of

Mathematics and Artificial Intelligence, (22):5-27, 1998.

[8] L. Baird. Residual algorithms: Reinforcement learning with function approximation.

In Proceedings of the Twelfth International Conference on Machine Learning, 1995.

[9] E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 1979.

273

[10] A. G. Banerjee and N. Roy. Learning Solutions of Similar Linear Programming

Problems using Boosting Trees. CSAIL Technical Report MIT-CSAIL-TR-2010-

045, Massachusetts Institute of Technology, 2010. Available at http: / /dspace.

mit.edu/handle/1721.1/58609.

[11] N. M. Barr. Wind Models for Flight Simulator Certification of Landing and Ap-

proach Guidance and Control Systems. University of Michigan Library, 1974.

[12] K. Bell, A. I. Coles, M. Fox, D. Long, and A. J. Smith. The application of planning to

power substation voltage control. In Proceedings of ICAPS Workshop on Scheduling

and Planning Applications, 2008.

[13] D. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming: an overview. In De-

cision and Control, 1995., Proceedings of the 34th IEEE Conference on, volume 1,

pages 560 -564 vol.1, dec 1995.

[14] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[15] D. P. Bertsekas. Convex Optimization Theory. Athena Scientific, 2009.

[16] L. Blackmore. A probabilistic particle control approach to optimal, robust predictive

control. In Proceedings of the AIAA Guidance, Navigation and Control Conference,

2006.

[17] L. Blackmore. Robust Execution for Stochastic Hybrid Systems. PhD thesis, Mas-

sachusetts Institute of Technology, 2007.

[18] L. Blackmore, H. Li, and B. C. Williams. A probabilistic approach to optimal robust

path planning with obstacles. In Proceedings ofAmerican Control Conference, 2006.

[19] L. Blackmore and M. Ono. Convex chance constrained predictive control without

sampling. In Proceedings of the AIAA Guidance, Navigation and Control Confer-

ence, 2009.

274

[20] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams. A probabilistic particle

control approximation of chance constrained stochastic predictive control. IEEE

Transactions on Robotics, 26(3), 2010.

[21] J. Boyan and A. Moore. Robust value function approximation by working back-

wards. In Proceedings of the Workshop on Value Function Approximation, Machine

Learning Conference, July 1995.

[22] J. A. Boyan and M. L. Littman. Exact solutions to time-dependent mdps. In in

Advances in Neural Information Processing Systems, pages 1026-1032. MIT Press,

2000.

[23] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

mar 2004.

[24] L. Breger and J. P. How. Safe trajectories for autonomous rendezvous of spacecraft.

Journal of Guidance, Control, and Dynamics, 2008.

[25] G. C. Calafiore and M. C. Campi. The scenario approach to robust control design.

IEEE Transactions on Automatic Control, 51(5), 2006.

[26] M. E. Campbell and B. Udrea. Collision avoidance in satellite clusters. In Proceed-

ings of the American Control Conference, 2002.

[27] A. Charnes and W. W. Cooper. Chance-constrained programming. Management

Science, 6:73-79, 1959.

[28] H. Chen, C. Scherer, and F. Allgower. A game theoretic approach to nonlinear robust

receding horizon control of constrained systems. In American Control Conference,

1997. Proceedings of the 1997, volume 5, pages 3073 -3077 vol.5, jun 1997.

[29] S. Chien, B. Cichy, A. Davies, D. Tran, G. Rabideau, R. Castano, R. Sherwood,

D. Mandl, S. Frye, S. Shulman, J. Jones, and S. Grosvenor. An autonomous earth-

observing sensorweb. Intelligent Systems, IEEE, 20(3):16 - 24, may-june 2005.

275

[30] L. Chisci, J. Rossiter, and G. Zappa. Systems with persistent disturbances: predictive

control with restricted constraints. Automatica, 37(7):1019 - 1028, 2001.

[31] A. J. Coles, A. I. Coles, M. Fox, and D. Long. Temporal planning in domains

with linear processes. In Twenty-First International Joint Conference on Artificial

Intelligence (IJCAI). AAAI Press, July 2009.

[32] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. In Proceedings of

the first international conference on Principles of knowledge representation and rea-

soning, pages 83-93, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers

Inc.

[33] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelli-

gence, 49:61-95, 1991.

