
3 1080 00S7426 4
ROBOTIC GRASPING OF

ORBITAL REPLACEMENT UNITS

by

Helen Greiner

Submitted to the Department of Mechanical
in Partial Fulfillment of the Requirements for

Engineering
the Degree of

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

at the Massachusetts Institute of Technology

June 1989

@ Massachusetts Institute of Technology 1989

Signature Redacted
Department oXMechanical Engineering

May 5 1989

Certified by
Signature Redacted

Professor K. Yousef-Toumi
Associate Professor of Mechanical Engineering

Thesis Supervisor

Signature Redacted
Accepted by

ARCHIVES

OF 10t 1989y

JUL 10 1989

Professor Peter Griffith
Chaid n, Department Committee

uSRARS

A 11thbr

MITLibraries

77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

The images contained in this document are of the
best quality available.

ROBOTIC GRASPING OF

- ORBITAL REPLACEMENT UNITS

by

Helen Greiner

Submitted to the
Department of Mechanical Engineering

May 5 1989

In Partial Fulfillment of the Requirements for the Degree of
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

Abstract

In the presence of uncertainties in the location of objects with respect to a robot end-
effector, the grasping of objects becomes a non-trivial task. One method of eliminating
these uncertainties is to use the force-torque data produced by the contact between the
gripper and object to locate the object and to align the gripper fingers with it.

Using this control method, a strategy for grasping the handling fixture of Orbital Re-
placement Units (ORU's) was developed. This strategy simplifies the alignment problem
by eliminating the errors in each degree of freedom separately. Portions of this strategy
have been implemented within the Telerobot Testbed facility at JPL to collect experi-
mental data. This data was then used to analyze and evaluate system performance and
to identify control issues which still remain to be addressed.

Thesis Supervisor: Professor K. Yousef-Toumi
Title: Associate Professor of Mechanical Engineering

2

ACKNOWLEDGEMENTS

This work wag performed at the Jet Propulsion Laboratory through the Engineering

Internship Program. I would like to thank the Tele-Autonomous Systems Group for their

support and help. I would like to especialy thank my supervisor Henry Stone for his time,

expertise, and encouragement. The summer was an exceptional learning experience.

Professor Yousef-Toumi was very helpful in editting and clarify this document. And,

last but most important, I dedicate this thesis to my parents for their support and

encouragement.

3

Contents

1 Introduction 8

1.1 Background . 8

1.2 Project Description . 10

1.3 Thesis Outline. 11

2 Grasping 13

3 Grapple Lug 15

3.1 Finger and Lug Mechanical Design . 15

3.2 Finger/Lug Construction . 16

3.3 Finger/Lug Misalignment . 17

4 Algorithms 24

4.1 Introduction . 24

4.2 Translational Position Accommodation .25

4.3 Rotational Position Accommodation . 26

4.4 Relieve Contact Forces . 27

4.5 Direct Force Feedback . 27

5 Control- Strategy 29

5.1 Introduction . 29

5.2 A pproach . 30

5.3 Alignment . 30

4

5.3.1 Point of Contact Identification .

5.3.2 - Surface Alignment .

5.4 Inward Finger Motion .

6 Implementation

6.1 System Configuration

6.1.1 Introduction

6.1.2 LORD Instrumented Gripper

6.1.3 LORD Wrist Force-Torque Sensor . .

6.1.4 Telerobo.t TestBed Control Structure

6.2 Fram es ..

6.3 Robot Control Language

6.4 Sensory Information

6.4.1 Introduction

6.4.2 Force Transformations

6.4.3 Sensor Biasing

6.4.4 Transient Dynamic Loading

6.5 Performance Evaluation

6.5.1 Approach Motion

6.5.2 Instantaneous Contact Forces . . .

6.5.3 Point of Contact Identification . . .

6.5.4 Levelling

7 Conclusions and Recommendations

References

Appendix

5

30

31

32

35

35

35

36

37

37

37

38

39

39

40

41

41

41

42

43

43

. 4 5

52

55

57

List of Figures

1-1 Typical ORU .

3-1 a. Standard Grapple Lug, b. Modified Grapple Lug

3-2 Specialized Fingers

3-3 Finger and Grapple Lug Design

3-4 Fingers Perfectly Aligned with Lug

3-5 Critical Position and Orientation Error Tolerances .

3-6 Positioning Tolerance in Z Direction

5-1 Point of Contact

6-1 System Configuration

6-2 Finger and Grapple Lug Frames

6-3

6-4

6-5

6-6

6-7

6-8

Normal Force at a Velocity of 3.6 mm/sec without Filtering

Normal Force at a Velocity of 3.6 mm/sec with Filtering . .

Normal Force at a Velocity of 18 mm/sec without Filtering .

Normal Force at a Velocity of 18 mm/sec

Normal Force at a Velocity of 3.6 mm/sec

Guarded Motion; Speed = 3.6 mm/s; Threshold = 50 FTU's)

. 12

. 19

. 20

. 20

.1

. 22

. 23

46

. 47

47

48

48

49

. 49

50

6-9 Forward Motion Posision Accommodation; Speed = 3.6 mm/s; Threshold

= 50 FTU's .

6-10 Special Tool used to Implement Steps of Grasping Operation

7-1 Prototype Grapple Lug and Finger Design

6

34

50

51

.54

List of Tables

3.1 Critical Position and Orientation Error Tolerances 18

6.1 Performance of Point of Contact Algorithm 44

7

Chapter 1

Introduction

1.1 Background

The Earth Observing System (EOS) is a scientific experimentation satellite which -is

currently in the design phase at the Jet Propulsion Laboratory. This satellite contaiis

four platforms which hold scientific experiments. Each experimental setup is configured

on a separate module called an Orbital Replacement Unit (ORU). Figure 1-1 shows the

design of a typical unit. The parts of the ORU of interest to this study are the connector

and the grappling fixture. The connector is a Standard Interface Connector (SIC) which

consists of an active part which protrudes from beneath the ORU and a passive part on

the EOS platform. The grappling fixture retains the physical similarity to the grasping

fixtures currently in use, but was modified for a robotic grasp (see Chapter 3 for details).

The EOS satellite also contains a stow-bin for storing additional ORU's which are used

to replace the original ORU's when their associated experiments either terminate or

malfunction; Hence, there is a need to be able to interchange the ORU's. In the current

design, the replacement of an ORU can be broken down into three steps as follows:

1. TranspoTting ORU

2. Positioning the ORU with resect to the EOS platform

3. Fastening the ORU to the platform

8

First, the ORU's are picked up and moved to a predetermined location on the EOS

platform. Secofid, the two pins of the SIC are inserted into the holes in the EOS platform.

Thirdly, the SIC bolt located in the center of the grappling fixture is tightened. To remove

an ORU, these steps are performed in the reverse order.

Currently in space applications, tasks like the ORU changeout are performed by as-

tronauts. This technique, called EVA, means the astronauts must leave the spacecraft.

However, the EOS satellite will be in polar orbit where the harsh radiation conditions

make standard EVA unfeasible. Automated machinery could be used to perform the

pick-and-place tasks if little uncertainty is present in the location of objects. Such a

system would require the design of a simpler means of connecting the ORU's to the

EOS platform, and would provide no recourse if an ORU became misoriented or wrongly

positioned. In addition, it is desirable to incorporate flexibility into the EOS design en-

abling it to perform simple experiment servicing tasks such as wiping dirty optical lenses.

Hence, the EOS design team is considering the use of robotic manipulators on the EQS

satellite. At the request of the EOS design team, a study evaluating the use of available

robotic technology to perform the EOS module servicing tasks is being performed in the

Tele-Autonomous Testbed Facility at JPL. A brief description of the Tele-Autonomous

Testbed Facility and the work being done for the EOS project is given to provide context

for this report.

The Tele-Autonomous Systems (TAS) Group is one of several groups at JPL respon-

sible for conducting advanced research and development in the tele-operation and au-

tonomous control of robots. One project that the TAS group is currently involved in

is the Telerobot Testbed Project, whose long term goal is to demonstrate the ability of

a robotic system to autonomously grapple and repair satellites. The Testbed integrates

existing technologies in areas such as vision detection and tracking, trajectory planners,

path planners, and force control, complient control, tele-operation, and shared control.

In this testbed facility, two Unimation six degree-of-freedom PUMA 560 robots perform

various manipulation tasks while a third Puma 560 with a mounted stereo camera system

serves as an eye stalk for object verification. During the summer of 1988, the TestBed

9

facility was used, in part, to research the robotic issues of concern to the EOS Project.

The issues were divided into four major groups which were: manipulator kinematic com-

plexity, control, precision and accuracy, and planning. The work involved both analysis

and laboratory verification. Reports in these four areas form the deliverables to the EOS

design team. This report discusses the grasping of the ORU modules which formed one

part of the controls research.

