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ABSTRACT

We prove a formula for the homology class of the scheme
parametrizing the members of a family of divisors possessing
points with specified multiplicities. The formula includes
as special cases, (1) the formula of de Jonquieres for
multiple contacts of curves of given degree with a fixed
plane curve; (2) the formulas for multiple contacts of
lines with hypersurfaces; (3) formulas for tangent planes
to a surface in projective 3-space. Our method also yields
a formula for the curves of a family in a family of surfaces
displaying an m-fold point with assigned coincidences of
tangents. This generalizes the classical formula for the
cuspidal members of a net on a surface, and that for the
cusp-nodes of a web.

We also study the questions of finiteness and of
multiplicity one for the solutions of the proposed contact
problems.
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Introduction.

The aim of this thesis is to obtain formulas for the

number of divisors of a family which possess points with

specified multiplicities. For instance, if the family is

that of the hyperplane sections of some embedding of a

variety Y in a projective space, we wish to count those

hyperplanes which satisfy specified contact conditions with

Y.

About a century ago, Jean Phillipe Ernest de Fauque de

Jonquieres published his Memoire [de Jonquicres], exhibiting

a formula for the number of plane curves of given degree

having prescribed contacts with a fixed plane curve. The

formula per se has generated a lot of interest (cf. (5.1.8)

below). Shortly afterwards, the flourishing school of enu-

merative geometry produced a wealth of formulas for contacts

of lines and planes with surfaces in 3-space. Cayley, Clebsch

and Salmon obtained the degree of the curves traced on a

surface by the points of contacts of lines satisfying 3 con-

ditions (e.g. triple tangent lines, or lines inflexional at

one point and simply tangent at some other) [Salmon, pp. 277

and ff]. Schubert found the number of tangent lines which

satisfy 4 conditions (e.g., five-point tangents, ordinary

fourfold tangents, etc...) [Schubert, Math. Ann., 1876, X,

p. 102; 1877, XI pp 348-78, or Kalkul der abzihlenden

Geometrie (1879), pp. 236-7, 246]. Zeuthen [Math. Ann., 1876,

X, p. 446] obtained several formulas relating the singulari-
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ties of a surface and its plane sections to their dual coun-

terparts.

The next generation of algebraic geometers changed some-

what the emphasis, from the counting of singularities per se,

to the discovery of numerical invariants definable in terms

of those singularities. Thus, one finds in C. Segre [Annali

di Matematica 1894, XXII, p. 75] the definition of the genus

of a curve in terms of the invariant v-2n, where v is

the number of double points of a g on the curve. The
n

Zeuthen-Segre invariant (cf. [Enriques, Le Superficie Algebriche,

Bologna 1949, p. 167] and the very definition of the canoni-

cal system [loc. cit. p. 49] are further examples of the

"new" trend.

Possessing now as we do, a well-developed intersection

theory, it is natural to try and go back to the origins, and

vindicate (to today's taste and sense of rigor) those clas-

sical formulas. In fact, Hilbert's 1 5 th problem calls for

"...the actual carrying out of the process of elimination

in the case of equations of special form in such a way that

the degree of the final equations and the multiplicity of

their solutions may be foreseen" [Hilbert]. However, the real

test still is whether you can "beat them on their own ground",

and provide answers to questions the enumerative geometers

might have asked themselves. We hope this work will provide

a step in this direction.

Our main result is the description of a homology class,
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in a rather general setting (see 8.3.4). We are given a

family of divisors {DsIseS in a family {Y I of smooth

ambient spaces. Our homology class expresses in terms of m

and basic invariants of the families, the class of the set

of points (s,y ,...,yt) such that y is an m -fold point

of D . We retrieve, as special cases, (i) the formula of

de Jonquieres (5.1) (here the family of divisors is a linear

system on a projective curve Y and the family of ambient

spaces is the trivial family Y = Y); (ii) the formulas

for contacts of lines with a hypersurface (7.1) (the family

of ambient spaces is a family of lines, and the family of

divisors is that cut out by the hypersurface on each line);

(iii) the formulas for contacts of planes with smooth sur-

faces in 3-space (8.5.4) (the ambient spaces can be chosen

as the planes or as the fixed surface, and the family of

divisors as the plane sections. The answers are the same by

a general result (8.2.8)). In fact, we can get formulas for

contacts of a smooth hypersurface with linear spaces of ar-

bitrary dimensions, (8.6) as well as for contacts of hyper-

planes with a smooth variety of arbitrary dimension. A

little manipulation with that general homology class enables

us to get also a formula for the number of curves of a

family on a surface which display an m-fold point with

specified tangent coincidences (9.5). This generalizes the

classical formula for the cuspidal members of a net.

To give substance to these formulas one must check, as
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pointed out by S. L. Kleiman in his address [Kleiman 15],

that) for general values of the parameters, (a) there are

indeed only finitely many solutions and, (b) each of these

appears with multiplicity one.

With regard to the first point, we have verified its

validity for the case that the family of ambient spaces has

relative dimension 1, e.g. for a linear system on a fixed

curve, contact of lines with a hypersurface and also the case

of curves with m-fold point and specified tangent coinci-

dences. However, for the case of relative dimensions > 2,

we could handle the question only under the additional as-

sumption that the sequence m of contacts satisfy a relaxed

version of the classical proximity inequalities. These, we

recall, are

m. > mi+1 + ... + mt

and they constitute the n.s.c. for the existence of plane

curves of sufficiently high degree displaying a group of

points of multiplicities mi+l,...,mt and infinitely near

to an m.-fold point. But we are convinced that this addi-

tional assumption will eventually be proven superfluous.

Further, the same method should produce formulas for the

homology class for singularities with specified Dynkin

diagram.

As to the multiplicity one question, we give a somewhat

detailed answer in the specific case envisaged by the for-
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mula of de Jonquieres. Here, the multiplicity is one iff the

characteristic of the ground field does not divide any of

the mi. In char. 0, as expected, and always implicitly

believed in the classical literature, the multiplicity is

also one for each of the contact formulas mentioned before.

In fact, this is a consequence of Sard's theorem, or rather

its algebraic version, which comes down to the fact that all

field extensions are separable in char. 0.

The contents are as follows.

In section 1 we recall the definition of the scheme of

zeroes of a map of sheaves . We then introduce the incidence

correspondence of a pair of families of subschemes.

In section 2 we describe the basic set up to treat the

case of relative dimension 1 or just 1 assigned multiplicity.

The m-Jacobian scheme J(m;D) is defined and shown to be

the scheme of zeroes of a section of a certain locally free

sheaf 6(m;L).

In section 3 we compute the class of S(m;L) in

K'X[t] and establish a recursive relation which is instru-

mental in deriving the formula of de Jonquiires.

Section 4 is devoted to linear systems. In this case,

we prove J(m;D) is a certain projective bundle. This en-

ables us to state a regularity criterion. This criterion,

when applied to a smooth projective curve of genus g,

implies that the formula of de Jonquieres holds for all suf-

ficiently general linear subsystems of a complete system of
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degree > 2g-2 + Em .

Section 5 contains our proof of the classical formula

of de Jonquieres.

In section 6 we consider the question of whether, for a

given smooth, projective curve C, each of the solutions

counted by the formula of de Jonquieres appears with mul-

tiplicity 1. The answer is affirmative in general, for

char. 0, and depends on whether p divides some of the m .s

in char. p > 0.

In section 7, we explain how the general construction

of J(m;D) can be used to solve problems of contacts of

lines with hypersurfaces.

In section 8 we discuss the situation for relative di-

mensions >1 and arbitrary number of assigned multiplici-

ties. We explain our failure with a first, direct approach,

and then go on to introduce a remedy of sorts, the step by

step construction of the scheme J(m;D). The generic homo-

logy class of J(m;D) is computed. Next, we show that

J(m;D) satisfies the necessary regularity assumptions when-

ever D moves in a sufficiently ample linear system and

m satisfies the relaxed proximity inequalities. In the

ensuing examples, we retrieve the Zeuthen-Segre invariant,

the formula for the number of bitangent planes of a general

surface in P 3 which go through a general point, and the

number of tritangent planes.

In the last section, we study the curves with an m-fold

point with specified tangent coincidences.
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1

All schemes are of finite type over an algebraically

closed field k.

(1.1). Scheme of zeros. Let f : X + S be a map of

schemes. Let u : A -+ B denote a map of a.-modules. For

each map t T + S, let u(t) : A(t) -+ B(t) denote the

pullback of u to XT x X.

T S

(1.1.1). Definition: (cf. [F.S.], (2.2), p. 20). A closed

subscheme of S is called the scheme of zeros of u if it

has the universal property that t : T + S factors through

it if and only if u(t) is zero. If it exists, the scheme

of zeros is denoted Z5 (u). If X = S and f = id, we set

Z5 (u) = Z(u).

The result below is a central tool. It tells us how

to get the equations of Z5 (u) in the parameter space.

(1.1.2). Proposition: Suppose A is of the form f*C

for some quasi-coherent Og-module C. Assume fB is

locally free and its formation commutes with base change.

Then Z5 (u) exists and is equal to Z(u'), where

u' : C -+ fB is the adjoint of u.

Proof. See ([F.S.], (2.3), p. 21).
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(1.1.3). Proposition. Let s be a section of a locally

free C -module A. Then the scheme of zeros of s is

defined by the Ideal s(A"), that is, the image of the dual

map d : A + C.

Proof: The proof is easy and will be omitted. (cf. [EGA I],

proof of (9.7.9.1).

The next proposition shows that a projective subbundle

of a projective bundle is naturally a scheme of zeros.

(1.1.4). Proposition. Let S be a scheme and let

A + B -* C - 0

be an exact sequence of quasi-coherent 0 S-modules.

X = P(B),

Set

X ' = P(C).

Let u : AX -* 0X(1) denote the composition of a with the

universal 1-quotient y : BX X 1). Then, we have

(i) ZX(u) = X'.

(ii) If A and C are locally free and a is injective,

then the section u"' ® 0 (1) of AX is regular

and its scheme of zeros is equal to X'.



Proof: (i) Let t :
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T -+ X be a T-valued point of X.

have the equivalence:

t*u = 0 iff (t*a) (AT) C ker(t*y)

if f t*y factors through t*r

iff t factors through X'.

This proves (i). For the proof of (ii), see ([F.S.], (2.6),

p. 22).

(1.2). Incidence correspondences. Consider the diagram of

maps of schemes,

W C YS, Y Y .~D D

I1 w V

S' - Z - S

Suppose the squares are cartesian. For each t : T - S' S,z

denote by D(t), W(t) the pullbacks of D and W to

Y(t) = Y x T.z

(1.2.1). Definition. A closed subscheme of S' x S isz

called the incidence correspondence of W in D if it

has the universal property that t : T -+ S' x S factorsz

through it if and only if W(t) C D(t) holds (as subschemes

We



16

of Y(t)).

(1.2.2). Proposition. Let f X -+ S be a map of

schemes, let W C X be a closed subscheme, and let D C X

be the scheme of zeros of a section s of an invertible

0X-Module L. Suppose f,(L @ 0W) is locally free and

that its formation commutes with base change (e.g. if W

is flat and proper /S and R f,(L @ 0W) = 0 holds). Then

the incidence correspondence of W in D exists and is

equal to the scheme of zeros of a section of the locally

free 0 -Module f,(O 0 L).

Proof: There is a natural diagram of maps of 0 X-Modules,

0 X

0-> L 0 I(W)-> L -- > L 0 0--> 0.

Now it is clear that, for each t : T -+ S,

D(t) D W(t)

holds if and only if u(t) = 0. Since 0 is just f*os,

we may apply the proposition (1.1.2).

The next lemma is only needed for the proof of (8.2.8).

Let S be a scheme and M a coherent 0 -Module. Let
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r be a nonnegative integer. We recall the definition of

the rth Fitting scheme Fr (M) of M. Given a local

presentation of M over an open subset U C S,

u
K L -*>M U

where L is a locally free 0U-Module of rank s, we have

that F r(M) CA U is equal to the scheme of zeros of the
s-r

exterior power A u. (It is well known that this scheme

of zeros is independent of the presentation,(cf. [R]

p. 232,[K ] p. 145).)

(1.2.3). Lemma. Let f : )+ be smooth. Let W C- C $

be closed subschemes. Assume 4 is a Cartier divisor and

W is transversally regularly embedded in X relatively to

,j ([EGA IV 4 ], 19.2.2). Suppose flVi is an isomorphism of

W onto 2. Let J and I denote the Ideals of W in JC

and in of. Let mW denote the scheme with Ideal Jm. Then,

for each m > 2, the incidence correspondence 0m C of

mW in c& is equal to the rmth Fitting scheme of the

image of (Im-/1 m in (0  / ,m) where

rm = rank(JM-1 JM) - 1 and we view IM-1 /m (which is

naturally a 0W-Module) as a 0v-Module via the given iso-

morphism f1W.

Proof: The proof is divided in several steps. Let H
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denote the (invertible!) Ideal of 2 in )C. Thus, we have

the exact sequence

0 > H -- J1 - 0.

Step 1. We claim that, because J is regular and H is

invertible, the sequence

(*) 0 > H Jm- __m 1 -+ 0

is exact. Indeed, this follows from the equality

(**) H \ Jm HJm-l

To verify the latter, we may "go affine". In fact, we may

assume J is an ideal generated by the regular sequence

h,j,... ,jn in a local ring A, where h is a generator

of H. Since the graded rings S J /Jv+1 and Sym(J/J2 )

are naturally isomorphic, and since the image of h in the

latter is a nonzero divisor, the equality follows. For, if

a 4 0 is in A and ah is in Jm, then a must lie in

Jm-. Indeed, let i be the smallest nonnegative integer

such that a (;. JM-i holds. Let a denote class in

-i m-i+.If i is > 2, then Jm m-i+2 holds,
-- m-i~l m-i+2

whence ah is zero in J , which forces a = 0,

that is, a Jm-(i-). Thus i < 1 holds, completing step 1.
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Step 2. Having proved the exactness of (*), we may con-

struct the marvelous diagram, where all sequences are exact,

H

v

(H 0 ( ( -1)-m -1

mm(m-l)W ! W

H @ 6 mW
(M-I~I

H 0 (Jm/-2m-1)( m- 1/m m-l/m

and the dotted figures correspond to simultaneous events. To

see the middle horizontal sequence is exact, observe the

kernel of the natural surjection

W = 0 /im >>(d /H)/Im = /m

is clearly H + Jm /m = H/Jm C) H. The latter is precisely

H 0 0 (m-l)W in view of (**) The map um is defined by the

composition,

H' Q
um I

um
m J

whence it clearly factors through the surjection
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vm : H + H + J/Jm = H 0 0(m-1)W*

Step 3. Recall that E7m is the scheme of zeros of um in

2. Restrict the diagram over Wm-1. Denoting the restric-

tions by a prime

of (IM-1 /m ) I

The map

routine

(e.g. u', etc...), and setting M = image

in (0S/m) ' , we obtain the sequence

H' W > (Jm-1 /m)' >>M.

a corresponds to the dotted arrow in ( ***). A

diagram chase shows this last sequence is exact.