[34] D. Dolgov and E. Durfee. Stationary deterministic policies for constrained mdps

with multiple rewards, costs, and discount factors. In In Proceedings of the Nine-

teenth International Joint Conference on Artificial Intelligence (IJCAI-05, pages

1326-1331, 2005.

[35] W. B. Dunbar. Distributed receding horizon control of dynamically coupled nonlin-

ear systems. IEEE Transactions on Automatic Control, 2007.

[36] W. B. Dunbar and R. M. Murray. Distributed receding horizon control for multi-

vehicle formation stabilization. Automatica, 42(4):549 - 558, 2006.

[37] R. Effinger and B. C. Williams. Optimal temporal planning at reactive time scales via

dynamic backtracking branch and bound. Master's thesis, Massachusetts Institute of

Technology, 2006.

[38] Z. Feng, R. Dearden, N. Meuleau, and R. Washington. Dynamic programming for

structured continuous markov decision problems. In Proceedings of the Proceedings

of the Twentieth Conference Annual Conference on Uncertainty in Artificial Intelli-

gence (UAI-04), pages 154-161, Arlington, Virginia, 2004. AUAI Press.

276

[39] M. Fox and D. Long. Pddl 2.1 : An extension to pddl for expressing temporal

planning domains. Journal of Artificial Intelligence Research, 2003.

[40] M. Fox and D. Long. Modelling mixed discrete-continuous domains for planning.

Journal of Artificial Intelligence Research, 27:235-297, 2006.

[41] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: Theory and

practice - a survey. Automatica, 25(3):335 - 348, 1989.

[42] P. Geibel and F. Wysotzki. Risk-sensitive reinforcement learning applied to control

under constraints. Journal of Artificial Intelligence Research, 24:81-108, 2005.

[43] A. G. Hofmann and B. C. Williams. Robust execution of temporally flexible plans

for bipedal walking devices. In Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS-06), 2006.

[44] I. hsiang. Shu. Enabling fast flexible planning through incremental temporal reason-

ing. Master's thesis, Massachusetts Institute of Technology, 2003.

[45] J. C. Jacobo, D. de Roure, and E. H. Gerding. An agent-based electrical power

market. In Proceedings of the 7th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS): Demo Papers, 2008.

[46] Japan Aerospace Exploration Agency. HTV-1 mission press kit. Available on-line

athttp://www.jaxa.jp/countdown/h2bfl/pdf/presskithtve.

pdf, 2009.

[47] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks: Shadow

prices, proportional fairness and stability. Journal of the Operational Research So-

ciety, 49:237-252, 1998.

[48] E. C. Kerrigan. Robust Constraint Satisfaction: Invariant Sets and Predictive Con-

trol. PhD thesis, University of Cambridge, 2000.

277

[49] H. Kim, D. Shim, and S. Sastry. Nonlinear model predictive tracking control for

rotorcraft-based unmanned aerial vehicles. In American Control Conference, 2002.

Proceedings of the 2002, volume 5, pages 3576 - 3581 vol.5, 2002.

[50] P. Kim. Model-based planning for coordinated air vehicle missions. Master's thesis,

Massachusetts Institute of Technology, 2000.

[51] P. Kim, B. C. Williams, and M. Abramson. Executing reactive, model-based pro-

grams through graph-based temporal planning. In Proceedings of the International

Joint Conference on Artificial Intelligence, pages 487-493, 2001.

[52] W. J. Kirkwood. Development of the dorado mapping vehicle for multibeam, sub-

bottom, and sidescan science missions. Journal of Field Robotics, 24(6):487-495,

2007.

[53] S. Knight, G. Rabideau, S. Chien, B. Engelhardt, and R. Sherwood. Casper: space

exploration through continuous planning. Intelligent Systems, IEEE, 16(5):70 - 75,

sep-oct 2001.

[54] M. V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model predictive

control using linear matrix inequalities. Automatica, 32(10):1361-1379, October

1996.

[55] M. V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model predictive

control using linear matrix inequalities. Automatica, 32(10):1361 - 1379, 1996.

[56] Y. Kuwata. Real-time trajectory design for unmanned aerial vehicles using receding

horizon control. Master's thesis, Massachusetts Institute of Technology, 2003.

[57] Y. Kuwata. Trajectory Planning for Unmanned Vehicles using Robust Receding

Horizon Control. PhD thesis, Massachusetts Institute of Technology, 2006.

[58] Y. Kuwata and J. P. How. Cooperative distributed robust trajectory optimization

using receding horizon MILP. IEEE Transactions on Control Systems Technology,

19(2):423-431, March 2011.

