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Abstract

The linear smoother for an n-th order two-point
boundary value descriptor system (TPBVDS) (1] is formu-
lated by using the general linear estimator solution
developed by the method of complementary modelg in [2].
The smoother is shown to take the form of a 2n  order
TPBVDS. By employing the solutions to generalized
Riccati equations [3] it is shown that the smoother
dynamics can be decomposed into two nt" order descrip=-
tor form equations. The implementation of the smoother
solution is also addressed. -

1. Introduction

The class of descriptor systems was introduced by
Luenbexger {1l] to describe the dynamics of certain
linear systems for which the standard state-space re-
presentation is not applicable. The properties of
processes of this type have been studied by a number of
investigators (e.g. [4], {5] and ([6]) and the optimal
control problem has heen examined in {7]. In this paper
we discuss the fixed-interval smoothing problem for an
nth order TPBVDS. The solution is formulated as a 2nt
order TPBVDS by an application of the general linear
estimator solution developed in [2] via the method of
complementary models. The implementation of the smooth-~
er solution is also addressed. A general solution for
a "regular”* TPBVDS is established along with a condi-~
tion for well-posedness. This general solution is
developed as a linear combination of {i) the solution
to stable forward and backward recursions correspond-
ing to processes with standard state space dynamics and
(ii) the two-point boundary value. Following the metho-
dology in (8] for the decomposition of the smoother for
two-polnt boundary value processes satisfying state-
space form dynamics, the dynamics of the 2n®" order
TPBVDS are also decomposed into two at? order descrip=~
tor form representations. This decomposition can be
viewed as the generalization to descriptor systems of
the Mayne-Fraser smoothing formula (13] for standard
linear systems. An application of the general solution
to these two lower order descriptor form systems yields
the smoothed estimate.

Some aspects of the smoother and its implementa-
tion remain unresolved. First, the forward/backward
general solution is only applicable for a regular
TPBVDS. General conditions for regularaity of the
smoother solution have not yet been established. Se-
cond, the decomposition of the 2n-l order TPBVDS smooth-
er into two n order descriptor forms requires the
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existence of solution into two n'h order descriptor
forms requires the existence of solutions to “"genera-
lized" Riccati equations ({3], and general conditions
for the existence of such solutions have not been
established.

2. Two Point Boundary Value Descriptor Svstem (TPBVDS)

2.1 The Yodel

In this section the model for the discrete linear
stochastic TPBVDS is introduced, and a forward/backward
form of its general solution is developed. Let u, be
an mxl white sequence on [0,K~1] with constant covar- -
iance matrix Q. Let £, A and B be nxn, nxn and nxm
matrices respectively with the pair {E,A} comprising
a reqular pencil (9]. Thus, E 1is not required to be
invertible. Let V be an nx2n matrix written in nxn
partitions as [VO:VK], and let v be an nxl random vec~
tor uncorrelated with u and with covariance matrix I .
Then the discrete TPBVDS satisfies the difference equa-
tion:

Exk+1 = Ax, + Buk (la)
with two-point boundary condition
v = voxo + VKxK . (1b)

The realization of the smoother developed in [2]
by the method of complementary models requires anopera-
tor representation of the process dynamics and boundary
condition. The appropriate operator representation for
(1) is developed as follows. Let the set of points
between O and K~1 be represented by t = (0,K-1], and
let the boundary of this region be defined as 3= {0,K}.
With D representing the unit delay, the dyvnamics of the
nxl vector process in (la) are given by the first order
difference operator:

L5 Use ~ 15m (2a)
defined notationally as
L = (0 le-a) (2b)
and operatiocnally as
(Lx)k = Exk+l - Axk . (2c)
Viewing the matrix V as the operator
A CLIN (2a)

the dynamics and boundary condition in (la) and (1lb)
can be exvressed as

Lx = Bu (3a)
- 3b)
v, v (
where
X
x, = o1 (3¢c)
*x

2.2 A General Solution for the TPBVDS

A general solution for the TPBVDS in (1) is formu-
lated here as a linear combination of two stable re-
cursions, one forward and one backward. This form of
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the solution both lends insight into the properties of
descriptor systems defined by (1) (e.g. well-posedness)
and will provide a means for implementing the smoother
that is developed later in Section 3.