Denote by i : W''+ X' the inclusion. Observe

= iji M holds, and similarly for (Jm-l /jm)

w factors through the surjection,

H' >>iJi*H' > (Jm-1 my ,

We may regard (Jm-1 /m)'

the identification W' ~t7

as a locally free 0 -Module via
Vm-1

m-1 induced by W d. Thus, ii

(or rather i*G) is a presentation of M. By definition,

the zeros of 6 in c7m-1 is precisely the rmth Fitting

scheme of M.

Finally, for any map t T -+ c _, the assertions

o(t) = 0 and US(t) = 0 are equivalent. The former defines

elM, whereas the latter is also equivalent to t*&5 = 0, that

Step 4.

that M

Consequently,
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is, t factors through the Fitting scheme of M.
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2

(2.1). Notation. Fix a smooth map f : X -+ S. Let D

denote the scheme of zeros of a section of an invertible

aX-Module L. Let m = mi,...,mt be a sequence of non-

negative integers. Unless stated otherwise, we will assume

t = 1 if the relative dimension of f is > 1. We denote

the t-fold cartesian product of X over S by X[t] or

XS[t]. The projections onto or omitting the ith factor will

be denoted by p and p^. The diagonal subscheme of X[2]

is denoted by A or Ax. We denote by mA the subscheme

with Ideal I(mA) = I(A)m. The pullback of A to X[t] via

the projection onto the i,j factors is denoted A .

Our object of study is the set of singular points of

the fibres of D. Since each fibre D(s) is (locally)

defined by one equation in X(s), a point is of multiplicity

> m on D(s) if and only if the local equation of D(s)

lies in the mth power of the maximal ideal there. (If

D(s) = X(s), each point of X(s) is considered to be of

multiplicity > m for any m). In order to globalize this

observation, as well as to treat the case of several mult-

iplicities, we are lead to consider the subscheme

mA (-X X X[t]
- S

defined by the Ideal
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(m) = I (A 01) ... I(A ) (product).

(2.1.1). Lemma. mA is finite and flat over X[t].

Proof: The subscheme mA of X[2] is flat over X (via,

say, p1 ). Indeed, this assertion is trivial for m = 1.

For m > 2, we consider the exact sequence

0 > I M-1 /Im > 0 -- 0 -- >0

where I is short for I(A). Because X is smooth IS,

each Im-1 /m is a locally free 0 -Module (in fact iso-

morphic to the symmetric power S -1X). Thus mA is flat

over X as claimed. Now, for t > 2, (hence rel. dim = 1),

each m A0 i is a relative divisor of X x X[t] over X[t].

Since p- is flat, mA is a relative divisor because it

induces a divisor on each fibre. The proof of the finiteness

assertion is easy and will be omitted.

(2.2). m-Jacobians.

(2.2.1). Definition. The m-Jacobian of D is the incidence

correspondence of mA in D (which exists by (1.2.2),

because mA is finite and flat over X[t]). It will be

denoted by J(m;D). The m-incidence sheaf of L is
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X/s (i;L) = (p )0. p'L).

This will also be written simply C(m;L) or o(m) if no

confusion is likely. The m-incidence section is the

section of SX/S(m L) which is the adjoint (= direct image

via p,) of the composition,

s r
Y 0 > pIfL -- >L 0 mA0 Mp

where s is the section of L defining D and r is

induced by the restriction 0 ->>m *

Remark. The m-incidence sheaf is a secant sheaf, in the

sense of [Schwarzenberger].

(2.2.2). Proposition. (1) J(m;D) is the scheme of zeros

of the m-incidence section.

(2) Suppose the m-incidence section is regular. Then

J(m;D) represents the top Chern class of 4X/S(m;D) in

any decent intersection theory.

Proof: (1) The assertion follows from (1.2.2).

(2) The assertion is well known for nonsingular

S ([TCC], p. 153). For the general case, cf. [Fulton].



(2.2.3). Proposition.

25

The formation of J(m;D) commutes

with base change. Precisely, given a cartesian diagram,

D' C X' -- > X ~D D

f' I U Jf

where D' = S' x D, we have J(m;D') = J(m;D) x S'.S S

Proof: The assertion follows immediately from the definition.
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3

(3.1). The class of the m-incidence sheaves. Preserve the

notation of 2.

We start with the case t = 1 (and arbitrary relative

dimension).

(3.1.1). Proposition. We have the formula,

m-l
SXi S(m;L) = L 1 S (X/s)

0
in K'[X].

(S= i th symmetric power).

We have the canonical

0 -+ I M-1 /I

exact sequence,

0 mA- Y(m-1) E 0

SM-1 X/S'

where I is short for I(A). The equality holds because

X is smooth over S. Tensoring this exact sequence with

p'L and pushing down via pg, yields
00

0 - L 0 Sm-l( /S)- E(m)--+ E(m-1) > 0,

where E(m) is short for cX/S(m;L). The formula now

Proof:
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follows by induction on m.

(3.1.2). Remark. Our S X/(m;L) is the sheaf of principal

parts of orderm-1 of ([EGA IV4], (16.3.1)).

(3.1.3). Proposition. The restriction of the m-incidence

sheaf S X/(m;L) to the complement U of the union of the

diagonals in X[t] is equal to the direct sum

t

p It&X/ S(mi;L) U.

Proof: The restriction of mA over

to the disjoint union of the divisors

U is obviously equal

(m A )IU. Thus,

0 mAjU is equal to G .. U. Since

(m_ I = (p-JU)o*[Q(m 0 pdl*L) I]X/S m_;L U .U mA 0 L|

holds (either by flat base change or because mA is finite

over X[t]), we are reduced to verifying (again by flat

base change) that we have,

(P6 *(0m.A. 0 p'L) = pi&X/S(mi;L).
T t

This is easily seen to be true by the Principle of Exchange

applyed to a diagram we would rather omit.
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(3.1.4). Theorem. We have in the Grothendieck ring

K' (X[t]) the formula,

t

p I,(m ;L(-.MhAhi '
i=1 h>i

XS(m;L) =

Proof: Let W denote the subscheme of X x X[t] with
S

Ideal

I(W) = I(m2A02 )
... 0 I(mtA0t)

(products).

Thus, I(mA) = I(m1 A0 1)(W)

invertible, we get an exact

m 

> mA 

01 0

holds. Because I(W)

sequence,

I(W) > 0 M' >OW 0.

Tensoring it with q L and applying (q,),, yields

0 -+(q>),,m(0 0 I (W) 0 q*L) ( /m;L) -> (q)W( 0 q*L)-> 0

(def'n) .

P (m; QL)
1/

where m' denotes the sequence m 2 , ... ,m .
The latter

equality holds by the Principle of Exchange (or flat base

change). Here is the relevant diagram:

is

A
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X X[t]
0

~D W

qX

S

X[t]

Pi

X[t-l] D m'A

0

X[t-1]

By induction on t, it follows that p' X/(m';L)
1 /

is

the sum of the (t-l)-last terms of the proposed formula.

Now it remains to identify A with

p Fo hsX/S e;eL)e(- t mhAhiXst 1 h>l

For this, we observe that X x X[t] is equal to the

fiber product X[t] X X[t], where we regard X[t] as
X[t-l]

a scheme over X[t-1] via p,. Further, with this identifi-
1

cation, the projections onto the 1s t and 2nd factors are

equal to q
6

AX[t].

and q, (see diagram). And A0 1 is precisely
1

Thus, applying (3.1.1) to X[t] + X[t-1] (in place

of X + S) and p'L 0 I(W) , we get

A = &X[t]/X[t- ml;p*L 0 I(W))

ml-lp p ".L 
0 1 (W) Y 5i (QXltl/X[tl]1).

0

x

PO
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Finally, since p,:X[t]
1 -

+ X[t-l] is the pullback of

p1
Xt]-> x

X[t-l] >

and since the formation of relative differentials and of

symmetric powers of a locally free Module commutes with base

change, we see that A is indeed equal to the 1st term of

our formula . This completes the proof of the theorem.

(3.2). A recursive relation.

(3.2.1). Proposition. The incidence sheaves satisfy the

relation,

6(m;uIl;L) = 6(m,u;L) + p (L ( u in K-X[t+1].

Proof: Consider the fibre square,

j
xX X[t+1]( > X x X[t+2]S

X[t+l] > X[t+2]

(xi, - - -,Xt+1) - t+1'xl''.. ' It'x t+,)'

X + S,
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where the horizontal maps are diagonal embeddings. Set

W = (l,m,u)A, that is, the subscheme of X x X[t+2] withS

ideal I(A 0 1 ) I(A 0 2 )m1 ... (At+,)mtI(A0, t+ 2) u Since W

is flat over X[t+2], we have the formula,

I(j (W)) = j*(W).

By the construction of j, we have

j*I (W) = I (A 0, t+,) u+I ( . I 
' (Aot t

Thus, j~ (W) is just (m,u+l)A. Consequently, we may

write,

= ( ( 0 (q')*L) (by def'n)

= (q') (j*(OW 0 q*L))
0

= i*(q ),(e 0 q*L) (by the Principle
o of Exchange)

Si*(X/S(,m,u;L)

= [i* q*L(-uAt+21
1 h t+2 ,h+l) + *E '+2 X/S

in K'(X[t+l])

(by (3.1.4)), where

&X/ S(m,u+l; L)

E is short for
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X/S (;L) (-U' t+2 ,+l

By definition of i, we have the for

q i =

f

f

J 1
p+ X/S

iI+(Ah z =h ~I(A
I(A h, )

~ h>Z mh h+l, +).

ulas,

or k= 1 or t + 2,

or 2 < k < t + 1,

f or (h+l, Z+l) = (t+2, 1)

for 1< Z<h< t+l.

Therefore we get,

= p+L(X/S)U(-EmhAt+l,h

+ zp&is (m;L)( Z miAht,'
h>h

where we put mh = mh for h < t and m+ = U. By (3.1.4),

the last term in the expression above is precisely 6(m,u;L)

in K-X[t+l], thus completing the proof.

and

pt+1

p' -

& X/S (m, u+l;L)
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4

(4.1). Linear systems. Let g Y -+ Z be a map of

schemes. Let M denote an invertible OY-Module, and

suppose V is a locally free 0Z-submodule of gM. Let

a g*V + M

denote the adjoint of the inclusion

and consider the fibre square,

X = P(V\V) > Y

f

S

V 2ZgM. Set S = P(Vv)

g

\/

>Z.

We have, on X, the following diagram,

a\
V M I

X x

X(1)

from which, after dualizing and tensoring with OX(), we

get the key section,

(4.1.1) s : X * 0X(1) 0 MX,
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(4.1.2). Definition. We say S is a linear system of M,

and call the scheme of zeros of s the universal divisor

of S. If V = gM, we say S is complete. The m-Jacobian

scheme of S is the m-Jacobian scheme of its universal

divisor, and is denoted by J(m;S). If S is complete, we

also call J(m;S) the m-Jacobian scheme of M, and write

J(m;M).

(4.1.3). Remark. We do not insist that the universal

divisor of M be either flat over S or even a Cartier

divisor on X. In fact, s need not be a regular section.

We examine next the relationship of a linear system

with its trace on a subscheme of the anbient space. Given

the diagram of maps of schemes proper and flat over Z,

W -- Y

h\ g

Z,

where i is a closed immersion, set I = I(W), set

A = g,(I 0 M), set B = gM and set C = hj(i*M). Suppose

the natural sequence

0 > A > B -> C -> 0
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is also exact on the right (e.g., R g,(I 0 M) = 0), that

each of these three 0Z-Modules is locally free, and that

their formation commutes with base change.

(4.1.4). Proposition. (1) The subbundle P(A) of P(Bv)

is equal to the incidence correspondence (1.2.1) of W in

the universal divisor D of M.

(2) The natural map of, bundles over Z,

1T : U = P(B4 ) - P(A"4) > P(C")

is smooth and surjective.

(3) The restriction of D over U is equal to the

pullback of the universal divisor of i*M.

Proof: The first assertion follows from (1.2.2) and (1.1.4).

The 2nd assertion is local on Z. Thus, we may assume

the sequence

C b
0 > C'' > B" --- >A' -+ 0

splits. Let r : B + C4 be a retraction, that is, rc = 1C

holds. By functoriality of Proj., this retraction yields a

section P(C") I- P(B ") of V. Consequently, 7 is smooth

and surjective.
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The proof of the last assertion is easy and will be

omitted.

(4.2). Regularity of the m-incidence section. Preserve the

notation and assumptions of (4.1). Assume g : Y + Z is

smooth. We will show that for all "sufficiently general"

linear systems, the corresponding universal divisor gives

rise to a regular m-incidence section. The basic fact here

is that X[t] is the projective bundle P(V"Y[t]) over

Y[t] and, as we will see, that J(m;D) is a certain

subbundle.

(4.2.1.) Lemma.

of (Y[ t] -Modules,

(1) There exists a natural exact sequence

VY[t]

o ~ 1 (7*q~~'(~) ~ ~(m; M) -+(R q)(M @ (mA~)
0 0

(2) Set L = M 0 O (1). Then we have

OX/S(m;L) = Y/Z(m;M) 0 O (l)

(3) The m-incidence section of cX/S(m;L) (2.2) factors

through w = v 0 0 (1),
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0

uw

(1) 0 VXt]

Where uV 0 0%(1) is the universal 1-quotient of P(VY[t].

Proof. (1) Applying (q,),to the exact sequence
---- q*M0 ImA) ~ q* -~q*M c~4IN0

---- > q*M 0 I (mA)-> q*M -- q'M 0 C '0 -Y o 0 A Y

and using the formula,

(q~ ) , q*M gg"M
0

(flat base change),

the assertion follows.

