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Abstract

This thesis focused on two tasks of applying natural language processing (NLP) and
machine learning to electronic health records (EHRs) to improve clinical decision
making. The first task was to predict cardiac resynchronization therapy (CRT) out-
comes with better precision than the current physician guidelines for recommending
the procedure. We combined NLP features from free-text physician notes with struc-
tured data to train a supervised classifier to predict CRT outcomes. While our results
gave a slight improvement over the current baseline, we were not able to predict CRT
outcome with both high precision and high recall. These results limit the clinical
applicability of our model, and reinforce previous work, which also could not find
accurate predictors of CRT response. The second task in this thesis was to extract
breast cancer patient symptoms during chemotherapy from free-text physician notes.
We manually annotated about 10,000 sentences, and trained a conditional random
field (CRF) model to predict whether a word indicated a symptom (positive label),
specifically indicated the absence of a symptom (negative label), or was neutral. Our
final model achieved 0.66, 1.00, and 0.77 F1 scores for predicting positive, neutral,
and negative labels respectively. While the F1 scores for positive and negative labels
are not extremely high, with the current performance, our model could be applied,
for example, to gather better statistics about what symptoms breast cancer patients
experience during chemotherapy and at what time points during treatment they ex-
perience these symptoms.

Thesis Supervisor: Regina Barzilay
Title: Professor
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Chapter 1

Introduction

1.1 Thesis outline

This first chapter provides a brief motivation for using natural language processing

(NLP) and machine learning (ML) algorithms with electronic health records. This

chapter then introduces the clinical problems addressed in the thesis and the relevant

medical background.

Chapter two focuses on the task of predicting cardiac resynchronization therapy

(CRT) outcomes. Chapter two provides background on the NLP and ML algorithms

used, and describes the methodology and results we obtained.

Chapter three focuses on the task of extracting breast cancer chemotherapy side

effects from free text physician notes. As in chapter two, chapter three first provides

background on the NLP and ML algorithms used, and then describes our methodology

and results.

Chapter four highlights our primary conclusions about both of the described tasks,

and then discusses next steps both in improving our work, and in putting this work

to clinical use.
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1.2 Motivations for natural language processing and

machine learning with electronic health records

The amount of data in electronic health records (EHRs) is already massive, and is

expanding rapidly. However, physicians today make most clinical decisions without

significant analysis of these health records besides manual review. EHRs can contain

both structured data (e.g. laboratory values and demographics) as well as unstruc-

tured data (e.g. free-text physician notes). The volume of available data means that

manual review prior to even critical clinical decisions is either inefficient or impossi-

ble. Additionally, a significant portion of the data is unstructured, often in the form

of free-text physician notes. Thus, natural language processing (NLP) algorithms in

combination with machine learning could be used to improve clinical decision making

by efficiently making conclusions from electronic health records.

1.2.1 Electronic health records background

EHR use has grown rapidly over the past decade. A 2016 brief by the American

Hospital Association showed that at least basic EHR use has increased from 9.4%

of hospitals participating in 2008 to 83.8% of hospitals participating in 2015 [14].

A significant cause for this increase has been funding from the Health Information

Technology for Economic and Clinical Health Act of 2009. EHRs contain a variety

of information constituting a patient’s full medical history. Despite this wealth of

information, physicians primarily view EHRs as a byproduct of healthcare instead of

as an opportunity to improve clinical decision making [34].

Currently, there are three primary barriers to fully utilizing EHRs. First is patient

privacy and security concerns; second is the fragmented and incompatible nature of

the variety of EHR platforms used today; and third is the data itself, much of which is

unstructured free-text [29, 34]. To varying degrees, all of these barriers are relevant to

this thesis. The issue of patient privacy can significantly slow down research efforts as

gaining access to protected health data takes time through an often lengthy approval

14



process. While this issue is contentiously debated both in academic literature and in

public policy, and while both gaining access to protected health data and securely

managing it were crucial to this thesis, discussing this issue is not a major focus of the

thesis itself. The second issue, that of a variety of often incompatible systems used

to store EHRs, is also not the primary focus of this thesis. However, this issue is very

relevant to the implementation of our methods because specific data management

frameworks had to be implemented for each of the two datasets we used. The third

issue, that most of the raw data in EHRs is free-text, is the primary focus of this

thesis, and is discussed further in the next section.

1.2.2 Review of natural language processing with electronic

health records

Natural language processing, often in combination with machine learning has been

used on EHRs for a variety of tasks in recent years. The task most relevant to this

thesis is clinical decision support (CDS) as well as the subcategory of CDS involving

information extraction. Clinical decision support, which uses EHRs to aid physicians

in clinical decision making, often uses NLP to extract features from free-text notes

that can be used by some machine learning model. Information extraction involves

extracting pre-defined types of information from unstructured free-text.

Computers have been used to aid in clinical decision making since at least 1987

when the goal of clinical decision support was defined as to "help health professionals

make clinical decisions, deal with medical data about patients or with the knowledge

of medicine necessary to interpret such data" [8]. Some examples of CDS systems

include tools for focusing attention (e.g. flagging abnormal values out of a large list),

tools for providing patient-specific recommendations based on that patient’s medical

history, and tools for information management, which can include information extrac-

tion [24]. Some specific examples of recent information extraction tasks include: 1)

automatic assignment of ICD-9-CM codes to clinical free text [26], 2) de-identification

of discharge summaries within the i2b2 initiative [37], and 3) patient smoking status
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discovery from discharge summaries also within the i2b2 initiative [36].