1.2 Project Description

In order to manipulate an object, a robot must be able first to grasp it reliably. In most

robot systems, the grasp is performed by an actuated gripper attached to the last link

of the robot. The task of bringing the gripper into contact and reliably grasping an

object is non-trivial in the presence of uncertainty in the object's location.' The robot

must locate the object before a grasp can be performed. Many different approaches

to accomplish this are possible such as: improving the models of the object and robot

arm, teaching specific locations, or using sensory information (visual, proximity, or force-

torque data) to determine the location of the object. However, all these methods present

difficulties. Making the models of the system more precise or teaching specific locations

would decrease the robustness since the system would not be able to accommodate even

slight errors in object positioning. Using the vision system would increase the complexity

of the system substantially, and the accuracy would be a function of how well the camera

resolves object posions. In addition, the practical problem of the camera view being

blocked by the gripper and fingers means that a control scheme for the camera stalk

must be developed. Although using proximity sensors seems like a viable approach, the

proper hardware was not available to us for this project. Therefore, we propose to use

force-torque information from a sensor mounted on the robot arm to assist in performing

the grasp. In addition, we will make the grasp more reliable by a gripper finger design

which maximizes tolerances to position and orientation errors. Once the gripper is aligned

'Location specifies both the position and orientation of a frame.

10

with the object to within these tolerances, sensory information will be used to control the

robot when performing the remaining alignment. This involves processing the sensory

information and the real-time digital control of the robot.

This study is only concerned with grasping for a specific application, that is, the

grasping of a grappling fixture on on ORU modules. In this report, the first steps of a

grasping operation are analyzed, designed, and implemented. The grasping procedure

developed in this report is a stand alone macro which will evolve into a primitive to be

used by a higher level control system. As discussed previously, this work forms part of

a study being performed for the EOS satellite on the use of available robotic technology

for servicing ORU modules.[1]

1.3 Thesis Outline

Chapter 2 of this report relates this work to previous work performed in force control

and grasping. The mechanics of the grasping operation are discussed in Chapter 4.

The algorithms used to control the robot end-effector during the grasping operation are

presented in Chapter 4. Chapter 5 discusses how these algorithms were integrated into a

complete stategy for grasping. Implementation issues such as the system hardware and

software and experimental data showing the performance of a few significant parts of the

grasping operation are descibed in Chapter 6. Finally, conclusions and recommendations

for further studies are presented in Chapter 7.

11

Figure 1-1: Typical ORU

12

Chapter 2

Grasping

Before the 1970s, research concerning the control of robotic manipulators centered on

position control, that is control of a robotic end-effector as it moves through free space.

However, in recent years, methods of force control have received attention because they

increase the range of tasks that a robot can perform. Force control is usually employed

when the arm is in contact with an object in its environment. Many different force

control methods have been developed such as accommodation[2], active compliance[3],

and hybrid force position control[4][5]. A general framework to look at force control

has been established since the aforementioned control methods all integrate the same

components: task description, a task execution strategy, command logic, and control

and stability [6]. Each of these components will be examined individually with emphasis

on how this project falls within the general framework.

The task description models the interactions between forces and motions during con-

tact. In this project, the task is the grasping of an ORU. This is similar in many respects

to the mating of parts during a mechanical assembly operation in the presence of position

and orientation errors in the placement of the parts.

The task execution strategy uses the task description models to achieve desirable force,

motion or position states. All the force control methods developed to date depend on

humans providing the higher level reasoning. No automatic generation of strategies has

been achieved [6]. Thus, for a specific application, like grasping ORU handling fixtures, a

13

task execution strategy must be developed. This plan should be be formulated to insure

reliable and robust task performance.

Command logic has been defined as "the choice of commanded forces or velocities

or both in order to cause certain response forces or motions to arise"[6]. The choice of

control parameters falls within this function. As part of this project, the performance

of the task execution strategy was evaluated as a function of various control parameters

such as feedback gains, threshold forces, and commanded velocities.

Force control of a robot means feedback of sensory information to modify forces or

motions. Our sensory information was obtained from a LORD wrist force torque sensor.

Use of a wrist sensor eliminates some of the problems involved in measuring joint motor

currents or torques to obtain force readings. For example, any method of acquiring force

data involving the robot joints, must compensate for friction and gravity using accurate

manipulator models[4]. A wrist sensor decouples the effects of friction and gravity on the

sensor readings from the robot's link motions. Consequently, only the dynamics of the

sensor itself, the gripper, and the fingers must be considered in processing the sensory

information.

The type of control used in this project was governed to a large extent by the robotic

environment in the JPL Telerobot Testbed. In the Testbed, the real-time control software,

RCCL[7], is used to plan trajectories and synchronize signals implementing real-time

position control. The control logic can read the force information thus decision making

and the choice of control parameters can be a function of the forces. In this control

environment, we do not directly control the current in the robot joints. Therefore, the

main focus of this project is using this environment to achieve a goal state (a reliable

grasp) through planning. The particular design of the ORU handing fixture makes this

a task which hasn't been considered before in the literature. It is hoped that the way in

which the force-torque data is used is applicable to a variety of other tasks.

14

Chapter 3

Grapple Lug

To perform a grasp with a robotic manipulator, the standard ORU grapple lug design

was modified as shown in Figure 3-1. Specialized robotic fingers were also machined

to mate with this modified grapple lug (see Figure 3-2). A three dimensional sketch Is

provided in Figure 3-3 for visual clarity. The grapple lug is bolted to the EOS platform.

The fingers are attached to the robotic gripper, and are interchangable by means of a

spring-loaded fastening mechanism. In this chapter, we explain how the modification to

the grapple lug make it compatible with a reliable robot grasp. Then, some machining

details are discussed. Issues in the alignment of the finger and lug which are purely a

function of this specific design are quantified in the last section of this chapter.

3.1 Finger and Lug Mechanical Design

The grapple lug which is currently used in space applications was modified to make it

robot friendly. Maintaining physical resemblance to the currently used lug -was important

to the EOS design team. The modications to the grapple lug were influenced by the need

to have rich force-torque information for implementing compliant control strategies. The

design features of the fingers and modified lug are (as labelled in Figure 3-3):

* A - V-grooves on the edges of the grapple lug and corresponding wedges in the

fingers

15

e B - a triangular piece in the fingers which fits into the cutout in the fingers

9 C- flat sufaces on the bottom of the fingers and the top of the grapple lug

The V-grooves (A) are important for the following reasons. First, they maximize the

amount of positioning errors the system can tolerate. Assuming the fingers are brought

within the tolerances discussed in Section 3.3, a grasp is mechanically feasible. Also, if

the positioning tolerances are not met (in this case in the Z direction), the position of

the fingers after the grasp will allow the error to be detected. Second, the V-grooves

align the fingers and the grapple lug in the Z direction as the fingers close. Thirdly, the

sloped surfaces will generate useful control signals during the inward finger motion. The

grasping algorithm combines position and force control. The control signals used in the

force control (control when the fingers are in contact with the grapple lug) come from

a six-axis force torque sensor. The V-grooves provide force-torque data rich enough to

allow the robot to automatically comply in the Z direction to align the grooves.

The triangular section of the fingers (B) performs an analogous function in the Y

direction. The only difference is that the contact between the fingers and the grapple lug

is a line as opposed to a plane. Contact between the surfaces (A) prevent misalignment

about the Z axis. Because the contact is in a line the amount of sliding friction as the

fingers close will be reduced.

Likewise, the flat surfaces (C) can be used to eliminate errors in 2 degrees of freedom.

The gripper approaches the lug from the positive Z direction. One control scheme is

to first bring the flat surface of the fingers (C) into contact with the flat surface of the

grapple lug and then to rotate about the point of contact to bring the to flat surfaces

flush. This motion would eliminate orientation errors in the X-Y plane.

3.2 Finger/Lug Construction

The fingers were machined as four separate pieces labelled numerically in Figure 3-2. This

reduced machining costs by eliminating the need to cut elaborate shapes and allowed the

parts of the 3 sets of fingers to be machined in a batch. The four parts are fastened

16

together by machine screws. Parts 1, 2, and 3 were constructed from aluminum. The

primary motiva.tion for using aluminium was to lower machining costs and to keep the

payload on the Puma arm (including gripper, fingers, and ORU) under 5 lbs which is

the rated payload for the Puma arms during motion. The one exception is part 4 - the

flange which attaches to the spring loaded fastening mechanism. Steel was used for this

part because it is only 3/16" thick, but it experiences the most torque during grasping.

3.3 Finger/Lug Misalignment

The ideal finger location prior to grasping is such that the grapple-lug is centered between

the two fingers and rotationally aligned as shown in Figure 3-4. Given this initial posi-

tioning, by simply moving the fingers inward, they will mate perfectly with the grapple

lug. However, because of position and orientation errors in the Testbed System, this ideal

situation rarely occurs. If the position and/or orientation errors are sufficiently large, a

grasp may not be physically realizable. It is thus important to understand the extent bf

location of errors which can be tolerated and still provide an opportunity for a successful

grasp. This section discusses and quantifies the tolerances which must be met. If these

tolerances are not met, the grasp will be guaranteed to fail. Because the force-torque

data for a failed grasp may be indistinguishable from that of a correct grasp, the position

of the fingers must be checked after the approach motion has been accomplished.

The tolerances in and about each axis are a function of the geometry of fingers shown

in Figure 3-3. If these tolerances are met, compliant control strategies will be applied to

eliminate the remaining position and orientation errors. The crucial tolerances are listed

in Table 3.1. They were computed through geometrical analysis of the lug and fingers.

Cases I, II,V, and VI are fairly straightforward to visualize from Figure 3-5, which

illustrates a top view of the fingers and grapple lug during these cases. These number

are a function of the maximum finger opening. The maximum positioning error in the Z

direction is 0.25 inches as shown in Figure 3-6. Figure 3-5 shows a side and a front view

to illustrate the rotational error about the X and Y axis for cases IV and V, respectively.