(2) The assertion follows by the Principle of Exchange

(or flat base change) plus the projection formula, applied to

the fibre square,

X x Xt] Y x Yt]

p6
I/ h
X[t] >

qt

Y[t]

Indeed, since we clearly have mAy = (MA ) x S, we may write,
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&X/Y(m;L) = (p0)(h')*(O 0 q*M) 0 0 (1)]

=- ( 0 h*((q)j(@ 0 *
0 - Y

= %(1) 0 (m;M).S ~Y/z

(3) By definition, the m-incidence section e is the

adjoint of rp's:

p 'S
'N

LX t+11 L 0 16
mA

On the other hand, s factors, by construction, as follows:

S
0 X > L = ffX()

X
0 (

Thus, we get the diagram,

(p,) r

Xt(p)*L = %(1) 0 (gJM)X[t 0 m;L),

u

0 S(1) 0 v X[t]

V



completing the proof of

(4.2.3). Theorem.

v : dY/z (m;MY"

Denote the cokernel of

+ VY[t]
by F.

(1) The m-Jacobian scheme of S (4.1.2) is equal to

the projective subbundle

(2) If v ((4.2.1),

P (F) of X[t] = (VY[]

(1)) is surjective

(R q,),(q*IM 0 I(mA)) vanishes and
0

system of M) then the in-incidence

(e.g., if

S is the complete

section is regular

(that is, its Koszul complex is exact).

Proof: Denote the m-incidence section by

have the equalities,

Z(e) = Z(ev) = Z(e 0 0c)).

e. We clearly

In view of

((1.1.4),

(3) of the lemma, the assertion

(i), with

(1) follows from

a = vv and u= e' 00().

Finally, if v is surjective, we have

is locally free, vV is injective, and F

Consequently, we may conclude with the help of

that ker(v)

is locally free.

((1.1.4),

(ii)).

39
(3).
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5

(5.1). The formula of de Jonquieres. We assume throughout

this section Y is a smooth projective curve over k of

genus g. We will be consistent with the notation of the

previous sections. Thus, M denotes an invertible 0 -

Module, V denotes a k-vector subspace of H (Y,M), etc...

We can now rephrase and sharpen some of the results of the

previous sections.

(5.1.1). Theorem. (1) There exist a locally free sheaf

E = & y(m;M) on Y[t], and a section e of E @ 0 (l)

on S x Y[t] such that

(i) The scheme of zeros J(m;S) of e parametrizes

the points (D,yl,...,yt) in S X YIt] such that

D > Zm iy

holds;

(ii) The class of E in KO(Y[t]) is

1g d(m ;M)(- mhhi
h>i

(2) If J(m;S) is either empty or has

rank E (= Em ) then its class in A(S x C[t])

codimension

is equal to
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the top Chern class of E 0 0S(1).

(3) Suppose S is the complete linear system of M.

Then J(m;S) is either empty or has the right codimension,

provided we have

deg M - Em > 2g - 2 -

where v is the number of m 's equal to 1.

(4) Suppose J(m;S) has the correct codimension.

Then so does J(m;S') for all sufficiently general sub-

systems S' of S.

(5) Suppose J = J(m;S)

dim S + t =

holds. Then the degree of the

is finite and that

t
m

zero cycle of J is equal

to the degree of the tth Chern class c tE.

(6) (The formula of de Jonquieres.) Set n = deg M and

assume n = Em . Then the degree of ctE is

(Hm i)
t

=O

(where a0 = 1 and a1,..., t are the elementary symmetric

functions in t-variables) .

(t -j) ! )a (m - ,. .m -)
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The two assertions in (1) are just restatements

of (2.2.1 (1) and 3.1.4). The description of the k-points

of J(m;S) is straightforward from (2.2.2).

Assertion (2) is a well-known fact of all decent

intersection theories.

To prove (3), we apply the criterion for regularity

given in (4.2.3, (2)). In fact,

vanishes by the Principle of Exchange, because

H1l(Y,M 0 I(Em yi)) is zero by the hypothesis on deg M.

Here, we have replaced m by the sequence m'

by deleting all the l's.

obtained

The assertion is now a consequence

of the following.

(5.1.2). Observation: J(m,l;S) and J(m;S) have the same

dimension, unless J(m,l;S) is empty.

Proof: Assume J(m,l;S) # 0

S x Y[t+l] onto S x Y[t]

. Then the projection of

via the first t factors

restricts to a finite surjective map

p : J(m,1;S) + J(m;S).

Indeed, over each point (D,y1 ,...,yt) in J(m;S), the

fibre of p is (at least set theoretically) isomorphic to

D - Em iy.

Proof:

(R 1q)(q*M 0 I(m'AY))
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Proof of the theorem, continued. The assertion (4) is an

immediate consequence of the theorem on the transversality

of a general translate ([K]), Theorem 2, (i), p. 290).

To prove (5), we observe that we have

[J] = cr (E 0 05(1)) in A(S x Yt]),

by (2) of the theorem. Here r is short for

standard properties of Chern classes, setting

we have

[JJ

Zm . By

h = c10 (1),

r
Y c i(E)hri

i= 0

= ct(E)hr-t

because c t+i(E) = 0 for i > 0 (as E comes

t-dimensional variety Y[t]), and hr-t+i

from the

= 0 for i > 0

because dim S is r-t. Since the degree of a zero cycle

remains unchanged under push down, and since the push down

of [J] to Y[t] is ct (E), the assertion is proved.

The proof of the formula in (6) is a little tricky.

The rest of this section will be devoted to it.

Denote the degree of a zero cycle Z by IZI.

Set

Im;MI = Ict&Y (m;M)I .
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Set n = deg M.

(5.1.3). Lemma. For each nonnegative integer u, the

following recursive formula holds:

I Mu+l;Mf = Jm,u;MJ + (n + u(2g-2)) m;M(-uy) I - Em., .. ,m +,... ,mt;M1,

uwhere y is a point of Y and M(-uy) is M @ I(y)

Proof: Set E(u) = (mu;M) for short. Recall the relation

(3.2.1),

E(u+l) = E (u) + q' 1 (M (Q' ) ) Ah(, t+l

Let y and h denote the embeddings of Y[t]

in K (Y [t+l]).

onto

Y[tJ x y and Ah,t+1l in Y[t+l]. We compute Chern classes

modulo algebraic equivalence. Thus, we get,

cl(M) = ny,

and

I m,tl-;M = Im,u;MI + (n+u(2g-2))Ict( *E(u))J - ErhIct (h*E(u))|.

We have used the projection formula and the invariance of

degree under lower star:
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c t(E(u)) q4+1 (y) = ct(E(u))y,(l)

= y*(X*ct (E(u)))

= y(t (Z*E(u)))

and similarly for Ah t+1

Recalling the formula for the class of E(u), (3.1.4),

E(u) = qc+j Y(u;M)

and observing the formulas,

] Spec(k),

P, 'Y

qt+y 1 : Y[

y(A t+1,Yi)

yj*(Ah) d = Ah i

y*E(u) = (trivial)

, for i < h < t,

+ Ep"j(m ;1(-uy))(- E A
I Y I ~h>i hi

in K- (Y[t}).

I cty*E(u)I = Im;M(-uy)I.

t
+

, i ~ Y.
h>i

M.h Ahi) '

we get,

Thus, we get

qd(M ;M)(-uAt+
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Similarly, we get, for h = t,

t*E (u) = p' (u;M) + p'c(mt;M) (, )u +

t-1 t-1
+ p'&(m ;M)(-uA i - mtA t mA.)

i;M)(' i+1 h

However, the 1st two terms in the r.h.s. add up precisely

to

P'(5y(u + mt;M) !!

Hence, we have proved

tFily E (u) Y (m , . ot-i mt+u;M)n.

Finally, with the help of obvious permutations on

Y[t] and Y[t+l] (see also proof of lemma below), we get

h*E(u) = y(m1 ,. ..,mh+u,...,mt;M)

which completes the proof of (5.1.3).

(5.1.4). Lemma. The symbol |m;M is symmetric in m.

Proof: Each permutation T of {l,.. . ,t} induces an auto-

still denoted T, such that, with a selfmorphism of Y~t) ,
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evident notation, we have,

(1 x 1)~ (mA) = (Um)A in Y x Y[t]

Consequently, recalling the definition of dy(m;M), we clearly

get

whence

Im;MI = ITm;M

holds.

(5.1.5). Lemma. There are formulas,

(0) IM,0;MI = 0

(1) Im,l;MI = (n-Em )m;M

Proof: The 2nd of these follows from the 1st, in view of

(5.1.3). The 1st, in turn, follows from the obvious formula,

y (m,0;M) = q 1 ,y (m;M)

has zero (t+l)st Chern class.

TdY (M;M) = dy(TM;M)

because the r.h.s
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(5.1.6). Lemma. Assume 1 + u + Em = n holds. Then we

have,

Im,u+l;MI = Im,u,l;MI + (n+u(2g-2))jm,l;M(-uy) - Em Im1 ,...,m +u,...,mt,1;M .

Proof: The formula is just a restatement of (5.1.3), in view

of (1) of the preceding lemma and the hypothesis.

End of proof of (6) of the theorem. We proceed by induction

on the number of indices i such that m j 1. If each

m. is 1, the formula in (6) gives t!, which is just fine

by (5.1.5, (1)). To finish, it suffices to verify that the

proposed formula satisfies the recursive relation in (5.1.6).

For this, set a. = (t+l-j)!j!( ), and set

M. = (mI...,m m ... ,mt) (omit m i).

Cancelling iim. and replacing each m by 1+m , we are

reduced to verifying the identity,

t+l I t+l
(u+1) Y a.a.(m,u) ' u a. (t+2-j)c. (m,u-l) +

0 0
t

+ (1+t+u(2g-1) + Em ) a au(m) -
0

t t
- a x (1+u+m. )a i(m , ...,m +u, ...,mt .

0 1

Using, as needed, the relations,
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a (m,u) = a (m) + ua _1(i); C. _(m.) = (t-j+l)a. _(m);

ja (m) = Em a (i .),

we arrive at

t+1
2u Y a [(g-j)a (m) - (t+2-j)a _(_)] =1 0,

with the convention that at+ 1 jm) = a 1 (m) - 0. At this

stage, we recall what a. stands for, and happily conclude

that the question mark can be erased.

(5.1.7). Remarks. (i) The formula in (6) of the theorem

is the one at the bottom of p. 286 of J.L. Coolidge's Treastise

on Algebraic Plane Curves, Dover, (1959), N.Y. However,

the recursion formula he establishes (cf. formula (6), p. 286.

loc. cit.) is apparently different from ours.

(ii) If we just assume n > Em , a formula for Im;MI

may be easily derived from (6). It suffices to replace m

by the sequence m,l,...,l, and use (5.1.5, (1)).

(5.1.8). Historical note. The formula of de Jonquieres has

been one of the most repeatedly proved enumerative formulas.

De Jonquires himself offered two proofs [J.F. Math. 1866,

p. 289]. R. Torelli gave another proof based on the cor-

respondence principle [Rendic. Circ. Mat. di Palermo, 1906].
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Ms. Vittoria Notari, in her dissertation at the Universita

di Bologna, in 1920, also addressed to the question.

Several particular cases were treated by Castelnuovo [Circ.

Math. di Palermo, 1888]; Zeuthen [Lehrbuch, 1914, p. 246];

Brill [Math. Ann. VI 1873, p. 47]; Cayley [Papers, VII, p. 41].

More recently, I. MacDonald extended the formula to the case

of several linear systems [Proc. Camb. Ph. Soc. (54), 1958

p. 399], and, in a later paper, rederived the formula

employing his computation of the cohomology ring of the

symmetric product of a Riemann surface [Topology, I (1962),

p. 3191. Schwarzenberger, in an earlier version of his paper

on Secant Bundles, reportedly tried to extend the formula

to positive characteristics. A. Mattuck [A.J.M., (87),

no. 4 (1965), p. 779] obtained a new proof of the formula,

employing several intersection formulas for the Chow ring of

the symmetric product of a curve and its Jacobean variety.

Our proof requires only the rudiments of intersection theory.

The deepest intersection relation we need is the formula

"IA 2 1 = 2- 2 g". Also our approach enables us to give the

criterion for finiteness (cf. (3) and (4) of the theorem),

and is also instrumental in the analysis of the multiplicities

of the solutions (see next section). Finally, the method

lends itself to generalizations to higher relative dimensions,

as well as to the case of families.
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6

(6.1). Conditions for multiplicity one. In char. 0, as

expected (and always implicitly believed in the classical

literature), each of the solutions counted by the formula in

(5.1.1, (6)) does appear, in general, with multiplicity 1.

In char. p > 0, however, this is only so if p does not

divide any of the mi. Here is the precise assertion.

(6.1.1). Theorem. Let S denote a linear system of dimension

d on a smooth projective curve Y. Suppose J = J(m;S) is

integral and has the dimension 6 = t + d - Em . Let

7 : J -+ S denote the map induced by the projection

S x Y[t] -+ S.

(1) If 7 is generically unramified (resp. everywhere

ramified), then for every sufficiently general subsystem S'

of S of dimension d' = -t + Emi, the scheme J(m;S') is

finite and reduced. (resp. there exists a positive integer

e such that the length of each Artin local ring of J(m;S')

is pe, where p = char. k > 0).

(2) Set J = J(m ,..,m+l1,...,mt;S).

Then 7 is unramified on the restriction U of J - UJ.

over Y[t] - UA.. if and only if p m in,...,mt'

(3) Suppose each J. has the right dimension (6-1).
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Then r is generically unramified if and only if

p ml),...,Imt'

Proof: Assertion (3) follows from (2) because the open set

U is dense.

We now prove (1). Let G denote the Grassmannian

of subspaces of S of dimension d' as above. Let J G

denote the universal family. We form the diagram,

J J x G

S S x G G.

By construction, the fibre of i over a (say, rational

point representing the) subspace S' is precisely

J(m;S) x S', which is J(m;S') by (2.2.3). Clearly, J is
S

integral. Also, dim J= dim G holds. Because $ is

faithfully flat (in fact smooth), r and F' are generically

ramified or unramified together.

We claim that 7 and are generically ramified or

unramified together. Obviously, if k is generically un-

ramified, then so is it' and hence also 7. Conversely, if

TI is generically unramified, by ([K], cor. 11, p. 296) the

fibre -l(S') = J(m;S') is finite and reduced for all
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sufficiently general S' in G. (One must be careful to

require that S' miss the ramification locus of 7). Con-

sequently, e is generically unramified by the lemma below.

This proves the claim. Now the assertion (1) follows by

applying to 1 the lemma below. (We recall that a map of

integral algebraic schemes of the same dimension is generically

unramified if and only if the induced function fields

extension is separable).

