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existence of solution into two nth order descriptor
forms requires the existence of solutions to "genera-

The linear smoother for an n-th order two-point lized" Riccati equations [31, and general conditions

boundary value descriptor system (TPBVDS) [1] is formu- for the existence of such solutions have not been
lated by using the general linear estimator solution established.
developed by the method of complementary modelshin [2].
The smoother is shown to take the form of a 2n order

TPBVDS. By employing the solutions to generalized 2.1 The Model
Riccati equations 13] it is shown that the smoother
dynamics can be decomposed into two n

th
order descrip- In this section the model for the discrete linear

dnmc ca bdeoosditton ostochastic TPBVDS is introduced, and aforward/backward
tor form equations. The implementation of the smoother form of its general solution is developed. Let u, be

form of its general solution is develooed. Let u, be
solution is also addressed.

an mxl white sequence on [O0,K-ll with constant covar-

1. Introduction iance matrix Q. Let E, A and B be nxn, nxn and nxm
matrices respectively with the pair (EA} comprising

The class of descriptor systems was introduced by is not reouired to be
a regular Dencil [91. Thus, E is not required to be

Luenberger [1] to describe the dynamics of certain
linear systems for which the standard state-space re-

partitions as [VO:V
K ]
, and let v be an nxi random vec-

presentation is not applicable. The properties of partitions as [ and et be an nx random vec-
tor uncorrelated with u and with covariance matrix

processes of this type have been studied by a number of v
investigators (e.g. , and and the optimal Then the discrete TPBVDS satisfies the difference equa-

investigators (e.g. 141, [51 and [6]) and the optimal
tion:

control problem has been examined in [7]. In this paper
we discuss the fixed-interval smoothing problem for an Exl =Axk B (la)
nth order TPBVDS. The solution is formulated as a 2nth

with two-point boundary condition
order TPBVDS by an application of the general linear 0 K
estimator solution developed in [21 via the method of v = V XO + V xK . (lb)
complementary models. The implementation of the smooth- The realization of the smoother developed in [21
er solution is also addressed. A general solution for by the method of complementary models requires anopera-
a "regular"* TPBVDS is established along with a condi- tor representation of the process dynamics and boundary
tion for well-posedness. This general solution is condition. The appropriate operator representation for
developed as a linear combination of (i) the solution (1) is developed as follows. Let the set of points
to stable forward and backward recursions correspond- between 0 and K-1 be represented by Q = [0,K-1], and

ing to processes with standard state space dynamics and let the boundary of this region be defined as Q2= {0,K}.
(ii) the two-point boundary value. Following the metho- With D representing the unit delay, the dynamics of the
dology in [8] for the decomposition of the smoother for nxl vector process in (la) are given by the first order
two-point boundary value processes satisfying state- difference operator:
space form dynamics, the dynamics of the 2ntn order n(D U) (2a)
TPBVDS are also decomposed into two nth order descrip- 2 2

tor form representations. This decomposition can be defined notationally as
viewed as the generalization to descriptor systems of L 

L = (D-1E-A)
the Mayne-Fraser smoothing formula [131 for standard
linear systems. An application of the general solution and operationally as

to these two lower order descriptor form systems yields
the smoothed estimate. k = Exk+l 2c)

Some aspects of the smoother and its implementa- Viewing the matrix V as the operator
tion remain unresolved. First, the forward/backward V: R2n Rn (2d)
general solution is only applicable for a regular
TPBVDS. General conditions for regularity of the the dynamics and boundary condition in (la) and (lb)
smoother solution have not yet been established. Se- can be expressed as
cond, the decomposition of the 2n

h
order TPBVDS smooth- L = Bu (3a)

er into two nth order descriptor forms requires the

vxc = v (3b)
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lated here as a linear combination of two stable re-

*Conditions for regularity are given in Section 2. cursions, one forward and one backward. This form of

;:~~~ ~~·3Cl~~~~illCII~~~~~tr··~~~*^·;.I ~ ~ ~



the solution both lends insight into the properties of where
descriptor systems defined by (I) (e.g. weil-posedness) o K O K
and will provide a means for implementing the smoother Ffb + Vf(K, Vb K) + V] .
that is developed later in Section 3.