In each of the cases position and orientation errors about each axis are examined

17

Cases Description Symbol Value
I Positional Error along X-axis A X 0.37 in
II Positional Error along Y-axis A Y 0.34 in
III Positional Error along Z-axis A Z 0.25 in
IV Rotational Error about X-axis Aex 11.1 deg
V Rotational Error about Y-axis Aey 6.3 deg
VI Rotational Error about Z-axis AGz 8.6 deg

Table 3.1: Critical Position and Orientation Error Tolerances

independently. However, a combination of two or more types of errors may reduce the
tolerances considerably. The many variations possible make it difficult to analyze every

combination. Therefore, we must take into account that the numbers listed in Table 3.1
are only upper-bounds for the tolerances in each degree-of-freedom.

Previous experience designing a calibration system for the Tele-robotic testbed in-

dicated that the errors present in the Testbed System are less than necessary to meet

these tolerances. The Testbed System experiences positioning errors of less than a few

millimeters and less than a few degrees. Therefore, for the purpose of this project, the

robot was not programmed recover from errors.

18

4.50 -

1.00*

4.50"

II

0A25

0.50

2.54-

I
0.50

. 2.54-

C

0.050

Figure 3-1: a. Standard Grapple Lug, b. Modified Grapple Lug

19

a.

b.

' K"%:x*K*

Y

x

2.S4'

1.01

4 2

2.375"m

Figure 3-2: Specialized Fingers

z

LXA C z
dy

x

Figure 3-3: Finger and Grapple Lug Design

20

.*- 0.25"

2.375"

B\ O

I

x tY

Figure 3-4: Fingers Perfectly Aligned with Lug

21

7
L

I ~k

]j ~4:4j.

IL

CASE II

Figure 3-5: Critical Position and Orientation Error Tolerances

22

CASE I CASE VI

CASE III

I iFinger A
11

A

Figure 3-6: Positioning Tolerance in Z Direction

Finger B---ci----

23

Chapter 4

Algorithms

4.1 Introduction

When the robot fingers come into contact with an object, some means of force control

must be employed to avoid over-stressing either the robot joints or the force-torque sensor.

System capabilities limit the type of force control available. In the current testbed facility,

the hardware does not allow direct control of the current in the robot joints. Thus, we

cannot use compliant control techniques which necessitate controlling the robot joint

torques.

The type of force control used in performing the grasping operation is commonly

referred to as position accommodation. In position accommodation, the feedback signals

are the force and torque readings. Position accommodation consists of two parts: motion

in free-space and motion during contact. A nominal driving increment moves the robot

end-effector in free space. Upon contact with an object, control is accomplished by

changing the driving increment by an amount proportional to the forces felt at the end-

effector. These forces are obtained from a force-torque sensor mounted to the end-effector

of the robot. The algorithms presented in this section assume that the forces sensed are

entirely induced by contact. As discussed in Section 6.4 other forces may be present,

however, we will assume that they can be eliminated or the effects are negligible.

This technique of force control can also be thought of as changing the position set-

24

point that the robot will move to in the next sample period by an amount proportional

to the forces, hence the name position accommodation. We will use three modes of posi-

tion accommodation since our motion control strategy consists of three distinct types of

motion: forward, rotational, and grasping. These control modes are Translational Posi-

tion Accommodation, Rotational Position Accommodation, and Direct Force Feedback.

Translation Position Accommodation moves the robot end-effector along an arbitrary

vector at a speed proportional to the forces felt at the end effector. Rotational Position

Accommodation moves the robot end-effector about an arbitrary vector at a speed pro-

portional to the torques felt at the end-effector. In Direct Force Feedback Control, the

motion is still proportional to the forces. However, in this mode, no driving increment is

specified, thus motion is induced entirely by the force interaction.

4.2 Translational Position Accommodation

During translational position accommodation, the end-effector moves through free space

at a constant velocity until contact occurs. Upon contact, the driving increment is de-

creased in proportion to the forces sensed at the end-effector. The control algorithm we

use for the Translational Position Accommodation is

while absolute value of SF < Fth,

KF (fi - fit) -u

K =

In the preceding algorithm, the vectors, '- and pi-i, are vectors consisting of three com-

ponents which describe the new position of the end-effector and the previous position,

respectively. The rotational components of the location of the end-effector, denoted as

ri, do not change during translational motion. The driving increment, AP, is a user

set parameter describing the magnitude of the change in end-effector position the robot

should make during each sample period. The unit vector, -, is a three component vector

describing the direction of motion in the end-effector coordinate frame. The difference

25

between the initial forces due to gravity loading and the forces sensed during contact

scaled along tire direction of motion is SF. Prior to contact, SF is zero causing the arm

to move in the direction ii by an amount determined by the driving increment. Upon

contact, SF increases proportionally to the forces sensed, and when SF is equal to the

force threshold, Fth,, the end effector velocity is zero. If a force impulse occurs during

contact, this routine will act like a guarded motion in the direction of motion because

the threshold ,Fth,, will be achieved instantaneously.

4.3 Rotational Position Accommodation

Rotational Position Accommodation is analogous to the Translational Position Accom-

modation with the motion of the end-effector being a rotation about an arbitrary vector

instead of motion along a vector. The motion termination threshold is now a torque,

Tth,. A general implementation of this would stop on a threshold torque in the direc-

tion of motion similar to the Translational Position Accommodation. However, the task

geometry makes it desirable to stop the rotation about the X and Y axis of the fingers

independently. Hence, the following algorithm was implemented for Rotational Position

Accommodation

while t, or ty K Tth,

if t, < Tte, then u., = 0

if ty < Tth, then uY = 0

ST =(ti - ti .t) -

K =AR

ri = ri- 1 + A R- - K - 8T

A= Pi-i

The 3 vector ri = [rxi, ry, rzi]T describes the differential rotation about each axis. The

vector r' is used to control the robot by concatenating A(r) to the position equation

used to control the robot end-effector(see Section 6.3). Since we only expect errors of a

few degrees, the following approximation was used to save computation time. This ap-

proximation discards high order terms, and consequently is valid only for small rotations

26

[8].

0 -rZi ry, p~,

(r rzi 0 -r2; pyi
= rr2)Pyi(4.1)

-ryi rx 0 Pzi

0 0 0 1

4.4 Relieve Contact Forces

After the robot arm has achieved contact with an object in its environment, we sometimes

wish to relieve the contact forces before the next motion is performed. There are two

ways this can be done. One is to relieve the forces in all directions using the direct force

feedback decribed in the next section. However, it may be desirable to reverse in the

same direction that the arm was moving when contact occured. In this case, a simple

backdriving routine to zero the forces is employed:

while |1SFHl > e

Pi+1 = fi - K *

As in the forward motion routine, the three component vector, U', describes the direction

of motion in the end-effector coordinate frame. The gain K specifies the amount move

back during each sample period, and e is a user specified tolerance about zero.

4.5 Direct Force Feedback

The position of the arm can also be made purely a function of the forces sensed:

p = pi-1 + K f

r = ri~1 + K -

f A - Ai

t =ti - tinit

The positions and rotations are independant for small angles. The gain, K, determines

the reaction speed. A larger gain will make the response faster, and a negative gain

would make the robot push with greater force against the contact. This algorithm iill

27

be employed while moving the gripper fingers inwards, thus relieving the forces induced

as the fingers -align with the grapple lug.

28

Chapter 5

Control Strategy

5.1 Introduction

A successful grasping operation is characterized by a sequence of motions which bring the

gripper fingers into contact with the grapple lug and align the gripper fingers such that

they mate correctly with the grooves in the grapple lug. This sequence can be divided

into the following 5 steps:

1. the approach

2. alignment

3. inward finger motion

4. center

5. ungrasp and depart

This work assumes that a higher level control system will bring the gripper into a suitable

position to begin these steps. Thus, this grasping routine is developed as a primative

which will use control parameters specified by a higher level system. Hardware difficulties

(described in Section 6.1) made it possible only to implement the first two steps in the

Testbed. The following sections describe the control strategies used during the first three

steps of the grasping operation.

29

5.2 Approach

The Approach means the motions of the Puma Arm bringing the fingers into contact

with the grapple lug. The robot is brought into an approach position using position

control. The trajectory planner and the collision detection systems currently in available

in the testbed are used to plan these motions. The approach point typically puts the

fingers directly above the lug so that only motion in the finger Z direction is necessary to

perform the approach. The approach point was arbitrarily chosen to be 5 cm above the

grapple lug frame in this study. The mode of force control used to perform the Approach

Motion is Translational Position Accommodation as described in the Section 4.2. The

Approach Motion ends upon contact with the grapple lug at which time the forces and

torques are saved in memory for use in the alignment step.

5.3 Alignment

When the fingers first contact the grapple lug, the contact may occur in a plane, line,

or point. Assuming a point contact, this point can be used to define a new axis useful

in our surface alignment algorithm. The following section discusses how this point is

identified, then the next section discusses how it is used to level the fingers with respect

to the grapple lug surface.

5.3.1 Point of Contact Identification

When lowering a plate onto a point contact, it is possible to use the force-torque data

to locate the point of contact. Figure 5-1 illustrates this contact scenario. The frame

in which the force-torque data is calculated is defined a priori to be located at the

intersection of the bottom surface of the plate and the robot end-effector Z-axis with the

same orientation as the end-effector frame. This sensing frame is called S and the point

of contact is labelled P, in Figure 5-1. A vector j5 is defined between S and PC. Since P,

is located in the X-Y plane of S, the Z component of -5 is zero. The vector Fc describes

the forces induced by contact between the point contact and the plate. The force-torque

30

sensor resolves these forces into three forces, Fc = F , FZ]T, and three torques, Tc =

C T , T1-TFwith respect to the coordinate frame S. Looking at the forces and torque

about the origin of the S frame, we see that

TC = PcXFc (5.1)

where Tc is a vector of torques about the S frame, and Fc is a vector of forces in the S

coordinate frame.