Given that {E,A} comprises a regular pencil there
exist nonsingular nxn matrices T and F such that

-1 I 0 (4a)
FET = =, A, .
and
FAT ® = (4b)
0 I

where Ag is nlxn Ab is np x n,, n=n, + Ny, and all
elgenvalues of A and A_ lie within thé unit circle.
These properties of A, 2na Ap, can be obtained as a mod-
ification of the decomposition of a reqular matrix pen-
cil as described in {9]. The decomposition in [9]
splits the pencil into forward dynamics corresponding
to a pencil of the type zI-A_ and into backward dynamics
corresponding to z'lz-ib where Ay, is nilpotent. The
modification (4) simply shifts the unstable forward
modes of Ay into the backward dynamics A,. Employing
T in {(4) to define the equivalence transformation

e,k .

s (s)
%,k

and multiplying the dynamics in (la) on the left by F,
(1) becomes decoupled as

Xe kel - Ae%ex T B (6a)
and
%ok T P ¥pxel T B (6b)
where
B .
Eleps . ) (6c)
By

Note that A_ is forward stable and A_ is backward sta-

.ble. Given the transformation in (57, the boundary

condition in (1b) takes the form

9.0, x K. 'l
v [Vf.Vb] xf.O + [VE v [ £,X (7a)
b,0 . K_l
where
0,0, . -1l L R
(vf.vbJ VT~ and [vf b] ERA JE (7p)

Employing the forward/backward representation of
the dynamics of the TPBVDS in (6}, a general solution
to (1) is derived as follows. Define x9 as tbs solu-
tion to (6a) with zero initial condition’” and x as
the solution to (6b) with a zero final conditionl’ Note
that both can be computed by numerically stable recur-
sions. With 4_ the transition matrix for A_. and 9 the

I3
transition matrix for Ay, one can write b b
4]
Xek T PpReOIXg 5 b oxp (8a)
and
b
= 3} K x, + X .
xb,k ,b(k )xD'K Kb'k (8b)

Substituting for e and x from (8a) and (8b) into

X hel X
{7a) and solving fof xf'o ard xb’x gives
X
£.0 -1 X0 0.0
X = Ffb v fof,x - vb*b,o% (9a)

where

. 0 K
P = [v + v e(K0) 3 V3 (0,0 + v . (9b)

from (9a) into

Finally substituting for x and,xb K
the solution

(Ba) and (8b), it can be sgéwn that
to (6) is given by

0
€| _ °fb(k"fb-1 v V? Z.K - vgxg,o * "g.k :
*b,k *b,k 4

where (10a)
o - | £ o
0 4 00K (100)

Applying the inverse of the transformation in (5), the
original process X is recovered by -

x
x = 7 F| Bk an

k xb,k

In this way, we have have constructed a stable, for-
ward/backward two-filter recursive implementation of the
general solution for the TPBVDS defined by (la) and

(1b) with the only constraint being that (E,A} form a
regular pencil.

The well~posedness condition for (la) and (1b) is
that F in (9b) be invertible. That is, for x to be
uniquely defined on [0,K] by the input u_ and boundary
value v.,F must be invertible. This invertibility
criterion can be used to show that if E is singular,
{1b) must be a two-point (or multi-point) boundary con-
dition (i.e. (1lb) cannot be an initial condition) as
follows.

First note the E singular implies that Ab is sing-
ular and consequently that ¢y is sxnaulax. For an
initial value problem, VY = I and VK = 0, and there-
fore, v§ = 0 and vy = 0. Thus, for an initial value
problem F becomes

fb
Fo = {v ¢ (0,K)1
- ["f Vbo] I o]
o] 4 (0,K)

Clearly, a necessary condition for F to be nonsingu-
lar is that % (0,K) be nonsingular. owever, this does
not hold when E is singular.

2.3 Green's Identity

In addition to the operator representation of the
TPBVDS in (3) the smoother solution we develop later
also requires the formal adjoint difference operator L
which is obtained through Green's identity for L on
{2]. Green's identity for discrete processes is ob-
tained from summation by parts of the inner product

x-1
<Y,Lx> = b yi(Lx)k
1 [0,K-11 K=0
K-1
= I y ). (12)
oo xE T A%

Summation by parts can be interpreted as the counter-
part of integration by parts as follows:




Intergration by Parts jSummation by Parts

- T v (u  ,-w)
k=0 e S

- i
T T T ; K-1 i
udv = uv | - : vdu £ ou (v =) = !