that is developed later in Section 3. Finally substituting for x and x from (9a) into
Given that {E,A} comprises a regular pencil there (8a) and (8b), it can be swn that

'K
the solution

exist nonsingular nxn matrices T and F such that to (6) is given by

and and AJ (4a) [Xf b (k)FOlv v �K - Vb0b 0 x ]
Af 01 where (10a)

FAT (4b) f k) -(k, 

fb (kf L 0 : 9b(kL,K (lOb)

where As is nlxnl,A is no x n2 n n + n2, and all
eigenvalues of Af and A. lie within the unit circle. Applying the inverse of the transformation in (5), the
These properties of Af and Ab can be obtained as a mod- original process xk is recovered by
ification of the decomposition of a regular matrix pen-
cil as described in (9]. The decomposition in [9] -1 , (
splits the pencil into forward dynamics corresponding k T
to a pencil of the type zI-A; and into backward dynamics
corresponding to z-iI-Ab where Ab is nilpotent. The In this way, we have have constructed a stable, for-
modification (4) simoly shifts the unstable forward ward/backward two-filter recursive implementation of the
modes of Af into the backward dynamics Ab. Employing general solution for the TPBVDS defined by (la) and
T in (4) to define the equivalence transformation (lb) with the only constraint being that {E,Ai form a

~x f'k -i Txregular pencil.

Xfk h( Tx(5) The well-oosedness condition for (la) and (lb) is

Lbk kthat F-b in (9b) be invertible. That is, for x to be
uniquely defined on [O0,K] by the input uk and boundary

and multiplying the dynamics in (la) on the left by F, value v,Ffb must be invertible. This invertibility
(1) becomes decoupled as criterion can be used to show that if E is singular,

x fk+l = A xf - B -uk (6a) (lb) must be a two-point (or multi-point) boundary con-
ff k+l = Afxf,k 4f k (6a) dition (i.e. (lb) cannot be an initial condition) as

follows.

k A l - B(6b) First note the E singular implies that Ab is sing-
%b,k D A Xb,k+l -BbUk ular and consequently that Ob is singular. For an

where initial value problem, VO I and Vi * 0, and there-

fore, Vf = 0 and Vb = 0. Thus, for an initial value
F Bf1 = FB ( problem Ffb becomes

- I F . (6c) 
Bb fb = [Vf 0b b( 0,K)] 

Note that A is forward stable and A is backward sta- 
ble. Given the transformation in (5T, the boundary = [V V
condition in (lb) takes the form f 0 ° b(OK

v -0V. VI fo + [fV (7a) Clearly, a necessary condition for F to be nonsinqu-
f bf : Vb 'L 0 Xxb,oK lar is that 9. (O,K) be nonsingular. However, this does

not hold whenDE is singular.
where

2.3 Green's Identity
0. 0 0T-1 K £

[V .V -V T 1and vV<] E V T (7b) In addition to the operator representation of the
TPBVDS in (3) the smoother solution we develop later

Employing the forward/backward representation of also requires the formal adjoint difference operator L
the dynamics of the TPBVDS in (6), a general solution which is obtained through Green's identity for L on Q

to (1) is derived as follows. Define ,k as ths solu- [21. Green's identity for discrete processes is ob-
tion to (6a) with zero initial condition' and x as tained from summation by parts of the inner productbre fosution to hk
the solution to (6b) with a zero final condition.' Note
that both can be computed by numerically stable recur- K-1
sions. With f the transition matrix for A and the = Yk k
transition matrix for A, one can write 2 <0.-l 2 =[

0 K-i
xf k = )f(k,O)xf + x (8a K

k f f,4O (Ba),k Yk(EXk+l A-xk) (12)
and

Xbk = )b(kOK)xK ok X (8b) Summation by parts can be interpreted as the counter-
part of integration by parts as follows:

Substituting for xf K and xb from (8a) and (8b) into
(7a) and solving fof K xf 0 and xb, gives

[f 1 vKO 0 - F V - O - V (9a)
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jIntergration by Parts iSummation by Parts v _ Wx + r (19b)
*__ _ _ _ _ _ _ _ __ -b 

=
W b b

T T v K-1 The minimum variance estimator of x given the ob-

udv - uv ! - vdu } Uk+L(Vk+l - ) servations y and y can be written by substituting
0 ! k=O from the operator description of the TPBVDS in (3) and

