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Abstract

The goal of this thesis is to develop control theoretic analysis and algorithms for
characterizing and controlling stochastically interacting systems on networks. Such
systems have three essential features - (i) they are stochastic processes, (ii) they are
made up several individual components connected through a network, and (iii) the
connected components influence one another through local interactions. This thesis
presents analysis and control of three representative examples of such systems from
the fields of spreading processes, smart manufacturing, and transport phenomena.

In the first part of the thesis, control of spreading processes on lattices is con-
sidered. Analysis and control of spreading processes is difficult because the dimen-
sionality of state space is often large. A common approach to this issue is to use
mean field approximations which completely average out the stochasticity inherent
to these systems. Instead this thesis, using recently developed tools from nonequi-
librium statistical physics, accurately characterizes open loop behavior of spreading
processes in its stable, neutral and unstable regimes. Such a characterization is not
possible using approximate models. Furthermore, for an unstable spreading process,
a randomized control policy is proposed that is optimal in both resource allocation
and control effort.

In the second part of the thesis, control of smart manufacturing processes is con-
sidered. Due to increased product customization and rapidly changing demands, the
recent trend in manufacturing is to shift towards modular architectures. Such a shift
presents scheduling challenges in a rapidly and dynamically changing environment.
This thesis presents a queuing theory framework for modeling job flow, and a stochas-
tic scheduling algorithm. Such an approach is amenable for fast implementation while
achieving balanced load among operating agents.

In the last part of the thesis, control of transport phenomena is considered. Trans-
port phenomena are systems that are in nonequilibrium. Even though study and
analysis of systems exhibiting nonequilibrium phenomena have been considered in
the past, there is no effective way to control or modify the behavior of these systems.
This thesis presents control theoretic formulations for systems in nonequilibrium.
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Starting from a paradigmatic model for traffic flow known as totally asymmetric sim-
ple exclusion process (TASEP), thesis presents routing policies to achieve maximum
flow rate of traffic for all set of input traffic conditions. Extensions are also made to
TASEP models on intersections and generic road networks.

Thesis Supervisor: Sertac Karaman
Title: Associate Professor of Aeronautics and Astronautics

Thesis Supervisor: Kamal Youcef-Toumi
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Objectives

In this thesis, we study dynamical models of complex systems involving a large number

of interconnected components. There are numerous examples from the fields of natu-

ral sciences and engineering, such as spread of epidemic diseases or forest fires [1-3],

operation of smart factories [4, 5], opinion dynamics [6, 7], flow of traffic on trans-

portation networks [8-11], crystal growth on surfaces [12,13], financial markets [14],

and inter-cellular transport dynamics [15], that fall into this category of systems.

Though seemingly disparate, these examples share several properties that allow us to

study them under a common light, namely, (i) they are stochastic processes, i.e. the

governing dynamics of these systems have an inherent randomness associated with

them, (ii) they have a networked connectivity, i.e. the underlying connectivity archi-

tecture has a structure, and (iii) they have local interactions, which means that the

agents/nodes/entities in these systems interact with each other locally through a set

of predefined rules.

Stochastic process models can be utilized when the exact inner-workings of the

process are unknown, but statistics are available. For example, the spread of an epi-

demic disease is random depending on the immunity of the individuals in a given

population. The demands in a smart factory fluctuate dynamically as well as the

health of machines on shop floor; machines can breakdown randomly. Similarly, the
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topology of the forest in a wild fire determines the growth rate and extent of fire dam-

age. People's opinions and ideologies are formed, influenced, and even changed by

the opinions of their social circles. From a mathematical point of view, such systems

can be formally modeled as Markov processes consisting of countably many jump

processes that interact by modifying each others transition rates. These stochastic

processes interact with one another based on the connectivity structure that is de-

scribed by a graph. In addition, with every vertex of the graph, we associate a set of

time varying random variables that evolve according to a set of stochastic local rules.

In most of the example applications considered above, control actions can be

exerted to influence the evolution of these stochastically interacting systems. For in-

stance, distributing (limited amount of) vaccines in a strategic manner may help stop

an epidemic, aggressive advertising may influence opinion dynamics, routing policies

can avoid congestion on transportation networks, and strategic capital injection may

alleviate the systemic risk of a financial meltdown.

The central objective of this thesis is to develop a control theoretic framework

for analyzing, characterizing, and stabilizing these complex systems. As such, the

key research questions that are addressed in this thesis are fourfold - (i) how can we

develop mathematically tractable models for such systems? (ii) what are the notions

of stability for these models? (iii) how do we characterize typical (open loop) behavior

for the models?, and (iv) how can we design control algorithms for the models that

ensure stability while simultaneously optimizing desired performance objectives?

Using representative examples each from the fields of (i) spreading processes, (ii)

smart manufacturing processes, and (iii) transport phenomena, this thesis shows how

such a control theoretic framework can be developed. The models considered in the

thesis should not be thought of as detailed models of complex phenomena, but as

representative models that capture the essential behavior inherent in these complex

systems. These models help to gain insights into understanding of these systems and

aid in the development of control policies. With that said, the models do efficaciously

capture the (global) macroscopic behavior that emerges from (local) microscopic inter-

actions between nodes/agents; a feature that is a characteristic of such stochastically
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interacting systems.

1.2 Related Literature and Technical Gaps

1.2.1 Control of Spreading Processes

Spreading processes can be defined as stochastic processes that spread or grow ac-

cording to a set of local rules. As stated earlier, such processes are used for mod-

eling various dynamic processes on social, economic, and political networks, such

as the spread of epidemics, forest fires, opinion dynamics, and financial breakdowns

[1, 3, 6,7, 14, 16, 17]. Formally, a spreading process on a graph can be represented by

a set of time-varying random variables, each of which is associated with a vertex of

the graph and evolve according to stochastic local rules. As applications of spreading

process encompass various domains, in the description below, we interchangeably use

the terms person, agents, or nodes to address individual entities in the spreading

process.

Depending on the context, the random variable associated with a given node

(people, servers, banks etc.) takes one possible value from a predefined finite set

of possible conditions. For instance in epidemiology [18-21], the two most popular

models for disease spreading are the so called Susceptible-Infected-Susceptible (SIS)

model (also known as the contact process) and the Susceptible-Infected-Recovered

(SIR) model. In an SIS model, a person could be in two conditions namely, (i) is

healthy but susceptible to infection, or (ii) is infected. Similarly in an SIR model, a

person could either be (i) healthy but susceptible to infection, (ii) infected, or (iii)

recovered and immune to infection. On the other hand, in an opinion model [6], an

agent can have a positive, negative or neutral opinion about a popular ideology, and

in a forest fire model, a tree in the forest could either be green, burning and on fire,

or burnt. See [22-24] for detailed surveys.

In addition, the random variables change their values based on stochastic inter-

actions within their connected neighborhood. For example, in disease spreading, a

17



healthy person has a higher chance of contracting the disease when s/he comes in

contact with several infected people, as opposed to a single infected person. Tech-

nically these interactions are modeled as Markov jump processes, where the random

variable associated with a node has a chance to change its value, depending on the

values of the random variables of its neighbors, independently of all others nodes.

The complex system that emerges out of these interconnections between several

such nodes is hard to analyze due to several reasons. The state space (or the possible

configurations) that the system could be in has a dimensionality that is prohibitively

large. In the example of the SIR model, if the random variable associated with a

node i is denoted by Xi, then Xi can take upon one particular value in the finite set

{0, 1, 2}, where the integers denote the conditions {S = 0, I = 1, R = 2} respectively.

For a total of N nodes in the underlying graph, a particular state of the process

is the set {X1, X2, ... , XN}, and thus the state space of the process (all possible

realizations) has a cardinality 3 N, which is exponential in the total number of nodes

N. For instance, when N = 200, this number is 3200, which is more than the number

of atoms in the universe. Furthermore, the time evolution of the state space that

depends on interactions between states is easier to state as simple rules, but hard to

express mathematically due to combinatorial complexity. For instance, in the SIR

model, let the transitions between conditions S -+ I for any state i be a Poisson

process with rate A, and the transition between conditions I -+ R be Poisson with

rate it, then the evolution can be written as,

If Xi(to) = 0, then Xi(t > to) = 1 ~ Poisson at rate A Z Xi
jE~i

If Xi(to) = 1, then Xi(t > to) = 2 - Poisson at rate p

where K1 denote the infected neighboring nodes (Xj = 1) of node i. As the neighbor-

hood Ar is a function of the network structure, the more complicated the network,

harder it is to analyze the behavior of the process. In addition, spreading process

models are usually heterogeneous. As opposed to homogeneous models, heteroge-

neous models [23] allow nodes and edges to have different spreading and recovery

18



rates. For example, for forest fires, heterogeneous descriptions provide a framework

to incorporate topology of the forest, fuel (grass, wood, brushes), and wind effects

into the forest fire model. Needless to say, such models of spreading process are more

complicated to analyze accurately.

Various approaches have been considered in the literature to make this problem

mathematically tractable. Prior work in spreading processes can be roughly catego-

rized into classes depending on the degree of rigorousness and granularity considered

in the models: (i) how do we model the state space of the spreading process? (ii)

how do we consider stochastic interactions? (iii) how do we deal with (exponentially)

growing dimensionality of state space, and (iv) how complex is the underlying network

architecture?

The most common approach to deal with the large dimensionality of the state

space of the spreading process is by utilizing a mean field approximation. Mean

field approximation is a general term associated with many forms of approximations,

but fundamentally the approximation ignores correlations between pairs of random

variables. By using such an approximation, the evolution of the process is described

in terms of a derived (and usually averaged) quantity that is a function of random

variables associated with the nodes.

The simplest mean field approach utilizes a density based description of the spread-

ing process (also known as population models) [20, 25-31]. Density based models

consider the evolution of the fraction of the total population that are in a particular

condition. For instance, a density description of SIR model has just three states; the

fraction of population that is healthy, the fraction that is infected and the fraction

that has recovered, thereby reducing the dimensionality of the state space to that of

the number of conditions in which a node can be in. Population models also assume a

"well mixed" population, which means that every node can interact with every other

node and thus ignores the location information of the nodes. The rate at which in-

fected population influences the healthy population is assumed to be proportional to

the product of the healthy and infected populations. This approximation is known as

the law of mass action [16,19] which is again a generalization of mean field approaches.
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These assumptions allow the evolution of the spreading process to be described by a

nonlinear ordinary differential equation whose solution can be obtained easily.

Another popular approach is the networked mean field approximation. In such an

approximation, the value of the random variable at a given node is approximated to be

weighted average of the values of random variables of its neighboring nodes [32-35].

This description allows the update equations to be written as ordinary differential

equations in terms averaged probability at every node. The main advantages of

networked mean field approximations are that it retains the underlying connectiv-

ity structure of the network and provides a means for controlling spreading process

through spectral optimization. In addition it can also be applied to heterogeneous

spreading process models (for instance [36-39]).

An approximation whose complexity is in between density based models and net-

worked mean field models, are the so called meta-population models [40-42]. In a

meta population model, individual nodes are clustered into a smaller subset of nodes,

thereby reducing the size of the state space to a more suitable and tractable descrip-

tion. A classical well-mixed population model is assumed for the clusters, where as

a networked mean field model is assumed in between the clusters. Such models are

useful for instance to characterize spread of an epidemic disease between connected

network of cities. Depending on the granularity of the approximation, mean field

approximations yield different models. If approximated at the granularity of popu-

lation of all nodes, it results in density models. If approximated at the granularity

of individual nodes, it results in networked mean field approximation models. An

approximation in between the two approaches results in meta-population models.

On the other hand, such descriptions obtained from approximations of spreading

process have several drawbacks. By converting the evolution of the process into

deterministic differential equations, the approximations average out the stochasticity

that is inherent to these processes. The density based descriptions of the processes

usually assume a well mixed interaction between the nodes, but in doing so ignore

the underlying graph or connectivity structure. If the degree of the connectivity

graph is low, it is well known that approximations based on mean field theories
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are inaccurate. Also as approximate models describe the evolution of the process

based on some derived quantity and do not deal with the random variables directly,

there is a disconnect between what results based on approximations imply for the

original stochastic spreading processes. For example, mean field approximations to

disease spreading models describe the evolution of the disease in terms of the average

infection probability of a particular person. This is very different from the original

stochastic disease spreading process, in which either a person is infected with disease

or is healthy. Furthermore, approximate models do not accurately predict the stability

thresholds or the survival time of an infection.

Though the modeling and analysis of spreading processes have been a long stand-

ing area of research, there has been limited work on ways to effectively control (or

contain) the growth of such processes. The goal in controlling such a process is to

contain/stop/cure the process as quickly as possible, i.e. to minimize extinction time

of the spreading process. However, such a problem is ill posed unless a cost (or weight)

is imposed on the control effort (budget, fire retardant, vaccine, etc.), otherwise we

can influence every node of the process and stop the spreading immediately which

is usually not practical. Using the nonlinear differential equations obtained by mean

field approximation and law of mass action as a starting point, several researchers

have analyzed growth of stochastic processes on complex networks and have pro-

posed various control algorithms to contain the growth of process based on spectral

optimization [34,43,44], optimal control [45-47], geometric programming [42,48-501,

among other methods [45-47, 51-56].

For networked mean field approximations, it can be shown that the extinction time

of the spreading process is characterized by the largest eigenvalue of the adjacency

matrix of the graph [43]. As such, researchers have used spectral optimization meth-

ods to control the spreading process. Given a fixed budget C, the control problem

considered in spectral optimization methods is to identify optimal set of nodes (at

most C) to be removed from the graph A, such that the largest eigenvalue, emax(A)

is minimized. It has been shown that this problem can be converted into a geometric

optimization problem [44,49] and can be solved efficiently. This method can also be
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extended to handle heterogeneous models.

Unfortunately control algorithms used on approximated models have many disad-

vantages. At the core, the control strategy is a static one. It does not account for the

current "state" (or configuration) of the spreading process, and minimizes the eigen-

value of adjacency matrix which is a time invariant property of the network. Even

though networked mean field approximations account for graph structure, they do not

predict exact stability thresholds for a graph. In fact, there has been no rigorous char-

acterization of spreading process from a control theoretic framework, so as to what

stability means for such processes, when does it exit, how does the system behave in

stable, neutral and unstable regime and so on. Epidemic mean field models predict

that if emax(A) < ( the expected time to extinction is sublinear, and is exponential

otherwise [57,581. However, what effect this control strategy of node removal has on

the original stochastic spreading process, and if this is indeed a necessary condition

is unclear, although it appears that the result serves as a lower bound. For instance,

approximate models do not accurately predict the long time survival of an infection,

because the threshold goes to zero as number of nodes N becomes large. This is due

to the fact that emax(A) grows unbounded as N -÷ oo [59].

In this thesis, we consider exact formulations of spreading processes and analyze

stochastic interactions rigorously. For mathematical tractability, we consider homo-

geneous models of spreading processes on lattices. A lattice network is one where

the vertices are arranged into a grid. This kind of structure arises in a number of

applications in physics. As a result, mathematical physicists have long been working

on stochastic processes on lattices [13,60-62]. In particular, such processes have been

used to understand non-equilibrium statistical mechanics phenomena [63,64]. There

is now a rich and growing mathematical physics literature in this direction [12]. Many

of these results identify phase transitions: slight variations in parameters of local in-

teractions may have tremendous impact on global properties. We first characterize

the notion of stability for spreading processes. Our definitions of stability is based

on the phase transition phenomena, and our results utilize the tools developed in

statistical mechanics. We then derive theoretical bounds on stability thresholds.
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Using newly available tools from non-equilibrium statistical physics, we are able to

characterize open loop behavior of the spreading processes in its stable, neutral, and

unstable regimes accurately. This type of rigorous characterization is not possible by

employing mean field models. Furthermore, given an unstable spreading process on a

lattice, we develop an optimal control policy that stabilizes the process, almost surely.

In order to develop a control policy, we first show that an insightful description of

the spreading process can be obtained by analyzing the process in terms of the edges

rather than nodes of the underlying graph. We then define a randomized preferential

node treatment policy. To derive the properties of the aforementioned policy, we

construct an equivalent tree description of the spreading process. Using tools from

branching process and percolation on irregular trees [65,661, we show that this policy

in indeed stabilizing and optimal, both in control effort and resource utilization.