F o o | k=0 k+1 k+1 kK

! x-1

| |

i

! |

(13)

The term on the right hand side of the identity for
summation by parts in (13) has been obtained simply by
shifting the index of summation on the left hand side
and adding (ukvk-uovo) to account for the shift. To
put (12) into the form of (13), we perform the

same type of index shifting to write

k-1 K-1
I (E -Ax )'y, = I x' (E'v,_,~Ay,)
woo |kl A e oo R k=17
- e LB AR
XAEY X BlY - aa
Defining

L+ = DE' - A' , (1Sa)

%, Ty -E' ©
X = O and T = . (15b,c,d)

L Tg-1 0 E*

Green's identity can be written directly from (14) as

<LX,¥> = <L Y,x>

n
10, K~
IZLO,K 1)

+ <x Ty, >
l;[OIK-ll o’ 'b R2n (16)

We will see later that the estimator can be ex-
pressed in a simpler form if written in terms of a
shifted version of y, which we denote by A:

Ak+1 = yk (i.e. A = Dy) . (17a)
In terms of the shifted process A, Yy is given bv
)y
. 170
lh S Xx . (17b)

Given Green's identity as expressed in (15) and (16),
in the next section we establish an internal difference
realization of the smoother for the discrete TPVEDS.

3.  The Smoother and Two-Filter Imolementation

3.1 The Smoother as a TPBVDS

The observations for the fixed-interval smoothing
problem are comprised of an observation of the process
X at each point in the interval [0,K~-1] as well as a
boundary observation as described below. Let C be a
oXxn matrix, and let W be a full rank gx2n matrix with
37n, with the rows of W linearly independent of those
of V in (2.3) and with gxn partitions:

J. K
W= [W:Ww] . (18)

Let ry be a pxl white noise process over [0,K-1] whose
covariance matrix R is nonsingular and constant on
(0,K-1]. Let r, be a gxl random vector with nonsingu-
lar covariance Matrix 7 _. In addition, u, v, r and

r, are assumed to be mutually orthogonal. The obser-~
vacions are defined by a process Ty

=Cx +r on
LLk

. % fo,k-1]

(19a)

and a2 gxl boundary observation

P e

v, T Wx_+r .
o

b b (19b)

The minimum variance estimator of x given the ob-
servations y and y_ can be written by substituting
from the operator aescription of the TPBVDS in (3) and
Green's identity in (15) and (16) into the operator
form for the estimator in equation (3.17) of [2]. In
this case, the adjoints of B, C, W and V are all sim-
ply given by matrix transpositions. The formal adjoint
difference operator L , the matrix*’, and and v
(temporarily vy will be used in place of ‘) have al?
been determined in the derivation of Green's identity.
The resulting smoother dynamics are given by

i H ' h’
i 0%, At B xk.l REA
o 'J - = -1l . ] -1 Y

] . -t M ’ Ny .
0'E Yi-1 C'R "C : A % C'R (20a)
with boundary condition .

-1 -1 -1 x -
e 1T ’ . ™ -, .
Wi Ty, = e T s v T [ o e !'/_1 (200)
*x k-1

N

As mentioned earlier, it will be convenient to
write the smoother in terms of the shifted process X
defined in (17b). In this way the apparent four-point
boundary condition in (20b) becomes a two-point boun-
dary condition. Furthermore, if we were to specialize
to the case of causal processes (E=I, v0=I, v&=0), the
smoother takes the traditional form of the discrete

fixed-interval smoother (see e.g. [1C]). Thus, in
terms of X and lb {(20a) and (20b) become
% : BoB' I % o
Ei O XK?J A : s} 7 xk . °.
i .J“"-i""‘J- Y
el b 1 L]
O+ E' Ak C'R C : A Ak+1 C'R
(Zla)
o' N
w Hb~lY - x0
X' b :
LY *o
L
V0 HVIVK + W
-y e T 3T % {21b)
e IR T e
v
Defining
E ' -BOB'
E=|-4~-~ (22a)
o' -a
[ a too
A=l--7-'-=-~ (22p)
C'R C ' -E*
il i
and
[ o
B=1|- -1l {22¢)
LC'R ]

the smoother dvanmics in (2la) can be written in des-
criptor form as

+ Ryk -, (23)

* s : :

.In [2] T is denoted by E. A change in notation 1is
required since E is used here in defining the dy-
namics of thf TPBVDS in (la).

B T I L



3.2 Impelmentation of the Smoother

Assuming* that the pair {E,A} is reqular, one
could immediately employ available numerical techniques
{11] to find matrices F and T analogous to_those in
(4a) and (4b) to obtain a solution for [%,A] as des-
¢ribed in (8) through (1l). Rather than taking this
numerical route directly, we will take an intermediate
step by which (23) is further simplified revealing
some additional underlyina structure of the smoother
dynamics. As will become apparent, this intermediate
step has been motivated by the two-filter fixed-inter-
val smoother solutions for non-descriptor form systems
(i.e. systems for which E = I) [8]. In particular,
we will find 2nx2n matrix sequences Pk and Tk which de-
compose £ and A as