(6.1.2). Lemma. Let f : X' + X be a finite surjective

map of integral algebraic schemes. Then there exists an

open dense subset X0 of X such that the geometric fibre

of f over each x in X0 has s = separable degree of f

distinct points and the length of each of its Artin local

rings is i = inseparable degree of f.

Proof: Replacing X by an open dense subset (e.g. the

complement of the image of the singular laws of X') we

may assume X' is normal. Now, let Xs denote the normal-

ization of X in the separable closure of its function

field R(X) in R(X'). Since X' is the normalization of

X in R(X'), we get a factorization for f,

X' L> Xs--s> X,

where i and s are purely inseparable and separable. Thus,
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we may assume f is either i or s. In both cases, by

factoring f through the normalization of X in some

intermediate field, the result follows easily by induction

on the degree.

Proof of (2) of the theorem. The assertion will result from

an explicit computation of the tangent space of J(m;S).

I learned this from secret notes of Dan Laksov.

Let R be a local ring of Y. Let x denote a

uniformizer of R. Set Y = Spec R. We will describe

explicit equations for the subbundle JLy0
of S x Y 0 *

Fix a basis f0 '..'' d for the vector space

V C H0 (Y,M) defining S (i.e., S = P(V) holds).

z0,.. .,zd be the dual basis. Set E = &y(m;M). There is

a basic identification of Ely 0

R[y]/(y m )

with the R-module

([Roberts], (3.7) p. 236). Let

dm : R + Ry]/(ym )

be the map which computes "truncated Taylor expansions".

Precisely, this is the unique homomorphism of k-algebras

that sends the uniformizer x to the class of x+y. Fix

an identification of M with R. Thus, we may think of

the f. as elements of R. It can be checked that the

map v V y + E of (4.2.1, (1)) is identified with

Let
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f. H->
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R[y]/(ym )

d f.m I

By (4.2.1, (3)), the m-incidence section becomes

Sxy > 0%(1) 0 VY---+ 0 s (1) 0 E 1I
0 0 0

1 i-> Zz f t---> Zz fdm fi

Denote by 0 .1 M-1 the dual basis of the R-

basis 1,y,.. ,M-1 of RFy/(ym). Set ) = 3ddm. Now,

it follows from (1.1.3) that the homogeneous equations of

J I0
in S x Y are

d
{: z.DOI(f.) = 0,

i=01
j=0,. ..,m-1.

To get the equations for the tangent spaces of J, we

dehomogenize (*) and apply the chain rule to compute the

differentials of the local equations. Choosing coordinates

on S so that, say, f0 is (1,0,...,0), the tangent space

to S at f0 can be identified with the set of h with

coordinates (l,h ,...,hd). With the above conventions, it

follows that a tangent vector (h,w) of S x Y is tangent

to J at

if we have

(f0 ,y) (y0 = closed point of YO) if and only

(*)



(f i)) (yO) + w (D

j=0,...,m-1.

However, expanding (x+y)N by the binomial formula,

the relations

D (x N N N-j
D (x )= (.)

whence

D (j) N
fd (x)

Since (Di (f0)) (y0 )

= (N-j) (N)xN-j -1

(j+l)D j+1 ) )N

= 0 holds (because

satisfy (*)!), the equations (**) become

(f 0, O)
simply

. . .= D (m-1) (h) (y0 ) + mwDm(h)(y0) = 0,

where we put

DO) (h) Z h D i

Summarizing, we have proved the following

Preserve the notation above.

(**L)

d

i h h (D
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f0] (yo) = 0,

we get

must

h(y0 ) = D (h)(yo)

(6.1.3). Proposition.
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(i) The restriction J I y is the subbundle of

S x Y defined by the homogeneous equations

D ()(f) = 0 ,

(ii) The tangent space of J(m;S)

is the subspace of the tangent vectors

j=0, . .,m-l.

at a point (f0 , 0 )

(h,w) of S x Y at

(f0' Y0 ) satisfying

D ()(h) (yo) = 0 0 < j < m-2

D (m-l) (h) (y0 ) + mD (m)(h) (y0)w = 0.

(6.1.4). Corollary. (i) If pIm then m : J(m;S) -+ S is

everywhere ramified.

(ii) If pkm then J(nHl;S) is the ramification locus

of J(m;S) + S.

Proof. Both assertions follow from the equations for the

tangent space, once we observe that the tangent map of fr

is just (h,w) e h.

(6.1.4). Remarks. (a) Usually, one gives the ramification

locus of a map the structure of scheme defined by a Fitting

Ideal of the Module of relative differentials. It can be

shown that, if pfm, then J(m+l;S) is scheme theoretically
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equal to the ramification locus of 7. This is the

approach of A. Lascoux [L].

(b) The proposition enables us to give a description

of the (embedded) tangent space to the image of J(m;S) in

S similar to the usual statements on duality (which is the

case m = 2). Indeed, it is easy to show that 7 is a local

isomorphism at each point (f,y) in J(m;S) such that

(f,y) is not in J(m+l;S) and (f,y) is the only point in

the fibre 7- 1 (f) (provided, of course, pkm). Further,

for any such point, the embedded tangent space to 7(J(m;S))

at f is the fibre of J(m-l;S) over y. Thus, loosely

speaking, the tangent space at a divisor that passes m

times through a point is the subsystem of divisors

passing (m-l)-times through that point.

Unfortunately, we don't know how this statement

generalizes to dimensions higher than 1, except, of course,

for the wellknown case of m = 2.

End of the proof of (2) of the theorem. Having dealt with

the case t = 1, we observe that, for t > 2, the restriction

of J = J(m;S) over W = Y[t] - JA.. is equal to the inter-

section of the pullbacks of the J(m ,S) to S x W via the

projections S x W -+ S x Y. (This assertion follows from

(3.1.3)). Consequently, the tangent space to J at a point

y = (f0 ,yl,'''t) is likewise an intersection of tangent
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spaces. These are the equations we get, in view of (6.1.3,

(ii)):

(D i~h)(y ) = 0 0 < j < m. - 2

i=1,.. .,t
(M.1-1) (m.)

(D h)(y ) + m.(D mf) i)w = 0

Thus, if p divides, say mi, or if y is in J(m+l ,...;S),

the tangent vector (h,w1 , ... ,wt) with h = 0, w 1 0,

w2=...=wt = 0 is tangent to J, and is killed by the tangent

map of T. Conversely, if y is not in any of the J , and

pfm1,...,Mt, the condition h = 0 implies w1=. .. =w = 0

for each tangent vector (h,w1 , ...,wt) in T yJ. This

finishes the proof of the theorem.

(6.2). Examples. (1) In char. 2, the number of distinct

lines through a general point and tangent to a smooth conic

is just 1, as everyone knows. (In fact, you just have to

join the given point to the strange point of the conic). This

agrees with (6.1.1), because, setting S = pencil of lines

through a point, the degree of J(2;S) is 2 and each of

its points must appear with multiplicity 2 > 1.

(2) How about the flexes of a smooth cubic, in char. 3?

Their number, counted with multiplicity, is 9 = IJ(3;S) ,

where we put S = net of line sections. However, (6.1.1)

does not apply, because J = J(3;S) is not integral. But we
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do know, by (6.1.3), (ii), that J is not reduced at any

of its points. In principle, the lengths could differ from

point to point. But we can save the situation by reversing

the roles of the cubic and the lines, and look instead, at

the family of divisors cut out by a fixed cubic in the

universal line L -+ P (cf. Prop. 8.2.9). First, we look

at J = J(3;0 (3)), and happily verify it is integral (in

v2
fact isomorphic to L over P ). Then we take the (smooth)

42 v9
pullback of J to the open U in P x P (complement of

the incidence correspondence "line in a cubic'). Well, the

fibers of JJU over an open dense subset of P (= para-

meter space for the cubics) are precisely the various J(3;S).

The upshot is that, since J(3;S) is never reduced, the map

U + # is not separable (by (6.1.2)). Consequently, the

inseparable degree, 3e, is the uniform multiplicity of each

of the points of J(3;S), at least for an open dense subset

49 2 2
of P . Since the cubic y x(x -x-1) has precisely 3

flexes, and since this number is the maximum possible, it

follows that the generic cubic has precisely 3 flexes. (We

are using the fact that the number of geometric components

of the fibres is lower semicontinuous (cf. [EGA IV3], 15.5s2).

We observe that cubics with just one flex exist, e.g.,

y = x3 - x. Since the points of inflexion are the points

of order 3 for the group law of our cubic (provided we pick

one of them for the zero), these results agree with the

general statement on the number of points of a given order on
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an abelian variety (cf. [M.A.V.], (4) of prop. on p. 64).

(6.3)Problem. Suppose Y is a reduced plane curve of degree n.

Let Y' denote its normalization. Let n' be a positive integer.

Let Sn' be the linear system on Y' cut out by the plane curves

of degree n'. When does J(m;Sn') have the right dimension?
- n
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7

(7.1). Lines with prescribed contacts with a hypersurface.

Fix a projective space Pr = P(V) of dimension r

over a field k.

(7.1.1). Definition. Let m = m 1 ,..., mt be a sequence of

positive integers. We say that a hypersurface h (resp. a

line Z) has m-contact with k (resp. h) if the intersection

h r) Z contains a divisor of Z of the form Em x .

Let G denote the Grassmann variety of lines in

Pr. Denote by Q the universal 2-quotient of V Thus,

L = P(Q) + G is the universal family of lines.

Fix a positive integer d, and set W = H (POP(d)).

Set T = P(WV). Thus T parametrizes the hypersurfaces of

Pr of degree d. We recall that the universal hypersurface

H + T is the scheme of zeros in T x Pr of a section of

0T(1) 0 Opr(d). Pulling back to T x P x G

and restricting to T x L, we get a subscheme D of T x L

defined by a section of 0 T (1) 0 O (d). Clearly, the

rational points of D are the triplets (h,Z,x) where h

is a hypersurface of degree d, k is a line and x lies

in h ( Z.

(7.1.2). Definition. The scheme of m-contacts of lines

and hypersurfaces is the m-Jacobian scheme J(m;D), with
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D as above. The fibre of J(m;D) over a point h in

T is called the scheme of m-contacts of lines with h.

Thus, the rational points of J(m;D) are the points

(h,x ,...,xt, 2) of T x LFt] such that the intersection

h n k contains the divisor Em x of k.

(7.1.3). Theorem. (1) There exists a locally free sheaf

E = E(m;d) of rank P = Zm on L[t], and for each hyper-

surface h of degree d in Pr there exists a section

of E whose scheme of zeros is the scheme of m-contacts

of lines with h.

(2) The class of E in K(Lt]) is

Ep'I (m ; (d))(- .mhLhi
h>1

(3) Suppose Z is a Cohen-Macaulay closed subscheme

of G of pure codimension c. Suppose the restriction over

Z of the scheme of m-contacts of lines with h is empty or

has codimension c + p in L[t]. Then the class

J(m;D)(h) x Z in A(L~t]) is

[Z] c (E).
P

(4) Suppose the codimension c of the subscheme Z

as in (3) satisfies,

s h
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c > 2(r-1) - (d+l)

Then for most hypersurfaces h of degree d, the scheme

J(m;D)(h) 5 Z has the correct codimension c + P in

L[t], if nonempty.

Proof: Assertions (1) and (2) are special cases of

(2.2.2) and (3.1.4) taking into account that the formation

of J(m;D) commutes with base change. By the Cohen-Macaulay

assumption in (3), the codimension requirement ensures that

the section of Elz defining J(m;D)(h)IZ is regular.

This yields the desired class first in A.(&[t]Z) and hence,

by the projection formula, the assertion follows.

To prove the last assertion, we consider the subscheme

X of T x G of pairs (h,2) such that h contains Z.

It is easy to see that X is in fact a P n- bundle over

G, where n = dim T - (d+l). One then checks that there is

a smooth, surjective map of schemes over G,

T x G - X -- > P(SdQ (SdQ = symmetric power)

G

which, fibrewise, sends a hypersurface h (such that

h t Z) to the divisor h AZ. Further, the restriction of

D over T x G - X is the pullback of the universal

divisor E of O (d) (see 4.1.4). Counting dimensions,
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one sees that there is an open dense subset U of T such

that U x G is disjoint from XZ. Now, if P is bigger

than d, any line with an m-contact with a hypersurface Z

of degree d is confined in h, by Bezout's theorem.

In other words, J(m;D) -+ T x G factors (at least set-

theoretically) through X, and therefore, J(m;D)(h) x ZG

is empty for each h in U. Finally, if P < d holds,

we know that J(m;E) Z is regularly embedded in

L P(SdQ Z with the codimension P (by 4.2.3, (2).

1
Notice that (R p ),(I(mA) 0 p'O(d)) vanishes by the

^ 0
0

Principle of Exchange and because the fibers are lines and

the invertible sheaf induced on each of these has the

nonnegative degree d-p). Therefore, its smooth pullback

to Z x U,

J(m_;D)ZxU

has codimension p in (L[t] x U)IZxU. By the theorem on

the dimensions of the fibres, ([SF), Thm. 7, (2), p. 60).

There exists an open dense subset U' of U over which

the fibres of J(m;D)ZxU have the right dimension. However,

for each h in U, we have

[J(m;D)(h)] x Z = J(m;D)IZxU (h).

This finishes the proof of the theorem.
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(7.2). Examples, Let us compute a few cases in P3

Preserve the notation of (7.1).

Set X = c1 (Q) and set Tr = c 2 Q. Thus, X is the

"condition" that a line meet a fixed other, and f that a

line pass through a fixed point. There are formulas

(= # of lines meeting 4 others)

(= # of lines through 2 points...)

(= # of lines meeting 2 others and

passing through a point).

Set h = clOL (1). We need the Chern class of = L

In view of the canonical sequence on L = P(Q),

0 -- > Q(1) > Q --- > ( (1) --- > 0

we can compute w = c1Q as

w = X - 2h.

We also have the formulas h2 = Xh - 7r; h 3 _ (X2-7)h - X7.

(The 1st holds by Grothendieck's construction of Chern

classes, cf. LTCC}; the 2nd then follows).

(7.2.1). Five-fold contact with a surface F of degree d.

-2

F2 =1

2XTV=
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(t=1, m=5). The sought for number is (the degree of)

C5 (/G5; L(d)).

By (3.1.1), this is the term of

(1 + dh)(1 + dh + w)

top degree in

... (1 + dh + 4w).