Green's identity in (15) and (16) into the operator

((u v -u v ) - v( -) form for the estimator in equation (3.17) of [2]. In
I K K 0 0° k kuk+l -k this case, the adjoints of , C. W and V are all sim-
i __________ __ .. ply given by matrix transpositions. The formal adjoint

(13 difference operator L , the matrix*F, and xb and y
(temporarily y will be used in place of ) have all

The term on the right hand side of the identity for been determined in the derivation of Green's identity.

sunmmation by parts in (13) has been obtained simply by The resulting smoother dynamics are given by

shifting the index of summation on the left hand side
and adding (u kv-uOv) to account for the shift. To 01 QB 

put (12) into the form of (13), we perform the _. _ _ k+l , k .
same type of index shifting to write E k - l -C'R C A kCR (20a)

k-l K-1
0(Ex+l . Yk k x' (Er'y k-AIYk) Iwith boundary condition
(EXk+l-'kk0 Z xk k k-I'AY k

W·Ilb T b v (W'T6 1W + V'Tv V) °0 + L 1 (20b)

-xEy_ + x ,_'yK . (14) ,i 1-0
_1 K K-lL L K-1

Defining As mentioned earlier, it will be convenient to
write the smoother in terms of the shifted process A

L = DE' - A' , (15a) defined in (17b). In this way the apparent four-point
boundary condition in (20b) becomes a two-point boun-

E. f1 ~dary condition. Furthermore, if we were to sDeciaiize

=o{-1 and - - (t15b cd) to the case of causal processes (E=I, VO=t, V--'O), the
X' b 0= r ( 

=
and smoother takes the traditional form of the discrete

fK- 1 L E fixed-interval smoother (see e.g. [101). Thus, in

terms of X and Ab (20a) and (20b) become
Green's identity can be written directly from (14) as

-Lx,'> -L Yx> <x >E 1 -+

2 2 0E C'R C A' k XklC Yk

We will see later that the estimator can be ex- (2 la)

pressed in a simpler form if written in terms of a

shifted version of y, which we denote by A: W
= 0.'0 + W0'RblW0 -E' 0

Ak+ Yk (i.e. X = Dy) . (17a) ' bYb LVK-lV°
+ w b1 W 0 °

k4-l ~k LWKJ IvK',-l vO wkh 0 I-IA

In terms of the shifted process A, yb is given by

] (17b) + - -[v v 1 o E (21b)o
b b AK K' 1K ' -1 K

LV V W W K b

Given Green's identity as expressed in (15) and (16),
in the next section we establish an internal difference
realization of the smoother for the discrete TPVBDS. E ' -BQ B'

E = --_ (22a)
3. The Smoother and Two-Filter Imolementation -A'

3.1 The Smoother as a TPBVDS

The observations for the fixed-interval smoothing A 0
problem are comprised of an observation of the process A = - (22b)

x at each point in the interval [O,K-1] as well as a C -E'
boundary observation as described below. Let C be a 1
pxn matrix, and let W be a full rank qx2n matrix with and
fin, with the rows of W linearly independent of those
of V in (2.3) and with qxn partitions:= (22c)

O3:CK
W= [W ] W (18) CR 

Let rk be a pxl white noise process over [O,K-lI whose the smoother dyanmics in (21a) can be written in des-
covariance matrix R is nonsingular and constant on criptor form as

[0,K-11. Let r, be a qxl random vector with nonsinou-

lar covariance iimatrixb. In addition, u, v, r and kll

rb are assumed to be mutually orthogonal. The obser- E - I . (23)
vations are defined by a process Yk Y 

k k+l k

uk = C-k + rk on ,K-l] (19a) *
In [21 ' is denoted by E. A change in notation is

and a qxl boundary observation required since E is used here in defining the dy-

namics of th TPBVDS in (la).