1.2.2 Control of Smart Manufacturing Processes

Industry 4.0 is the new trend in manufacturing and data exchange that is being

considered as the fourth industrial revolution [5,67,68]. Due to the need for strong

product customization [69], the newer trend in industry is to shift towards a demand

based production as opposed to an inventory based one. Such a manufacturing process

envisions smart factories in which the shop floor would be modular, with individual

machines or work stations operating independently from one another. The modular

manufacturing units would be connected by automated guided vehicles (AGVs) which

would transfer materials from one unit to another. These smart factories would

enable humans and machines to communicate and work cooperatively in the same

environment. In addition, the smart factory would have a virtual copy of physical

world for monitoring, health diagnosis, and repair.

It has been envisioned that Industry 4.0 would have four features [4, 70] - (i)

Interoperability: the ability of machines, devices, and sensors to communicate with

each other and with people, (ii) Information transparency: ability of information

systems to create a virtual copy of physical world using digital models of plant and

sensor data, and to convert raw sensor data to higher value context information, (iii)
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Technical assistance: cooperative working with humans including assistance in unsafe

environments, and (iv) Decentralization: decentralized decision making at lower levels

of operations and autonomous operation at all levels.

However, achieving the objectives envisioned by Industry 4.0 requires addressing

few issues with the manufacturing process. The shop floor of a smart factory is a

dynamic and changing environment, and is subject to machine failures and break-

downs. In addition, the machines (or work stations) could have multiple capabilities.

For example, a CNC machine could perform one operation (such as cutting) from a

variety of possible set of operations (for instance, cutting, welding, drilling, milling

etc.) at a given time. As the manufacturing process is demand based, it is subject to

changing demands in variety, customization and volume. In addition, different types

of products might be in production. As such, scheduling of individual machines (or

work stations) and that of transfer vehicles like AGVs is an issue. If a machine breaks

down, the scheduler should be able to achieve a balanced operational load among the

operating machines while maximizing the overall throughput of the factory.

Traditional scheduling problems in manufacturing are combinatorially hard [71]

which make real time implementation difficult in dynamic environments. To deal

with flexible scheduling in dynamic environments, several agent based manufactur-

ing paradigms have been proposed in the literature [72-74]. Some of them include

negotiation based architectures [75], reactive reinforcement learning [76], layered ar-

chitectures [77], ontology based approaches [78, 79], capability based planning and

model checking [80,81], among others [82-84]. Unfortunately, no structured develop-

ment methodology is used in industrial practice for the agent-based control systems

specification, design, verification, implementation or reconfiguration of automation

solution. The reason for this absence is the lack of proper reference models for con-

trol systems architectures that support formal analysis, verification, and real time

code generation. As such, an important challenge is to develop formal and structured

methodologies that will support the implementation of agent-based manufacturing

control applications [731.

To overcome these issues with modeling, visualization and scheduling, a stochastic
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scheduling approach is proposed in the thesis. Using queue theoretic formulations,

entities on the factory floor - work stations with multiple capabilities and AGVs can

be modeled effectively. We show that the connectivity structure of the machines can

be elegantly captured in terms of the incidence matrix of the graph. In addition,

stochastic scheduling techniques convert the original NP hard problem of scheduling

machines and AGVs into an averaged cost problem, that be described by a linear

program. This approximation is well suited for the smart factories as most operations

are repetitive in nature. LP formulations achieve load balancing inherently and are

also amenable for fast implementation in changing environments. The approach also

provides a higher level virtual model of the factory floor and allows for monitoring

the environment as required.

1.2.3 Control of Transport Processes

Transport processes describe physical phenomena in which there is an exchange of

matter, momenta or energy in an observed system. Such processes could be used

to model physical systems such as traffic flow, chemical systems, cell rolling, among

many others. Fundamentally, transport phenomena are irreversible processes that

are said to be operating in a state that is in non-equilibrium [64,85,861. A system

in non-equilibrium steady state is characterized by observables that do not change

with time, yet exhibit an irreversible exchange of heat, particles or volume with its

environment. For example, when a battery is connected to a resistor, a chemical

potential drives the constant current that flows through the circuit. Though there is

a steady current flowing out of the battery, the voltage drained from the battery is

an irreversible process. Traffic flow on a highway is in similar vein, where a steady

flow of traffic flows from one direction to another. As opposed to systems that are

in thermodynamic equilibrium, non-equilibrium systems are operating far from their

equilibrium conditions.

Based on the pioneering work by Maxwell, Boltzmann, Gibbs and many others,

systems at thermodynamic equilibrium enjoy a well developed theory of statistical

mechanics [871. On the other hand, there is no such unified theory for non-equilibrium
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statistical mechanics. In fact, developing a fundamental understanding of systems

driven by non-equilibrium statistical mechanics is considered to be one of the grand

challenges of our times, both by the U.S Department of Energy [88, 891 and the

U.S National Academy of Sciences [90]. This emphasis has created a tremendous

momentum, leading to a large literature aimed towards understanding this scientific

phenomena [91,92].

Even though these works have improved our understanding into the behavior of

systems in non-equilibrium, there is no systematic approach to "control", govern or

modify the behavior of these systems. Such approaches would improve the efficiency

of existing systems, and might also aid in engineering new applications. For example,

analysis and control of non-equilibrium phenomena in transportation networks might

lead to better organization of urban transportation systems, thereby reducing delays

and enhancing safety.

With the aforementioned goal in mind, in this thesis we take initial steps to-

wards the overarching goal of developing control algorithms for plants governed by

non-equilibrium statistical mechanics. A characteristic feature of systems in non-

equilibrium is the existence of phases in its operating regime. A phase is a region

in which a macroscopic (global) property of the system takes a common value for a

large range of microscopic (local) parameters. Across these phases, the system shows

a phase transition, in which slight variations in local parameters result in an abrupt

change on global properties. Thus, the aim of exerting control actions on systems in

non-equilibrium is to achieve one or more of the following behaviors - (i) maintain

the system in a desired phase, (ii) move the system from one phase to another, (iii)

change the boundaries of the phase diagram, and (iv) introduce new phases in the

phase diagram.

In this thesis, we study models of traffic flow on transportation networks as a

prototypical example of non-equilibrium behavior in transport processes. In the past,

traffic flows on transportation networks have been modeled using several ways based

on the granularity [8, 11, 93-951. However, it is widely believed that physical mech-

anisms at microscopic level which give rise to synchronized traffic behavior are not
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well understood [8]. Towards this end, a model known as the totally asymmetric

simple exclusion process (TASEP) has been proposed in the literature [9,10]. Similar

to the role that the Ising model has played in equilibrium statistical physics, TASEP

is believed to be a paradigmatic model for systems in non-equilibrium. A single lane

of traffic can be modeled as a TASEP with open boundaries, with the entry and exit

rates of traffic as model parameters. It has been shown through exact calculations

that the model shows phase transitions in the current (or the rate of flow of traffic)

according to the different values of model parameters [96-98]. The model exists in

three regimes - a low density regime in which the lane is relatively empty, a high

density regime in which the lane is heavily occupied, and a maximum current regime

in which the current reaches its maximum possible value.

In this thesis, using TASEP as the model for single lane of traffic, we develop

control policies to maximize the traffic flow rate. Our first result it to develop an

exit rate control policy wherein the exit rate of the model is varied according to the

average occupancy of the road. We show that such a policy achieves maximum current

for all possible entry traffic rates. We also study control policies for automated gated

intersections and other generic transportation networks.

1.3 Thesis Contributions and Outline

This goal of this thesis is to (i) develop mathematically tractable yet realistic models

for stochastically interacting systems, (ii) perform control theoretic analysis of the

models and characterize stability and open loop behavior of the these models, and (iii)

develop control algorithms to stabilize unstable behavior and optimize performance

objectives. Towards this end, the contributions of this thesis to three representative

examples of stochastically interacting systems are listed below.

1.3.1 Control of Spreading Processes

The contributions in this section are towards accurate characterization of stochastic

spreading processes without ignoring or approximating the stochasticity that is inher-
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ent to such processes. Towards this end, we consider homogeneous models of spreading

processes on lattices, define notions of stability, derive exact stability thresholds, char-

acterize open loop behavior and develop control algorithms for stabilizing unstable

spreading processes.

Stochastic modeling and control theoretic stability characterization: Chap-

ter 2 of the thesis considers discrete and continuous time models for spreading pro-

cesses on lattices. In the literature there are no clear notions of stability for spreading

processes. Towards this end, notions of stability for spreading process are developed

in this thesis. Mean field approaches in the literature characterize stability based on

eigenvalue of Adjacency matrix of the connectivity graph. However, it is known that

approximate models don't predict stability thresholds well. Furthermore, when the

number of nodes become large (or in the case of infinite graphs), the eigenvalue of the

matrix also grows unboundedly, poorly predicting the stability thresholds. This thesis

develops the notion of stability of spreading processes using critical probability pc of

a given graph. This formulation allows one to derive accurate bounds on stability

thresholds, as opposed to mean field approaches. The tightness of the bounds derived

are validated using Monte-Carlo simulations. For example in the disease spreading,

accurate predictions of stability thresholds are important as they tell us how much

vaccine should be distributed to stop an epidemic. In addition, the critical proba-

bility pc could be a new way of looking at networked systems in which spreading is

an important criteria. Formulations in the thesis could be extended to many other

graphs structures for which the value of pc is known.

Analysis of open loop behavior of spreading processes: In second part of

Chapter 2, the behavior of spreading process on lattices are characterized using rig-

orous results available from mathematical physics literature. Previous approaches

characterize the behavior using linear models obtained by mean-field approaches.

The linear models thus obtained, predict incorrectly an exponential behavior for the

growth of the spreading processes. Clearly, this is not true in general for all graphs.
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Using different tools from mathematical physics, this thesis characterizes the behavior

of the spreading process in stable, neutral and unstable regimes. The characterizations

are validated through extensive simulations. In the unstable regime, the spreading

processes on lattices shows a linear growth, a fractal behavior near threshold, and

exponential decay in the stable regime. Such characterizations are not possible using

mean field models. Again using the example of disease spreading, such characteriza-

tions help us to answer queries like - at what rate does the disease spread? How does

the strength of the disease influence its spread?, and when is the disease containable?

Randomized optimal control policy for unstable spreading processes: Chap-

ter 3 of the thesis develops an optimal control policy that stabilizes a given unstable

spreading process almost surely, i.e. with probability one. Previous approaches in

literature use optimal control formulations on approximated model developed us-

ing mean field approximations. However the accuracy of such control strategies are

questionable. As such, the this thesis proposes optimal control policy for stochastic

spreading processes using the notions of critical probability developed before. In or-

der to develop a control policy, an insightful description of the spreading processes

can be obtained by considering the growth of the processes along the edges rather

than nodes of the underlying graph. A randomized preferential node treatment pol-

icy is then described in the thesis. Using tools from mathematical physics such as

branching process and percolation on irregular trees, it is shown that this policy in

indeed stabilizing and optimal.

1.3.2 Control of Smart Manufacturing Processes

The contributions in this section are towards developing a design methodology for

agent-based control systems architectures for smart manufacturing processes, that

are suitable for formal analysis, simulation, and real time scheduling in dynamic

environments.
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Stochastic modeling and scheduling for manufacturing processes: Chapter

4 of the thesis develops a queue theoretic model for smart manufacturing processes. It

is shown that the connectivity structure of the machines can be elegantly captured in

terms of the incidence matrix of the graph. We consider an averaged cost optimization

criteria for the model developed and show how the optimization can be solved using

a linear program. Such an approach allows one to achieve real time scheduling in

fast and changing environments. In addition, this approach achieves load balancing

among operating machines under changing work flow. The proposed approach is

validated using representative examples.

1.3.3 Control of Transport Processes

The contributions in this section are towards control of systems in non-equilibrium

which haven't been considered before. Towards this end, we consider prototypical

examples of non-equilibrium phenomena with applications in transportation.

Analysis and control policy for auto-gated single lane traffic: In Chapter

5, the thesis describes the totally asymmetric simple exclusion process model for

transport phenomena, and identifies phase transitions. This thesis is one of the first

attempts to control TASEP models. Our first result develops an exit rate control

policy wherein the exit rate of the model is varied according to the average occupancy

of the road. It is shown that such a policy achieves maximum current for all possible

input rates.

Analysis and control policies for road intersections and networks: The

analysis and control of systems in non-equilibrium is extended to other network ar-

chitectures. In particular, TASEP models on automated gated intersections, and

other generic transportation networks are considered.
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Chapter 2

Control of Spreading Processes I

The goal of this chapter is to provide accurate characterization of typical behavior

of spreading processes on lattices. From a control theoretic perspective, this char-

acterization could be regarded as an open loop analysis of the spreading processes.

Specifically, we are interested in answering the following questions: (i) what are the

notions of stability for spreading processes? (ii) When is the process stable? and

(iii) How does the process behave in its stable, neutral and unstable regimes? In the

literature, spreading processes have usually been studied using a specific application

(spread of epidemic diseases, computer malware, opinion dynamics, etc.) that serves

as an aid towards the understanding of these processes, and helps us understand what

"control" means in the context. As such, we too motivate the analysis and control

of spreading processes through the problem of spread of wild fires in forests. Every

year forest fires cause significant social and economic damage. It is estimated that

in 2012 alone, more than 3 million acres of land were effected by forest fires [991 and

these numbers are expected to grow in the near future due to the adverse effects of

climate change and rapid urbanization [100]. Even though majority of fire fighting

is still done on the ground, over the last decade, aerial vehicles have been adopted

as an important fire-fighting resource [101-103]. Throughout this thesis, we use the

example of forest fire synonymously with spreading processes.

In Section 2.1, we introduce discrete time and continuous time models of spread-

ing processes on lattices. We call the mathematical models of spreading process of
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wild fires in the forest as the forest fire process. Though such models of forest fires

have been introduced in the past [2], we emphasize that choosing right models is

crucial for mathematical tractability and analysis of the spreading process. Also,

the control models introduced in this chapter are simplified models of firefighting

robotic vehicles that control the spread of fire by spraying fire retardants. However, it

should be noted that these models are widely applicable. For instance, similar models

may apply towards understanding the spread of congestion through a Manhattan-like

transportation network, where additional infrastructure can be controlled to alleviate

congestion.

In the next section, we introduce control theoretic notions of stability for spread-

ing processes, and then characterize stability of the forest fire process by providing a

lower bound on stability. For characterizing the open loop behavior of fire process in

stable, neutral and unstable regimes, different tools from mathematical physics are

needed. Towards this end, Section 2.3 provides a succinct introduction to theory of

bond percolation, first passage percolation, SLE curves and the KPZ growth model.

By using coupling arguments, we show in subsequent section how spreading processes

can be mapped to the known models in mathematical physics, thereby enabling us

to characterize open loop behavior of the spreading processes. The typical behavior

of the spreading processes have also been validated using Monte Carlo simulations.

These simulations have been carried out on a lattice of size 500 x 500, and the numer-

ical results have been obtained by averaging over 200 realizations of the fire process.

2.1 Modeling

2.1.1 Plant Model

We model the forest fire process as a set of trees represented by nodes on a d di-

mensional square lattice Zd (where Z is the set of integers). The trees can be in

three states - green (healthy or not burning), red (infected or on fire) or black (re-

moved or burnt). In a discrete time model, if a green tree catches fire, it burns for
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a time that is a geometrically distributed random variable with parameter 1 - '3,

IP(k) = k-k1(1 -#), k = 1, 2,---. After this time, the tree is considered burnt (black).

During each discrete time step a tree is burning, the tree spreads the fire with a

probability a, to all its healthy neighbors independently of all other nodes. At t = 0,

without loss of generality we assume that the fire starts at the origin (see Figure 2-1).

In the continuous time description of the process, a green tree burns for a time that

is an exponentially distributed random variable with parameter P. During this time,

the burning node tries to spread fire to each of its green neighbors independently af-

ter a time that is an exponentially distributed random variable with parameter A. In

both discrete and continuous time descriptions, the statistics of the burning process

are independent from that of the fire spreading process.

2.1.2 Control Model

We now assume that two types of robotic agents are available for fighting fire - (i)

one that reduce the propagation probability of a node, and (ii) one that reduce the

burning time of a node. Specifically, if a particular node is treated by a robotic agent

of first type, the fire propagation probability a (or A in continuous time model) of

the node is reduced by an amount Aa (or AA). Roughly speaking these type of

agents have similar effect of that of using fire retardants on the burning trees. On

the other hand, if a particular node is treated by the robotic agent of the second

type, the parameter / is reduced by an amount A# (or p is increased by an amount

A,4 which reduces the mean burn time of the exponential random variable). Again,

roughly speaking, these type of agents have similar effect of creating a fire wall that

is accomplished by burning trees in the path of the forest fire.