1.3 Heart failure and cardiac resynchronization ther-

apy

Chronic heart failure (HF) is one of the leading causes of death in the US; it affects

nearly 6 million patients and contributes to nearly 300,000 deaths per year, being

listed as the primary cause of death for at least 68,000 [23]. Cardiac resynchronization

therapy (CRT), an implantable therapy for heart failure developed more than a decade

ago, has shown to be an effective therapy for select HF patients [4]. While CRT is

effective in the majority of cases, an estimated one-third of treatments are ineffective

without a well-understood cause [5]. Thus, our first goal in this thesis was to apply

machine learning and NLP techniques to more precisely predict CRT non-response.

1.3.1 Heart failure and CRT background

The primary pathophysiology in HF is impaired myocardial contractility leading to

ventricular hypertrophy and dilation leading to disordered electromechanical cou-

pling [4]. Ventricular dyssynchrony reduces myocardial efficiency and cardiac output,

worsening cardiac performance [4]. CRT resynchronizes electromechanical coupling

by placing leads to the right and left ventricles to excite the right ventricle and left

ventricular (LV) lateral wall simultaneously [4]. It has been shown that CRT can

improve chronic LV systolic dysfunction and lead to reduction in chamber size as well

as improvement in LV ejection fraction (LVEF) [4, 19, 32, 22, 39].

The current clinical guidelines for prescribing CRT are displayed in the decision

tree in figure 1-1. The guidelines make a recommendation based on 7 concrete vari-

ables: New York Heart Association (NYHA) class, LVEF, QRS duration, left bundle

branch block (LBBB), sinus rhythm, ischemic cardiomyopathy and the presence of

comorbidities [35]. In addition to not considering variables besides these seven, the

current guidelines leave significant room for interpretation that varies from hospital

16



to hospital and even from doctor to doctor with recommendations as vague as "CRT

might be reasonable" [35].

Figure 1-1: The current clinical guidelines for CRT eligibility. The recommendation
for treatment is determined by color with green meaning "CRT is recommended",
yellow meaning "CRT is reasonable", orange meaning "CRT might be reasonable",
and red meaning "CRT is not recommended" [35].

Prior research has determined the change in LVEF from before CRT until a fixed

amount of time (typically 6-18 months) post-procedure to be a reasonable metric

of success for CRT [10]. In general, patients whose LVEF significantly increases

post-procedure are considered "responders", and those whose LVEF decreases are

considered "non-responders". However, the exact cutoff LVEF increase for which

CRT is considered a success is not well defined, and the choice for a cutoff point

might vary according to cardiologist recommendation when attempting to define a

binary success versus non-success of CRT, such as in the context of a machine learning

problem.
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1.3.2 Predicting CRT response

Between 2002 and 2010, there were an average of 41,578 CRT procedures per year

in the United States alone, and that number has likely increased in recent years [31].

While specifically defining "non-responders" to CRT is not clear cut, an estimated

one-third of CRT procedures are considered ineffective [5]. In addition to having

worse clinical outcomes in terms of pump failure and death, CRT nonresponse leads

to procedural risks and costs that may be preventable with improved patient selection.

The cumulative cost of CRT was calculated in 2005 as between $60,000 and $82,000

[9]. Thus, an estimated $800 million to $1.1 billion is spent in the United States per

year on ineffective CRT procedures. Therefore, predicting CRT non-response more

precisely than the current decision tree guideline could save significant amounts of

money and could lead to better outcomes and better quality of life for patients for

whom CRT would be ineffective.

Previous work has sought to identify individual predictors of CRT non-response,

but no additional variables have been added to the current decision tree guideline, and

no combination of predictors has been identified that predicts CRT non-response with

high precision. One study sought to predict CRT response with echocardiographic

parameters besides LVEF, but did not find any significant predictors [6]. Another

study found no pre-procedure predictors of CRT response from a set of variables in-

cluding NYHA class, QRS duration, LVEF, age, gender, duration of HF symptoms,

and many others [17]. Unlike in the previous results, another study found that both

QRS duration and LVEF were significant (p < 0.05) predictors of short-term CRT re-

sponse [18]. However, one of the largest studies of CRT response, the 2008 Predictors

of Response to CRT Trial (PROSPECT), a fifty-three center prospective study, found

that no single echocardiographic measure of dyssynchrony could be recommended to

improve patient selection for CRT [7].
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1.4 Patient symptoms during breast cancer chemother-

apy

In 2016 in the United States alone, there were about 250,000 cases of and about 40,000

deaths related to female breast cancer [30]. About 36% of early stage (stages I and II)

and about 80% of stage III breast cancer patients receive some type of chemotherapy

[21]. Chemotherapy side effects are frequently debilitating and can be deadly. Despite

this, chemotherapy side effects are not always well documented outside of results

from clinical trials. Drug side effects and patient symptoms in general are most often

not documented in a structured format in medical records. Instead, symptoms and

side effects are documented in physician free-text notes. Extracting symptoms from

these free-text notes would have a number of useful clinical applications including:

providing more documentation than just clinical trials of side effects to chemotherapy

drugs and enabling further clinical decision support systems to be built to assess the

risk of side effects and to warn patients and physicians of potentially deadly side

effects.