The forces F, and Fy will cause no torque about the X and Y axis of S as they lie in

the X-Y plane. The only component of this force vector which causes torques about the

X or Y axis is the Fez. Therefore, using the equations

T. = pyXF. (5.2)

Ty = p,XF. (5.3)

we can solve for p, and py which are simply the moment arms of the contact torques

about S. This analysis only holds for point contacts between the plate and a surface.

The readings for a line or a plane contact will be ambiguous. Therefore, to assure this

sequence of motions can be completed it may be desirable to tilt the fingers to insure a

point contact.

5.3.2 Surface Alignment

To achieve a planar contact between the grapple lug and the fingers, we must align

their X-Y planes. As discussed above, if the contact occurs in a point, this point can

be located. The fingers must rotate about this point to have the surface of the fingers

come into planar contact with the surface of the grapple lug. To perform rotations with

respect to this point, a homogeneous transformation describing the spatial relationship

between the robot end-effector frame, S, and the point of contact, Pc, is concatenated

to the equation describing the position and orientation of the frame S. As discussed in

Section 6.4, the forces are transformed to a frame with the origin at P, and rotationally

aligned with the frame S.

31

The vector which the robot arm will rotate about is a denoted by il. This vector, UT is

the unit vector normal to p' which lies in the X-Y plane of S. The vector, u, is used in

the rotational position accommodation algorithm. The motion will continue about each

axis until a user specified tolerance is exceded. Then, if for example, the tolerance is

exceded about the X axis, the rotation about this axis will automatically terminate, but

the rotation will continue about the Y axis. The same will be true for the motion about

the Y axis if the threshold torque about the X axis is exceded first.

5.4 Inward Finger Motion

Using existing algorithm within the gripper controller subsystem supplied by LORD

Corporation, the fingers are independently servoed and capable of both position and

force control. They perform a grasping motion in two steps. First, a position move closes

the fingers until a specified trip-force is reached. Then, the fingers start servoing on force

until the desired force is sensed to within user-specified tolerances. At this time, the

fingers lock into position.

As the gripper fingers close, forces and torques are induced in the directions in which

the fingers must aligning in order to mate with the grapple lug. The force-torque data

is used to control the robot arm. Specifically, Direct Force Feedback (as described in

Section 4.5) changes the position of the arm in the directions in which the gripper must

align proportionally to the force felt in that direction. Assuming the first two steps have

been successfully completed, the alignment about both the X and Y axis to have already

been performed. Also, the motion in the X direction is accomplished through the inward

motion of the fingers (as described above). Motion in the other degrees of freedom the

other three degrees of freedom should proportionally to the induced forces. The motion

which we would like each of these degrees of freedom to track is dependent on the lug

geometry. The amount which we want to move in the Z direction is the same as the

amount we moved by the fingers in the X direction. Since it is possible to calculate the

speed of the gripper motion, an approximate value for the gains can be found. This is

important since the gripper and the robot are separately controlled and their motions

32

must be synchronized.

33

Figure 5-1: Point of Contact

34

Fc --..

pFz

C Fx

Chapter 6

Implementation

Parts of the previously described grasping operation were implemented in the Telerobot

Testbed. In this chapter, several issues specific to this system configuration will be

discussed. First, the various components of the Telerobotic Testbed will be described.

Then, the models of the robot world and the various frames used to control the robot

will be specified. The robot control software is described in more detail, and the sensory

information processing is discussed. A discussion of the data collected in the lab follows

to highlight the issues which remain to be addressed.

6.1 System Configuration

6.1.1 Introduction

This study makes use of hardware of the Tele-Autonomous Systems Group testbed facil-

ity. A PUMA 560, six degree of freedom robot manipulator is used to perform the large

scale motions involved in positioning the gripper. The robot is capable of both Joint

Space and Cartesian Motions. A LORD Industrial Automation Servo-Gripper attached

to the end-plate of the PUMA arm will be used to perform the grasp. Force-Torque

sensors in the base of the gripper fingers provide six axis force feedback which can be

used to control of the system. The gripper has independently servoed fingers which are

capable of both position and force control. For this study, a LORD Wrist Force-Torque

35

sensor and a pneumatic gripper were used in place of the Gripper Subsystem because of

difficulty in integrating it with the telerobot testbed.

Specifically, the Testbed real-time control system has a sample period of 28 ms. About

20 ms of this time was free to read the force-torque data. Unfortunately, the force-torque

data was only accessible from the gripper control system every 50 ms. It was decided that

slowing down the control system would degrade the robots performance considerably.

The changes to the gripper will include access to all six force-torque readings within

the robot controllers sample period. Even though this project didn't actually use the

LORD gripper, I include a description because certain assumption about the gripper

capabilities were made throughout this study. The following gives a brief description of

the capabilities of the gripper during a grasping motion. Changes presently being made

in the gripper software will make complete integration possible in 1989.

6.1.2 LORD Instrumented Gripper

The LORD gripper subsystem was chosen for this task because many of the control

parameters are user specified allowing fine-tuning of the grasping operation control. The

following paragraph describes some of these capabilities. The speed is user specified

during position controlled motion. The component of force or torque to use in the force

control can be set. The trip-force signals the end of position control and the beginning

of force control. The threshold specifies the middle range of the force to terminate the

motion on for both fingers. A balance is set to compensate for the natural imbalance of

the sensors, readings from one sensor are decreased by half the balance while readings

from the other are increased by the same value. The tolerance gives the maximum

allowable deviation from the threshold. By altering the coefficient of the proportional gain

during force servoing, the user controls the increment of finger movement per difference

in force. The rate of accumulation of errors is specified by the coefficient for the integral

gain.[9] These capabilities allow a large variation in the control during grasping. The

optimal set of parameters will probably be determined by a combination of analysis and

experimentation.

36

6.1.3 LORD Wrist Force-Torque Sensor

A LORD Wrist Force-Torque Sensor and pneumatic gripper were used in place of the

previously described LORD Instrumented Gripper. The force-torque sensors used in

the Lord Wrist Sensor are strain gauges in a Maltese Cross configuration[10]. This

configuration consists of 8 strain-gauges mounted to metal beams. These beams lie

between two plates in the sensor. Thus, forces applied to the fingers will cause these

plates to move with respect to one another causing the beams to deform. The deformation

produces a voltage difference in the strain gauges. This analog strain-gauge data is

digitized in a preprocessor. Calibration of the readings occurs in the force-torque sensor

controller. A 6X1 vector of the forces and torques is obtained by multiplying the vector

of strain gauge readings by a 6X8 calibration matrix. The components of the 6X1 force

vector are orthogonal in the X, Y, and Z directions of the gripper fingers. Forces are

given in Force Torque Units (1 FTU = 5 oz).

6.1.4 Telerobot TestBed Control Structure

Figure 6-1 illustrates the control structure. At the highest level, there is a Microvax

running a UNIX kernel modified to permit real-time operations. Using a Robot Control

C Library (RCCL), the VAX communicates over a parallel port with a Unimation Robot

Controller. The Unimation Robot Controller runs a real-time communication and control

language called MOPER which interrupts the VAX every 28 msec to receive commands

to move the robot joints, open and close the gripper, and update the VAXS knowledge

of the sensory information and robot joint position. Commands are interpreted and used

to control the robot joint processors and the gripper controller. The force-torque sensor

controller processes raw strain-gauge readings into calibrated force-torque information.

6.2 Frames

Each object within the testbed robots workspace has an associated frame which describes

its location with respect to the base of the robot. Homogeneous transformations [i1]

37

describe the spatial relationship between the frames attached to each of the objects. The

robot end-effeetor also has an associated frame, the location of this frame is described by

an homogeneous transformation which is a function of the robots joint angles. The joint

angles necessary to achieve a particular position can be calculated and used to control the

position of the robot end-effector with respect to the base and consequently with respect

to any object within the robots workspace. The coordinate frames are of interest during

the grasping operation are the grapple lug coordinate frame and the finger coordinate

frame. In the following, the method of locating these frames is discussed.

The origin of the end-effector coordinate frame is located at the last joint axis in the

Puma. A new frame is centered on the bottom surface plane of the fingers is used in

both the position and the force control. Section 6.3 describes how the control software

determines the position and motion of this frame. The force-torque sensor also has an

assosiated frame which is located in the cented of the sensor. The force-torque readings

are readings are taken with respect to this coordinate frame. Force transformations

between frames are discussed in Section 6.4.

All of the EOS mockups have associated frames. These frames are interconnected in

a hierarchical structure forming an up-to-date model of all objects in the robots environ-

ment. The spatial relationship between the frame associated with the grapple lug and a

frame associated with the ORU is stored in the model. When the grasping primative is

used by the higher level control system, the positioning of the arm above the grapple lug

will be based on this model.