That term is

dh((d-2)h+X)((d-4)h+2X)((d-6)h+3X)((d-8)h+4X) =

= dh[2x 2 +(3d-8)hX+(d-2) (d-4)h2 ] E12X 2+(7d-48)hX+(d-6) (d-8)h ]

(because 0)

= dh[24X 4+(50d-192)x 3 h+(

Pushing down to G, we

d[24x4+(50d-192)X4+(35d2

which has degree

d[35d 2 -200d+24

= 5d[7d 2-40d+48]

35d 2 -300d+576) 2h Z

get,

-300d+576)(X4- 2

(cf.[Baker],formula(4)p.90.)
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(7.2.2). Double inflexional lines (t=2; m1 = m2 =

Their number is one half

z = c6 6(3)

of the degree of

= (dh1 -3A) [(d-2)h 1 -3A+X]

[(d-4)h1 -3A+2 ] -dh2 L(d-2)h 2 + X] [(d-4)h2+2X].

(The indices mean pullback to L(21 via the corresponding

projection

Since we have A2 = cl (TL/G) = -wA = (2h-XA)A,

compute

(dh -3A) [(d-2) (d-4)h +(3d-8)h X-(6d-36)hA-18AX+2X 2 _

= d(d-2) (d-4) [(X2 -T)h 1 - X]+d(3d-8) (X 2h1 -X) -6d (d-6) (Xh-Tr) A

- 18dXhA+2dX 2h 1-3(d-2) (d-4) (Xh-Tr)-3(3d-8)XhA+18(d-6) (Xh-2T)A +

+ 54X(2h-X)A-62 A

= ((d 3 -3d 2+2d)X 2_ (d3 -6d2+8d)T1)h -(9d2 -45d)XhA+[(9d2-90d+240)r

- 60X 2]A-(d3 -3d2 )X

Using the projection formula together with the well

known formulas,

3).

we may

1 (-30)9 6(3) 2)
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p21(A) = P2*(hl) = 1 in A(L)

and P21) = 0, we may compute as

{[(d3-3d 2+2d-60)X 2-(d3-15d2+98d-240)r]-(9d 2-45d)Xh}

{-(d 3 -3d2 ) X'T+[(d3-3d2+2d)X 2- (d3 6d2+8d) ] h

= (9d2 -45d) (d3 3d)2 2 h-(9d2 -45d) [(d 3 3d 2+2d)X 2
-

- (d 3-6d 2 +8d)Tr ]X (Xh-'I) + (d3-3d2+2d-60)(d3-3d 2+2d)X 4 h +

+ (d 3-15d 2+98d-240)(d3-6d 2+8d)T 2h -

+ (d3 -15d 2+98d-240)(d 3-3d 2+2d)]X 27Th

which has the degree ...

[(d 2-3d 2+2d-60)(d3 -6d 2+8d)

d6 - 6d5 + 22d 4 = 261d3 + 1120d2 =

= d(d-4)(d-5)(d3 + 3d2 + 29d - 60)

formula (5), p. 91).

+

1200d =

p2(z .

(c f. [Baker ] ,
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8 Higher relative dimensions

(8.1) What goes wrong. For simplicity, let's consider

first the case of just two assigned multiplicities, m1

and m2 . Suppose Y is a smooth, projective variety.

As before, denote by m.tA. the subscheme of Y x Y[2]

defined by the power I(& ) ' . If dim Y is >1 , the

scheme

-M0 m 1 A10 + m220 '

defined by

I(mA) = I(ml 1 0 ) I(m2A20

is flat only over the open subset U = Y[2] - A Now, if

S is, say, a linear system on Y , and if D c S x Y

denotes the universal divisor, we already know that the

restriction over U of the incidence correspondence

J = J(mL c D) (1.2.1) is the scheme of zeros of a section

of a certain locally free sheaf d . However, if J is

finite and rank(d) is equal to dim(S x U) , we can't

compute the number of elements in J as the degree of the

top Chern class of I , because the numerical equivalence

ring of a non-complete variety is trivial.

What one needs to do, is to get a "computable"

compactification of U . By this we mean a complete
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variety B , together with an open dense immersion U c B

plus a subscheme mot' C Y X B finite and flat over B

and such that mAl is equal to mA . Grant the
U U

existence of such a pair (mA',B) (one may take, for

instance, the closure in Y[2] x HilbY of the graph of

the map defined by mA ). It is very easy to show that
U

J(_(T' c D) is a B-projective subbundle of S x B , and

that its restriction over B - U is "negligible", at least

for a sufficiently general linear system S . The catch,

however, is in the computability of the relevant Chern-

classes.

(8.1.1) Remark. We don't know whether the map

m: U - HilbY

(defined by (mA) C Y X U) extends to the blow-up of

A in Y X Y , except when either m1 or m 2 is 1 . By

general results on flattening by blowing up (cf. [Raynaud]),

one does know that m extends to the blow-up of Y X Y

along some subscheme.

(8.2) The step by step construction. Let f: X - S

denote a smooth map. We construct inductively smooth maps

of schemes
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pt,92 -' pt,1: X~t) __ X~t-1).

We set Xtl} = X and X(01 = S and P1  = Pl,2 =

For t > 2 , we view X(t-1) as a scheme/X~t-2) via

pt-l,l , and we let

b t: X~t} - X~t-1} X X~t-1}

Xlt-2}

denote the blow-up of A.Xt-} Then set p = P b,

where p denotes the projection onto X~t-l) . Pt.i is

smooth by ([EGA 1V4] 19.4.8) . We denote the exceptional

divisor b 1 (AX~t- 1 ) by E , and the mth power of its

Ideal by at(m) . For each X-Module M , we define

inductively

M(m) = Ot+l(mt) ® p*+ 1,2M(m,.. .,mt-l)

(We put M(0) = M ... ).

Fix an invertible X- Module L and let

the scheme of zeros of a section s of L .

define inductively a closed subscheme J(m;D)

We need a few preliminaries. For t = 1 , we

diagram

D denote

We will

of Xt).

consider the
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2,2s

-- > p$ 2 L

Proposition.

Um; D
r

(p 2L) ®Ci2, 2 mE2

The scheme of zeros of

X exists and is equal to J(m;D) , the m-Jacobian of

(2.2.1).

We first need

(8.2.3) Lemma. T

(i) (R p2,1)*

the following lemma

here are formulas,

(L(m) ) = (Rlpl)* (P*Lg I (L)m)

(R p2 ,1) *(p2, 2L ®QB)
= (R ip) (p L @9ma

latter is zero for i / 0

Since X/S is smooth,

and m > 1 .

6 is regularly embedded

in X[2] Consequently, there are formulas (cf. [Maninl,p.62 )

for i# 0

for i = 0

and

(R b2) * M
0 for i# 0

for i = 0

L(m)(8.2.1)

(8.2.2)

-f 0

UDm;D in

D

(ii)

and the

Proof.

0

I(A)
(R b 2 )* a2 (M)
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Setting Am = 2(m) or , the spectral sequences for

R (pb2 )*( p, 2 L ® Am

degerate and yield the formulas (1) and (ii). The last

assertion holds because A is finite / X .

Proof of the Proposition. First we recall that E = E2

is flat / X (in fact smooth, because it is equal to

P(nX/S)). Further, we have exact sequences,

0 --- > aE (m-) -- > mE - a (m-l)E 0 0

Thus, by induction, C is flat / X . In view of (ii)

of the lemma, it follows by the Principle of Exchange that

the formation of 6 = (p2 ,l)*( P,2L 9 m) commutes with

base change. By (1.1.2), the scheme of zeros of um;D

in X exists and is in fact equal to the zeros of the

section u' of 6 , adjoint to um;D . By (ii) of the

lemma, (applied to i = 0), 6 is precisely the

M-incidence sheaf of L (2.2.1). It remains to be shown

that u' coincides with the M-incidence section e (the

zero of which, we recall, defines J(m;D)). But this is an

immediate consequence of the formulas u' = (p2,l*(um;D) =

(p9)*(b2)*(um;D) , once we remark that (b2 )*(um;D) equals
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the section of

via p 1

L e 6 of which e is the direct image

(cf. (2.2.1)).

Continuing with our program of defining the J(m;D)

we observe that, because is flat / X , the exact

sequence in (10.2.1) remains so after restriction over

induces a section,

> L(M)

J(m;D)

Definition. We call the scheme of zeros

the m-virtual transform

We set 2(m;D) = J(m;D)

of

of D , and denote it by

, and define, by induction,

= J(M ,...,m ;D(m9)
W" 2 t 1

We call J(m;D) the m-Jacobian scheme of D . The

m-Jacobian of a linear system S on a scheme

is the m-Jacobian of its universal divisor,

denoted by J(m;S)
of aninvetible~ -M

If S is the complete linear system

of an invertible Cy-MO

and refer to it as the

(8.2.5) Remarks.

is 1 then J(m;D)

henceforth write

(i)

dule M we set J(m;M) = J(m;S)

m-Jacobian of M

If the relative dimension of

and J(m;D)

J instead of

X/S

agree. (Thus, we will

J(m;D) Hence, p s

s D(m):

(8.2.4)

sD(n)

D(n)

J(m;D)-

Y/Z (4.1)

and is
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Proof. First observe that X~t} = X[t] holds. Further,

Pt+1,1 can be identified with p,: X X X[t] -+ X[t.
0 S

Now, it suffices to prove that J(m;D) is equal to

J(m2,... ,mt;D(m)) . This can be easily verified on

T-points, and it essentially means that, for a divisor d

in a smooth curve, the assertions

d> m x + ... + m txt

and

d - m x m22 +... + m xt

are equivalent (where x are points on the curve).

(ii) Clarly, a point x in X~t} lying over x

in Xti} is in J(m;D) iff x is an m1 -fold point

of the fibre D(x0 ) O k(x) , and then x2  is an m2 fold

point of (D(m))(x) k(x2) (the m -virtual transform

of D(x0 ) ® k(xl) at x 1 ) , and so on.

(8.2.6) Example. Suppose S consists of a single point

and X is, say, A2 . Suppose D c X is a curve with a

triple point together with an infinitely near triple

point as the only singularity (e.g. y = x ). Then

J(2;D) is supported at the singuler point. The 2-virtual

transform of D is the proper transform ID plus the

exceptional line counted once. Since D has a triple point,

therefore D(2) has at least a 4-fold point. Thus,

,1(2, 4 ;D) ' = J(4,2;D)
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(8.2.7) Proposition. The formation of J(m;D) commutes

with base change through S .

Proof. Because X is smooth/S , for each base change

S' -+S , we have that

X(21 X S' = X'{2)
S

holds, where we put X' = X x S'. The smoothness is
S

required to ensure that the formation of powers of I(AX)

commutes with base change. The assertion now follows

easily by induction on t .

The next Proposition draws its interest from the

following situation. Suppose Y ia a smooth hypersurface

r
in some projective space P . Then one can consider the

hyperplane sections of Y as a family of Cartier divisors

in two ways: either as divisors in the trivial family

vr r
P x Y or in the family of hyperplanes of P parametrized

by r . Accordingly, there are two possible definitions

for the m-Jacobian, and of course one should expect them

to yield the same thing. In other words, the m-Jacobian

of a good family of divisors should be intrinsic.

(8.2.8) Proposition. Suppose D is a relative Cartier

divisor of X over S . Then J(m;D) depends only on the
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structure map D - S (and not on the embedding D c X ).

Proof. Suppose t = 1 . We will apply lemma (1.2.3) to

=DxX, 2= D , f =projection , t=DX D and
S S

W = D X =X . Notice that W is transversally
X

regularly embedding in % relatively to ) because 6X

is so in X X X relatively to X ([EGA IV 4] 19.2.3). By
S

the same token, f is a relative Cartier divisor of

Td . Now observe that, for each m > 2 , the incidence

correspondence of mW in & is precisely J(m;D) . By

the lemma, J(m;D) depends only on J(m-l;D) and the

Ideal of A in D x D . Since J(l;D) is obviously
S

equal to D , the proof for t = 1 is complete. The

proposition now follows by induction, once we remark that

the m-virtual transform of D is also a relative Cartier

divisor of J x X[2) over J = J(m;D) . This assertion
X

holds because the fibre of D(m) over a point x of J

is obviously a divisor on the fibre of X(2) over x .

(8.3) The generic class of J(_m;D) . Preserve the notation

of (8.2).

(8.3.1) Definition. We say D is m-generic (or

m-regular) if, for each i = 1,...,t , the Koszul complex
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of the m. -incidence section (which defines

in J(m1 ,...,m ;D) x1- X{i-13
x{i)) is exact. If D is

universal divisor of a linear system S

say S is m-generic if

S is the complete linear

(4.1.2),

D is m-generic. Finally,

system of the invertible

module M , we say M is m-generic

(8.3.2) Definition. The m-incidence sheaf of L is the

element of the Grothendieck ring K'X~t , defined

inductively by

,X/S(M;L)

+ Pt,26X/S(m ,.

where the first term on the

m -incidence

,mt 1 ;L)

r.h.s. is the (class of the)

sheaf (2.2.1).

(8.3.3) Remarks.

the relative dimension of

precisely the class of

(ii)

(i) One verifies without pain that,

X/S is 1, then 4X/S(m;L)

the old

If S is Cohen-Macaulay,

is equivalent to each J(m 1 ,..,m , ;D)

or of the right codimension (= (
m. +d-

d.

M-incidence sheaf

if

is

(2.2.1).

then m-regularity

being either empty
1

) , d = dim X/S)

in the restriction of

J(m 1 .. m ;D)

the

we also

if

0Y-

if S is so.

I

= (SX(t}/X(t-1)(mt; L(m ,

X(i} over J(m , ... ,M - ;D)
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Warning. The statement of the next theorem requires that

X and S lie in a category of schemes closed under

fibre products and under the formation of scheme of zero

of a regular section of a locally free sheaf, and which is

endowed with a Fulton homology-cohomology intersection

theory. One such category consists of the quasi-projective

schemes over a field. (cf. [Fulton].)