Ef,k Q
-1
FkE'rkﬂ - (24a)
° By,
and
Rex °
N G (24b)
X Tk+l
0 Bk d
Given this decomposition and defining
*e,x %
. = Tl (25)
%5,k | ke
th ; .
the 2n order smoother dynamics in (23) become de-
coupled into two nth order descriptor forms
Eee ®exen ™ 2e,x ek ¥ Bex Y (262)
and
By ®b,k+1 = Pp,x %o,k * Bk Yk (26p)
where
Bex
. = Fk B. (26c)
b,k

It can be shown that in order to achieve the decomposi-~
tion in (26a) and (26b), the partitions of Fk and T

denoted by
Fllk Fl2k Tuk Tizk
P, = and T, = (27
) lek F22k * Tuk Tzzk
must satisfy
Eg i 'rllk+l = Fllk = (28a)
By Tapt = Pyt E (28b)
Bk rlz’“l a - Fnk BOB' + Flzk al (28¢)

®
An outstanding problep is the determination of the
conditions for which {E,A} is reqular.

Eo 721" = F21k2\ +Fy cr’le (28d)
Ak szkﬂ = Fnk E (28e)
Af'k lek = Fnkz' (28f)
A 1'22’5"1 = F21k 80B' + rzzk A’ (28q)
L. 'rnk = ruka + Flzk v e (28h)

Motivated by the decomposition of the smoother dynamics
for state-space form two-point boundary value systems
in [8] and (12], choose

Pf,k

-E!

T, = . {29)
k
: [eh.ks I
Employimg (29) along with the eight relations in (28)
yields
E.. =g9, ! (30a)
£,k £,k
vl -1, -1 -1
Aey = AT - (C'RC+8. )7 'R C) ey (30D)
-1 -1 -1
- - £ ]
LI AC'R C+ 8, )7 C'R (30¢)
sb'k = E (304)
B =crt (30e)
b,k €
= A'(I + (BQB' + 8. %) mos ™l (30£)
Ank 2 b,k | B
\ agernl -1
bd LO-ACTRTIC + 8, )
P = S e e e e e e m e e e e L
k , \ -1, -1 !
A'(BQB' + sb,k ) ' I
(30g)

where 8_ and 8, satisfy the following generalized
Riccati equations:

-1
' p~l -1, f
B 14y B' T AR C 4. ) A’ + BOB (31a)
-1 7t -1 )
E eb’k E = A'(BQB' + S.ke1) AF*CRC. (b

Equations (30a) through (30f) along with equations
(26a) and (26b) completely define the decoupled dy-
namics for the transformed processes x_ x and ib K

An expression for the boundary condition for the
tranformed processes can be developed as follows.
First rewrite the boundary condition (21b) for the
untransformed smoother processes in a more compact
form:

-t "
Vo 1 =E xo
- L
‘o \. v
O0,Ksi [s) K

<

¥




with the inverse of equivalence transformation Tk given
by

1 -1 -1 !
o 1 .ef'k E 9f’k 2 ¢ O
Tk 2] = e = el e - .. - - ‘--'-*--i (33a)
- gt !
%o,k E, 9. o &
where
Z w9, +ES L E (33b)
7 = (0 .E8, g + D)o (330)
Z b, k=0f,k £k’

the boundary condition (32) can be written in terms of
the transformed processes if and ﬁb as

-1
,
Wiy Yy
. -1 ' i S 5 -1 [:
Wy + B8, B 2070 (Ve (Tr-mEre, 2 TR
I IR, S S
-1 ! -1 . = -1 (1~
Ys,x%0 ' Vo.x%c,0 B8 0% 1 %5.,0
' -1 . -1 -1 -
A '
Yok % ¢ Y,k x B, x5k e,k
1
P A I eI
—E! -1 [ -1 va 1 -
WEe, Bz Ve PDEE (B %
(34)

Given the expression for the inverse transformation in
(33a), the estimate x can be recovered from the for-
ward and backward processes by inverting (25) to give

- -1 . -1a

. -1
K =B Xe e %k BB Kkt

That is, the estimate is linear combination of the
transformed forward and backward processes.

(35)

Of course to recover X via (35) we must first
solve (26) with boundary condition (34} to get if and
. However, the general solution presented in Section
27is only applicable for the case that E_, E_, A_, ’
B_ and B, are constant. To satisfy this conaition, we
cén evallate (30a) through (20f) with the steady state
solutions to the generalized Riccati equations for Bf

and Gb in (3la) and (31b).