6.3 Robot Control Language

The robot control language used in the Telerobotic Testbed is RCCL [7]. In RCCL,

there is a planning level and a control level. The planning level is a 'C' program(s) which

incorporates a library of robot control commands. The control level is a 'C' program

consisting of real-time control algorithms which are evaluated every sample period. To

control the robot, a desired set of joint angles are sent to the robot joint servo controllers

each sample period.

38

The equation used to compute the desired set of joint angles during each sample period

is -

B -T6 init -E -A = B -T6 - E (6.1)

where B, T6 hdjt, E, and A are 6x6 homogeneous transformation matrices. In Equation

6.1,

* B represents the spatial transformation between a fixed world coordinate frame and

the base coordinate frame of the robot.

e T6 represents the spatial transformation between the base coordinate frame of the

robot and the robot end-effector. It is a function of the robot joint angles.

e T6 init represents the initial spatial transformation between the base coordinate

frame of the robot and the last link coordinate frame.

* E repesents the spatial transformation between the robot's last link coordinate frame

and the end-effector coordinate frame.

* A represents the spatial transformation between the initial end-effector coordinate

frame and a coordinate frame attached to the end-effector.

Initially, A is the identity matrix. Adjusting A changes the set of joint angles computed

each sample period from Equation 6.1. In this implementation, A is a function of the

vectors i and ri as determined in Chapter 4.

6.4 Sensory Information

6.4.1 Introduction

The forces used in the control algorithms must be in referenced to a particular frame

which is not necessarily the force-torque sensing frame. The first part of this section

discusses force transformations. In addition, the control algorithms assume that all the

forces read by the sensor are induced by contact. Other forces may be present such as:

39

gravitationally induced loads and transient dynamic loads on the sensor. Methods of

eliminating (or reducing the effect of) these extraneous readings are presented in the

second part of this section.

6.4.2 Force Transformations

The force-torque readings obtained from the finger sensors are measured with respect to

a coordinate frame whose origin corresponds to the center of the sensors with the same

orientation as the finger frame, as described in the Section 6.2. A Jacobian, which is a

function of the position vector and rotation between the two frames, is used to transform

the between the frames:

F = (J T)-iQ (6.2)

n. ox a. 0 0 0

ny OY ay 0 0 0

0 0 0 (6.3)
(pXn)-, (pXo)-- (pXa), n. o. a.

(pXn)y (pXo)y (pXa)y ny oy ay

(pXa), (pXo), (pXa), n, o, az

Q is a 6X1 vector of the generalized measured forces and F is a 6X1 vector of the

generalized interaction forces. And, in the Jacobian matrix (J), n, o, a, and p are

the components of a homogeneous transformation describing the spatial relationships

between the two frames.

The LORD Wrist Sensor control system has the capability to automatically change

frames given this spatial relationship before a priori. An initial sensing frame for the

grasping operation is defined in this manner to be on the bottom surface of the fingers.

During the grasping operation, the transformation, J, is used in the control software to

perform an on-line frame change (see programs in Appendix A).

40

6.4.3 Sensor Biasing

The force-torque sensors measure the load on the robot end-effector. The sensor, the grip-

per, and the fingers contribute partially to this load because of the forces gravity exerts

on them. The effect of this loading will be reduced in orbit, however, since demonstra-

tion grasping operations will be performed in the laboratory, the effects of gravitational

loading on the force-torque readings must be examined.

In order to obtain accurate reading of the forces and torques generated by contact

between the fingers and their environment, it is necessary to eliminate the components

corresponding to the weight of the gripper and fingers. The process of eliminating these

readings to within the force-torque sensors resolution is called biasing the sensors. To bias

the sensors, the force-torque readings at all subsequent readings are calculated relative

to the initial readings.

6.4.4 Transient Dynamic Loading

Motion of the arm creates loads on the wrist sensor. When the robot first begins a

trajectory from a stationary position, the entire robot inertia must be accelerated. Con-

sequently, there will be a reaction force to this acceleration in the opposite direction as

the motion. Also, as the robot moves at a constant velocity transient dynamic loads are

induced by vibrations in the arm. The magnitude of these loads are quantified in 6.5.

6.5 Performance Evaluation

The performance of the first parts of the control strategy described above were evaluated

in the Tele-robot testbed. The forces from the wrist sensor and the motion of the robot

end-effector were monitored. The programs written to perform the first steps of the

grasping operation are contained in Appendix A. The programs allow the user to input

various control parameters such as starting position, driving increments, and motion

termination thresholds.

The following sections describe various control issues and illustrates them with data

41

taken in the Testbed. To collect this data portions of the code in Appendix A were

eliminated or-modified. Force-torque data was produced by storing force values to an

array during robot motion in the RCCL control level. This data was written to a file

as the last step in the programs. Graphs were generated from the datafile using a two

dimensional plotting program called Plot2d.

6.5.1 Approach Motion

Filtering-

A filter is used to eliminate the effects of transient dynamic loads on the LORD Wrist

Force Torque Sensor. The wrist sensor has the software capability to perform a window

smoothing operation where the size of the window is user specified. The Wrist Force-

Torque Controller operates at 104 Hz. Because of the processing time needed for the

filtering operation, the FT Controller only operates at 83 Hz when the filter is activated.

The LSI-11 only up-dates the force and torque information at 35.7 Hz. The need for

this filtering function is illustrated by the Figures 6-3 and 6-4 which show the forces on

the robot end-effector in the Z direction with no filtering and with the filtering option

activated, respectively. In Figure 6-4, the window size was 4 and the speed of the arm

was 3.6 mm/sec. As can be seen from the figures, the spikes of the unfiltered signals more

than double the spikes of the filtered signals. These tests were performed at a relatively

slow speeds, at higher speeds, the spikes can approach our motion termination threshold

of 50 FTU when the filter is inactive (see Figure 6-5).

ForwardDrive-

To determine an optimum set of parameters during the Translational Position Accom-

modation, tests were run varying the driving increment (the distance the robot moves

during each sample period). The filter described above was active during these tests.

It was learned that a large driving increment caused large force values to be generated

during the motion in free space. For example, at a driving increment of 18 mm/sec, the

magnitude of the force readings was as great as 9 FTU's (see Figure 6-6). The large

variations in force are thought to be caused by the acceleration experienced by the robot

42

arm and the vibration of the motors in the robot joints. Also, in Figure 6-6, the reaction

force to the initial acceleration is distinguishable (the large negative spike). A driving

increment of 3.6mm/sec which keeps the noise to within 3 FTU's was selected for the

rest of the tests (see Figure 6-7).

6.5.2 Instantaneous Contact Forces

As described in Chapter 4, position accommodation was used when bringing the end-

effector in contact with a surface. The idea behind this was to reduce the large overshoot

of the threshold force. The overshoot was 500% for relatively slow robot speeds (3.6

mm/sec). The overshoot, of course, increases for higher speeds. The use of a position

accommodation only reduced the overshoot marginally (see Figures 6-8 and 6-9). These

curves show the robot pushing against the environment until a threshold force of 50

FTU's was reached. At this time the motors stop driving the robot forward. However,

because the robots inertia cannot be halted instantaneously, the forces overshoot the

threshold value. Data after the maximum force was created by a programming bug which

didn't stop execution and can be ignored. Figures 6-8 and 6-9 show that the position

accommodation for motion act in this environment almost like guarded motions.

6.5.3 Point of Contact Identification

As discussed in Section 5.3.1, it is theoretically possible to find the point of contact

between the flat surface of the fingers and the grapple lug. However, this method may

be imprecise for the following reasons: the contact between the two surfaces will not be

exactly a point and the rigid body model of the arm may not be accurate during contact

because of compliance in the robot arm.

The point of contact identification algorithm was tested experimentally in the Teler-

obot Testbed to see if it generates information about the point of contact sufficiently

precise to be of use in the surface alignment procedure. For this experiment, a spe-

cial tool as shown in Figure 6-10 was attached to the end-effector of the robot. The

tool was lowered onto an aluminum pin which protruded from a block within the robots

43

workspace. The exposed end of the pin was tapered to assure a point contact. Joint

angles to enable the robot to achieve a configuration above the pin were obtained by

aligning the tool with the corners of the block then bringing the center of the plate into

contact with the pin. The software written to evaluate the point of contact identification

algorithm allowed the user to specify the starting distance above the pin, and the X and

Y position of the center of the plate relative to the pin.

Motion towards the pin was accomplished using Translational Position Accommoda-

tion as discussed in section 4.2. The motion was stopped when contact between the plate

and the pin produced a force value equal to the threshold of 50 FTU's. The resulting

static force-torque readings were used to calculate the point of contact. Table 6.1 shows

the performance of the point of contact identification algorithm. In this table, point A

was nominally at the center of the plate, (0,0, O)T. Point B was nominally 30 mm from

the center of the tool in the X direction, (30.0,0, O)T. Point C was nominally 60 mm fron

the center of the tool in the X direction, (60.0, 0, O)T. As seen from Table 6.1, the worst

case error in ten trials was 2.05 mm. The average error for the X distances for Point

A, Point B, and Point C were 0.72mm, 0.55mm, and 0.80mm, respectively. Therefore,

the magnitude of the errors were not found to be a function of the distance from the

center of the plate. Table 6.1 indicates that the point of contact identification algorithm

is sufficiently precise to be used by the surface alignment procedure.