1.4.1 Breast cancer chemotherapy background

The number of chemotherapy regimens for non-metastatic breast cancer (stages I-

III) is limited (relative to the number for metastatic cancer), and thus, the side

effects of these drugs are easier to study. The most common chemotherapy regimens

include some combination of the following eight drugs: doxorubicin (Adriamycin),

docetaxel (Taxotere), paclitaxel (Taxol), cyclophosphamide (Cytoxan), trastuzumab

(Herceptin), methotrexate (Trexall), and fluorouracil (5-FU/Adrucil). Some common

side effects for these drugs include: nausea, vomiting, hair loss, mucositis, and fatigue.

More serious side effects for these drugs can include: difficulty breathing, difficulty

swallowing, seizures, and even death.

A 2006 study of 12,239 women under age 63 with breast cancer found that

"chemotherapy-related serious adverse effects might be more common than reported
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by large clinical trials and lead to more patient suffering and health care expendi-

tures than previously estimated" [12]. In the same study, 10.5% of patients had a

hospitalization or emergency room visit related to a chemotherapy side effect, and

the average cost per patient experiencing a serious side effect was about $15,000 [12].

For most chemotherapy drugs, knowledge of side effects as well as the frequency

and severity of these side effects is obtained primarily through clinical trials. During

clinical trials, chemotherapy adverse effects are assessed and reported by clinicians.

However, a 2004 study found that physician reporting was neither sensitive nor specific

in detecting common chemotherapy side effects [11]. A 2001 study of a variety of drug

trials found that severity of clinical adverse effects was adequately defined in only 39%

of trial reports [13]. Additionally, a review of drug randomized controlled trials found

that external validity of the trials was usually inadequate, meaning that results such

as drug-related adverse effects found in trials might not accurately reflect results

found in the general public [28].

1.4.2 Information extraction

Since chemotherapy side effects and patient symptoms in general are presented pri-

marily in physician free text notes, they must be extracted from the free text in order

to create structured data suitable, for example, to determine the frequency of adverse

side effects for each chemotherapy drug. Extracting these symptoms manually is a

time consuming task, which usually must be performed by physicians or trained pro-

fessionals, thus making this task inefficient to impossible, depending on the volume

of data. Information extraction involves automatically extracting pre-defined struc-

tured information from unstructured data using natural language processing. Thus,

information extraction could be used to efficiently extract patient symptoms including

drug side effects from physician notes.

There are essentially two approaches to information extraction. First is a rule-

based approach, in which a pre-designed set of rules is used to extract information.

E.g. the phrase "patient reports having X" could be used to extract all reports

of symptoms, denoted by X, that match that exact structure in the free text. This
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approach works well when a relatively small set of rules can extract most of the desired

information (e.g. when the data of interest is in a semi-structured format in the free

text). However, this approach does not work well when the desired information can

appear in a large variety of contexts within the free text; in this case, the set of rules

required to extract the information of interest would be infeasibly large. Physicians

describe patient symptoms in a highly variable manner, and thus, a simple rule-based

approach would not be sufficient for this task.

The second approach to information extraction is to use machine learning. Instead

of using a pre-defined set of rules, supervised ML algorithms are used to learn patterns

from a labeled set of free text notes. Machine learning-based information extraction

systems have been used, for example, to extract tumor characteristics from breast

pathology reports [38], to identify discontinued medications from free text [3], and to

extract events and their temporal relation from free text notes [33]. An ML-based

approach usually requires a manually annotated dataset, which requires significant

initial investment. However, an ML-based approach can be much more generalizable

than a rule-based approach, and can work well for tasks where the set of extraction

rules is very large, is unknown, or both. Thus, in this thesis, we apply an ML-based

approach to extracting patient symptoms from free text physician notes.
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Chapter 2

Prediction of cardiac

resynchronization therapy outcomes

The first task addressed in this thesis and the focus of this chapter is predicting

the outcome of cardiac resynchronization therapy. We used NLP techniques to ex-

tract features from physician free-text notes, and used these features in addition to

structured data values to train a supervised machine learning classifier. The trained

classifier slightly outperformed the currently used decision tree-based clinical guide-

line in predicting non-responders to CRT. The relatively meager performance gain

compared to the current clinical guideline suggests that CRT non-response prediction

is an inherently difficult task, and more work would be required to build a hospital-

ready clinical decision support system.

2.1 Feature extraction with natural language pro-

cessing background

2.1.1 Bag-of-words, 𝑛-grams, and tf-idf

Bag-of-words is the primary NLP method we used to extract features from free-text

physician notes. The most simple unigram bag-of-words model keeps track of the

frequency of each word out of the set of possible words, the vocabulary. However,
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this model disregards other linguistic structures such as grammar and word order.

A slightly more complex 𝑛-gram bag-of-words model keeps track of the frequency of

each sequence of words of length n, and can represent some of the spatial information

in the text that is lost with a unigram model. Larger values of 𝑛 can represent more

spatial context, but require larger training corpora in order to be useful because the

probability of each length 𝑛 sequence decreases significantly. Because of this tradeoff,

small values of 𝑛, often 2 or 3, are generally used in practice.

There are a variety of methods for keeping track of word sequence frequencies.