278

[59] Y. Kuwata, A. Richards, and J. How. Robust receding horizon control using gener-

alized constraint tightening. Proceedings of American Control Conference, 2007.

[60] J. Kvarnstrom and P. Doherty. Talplanner: A temporal logic based forward chaining

planner. Annals of Mathematics and Artificial Intelligence, (30), 2000.

[61] T. Lautd. Coordinating agile systems through the model-based execution of tempo-

ral plans. Master's thesis, Massachusetts Institute of Technology, 2005.

[62] T. Laut6 and B. C. Williams. Coordinating agile systems through the model-based

execution of temporal plans. In Proceedings of the Twentieth National Conference

on Artificial Intelligence (AAAI), 2005.

[63] 0. Lemon, A. Bracy, A. Gruenstein, and S. Peters. An information state approach

in a multi-modal dialogue system for human-robot conversation. Perspectives on

Dialogue in the new Millenium, pages 229-242, 2003.

[64] 0. Lemon, A. Gruenstein, and S. Peters. Collaborative activities and multi-tasking

in dialogue systems. Traitement Automatique des Langues, 43(2), 2002.

[65] H. Li and B. C. Williams. Generalized conflict learning for hybrid discrete linear

optimization. In Proc. 11th International Conf on Principles and Practice of Con-

straint Programming, 2005.

[66] H. X. Li. Kongming: A Generative Planner for Hybrid Systems with Temporally

Extended Goals. PhD thesis, Massachusetts Institute of Technology, 2010.

[67] J. L6fberg. Minimax Approaches to Robust Model Predictive Control. PhD thesis,

Link6ping Studies in Science and Technology, 2003.

[68] J. Lofberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In

Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[69] B. D. Luders, M. Kothari, and J. P. How. Chance constrained rrt for probabilistic

robustness to environmental uncertainty. In Proceedings of the AIAA Guidance,

Navigation, and Control Conference, 2010.

279

[70] S. Matsumoto, S. Dubowsky, S. Jacobsen, and Y. Ohkami. Fly-by approach and

guidance for uncontrolled rotating satellite capture. In Proceedings of AIAA Guid-

ance, Navigation, and Control Conference and Exhibit, 2003.

[71] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. 0. M. Scokaert. Constrained model

predictive control: Stability and optimality. Automatica, 2000.

[72] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,

and D. Wilkins. PDDL - the planning domain definition language. In The AIPS-98

Planning Competition Comitee, 1998.

[73] R. Murray. Recent research in cooperative control of multivehicle systems. Journal

of Dynamic Systems Measurement and Control, 129(5):571, 2007.

[74] N. Muscettola, P. Nayak, B. Pell, and B. C. Williams. Remote agent: to boldly go

where no Al system has gone before. Artificial Intelligence, 103(1-2):5 - 47, 1998.

[75] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained pro-

grams. SIAM Journal on Optimization, 17:969-996, 2006.

[76] T. Ohno and S. Imai. The 1987 tokyo blackout. In Proceedings of Power Systems

Conference and Exposition, 2006.

[77] F. Oldewurtel, C. N. Jones, and M. Morari. A tractable approximation of chance

constrained stochastic mpc based on affine disturbance feedback. In Proceedings of

Conference on Decision and Control, 2008.

[78] M. Ono and B. C. Williams. An efficient motion planning algorithm for stochastic

dynamic systems with constraints on probability of failure. In Proceedings of the

Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08), 2008.

[79] A. Prdkopa. The use of discrete moment bounds in probabilistic constrained stochas-

tic programming models. Annals of Operations Research, 85:21-38, 1999.

280

[80] A. Richards and J. How. Decentralized model predictive control of cooperating uavs.

In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 4, pages

4286 - 4291 Vol.4, dec. 2004.

[81] A. Richards, T. Schouwenaars, J. P. How, and E. Feron. Spacecraft trajectory plan-

ning with avoidance constraints using mixed-integer linear programming. AIAA

Journal of Guidance, Control, and Dynamics, 25(4), 2002.

[82] D. Scharf, F. Hadaegh, and S. Ploen. A survey of spacecraft formation flying guid-

ance and control (part 1): guidance. In American Control Conference, 2003. Pro-

ceedings of the 2003, volume 2, pages 1733 - 1739, jun 2003.