Point A Point B Point C
X(mm) Y(mm)) Xmm) Y (mm)
1 0.00 -0.79 31.50 0.79 62.05 -1.36
2 0.00 0.00 30.97 0.54 60.48 1.61
3 0.92 -1.83 30.42 -0.61 60.00 1.60
4 0.93 1.86 29.88 -0.66 60.30 -0.66
5 1.71 0.85 30.89 0.00 61.60 0.00
6 0.00 1.27 30.24 -1.21 59.96 0.83
7 -0.94 0.94 30.48 0.92 60.82 1.43
8 0.64 0.00 30.16 -0.13 61.26 -0.75
9 1.37 -0.69 30.48 -0.60 61.40 0.73

10 0.71 0.00 30.48 0.00 60.10 0.00

Table 6.1: Performance of Point of Contact Algorithm

44

6.5.4 Levelling

To demonstrate the entire operation, all the step thus far programmed were run as

one procedure. The plate was positioned above a block on the taskboard and tilted

using a teach demo program to an arbitrary angle. The plate approached the block,

made contact, and rotated until level. Although no quantitative data was taken, visual

observation indicated a slight drift in the vector about which the plate was rotating.

This effect is thought to be caused by the change in gravitational loading on the sensor,

gripper, and fingers. For small angles of rotation this effect is reduced, however, for

demonstration purposes larger orientaion misalignments are desirable. The following

describes how this effect can be eliminated. A method of eliminating the effect of gravity

loading is presented in the following chapter.

45

motor current-
encoder ositio ROBOT

VAX control LSI-11 orce-tor ue WRIST
(RCCL) tructur (MOPER) ..- data SENSOR

ri -re NEUMATIC
sign GRIPPER

SYSTEM TO REPLACE WRIST
SENSOR AND PNEUMATIC GRIPPER

ft data
- motion commands

GRPER CONTROLLER
(FACADE-SEL)

digital strain motor
gage data cable

analog data
PREPROCESSOR GRIPPER

Figure 6-1: System Configuration

46

10
8
6
4

~ 2

0
0 -2
L

-4

-6
-8

-10

0 1 2 3 4 5

Time (s)

Figure 6-3: Normal Force at a Velocity of 3.6 mm/sec without Filtering

47

10

8

6
4

2

0

-2

-4

-6

-8
-10

1 2 3 4 5

Time (s)

Figure 6-4: Normal Force at a Velocity of 3.6 mm/sec with Filtering

I
I

1 2 3 4 5

Time (s)

Figure 6-5: Normal Force at a Velocity of 18 mm/sec without Filtering

48

0.
U

I I I

0

..

0
IL

50
40

30

20

10

0

-10

-20

-30

-40

-50

0

I

0 1 2 3 4

Time (s)

Figure 6-6: Normal Force at a Velocity of 18 mm/sec

0 1 2 3 4

Time (s)

Figure 6-7: Normal Force at a Velocity of 3.6 mm/sec

49

10
8
6
4

2

0
-2

-4

-6
-8

-10

0
0-

5

10
8
6
4

2

0
-2

-4

-6
-8

-10

CD)

0
L

5

i i

50

5.

a,
0

U-

0

-50

-100

-150

-200

-250

I.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

Figure 6-8: Guarded Motion; Speed = 3.6 mm/s; Threshold = 50 FTU's)

..

C,
0

L-

50

0

-50

-100

-150

-200

-250

0 1 2 3 4 5 6 7 8 9 10

Time (s)

Figure 6-9: Forward Motion Posision Accommodation; Speed = 3.6 mm/s; Threshold = 50 FTU's

50

WA

- __a

'I - a .

.::+:::*3::*3:3:5:::%%11~ ~ ~ ~ ~~~~k ||~stt~t:%31%sin:%%%sbu8:8%M%k-kNii$ M
life.43%NNER$$iM31 ~ ~ ~ Nisisii22229N~I!?U~iN|ii2i

::::::6353::44 v o+-":w----------'-- --%^"c.

Figure~ ~ ~ ~~~~~~~A11I. 6-- pcilTo se oIpemn tp o ,rsig prto

51

---

Chapter 7

Conclusions and Recommendations

A strategy for grasping an ORU has been developed. Hardware integration problems

prevented the implementation of the entire grasping operation. Various components of

the entire grasp were tested using a special tool and the LORD Wrist Force-Torque

Sensor. Results to date show that implementing a grasp is feasible using a six degree of

freedom arm.

Experimental data indicates that the effect of manipulator inertia on sensor readings

may degrade any real-time fedback control. When the arm first begins a motion, there

is a reaction force read by the force-torque sensors. Also, the force-torque readings vary

as the arm moves at a constant speed through free space. Performing motions at slower

speeds and smoothing the force-torque readings at a higher rate than the robot sample

period reduces these effects considerably.

The data also indicates that using position accommodation instead of a guarded mo-

tion produces only a slight improvement in performance. However, the problem of over-

shoot upon contact still remains. Several solutions to the overshoot problem are possible.

Reducing the threshold to allow for the overshoot is the simplist. However, since the per-

cent overshoot is a function of robot speed, complience of environment, and sampling

rate, the maximum force felt will vary. Keep in mind that a low threshold can be trig-

gered by the disturbances described above. Proximity sensors on the fingers could be

used to almost halt the robot before contact. This solution involves adding additional

52

hardware and integrating more control data. Alternately, it is felt that the performance

of the position accommodation algorithm described above would be greatly improved by

attaching a rubber pad to the fingers where contact occurs. The contact forces would

build up gradually, and the position accommodation algorithm would halt the inertia of

the robot before the threshold force value was reached.

The results of the point of contact identification look promising. Using the force-torque

information to locate objects may have other useful applications such as indicating how

a tool held by the robot is contacting a surface. The readings seem biased in the positive

direction. A more precise method of aligning the plate with the taskboard may improve

the readings.

Visual observations show a drift in the point of rotation in the levelling operation.

This is thought to be caused by gravity loading. The problem with automatic biasing as

described above is that once the sensors are biased for a initial gripper orientation, any

deviation from this initial orientation will induce changes in the readings from the wrist

sensor. However, assuming that the orientation of the robot end-effector with respect

to the gravity vector and the location of the center of mass of the sensor, gripper, and

fingers are known, the gravitationally induced forces can be calculated, transformed to

the sensor frame, and subtracted from the force readings. In RCCL, this transformation

would be relatively simple to program because the angle between the gripper the gravity

vector is accessible from memory. Lack of time prevented implementation.

Areas which require further work include lug/finger design and error detection and

recovery. The lug/finger design results from modifying the standard grappling lug for

robotic applications while retaining physical similarity. A better approach might be

to design to maximize some parameters such as positioning error tolerance or area of

contact. A more symmetric design such the one shown in Figure 7-1 would distribute

the positioning error tolerance equally in and about the X and Y axes. Also, it would

increase the positioning error tolerances in the Z direction and about the X and Y axes.

In addition. the prototype design simplifies the error detection and recovery work planned

by the Tele-Autonomous Systems Group. With the existing design the number of possible

53

contact scenarios (contact between a distinct surface on the lug and a distinct surface on

the fingers forms one scenario) is greater that 50. Before further work is done in these

areas the mechanical design should be modified.

Figure 7-1: Prototype Grapple Lug and Finger Design

54

Bibliography

[1] TAS Group Polar Platform Robotic Servicing Evaluation: FY 88 Laboratory Re-

search Results. JPL, 1986.

[2] Daniel E. Whitney Force Feedback Control of Manipulator Fine Motions ASME J.

Dyn Sys., Meas., Contr.:91-97., 1977. 1

[3] J. K. Salisbury Active Stiffness Control of a Manipulator in Cartesian Coordinates.

Proc. 19th IEEE Conf. on Decision and Control, 1980.

[4] M. H. Raibert and J. J. Craig Hybrid Position/Force Control of Manipulators. Trans-

actions of the ASME, 1981.

[5] Matthew T. Mason Compliance and Force Control for Computer Controlled Manip-

ulators. MIT Press, 1981.

[6] Daniel E. Whitney Historical Perspective and State of the Art in Robot Force Control.

International Journal of Robotics Research, 1987.

[7] Vincent Hayward Robot Manipulator Control under Unix RCCL: A Robot Control

"C" Library. The International Journal of Robotics Research, 1986.

[8] Richard P. Paul Robot Manipulators: Mathematics, Programming, and Control. MIT

Press, 1981.

[9] LORD Automation Division, Instrumented Gripper Operating Manual April 1988,

pgs 5-11.

55

10] Antal K. Bejczy, "Smart Hand" - Manipulator Control Through Sensory Feedback.

JPL, 1983, pg 30.

[11] Joh& J Craig Introduction to Robotics- Mechanics and Control. Addison-Wesley Pub-

lishing Company, 1986.