Two of the most commonly used methods, both of which we tested in this thesis,

are term frequency and term frequency-inverse document frequency (tf-idf). Term

frequency is the simplest method and uses just the raw count of each word sequence

in the text. For example, if we are using a unigram model with vocabulary ["this",

"that", "is", "a", "good", "bad", "thesis"], and our text is "this is a thesis that is

good", then our sentence would be represented by the term frequency vector [1, 1, 2,

1, 1, 0, 1]. The second method, tf-idf, weights a word’s term frequency by a factor

inversely proportional to the number of documents in the entire corpus in which that

word appears, adjusting for the fact that some words are used more frequently than

others. There are a few methods for calculating tf-idf, but the equations we used are:

tf-idf(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡) (2.1)

𝑖𝑑𝑓(𝑡) = log
1 + 𝑛𝑑

1 + 𝑑𝑓(𝑑, 𝑡)
+ 1 (2.2)

where 𝑡𝑓(𝑡, 𝑑) is the term frequency of term 𝑡 in document 𝑑, 𝑛𝑑 is the total number

of documents, and 𝑑𝑓(𝑑, 𝑡) is the number of documents that contain term 𝑡.

2.1.2 Word embeddings

A common problem with the bag-of-words 𝑛-gram model is the "curse of dimension-

ality". The English vocabulary contains hundreds of thousands of words, and thus

there are tens to hundreds of billions just of possible bigrams (length 2 𝑛-grams). A

specific corpus might contain only a subset of these word sequences, but the number
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of observed bigrams in real-word datasets is frequently in the millions or billions. As

in many tasks dealing with high dimensionality, we apply a form of dimensionality

reduction to transform our very high dimensional data into a lower dimensional space.

The technique we apply in this thesis is word embeddings.

Word embedding involves mapping 𝑛-grams from a space with one dimension per

𝑛-gram in the vocabulary to a continuous vector space with much lower dimension

(often in the hundreds). Word embeddings began in 2003 with what Bengio et. al.

called "a distributed representation for words which allows each training sentence to

inform the model about an exponential number of semantically neighboring sentences"

[1].

While there are many software packages available today for word embeddings, one

of the most popular, word2vec, was created at Google by Mikolov et. al. in 2013 [20].

Many models for word embeddings today, including word2vec, use neural networks.

In this thesis, we use an implementation of the word2vec continuous bag-of-words

model in Python packaged with Gensim [27].

2.2 Machine learning classifiers

We trained a supervised ML classifier to predict CRT outcomes. In this thesis, we

compared the performance of logistic regression (LR), support vector machine (SVM),

and random forest (RF) classifiers. We did not attempt to train a neural model be-

cause of the relatively small amount of training examples. We used the implementa-

tions of these classifiers in Python, scikit-learn [25].

2.3 Dataset and feature extraction methodology

2.3.1 Dataset

The electronic health record dataset came from the Research Patient Data Registry

(RPDR) from Partners hospitals in the Boston area. The dataset includes the full

medical history of 2641 patients who received CRT implants between 2003 and 2015.
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Included in the dataset is structured data (e.g. billing codes, demographics, medica-

tions, diagnoses, etc.) and unstructured data (i.e. physician notes including cardiol-

ogy reports, radiology reports, etc.).

2.3.2 Cohort and primary outcome

Our primary outcome in determining CRT success was the change in LVEF from a

baseline level to a post-procedure level. The baseline level was the value measured

closest to the procedure date and within 60 days before CRT. The post-procedure

level was the value measured closest to one year and between 6 months and 18 months

after CRT. A negative ∆LVEF was considered CRT failure, and a positive ∆LVEF

was considered CRT success. The patient dying within 18 months after CRT was

considered CRT failure regardless of ∆LVEF. We note that because we looked for

primary outcomes up to 18 months after procedure, patients were excluded from

analysis who received CRT within 18 months of the last date in the available RPDR

dataset.

1651 of the 2641 patients receiving CRT were missing either a baseline or followup

LVEF in the acceptable time ranges, or received CRT with 18 months of the end of

the dataset’s time window, and were thus excluded from further study. Of the 990

patients included in analysis, 249 died, 343 had negative ∆LVEF, and 428 had positive

∆LVEF. The characteristics for these 990 patients at the time of CRT implant are

shown in table 2.1.

2.3.3 Structured feature and outcome extraction

The complete list of structured features we used is available in table 2.2. Some of these

features, such as demographic information and procedure billing codes, were readily

available as structured fields in the RPDR dataset. Other features, including six of the

features in the clinical guideline decision tree: LVEF, LBBB pattern, sinus rhythm,

QRS, NYHA class, and ischemic cardiomyopathy, were not available as structured

data fields, and were extracted via regular expression from cardiology reports and
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Table 2.1: Patient characteristics at the time of CRT implant (n=990).

Demographics
Age, mean (SD) 71.6 (11.8)
Female sex, % 21.9

Non-Hispanic white, % 87.2
Medical history, %

Non-ischemic heart failure 80.2
Coronary artery disease 74.6
Left bundle branch block 37.8
Ventricular arrhythmia 60.3

Atrial fibrillation 50.8
Chronic kidney disease 24.4

Diabetes mellitus 32.7
Diagnostic studies, mean (SD)

LVEF, % 24.8 (7.69)
Creatinin, mg/dL 1.69 (1.17)

Sodium, mg/L 137.4 (3.9)
Hemoglobin, (mg/dL) 12.4 (2.0)

Medications, %
Beta-blocker 92.3
ACE/ARB 77.3

cardiology notes.

We note that our primary outcome, LVEF, is one of the regular expression ex-

tracted values. To ensure accuracy in our outcome variable, a physician manually

validated the accuracy of LVEF extraction, and found that nearly all extracted val-

ues were correct. The incorrectly extracted values were corrected. Because manual

verification was necessary, extraction via regular expression was used more so to

quickly locate the LVEF values in cardiology reports than to automatically extract

values without supervision.