3.2 Impelmentation of the Smoother k k k d

Assuming* that the pair {E,A} is regular, one b,k 21 21 22
could immediately employ available numerical techniques k+l k
(111 to find matrices F and T analogous to those in A. k T F E (28e)
(4a) and (4b) to obtain a solution for [(,Al as des- ok 21 21
cribed in (8) through (11). Rather than taking this
numerical route directly, we will take an intermediate A T 12 F E' (28f)
step by which (23) is further simplified revealing 12 12
some additional underlying structure of the smoother

k+l k kdynamics. As will become apparent, this intermediate Abk T22 - F QB' + F A' (28g)
step has been motivated by the two-filter fixed-inter-
val smoother solutions for non-descriptor form systems k k k
(i.e. systems for which E - I) [8]. In particular, A T T F A + F C'R C (28h)
we will find 2nx2n matrix sequences Fk and Tk which de-1 1
compose E and A as

copsr.n ia Motivated by the decomposition of the smoother dynamics
fk 0 for state-space form two-point boundary value systems[-1 ' I in [81 and (121, choose

FkETk+ - (24a)

0 Ab,k. f,k

and FAT - [_ , 2b Tk Lec * (29)

- fk Tk [e·b Eb,k

A kc+l (24b) Employimg (29) along with the eight relations in (28)

- Eb,kl yields

Given this decomposition and defining E k e (30a)f,k f E f,k

[f - ,k k( A A[I - (C'R C + k) C'R -C] ef (30b)[ = TkII (25) fk fk fk

f k -A(C'R-1C + efk
)-

C'R (30c)
the 2n order smoother dynamics in (23) become de-
coupled into two nth order descriptor forms

b E' (30d)bk
E I A S B +(26a)
f,k f,k+l f,k f,k 

+
f,k Yk26a)

and Bbk = C'R (30e)

bo,k Xbk+l Ab,k b,k + Bb,k Yk (26b) Ab k A'tI + (BQB' + bk
- )

BQB
-

- (30f)

where

-1 k -.

-F ]* (26c) F … ' -

k ~ ~ ~~b,k
It can be shown that in order to achieve the decomoosi-
tion in (26a) and (26b), the partitions of Fk and Tk (3
denoted by Kwhere 8f and 8b satisfy the following generalized

k kc k Ic Riccati equations:

F11 F 12 11 T12 -1
Fk k k and Tk = (27) E E' A(C'RC + f k

)
A' + BQB' (31a)k k k Tk k E f,k+l f,k

22 21 22

must satisfy E ,'9bk E - A'(BQB' + 8 ) A + C'R C . (31b)b,k+l

kc+ k Equations (30a) through (30f) along with equations
Ef,k T11 F11 (28a) (26a) and (26b) completely define the decoupled dy-

namics for the transformed processes xf,k and Xb, k .

E T k 28b) An expression for the boundary condition for the
b,k 22 2 2 tranformed processes can be developed as follows.

First rewrite the boundary condition (21b) for the
E +l - BQ'k k untransformed smoother processes in a more compact

f,k 1 2 F1 1 BQB' + F1 2 A' (28c) form:

An outstanding problem is the determination of the ] [ [ 
conditions for which (E,A} is regular. 0,KI 0 K EI

4



With the inverse of equivalence transformation Tk given yields a representation for the estimation error dynam-
by ics and boundarv condition. Emplovinq equations (3.20)

I t -1 fz] k-1 ' O and (3.23) in [21, the smoothing error for the TPBVDS

' f,k f,k k 3 can be shown to, satisfy descriptor form dynamics:
T - - - - --- - - - - - - (33a)

E' e k X -1 E[- +[xkl Eu] (36a)

where ik+J kJ -C'R rk

Zk 3 fk + E'9b,k E (33b) with boundary condition

-IV 0
( kEB EV + V)B (33c) v La WIff lr O [ XO

'k f,k ,k f,k v

the boundary condition (32) can be written in terms of
the transformed processes xf and xi. as V - x

f o~~~~ 0 [~~~~v0,K xK
~ W'!T yb+ -E' , (36b)

(V + E'b,0 E) Z0 -(IE'SO I)E f i ffO where the error is defined as x - x, and A are
f= f 0 - - defined in (22), and the boundary condition (36b) is

-- I - -1 f written with the same notation as that used to express
V0,KZo VO K'f 0 EO f,0 0 . the smoother boundary condition in (32).