56

APPENDIX

Programs for Implementing Grasping Operation

57

Parameter Initialization Macro

-A meero to set the parameters In fi-nd rot. c grasping program.
*w Loop after return from findrot.c to restart.
** BUGS7- hazardous to restart, sometimes crashes system.
** Suggest - check initialization of all parameters **/

#include <signal.h>
#include <stdio.h>
#include "/projects/robot/rccl/h/rccl.h"
#include "/projects/robot/rccl/h/rci.h"
#include "/projects/robot/rccl/h/macros .h"
#include "/projects/robot/rccl/h/fsense.h"
#include "RTC.h"
#include "/projects/robot/rccl/h/hand.h"

int acceltime;
int segtime;
extern real for drive;
extern real bacidrive;
extern real rot drive;
extern char average[];

main(argc, argv)
int argc;
char **argv;

TRSFPTR gentr jntmo;
TRSFPTR b, z;
POS_PTR p0;
char *pose - "ldf";
JNTS jnts;
double rng[6];
struct findrotCmd d;
char not done[33;
char resp[6J;
float rl, r2, r3, r4, r5, r6; /*Joint Angles for a */

/*starting position */

if (rccl_open(argc, argv) -- -1) {
printf ("rcclopen\n");
exit (-1);

I
if (rcclcontrol() -- -1) {

printf ("rccl control\n");
exit (-1);

}

notdone[O] - 'n'

printf ("Enter x,y,z components for direction vector<0.0 0.0 1.0>:\n");
scanf("%f %f %f", &d.dir.x, &d.dir.y, &d.dir.z);
printf ("Enter distance in (mm)<300.0>:\n");
scanf ("%fU", &d.maxdist) ;
printf ("Enter acceleration time in (msec)<1000>: \n");
scanf ("%d", &acceltime);
printf("Enter segment time in (msec)<180000>: \n");
scanf ("%d", &segtime);
printf("Enter for drive in (mm)<0.l>: \n");
scanf ("%f", &d.for_drive);
printf ("Enter back drive in (nt.T)<0.0001>: \n");
scanf("%f", &d.back_drive);
printf ("Enter rot drive in (mm)<0. 000l>: \n");

7Ae.

scanf("%f", &d.rctcrive);
printf ("Average F/T readirigs 'y/n]<y> \l");
scanf ("%s", average);
piIntf ("Vector of Joint Angles for Start: \n");
scanf("%f %f %f %f %f %f", &rl, &r2, &r3, &r4, &r5, &r6);
printf("%f %f %f %f %f %f\n", rl, r2, r3, r4, r5, r6);

/* The following are the joint angles necessary to bring the plate tool*/
/* approx 10 cm above the point contact which sits in the reamed block*/
/* on the task board */
/* Comment out the last question when using these values */
/* ri - -51.61;

r2 - -103.36;
r3 - 2.24;
r4 - 0.0;
r5 - -78.88;
r6 - 38.39; */

/* Or to approach reamed block corner from an angle*/

* r - -43.17 */
/* r2 - -107.26*/
/* r3 - -11.08*/
/* r4 - -7.54*/
/* r5 - -62.99*/
/* r5 - 50.28*/

printf("%f %f %f %f %f %f\n", rl, r2, r3, r4, r5, r6);

while(notdone[0 -- _n'){
b - gentr-jntm("B", ri, r2, r3, r4, r5, r6, pose);

p0 - makeposition("PO", t6, EQ, b, TL, t6);
setvel(30, 30);
setmod(' j');
setconf (pose);
move(p0);
move(p0);
waitfor(completed);

/* OPEN;*/ /*Commented out when tool already in to avoid dropping*/
printf("Press <CR> when ready to close gripper");
scanf("%s", resp);
CLOSE;

d.arm - 1;
printf ("touch move begins\n");
findrotmove(&d);
printf("touch move finished\n");
printf ("Are you done [y/n] ?\n");
scanf("%s", hotdone);

/* while */
/* main */

TRSF_PTR gent:.jnwm(nameql,a2, q3,q4,.q5,q6, conf)
char *name;
real ql,q2,q3,q4,q5,q6;
char *conf;
{

TRSFPTR t;
JNTS jnts;
double angrEJrad6Irgc6];

jnts.con- -
ang[0J - (dc.ble) qi;
ang[l] - (double) -2;

5 9.

ang[2] - (double) q3;
ang[3I - (double) q4;
angL4L- (double) q5;
ang[5] - (double) q6;

degree_t o_radian (rad,ang);
radian to range (rng, rad);
jnts.thl - rng[O);
jnts.th2 - rng[l];
jnts.th3 - rng[2];
jnts.th4 - rng[3);
jnts.th5 - rng[4];
jnts.th6 - rng[5];

t - newtrans (name, const);

jnsato-tr (t, & jnts, NULL);

conf[0] - jnts.conf [0);
conffI] - 4nts.conf[1];
conf[2] - jnts.conf[2);
conf[3] - jnts. conf [3];

return (t);

FT comand (code)
int code;

SETCMDVAL(force sensor, FTOFF);
SETCMDVAL (force-sensor, code);
nap (1.0);
SETCMDVAL (forcesensor, FTON);
nap (0 .5) ;

/* FT-command */

60.

I

Planning Level

Planning level of first two step of grasping operation:
locate surftce and align planes.

** Author: Helen Greiner (adapted from newtouchevfn2.c)

#include
#include
#include
#include
#include
#include
#include

<signal.h>
<stdio.h>
"/projects/robot/rccl/h/rccl.h"
"/projects/robot/rccl/h/rci.h"
"/projects/robot/rccl/h/macros.h"
"/projects/robot/rccl/h/fsense.h"
'RTC.h"

#define FOR DRIVE MODE
#define ROTATE MODE
#define BACKDRIVE MODE
#define FOR_THRESHOLD
#define SMPL-

0
1
2
50.0
0.028

forceValues[536](6];
scnt;
find rot evfn();
gain;
initforce[];
dir;
maxdist;
evfnResult;
mode; -
fordrive;
rot drive;
acceltime;
segtime;
rx, ry, rz;
tdiff;
rotx;
roty;
rotz;
xcontact; /*ex
ycontact; /*bi
zcontact; /*is

/*2D array of FT data*/
/*number of samples taken*/

tern should be added when*/
as for transformed forces*/
implemented*/

char average[3];

findrotmove(d)
struct findrotCmd *d;

FILE
FILE
TRSFPTF
TRSF_PTF
TRSF_PTF
Pos_PTR
int
char
float
dir.x -
dir.y -
dir.z -

*fpout;
*fopen () ;
tp; /* adds plate to position equation*/
t; /* the T6 homo. trans. in last sarmp.le*/
C;
pt;
i;
answer[6];
toollength;

d->dir.x;
d->dir.y;
d->diz.z;

maxdist - FABS(d->maxdist);
evfnResult'- -1;
mode - FOR DRIVE MODE;
'or drive - d->for drive;

/*sets tve Pos. ARc.-/

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

float
int
int
real
short
VECT
real
int
int
real
real
int
int
float
float
float
float
float
float
float
float

rot-drive - d->rot drive;
gain - fordrive / FORTHRESHOLD;
toollength - 162.4;

/*only needed to print*/
/* in mm of course*/

printf ("gain - %f\n", gain);
printf ("fordrive - %f\n", fordrive);
tp - gentr trsl("TP", 0.0, 0.0, tool length);
c - newtrans("C", findrotevfn);
t - newtrans("T", const);
assigntr(t, t6);
pt - makeposition("PT", t6, tp, EQ, t, c, unitr, TL, t6);

/*should include another tp in right side*/
/*add and test it in lab*/

printf("Hit <cr> when ready to bias the sensor:\n");
scanf ("%s", answer);
FTcommand(FTBS);
FTcommand(FTSF3); /*frame at bottom surface in center*/

/*of platetool */

if (average(0] - 'y') (
FTcommand(FT_EF4);

I
for (i - 0; 1 < 6; i++)

initforce i] - how.forceValues[i];
printf("Initial force: ");
for (i - 0; i < 6; 1++)

printf("%d ", how.forceValues[i]);
printf ("\n");

/*probably no need */
/* values -2<ftu<2 */

setime (acceltime, segtime);
setmod('c');

printf("t->p.x t->p.y t->p.z \n");
printf("%7.2f %7.2f %7.2f \n\n", c->p.x, c->p.y, c->p.z);

move(pt);
completed++;

/* Screen display of force Values is eliminated to save time */
while (completed) (
/* printf("%4d %4d %4d %4d %4d %4d\n",

how.forceValues[0), how.forceValues(1), how.forcevalues[2),
how.forceValues[3], how.forceValues[4], how.forceValues[5)); */

printf("t->p.x t->p.y t->p.z \n");
printf("%7.2f %7.2f %7.2f \n\n", c->p.x, c->p.y, c->p.z);

/*Finds contact point for point contact in tool frame*/
/*Torque scale factor for this tool is 4

xcontact - -(how.forcevalues[4] * 4.0) / how.forceValues[2);
ycontact - (how.forceValues[3] * 4.0) / how.forceValues[21;
zoontact - 0.0;

printf("x contact - %7.2f \n", xcontact);
prIntf("y contact - %7.2f \n\n", ycontact);

printf("Force Values in FT units\n");
printf("%4d %4d %4d %4d %4d %4d\n",

how.forceValues [0), how.forceValues[l], how.forcevalues [2),
how.forcevalues[3], how.forceValues[4), hcw.forceValues[5!);

/* CYE FOR BACKDRIVE*/

if (evfnResult - 1) {

printf ("Entering BACKDRIVEMODE");
mode - BACKDRIVEMODE; /*switch type of Pos. Acc.*/
move(pt);
completed++;

/* screen display eliminated */
while (completed) I
/* printf("%4d %4d %4d %4d %4d %4d\n",

how.forceValues[O], how.forceValues[1J, how.forcevalues(2J,
how.forcevalues[3], how.forceValues[4], how.forceValues[5));

*/

/* CODE FOR ROTAIING */

mode - ROTATEMODE; /* switch type of Pos. Acc.*/

/*Determines from point of contact the amount we wish to rotate in */
/*Each direction */
/*Used instead of changing frames so we can control each axis
/*independantly */
/* Vector of rotation is found by taking a normal to vector from */
/* tool frame to point of contact in plane of the plate */

rotx - -ycontact/(isqrt(xcontact*xcontact+ycontact*ycontact));
roty - xcontact/(sqrt(xcontact*xcontact+ycontact*ycontact));
rotz - 0.0;