2.3.4 NLP feature extraction

Free-text features were used from both cardiology notes and longitudinal medical

record notes (most other physician notes). Bigram word embeddings were trained

using all notes both in this CRT dataset and the other RPDR dataset used in the

27



Table 2.2: Longitudinal EHR data utilized in machine learning algorithms.

Data source Model features
Demographics Sex, age at implant, race
Billing codes ICD-9-CM, CPT

Encounter data Visit type, length of stay
Laboratory reports Lab values; most recent and trend

Medication list Medication and drug class
Cardiology reports LVEF, QRS, LBBB pattern, Sinus rhythm; most recent and trend

next chapter for symptom extraction. We did not use pre-trained word embeddings

or train on a public dataset because we wanted medical specific word embeddings.

A general public dataset would likely have been missing many of the words used

frequently in medical texts.

Common techniques to improve the quality of these NLP features were used.

Some of these techniques include: removing stop words, removing low frequency

bigrams, lowercasing all words, and removing numbers and special characters. While

we tested both term frequency and tf-idf methods, in the final model, bigram tf-idf

word embeddings were used.

2.4 Training and tuning classifiers

2.4.1 Evaluation

Because the goal of this task was to predict non-responders to CRT, non-responders

were considered to be the "positive" outcome, and responders were considered to be

the "negative" outcome in all of our statistics below. In addition to the definitions of

true positive (TP), false positive (FP), true negative (TN), and false negative (FN)

in table 2.3, the following statistics are relevant to evaluation:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.3)
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.4)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.5)

𝐹𝛽 = (1 + 𝛽2) × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(2.6)

where 𝛽 in the 𝐹𝛽 score is a parameter chosen by a user who places 𝛽 times as

much importance on recall as on precision. We chose 𝛽 = 0.1, meaning we valued

precision about 10 times as much as recall.

Table 2.3: CRT outcome prediction confusion matrix defintions.

Predicted non-responder Predicted responder
Actual non-responder True Positive (TP) False Negative (FN)

Actual responder False Positive (FP) True Negative (TN)

2.4.2 Train, validation, and test splits

Train, validation, and test splits of the 990 patients in the final cohort were used

in order to train, select, and finally test the performance of our final models. 200

patients were initially held out from the 990 for the test set. For each potential

model, random splits of 67% and 33% of the remaining 790 patients were used for

training and validation respectively.

For each of the three classifiers tested (LR, SVM, and RF), a hyperparameter

search was performed and the model with the best 𝐹𝛽 score on 3 cross validations

was selected. We trained one model including NLP features and one model only using

structured features for comparison. Once the final models had been selected, they

were run on the test dataset in order to obtain final performance metrics.
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2.5 Results and discussion

Performances of the final models are reported in table 2.4. Because of the relatively

low chosen 𝛽 value, the best performing models had high precision, but relatively low

recall. We note that the model including NLP features performed better than the

model including only structured fields in all three of precision, recall, and accuracy.

While precision was high for both models, the structured features only model accuracy

was only marginally better than the physician recommendation accuracy, and the

structured and NLP features model improved that accuracy only slightly.

Table 2.4: CRT outcome prediction classifier results on the test set (*note that the
physician recommendation is always "should receive CRT" because our dataset in-
cludes only patients who received CRT; thus, the only statistic of interest for this
model is accuracy).

Model F𝛽 Precision Recall Accuracy
Physician recommendation* 0.0 0.0 0.0 0.58

Structured features only 0.64 0.75 0.04 0.59
Structured + NLP features 0.83 0.89 0.11 0.64

Predicting non-responders with high precision means that physicians could use

the model to flag likely non-responders after initially selecting a patient for CRT.

The doctor could then either more extensively review a patient’s medical history

in order to determine whether CRT is the best option, or she could choose not to

recommend CRT at that time. However, the relatively low recall achieved by both

of our models means that applying these models in a clinical setting would require

additional work. The accuracy of our models offered a negligible improvement over

the physician recommendation. These results, like many previous studies on CRT

response predictors, suggest that predicting CRT non-response is a difficult task, and

that predicting CRT non-response with both high precision and high recall has not

yet been achieved.
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Chapter 3

Breast cancer symptom extraction

The second task addressed in this thesis and the focus of this chapter is extracting

physician indicated patient symptoms from free-text notes. Specifically, we sought

to extract patient symptoms during and recently after chemotherapy including side

effects of chemotherapy drugs. We manually annotated a dataset of approximately

10,000 sentences and trained a machine learning model to extract patient symptoms

from the free-text with high precision and recall. These results have a number of

interesting applications including enabling further clinical decision support systems

to be built such as predicting whether patient symptoms might be life-threatening,

and these results could yield better understanding of all side effects of chemotherapy

drugs and the relative frequencies of these side effects.