For mathematical simplicity, we assume that one vehicle can treat one node at a

given time. However, it should be noted that results for a model in which the number

of nodes that can be treated by a robotic agent are more than one, are different only

by a constant scaling. We also assume that the speeds of the robotic vehicles are

much faster than that of the fire process, and thus the vehicles can act instantly on

the nodes if available, with the delay being only due to the time taken for refilling
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Figure 2-1: The
Markov chain of

mathematical model of the spreading process on lattices. (a) The
possible transitions for the discrete time model of the process. (b)

The two competing processes of spreading and survival phenomena. (c) At t = 0, the
spreading process starts at origin and only the origin has been affected. (d) A typical
realization of the spreading phenomena as obtained by a numerical simulation.

the retardant. However, we also analyze the case in which the robotic agents have a

finite retardant carrying capacity and model the delay in filling up retardant in the

following way. If an agent is utilized at t = to, it is reusable only after time t = to + T,

where r is the time interval required to refill the retardant.
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2.2 Stability

We begin by answering the following question - how does the fire process behave

for different values of system parameters? Figure 2-6 shows results from numerical

simulation for a fire process simulated for various values of system parameters a and

3. The figure shows the fraction of the forest that has been affected for a fire starting

at origin as the parameters are varied. It can be readily seen that there exists a

certain threshold for the parameters beyond which there is large scale destruction of

the forest. This leads us to the notion of stability for the fire process which is made

precise by the following definitions.

Definition 2.1. (Phase transition) Suppose p is a parameter of the fire process. Let

Xt =Xt(p) be the number of infected/burning nodes at time instant t. A fire process

is said to be stable or sub-critical if,

lim sup Xt = 0 almost surely.
t-*oo

A fire process is said to be unstable or super-critical if,

lim inf Xt = oc almost surely.t-400

Definition 2.2. (Critical probability) There exists a critical probability pc such that,

F 0 almost surely, p pc
lim Xt(p) =

t->ooI L oc almost surely, p > pc

Remark: We note that from a control theoretic perspective, the critical probability

pc plays the role of the imaginary axis (in particular the origin) in the analysis of

dynamical systems. When p < pc, the fire process is equivalent to a dynamical

system with its eigenvalue in the left half plane, and the system is stable. On the

other hand, when p > pc, the system is unstable. When p = pc, the fire process is

equivalent to a dynamical system that is neutrally stable.
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Figure 2-2: The critical probability pc plays the role of origin in the definitions of

stability of the spreading processes. Different tools from mathematical physics are

used to characterize the spreading process in different stability regimes. The spread-

ing process is characterized in its stable and neutral regime by comparing it with

an equivalent Bond percolation model. The results from SLE curves are applicable

when p ~ pc. In the unstable regime, the first passage percolation model is used to

characterize the spreading process by the use of a coupling argument.

2.3 Background

This section provides a succinct introduction to different tools from mathematical

physics that would help us to characterize spreading processes on lattices.

2.3.1 Bond Percolation

Percolation theory describes the behavior of connected clusters in a random graph.

The most studied model in percolation theory is the bond percolation model which

was first introduced by Broadbent and Hammersley to model wetting of a dry stone

immersed in liquid. Bond percolation model is usually described on infinite lattices;

a lattice is a uniformly spaced set of points. Consider a square lattice, denoted by

Zd, where the set of nodes are arranged to form a uniform grid. Here, d = 1, 2,. ..

denotes the dimension of the lattice and Z indicates the set of integers. The edge set
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of the lattice is denoted by E,

E = {e,. : Ix - y = 1, x, y C Z'}

For every two neighbors in Zd, there exist an edge (or bond) between the nodes with

probability p and does not exist with probability 1 - p, independently of all other

edges (see Figure 2-3). One of the fundamental questions that bond percolation theory

tries to answer is at what probability p does the entire lattice becomes connected,

i.e, what is the probability at which there is a connected path between any two

randomly chosen points on the lattice. This connectivity function is called percolation

probability denoted by 0(p) and is clearly an increasing function of p. Let C denote

the connected cluster around the origin, which is the set of all nodes that can be

reached through connected paths from the origin. Then,

6(p) = IP( CI = oc) (2.1)

Pc = sup{p: 9(p) = 0} (2.2)

X(p) =E[ICI, ICI <.00c] (2.3)

(P EXec,1cI<oo E[X2  (2.4)
x(p)

where ICI denotes the cardinality of connected cluster, and E(-) denotes the expecta-

tion operator. The quantity pc is called the critical probability. It implies that there

exists a critical threshold for the connectivity of lattice; when p > pc the lattice gets

connected and when p < pc the lattice is disconnected. X(p) is the average size of the

cluster when p < pc and ((p), known as the correlation length, is the typical radius

of this cluster.

Even though the behavior of bond percolation model across Pc is well understood

in the literature, the exact threshold pc is hard to calculate analytically and as such

is known exactly for few lattice structures and dimensions. For the rest of cases, the

threshold has been calculated only through extensive numerical simulations. For a

square lattice in 2D, the critical value, p,(Z2 ) has been calculated exactly after more
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(a)

0

Figure 2-3: (a) Bond percolation model on a two dimensional lattice. The origin is
shown in bold. (b) An edge (bond) is present with probability p and absent with
probability 1 - p, independent of all other edges on the lattice. (c) A particular
realization of the model when p < pc and the lattice is disconnected, and (d) a
realization of the model when p > pc and the lattice gets connected.

than 10 years of rigorous efforts by mathematicians, and has been shown to be equal

to 1/2 [104].

When p < pc, there is an exponential decay in the number of nodes. Specifically,

the probability that the origin is connected to a node located at radius r decays

exponentially with r. Furthermore, the probability that cluster contains n nodes

also decays exponentially with increasing n. These statements are made precise by

following theorems.

Theorem 2.1. (Exponential decay of cluster radius) [105] Let S(r) be a ball of radius

r around the origin and let &S(r) denote its boundary. Then, the probability (as a

function of p) that the origin is connected to some node in &S(r) decays exponentially

(b)

(d)
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fast if p < pe,

P(O is connected to &S(r)) < e(W, Vr > 1

Theorem 2.2. (Exponential decay of cluster size) [105] Let |C| denote number of

nodes in the connected cluster around the origin. If 0 < p < p, there exists A(p) > 0

such that,

P(ICI > n) < e-nA(P), Vn > 1

A slightly different model is the site percolation model in which a particular site is

occupied or unoccupied with probability p. The site percolation model is a broader

model than the bond percolation model, and any bond percolation model can be

transformed into a site percolation model but not otherwise. As with bond percola-

tion, the critical question is at what probability does the lattice become connected?

For a two dimensional square lattice, the critical value for percolation threshold is

known to be p'(Z2 ) = 0.5927 [105].

2.3.2 SLE Curves

Schramm Loewner Evolution (SLE), first discovered by Oded Schramm, has been

shown to be the scaling limit of a variety of two dimensional lattice models in sta-

tistical physics 1106, 107]. SLE is the stochastic version of the Lowner differential

equation, which describes the evolution of the complement of a curve under a confor-

mal mapping in the complex plane (Figure 2-4). In particular, let Y : R+ -+ I H be a

simple curve in the upper half plane H C C starting in R. Let Ht be the unbounded

connected component of H \ y[0, t], i.e. the component formed by removing the curve

y[O, t] from H. Then for each t, there exists a conformal, bijective and analytic map

gt : Ht -- H that satisfies the Loewner equation,

9gt 2

= ,gI(z) = z, (2.5)

where Ut = gt(y(t)), the mapping of the end of curve under gt. Thus the Loewner

equation describes how the map gt evolves as the curve -y[0, t] grows. It can be

39



Figure 2-4: Conformal mapping for the SLE cuvres. Half plane H with the curve
-y[0, t], complement of the curve Ht : H \ y[0, t], and the image of the complement
under conformal mapping gt : Ht -÷ H

shown that gt is unique if few technicalities are satisfied, namely gt(z) - z -+ 0

and g'(oo) = o as |z- 00. Under these assumptions, Laurent series expansion

of gt(z) becomes, gt(z) z + " + 0(z|- 2 ), where the term a(y[0,t]) is known as

the half plane capacity of -y[O, t]. It can be shown that a(y[0, t]) is additive, i.e.

a(y[0, t + s]) = a(y[0, t]) + a(y[t, t + s]), which results in coefficient 2 in (2.5). It

should be noted that, as gt is a unique map, equation (2.5) can also be used to

determine the evolution of curve -y given the driving function Ut.

Schramm Loewner Evolution or SLE, parameterized by quantity r, > 0, is the

evolution of curve -y when the driving function Ut is chosen to be a scaled Brownian

motion, Ut = VxBt. Depending on the value of parameter K - (0,8), SLE, has

different properties [108]; if r, < 4, the curve is simple, for 4 < K < 8, the curve can

intersect itself but does not cross and remains simple, and for K > 8, the curve is

space filling. Furthermore, for all values of K > 0, the curve is a fractal. The trace of

the curve has a Hausdorff dimension of min(1 + , 2), and the outer boundary of the
2

curve has a Hausdorff dimension of 1 + - [109].

Of particular relevance is the seminal result proved by Stanislav Smirnov [110],

which shows that SLE6 corresponds to critical percolation, i.e. the interface of the

connected cluster of bond percolation at criticality when p = pc. This is the only result

known to date for r, = 6, which was proved for bond percolation model on a triangular

lattices, earning Smirnov the Fields Medal in Mathematics in 2010 [111]. Once this
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equivalence was established, it was shown that the properties of the connected cluster

around origin in bond percolation behave as power laws. Furthermore, the fractal

exponents of the boundary can be estimated precisely. These results are stated in the

following theorems.

Theorem 2.3. (Dimension of percolation boundary) [110, 112, 113] The scaling limit

of the perimeter of the critical percolation is identical to that of SLE6 . The Hausdorff

dimension of the boundary of SLE6 is 4/3 almost surely.

Theorem 2.4. (Critical exponents) [110] Let S(r) be a ball of radius r around the

origin and let &S(r) denote its boundary. Let IC be the cardinality of the connected

cluster around origin. Then,

P(0 is connected to &S(r)) = r-5 /24  as r -+ oc

IP(n < ICI < oo) = n-5 /91 as n -+ oo

2.3.3 First Passage Percolation

The bond percolation model described in previous section is a static model in which

the connectivity of every bond is determined for the entire lattice in one time step.

On the other hand, first passage percolation, first introduced by Hammersley and

Welsh, can be used to model dynamical processes on lattices [114,115]. Consider as

before, a set of nodes on infinite square lattice Z2. We associate with every edge e of

the lattice an i.i.d. random variable r(e), which can be interpreted as the time taken

to traverse along the edge e. Given any two nodes a and b on the lattice, let y be a

connected path on the lattice from a to b. We define the passage time T(y) as,

T(-y)= ZT(e)
eE-

for any connected path -y from node a to node b (Figure 2-5). The random variable

T(y) is the time taken to traverse from node a to b along the path -y. The first passage
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time T(a, b) is defined to be the minimum among all such paths.

T(a, b) = inf {T(y) : -y is a path from a to b}

The first passage time has the simple interpretation as the shortest time to reach

node b starting from a while traversing along the edges with random times -r(e). If

the distribution of passages times, T(e) is an exponential distribution, the first passage

percolation process is known as the Eden growth model in the literature [60].

Most of the research effort in first passage percolation theory is towards character-

ization of random variable T(0, n), which is first passage time from origin to a node

at distance n. Towards this end, a fundamental result in ergodic theory known as the

subadditive theorem [116] provides technical conditions for the existence of a limit

for the first passage times.

Theorem 2.5. (Subadditive Ergodic Theorem) [116] Suppose Xm,n , 0 < m < n is a

family of random variables satisfying,

" XO,n < XOm + Xm,n, for all 0 m <n.

" For each k > 1, the sequence {Xnk,(n+1)k}n>o is stationary.

* The distribution of the sequence {Xm,m+k}k>1 does not depend on m.

" E[XO,1] < oc.

Then,

* limn4,0 E[XO,] = infn E[X=,n]
n n

" The limit X = lim, '" exists and is finite almost surely.
n

" If the stationary sequences {Xnk,(n+1)k}n>o are also ergodic, then X = y almost

surely.

The first passage percolation process satisfies the subadditive property which is

similar to the stochastic version of the triangular inequality. It follows from the
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ergodic theorem that the time taken to reach a particular node n starting from origin

is a constant, which is usually called the time constant.

Theorem 2.6. (Time constant) /117] Let 6 denote a unit vector in Zd . There exists

a constant M(e) E [0, oo) called the time constant such that,

lim T(, n6) = (e) almost surely and in L1 .
n-+oo n

The implication of existence of the limit is that the time taken to reach a particular

node located at distance n is linear in n, even though the constant p might be direction

dependent. The exact value of the time constant is not known analytically and is

usually estimated through numerical simulations. However, some bounds on the time

constant are known.

Theorem 2.7. (Bound on time constant) [117] For first passage percolation on Zd

with iid passage times r(e), let F be the distribution of random variables r. If F has

a non trivial distribution, then p(e) < E[r(e)].

As opposed to the expected value E[T(0, n)], only limited results are available

regarding the variance var[T(0, n)]. The results mainly consist of bounds on the

variance, but do not predict exact behavior.

Theorem 2.8. [118] Let E[w(e)2 ] < oo and let F be a non-trivial distribution, then

there exist constants C1 and C2, such that,

C1 < var[T(0, n6)] C2n.

Another major result for variance is the lower bound for first passage percolation

in 2D which indicates that the variance in fact grows unboundedly with n.

Theorem 2.9. (Logarithmic lower bound) [119,120] Ford = 2, there exists a constant

B such that,

var[T(O, n6)] > B log n
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(b)

Figure 2-5: (a) A schematic showing the first passage percolation model on a two
dimensional lattice. Time to move along any edge is a random variable drawn from
a distribution F. There are multiple paths (and times) to reach from point a to b.
The first passage time T(a, b) is the minimum among all these times. (b) Long time
behavior of a growth process as predicted by the KPZ growth model. The growth
rate is linear in time but has a variance that also grows sublinearly. The first passage
percolation can be thought of a growth process if we denote the growth set at time t
as all the points reached by time t starting from origin.

Another quantity of interest is the shape of the process asymptotically. Even

though the exact shape of the process is unknown, it has been shown that the shape

can be bounded inside a convex and deterministic shape.

Theorem 2.10. (Shape theorem) [121] There exists a deterministic, convex, compact

set B E Rd, such that for every e > 0,

B(t)
P((1 - 6)B c C (1+ e)B for large t )=1.

t

Furthermore, B has a non-empty interior and is symmetric about the axis of Rd.

2.3.4 KPZ Growth Model

A different view point on the stochastic growth processes was described in the seminal

work of Kardar, Parisi, and Zhang (KPZ) [62]. Stochastic growth processes gener-
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alize the ideas of spreading processes and are models of spatial growth. They have

been used to model formation of crystals, facet boundaries, bacteria growth, paper

wetting, crack formation, and moving fronts among many others [12]. Using heuris-

tic arguments, KPZ predicted that all growth processes should belong to a common

universality class that can be described by the following stochastic partial differential

equation (known as the KPZ equation),

02 2h 1) (Oh 2 VDw(tx) V2 + x + (2.6)

where the parameters v, A, and D are non zero. The first term on the right hand side

is the Laplacian which results in smoothing of the solution. The second term is a slope

dependent growth rate term, that forces a faster growth rate whenever the slope is

higher. The third term is the space-time Gaussian white noise that adds stochasticity

to the equation. Based on the PDE model, KPZ predicted that fluctuations of growth

rate of any growth process has an exponent of 1/3, i.e. the variance of the growth

processes behaves as t 1/3 (see Figure 2-5). A growth model is said to be in KPZ

universality class if its long term behavior is similar to that of the KPZ equation

(2.6). Several growth models have been shown to belong to the KPZ universality

class through extensive numerical simulations, and indeed have fluctuation exponent

of 1/3.