/* Here we should calculate transformed initial-forces */
/* Should be added*/

/*experimental to test direction of rotations*/
/* rotx - 1.0; */
/* roty - -1.0; */
/* xcontact - 3.0; */
/* ycontact - 3.0; */

printf("rotx - %7.2f \n", rotx);
printf("roty - %7.2f \n", roty);
printf("rctz - %7.2f \n", rotz);

tp - gentr_tzsl("TP", (xcontact*25.4), (ycontact*25.4), toollength);
c - newtrans("C", find rot evfn);
t - newtrans("T", const);
assigntr(t,. t6);
pt - makeposition("PT", t6, tp, EQ, t, tp, c, unitz, TL, t);

for (i - 0; i < 6; i++)
initforceti] - how.forceValues[ij;

printf("Initial force: ");
for (i - 0; i < 6; i++)

p=intf("%d ", how.forceValues[i2);
printf ("\n");

seti me(ac-celtime, se"time);
setmod('c'):

print ("t->p.e t->p.y t->p.z \n");
print ("%7.2f %7.2f %7.2f \n\n", c->p.x, c->p.y, c->p.z);

move (pt) ;
completed++;

/* screen print out off*/
while (completed)
/* printf("%4d %4d %4d %4d %4d %4d\n",

how.forceValues[0], how.forceValues[1], how.forceValues[2),
how.forceValues[3], how.forceValues[4, how.forceValues[5]);
printf("%7.5f %7.5f %7.5f %7.5f \n",
rx, ry, rz, tdiff); */

printf("t->p.x t->p.y t->p.z \n");
printf("%7.2f %7.2f %7.2f \n\n", c->p.x, c->p.y, c->p.z);

printf("Force values in FT units \n");
printf("%4d %4d %4d %4d %4d %4d\n",

how.forceValues[O), how.forceValues[l], how.forcevalues[2),
how.forceValues[3], how.forceValues[4), how.forceValues[5));

printf("%7.5f %7.5f %7.5f %7.5f \n",
rx, ry, rz, tdiff);

FT command(FTSFO);
FTcommand (FTEFO);

freetrans(t);
freetrans (c);
freetrans (pt);

/* open file and print stored force values into it */

while (evfnResult<5) {)

4f ((fpout - fopen ("find rot.dat", "w")) -- NULL){
printf ("can't open \n");
exit (1);
I

for (i - 0; i<scnt; i++){
fprintf (fpout, "%4d %4d %4d %4d %4d %4d %4d \n",
i*SMPL, -
for ceValues [iJ [02,
forceValues [i [1),
forceValues [i [2),
f orceValues [i [3] ,
forceValues[i) 4],
forceValues[i][5));

/* find rot.c */

toLr

Control Level

newtouchevfn. c 1.0 (JPL MCM)

static cha SID[] - "@(#)newtouchevfn.c 1.0 (JPL MCM)

** The eval function used by the find-rot grasping program
** It assumes the use of filtering (average of 4) in the force/torque
** sensors.
** Mode of Pos. Acc. must be set in planning level
** Mode can be as of now Translational Motion Position Accommodation
** Rotational Motion Position Accomodation
** Backdrive

** Author: Helen Greiner (adapted from newtouchevfn2.c)

#include "/projects/robot/rccl/h/rccl.h"
#include "/projects/robot/rccl/h/rci.h"
#include "/projects/robot/rccl/h/macros .h"
#include "RTC.h"

#define FOR DRIVE MODE 0
#define ROTATE MODE 1
#define BACKDRIVE MODE 2
#define FOR THRESHOLD 50.0
#define ROT THRESHOLD 200.0
#define POS THRESHOLD 0.01
#define BACKTHRESHOLD -8.0
int scnt;
float forceValues[536][6];

gain;

initforce[6];

dir;

maxdist;
evfnResult;

for-drive;

back-drive;

rotdrive;

mode;

rx, ryj, rz;

/*
/*
/*
/*

/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

/*
/*
/*

/*

/*
/*
/*

/*

/*
/*
/*

/ *

/*

selectcompliance law */
select compliance law */
selects compliance mode */
f/t units difference stop moving forward */
f/t units difference before terminate */
Displacement threshold */
F/T units along dir vector to drive */

gain for the compliance motion
NOTE: must be initialized by calling
routine.
initial force before the move
should be biased out
"unit" direction vector indicating
direction of movement with respect to
force torque sensor frame
desired linear displacement
0 - if no contact made
1 - if translational contact is made
2 - if rotational contact is made

and transl. contact was made

distance (mm) to move during sample
period when in FORDRIVEMODE
NOTE: must be initialized by calling
routine.

distance (mm) to move during sample
eriod when in BACKDRIVEMODE

NOTE: must be initialized by calling
routine. */

distance (mm) to move during sample
period when in ROTATEMODE
NOTE: must be initialized by calling
routine.

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

*1

*1

*1

Flaa indicating whether in
FOR DR VE MODE or BACK DRIVE MODO
temp var :o simplify (n o a)-----------

65

7/18/88

7/18/88";

real

short

VECT

real
int

real

real

real

int

float,

/* components in too'l frame to rotate
/- about to make planar contact between
/* plate and lug

/* found using transformed forces
/* about point of contact

transfv3, transfv4, transfv5;
/* transformed force readings to frame
/* defined by translation by xcontact,
/* ycontact, and zcontact.

*1

*1

/* locates contact point; used in force */
/* transformations */
/* should be imported from planning file */

find rot evfn(t)
TRSFPTR

int
float
real

j;
fdiff;
pdiff;

/* counter */
/* force difference */
/* distance between current position */
/* and desired terminal position */

fdiff - (how.forceValues[O] - initforce[0]) * dir.x +
(how.forceValues[l] - initforce[li) * dir.y +
(how.forceValues[2 - initforce[2]) * dir.z;

/*store forces in 2-D array every sample period*/
if (scnt > 53s)ai
evfnResult - 5;
rcl$terminateMotion - YES;
return;

)
else{

for (j - 0; j<6; j++)
forceValues[scnt](j] - how.forceValues(j];

scnt++;

switch (mode) {
case FORDRIVEMODE:

if (FABS(fdiff) < FOR THRESHOLD)
pdiff - maxdist - sgrt(

(t->p.x * t->p.x) +
(t->p.y * t->p.y) +
(t->p.z *t->p.Z));

if (FABS(pdiff) < POSTHRESHOLD)

evfnResult - 0;
rcl$terminateMotion - YES;
return;
}
if (FABS(pdiff) < for drive)

_cr drive - FABS(pdiff);

/* Motion completed */
/* without hitting */
/* anything */

/* Very close to */
/* terminal positicn */
/* so must adjust */
/* positinaL ste- /
/* size */

gain - :cr drive / FCR- tHiRESHOLD;

Zloat
float

float

float

rotx;
roty;
rotz;

tdiff;

float
float.
float

xcontact;
ycontact;
zcontact;

{

t->p.x +- (for drive + fdiff * gain) * dir.x;
t->p-.y + (for drive + fdiff * gain) v dir.y;
t->p.z +- (fordrive + fdiff * gain) * dir.z;

I else
evfnResult - 1;
rcl$terminateMotion - YES;
return;

break;

case BACKDRIVEMODE: /*to relieve forces but still keep contact*/

if (FABS(fdiff) < BACKTHRESHOLD)
evfnResult - 2;
rcl$terminateMotion - YES;
return;

t->p.x -- back drive * dir.x; /*backdrive in dir*/
t->p.y -- back drive * dir.y; /*of motion */
t->p.z -- backdrive * dir.z;

break;

case ROTATEMODE:

/* Transforms forces to a frame at point of contact with same */
/* orientation as tool frame */
/* Torque scale factor for this tool is 4
/* Should subtract out transformed bias

if (FABS(tdiff)<ROT THRESHOLD){
transfv3 - how.forceValues[3]*4 -

ycontact * how.forcevalues[2]-
zcontact * how.forceValues[1];

transfv4 - how.forceValues[4]*4 -
zcontact * how.forceValues[0+
xcontact * how.forceValues[2];

transfv5 - how.forceValues[5]*4 +
xcontact * how.forceValues(l] +
ycontact * how.forceValues[O];

/* torque about new rotation vector*/
tdiff - transfv3 * rotx +

transfv4 * roty +
transfv5 * rotz;

/* :diff - (how.forceValues[3] - initforce[3]) * rctx +
(how.forceValues[4] - initforcel4]) * roty +
(how.forceValues[5] - initforce!51) - rotz;

*/
gain - rot_drive/ROTTHRESHOLD;
rx +- (rotdrive + tdiff*gain)*rotx;
ry +- (rot_drive + tdiff*gain)*roty;
rz +- (rot_drive + tdiff*gain)*rotz;

t->a.x - ry; /* Assumes differential rozationsw/
t->a.y - -rx; /* 2nd order terms discarded */

->C.x - -rz; /* to save computation mime
t->o.z - rx;
t->n.y - rz;
t->n.z - -ry;

else

evfnResult - 2; /*has made planar contact*/
rcl$terminateMotion - YES;
return;

break;
/* Add RotateBackDrive here*/

/* findrot evfn.c */

ra