3.1 Problem formulation and machine learning back-

ground

3.1.1 Problem formulation

As discussed in the introduction, there are two primary approaches to information

extraction: rule-based approaches and machine learning based approaches. In this

thesis, we apply an ML-based approach. We formulate our problem as tagging each

word in the dataset with a tag: "positive", "neutral", or "negative". A "positive"
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word indicates the presence of a symptom; a "neutral" word is unrelated to a symp-

tom; and, a "negative" word specifically indicates the absence of a symptom. E.g.

in the sentence: "patient describes having nausea, vomiting, and pain", the tags for

that sequence of words would be ["neutral", "neutral", "neutral", "positive", "posi-

tive", "neutral", "positive"]. And, in the sentence: "patient denies having nausea",

the tags would be ["neutral", "neutral", "neutral", "negative"]. We note that in the

actual text, while most word tags would be clear to a human labeler, there are sen-

tences where the correct tags are not clear even to physicians manually annotating

the sentence. Examples of such uncertainty include sentences describing historical

symptoms (e.g. symptoms a year ago), sentences where a doctor explains potential

side effects of a drug to a patient, and sentences including a long "laundry list" of

symptoms that the patient may have had at some point, but which might have been

copied and pasted from a previous note.

3.1.2 Conditional random field model

To predict individual word tags, we use conditional random fields (CRFs). We chose

CRFs instead of individual classifiers for each word because CRFs predict a sequence

of labels given a sequence of input, incorporating structural information about the

sequence. In our task, the probability a given word indicates a symptom is dependent

not only on the word itself, but on previous words. E.g. in the partial sequence

"patient denies having", we know that the next word’s tag is likely "negative" even

before seeing the next word itself.

CRFs were introduced by Lafferty, McCallum, and Pereira in 2001 as an alter-

native to hidden Markov models (HMMs) and maximum entropy Markov models

(MEMMs) with NLP-specific applications in mind [16]. Generative models such as

HMMs must define a joint probability over observation and label sequences, which

is intractable for many sequence labeling NLP tasks. HMMs also make strong inde-

pendence assumptions that are often not valid for real data. Discriminative models

such as MEMMs are more tractable, but MEMMs can often "ignore" observations

in favor of a transition between states that it believes is particularly likely. CRFs
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were designed as an alternative to both of these models specifically for NLP sequence

labelling tasks such as part-of-speech tagging. The differences between CRFs, HMMs,

and MEMMs are displayed graphically in figure 3-1.

Figure 3-1: Graphical structures of simple HMMs (left), MEMMs (center), and chain
structured CRFs (right) for sequence label prediction. An outlined circle indicates
that a variable is not generated by the model, while a solid circle is generated by the
model [16].

Lafferty, McCallum, and Pereira define a CRF on observation variables X (e.g.

words and their additional features) and random variables Y (e.g. part-of-speech

word tags):

Let 𝐺 = (𝑉,𝐸) be a graph such that Y = (Y𝑣)𝑣∈𝑉 , so that Y is indexed by

the vertices of 𝐺. Then (X,Y) is a conditional random field in case, when

conditioned on X, the random variables Y𝑣 obey the Markov property

with respect to the graph: 𝑝(Y𝑣|X,Y𝑤, 𝑤 ̸= 𝑣) = 𝑝(Y𝑣|X,Y𝑤, 𝑤 ∼ 𝑣),

where 𝑤 ∼ 𝑣 means that 𝑤 and 𝑣 are neighbors in 𝐺 [16].

3.2 Dataset and methods

3.2.1 Dataset and cohort

Our dataset for this task came partially from the Research Patient Data

Registry (RPDR) from Partners hospitals in the Boston area and par-

tially from Dana-Farber Cancer Institute (DFCI). The dataset includes

all physician notes from 4732 stage I-III breast cancer patients who re-

ceived at least one of the following chemotherapy drugs between May 1996
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and May 2015: doxorubicin, docetaxel, paclitaxel, cyclophosphamide,

trastuzumab, pertuzumab, methotrexate, and fluorouracil. Demographic

information as well as the percentage of patients who received each chemother-

apy drug is available in table 3.1.

Table 3.1: Breast cancer patient characteristics (n=4732). * indicates that data was
available only for RPDR dataset patients (n=311).

Demographics
Age, mean (SD) 51.37 (11.16)

Non-Hispanic white*, % 79.7
Chemotherapy drugs, %

Doxorubicin 74.0
Docetaxel 12.3
Paclitaxel 57.0

Cyclophosphamide 82.4
Trastuzumab 23.9
Pertuzumab 1.8
Methotrexate 2.2
Fluorouracil 3.6

While our goal was to extract side effects of chemotherapy drugs from free

text notes, it is not clearly feasible even for an oncologist to distinguish

between a general patient symptom and a chemotherapy drug side effect.

Distinguishing side effects is difficult first because all possible side effects

for a drug are not always known, and often the only reliable source of

side effects is clinical trials. Second, this task is difficult because even the

attending physician might not be able to definitively attribute a symptom,

which can be a side effect of a chemotherapy drug, to the drug itself and

not to another source. To try to identify chemotherapy side effects, we

looked only at notes in our dataset that were dated between the start of

chemotherapy treatment and 90 days after the end of treatment. However,

for the notes in this time range, our goal was to label every symptom in

the notes, not just symptoms that were definitively chemotherapy drug

side effects.
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Physicians document symptoms primarily in discharge summaries and lon-

gitudinal notes in the RPDR dataset and in clinical notes in the DFCI

dataset. These free text notes were broken up into individual sentences

using the Punkt Sentence Tokenizer, part of the Natural Language Toolkit

(nltk) for Python [2, 15]. There were a total of 264,881 sentences between

the start of chemotherapy treatment and 90 days after the end of treat-

ment across all chemotherapy drugs. The number of sentences for each

drug is available in table 3.2.

Table 3.2: Number of sentences per drug in discharge summaries and longitudinal
notes between the start of chemotherapy treatment and 90 days after the end of
treatment.