Unfortunately, complete understanding of the KPZ equation is unknown and rigor-

ous mathematical solutions for few instances of the KPZ equation have been obtained

only recently [122-125]. In addition, the solutions are available only in one dimen-

sion and are limited to few growth models under specific boundary conditions. The

major mathematical difficulty in solving KPZ equation directly is that the stochas-

tic PDE is ill-posed in its original form as it involves taking a derivative of white

noise. The approach taken by mathematicians is to start with parameter values
1

v - -, A = -1, D = 1 and transform the KPZ equation to a closely related stochastic
2

version of Burger's equation (also known as stochastic heat equation) using Hopf-

Cole transformation h(t, x) = - log z(t, x). This transformation converts the KPZ
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equation to the stochastic heat equation (SHE),

z- = - - z W. (2.7)
dit 2 dx 2

The choice of (v, A, D) is inconsequential as any non zero choice can be transformed

into one another. In this sense, the KPZ equation is also self-similar. The only

model for which solution is known is called the corner growth model [124]. Few other

models such as totally asymmetric simple exclusion process (TASEP) and the so called

last passage percolation process can be shown to be equivalent to the corner growth

model under specific transformations. The solution approach to the KPZ equation

involves three steps: (i) seek solutions to SHE equation (2.7), (ii) apply Hopf-Cole

transformation to the corner growth model to obtain a discrete version of SHE, and

(iii) show convergence of discrete SHE to continuum SHE under weak symmetry [124].

For the corner growth model, the KPZ equation can be solved explicitly to obtain the

probability distribution of the growth function as stated by the following theorem.

Theorem 2.11. [124] The growth function h(t, 0) satisfies,

limIP h(t, 0) - t/2
tim00 2-1/3 t1/3 - s = FGUE(s)

where FGUE(s) is the Tracy-Widom distribution.

It is important to note the appearance of the t1 /3 scaling in the variance of the

corner growth model, and contrast it with the scaling of t1 /2 obtained using the

central limit theorem. Such observations have led to the prediction of existence of a

new universality class (KPZ) for correlated random variables, similar to the Gaussian

universality class for independent random variables. It was also predicted in [62]

that the space correlations have fluctuations of order t 2/3 , though no mathematical

rigorous results for the same are available. For his seminal work for finding analytical

solutions to KPZ equation, mathematician Martin Hairer was awarded the Field's

Medal in 2014 [1111. We summarize the KPZ prediction explicitly by the following

conjecture,
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Conjecture 2.12. (Kardar, Parisi, and Zhang (KPZ)) /621 A stochastic growth pro-

cess is said to belong to the KPZ universality class if its long term behavior is similar

to the KPZ equation, i.e. there exists constants C1,C2 such that the growth process

h(x, t) behaves as, h(t, t) ~ C1t + C2t 1/3 for large t.

2.4 Characterization of Spreading Processes

2.4.1 Stability

In this section we summarize the behavior of the stochastic growth process in different

stability regimes using various tools that were described previously. We state our first

result and provide a lower bound on critical probabilities of the forest fire process by

comparing it to an equivalent bond percolation model [104] on a lattice in 2D. As it

can be seen from Figure 2-6, simulation results confirm that the lower bound is tight.

We note that obtaining a tight analytical bound for the phase transition threshold is

important, as it allows us to develop control policies in the next chapter.

Theorem 2.13 (Lower bound on critical probability). For the forest fire process, let

(ac7, i3) and (ipC, A,) denote the critical probabilities for the discrete and continuous

time models respectively, then the critical probabilities satisfy,

(i) (1 + ac3c > 1

(ii) 1 > 1

Proof. To prove item (i), for the discrete time model, let A denote the event that a

burning tree spreads fire to its healthy neighbor. Then

P(A) =Oa + #(1 - a)#a + 02(1 - a)2/3a + .-

_Oa
1- (1 - a)

At the critical threshold for Z2, this probability should be greater than the critical

probability for bond percolation pc(Z 2 ) = 1/2 which gives the desired result. The
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inequality is true because the fire process has more than one attempt (possibly infinite)

to infect the neighboring node as compared to a single chance in the bond percolation

model.

To prove item (ii), let U be a random variable such that, U = min{X, Y}, where

X and Y are exponential distributed random variable with parameters A and P re-

spectively. For the continuous time model, the fire spreads to the neighboring node

if U = X or X < Y. This event happens with probability

A
A + t

which should be greater than pc(Z 2 ) = 1/2 as earlier, which in turn yields the desired

result.

Theorem 2.14. (Upper bound on critical probability) For the forest fire process, let

(ac, /e) and (pc, A,) denote the critical probabilities for the discrete and continuous

time models respectively, then the critical probabilities satisfy, (i) a/oc < psc (ii)

+-t <_ Psc where psc is the critical probability of the site percolation model.

Proof. The result follow by the following observation. For the discrete model, if we

assume that when the fire doesn't burn out in the first time step, it spreads to all its

neighbors. This process is equivalent to the site percolation model. For a 2D lattice,

psc(Z2) = 0.5927. The argument for the continuous time model follows similarly. l

2.4.2 Open Loop Behavior

In the previous sections, it was shown using a coupling argument that the spreading

process on lattices in 2D is equivalent to a bond percolation model, under a suitable

transformation of probability parameter. This equivalence allows one to use known

results in bond percolation theory to characterize spreading process in it stable and

neutral regime.

When p < pc, the spreading process is in its stable regime and the number of

affected nodes is finite almost surely. Furthermore the number of affected nodes
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Figure 2-6: (a) The phase transition diagram for the fire process computed numeri-

cally. The plot shows the fraction of affected trees as a function of parameters a and

0. The dotted line shows the theoretical threshold calculated in Theorem 2.13. Below

the line the fire process is stable and above it is unstable. (b) A particular slice of

phase diagram for a = 0.9 and varying /. The phase transition occurs at #c 0.52

as predicted by Theorem 2.13.
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Figure 2-7: Numerical simulations of the spreading process in its stable and unstable
regimes. (a) Exponential decay of number of affected nodes with probability parame-
ter # in the stable regime, and (b) Log-log plot of growth of the spreading process in
unstable regime for increasing values of probability parameter (from a :: a, to a = 1,
with # = 1). The vertical axis is the fraction of the total number of nodes that have
been affected. The two dotted lines indicate linear slope. Near the critical threshold
the slope is super-linear indicating that the behavior is fractal. The slope becomes
increasing linear as a -+ 1.
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decay at a rate that is exponential in time (as shown in Figure 2-7) starting from any

initial condition.

When p = pc, the spreading process is in its neutral regime, and similar to the bond

percolation model it shows a fractal behavior. A fractal behavior is characterized by a

growth exponent that is super linear, and growth distributions that behave as power

laws. Roughly speaking, a fractal is one that has a large perimeter for a given included

area as opposed to a regular shape. For a geometry that has a regular shape, the ratio

of the area to its perimeter is linear in its characteristic length. For a fractal shape,

this ratio is super-linear function of the length. The super-linearity exponent is known

as the growth exponent of the fractal. It can be seen from Fig 2-7 that the growth

exponent of the spreading process near criticality is around 1.3. Numerical simulations

are close to the growth exponent of 4/3 predicted by the rigorous analysis available in

literature using SLE curves. This exponent approaches 1 as the probability parameter

p -+ 1, indicating that the geometry of the spreading process approaches regularity

as we move away from the neutral regime.

In the unstable regime, when p > pc, bond percolation model is not helpful to

characterize the behavior of the spreading process. This is because the bond percola-

tion model is a static model in which the state of the entire lattice is decided at one

instance. On the contrary, numerical simulations show that there is growth in the

number of affected nodes in the unstable regime for a spreading process. This behav-

Figure 2-8: The shape of the spreading process for different values of probability pa-

rameter p. When p < pc, the number of affected nodes is finite and the growth cluster

is negligible. At p = pc, the spreading process has a fractal shape; the perimeter of the

geometry is superlinear in the characteristic length. For p > pc, the shape becomes

increasingly convex and deterministic as p -+ 1.
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ior is captured by the first passage percolation model and the predictions made using

the KPZ equation. In this regime, we use the continuous time model of the spreading

process and show its equivalence to the first passage percolation model. Let X and

Y be exponential distributed random variable with parameters A and A respectively.

Recall that A is the probability parameter associated with spreading, and 1t is the

parameter associated with survival of the process. Define the passage time T to be

equal to X whenever X < Y, and equal to infinity when X > Y, i.e. T = X, with
AA

probability , and T = oc with probability ' . Thus, the equivalence between
A+p A+p

the continuous time model of the spreading process and the first passage percolation

can be shown by choosing the distribution F of the passage times T as follows,

Exp(A), with probability A

00, with probability g

where Exp(A) denotes exponential random variable with parameter A.

Once this equivalence between the spreading process and first passage percolation

is established, using the coupling argument, known results from the latter are applica-

ble for characterizing the spreading process in its unstable regime. In particular, the

growth rate of the spreading process is linear in time (see Figure 2-7). Furthermore,

the shape theorem is applicable for spreading processes, and the shape of the spread-

ing process becomes increasing deterministic and convex as the probability parameter

p -+ 1. Though the variance of the growth of spreading process is unknown in liter-

ature, we can conjecture using the KPZ model that the variances is not a constant

but rather grows with time, and behaves as ti/3 . Table 2.1 and Figure 2-8 summarize

the open loop behavior and the shape of the spreading process in its stable, neutral

and unstable regimes.
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Table 2.1: A summary of open loop behavior of the spreading process

Stable Neutral Unstable

Affected Nodes Finite Finite Eventually Infinite
Growth Exponential decay Power law decay Linear growth/growing variance

Cluster shape Negligible Fractal Convex and deterministic
Universality Bond percolation SLE Curves First passage percolation/KPZ

2.5 Flooding Time Analysis

In the previous sections we provided exact characterization for spreading processes on

lattices by coupling them with other well studied stochastic processes. For spreading

processes on general graphs, such an accurate characterization might not be possible.

However, in few cases we could still exploit the structure of the underlying graph

to characterize the spread of the process asymptotically. This section provides the

characterization for the same using the notion of flooding time. Flooding time T(N)

is defined as the expected time it takes for the spreading process to spread to all N

nodes for a given graph. For a finite graph, the flooding time is equivalent to the

longest path in the graph. The behavior of T(N) provides an indication of how easy

or difficult is it for the process to spread. We assume the unstable operating regime

for the spreading process and use the continuous time model. In addition, we assume

that A > , and for simplicity assume A = 1.

Let &B(t) denote the boundary of the spreading process at time t, which denotes

the set of all burning nodes that are connected to a neighboring healthy node. Let

n denote the cardinality of this set. Let &E(n(t)) denote the set of edges connecting

the nodes in &B(t) to their healthy neighborhood,

E(n (t)) = {u : u is an edge to a healthy neighbor of v, v E DB}

Let e(n(t)) denote the cardinality of &E(n(t)). We note that OE is a function of

n(t), and depends on the arrangement of the burning nodes. For the same value of

n, different arrangements of the nodes might give rise different edge set &E(t). For
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instance, on a square lattice in 2D, if at t = 0, n = 1, then e(1) = 4, e(2) = 6,

e(3) = 7 or 8, e(4) = 8, 9 or 10 and so on. The main goal in the analysis that follows

is to get an accurate bound on the number of edges e(n) for a given structure of a

graph. This would in turn result in an estimate of the flooding time.

Given the current state of the boundary &B(t) at time instant t, let t + At denote

the first spreading time, i.e. the first time instant one of the nodes in &B(t) spread

fire through one of the edges in OE(t).

Lemma 2.15. At is an exponential random variable with parameter e(n).

Proof. The time it takes to spread fire to a healthy neighbor through an edge in

&E(t) is an exponential random variable with parameter A = 1. Let Xi denote i.i.d

exponential random variable with parameter 1. The time gap At is a random variable

such that,

At = min{X1, X 2 ,- , Xe(n)}

which is also an exponential random variable with parameter e(n). Due to memoryless

property of the exponential random variable spreading process through any edge, Xi

are independent for all i.

Lemma 2.16. If at time t = 0, n(0) = 1, then the flooding time T(N), satisfies the

following relation for all N > 2,

N-1

T(N) = e(n)

Proof. Note that T = 0 and for any i > 2, (T - T,_ 1 ) is exponential distributed

random variable with parameter e(n - 1) from Lemma 2.15, which has an expected

value of 1 . Thus, E[TN] = T(N) = E -1 (1

If we know the growth behavior of edge set cardinality e(n), we can obtain a bound

on flooding time as follows.
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Lemma 2.17. Let e(n) = cna, where c, a > 0 are constants, then for large N,

O(N-a) a < 1

T(N) = (log N) a = 1

0(1) a> 1

Proof. We note that, T(N) = () N -c dn for large N. It follows that,

c(1-)N" a < 1

T(N) ~ log N a= 1

c(a-1) a > 1

Here 0 denotes order notation. If f(x) = 0(g(x)), then 3 xo and M > 0, such that

f(x) < MVx> X0.El
g(x)

In the following theorem, we characterize the behavior of spreading process using

flooding time for a line graph, square lattice, star graph and a complete graph.

Theorem 2.18. (i) For a line graph, T(N) = O(N).

(ii) For a square lattice on Z2, there exist constants c1, c2, such that,

c1 log N < T(N) < C2V7V.

(iii) For a star graph, T( N) = 0(log N).

(iv) For a complete graph, T(N) = 0( N

Proof. (i) For a line graph, e(n) = 2, for all 1 < n < N and result follows.

(ii) For a lattice in Z2, 2(1 + V2(n - 1) + 1) e(n) < 2n + 2, Vn > 1. The upper

bound is obtained if we assume that nodes always increase along a straight line

in which case they have n neighbors on two sides of the line and one neighbor on

each front. To obtain the lower bound, we observe that the best packing for the

nodes is achieved when they grow in the shape of a diamond. In this case if the
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interior of the diamond has n infected nodes, then for any k ;> 1, n = 2k 2 -2k+1,

and the number of edges to the neighboring nodes are e(n) = 4k. Using linearity
of expectation, 2 _ E[TN] N-1 1 which gives theof en 22(1+ 2(n-1)+1

desired result for large N.

(iii) For a star graph, if the hub is infected at t = 0, then e(n) = N - n, 1 < n <

N - 1, and if a node other than hub is infected at t = 0, then e(1) = 1 till the

hub gets infected after which e(n) = N - n, 2 < n < N - 2. In both cases,

E[TN] =- ' ~ log N for large N

(iv) For a complete graph e(1) = N - 1, e(2) = 2(N - 2), ... ,e(n) = n(N-n). This

is true because if n out of N nodes are infected, then for every infected node

there are n edges to infected nodes (that are not counted) and N - n edges to the

healthy nodes, thus a total of n(N - n) edges. Thus T(N) = EN- 1 -
i1n(N-n)-

+ (N-n) N for large N.

We note that for a lattice graph, the bound obtained by the flooding time analysis

is weak as the results are asymptotic in nature. If N = ct2, then the flooding time

analysis suggests that the time to cover an area of N nodes is upper bounded by a

time that is linear in t, and lower bounded by time that is logarithmic in t. This

result should be compared with that obtained by first passage percolation and KPZ

growth models, that accurately predict linear growth rate for spreading processes on

lattices.

2.6 Summary

In this chapter we defined notions of stability for the spreading process on lattices

and characterized its behavior in its stable, neutral and unstable regime. We also

accurately characterized stability of the process using a coupling argument with the

bond percolation model. A summary of the behavior of spreading process is provided

in Table 2.1.
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Chapter 3

Control of Spreading Processes II

In the previous chapter, we defined notions of stability for the spreading processes and

using various tools from mathematical physics characterized the open loop behavior

of the spreading processes in its stable, neutral and unstable regimes. This chap-

ter characterizes the closed loop behavior of the spreading processes. In particular,

we consider an unstable spreading process and develop randomized node treatment

policies that guarantee the stability of the spreading process. As spreading processes

are stochastic processes, a stabilizing policy is one which ensures that the number of

burning (infected) nodes go to zero almost surely (with probability 1) for all possible

realizations of the spreading process.

In the first part of this chapter, in Section 3.1, we consider two randomized heuris-

tic policies - (i) a Random Node Treatment (RNT) policy that treats only a fraction

of burning nodes at any given time, and (ii) a Finite Time Interval (FTI) policy that

treats all the burning nodes at finite time intervals. We show that a finite number of

robotic vehicles (bounded control) cannot stabilize an unstable spreading process in

all its possible realizations. As such, when a growing number of vehicles are available,

we provide technical conditions for stability of the spreading process. Even though

the RNT policy is not optimal, it serves as a bound on the FTI policy; whenever an

equivalent RNT policy is stabilizing, the corresponding FTI policy is also stabilizing.