(8.3.4) Theorem. Suppose D is m-generic. Then the

class of J(m;D) in A,(X~t}) is the Poincar6 dual of the

top Chern class of the m-incidence sheaf of L. In

symbols,

[J(m;D)] = ctop(X/S(m;L)) n [X(t)

Proof. The basic fact is that, on account of the warning

preceding the theorem, the scheme of zeros of a regular

section of a locally free sheaf represents the Poincar6

dual of the top Chern class of that sheaf. Thus, we have,

to start with, the equality

[J(m ;D)] = ctop QX/S(ml;L)) n [X]

Set m = m2,...,mt , and replace X - S by



X' = X(2} X J(m 1 ;D)
x

= J(m 1 ;D)- S'

and D by = D(ml) (8.2.5). By induction, the class

of

- J(m';D')

in A.(X'{t-1})

6X'/S' -m';L(m ))

is dual to the top Chern class

Now X'{t-1} is obviously equal to

. Since X~t) is smooth (hence flat)

the operations of pulling back the homology class of a

subscheme and taking the homology class

of that subscheme are interchangeable.

of the pull back

Thus, we may write,

in A.(Xtt)) ,

[X' t-1)]

) [X~t}]

Finally,

we have,

denoting by i the inclusion

[J(m;D) = i,[J(_'m;D(ml)]

= (f(ctop X'/S,(m;L(ml))

[X'{t-1}] (proj.
formula)

= C top(X/S(m;L))

J(m;D)

Xtt) x S,
x

of

81

= (p0 ..2,1)[J(M ;D)]

-- 2,1) Ctop(P*t1l.

X'(t-l} c: X~t)

n [x, {t-1)]I)

=c 6 v{}/ Em ; Lm )) i

n [Xt]
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(because the top Chern class of a sum is the product of

the top Chern classes).

(8.3.5) Problem. Find the universal polynomials

p(ml,...,mtc ,...,c ,) which express the push down of

topX/S(-2;L)) to A.(X) in terms of the Chern classes

of 0X/ and L.

De Jonquieres did this for X=curve, S=point. For

t= 1 and S= linear system on a curve or a surface,

A. Lascoux related p(m, c, ,) to Thom polynomials ([L]).

(8.4) Conditions for m-regularity. Fix a smooth and

proper map g: Y - Z , and let M denote an invertible

O Y-module. We will transport the notations and construc-

tions introduced at the beginning of (8.2) to Y - Z .

However, we will denote the maps Y~t} -> Ytt-1} by q

and q . Further, throughout this section, X -+ S

will denote the pullback of Y -4 Z by the map S -+ Z ,

where S is the complete linear system of M

We establish in this section sufficient conditions

for M to be m-generic (8.3.1).

(8.4.1) Theorem. (1) Suppose (R qt+1,1 )*M(m) = 0 holds.

Then M is m-generic.

(2) Suppose m satisfies the relaxed proximity
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inequalities

m. > mi+ + *00 + m - 1 for each i = 1,...,t-l.

Then (R qt+ 1 ,1 )*M(m) = 0 holds for all sufficiently high

multiples M of an invertible 0Y-module N ample / Z .

There are several steps. The first part of the

theorem will follow from (1.1.4, (ii)) in view of the

following sharper statement.

(8.4.2) Proposition. Suppose (R qt+ 1,1 )*M(_) = 0 holds.

Let mi denote the truncated sequence m 1 ,...,m Then

there are exact sequences of locally free a -modules,

0 - Vm.
-1

~ ,1 (Vm Y/(m-M(m.;M(_)) -4 0

I11

such that the dual surjection q* (V1,1 -i- l
P(Vv) with the subscheme J(m.;D) of

-1
P(Vm ) Yi) = -T(m.1 -D) X Y

-i-1 Y{1-1) Y~i-1)

VV
-2

identifies

Proof. The assertion follows by an iterative application

of the lemma below. (Do it first for M(rt-1 ) and m t

then to M(Et- 2 ) and mt- 1 , etc., down to M and m .1

Proof.

(i) -
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You get that

Y -Z by q2,1:

M m2, ... ,mt

J(m ,M)

Y(2} -4 Y

and P(V )

M by M(m1 )

are equal.

and m by

and conclude by induction on t .)

Lemma. Assume (R q2 ,1 )*M(m) = 0 for some

positive integer m . Then we have:

(i) R 1 gM = 0

(ii) V = g*M and Vm (21 (9*M(m) are locally free;

there is a canonical exact sequence,

0 - VM g* (3 Y/Z(m;M) -+ 0

such that the dual surjection

identification of P(V )

P(g*vV) S X Y
z

(iv) The i-virtual

gV -+V V

with the subscheme J(m;M)

transform of the universal divisor

of M , is equal to the universal divisor of

Proof; We apply

0 -4 M(m)

(q2 ,1) *

-+ q* M

to the canonical sequence,

-> q* 2 M ® 0 -> 0

Invoking Lemma (8.2.3), and using the hypothesis,

resulting long exact sequence gives,

O -+Vm ~4 ( 2 ,1 )*2,2M -4Y/Z(m;M)

Replace

(8.4.3)

(iii)

induces an

of

M(m)

the

.

-> 0
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and

(R q 2 ,1)q2, 2 M = 0

By the same Lemma, we have the formulas

(R q2 1 )*2 2M = (R' q ) q*M

By flat base change, the latter is equal to g*R gM

By faithfully flat descent, g*R1gM = 0 implies R gM= 0.

The last assertion of (iii) is a special case of

(4.2.3).

To prove (iv), we recall the definition of the m-

virtual transform D(m) of the universal divisor D of

M. We put S = P(V"), X = S x Y, L = s(l) M.
z

Observe X(2) is just S X Y[2) . Now D(m) is defined
z

by the section sD(m) of L(m) over J = J(m;D) which

factors p2 sD

sDm 2,2sD

(*) L + (m) -p2p -- 0 (over J). pL-2 L -~ p2.92®mE

Next observe that f*(sD) is the section u of V S (1)

corresponding to the universal quotient V -+ OS(l) under

the natural isomorphism
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Vs ® S (1) = Hc (Vc ,C3 (1)

Since g*M commutes with base change,

(p2 ,1) * (p2,2)*(s D)

J J

this implies that

s equal to f*u

r i -X{2)

,1 X[2]

Sx

S

Also, we have

= J*f*u .

Because j is a linear embedding of projective bundles / Y,

j*f*u is precisely the section of V ® %C(l) which is

the image of that of Vm C(1) corresponding to the

universal quotient ur: (Vm)V -.)c'J(l) . Sincem J

[(p2 1) ]*D(m)) is also a section of Vm J

mapped to j*f*u (in view of (*)), it must be equal to

ur . Since urM is the direct image of the section of

L(m) defining the universal divisor of M(m) , that
J

section must coincide with sD(m) , q.e.d.

The main ingrediant of the proof of (2) of the theorem

(P2,-1) * 2s2D)
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is the following

(8.4.4) Lemma (of proximity inequalities). Let B

denote a regular scheme. Set B1 = B , and for i > 2 let

b B -+ B denote the blowing up of B at a closed

point y 1 1 with algebraically closed residue field. Set

B 

Bt+l

Then we have

R (b2. .bt+1) *C m) = 0

provided m satisfies the inequalities

m > mi+1 + .+ m - 1 for i = 1,...,t-.

Proof. The lemma is a consequence of the following

(apparently stronger) statement. Let 97 denote the

Ideal of a closed point z in B t+1 For each sequence
n n S

of nonnegative integers n = n 1,....,n , set 7~=7 1...s

(product of ideals). Then we have

1 bn
R (b2.. .t+ 1) * (-) 7 ~) = 0

S t+lC'B t - *'2 +1. )B 2
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provided the new sequence m 1 ,...,mtnl+...n s satisfies

the inequalities.

We proceed by induction on t

Suppose t = 1 . Observe that, for each j such that

z is not in the exceptional divisor E2 = b2 1 , we

have

i n n . n
R b2 (C(m)7 iF) = 2/ R1( (m)'/ F) (where n = n with nfl

replaced by 0 ).

This can be seen by restricting to B1 - Yj) and

B1 - (b2 (z )) , because the formation of R commutes

with flat base change. Thus we may assume each z is in

E2 . Now, there is an exact sequence,

n-i
0 -+B2 ()

n n
V 7UE2

where 1 denotes the sequence which is 1 on each slot

where n is > 0 and is zero otherwise. To verify the

exactness, notice that on the complement of {z 2,...,Zs)

in B2 , the above sequence is just

n-l
0 -+ CB (1)7'

2

n
1, M,1E -+ 0

2

The latter is exact because B2 being regular implies

the equality

(*) -*0
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n GB (1)
2

(Cf. proof of

Tensoring

(1.2.3)).

(*)with (M) and applying

get the exact sequence,

(R b2 ) * B2

n
(m+l) 7TZ~

-1 n n
-+ (R1b2 B2 (m)~(R1

By induction

Now the last

on max(n ,.

term is just

by the lemma below.

, the first term is zero.
n

H (E2 ' F6E 22
This finishes

(M))

the proof

, which is

for

We study the exact sequence (derived

from the spectral sequence of composite functors),

R1 (b2.. .bt)*[ (bt+1 )
-+ R1 (b2...bt+1) **(

n

n
-(b2...b ) (R 1b t+ ) * m -V7)].

Set M' = in...m

n
(Rbt+1) * nm) /F)

By the projection formula,

= a(m')(R b

The latter

presented.

is zero for i = 1 by the case t = 1

Now renumber the z j

n

(1 B2

, we

Assume 2 .

zero

have

we

n

t +1 * (t) F

already

so that



iff s' < j < s

Set n' = nl,...,nsl-l and set n"

the exact sequence

n
0 -+7iF (mt +

n"l-1

Bt+l t+1 and Bt+1 - {z 1 ,...,zs'-1 ) .) By

the case t = 1 , applying (b t+l) * yields a short exact

sequence.

(b2. .bt)*

Tensoring this with O(ml) and applying

finally yields the exact sequence

(b2 ... * b ) _' )
n 

(bt+) * :

n "-1

n
)VFi~

n'
*T C (mt )] -+0

The zero is right because
nil

(bt+1 * "FEt+1 ))
is

supported at one point. We now argue by induction on

max(n") and conclude that the last relevant term in the

above sequence is zero. The zeroth step in

is true by the induction hypothesis (of the

t ). Indeed, when

R 1 (b2. ..b )

this argument

induction on

is zero, the assertion is

n'

1I * n ,m(n' ) (bt+

This equality holds because we have,

90

z is in Et+1

We have

= ns,,..., * ns

(Check over

n"t

+ t+l )

n I n"
-+7> VF~a(mt )

-+ R 1(b2*. .. b t) *[C (m') (b t+1

n"l
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ni n'
(bt+1 )*(TF Si(mt)) = 'VF~ (bt+9*((mt))

n' m
VF- t

where M+ denotes the Ideal of yt . We have also abused
n,

the notation by writing 7~

Ideals in Bt+1 and in Bt

both for the product of

This completes the proof of

the lemma of proximity inequalities, modulo the result

needed for the case t = 1 and which we will now take

care of.

(8.4.5) Lemma. Let r . ., s denote the Ideals of s

distinct closed points z 1 ,. .. ,zs in a projective space

P . For each sequence of nonnegative integers n =
n n n

n ,. ns , set V~ = ..ls . Let m be an integer

> -l . The following are equivalent:

n
(i) The natural map H0 (ap(m)) /v~

1n
(ii) H (T~np(m) 0

is surjective;

Moreover, both hold provided m is at least n1 +... +ns -1.

Proof. The equivalence follows from the cohomology exact

sequence derived from

n n
0 ->'JFIP(m) -+0P(m) ->C //lW ->0.
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Now we prove (i) holds for m > n  + ... + ns -1 by

induction on maxini , where jnj = En . When this is

zero, the assertion is trivial. So, assume n > 1 . Set

n' = n -1 , n . Consider the diagram

n -1 n
Km l 1

n n

n' n -1n.

i41

The equalities hold by the Chinese Remainder Theorem. The

right vertical sequence is clearly exact. The left one

is also exact by definition of K and by the induction

hypothesis. It follows that the middle horizontal map is

surjective iff the top one is so. To verify this

surjectivity, it suffices to produce liftings of the gener-

ators of ' 1 in Km . For this, choose sections

h2,. .. ,hs of ( (l) such that h (zi) 0 / h (z ) holds.

Set

On 2 n
h =h2 ®...®@hs2 s

and let g be a product of (nl-l)-global sections of

cY(l) which vanish at z . Then g ® h is a section of
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0(n 1-l +n 2 + ... +n ) , and gq h lies in Km Moreover,
n in

its image in 77 / is a scalar multiple of g
n -l n

Since 7? /1? is generated by products like g , the

lemma is proved.

Proof of (2) of the Theorem. Let y be a rational point

of Y~t) , and let y denote its image in Y(i) . Let

B denote the fibre of Y~t} over yil

the sequence of blowing ups

h

Thus, we have

11%

Bt+l - : B - ... > B = Y(yo) .

Set b = b2...bt+1 . Set N = N .

By the Principle of Exchange, it suffices to prove that

H (Bt+iNn(_m)) = 0

holds for n >> 0 . For this, we use again the first terms

of the exact sequence derived from Lerayts spectral sequence,

H1 ®5 n ob* H1 (® n Ho ® n 6R1bH (B1,Nn®b p(m) ) -+ H (Bt+i, N (in) ) -> H (B1,N N®R b (3(m) ).

0

The last term vanishes (for all n) by the lemma on the

proximity inequalities. On the other hand, by ampleness,
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the first term is zero for all n >> 0 . This finishes

the proof.

(8.4.6) Remarks. (i) Whenever J = J(m;S) is faithfully

flat / Ytt) (e.g. if J is a projective bundle as in

(8.4.1)), it equals the proper transform of J' =

J(m ;S) x ... x J(m t;S) in the sequence of blowing ups
S S

X -t) X~t-l) x X[t-1) -... -- X
X(t-2)

Indeed, denoting by U the complement

Y[t] , the above composition yields an

U which clearly identifies J with
U

is scheme theoretically dense in Y[t]

Y/Z is > 1) it follows that J is
U

theoretically dense in J5

x ... x x = X[t]
S S

of the diagonals in

isomorphism over

J' . Since U
U

(provided rel. dim

also scheme

(ii) As an amusing consequence of the observation

above, we get that J(m,m-l;S) is mapped isomorphically

onto J(m-l,m;S) under the natural involution of X[2)

(induced by the factor switching in X x X). When Y is
S

the projective plane, this is a very special case of the

classical "Principio di Scaricamento dei Punti Prossimi"

(Cf. [Enriques] p. 431). The moral is the following.

If one imposes on a sufficiently general linear system the

condition that a member have a point of multiplicity m-1 ,

.
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with a neighboring point of multiplicity m , the generic

solution will actually have a point of effective multi-

plicity m , which we "pretend" to be virtually just

m-l . The catch is that the (m-l)-virtual transform will

contain the exceptional divisor once, thus adding one to

the multiplicity of the singular neighboring point.