Drug # Sentences
Doxorubicin 39,661
Docetaxel 18,897
Paclitaxel 103,564

Cyclophosphamide 37,874
Trastuzumab 35,921
Methotrexate 3675
Fluorouracil 25,289

3.2.2 Features and labels

Approximately 10,000 sentences were manually labeled by two physicians.

Each word was labeled as one of "negative", "neutral", or "positive".

Since we were able to manually label only a fraction of the total available

sentences, we chose to label sentences from a single chemotherapy drug

to maximize consistency of the symptoms. For this, we chose paclitaxel

because it had the most sentences of any drug (as shown in table 3.2).

Thus, we could label more than 90,000 additional sentences for paclitaxel

alone if we wanted to expand the labeled dataset in the future. The num-

ber of "negative", "neutral", and "positive" labels in the labeled dataset

is in table 3.3.
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Table 3.3: Number of each label in the symptom extraction dataset.

Negative 1191
Neutral 196,512
Positive 1909

For each word in a sentence, we used the following features: a bias term,

the lowercased word, the last three characters of the word, the last two

characters of the word, whether the word was uppercase, whether the

word was title-cased, and whether the word was a number. For each

word, we also included the lowercased previous word, whether the previous

word was uppercase, and whether the previous word was title-cased, or

a "beginning of sentence" tag instead if the word was at the beginning

of the sentence. Similarly, we included the same features about the next

word in the sentence, or an "end of sentence" tag if the word was at the

end of the sentence.

3.2.3 Classifier training and tuning

We held out 20% of the labeled dataset for the test set. Of the remaining

80% of the labeled dataset, we used 80% as training data and 20% as

validation data to select CRF hyperparameters and to select the final

features listed in the previous section. Once the final model had been

selected, we trained a CRF model using the entire 80% of the labeled

dataset used for training and validation, and tested performance on the

held out 20%. A flow chart of all of our methods is available in figure 3-2.

3.3 Results and discussion

The performance of our final model on the held out test dataset is given in

table 3.4. Precision, recall, and F1 scores are given individually for each
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of the labels (negative, neutral, and positive). The overall accuracy was

99.2%. We note that as shown in table 3.3, the vast majority of labels

were "neutral", and thus the neutral label has very high precision, recall,

and F1 score, and our overall accuracy is very high. We are primarily

interested in the precision/recall for the positive and negative labels. Note

that some examples of mispredictions are given in table A.1.

Table 3.4: CRF model performance on held out test sentences.

Precision Recall F1
Negative 0.86 0.69 0.77
Neutral 0.99 1.00 1.00
Positive 0.82 0.56 0.66

We also present a learning curve analysis in figure 3-3, which shows how

much our model’s F1 score improves from having more training data. As

expected, we see that the positive and negative label F1 scores increase

significantly from the first few hundreds of training sentences, and then

increase more slowly as additional data is added. The neutral label F1

score is always near 1.0, but has a visible increase in F1 score over the first

few hundred sentences as well. And finally, we see that the F1 score for

negative labels becomes distinctly higher than the F1 score for positive

labels after the first 5000 or so training sentences. We hypothesize that

negative labels are generally easier for the model to extract from the text

because physicians document negative symptoms in more specific terms

than they document positive symptoms (e.g. by using phrases such as

"patient denies having").
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Figure 3-2: Flow chart of symptom extraction methods.
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Figure 3-3: CRF learning curve analysis for positive (red), neutral (green), and neg-
ative (blue) labels.
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Chapter 4

Conclusions and Future Work

In this chapter, we discuss the implications of our results for both the CRT

outcome prediction task and the breast cancer symptom extraction task.

We then discuss the limitations of our current results, what additional

work might be needed to put our methods to clinical use, and finally, we

discuss potential future applications of our work.

4.1 CRT outcome prediction conclusions and

limitations

While we were able to slightly improve accuracy of CRT non-response

prediction compared to the current baseline, our achieved recall is likely

not high enough to be useful to physicians. Most prior studies, including

randomized controlled trials, to identify individual predictors of CRT re-

sponse have not identified any significant predictors [7, 6, 17]. Our results

further suggest that predicting CRT response is a difficult task.

Beyond limitations due to our model’s performance, this work has lim-

itations due to the dataset we used. First, our model was designed to

predict CRT non-responders from the set of patients who were already
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recommended for CRT by their physicians. This model could not be

used, for example, to predict which heart failure patients should receive

CRT. Second, we used only RPDR data from Partners hospitals in the

Boston area. Thus, our model might not be fully generalizable to other

hospitals’ EHRs. Even applying our model to other EHR systems would

require additional effort to work with different data storage methods.

4.2 CRT outcome prediction future work

In most machine learning tasks, having more training data points is almost

always better. In this task, we had only 990 patients. Thus, better perfor-

mance might be achievable with more patients. At an average of 41,578

CRT procedures per year, a significantly larger dataset is technically at-

tainable, although that data is likely distributed across a large number

of EHR (and non-EHR) systems. Accessing a larger portion of this data

could both improve model performance and create a more generalizable

model.