The objective has been to transform the smocther
dynamics into two lower order descriptor forms. The
potential benefits are twofold. The first is that the
computation required to compute the two nth order solu-
tion is less than that required for a single 2nt? order
system. The second and most important is that the
descriptor form dynamics of the lower order systems may
be more easily analyzed in terms of whether or not they
represent a regular pencil. For instance, if we assume
that a steady state solution 9. exists for (3la) then
the forward dynamics (26a) become

1

E2 = A[I - (C'R"C + af)'lc'R'lc:e x

£ gkl £ £k

vnla -1_,_-L
A{(C'R "C + 35) C'R Cyk
A gquestion which is unanswered thus far is: given that
‘E,A}l forms a regular pencil, under what conditions do
PE,AlI-(C'R™IC + sf)‘lc'a'lcl} form a regular pencil?

4. The Smoothing Error

in a&dition to providing a general representation
‘'of the estimator dynamics and boundary condition, the
method of complementary models as employed in [2] also

yields a representation for the estimation error dynam-
ics and boundary condition. Emploving equations (3.20)

and (3.23) in [2], the smoothing errcr for the TPBVDS
can be snown t~ satisfy descriptor form dynamics:
a1 *x B 0 uk
Et . = Al |+ -1 (36a)
- - .
Agsl A Q -C'R rk‘
with boundary condition
P I
v -E' X
vt "l cwer e = {20l 2l o
v b b + N
L'o.x1 0 o]
- i
v
o.x' *x
+ _-.:-.. (36b)
v I N
b!( ‘Ed bXK‘n

where the error is defined as % = x - x, % and A are
defined in (22), and the boundary condition (36b) is
written with the same notation as that used to express
the smoother boundary condition in (32).

The covariance of the smoothing error can be cocm-
puted by an aovlication of the difference equations
formulated in the Appendix. In order to apply those
equations, the error dynamics (36a) must first be
transformed to the decouvled forward/backward form in
(6aj and (6b) with the boundary condition transformed
accordingly (see (7a) and (7b)).

There is an alternative to directly transforming
(36a) into forward,/backward form. That is, given the
similarity between the error dynamics (36a) and the
smoother dynamics (23), the transformations T, and P

in (29) and (30) can be used to first decoupls the X
error dynamics into two nth order descriptor forms
®£,k *
= 7
. T . (37)
b,k -Xk

and then solve for the error covariance in terms of
these dynamically decoupled processes.

5. CONCLUSION

The smoother and smoothing error equations for a
TPBVDS have been derived. A stable method for obtain-
ing a numerical solution for a regqgular TP3VDS as a
linear combination of forward and backward recursions
and the two-point boundary value has been developed
along with a well-posedness condition.

The smoother for an nth order system is shown to
be a 2nth order TPBVDS. With respect to the smoother,
the following remain as areas for further investiga-
tion: (1) well-posedness or smoothability conditions
[14] need to be established, (2) conditions under
which the 2n"" order TPBVDS smoother is reqular as
defined in Section 2, (3) conditoins for existence of
solutions to the generalized Riccati equations (3la)
and (31b), and (4) how might the smoother decomposi-
tion simplify the determination of smoother regularity.

Since the 1-D representation of the discretized
dynamics of 2-D svstems can be written in the form of
a multi-point boundary value descriptor system (MPBVDS)
{12], an extension to multi-coint problems of the
smoother solution developed here would be quite useful..
A general solution for MPBVDS similar to the forward/
backward form for TPBVDS in Section 2 has been develop-~
ed in [12]. However, the extension of the smoother
solution to problems of this type is still under
investigation.
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Appendix: The Covariance of a TPBVDS

A set of difference equations from which the co-
variance of a TPBVDS can be computed are presented in
this appendix, Since the smoother error is given as a
TPBVDS in (36), these equations are especially useful in
evaluating the performance of the TPBVDS smoother de-
rived in this paper.

The starting point for the development here is the
general solution in (1Qa) for the TPBVDS defined by (la)
and (lb). Recall that the boundary value v is assumed
to be orthogonal te the input uy ch5ouqhout G o= {0, K-1].
Thus, v is orthogonal to x; . and x, in (10a) for all
k in 7 so that the covarianés of x_~I{n (11) can be
written as a linear combination of T1,. the covariance of
v, and the following three covariances:

a . .00,
(D Prlne) 2 E, x.' 1, (a.la)
9 N T
() P a2 Elx x '] (A.1b)

and

3 Py nk) T ELG x, )
Difference equations for each of these three covariances
can be derived by substituting expressions for x9 and

X’ represented as weighted sums of on 2 into each of
tge expectations in (A.l). In this manner, it can be
shown that
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Given these three covariances, the covariance of X
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can be written as
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Thus, the covariance of the process can be computed
for any point k in 2 given the soluticn of the three
matrix difference equations (A.2), (A.3) and (A.4).
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