The second part of this chapter, Section 3.2, is concerned with development of

an optimal policy for stabilizing an unstable fire process on a 2D lattice. In order to
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develop the control policy, we first show that an insightful description of the growth

process can be obtained by analyzing the spreading of the process in terms of the

edges, rather than the nodes of the underlying graph. We then define a randomized

preferential node treatment policy that is optimal in both resource allocation and

control effort. To derive the properties of the aforementioned policy, we construct an

equivalent tree description of the growth of fire process. Using tools from branch-

ing process and percolation on irregular trees, we prove that this policy in indeed

stabilizing and optimal.

In all our further discussions in this chapter, we assume that the spreading process

is in its unstable regime with p > p,. To avoid the difficulties associated with large

parameter space of (a, 3, A, p, Ap, -r), and for notational ease, whenever possible, we

state all our results with regard to the probability parameter p, while noting that all

results can be mapped back to the model parameters.

3.1 Heuristic Policies

The aim of this section is to develop control policies that stabilize an unstable fire

process. The simplest policy one can consider is a policy in which all the boundary

nodes are treated uniformly at random. For such a policy, few natural questions one

would like to consider are (i) Is such a policy stabilizing?, (ii) If so, how many nodes

need to be treated?, and (iii) Can treating a finite number of nodes stabilize the fire

process? We start with defining the RNT policy,

Definition 3.1. Random node treatment (RNT) policy: Given Z(t) burning (red)

boundary nodes of the fire process at time t, treat a fraction f of the nodes by selecting

them uniformly at random.

As a large number of robotic vehicles might not be available in practice, we ask

if a finite number of vehicles can stabilize an unstable fire process? The result turns

out to be negative as formalized by the following theorem.

Theorem 3.1. A constant number of vehicles cannot stabilize an unstable fire process
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using the Random Node Treatment (RNT) policy. Let n(t) be the number of available

vehicles and let Z(t) be the number of burning boundary nodes at time t. A fire process

is unstable if

lim n(t)= 0
t oo Z(t)

Proof. To prove the theorem, we show that the probability for the spreading process

to reach any particular state s is non-zero. For instance, the probability for a fire

starting from origin and propagating along a straight line to m nodes is at least pm ,

which is non zero. Let at time t = 0, the initial state of the process have Z burning

nodes on the boundary and let Z > n. Let r be the growth or spreading rate of an

infected/burning node. At t = 1, (Z - n) nodes are still burning, and continue to

burn at t = 2 if r(Z - n) > n, which implies L < Q. Thus at any time t > 0,
n< rt++1which is non-zero for any r > 0. In particular, if n()= 0, then

Z-t 'W r r .. ++1 Z(t)-,te

fixed number of vehicles n(t) cannot stop the spreading process from reaching any

state s and thus the spreading process is unstable. E

The above theorem leads to the natural question that suppose we can supply a

growing number of vehicles, then at what rate should the vehicles be available in

order to stabilize the fire process? The following theorem answers this question.

Theorem 3.2. A random node treatment policy stabilizes an unstable fire process if

q <pc where q =p - fAp.

Proof. At any given time t, let the number of vehicles be n(t) and let the number

of burning (red) boundary nodes be Z(t). Let A denote the event that a particular

node is treated by a robotic vehicle. Then, P(A) = ( = = f. Further, the

propagation probability of any node is q = (p - Ap) P(A) + p P(Ac) = p - fAp. The

result follows from the fact that the fire process is stable if q < pc.

We have shown that treating only a fraction of burning nodes at random at every

time step achieves stability for the fire process. However, in practice, vehicles might

not be available at every time due to their finite retardant carrying capacity; it takes

finite time to refill the vehicle before it is available for use. As such, we now consider

the FTI policy in which the robotic vehicles are available only at finite time intervals.
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Figure 3-1: The behavior of fire process with and without control for 3 = 0.99. Note
that the use of control results in a shift in the critical probability threshold to the
right. The closed loop control has been simulated for Aao = 0.1 and vehicle inter
arrival times T = 3.

Definition 3.2. Finite time interval (FTI) policy: Treat all burning boundary nodes

of the spreading process at finite time intervals T.

It turns out that the stabilizing properties of the FTI policy could be easily ana-

lyzed by comparing it to an equivalent RNT policy. The equivalence is stated in the

following theorem.

Theorem 3.3. A finite time interval policy is equivalent to the random, node policy

with f = -. In particular, if the RNT policy is stable for some f, then the FTI policy

is also stable if -r 1/f.

Proof. We prove the argument by construction. Let {Zr(0), Zr(1), Zr(2), ... , Zr(t), ..

be the sequence that denotes the number of red boundary nodes at time t when the

RNT policy is applied and let {Zf(0), Zf(1), Zf(2),... , Zf(t),.. .} be the sequence

when the FTI policy is applied. A burning node can propagate fire to at most 3

nodes on a 2D lattice and thus from a branching process argument, we note that

for the RNT policy E[Z,(t)] (3q) t E[Zr(0)]. Here q = p - pc. For the FTI
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Figure 3-2: The fraction of the forest burnt under FTI and RNT policies for a discrete

time model of fire process with a = 0.1, 3 = 0.99. (a) FTI policy as a function inter

arrival times r. The process is unstable for r > 4. (b) RNT policy as a function of

fraction f of boundary nodes treated by robotic vehicles. The graph shows a sharp

transition from unstable to stable regimes around f = 0.3
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Figure 3-3: Comparison between the RNT and the FTI policies when f = 1/r for the
discrete time model of fire process with a = 0.1, / = 0.99. The FTI policy (blue) for
different time intervals rs is bounded above and below by the RNT policy (dashed)
with number of vehicles n = [Z/r] and n = [Z/Ir] +1. As -r is an integer variable in the
discrete time model, [.] denotes the greatest integer function. Z is the total number of
burning boundary nodes. Stability under the RNT policy ensures the stability under
the equivalent FTI policy.

policy, the expected number of boundary nodes after m treatments is bounded by

E[Zf(m7)] (3p)"'T-"[ 3 (p - Ap)]"E[Zr(0)]. This bound has been obtained by not-

ing that the boundary grows at rate proportional to p when no vehicles are present,

and at rate p - Ap otherwise. Let E[Zr(t)]max denote the maximum expected value

of sequence {Zr (t) } and let E[Zf (t)]max be the corresponding maximum for the se-

quence {Zf(t)}. At time t = mr, if we want E[Zf(t)]max < E[Zr(t)]max starting with

the same initial condition, then (3p)m -[3(p - Ap)]m < [3(p - fAp)]mT . The result

follows by taking the limit m -÷ oc and using the fact that (1 - X)y ;> 1 - xy when

0 < x, y < 1. In particular, because E[Zf(t)] E[Zr(t)]max, the boundedness of the

RNT policy ensures the boundedness of the FTI policy if r < 1/f 1
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It is possible to define a policy that is a combination of the RNT and the FTI

policies, and does not utilize all the vehicles at a given time, but instead uses a fraction

of available vehicles for treatment at a particular time, while reserving the rest to be

used at a later time. The following corollary gives technical condition when such a

combined policy is stabilizing.

Corollary 3.4. An unstable spreading process can be stabilized by a random node

treatment policy in conjunction with finite time interval policy if q = p - 'Ap < PC

3.2 Optimal policy

In the previous section, we described heuristic control policies that could stabilize

an unstable fire process when certain technical conditions were satisfied. However,

the policies were not optimal. In this section we are interested in developing optimal

control policies for stabilizing the fire process. The key quantities of interest for

defining optimality are (i) the number of nodes that should be treated by a control

policy, and (ii) the location of the nodes that should be treated. We define the number

of nodes to be treated as the resource or the control effort used by the control policy at

every time step. In addition, if the resource available is finite, then the policy might

allocate the resource to certain nodes preferentially; i.e. treat certain nodes with

preference as opposed to treating all nodes uniformly. This leads us to a Preferential

Node Treatment (PNT) policy that is defined below.

Definition 3.3 (Preferential node treatment (PNT) policy). Given an unstable fire

process with parameter p > pe, select each node for treatment at time instant t with a

Bernoulli probability,
P ZdiZt

qt =min{ (1 - -) , 1}
p i= di

where, Zt are the number of boundary nodes at time instant t, and di is the outgoing

degree of node i, with 1 < i < Zt.

At every time step t, the PNT policy defined above treats nodes with unequal

probability qt proportional to their outgoing degree. The outgoing degree, di, for a
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given burning node is the total number of healthy (green) nodes connected to it. It

should be noted that if di = 0, then the node is not a boundary node. Figure 3-4

shows one particular realization of the fire process, and provides an example for node

treatments under the PNT policy. The properties of the PNT policy are formalized

below.

Theorem 3.5 (Stability and optimality of the PNT policy). For an unstable fire

process with parameter p > pc, a preferential node treatment policy stabilizes the fire

process almost surely. Further more, the policy is optimal in resource allocation and

control effort.

Remark: The PNT policy has three features - (i) Higher the value of p, larger are

the expected number of nodes that are treated. As p - pc, the expected number

of nodes that are treated go to zero (ii) a node with higher outgoing degree has a

higher chance of getting treated as compared to one with a lower degree, and (iii) Pc

encapsulates the structure of the graph on which the fire process is defined. For Z2,

Pc = 1/2. Thus if p = 1, then at least half the total number of boundary red nodes

need to be treated for achieving stability.

The rest of the chapter is concerned with proving that the PNT policy is indeed

stabilizing and optimal. The proof consists of two parts. In the first part, in Subsec-

tion 3.2.1, we consider the resource allocation question: given any finite amount of

fire fighting resource, R, how should it be allocated among the burning nodes? In the

second part, in Subsection 3.2.2, we consider the control effort question: what is the

minimum value of this resource, R*, that guarantees stability of the fire process? The

proof of Theorem 3.5 is then completed in Subsection 3.2.3 by combining the results

obtained from the earlier two subsections.

In the discussion to follow, we switch between the continuous and discrete time

models as required based on ease of description of the results for the fire process,

while noting that the results derived in one regime easily extends into the other.

Whenever we use the continuous time description, without the loss of generality we

assume that A = 1. We also ignore the effect of competition between spreading and
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Figure 3-4: A particular realization of fire process and the PNT control policy. The
blue polygon denotes the boundary of the fire process at some particular time instant
t. The red boundary nodes are capable of spreading fire to neighboring green nodes,
thus Zt = 11. The directed arrows from red to green nodes show the edges along
which the fire process propagates, thus Zt di = 20. If p = 0.75, the (bottom) left
most red boundary node is selected for treatment by the PNT policy with probability

1 11
qt = - x 3 x - = 0.55.

3 20

burning times by assuming that A >> g, which implies that the all the boundary

nodes are burning (red). It should be noted that this assumption does not affect the

optimality properties of the policy; it only simplifies the description of the policy.

3.2.1 Optimal Resource Allocation

We first state few properties of the exponential random variables which we later

utilize for developing policies for the fire process. Due to memoryless property of

the exponential random variable, if we observe the fire process at any time instant,

the time for which a particular node has been burning is independent of the time for

which it will burn in the future. Furthermore, the time for which a burning node

continues to burn is also an exponential random variable with the same distribution.

We also use the following properties for a set of independent exponential random
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variables.

Lemma 3.6. If X1 , X2, -- - , X,, are independent and identically distributed exponen-

tial random variables with rate 1. Let Y = min{Xi, X2 ,- , Xn}. Then,

(i) Y is exponential random variable with rate n.

(ii) P(Y = X ) = -1, for all i.

Proof. Let Pi, P2, - -Pn be n independent Poisson processes each with rate 1. In

a Poisson process, the inter arrival times are exponentially distributed with rate 1.

Then, the merged process P = > Pi is also a Poisson process whose rate is n. The

quantity Y is equivalent to the first arrival in the merged process which is exponential

distributed with rate n. Similarly, the probability that the first arrival in the merged

process occurs from process P is 1/n. Alternatively,

P(Y = X7,Y > x) j P(Y > z|Y = Xj) fx,(z) dz

= j P(Y > z) e-z dz = e-nz dz = e-x

enx nSumming over all i yields P(Y > x) e-x which is density function of an
n

exponential with rate n. If we integrate over the entire support of the density function

by substituting x = 0, it follows that P(Y = Xj) = e dz = .li

We now apply the above results to the fire process. We observe that the red nodes

are capable of spreading fire along their outgoing edges to the green nodes that are

connected to them. Along every such edge, the time it requires to spread fire has an

exponential distribution. Using Lemma 3.6, it follows that the first edge along which

fire spreads has a uniform distribution among all the edges; spreading along any edge

is equally likely. Thus, at any given time instant t, if we have a resource of strength

Rt that can be used to reduce the spread of fire, the optimal policy that minimizes

the variance of the fire spread is to distribute the resource Rt uniformly along all the

edges of the boundary nodes of the fire process.
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Lemma 3.7. Given fire fighting resource Rt, the optimal policy (that minimizes vari-

ance of spreading) is one that distributes the resource uniformly to all the edges along

which the fire can spread. In particular, every edge receives resource Rt/Et, where Et

are the number of outgoing edges from the burning boundary nodes at time t.

Proof. Let i be the indicator random variable that takes value 1 if a particular edge

i propagates fire and 0 otherwise. The total number of edges that propagate fire in

the next time step are S = E_= Ii. We know that Is are i.i.d Bernoulli random

variables with parameter p. Let ui be the resource given to each edge which results

in reduction of the spread probability to p = p - ui. We are interested in finding

resource allocation ui that minimizes variance of S with a bounded resource constraint

uI + u2 + - - + uEt < Rt. Minimizing variance is same as minimizing second moment

of S, thus the optimization problem is to

Et Et

min p2 such that Zui < Rt
i=1i=1

Solution of the optimization problem can be found by introducing a Lagrange multi-

plier A,

Et Et

p2 + A(Zui - R,)
i=z1 i=1

minj = - = 0, A-= 0 ==> u = --, Vi
au aA Et

There are two issues in implementing the above policy directly for the fire process-

(i) Even though the fire process spreads along the edges that are connected to the

burning nodes at the boundary, the edges cannot be treated. We can only treat (or

delete) a burning node, and thereby control the fire process. (ii) The robotic vehicles

might not be able to reduce the parameters (a, 3) of the fire process continuously.

This leads us to define a modified policy as follows. If a particular node has a outgoing
di Re

degree di, then an equivalent policy is to allocate a resource of Et to that particular
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node. If Zt are the boundary red nodes at time t, then number of outgoing edges is

equal to the sum of degrees of all boundary red nodes, i.e. Et = EZ di. To account

for the discrete action of the robotic vehicles, we assume that if we choose to treat

a particular node, it is deleted (or burnt) at the next time step. With these two

modifications, we can define a randomized node treatment policy that allocates the

same expected amount of resource as compared to the policy described in Lemma 3.7

as follows,

Lemma 3.8. The expected amount of resource allocated by a randomized policy that

treats every node with Bernoulli probability

Rd,
q = min{ d I

is upper bounded by that allocated by policy described in Lemma 3.7.

Proof. Let i be an indicator random variable that takes value 1 if a particular node

is treated and 0 otherwise. Then, the total resource allocated or the number of nodes

that get treated are Ez I whose expectation is less than di = R. We have

used the fact that E[min{X, Y}] < min{E[X], E[Y]} for any two random variables

XY. 1:1

As the randomized policy is upper bounded, at optimality, the net resource allo-

cated by the two policies described in Lemmas 3.7 and 3.8 are the same. The intuition

behind the randomized policy is that if any of the edges of a burning boundary node

is selected for treatment, then the corresponding node is also assumed to be treated.

Clearly, under such a policy a node with higher outgoing degree has a higher chance

of getting selected. The min(-) is due to the fact that probability parameter p is

positive, and it is not possible to allocate a resource to a node to drive this parameter

below 0.
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Figure 3-5: The mapping of the fire process to anl equivalent tree description on a
2D lattice. At t = 0, there is one red node. At t = 1, the red node remains burning
and propagates fire to a neighboring green node, thus giving birth to two children in
the tree description. At t = 3, the red node at origin remains burning giving birth to
itself while the other burning node gives rise to two children. At t = 4, the node at
the origin burns out and thus there is no further progeny for the left most branch in
the tree description.

3.2.2 Optimal Control Effort

In the previous subsection, we discussed how to optimally distribute any given re-

source R. In this subsection, we discuss the minimum amount of this resource, R*I

that is needed to stabilize the fire process almost surely. To do so we use several con-

cepts from branching processes and percolation on irregular trees - (i) We construct

an equivalent tree description of the fire process on a 2D lattice. (ii) We observe that

the generated tree could be obtained from the progeny of a branching process, and

that branching process and percolation on a tree are equivalent concepts. (iii) We

use the notion of branching number for an irregular tree, which is the counterpart

of the degree of a regular tree, and observe that branching number is related to the

percolation threshold. (iv) We provide technical conditions for the extinction of the

branching process constructed from the fire process under a control policy.