The covariance of the smoothing error can be com-
puted by an anolication of the difference equations

V SK :V 0 E6 K formulated in the Appendix. In order to apply those
1,K ZK 0K fK fK K K Lbi equations, the error dynamics (36a) must first be

- - - - - - - - - transformed to the decoupled forrard/backward form in. K bk-1 - K +I- Ef,, -b. (6a) and (6b) with the boundary condition transformed

(34) There is an alternative to directly transforming

Given the expression for the inverse transformation in (36a) into forward backward fornm. That is, given the
similarity between the error dynamics (36a) and the

(33a), the estimate x can be recovered from the for- smoother dynamics (23, the transformations Tk and 
ward and backward processes by inverting (25) to give in (29) and (30) can be used to first decouple the k

fk =j fZk Xb k + I E'ef*l k (5 error dynamics into two nth order descriptor forms

That is, the estimate is linear' combination of the f]k e xk
transformed forward and backward processes. Tk (37)

Of course to recover via (35) we must first e b T kk
solve (26) with boundary condition (34) to get xf and
xb. However, the general solution presented in Section and then solve for the error covariance in terms of
2 is only applicable for the case that E E. , Af, Ab these dynamically decoupled processes.
Bf and B, are constant. To satisfy this ondition, we
can evaluate (30a) through (30f) with the steady state
solutions to the generalized Riccati equations for tf The smoother and smoothing error equations for a
and 9 in (31a) and (31b). TPBVDS have been derived. A stable method for obtain-

eb o c e s e o a o t s r ing a numerical solution for a regular mPSVDS as a
The objective has been to transform the smoother linear combination of forward and backward recursions

dynamics into two lower order descriptor forms. The and the two-point boundary value has been developed
Potential benefits are twofold. The first is that the an th w -node cnio.

alon(6 with a well-osedness condition.
computation required to compute the two nth order solu- th
tion is less than that required for a single 2nth order The smoother for an n order system is shown to
system. The second and most important is that the be a 2nth order TPBVDS. With respect to the smoother,
descriptor form dynamics of the lower order systems may the following remain as areas for further investiga-
be more easily analyzed in terms of whether or not they tion: (1) well-posedness or smoothability conditions
represent a regular pencil. For instance, if we assume [14] need to be established, (2) conditions under
that a steady state solution 93 exists for (31a) then which the 2nth order TPBVDS smoother is regular as
the forward dynamics (26a) become defined in Section 2, (3) conditoins for existence of

solutions to the generalized Riccati equations (31a)
E9, x A (C'R C + f CR Cf xfk and (31b), and (4) how might the smoother decomposi-

f~k~l f f) ~u tion simplify the determination of smoother regularity.

-1 -L, -l
- A(C'R .* + 3) I CR k Since the 1-D representation of the discretized

dynamics of 2-D systems can be written in the form of
A question which is unanswered thus far is: given that a multi-point boundary value descriptor system (MPBVDS)
,E,A} forms a regular pencil, under what conditions do ' [121, an extension to multi-coint problems of the
IE,A[I-(C'R 1

C + )f)-lC'R-kCl} form a regular pencil? smoother solution developed here would be auite useful..
A general solution for ^1PBVDS similar to the forward/

4. The Smoothing Error backward form for TPBVDS in Section 2 has been develop-

In addition to providing a general representation ed in 121. However, the extension of the smoother
'of the estimator dynamics and boundary condition, the solution to problems of this type is still under
method of complementary models as employed in [21 also investigation.

5~r^-C;~The smoot ing error eu to f o r a
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Appendix: The Covariance of a TPBVDS P '(K,O); P 0 ( ) IV
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A set of difference equations from which the co- (A.5d)
variance of a TPBVDS can be computed are presented in
this appendix, Since the smoother error is given as a Thus, the covariance of the process xk can be computed
TPBVDS in (36), these equations are especially useful in for any point k in i given the solution of the three
evaluating the performance of the TPBVDS smoother de- matrix difference equations (A.2), (A.3) and (A.4).
rived in this paper.

The starting point for the development here is the
general solution in (10a) for the TPBVDS defined by (la)
and (lb). Recall that the boundary value v is assumed
to be orthogonal to the inout uk throughout - (0O, K-11.
Thus, v is orthogonal to x k and x in (lOa) for all

-k f 0 k
k in . so that the covariaiine of xk In (11) can be
-written as a linear combination of .v, the covariance of
v, and the following three covariances:

(1) P (n,k) S Etx x ' I , (A.la)
f f,n f,k

(2) Pb(n,k) - E: x nxb k' (A.lb)