(8.5) Applications. The theorem below summarizes and

sharpens some of the results of the preceding sections in

a form more suitable for "practical" purposes.

(8.5.1) Theorem. Let Y be a smooth projective variety

of dimension d . Let S denote a linear system on Y

of dimensions s . Set J = J(m;S) and set r = ( i ).
d

(1) If S is m-generic (8.3.1), then there exists

an open dense subset U of the Grassmannvariety G

parametrizing the subsystems of S of the codimension

c = td + s - r

such that each S' is U is m-generic (and in particular

J(m;S') is finite).

(2) If J is smooth and of the right dimension (= c),

and if char.k = 0 , then J(_m;S') is finite and reduced

for each S' in an open dense subset of G .
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(3) For each subsystem S' of S of the codimension

c (as above) and such that S' is m-generic, we have

the formula

iJ(m;S')j = IctdcdY(m;M) I (see 8.3.2),

where M denotes the invertible Y-module associated to

S .

(4) If S is the complete system of a sufficiently

high multiple of an ample invertible Y-module and m

satisfies the proximity inequalities, then J is the

projective bundle of a locally free ay& t -module whose

class in K'(Y~t}) is

- (ay(m;M) (see 8-3.2).

(5) If S and m are as in (4) above, then J(M;S')

lies over the complement of the diagonals in Y[t] for

each S' in an open dense subset of G .

(6) If Y is a projective space, then the vth

power of its canonical ample sheaf is m-generic for

v > -1 + m , provided m satisfies the proximity

inequalities.

Proof. The first two assertions follow from the theorem on

the transversality of a general translate, once we recall
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that we have

J X S' = J(m;S')
S

To prove (3), we use the expression for the generic

homology class z of J(m;S')

z = cr )

where d is short for , m , 6VO X S I/S I (m;M (3s (1))

Setting 6 = od(m;M) , and observing that

S=3 0 as I ,

(8.3.2).

holds, we get

r

Z = cr-i (d)h

0

= ctd(6)hr-td

where h denotes the 1-Lt

(by a standard property of

Chern classes)

Chern class of O3,(l) . The

latter equality holds because we have h = 0 for

i > dim S' = r - td , and, on the other hand, ci() is

zero for i > dim Y(t) = td. Finally, since the degree of

a zero cycle is invariant under pushingforward, (3) follows.

Assertion (4) is merely a restatement of (8.4.1).

Assertion (5) then follows because the restriction of J
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over a codimension 1 subvariety or Yt) (such as the

union of the pullbacks of the diagonals) has codimension 1

in J. A fortiori, its image in S misses most subspaces

of S of codimension c .

We now work on the last assertion. Referring back

to the proof of (2) of (8.4.1) (see p. 63), we see that it

suffices to prove the result below. (Indeed, recalling

the exact sequence on p. 63, we see that the middle term

is killed as soon as the first one vanishes.)

(8.5.2) Lemma. Let

B+ bt+1 B > b 2 B P

be a sequence of blowing ups of closed points, where P is

a projective space. Set

(_m) = + (mt) b 1 B (mt_) (... ( +1...b)B(m)

and set b = b2.. bt+1 . Then we have

H 1 (PQp(v)S bgc(m)) = 0 for v > Fm - 1 .

Proof. The lemma is a consequence of the following
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Assertion. Let M ... ,?s denote the Ideals of the

distinct closed points z ,.. .,z in Bt+ . Let

n= 1 ,.,n denote a sequence of nonnegative integers.

,n ... n -n

1-'1-s
Set V~ = .. .77- . Then there exist distinct closed

points z ,.. .,zn in P with Ideals denoted by si,.. .,2

and there exists a sequence of nonnegative integers

r = r 1 ,...,rn such that

r n
7/E c b ( ( _m) and Irl = iml + Int

(where we put jml = cmi) hold and the cokernel has finite

support.

Granting the assertion, the lemma follows by taking

n to be the zero sequence. Indeed, we get an exact

sequence

1 r 1
H (Pap(v) i F) -+ H (P -+.0

because a finitely supported sheaf has zero positive

cohomology. Now, by (10.3.4) the first term also vanishes

whenever v > Ir I - 1 holds. This proves the lemma.

Now we prove the assertion by induction on t .

(Notice we no longer require that B be a proj. space.)

Suppose t = 1 . As in the proof of (8.4.3) we may assume

each z lies in the exceptional locus. Using the exact

sequence (*) of p.88 , we obtain the inclusion
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n- 1 n
b*(B (m+l)F ~) c b*(0B (m) ® t) = A

2 2

By induction on max(n) , it follows that the Ideal A

above contains b*(% (m+ ln|)) , which is just ,r , where
B21

we put r = m + Inl and 7 = Ideal of the blow up center

z Since the support of A/* is z , the case t = 1

is proved.

For t >2, write b =b2b' , where bT

for b3. bt+1 . Also, set ml = 2 ,.. .,m t

is short

We have,

b *(77FC~m) b L*1B (ml b Ta(b,(/7[0(m))= 2* B2 )m1 ('/?Fc~(i')) ].

Applying the induction hypothesis to A = b1(V (m'))

we get a product of powers of maximal Ideals,

r'
A 2 = )~cAl,

such that A /A is finitely supported and lrlI= Inl + Im'I

holds. By the case t = 1 , there exists a product of

powers of maximal Ideals

r
A4 = V~ c b2*(B 2(m1 )A2 ) = A3

such that supp(A 3 /A 4 ) is finite and

holds. Set A = b*(VFd(m)). Thus,

Ir = Mi1 + Ir'I

we have the inclusions,
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A4 c A3 c A0

and A 3 /A 4  and A0/A 3 have both finite support. Therefore

so does AO/A4 , q.e.d.

(8.5.3) Remarks. (1) With the notation of (8-5-1),

(3), we don't know whether the finiteness of J = J(m;S')

implies S' is m-generic. This is obviously true if one

also assumes J' /0 , for it then follows (by a trivial

inductive argument) that each of the preceding JI =

J(m ,-.mi;S1) is regularly embedded in Jx Yi}.
-Yi-1)

(2) The special cases t = 1 and d = 1 or 2 have

been considered by A. Lascoux [L].

(8.5.4) Examples. Suppose Y is a surface and S is

a sufficiently general linear system of dimension s

associated to the invertible Y-module M . Set

= c 2 (04) , K = c )

(and by abuse) M = c1 (M)

(i) Assume s = 1 . Then the formula for IJ(2;S)I

is equivalent to that expressing the classical Zeuthen-

Segre invariant I in terms of x . Indeed, set
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= # base points

y = # singular members, i.e., IJ(2;S) I

g = (arithmetic) genus of a member of S

Then I is defined classically by

I = y - 5 - 4 g . (cf. [Baker

On the other hand, we may compute,

y = c2eY(2;M)j

= x + 2KM + 3M2 (cf. (9.5, (2), with m = 2).

- K + 2(KM+M ) + M

=y, + 4 (g - 1) + p .

(The assertion # = M holds because the base points are

the zeros of the map

9e2
y

defined by a choice of 2 members of S ).

Thus, we get the well-known formula I + 4 = x

(cf. [Iversen] p. 974).

(ii) Assume s = 2 . Then the formula for jJ(2,2;S)

is

] p. 185)

- M
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2 2
(+ 2KM +2Mc- - (7+6K2 +39KM+42M )

This result

pushing down

and then to

is gotten from

c4 y(2,2;M)

(3) of the theorem

from A(Yt2))

A(Y) The main ingredients

(8.5.1), by

to A(Y[2])

of the computa-

tion are:

The formula

+ a (-E) in K(Y[2I)

for the class of the cotangent sheaf of Y(2)/Y (via

we recall). The formula follows from the two standard

exact sequences,

1
b yXY/

1Yt / 0 1 1
Y{2)/ 'Y(2/YXY

1
(-1)

where j: E c-+ Y(2) is the inclusion of the exceptional

divisor. (It is worth recalling the well known facts of a

blowup such as b2

tautological ample

first, E = P(OI)

sheaf CE (1)

; second, the

on E is equal to

j*C:B (-E)

The intersection relations

(a)

Y[2)/Y

and

P* 1 (E)

)) ( E

(b)
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E = J*((-e) - ) in A(Y[2))

where we put

e = c E (1)

We also have

e = Ke - x ,

In particular, if Y

(b2 )*(l) = 0 and (b2J) * e)

is a surface in P3 of degree

S is a net of plane sections, we have

) = (n2 - 4 n + 6)n

K2 = (n-4) 2 n ; M2 = n ; KM = n(n- 4 )

Substituting these in the formula above, we get the

expression

n(n-l)(n-2)(n3 - n2 + n - 12)

which is twice the number of bitangent planes through a

general point (cf. [Baker] p. 153).

If Y is the projective plane and S is a set of

cubic curves, the number jJ(2,2;S)l is 42. This can be

seen directly to be twice the degree of the subvariety

of o7 reducible cubics. Indeed, given 7 general points

in P each of the (,) = 21 pairs determines a unique

line and a unique conic containing all 7 points.

(Y)'

n and
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(iii) Assume s = 3 . A rather lengthy calculation

yields the following expression for IJ(2,2,2;S):

(x+2KM+3M23 - 14(y.+2KM+3M2)2

- (+2KM+3M 2 )(7+18K2 +84M 2 +89KM)

+ 138y + 376K2 + 138oM2 + 1576KM .

If Y is P and S is a general web of cubics, so

that we have =3 , M2 = K2 = 9 , MK = -9 , the formula

gives the number 6-15 . One can check directly that 15

is precisely the number of triangles containing 6 general

points.

If Y is a surface in P3 of degree n and S is

the complete system of plane sections, substituting in the

values for \ , K2 , etc. computed in (ii), we get the

formula

9 n8 + 57 n6 +2n5 4 3 2n - 6n + 15n - 59n + 24n - 339n + 770n- 2056n + 1920n

which is 6 times the classical formula for the number

of tritangent planes(cf. Salmon], formula (vi), p. 292).

To properly justify the formula, we will sketch a

proof of the following

(8.5-5) Proposition. There exists an open dense subset A
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of the projective space S parametrizing the surfaces of

degree n > 2 in P3 such that, for each F in A ,

(F(l) is (2,2,2)-generic and, moreover, J(2,2,2;3F(l))

is reduced and lies off the diagonals.

Proof. Let D c S x P and H c P3 x P3 denote the univer-

sal divisors of S and P3 . Let D' , H denote their

pullbacks to S X P3 x P3  Set =D' n Hj. Thus, D is

the scheme of zeros of an invertible 0H-module (namely

% (l) 0 a (n)). Set Z = subset of (Fh) in S x P3  such

that F contains h . (This is the incidence corre-

spondence of H in D .) Set U = S X P3 - Z . Set

W = ~a () whre p H -v3
p*H(d) ,where p: H -+ P is the structure map.

There is a smooth, surjective map of schemes / P3 ,

U : P(WV)

v3P

such that the restriction D is the pullback of the
U

universal divisor C of P(WV) in H . Consequently,

we have J(m;D ) = J(Sm;) x U . Set (provisorily)
U P(W")

A = the complement of the image of Z in S . An easy

dimension counting shows A is dense in S . Clearly,

for each F in A , we have that the fibres over F of

J(2,2,2;D,) and J(2,2,2; U) are both equal to
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J(2,2,2; F(l)). Now let T denote the set of plane ni-

that are bad, namely, those containg either

(a) a point of multiplicity > 3 ;

(b) at least 2 double points, one of which also

posses an infinitely near double point;

(c) at least one double point with 2 successive

inf. near double points;

(d) at least 3 double point, one of which is cuspidal;

(e) at least 4 double points.

One checks that T has codimension > 4 . Since T is

clearly invariant under PGL(3) , it induces a subset T'

V3
of P(W') of codimension > 4 , whose fibres over P

are equal to T. The pullback of T' to U also has

codimension > 4 . Thus, shrinking A , we may assume

T' x A empty. Since the family of plane n - with
S

exactly three nodes has codimension three, the same

argument as above shows we may assume that, for each F

in A , there are only finitely many plane sections of

F with three nodes. Since J(2,2;C) has the right

codimension (for n > 3 , by an easy extension of (6)

of 8.5.1 to families of projective spaces), therefore so

does its pullback J(2,2; U) . Counting dimensions, we

see that we may also assume the fibres of J(2,2; U) over

each F in A is one dimensional. Finally, we also

assume each F in A is smooth.

Now suppose F is in the open dense set A constructed
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above. Let (c,b) be a point of J(2,2,2; F(l)). Thus, c

is a plane section of F, and b is a point of F[3}. Let

b2 and b denote the images of b in F(21 and F . Thus,

b is a double point of c , b1 is a double point of the

2-virtual transform c(2) of c , and b is a double point of

the 2-virtual transform of c(2). Since c has no triple

points, the 2-virtual and proper transforms are one and the

same. Further, since c is not in T, it follows that b2

(resp. b) is not on the exceptional line over b1 (resp. b2).

The upshot is that c must be a plane curve with exactly 3

nodes, and b is precisely any of the permutations of these.

It remains to verify that J(2,2,2;0-F(l)) is reduced.

We show its tangent spaces are 0-dimensional. First, the

tangent space to J(2;aF(l)) at a point representing a

curve with a node can be identified with the set of planes

through the node ([SGA VII] p. 229. Cf. also [Severi] p. 19).

Next, recall J(2,2,2;0 F(l)) is equal to the intersection

J(2;0F(0)) J(2;F(l)) J(2;cF(l)) off the diagonals.

Thus, the tangent space at (c,X.1,X2 ' Y3) , where % are

the 3 nodes of c , is the set of planes through these

3 points. Hence, it suffices to show that the set of

ics
plane nic - with 3 collinear nodes has codimension

> 4 . This is easily seen to be true for n = 3 and 5 -

When n is 6 or bigger, we also win because the family

of ics with 3 double points is now irreducible. For
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n = 4 , however, the statement is false, on account of

the o reducible quartics. But here we may invoke

Lefsch tz-Noether's theorem, for the effect that a general

surface of P3 of degree > 4 contains only curves that

are complete intersections. Actually, since all we need

is that our quartic contain no line, the result follows

elementarily, anyway.

(8.6) Contacts of higher dimensional linear spaces with

a hypersurface.