Before we begin with constructing an equivalent tree description of the fire process,

we provide few definitions. A tree is a connected graph with no cycles. The topmost
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node of the tree is called the root of the tree. The number of leafs (or children) of

a particular node of the tree is called the degree of the node. If the degree of every

node of the tree is the same it is called a regular tree, otherwise the tree is irregular.

The vertical distance from the root is called the generation or depth of the tree.

Figure 3-5 shows the procedure for tree construction starting with one burning

node. The construction uses two notions - (i) if a burning node at the current time

step continues to burn at the next time step, it gives birth to itself, and (ii) the

number of additional children the burning node produces at next time step is the

number of healthy (green) nodes that caught fire through this node. The key point

is that we keep track of the path through which a healthy (green) node caught fire

from a burning (red) node. On the other hand, if the burning node burns out at the

next time step, no additional nodes are added along that path. It should be noted

that the number of nodes at any given generation in the tree description are precisely

the boundary burning nodes in the graph description of fire process. In addition, it

can be easily seen that such a construction produces an irregular tree. We note that

such an irregular tree can also be obtained as a result of a branching process, a short

background for which is provided below.

Branching Process: A branching process (also known as Galton-Watson branch-

ing process) is a stochastic process that models population growth. The setting of

the process is as follows. At time t = 0, there is Zo = 1 individual (or node) which

gives birth to a random number of children Z1 at time t = 1, according to a known

probability distribution F. Similarly at t = 2, each individual among Z1 gives birth

to a random number of children according to the same probability distribution F.

The (level or) time t is known as the generation of the process. A key question that

one is concerned with is whether the progeny of the process dies out, i.e. after a

generation the population becomes extinct and no more children are produced (an

inherent assumption that is made is that at each generation, the individuals at that

generation can produce children only once).

In particular, let B be a branching process with children distribution F = Pk for
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k = 0, 1, 2,... (number of children produced are k with probability Pk). Let Zt be the

progeny of the process at generation t. Define 1 to be the extinction probability of the

process with q = limt>. P(Zt = 0). Let g(x) =Z xkkPk be the moment generating

function of B, and let ( = Ek kPk be the expectation of the children distribution.

We state the key result from the theory of branching process below.

Theorem 3.9 (Branching process [651). The extinction probability 77 of the process

B is the smallest non-negative root of the equation x = g(x). If ( < 1, then r7 = 1.

Proof. Let At denote the event that Zt = 0, and let P(At) = 7t. Clearly, At C At+1,

and thus At is an increasing event. Thus by continuity of probabilities, if A = UIAt,

then P(A) exits and P(A) = limt>, r7t = rq. We first show if ( < 1, then 7 = 1. Note

that E[Ztl = (t. Then, by Markov inequality, P(Zt > 1) < (t. It follows that,

EP(Zt > 1) < = 1 < 00
t=1 t=1

if ( < 1. Thus, by Borel-Cantelli lemma probability that the event {Zt ;> 1} happens

infinity often is 0. For every w, the event Zt(w) > 1 occurs only finitely, which implies

3T(w) such that Vt > T(w), Zt(w) = 0. 1

Theorem 3.9 states that the branching process dies out almost surely (with prob-

ability 1) is the expected number of children of an individual/node is less than one,

( < 1. If ( > 1, then there is -a non-zero probability that the branching process never

dies out and continues for ever (see Figure 3-6).

We also define a branching process with deletion, BD, as follows. Let BD be a

branching process with the expected value of the children distribution, E[T] = (D.

In addition, at every generation, we retain each node with probability r and delete it

with probability 1 - r. Let 17D be the extinction probability and gD(x) the moment

generating function of process B respectively. The following corollary follows from

Theorem 3.9 that gives technical conditions for extinction of BD.

Corollary 3.10 (Branching process with deletion). The extinction probability r/D

of the process BD is the smallest non-negative root of the equation x = gD(xr). If
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Figure 3-6: A schematic of branching process and percolation on a tree. (a) Starting
from the parent node, the progeny of the branching process dies out almost surely
(with probability 1) if expected value of the number of children produced at each
generation is less than one. (b) A percolation on a regular tree is equivalent to the
branching processes in which nodes are retained with probability p and deleted with
probability 1 - p. If the degree of regular tree is 3, then the tree does not percolate
almost surely if p < 1/3.

r (D < 1, then liD = 1-

It should be noted that in the branching process B-D, it could be possible that

(D> 1, and the process would continue to branch for ever. However, by choosing an

appropriate deletion probability r, the expected number of children for every node

r(D could be driven below one, thereby making the process die out almost surely.

Percolation on Trees: We now provide a short introduction to the theory of

percolation on irregular trees and define the notion of branching number, which would

be applied later in the chapter to characterize the fire process. We saw earlier that

a regular tree is one in which every node has a constant degree. Consequently, the

knowledge of the degree is sufficient to specify a regular tree. For example, a binary

tree is one in which every node has degree equal to two. Branching number (denoted

as B,), generalizes this notion of a constant degree for any tree, in particular an

irregular tree. Roughly speaking, the branching number of an irregular tree is the

average or the constant degree for the entire tree. We provide a short background

to the available results on the branching number of the tree below, based on the
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interpretation of random walks on the tree. However, it should be noted that there

are several interpretations of the branching number of a tree and we refer the reader

to [66,126 for details.

Let T be an infinite irregular tree, i.e. its children extend to infinity. Consider a

random walk on T, starting at the root with the following property. Given any node

with m children, the random walk returns to its parent node with probability b

and jumps to any of the m children with probability m , where b is a parameter.

There exists a critical value of parameter b, = bc(T) such that for b > bc, the walk is

recurrent, i.e. returns to the root infinitely often and for b < be, the random walk is

transient, i.e. it has a finite probability of never returning to the root. This critical

threshold b, is same as the branching number of the irregular tree.

Theorem 3.11 (Theorem 4.3 in [1261). The critical threshold b, is the branching

number of irregular tree T, B,(T) = b,.

We now define the notion of percolation on an irregular tree as follows.

Definition 3.4 (Percolation on tree). Given an irregular tree T, consider a process

in which at every generation, a node is retained with probability p and deleted with

probability 1 - p. Then, there exists a critical threshold Pc = p,(T), such that if

p > pc(T), the tree percolates, i.e. the root is connected to a node at infinity. On the

other hand, if p < pe( T ), the root gets disconnected from the node at infinity almost

surely.

Furthermore, it turns out that the critical threshold for percolation Pc for an

irregular tree and its branching number are closely related.

Theorem 3.12 (Theorem 6.2 in [1261). The critical threshold pC satisfies the relation,

1
P (T ) ="r B(T)

As a final remark it should be noted that all results for irregular trees are also

applicable for regular trees.
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(a) (b

Figure 3-7: Graphical representations of Theorems 3.11 and 3.12. (a) Notion of
branching number of irregular trees. Starting from the any node, a random walk
jumps to any of its m children with probability b , or returns to the its parent node
with probability 'm. There exists a critical threshold be, such that if b < bc, the
random walk escapes to infinity, and if b > be, it returns to the root node infinitely
often. b, is defined as the branching number for the irregular tree. (b) Percolation
on trees. At each generation, let a node be retained with probability p and deleted
with probability 1 - p. As we increase p, there exists a critical threshold pc such that,
if p < pc, the tree is disconnected almost surely and if p > p,, the tree percolates,
i.e. there exists a path from the root node to infinity almost surely. This critical

probability and the branching number are closely related: pc - y

Application to fire process: We now apply the concepts described thus far from

the theory of branching process and percolation on trees to characterize the fire pro-

cess. Recall that earlier we converted the fire process to an equivalent tree description.

However, the key issue in directly applying the results from theory of branching pro-

cess is that, in the case of fire process, the children distribution of the constructed

irregular tree is unknown. However, we could use the notion of branching number of

irregular trees to estimate the expected children distribution.

We first note that the irregular tree generated by a branching process B is equiva-
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lent to the tree that generated by percolation on a regular tree TZ. In particular, let

the expected value of the children distribution for B be (, and let the degree of the

Tz be d. For percolation on T, we delete nodes with probability 1 - p (and retain

with probability p). The two processes are equivalent if ( = dp, because both the

processes produce the same expected number of nodes in every generation.

We could extend the note above to irregular trees as well. In particular, consider

percolation on an irregular tree with branching number B, in which a node is retained

with probability p and deleted with probability 1 - p. The percolation condition for

this process is equivalent to the extinction probability threshold for a tree that is

generated by a branching process B, if the expected children distribution, ( = pBr.

In particular, if ( = pB, < 1, the branching process dies out almost surely and the
1

tree does not percolate. It should be noted that as B, = -, this equivalence just
PC

follows from definition of percolation, i.e. if p < Pc, there is no path from the root

node to infinity.

Finally, consider two processes, (i) percolation on an irregular tree with branching

number pBr, with a retainment probability of every node with probability r and

deletion with probability 1 - r, and (ii) a branching process with deletion BD, with

an expected number of children ( = pB, for every node, along with a node retainment

probability of r. From Corollary 3.10, the branching process B- dies out almost surely

if prB, < 1. The process (i) has a simple interpretation for the control of fire process;

for the irregular tree constructed from the fire process, the burning nodes spread fire

to their healthy neighbors with probability p, the irregular tree itself has a branching

number B, and an independent control policy deletes nodes at every generation

(independently of other nodes) with probability r. Thus, we can find a control policy

that stabilizes an unstable fire process almost surely, if we can find a bound on the

branching number.

Let 7-T be the irregular tree constructed from the fire process. Recall from Chapter

2 that for the fire process on a 2D lattice, its stability threshold is lower bounded

by the percolation threshold for the 2D lattice; p,(T) > pc(Z 2 ). Also, the relation
1

Br(Ty) = implies that B,(T) < pc(Z 2) Therefore, an unstable fire process
PC(TF)
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Figure 3-8: An equivalent branching process description for the fire spreading process
on lattices. A node spreads fire to its neighbors with probability p. The equivalent
number of neighbor a node is attached to is given by the branching number Br(T).
The PNT policy removes every affected node with Bernoulli probability q.

with p > 1, can be stabilized almost surely by a control policy that retains nodes
Pc(Z2)

with probability r and deletes with probability 1 - r if the quantity r < 1, i.e.
Pc(Z 2) -

r < ( . Furthermore, total the number of nodes that get deleted at a generation
P

t in the control policy is equal to (1 - r)Zt. Consequently, the resource Rt, that is

needed at generation t to guarantee stability of an unstable fire process is minimized

when r = -C, implying that the minimum resource needed to stabilize an unstable
P

fire process is R* = (1 - g)Zt.

3.2.3 Proof of Optimality of PNT policy

We summarize the arguments presented in the previous subsections and complete the

proof of Theorem 3.5.

Proof. Starting from the fire process on the 2D lattice, we constructed an equivalent
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irregular tree description in which the nodes at a generation t, represent all the

boundary burning nodes of the fire process (Zt). Then, we argued that the tree

description is equivalent to a branching process description with same number of

expected nodes at each generation. We also showed that a policy that deletes nodes

at each generation for this branching process, and ensures that the branching process

dies out almost surely, uses a minimum resource R* = (1 - P ) Zt.
p

We first claim that the PNT policy uses the same amount of resource R* at every

generation t. From Lemma 3.8, it follows that the resource used by the PNT policy at

every generation is at most R*. Furthermore, the PNT policy distributes this resource

among all burning boundary nodes, proportional to their outgoing degree di, which is

optimal. As the irregular tree and the branching process description are constructed

from the fire process, almost sure extinction of the branching process implies that the

fire process is stable, i.e. limsupt-- Xt(p) = 0 almost surely.

3.3 Summary

In this chapter, we considered closed loop control of spreading processes. In the

first part of the chapter, we characterized heuristic control policies to gain insights.

The effect of control on the spreading process results in a shift in critical probability

threshold. In the second part of the chapter, we developed a randomized node treat-

ment policy that stabilizes an unstable fire process almost surely. Using tools from

the theory of branching process and percolation on trees, we showed that this policy

is indeed stabilizing and optimal.
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Chapter 4

Control of Smart Manufacturing

Processes

This chapter discusses stochastic scheduling techniques for throughput maximization

in smart factories. Industry 4.0, considered as the new industrial revolution envisions

smart factories with modular architectures, consisting of several individual work sta-

tions that are served by automated guided vehicles (AGVs). The work stations consist

of machines with multiple capabilities. In manufacturing terminology, a capability is

the ability of the machine to perform a specific manufacturing process (for instance

cutting, welding, soldering, milling etc.). The work order required for a particular

product determines the network or connectivity structure between individual work

stations. In addition to work stations and AGVs, the shop floor also consists of mul-

tiple supply and shipping units to aid the manufacturing process. Figure 4-1 shows

one such layout of the smart factory. The problem that is addressed in this chapter is

how (when or at what rate) to schedule individual machines and the AGVs in order

to maximize the overall throughput of the smart factory.

Towards this end, the modeling aspects of the smart factory are described in

Section 4.1. In the Section 4.2, the inherent structure of the problem formulation is

discussed and it is shown how this structure leads to a stochastic scheduling algorithm.

The application of the scheduling methodology to two prototypical examples is also

presented.
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AGV

Shipping

Cells with capabilities

Supply

Figure 4-1: A schematic of the modern factory floor. The factory floor consists of
modular cells with multiple capabilities (such as cutting, welding, drilling, etc.). The
cells are connected by automated guided vehicles that transfer processed products
from one cell to another. In addition, the floor consists of multiple supply and shipping
units.

4.1 Modeling

We model the shop floor of the modern factory as a directed graph G(N, E), where

the nodes N represent the set of machines on the factory floor. We associate with

every machine i E N, (i) a set of capabilities j E j (eg. soldering, welding etc.)

that the machine is capable of performing, (ii) a set of input queues of preprocessed

products Qi and, (iii) a set of output queues Qt of finished products. For a given

machine with a particular capability, we also associate a time varying maximum

service rate, pax(t), defined as the maximum rate at which the machine is capable

of processing an input product. Depending on operation capabilities of the machine,

this quantity can change with time dynamically. The input and output queues have

finite capacity that we denote by Bij. Without loss of generality, we assume that
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Figure 4-2: Building units of the smart factory shop floor. (a) Machines or Cells with

multiple capabilities modeled as input-output queues with a finite service rate, (b)

an AGV with a finite transfer rate, and (c) supply and shipping queues

a machine with multiple capabilities can service at most one product from the set

of input queues. It should be noted that if a machine is capable of processing more

than one queue simultaneously, it is equivalent to increasing the count of machines

and thereby increasing the node set N. In this context, the individual work stations

should be thought of as smart CNC machines, which perform one task at a given time

even though they are capable of processing many tasks.

The edge set E in the graph represents the connectivity between individual ma-

chines and denotes the type of products individual machines can accept and produce.

We assume that the product transfers between the output and input queues of indi-

vidual machines are performed by automated guided vehicles (AGVs). As the AGVs

have limited capacity and finite speed, we associate with every edge e E E, a maxi-

mum service rate, "nax (t), that represents the maximum rate at which jobs could be

transferred from an output queue to an input queue by an AGV along an edge e. We

note that there could be regions on the factory floor where a single AGV could be

operating between several edges in the edge set E.

In addition, the factory floor also consists of supply and shipping units. The

supply units are modeled as sources or input queues Qsin. Similarly, the shipping

units are modeled as sinks or output queues Qsst. We assume that there are no

processing times associated with input and output queues.
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4.2 Stochastic Scheduling Formulation

Given the aforementioned model of the factory floor, the problem is to develop a

scheduling algorithm for machines and the AGVs. For the queue theoretic formulation

we define stability as the following.

Definition 4.1 (Stability). A queue theoretic system is stable if all the queues are

bounded, IM > 0 such that Qjj (t) < M,Vi, j and Vt > 0.

Problem Statement: Given a connected graph G(V, E), and associated maximum

service rates pnaa and maximum transfer rates A 'ax (t), develop a scheduling algo-

rithm for individual machine operations and transfers, such that the overall system

is stable and the throughput is maximized.