If a CRT outcome prediction model were to achieve acceptable perfor-

mance, doctors recommending CRT to a patient based on the current

guidelines could use the model to flag patients who are unlikely to re-

spond to CRT. The model flagging a patient could lead the doctor to

manually review that patient’s medical history more carefully, and then

make the final decision about whether to assign CRT. Preventing even

a small number of unnecessary CRT procedures would save significant

amounts of money and would lead to better outcomes and quality of life

for the patients involved.
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4.3 Symptom extraction conclusions and lim-

itations

Our model’s performance predicting positive and negative symptom labels

was high enough for some useful applications, such as creating a large

database of the relative frequencies of symptoms experienced by breast

cancer patients during chemotherapy. However, the F1 scores for positive

and negative symptoms were not close to 100%. Thus, manual post-

processing of the predicted labels would be required for applications that

require very accurate labels.

Putting our model’s performance into context is not exactly straightfor-

ward. There is no similar baseline to compare the results to. Additionally,

we do not currently know the "accuracy" of manual labelling. During

manual labelling, there were many cases where the annotating physician

was unsure of the correct label. We could determine the accuracy of

human labelling by having multiple physicians label the same notes and

calculating the frequency with which they agree on a label. As of now, we

suspect that a significant number of the model’s misclassifications stem

from the inherent uncertainty of the task and of the manual annotators.

In this thesis, we sought to clearly define what does and does not consti-

tute a symptom. However, in the free-text, there are situations that, for

example: 1) clearly indicate a symptom, but do so in a narrative manner,

2) indicate a historical symptom, 3) present a "laundry-list" of symptoms

which might have been copied from previous notes, or 4) are clearly dis-

cussing a symptom, but are not clearly indicating that the patient has

that symptom. Setting more strict guidelines for labelling depending on

the target application of the model might yield better performance. E.g.

we could label only declaratively stated, clearly present-time symptoms if

we wanted a model that might miss narratively stated or historical symp-
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toms.

As discussed previously, one limitation of our methods is that we cannot

specifically distinguish chemotherapy drug side effects from other patient

symptoms. This limitation holds not just for our machine learning model,

but for the problem formulation itself; i.e., it is often not possible for a

doctor to specifically attribute the cause of a symptom to a certain drug.

Thus, in this thesis, we framed our results as extracting symptoms expe-

rienced by breast cancer patients during chemotherapy instead of specifi-

cally as extracting chemotherapy drug side effects. Another limitation of

these results is that we only predict whether or not a word indicates a

symptom. We do not predict any notion of what that symptom is. Even

common symptoms such as nausea have many synonyms and other ways of

being expressed in the free-text. Thus, obtaining, for example, the num-

ber of patients who experience nausea during chemotherapy, would require

manually labelling whether each predicted symptom indicates nausea.

Finally, as in the CRT outcome prediction task, our dataset for symp-

tom extraction was limited to RPDR data from Partners hospitals in the

Boston area and data from DFCI. In fact, most data was from DFCI.

Thus, our model might not be generalizable to other hospitals where the

ways of documenting symptoms in the free-text could be different.

4.4 Symptom extraction future work

While our learning curve analysis in figure 3-3 showed diminishing re-

turns to F1 score with additional training data, additional labeled data

might increase model performance. In this thesis, we labeled only 10,000

sentences because labeling was time consuming and required a trained

physician. From the dataset used in this thesis alone, we had 264,881

sentences available to label. A much larger training dataset could allow
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the model to learn more of the infrequent ways of expressing symptoms

and especially some of the more narrative symptom indications.

There are well-known issues with adverse side effect documentation during

clinical trials, including for chemotherapy drugs [11, 13, 28]. We could ap-

ply the current model to all of our 264,881 sentences in order to get rough

estimates of the frequency with which breast cancer patients experience

symptoms during the course of chemotherapy. We could, for example,

model the frequency of symptoms over time throughout the course of

treatment. And, with additional manual effort to categorize the types of

predicted symptoms, we could obtain how frequently breast cancer pa-

tients experience each individual symptom during chemotherapy.

The same methods for symptom extraction during chemotherapy could be

applied to other tasks. For many other tasks, the only difference would

be the manually labeled dataset. Some examples of other tasks include

symptom extraction for other diseases and extracting patient goals of care

discussions.

Finally, with additional post-processing to verify and correct our model’s

predicted labels, these methods could be applied to many other tasks re-

quiring highly accurate data. For example, our model could be used to

build a patient cohort experiencing some set of symptoms (in cases where

a rule-based method of finding patients with those symptoms might be

ineffective). Our model’s output, predicted positive and negative symp-

toms, could also be used as features to build additional machine learning

models. For example, we could predict the probability of certain outcomes

such as hospitalization or death given a patient’s current symptoms, and

doctors could then take preventative measures early on.
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Appendix A

Tables

Table A.1: Example sentences with words mislabeled by the CRF model. Negative
labeled words are blue and bold, while positive labeled words are red and italic.

Actual she denies fever chills but has rigors
Predicted she denies fever chills but has rigors

Actual ct dye caused a high fever and she has a rash and blistering
Predicted ct dye caused a high fever and she has a rash and blistering

Actual she also endorses a chest heaviness that is related to the cough
Predicted she also endorses a chest heaviness that is related to the cough

Actual no h o diarrhea thus cdi unlikely
Predicted no h o diarrhea thus cdi unlikely

Actual she also notes that she has not eaten all day
Predicted she also notes that she has not eaten all day

Actual she has a cough with green sputum and dysuria
Predicted she has a cough with green sputum and dysuria

Actual pt states that her pain is well controlled
Predicted pt states that her pain is well controlled

Actual her pain was well controlled with po pain medications
Predicted her pain was well controlled with po pain medications
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