The difficulties with the explicit computations of formulas

increase rapidly. Conceptually, however, this is a

special case of the situation for divisors with specified

singularities on a smooth family. One takes X -4 S to be

the universal family of n-subspaces in a fixed projective

r-space P , or its restriction to a suitable subvariety of

the Grassmannian of n-spaces in P . Then, each hyper-

surface h in P of degree d induces a subscheme

Dh c X , which is the zeros of a section of L = OX(d)

The fibre of Dh over each s in S is the intersection

h n s . In this situation, we can play again the game of

successive blowing ups and compute the generic class of

J(m;Dh) . The complementary result we need is that, for

a sufficiently general hypersurface h , Dh is m-generic.
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For n > 2 , we can show this is true for d > (Emi) - 1 ,

provided m satisfies the proximity inequalities. The

proof is essentially the same as the one given for

(7.1.3, (4)), by pulling back J(_m;aX(d)).
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9 Curves with specified coincidences of tangents

at a singularity

Let f' X -4 S be proper and smooth, of relative

dimension 2. Let D c X be the scheme of zeros of a

section sD of an invertible X-module L .

We have defined, for each positive integer m , a

closed subscheme Jm = J(m;D) of X , which parametrizes

the points x of X such that the fibre D(f(x))

contains x as an m-fold point. "In general", there

should be m distinct tangent directions to D(f(x)) at

x . Now, for each subpartition of m

n1 + ... + ns < m

where the n are positive integers, one may ask for the

generic homology class of the set of x for which there

are tangent directions T ,..*Ts at x (in the surface

X(f(x))) such that n of the tangents to D(f(x)) at

x coincide with T , n2 with T2 , etc. We discuss

here the general set-up, then "compute" the generic homology

class we sought, and finally compute it explicitly in a

few cases.

(9.1) Definition. The m-virtual (projectivized) tangent

cone of D is the intersection
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Tm(D)

of the m-virtual transform of

= D(m) n E

D (8.2.5) with the

exceptional divisor of

of zeros

L(m)

X(2}

of the restriction of

Thus, Tm(D)

the section

is the scheme

of

to Em = El .

So we are back to the happy situation where we have

sD(m)

got a family of

Em -

curves (lines, to be more precise)

, together with the scheme of zeros

of an invertible

of a section

aE -module.
m

(9.2) Definition. The scheme (resp. sheaf) of tangent

coincidences of type n of D (resp.

T(m;n;D) = J(n;T mD)

= 6E/X(n;L(m) ) (see 2.2.1)).

One defines similarly T(m;n;S) and T(m;n;M)

linear system S and an invertible module M on a scheme

Y proper and smooth, of rel. dim. 2 over a base scheme

Z . We say that

if D (resp...)

D (resp. S, resp. M) is (m:n)-generic

TmD is n-generic.

L) is

(resp.

3(m;n;L)

for a

is m-generic and
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(9.3) Proposition. (1) T = T(m;n;D) is the scheme of

zeros in

6 (m;n;L)

(2)

A.(E[s])

EM[s] of a section of the restriction of

If D is (m;n)-generic, the class of

is the Poincare dual of

T in

the top Chern class

6X/S (m;L) + EB/X(n;L®.E(m))

The first assertion is a special case of (2.2.2, (1)).

The second assertion follows by computing first the class

in A.(E M[sI) and then substituting in the class of

in X .

(9.4) Proposition. Let g: Y -4 Z be proper and

of rel. dim. 2. Let M be an

Assume (with the notation of

invertible Y-module.

(8.4)) (R1q2,1 *M(m+1)

Then

(1) T(m;n;M) has codimension in E M[s]

non empty.

(2) T(m;n;M) is regularly embedded

Z is Cohen-Macaulay.

Set Vm = (q2 1 *M(m) Set W = (q2,1 )*(MOE(m)),

where E denotes the exceptional divisor of Y(21

is a natural exact sequence of locally free sheaves,

of

Proof.

JM

smooth

= 0

if

in

Proof.

E M[s] if

There
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0 - Vm+1 ~ m - W - 0 .

Set U = P(V V) - P(V,+1 ) There is a smooth surjective

map of Y-schemes, (4.1.2)

U ) P(W).

Let D denote the universal divisor of M. One can easily

check that TM PU
C of M (m)

is the pullback of the universal divisor

U X E ) P(W ) X E
Y Y

TmD

U

)

P(WV)

Consequently (2.2.3), we have

J(n;TmD ) = U
U

x
P (WV)

J (n; C)

Since E -4 Y is a family of lines, by the Principle of

Exchange we get

(R q 0)(qgM ®CGE(m) ® I(n)) = 0

Therefore, by (4.2.3, (2)), J(n;C,) is regularly embedded
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in P(WV) x E[s] with codimension En . Hence T(n;T nD )Y U
is regularly embedded in U X E[s] with the same

Y
codimension.

It remains to consider the restriction of T(m;n;M)

over J+ P(+ 1) Here, we have that (T D) is

equal to JM+1 E[s] , which has codimension m+l
Y

m+2 ml
(22 (+) = m+1 . Since each component of J(n;T D)

has codimension < En . < m+l , it follows that J(n;TmD)

has the correct codimension. Since Jm+X X E[s] is
Y

Cohen-Macaulay if Z is so, therefore J(n;TmD) is

regularly embedded.

(9.5) Corollary. Suppose Y is a surface and let S

denote the complete system of M .

(1) There exists an open dense subset G' of the

Grassmannian of subsystems of dimension

5

d =m+l 2I( 2m1 - 2 - s
2 ~11

such that, for each S' in G', T(m;n;S') is finite

and S' is m-generic.

(2) For each linear system S' of the dimension d

(as above) and such that T(m;n;S') is finite and S'

is m-generic, the degree of the associated zero cycle is

the degree of the (s+2)nd Chern class of
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in K'(E[s]) .

The first assertion is an immediate consequence

general tran-of the theorem on the transversality of a

slate (applied to T(m;n;S)

To prove (2), we compute the class of

Set J' = J(m;SI) By (8.3.4),

T = T(m;n;S).

we may write

[J' = c top(y(m;M)

Since J' is Cohen-Macaulay

so is E' = J' X E[s]
Y

of a section of d(m;n;L) 
E

the right codimension, therefo

ST

(in

(1)) in A(S X Y)

fact a l.c.i. in S' x Y)

Since T is the scheme of zeros

(L = M 0 as,(1)) and

re T is regularly e

has

mbedded

in E' . Hence we have,

[T] = c bop(6(m;n;L) ) n [E'] in A.(E')

Using the projection formula and

A(S' X Y) derived from that for

the formula for

[J'] above, we

at

[T] = c top(s,(1) in A(S' x E[s])

where we put for short

dy(m;M)

Proof.

[E'] in

arrive

,

.

7 = (3 Y(m; M) + N5 E/Y (n; E (m) ) .
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Using standard properties of Chern classes,

find that the push down of [T] to A(E[s])

we finally

is indeed

Since taking the degree of a zero cycle commutes

with push down,

(9.5.1) Remark.

the assertion (2) is proven.

With the notation of (2) of the Corollary,

we do not know whether T = T(m,n;S?) finite implies

m-generic. In fact, the question is whether

J(m;S') can have too big dimension and

if T is non empty, one can easily show

T be empty.

J(m;S') mus t

be of the right dimension.

(9.6) Formulary and examples. We list first a few

formulas. The notation is

Y = smooth, projective variety.

M = invertible Y-module or its first Chern

S(m) = dY(m;M)

K = c 1

; c (m)

dim Y = 1

dim Y = 2 :

,

= total Chern class.

= 1 + mM +

= 1 + (m+1)M + (m+ )K +
2 )+2 2

+ 2(4 )(m-1)MK + 3( )M

5 m+2 2+ .7m( 5 )K

cs 2(,()

S'

For,

this:

class.

(1)

(2)

m+2+ (4 )



Y = P2
; h = c p(1)

= 1 + [d(m+l) - 3( m+)lh +

[15m( m+2) + (3(d 2+1) - 6d(m-l))(m+2 )]h 2

Chern classes of for a P 1 -bundle

P = P(F)

F = rank-2,

SP-module.

locally free 3Y-module; N = invertible

® 9p(-2) e = c1o(l)

E2 = (c 1F)e - c2 (F) ; , = c1 (F)

= (1+N) (1+N+w) ... (1+N+(n-l)w)

- l+nN + ( )w + (n)N2 + [3( )

+ [3(n) +2(n)]2

+ (n) ]Nw

+ ( )N 3

+ [15 (n) +20 () +6 () ]W3 + [6 (n) + (n) ]N 2w

+ [15 (n) +14(n) +2(n) ]Nw2 +( )N

+ (1465 (n)8

+ [105 (n) +165 (n) +70 (n) +6 (n) ]N 3

+ [10(n) +6 (n) ]N3w

+ [45(n) +50(n) + 11(2) IN2w 2 +higher order.

One computes

equations.

the coefficients by solving difference

(3)

(4)

-> Y

(A F)

- 2e

; M = a (d,)

;

C (d p (n; N) )

+ 24 (n ) 4+ 210 (n) +130 (n)
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(9.5.1) Examples:

(i) Cusps of a general net on a surface.

compute the third Chern class

z = c3 (y(2;M)

That is the term of degree 3 in

(1+3M+K+2MK+3M2 +X)[l+2(2e +M) +w +(2e +M)2 + (2e +M)wj.

Recalling E = P(Q) , we get

w = K - 2e and e2 = Ke - X .

Thus, we have

z = (3M+K)(4e2 +4eM+2eK- 4e 2 - 2eM) + (2MK+3M2 +x)(2e)

= 2e(6M 2+6MK+K 2+x)

Pushing down to Y , yields

2(6M2 +6MK +K2 + x)

(cf. [L], p. 19; [E],

We must

+ M6 E/Y (2;E (2')

P. 537).
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(ii) Curves of a web possessing two double points, one

of which is cuspidal.

We start with our surface

3 dimensional linear system).

SXY .

S x Y{2)

Then look at the restricti

Y and a general web S

Form Z = J(2;S)cX =

on B -+ Z of X(2) =

over Z , together with the 2-virtual transform

D of the universal divisor of S . Set J = J(2;D)

Finally, take T = T (2;2;D) This gives us the cuspidal

points of D , which is what we were after.

of T (i.e., dim J(2;D) = 1

The regularity

and T finite) is assured

by (9.4) (with Y = B and M = M(2) in place of

and m = 2)

Set E

The class of T is computed as follows.

. We have,

[T] = c5 (B/Z (2;OS(1) 9M) + 61
E

B

by (9.3,(2) ),

(2;O%(1) ®M9C (2)) n [EB
B

in A.[EBI

= c8 (X/S (2;S (1) 9 M) + 5X(21 /X(2;(1) M)

(2;(% (1) ®I9 % (2)))
Ex

in A[EX1

M

=P(O )
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Pushing down to , we get the

z = c 5 y(2;M) +6Y 2 3jy(2;)

A

+6 E/Y (2; M 1,8 C ,(2)))
E

B

in A[E]

= c4 (A) c, (B) + c3 (A) c 2(S ) (because dim Y(2)

rank B = 2) .

(putting e = cp"(1)
E

c19' Y{2)/Y)

= 2(M+2e) +K- 2e = 2M+K+2e

= (M+2e)2 + (M+ 2e) (K - 2e) (by (9.6), (4))

= 2(M+K)e +

Pushing down z to A[Y{2)] , we find the

= 2c4 (A) + 2(M + K)c3 (A)

Note that I c4 (A) I was computed in (8.5.4,

Set E = P(01)

recall

(= exceptional divisor in

M= M -

K= K2 +

2E

(by 8.5.4, (ii), a).

class

We have

= 4 and

c2(B)

M +MK .

class

(ii)).

Y[2)) , and
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One finds

c3 (A) = (K+3M) (x+2KMv+3M2 )2 + (3M) 2 (2KM)1

- E(5X+4K2 +36KM+50M2) +E (28M+13K)

(The indices mean pullback via q2 . )

Hence, pushing down w to Y X Y and computing degrees,

we get

Iwi = 2[jc 4 (A)I + K2 +4KM +3M 2 11x +2KM +3M2 1

- 15x+30K2 +105KM+78M 2 1

= 2x + 2KM + 3M2 12 + K2 + 4KM + 3M2 1 X + 2KM + 3M 21

- 112x+36K 2 +144KM+120M 2 1)

Computing for Y = P and M = C 2(3) one finds zero.

This can be checked directly by analyzing the possible

degenerations of a cubic. The only ones with a double

point and a cusp are the unions of double lines with

another line. But these form a family of dimension 4,

which can, therefore, be safely avoided by a general web.

Computing for Y = surface in P of degree n and

M = OY(l) , substituting the values for y , etc. from

pagel04, one finds, lo and behold, precisely the number

4n(n-2) (n-3) (n3 +3n - 16)
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of [Salmon], formula (4) of p. 292.
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NOTATIONS

(The numbers refer to pages.)

u(t) : restricton of u to fiber over t;

scheme of zeros of u in S; 13.

Z(u): 13.

A : dual Module.

X [t]: t-fold cartesian product/S;

Xft]: same as above.

m: sequence of pos. integers m
1

p ,q : projections of
tt i .th1.1 i factor.

cartesian pdct. onto or omitting

A.;diagonal
x e

of X[t].

A: AX*

A..;pullback of

mA : 22.

mA:22.

J (m; D):

Avia projection onto i,j factors.

23, 75.

& f (m;L) :24.

&(m;L): short for the above.

Is is is1

K'(X): Grothendieck ring of loc. free sheaves...

J(m;S), J(m;M): 34, 76.

A(X): rational equivalence ring.

ZI: degree of zero cycle.

1m;Mf : 43.

Z (u):

13.

22.

p ,q ,
t
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D : 55.

D M(h): 56.

L: universal family of lines, 62.

X{t}: 72.

M(m): 72.

D(m): 75.

J(m;D): 75.

&X (m;L): 79.

A.(X): Fulton's rational homology group, 80.

x: 2S Chern class of a surface,101.

K: canonical class, 101.

T D: projectivized tangent cone, 112.
m
J m: J(m;D), 111.

E m: 112.
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BIOGRAPHICAL NOTE

Israel Vainsencher was born in Recife, Brazil, in 1948,

second of four offsprings of the happy union of Clara and

Ghers Vainsencher. He married Semira Adler in 1967, and

entered the Catholic University of Rio de Janeiro the same

year. Another girl, Marta, came into their lives in 1972.

The enlarged family was to spend most of the ensuing five

years in Cambridge, Massachusetts. In 1975 Marta got a

sister, Katia. In 1976 Semira received a Master's degree

in Education at Boston University. The whole family will be

living for the next few years at the Boa Viagem beach, back

in Recife, where Israel has a position at the Federal

University.