We propose a stochastic scheduling algorithm for the problem. For the ease of

understanding the problem structure, consider a very simple example shown in Fig-

ure 4-3, which consists of machine with a single capability. The equivalent graph

structure for this simple factory can be obtained by replacing the machine with two

nodes as shown. There are four queues which form the state space of the system. The

control parameters are the three service rates of the machine (pu 2(t)) and that of the

AGVs (A 12(t), A23(t)) respectively. Using a fluid limit formulation of this queue theo-

retic model, the evolution of the states can be described by the following dynamical

equations,

Qsin(t) = -A 12 (t) (4.1)

Qin(t) = A12 (t) - P2 (t) (4.2)

QOut (t) = p 2 (t) - A2 3(t) (4.3)

Osout (t) = 23 (t) (4.4)
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which can be conveniently written as,

Q1 -1 0 0 -
/\12

Q2i 1 -1 0 E A45

Q2o 0 1 -1
A 23

Q3 0 0 1
U

x I

where I is the incidence matrix of the equivalent graph, which is the matrix that

describes connectivity from the nodes to the edges of a graph. I, = 1 and I, = -1

if there is a directed edge from node x to node y in the graph G, and Izy = 0, if the

nodes x and y are disconnected.

Linear programing formulation: The structure of the smart factory can be con-

veniently expressed in terms of the incidence matrix of the underlying connectivity

graph. This enables us to solve the scheduling problem as an optimization problem

by converting it to a Linear Program (LP).

T

max E c'u(t) (throughput) (4.6)
t=o

x(t + 1) = x(t) + I u(t), (update equations) (4.7)

0 < x(t) < B (max queue size) (4.8)

0 < u(t) umax (max service rates) (4.9)

... additional linear constraints, if any

Here, T denotes the time horizon and B denotes the maximum operating capacity at a

machine or work station. Depending on the context, the objective function optimizes

the desired version of the throughput, which could be the averaged throughput over

time horizon T, final throughput at time T, specific service or transfer rates. As we

will see in the next example, additional constraints might be added depending on the

operating conditions and layout of the factory.
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A12(t) P 2(t) A23(t)

(b)

Figure 4-3: (a) A layout of a simple factory consisting of one machine with single
capability operating between a supply and shipping unit, and (b) the equivalent
graph description. Two independent AGVs operate on two transfer routes.

A feasible solution to the LP implies stability of the overall system as a feasible

solution implies the boundedness of all queues. Given a solution to the LP, the

scheduling scheme is to schedule individual work stations and AGVs at time instances

t with Bernoulli probabilities p(t) as follows,

P~t) -_ 2(t) A12 (t) A23 (t) (4.10)
/ 2 ,max' A1 2 ,max I 23 ,max

Figure 4-4 shows the implementation of the algorithm on the simplest factory

layout. The figure shows four test scenarios (a) (A 12 = 0.1, 42 = 1, A23 = 1), (b)

(A 12 = 1, ft 2 = 0.1, A23 = 1), (c) (A 12 = 1, 12 = 1, A23 = 0.1), and (d) (A 12 = 1, 12 =

0.2, A23 = 0.5). All cases have been simulated for T = 10, B = 10 and initial queue

size Q1(0) = 100. In case (a), the machine service rate A2 drops because it cannot

produce faster than input rate A 12. In case (b), the stability requirement forces A23 to

drop because queue lengths cannot become negative. A12 remains high until the buffer

is full, after which it starts dropping as well. In case (c), the machine is operating at a

reduced rate, but is getting served by a fast AGV. The buffer sizes of the queues allow

the system to remain operative even at higher service rates. Case (d) is a random

test case, the behavior of which could be understood from cases (a-c). In (d), the
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Figure 4-4: Four simulation
1, A2 = 0.1, A23 = 1), (c) (A 12

scenarios for (a)( 1 2 =
= 1, A2 = 1, A23 = 0.1),

0.1, Y2 = 1, A 2 3 = 1), (b) (A12 =
and (d) (A 1 2 = 1, /2 = 0.2, A2 3 =

0.5). In case (a) the machine service rate A2 drops because it cannot produce faster
than input rate A12 . In case (b) the stability requirement forces A23 to drop because
queues cannot go negative. A1 2 remains high till the buffer is full, after which it
starts dropping as well. In case (c) the machine is operating at reduced rate, but is
getting served by a fast AGV A12. The buffer size of queues, allows the system to
remain operative at higher service rates. Case (d) is a random test case, which can
be narrowed to cases (a-c). In (d) the machine service rate is the bottleneck, so it
behaves similar to case(b)
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machine service rate is the bottleneck, so it behaves similar to scenario in case (b).

In all cases the queue sizes are always bounded, and system is stable. In addition,

the system continues to operate at maximum possible flow rate given constraints.

Intuitively speaking, stochastic scheduling procedure discussed above avoids the

NP hardness of general scheduling problems by converting exact formulations into

an average cost formulation thereby making the problem mathematically tractable.

Such a procedure is well suited in an industrial set ups which are subject to repetitive

operations. In addition, LP formulations allow for fast implementation of the algo-

rithm in a changing environment. As we will see in the next example, load balancing

between operating agents in case of agent failure is also achieved automatically under

the formulation.

Once the structure of the problem is well understood, it can be applied to any

complex layout of the factory floor. Figure 4-5 shows a more complex layout of a

factory floor. The factory has a work station with two capabilities, but the machine

can process any one of the two input queues at a given time. In addition, there are

only limited AGVs available on multiple routes as shown. The scheduling problem

in this scenario can also be formulated as an LP with the state update equations

expressed in terms of the incidence matrix as before,

x = I u I E R11x0 (4.11)

where x E R"l is the state vector and u =E R0xi. In this case few additional

constraints need to be included in the LP formulation,

__2_ A 13A12(t) + < 1, (4.12)
A12,max A13,max

24___ A34 (t)A24(t) + < 1, (4.13)
A24,max A34,max

A41(t) + (4.14)
Y41,max P42,max

which correspond to the constraints on the AGVs and the machine 4 respectively.

The stochastic schedule for machine 4 in this case can be generated by sampling from
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Figure 4-5: (a) A layout of a complex factory consisting of two machines with one

capability and one machine with two capabilities. On the left part of the factory,
each AGV need to serve two routes (b) Equivalent graph description.

discrete probability distribution,

P41(t) = 41
A41,max

P42(t) = Y42 (t)
142,max

87

(4.15)

Jkl \3(t

(: 3i
P30)



4.3 Summary

In this chapter we developed queue theoretic formulation for throughput optimization

in smart factories. Using stochastic scheduling techniques, we converted hard schedul-

ing problems to average cost formulations. This allowed us to utilize the scheduling

problem as a linear program. The formulations were applied to representative exam-

ples.
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Chapter 5

Control of Transport Processes

In this chapter we study control of transport phenomena. Transport processes could

be used to model many physical systems such as traffic flow, chemical systems and

cell rolling among many others. Fundamentally, such physical systems are in non-

equilibrium and said to be operating in a non-equilibrium steady state (NESS). A

system in non-equilibrium steady state is characterized by observables that do not

change with time (steady), yet exhibit an irreversible exchange of heat, particles or

volume with the environment. As opposed to systems that are in thermodynamic

equilibrium with the environment, NESS systems are operating far from their equi-

librium conditions.

In this chapter, we study a model for transport phenomena called the totally

asymmetric simple exclusion process (TASEP), with applications to transportation

networks. Similar to the role of the Ising model in equilibrium statistical physics,

TASEP is a paradigmatic model for systems in non-equilibrium. The TASEP model,

usually described on a one dimensional lattice, is a model for molecular transport that

allows particles to jump stochastically and independently along a particular direction.

The particles enter the system at one end of the lattice, and exit at the other end at

specified entry and exit rates. These rates are the parameters of the TASEP model.

In addition, the particles at a particular site experience hardcore repulsion; i.e. two

particles cannot occupy a given site simultaneously. The global quantity that one

is concerned with in the TASEP model is the current or the flux of the particles
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through the system as a function of entry and exit rates. A key feature of the TASEP

model is that it shows phase transitions: depending on the values of entry and exit

rates, the current through the system exists is one of the three possible phases and

at certain critical rates exhibits a sharp transition from one phase to another for

minute variations about the rate. This thesis makes one of the first attempts to

control TASEP based models. The aim of exerting control actions is to achieve one

or more of the following behaviors - (i) maintain the system in a desired phase (ii)

move the system from one phase to another (iii) change the boundaries of the phase

diagram, and (iv) introduce new phases in the phase diagram. Such control strategies

would improve the efficiency of existing systems, and might also aid in engineering

new applications. For example, analysis and control of non-equilibrium phenomena

in transportation networks might lead to better organization of urban transportation

systems, thereby reducing delays and enhancing safety.

Towards this end, in this chapter, we study TASEP models of traffic flow to

characterize and develop congestion control policies for transportation. The phase

transition behavior of the TASEP model discussed before have been well studied in

the statistical physics literature and exact solutions to the TASEP model have been

calculated through a technique called Matrix Ansatz [96-98]. However, the key is-

sue in applying control techniques directly to TASEP models is that they break the

symmetry of the problem, thereby making exact formulations using Matrix Ansatz

techniques intractable. As such, we use one form of mean field approximation that

ignores long term correlation between random variables, but show that the approx-

imate model recovers the results obtained from rigorous Ansatz techniques exactly.

Furthermore, using this approximation we study routing policies for TASEP models

of transportation networks.

In Section 5.1, we discuss the TASEP model for a single lane traffic flow. We

characterize its behavior in non-equilibrium and identify phase transitions using mean

field techniques. In Section 5.2, we consider feedback control policy for the single lane

traffic and study the effect of an exit control policy on the traffic flow rate. We show

the system achieves maximum possible current under feedback for all possible input
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(a)

(b)

Figure 5-1: (a) Vehicles moving on a single lane, and (b) the equivalent Totally
asymmetric simple exclusion process (TASEP) model with open boundaries. Particles
attempt to enter from left at times that follow a Poisson process with parameter a.
Particles move only towards right (totally asymmetric) if and only if the neighboring
site is unoccupied (simple exclusion) at times that are form a Poisson process with
parameter 1. If last site is occupied, particles leave the system at times that form a
Poisson process with parameter 3.

rates. In Section 5.3, we consider a road intersection with each road modeled as an

independent TASEP. We derive technical conditions for exit control for individual

roads in order to achieve maximum flow rate through the traffic junction.

5.1 The TASEP Model

This section provides a description of a one dimensional model of totally asymmetric

simple exclusion process (TASEP) with open boundaries (Figure 5-1). Consider a

one dimensional lattice consisting of L sites. Each of these cites is either occupied

by a particle or is empty. If a site is occupied, then the particle tries to jump to its

neighboring site with rate p, only if the neighboring site is unoccupied, independent

of all other particles. That is during every infinitesimal time dt, a particle attempts

to jump to a neighboring site immediately right to itself with probability p - dt, if

the neighboring site is empty. If the neighboring site is occupied, the particle cannot

jump. In addition, a new particle can enter the system with rate Ce if site i = 1 is

unoccupied, and a particle at site i = L can leave the system with rate /. Let Tr

be a Bernoulli random variable that denotes occupation probability of a particular
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site i, i.e. Tj = 1 if site i is occupied and ri = 0 otherwise. Let the system be in

configuration (r1 , T2, - - - , TN) at time instant t, then the system configuration at time

t + dt (when p = 1) can be described by probability update equations,

Ti(t + dt) = p1 = T 1 + [a(1 - TI) - T1(1 - T2)]dt (5.1)
0, 1 - P,

Tr (t + dt) = , Pi = T, + [zl_1(1 - Tj) - T1 - Ti+1)]dt (5.2)

0, 1- pi Vi, 1 < i < L

TL(t + dt) = 1, PL = L + [L-1I( - TL) - O3 L d (5.3)
0, 1 - PL

The update equations count the number of possible ways a particle can enter a site

and subsequently leave a site. We define the current Ji and density pi at site i as the

following,

Ji = E[ 2(1 - ri+1 )] (5.4)

pi = E [T ] (5.5)

The current J can be interpreted as the average flux of particles between site i and

i+1. The density pi represents the average occupancy of site i. We are interested

in computing the current and density profile for every site of the lattice in steady

state, i.e. when the transients have died out. It should be noted that even though

the system is in steady state, it is not in equilibrium as there is a non-zero current or

flux of particles flowing from site i = 1 to site i = L.
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5.1.1 Non-equilibrium Steady State

As i(t) is a random variable, from (5.2) and by using law of iterated expectations we

get,

E[Tr(t + dt)] = E[Ti(t)] + E[Ti_1(1 - T)] dt - E[Tr(1 - Ti+ 1 )] dt, 1 < i < L

(5.6)E[ 9 7 ] = E[Tii_

Similarly, using (5.1) and (5.3) we have at the boundaries,

E[ O]= E[a(1 - ri)] - E[ri(1 -2)],

E[ a] = E[TL-1(1 - 7L)] - E[TL], i=L

In steady state, the quantities -ri(t) do not change with time. Thus, by equating

to 0, we obtain the following,

E[a(1 -Ti)] = ... = E[Tr(1 - Ti+1 )] = ... = E[3 rL]

=- Ji = J 2 = ... = Ji = ... = JL-1 = JL

(5.7)

(5.8)

a(-)
at

(5.9)

(5.10)

This result states that the current through the system is a constant in steady state,

which is a feature of a system in NESS.

5.1.2 Open Loop Behavior

In this section, we use an approximation known as mean field technique, to compute

the current and the density profile for the one dimensional lattice. Fundamentally,

the mean field approximation ignores correlations between random variables ri, Tr and

assumes,

E[T rj] = E[Ti] E[rj], Vi # j

Recall that p denotes average occupancy of site i, pi = E[Ti]. Let J denote the

constant current in steady state. From equation (5.9) and by using mean field ap-

93

(1 - ri)] - E[-Fi(1 - Ti+1)]



proximation, we get the following recurrence relationship for the average occupancies,

Pi =1- (5.11)

pi+ = 1- 1 < i < L (5.12)
pi

PL =(5.13)

The recurrence relationship (5.12) is known as a homographic function in analysis.

We state the following theorem from theory of homographic functions which we then

use to compute density and current profiles for the TASEP model.

Theorem 5.1. Let (an) be a sequence defined by ao and a recurrence relation, a,+, =

f(an),Vn E N.

1. If f(x) is a homographic function, then let x+ and x- be the two real roots of

the fixed point equation f(x) = x,

1
(a) If x' is a double root, then the sequence (b,) defined by bn = a san- x i

arithmetic.

(b) If the fixed point equation has distinct roots, then the sequence (bn) defined

by bn =- is geometric, irrespective of the choice of x+ and x
an - X--

2. If f(x) is an affine function, then there exists a real number -y, such that the

sequence (bn) defined by bn = an + -y is geometric.

Theorem 5.2. For large L, the steady state current J shows phase transitions and

exists in one of the following three phases,

1
(a) (Low density phase) If a < 0, a < , then J -+ a(1 - a)

2'

1
(b) (High density phase) If / <a, 3 < , then J -- 0(1 - /)

2'

1 1
(c) (Maximum current phase) If a, /3> - then J -÷ -

2 4

Proof. We note that (5.12) can be written as pi+1 = f(pi), where f(x) = 1 - -.
x
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(a) Let x+ and x- be two roots of fixed point equation f(x) = x, then x+
1+ 1 -n4J - - #1-- 4J

4J and 1- = when J < 1/4. Define sequence (ba) as,
2 2

Then, b.+1 =

bn = , po = OZ

Pn+1 - X+

Pn+1 - X-

1 - J/pn - X+

1 - J/pn - X-

+: +-x-bn j1-bn

X X+-Xbn-J
1-b,

=+ - b

x 2J 2J
x- x-2J

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)whe wbn

where we have used the following relations to simplify expressions,

+-;+ a- = J, x

(X +)2 = X+ _ J,

+Xz- = 1,

(X-)2 = X- - j,

(X+ - 2J)= 1V -4J x+, (x- - 2J) =- -/I -4J x-

As the sequence (ba) is geometric, it follows that,

(5.19)

(5.20)

(5.21)

(5.22)
a;-

bn = X bo = + a

When n = L, using (5.13) and (5.14) we have,

X-) a - X+ OX p+
bL = -=

X+ a - - J - Ox-

Then (J&)( -

' (J - OX-) (a - X+)

(5.23)

(5.24)

When J < 1/4, < 1, and thus for large L,
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Either x- a - J = a(l - a),

J
or x+ -+ - -> J =.1 )

/3

We note that as bL > 0 as L -+ 0c and x- < x+,

If a < ,and a < 1/2, then x- ta,

If < a, and 3 < 1/2, then x+ -

(b) When J = 1/4, the fixed point equation has double root x+ =

sequence (ba) as,

1
pn -l/2'p a

1 1
-> bn+1=/=l=

1n l - J - 1/2 1 g
Pn 4 Pn

- bn + 2

4 pn
2pn - 1

1/2.