[83] D. Scharf, F. Hadaegh, and S. Ploen. A survey of spacecraft formation flying guid-

ance and control. part ii: control. In American Control Conference, 2004. Proceed-

ings of the 2004, volume 4, pages 2976 -2985 vol.4, 30 2004-july 2 2004.

[84] H. Schaub and J. L. Junkins. Analytical mechanics of space systems. American

Institute of Aeronautics and Astronautics, Inc., 2003.

[85] T. Schouwenaars, B. DeMoor, E. Feron, and J. How. Mixed integer programming

for multi-vehicle path planning. In In European Control Conference 2001, pages

2603-2608, 2001.

[86] P. 0. M. Scokaert and D. Q. Mayne. Minmax feedback model predictive control for

constrained linear systems. IEEE Transactions on Automatic Control, 43(8), 1998.

[87] J. Shields, S. Sirlin, and M. Wette. Metrology sensor characterization and point-

ing control for the formation interferometer testbed (fit). In Proceedings of IEEE

Aerospace Conference, 2002.

[88] D. H. Shim, H. Chung, H. J. Kim, and S. Sastry. Autonomous exploration in un-

known urban environments for unmanned aerial vehicles. In in Proceedings of AIAA

Guidance, Navigation, and Control Conference, 2005.

[89] N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-

Berlag, 1985.

281

[90] R. Smith and F. Hadaegh. Distributed estimation, communication and control for

deep space formations. IET Control Theory and Applications, 2007.

[91] J. L. Stedl. Managing temporal uncertainty under limited communication: A formal

model of tight and loose team coordination. Master's thesis, Massachusetts Institute

of Technology, 2004.

[92] J. Tuinstra. Price Dynamics in Equilibrium Models: The Searchfor Equilibrium and

the Emergence of Endogenous Fluctuations. Kluwer Academic Publishers, 2000.

[93] R. M. Turner and E. H. Turner. A two-level, protocol-based approach to controlling

autonomous oceanographic sampling networks. IEEE Journal of Oceanic Engineer-

ing, 26, 2001.

[94] R. H. Tutuncu, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear

programs using SDPT3. Mathematical Programming B, 95:189-217, 2003.

[95] D. A. Vallado. Fundamentals of Astrodynamics and Applications, Second Edition.

Microcosm Press, 2001.

[96] F. Vallde, J. Lobry, and 0. Deblecker. Impact of the wind geographical correlation

level for reliability studies. IEEE Transactions on Power Systems, 22(4), November

2007.

[97] D. H. van Hessem. Stochastic inequality constrained closed-loop model predictive

control with application to chemical process operation. PhD thesis, Delft University

of Technology, 2004.

[98] T. Vidal. Controllability characterization and checking in contingent temporal con-

straint networks. In Proceedings Of Seventh International Conference on Principles

of Knowledge, 2000.

[99] T. Vidal and H. Fargier. Handling contingency in temporal constraint networks: from

consistency to controllabilities. Journal of Experimental and Theoretical Artificial

Intelligence, 11:23-45, 1999.

282

[100] T. Vidal and M. Ghallab. Dealing with uncertain durations in temporal constraint

networks dedicated to planning. In Proceedings Of 12th European Conference on

Artificial Intelligence (ECAI-96), pages 48-54, 1996.

[101] H. Voos. Agent-based distributed resource allocation in technical dynamic systems.

In Proceedings of IEEE Workshop on Distributed Intelligent Systems: Collective

Intelligence and Its Applications, 2006.

[102] X. Wang, V. Yadav, and S. N. Balakrishnan. Cooperative uav formation flying with

obstacle/collision avoidance. IEEE Transactions on Control Systems Technology,

15(4), 2007.

[103] M. P. Wellman. A market-oriented programming environment and its application

to distributed multicommodity flow problems. Journal of Artificial Intelligence Re-

search, 1:1-23, 1993.

[104] J. R. Wertz and e. Wiley J. Larson. Space Mission Analysis and Design (Third

Edition). Microcosm/Springer, 1999.

[105] K. Yamanaka. Rendezvous strategy of the japanese logistics support vehicle to the

international space station. In Proceedings of the 3rd ESA International Conference,

1997.

[106] F. Ygge and H. Akkermans. Power load management as a computational market. In

Proceedings of Second International Conference on Multiagent Systems, 1996.

[107] P. Yu and B. C. Williams. The diagnosis of temporal planning problems. Prepared

for 22nd International Conference on Automated Planning and Scheduling (ICAPS-

2012).

283