4(1/bn + 1/2)
2(1/bn + 1/2) - 1

As the sequence (bn) is arithmetic, it follows that,

2
bn= 2n + bo = 2n + 2

2a - I

When J = 1/4, n = L,

1 2
bL 2 L + -

-,3 2a - 1
(1/2 - /)(a - 1/2)

(aO - 1/4)

Thus for large L, as 4 0,

Either a

If a> 3, /3

1 1
, or 3-4

2' 2
1

4-- orif/3>a, at

LI
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(5.25)

(5.26)

(5.27)

(5.28)

Define

(5.29)

(5.30)

(5.31)

(5.32)

1
L

(5.33)

1

(5.34)

(5.35)
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0.5
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0 0.5 1

Figure 5-2: Phase transition diagram for the TASEP model where current J is shown
as a function of entry rate a and exit rate /. The system can exist in three different
phases - low density (LD), high density (HD) and maximum current (MC) phase. At
the intersection of these phases, the system shows phase transitions. In the LD phase,
the current is completely determined by the entry rate a. In HD phase, the current
depends only on the exit rate 3. In the MC phase, system achieves its maximum
current of J = 1/4, and the current is independent of both a and /.

Theorem 5.2 proves the existence a phase transition diagram for the TASEP

model. Depending on the entry rate a and exit rate 3, the system can exist in

three different phases - (i) a low density (LD) phase in which a < /, (ii) a high den-

sity (HD) phase in which a > /, and (iii) a maximum current (MC) phase in which

a, / > 1/2. At the intersection of these phases, the model shows phase transitions. In

the LD phase, the current is completely determined by the entry rate a. Similarly, in

HD phase, the current depends only on the exit rate /. In contrast, in the MC phase,

the system achieves its maximum possible flow rate of J = 1/4, and the current is

independent of both entry and exit rates. Once the current profile in various regimes

are known, the density profiles pi can be calculated from (5.12). The density profile

pi is a continuous function and depends on the location of particle i. However three

main quantities are of interest - (i) the entry density pi, (ii) the bulk density Pbulk,

which is the density for large part of model away from the ends, and (iii) the exit
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Table 5.1: A summary of key quantities of interest in the three phases of the TASEP
model as a function of input rate a and exit rate #

Low Density (LD) High Density (HD) Max Current (MC)

(a,3) a< ,.a < 1/2 3< a,3< 1/2 a,3> 1/2
J a(1-a) 3(1 - ) 1/4

P- 1e ---

Pbulk a 1-3 1/2
PL a(1-a) 1-0 134,

_____ T13__ _ __ _ _ _ _ _ __ _ _ _ _ _

density PL. These quantities can be computed easily from (5.12)

known. Table 5.1 summarizes the relevant quantities of interest

in phase diagram.

once the current is

for various regimes

5.2 Control of TASEP on 1D Lattice

In this section we develop an exit control feedback policy for the TASEP model on ID

lattice. Specifically, we choose the exit rate 3 to be the average over the occupancy

probability of all L sites as follows,

(5.36)

Recall that pi is the expected occupancy of site i, pi = E[-r]. We assume that sensors

are available on various sections of the road that measure the average occupancy of

sites. In the following theorem we show that the control policy results in the system

Mm

Figure 5-3: Exit control strategy in which the exit rate / is changed based on average
occupation probability of the entire road
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Figure 5-4: The exit control strategy changes th
phase diagram onto the thick line as shown. This
MC phase even in HD regime

0.5

MC

1

phase diagram by collapsing the
results in the system operating at

achieving maximum flow rate whenever possible.

Theorem 5.3. For large L, under control policy (5.36), current J exists in one of

the two possible phases,

(a) If a < 1/2, then J -+ a(1 - a)

(b) If o > 1/2, then J - 1/4

Proof. We show the convergence of current to the two possible cases for LD, HD, and

MC phases. From (5.12), it follows that,

L L-1

i P1+ Pi + PL
i=1 i=2

L-2

=1--+ 1--++ +_ p

J J
L-2-

A=

We note that in a summation of pi in any phase, the bulk density pbulk dominates
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Table 5.2: The effect of exit rate control policy on a single lane traffic model.

Low Density (LD) High Density (HD) Max Current (MC)
a < 0, a < 1/2 #< ,#< 1/2 a, # > 1/2

3 -a 3 1/2 3-+1/2
J = a(l - a) J =1/4 J = 1/4

over the values at the end points, and as such in the limit average densities converge

to Pbulk. Dividing both sides by L and taking limit as L -+ oc yields,

3= 1- (5.37)
Pbulk

From Table 5.1, in LD phase, = 1 - a, which implies that 3 = a. In the HD

phase, = /, which implies / = 1/2, and in the MC phase = 1/2 which
Pbulk Pbulk

again results in / = 1/2.

Thus the effect of exit control policy is a collapse of the phase transition diagram

(Figure 5-4), onto the phase transition line as shown. The current is independent

of exit rate 3 and adjusts based on a. When the road is relatively free and in the

low density traffic regime (a < 1/2), the exit rate reduces its value, and for all other

regimes maintains itself at 3 = 1/2 to achieve maximum flow rate of traffic. Table

5.2 summarizes this behavior.

5.3 Control of TASEP on Intersections

In this section, we consider a two-road intersection controlled by an automated gated

exit that can reduce or increase flow rate of traffic into the traffic junction. Figure 5-6

shows a TASEP equivalent model of a road intersection (Figure 5-5). The roads have

been modeled as two TASEPs connected by a single site which is a traffic junction. We

assume that the traffic at the junction are controlled by two gate controllers ui and

U2 , that can regulate the flow of traffic into the junction. The parameters of two road

model are entry rates for individual roads a1 , a 2 and the exit rate through junction /33.
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Figure 5-5: TASEP models on generic road networks and intersections

To analyze the coupled TASEP model, we construct an equivalent model (Figure 5-6)

which consists of three independent one dimensional TASEP models. Both models

should operate at same currents, and this constraint gives us the effective exit rates

31,eff, /32,eff for two roads, and effective entry rate a3,eff for the traffic junction.

J1 = u1p1(1 - p), J2 = U2P2 (1 - P), J =33p

J1 = P1p1,eff, J 2 = P202,eff, J = a3,eff(1 - p)

(5.38)

(5.39)

Equating (5.38) to (5.39) results in,

#1 = u1(1 - ) #2 = U2 (1 - P),
a 3

a3 +0/3
(5.40)

where we have dropped ()eff for notational ease. In addition, we have traffic (or

current) conservation at the junction,

J = J1 + J2
(5.41)

Equations (5.40) and (5.41) result in following conditions,

a3 + /3
/32 = /33u2

a3 + 03

a3 = uiP1 + U2P2

(5.42)

(5.43)

(5.44)
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Y U2

2,eftf C 3,eff

Ia2 ta 2

(a) (b)

Figure 5-6: (a) Coupled TASEP model for a road intersection with a junction. At
the exit of each road there is a gate (ui, u 2 respectively) that can regulate the flow
of traffic (b) An equivalent model of (a) obtained by decoupling the system to three
independent 1D TASEP models with effective entry and exit rates. The traffic flow
rates in both (a) and (b) are the same.

The system can exist, in principle, in up to nine phases depending on individual

phases of each road (LD, HD, or MC) combined with that of the other. However, an

intersection reduces the overall capacity of the road and thus reduces the junction

exit rate #3. If 03 is below certain threshold, certain phases among the nine phases

would cease to exist. Furthermore, we note that the current through the junction,

J = , is an increasing function of a3. Therefore, for a given exit rate 0 <

03 < 1, the current through the junction is maximized when a3 = 1.

Even though it is possible to analyze system behavior for all possible values of exit

rate /3, we consider the most likely scenario in a traffic intersection when individual

roads are operating in the congested HD regimes. We consider the case when /3 = 1/4.

This choice models an eight lane traffic junction (with left and straight turns only) in

which the overall road capacity has been reduced to 25% of the maximum capacity

due to the presence of the junction. Let p, and P2 denote the occupation densities for

individual roads at their exit sites respectively. Recall from Table 5.1 that in the HD

regime, the exit occupation density is given by PL = 1 - /. This observation along

102



with (5.42), (5.43), (5.44) yields,

Pi =1 -0#1, P2 = 0 2

it1 0 /3

U 2  /2

-> 3U103 = ui[/ 1(1 - 31) + /2(1 - 32)] + /1/33

Let C* = /1(1 - /1) + /2(1 - /2), then (5.47) simplifies to,

/31
it 1 = ,U1 - C*

The constraints 0 i1 , 03 < 1 imply that

intersection, a necessary condition is,

U1C*
or /3 = UC0

i1 - #
(5.48)

for (HD-HD) phase to exist in the two-road

/ 33 (5.49)

It should be noted that if this equation is not satisfied, the phase (HD-HD) ceases to

exist. From (5.42) and (5.43), if /3 = 1/4, it can be easily seen that u1 = 5/31 and

U 2 = 5/2. Consequently from (5.49), the two individual roads are operating in the

(HD-HD) regime if the parameters (/31,# 2) lie inside the region bounded by,

(01 - 1/2)2 + (/32 - 1/2)2 < 7/10, 0 /3 1,/ 2 < 1/2,

and the optimal control rates (U 1 , iU 2 ) for the exit gates lie on the manifold,

ui(1 - u1/5) + U2 (1 - U2/5) = 1. (5.51)

The relation implies that any choice of (Ui 1 , U 2 ) satisfying (5.51) achieves maximum

flow rate of traffic through the junction. For the sake of completeness, if we assume

/31 = /2, then optimal control rates t1 = U 2 = 0.56.
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5.4 Summary

In this chapter we considered control of systems in non-equilibrium using TASEP

models for traffic flow. We first showed that the TASEP model shows phase transition

in the current (or the rate of flow of traffic) depending on entry and exit rates. We

then considered an exit control policy for traffic flow on a single road and showed

that the system achieves its maximum possible flow rate under feedback. Finally, we

considered interesting extensions of TASEP models to a two-road intersection and

analyzed automated gated control policies that achieve maximum flow rate of traffic

through the junction.
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Chapter 6

Conclusions and Future Work

In this thesis we studied analysis and control of stochastically interacting systems on

networks. Stochastically interacting systems are dynamic models of complex systems

involving a large number of interconnected components with three essential features -

(i) they are stochastic processes, (ii) their connectivity architecture has a networked

structure, and (iii) the connected components influence one another through local

interactions. The main goal of this thesis was to develop a control theoretic frame-

work for analyzing, characterizing, and stabilizing these complex systems. Using

three representative examples of such systems from the fields of spreading processes,

smart manufacturing, and transport phenomena, this thesis (i) developed mathemat-

ically tractable yet realistic models, (ii) performed control theoretic analysis of these

models and characterized their stability and open loop behavior, and (iii) developed

control policies to stabilize unstable behaviors while optimizing desired performance

objectives.

In the first part of the thesis, we considered control of spreading processes on

lattices. Such processes could be used to model many phenomena such as spread of

epidemic diseases, forest fires, opinion dynamic, crystal growth on surfaces, and fi-

nancial markets. Analysis and control of spreading processes is difficult mainly due to

high dimensionality of the state space of these processes. The most common approach

to deal with this issue in the literature has been to use a broad class of approximate

models known as the mean field approximations. Even though these approximations
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allow one to consider complex network structures and heterogeneous interactions be-

tween nodes, these descriptions completely remove the stochasticity associated with

these systems, which is one of their key features. Furthermore, approximate mod-

els do not characterize stability nor the behavior of the processes accurately. As

such, in this thesis we analyzed exact formulations of spreading processes and con-

sidered models on lattices for mathematical tractability. Using recently developed

tools from non-equilibrium statistical physics, we characterized stability of these pro-

cesses accurately. This thesis develops the notion of stability of spreading processes

using critical probability (pc) of a given graph. This formulation allows one to de-

rive accurate bounds on stability thresholds, as opposed to mean field approaches.

Furthermore, we characterized open loop behavior of spreading processes in its sta-

ble, neutral and unstable regimes accurately; a characterization that is not possible

using approximate models. Finally, for an unstable spreading process, we developed

a randomized control policy that is optimal in both resource allocation and control

effort.

In the second part of the thesis, we considered control of smart manufacturing

processes. Due to increased product customization and rapidly changing demands,

the recent trend in manufacturing is to shift towards a new industrial revolution which

has been popularized as Industry 4.0. Such a manufacturing process envisions smart

factories in which the shop floor is modular and is divided into many work stations

(or machines) with multiple capabilities. Individual work stations are connected by

automated guided vehicles (AGVs). Key issues in achieving this vision are effective

modeling, monitoring and scheduling of individual work stations and AGVs while

accounting for dynamically changing shop floor environment, that include machines

failures, rapidly changing demands, multiple products on production lines, addition

and removal of AGVs, among others. However, traditional methods of modeling and

scheduling lead to formulations that are combinatorially hard to solve, thus making

them difficult for real time implementation. To avoid this issue, in this thesis we

developed a queuing theory framework for modeling job flow between work stations

and AGVs. Using this framework, we showed that that the structure of the problem
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can be expressed in terms of incidence matrix of the connectivity graph. Finally, we

developed a stochastic scheduling algorithm, and showed that the optimal schedule

can be solved as a linear program. The approach is amenable for fast implementation,

and achieves a balanced load among operating agents in the case of failures.

In the last part of this thesis, we considered control of transport processes. Trans-

port phenomena or processes are systems that are in non-equilibrium, i.e. even though

the observables associated with the processes are time invariant, there is an irreversible

transfer of heat, energy, or particles with the environment. For instance, such pro-

cesses could be used to model traffic flow on transportation networks which is the

main application considered in this thesis. Even though study and analysis of sys-

tems exhibiting non-equilibrium phenomena have been considered in the past, there

are no effective ways to control or modify the behavior of these systems. Towards this

end, in this thesis, we studied control theoretic formulations for systems in nonequi-

librium aimed to achieve one or more of the following behaviors - (i) maintain the

system in a desired phase (ii) move the system from one phase to another (iii) change

the boundaries of the phase diagram, and (iv) introduce new phases in the phase

diagram. Starting from a paradigmatic model of non-equilibrium phenomena known

as totally asymmetric simple exclusion process (TASEP), we considered TASEP mod-

els for traffic flow on simple networks. We developed automated routing policies for

traffic flow on a single road with a gated exit, that achieved maximum flow rate of

traffic for all set of entry traffic conditions. We also extended this work and devel-

oped control policies for intersections and generic road networks to maximize flow

rate of traffic. It was shown that the optimal control strategies could lie on nonlinear

manifolds.

This work opens up opportunities to many further directions, few of which are

listed below:

Characterization of spreading processes based on critical probability rather

than eigenvalues of adjacency matrices: This thesis used the notion of critical

probability to characterize behavior of spreading process on a graph. In majority of
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literature on spreading processes, eigenvalues of adjacency matrices have been used

to characterize stability of process. However, critical probability might be better

suited for characterizing stability of spreading processes as they capture the essential

structure of the graph inherently. Characterizations of spreading processes based on

eigenvalues of adjacency matrices, could be insufficient at times, as many different

graph topologies could have the same eigenvalue.

Accurate characterization of spreading processes on different lattices: The

value of critical probability for percolation are accurately known for a variety of

lattices including square, triangular, hexagonal, Archimedean, inhomogeneous and

random lattices. The optimal policies developed in this work could be extended to

spreading processes models on all such lattices

Characterization of spreading process on inhomogenous and heterogeneous

models: Direction dependent spreading processes in which one direction is preferred

over another or spatially and time varying models of spreading haven't been accurately

characterized in the literature. This could be one possible direction for further study.

Throughput optimization for different job flows and on reconfigurable

floors: Industry 4.0 also envisions a reconfigurable factory floor, on which machines

self organize to maximize throughput depending on the product flow. A real time

optimal algorithm that could achieve the same could be a possible future direction.

In addition, there are many other types of job flows that could be considered in future

work. For example, mating of products, and products produced by 3D printing are

hard to model using traditional methods, and might need new modeling frameworks.

Analysis and control of TASEP models on generic networks: Analysis and

control of TASEP problems on generic transportation networks is an open problem.

The results from this thesis could also be extended to various networks that have a

specific structure (for e.g. scale free networks).
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