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(1)
SECTION I
ABSTRACT

An electronic differentiel anslyzer system has been developed
of complete mathematical generality, and a functioning model, capable
of solving ordinary differentisl equations of orders through the fourth,
both linear and non-linear, has been constructed and operated. The
electronic differential analyzer has a high speed of operation and is
extremely flexible with regard to equation parameters and initial-
conditions. This flexibility permits rapid investigation of wide
renges of equation solutions and the quick qualitative determination
of the nature of these solutions with regard to periodicity, instability,
and discontinuities; it further permits rapid cut and try adjustment
of unknown initial conditions to fit prescribed final conditions.

The development of this differential analyzer has required the
invention of two new computing elements, an electronic function
generator and an electronic multiplier. These components together
with the balance of the differentiel analyzer have been used in the
solution of a number of representative differential equations of the
linear and non-linear types.

Comparison of observed and calculated solutions reveals an accu-
racy of from 1 to 5 percent, depending upon the equation solved. This is
completely adequate for a great many engineering problems. The observed
precision of the solutions ranges from 0.002 to 0.1 percent. An analy-
sis of the errors introduced into differential equation solutions by
the frequency limitations of the cémputing elements, such as the inte-
grators and adders, has been made and the results of this analysis

verified experimentally.

3068373



(i)

The cost of construction of an electronic differential analyzer
can be expected to lie between $4000 and $20,000,depending upon the
range of problems to be treated. It 1s the feeling of the author that
this electronic differential analyzer should find considerable appli-

cation in msthematics, physics, and engineering.
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SECTION II
INTRODUCTION
History

This thesis is concerned with the development of an electromic
differential analyzer. In order that the position of this work in
the field of mathematical machines may be clearly understood it is
worthwhile to review very briefly past work in this field.

Early in the history of mathematics as a science the develop-
ment of mathematical machines was begun. These machines were developed
as labor saving devices to perform routine operations, which mathe-
maticians could do without machines, with a considerable saving in
time and energy. The ancient abacus, the slide rule, and the modern
desk calculator are all machines of this type. The differential
analyzer, a machine to solve ordinary differential equations, is one
of the more recent developments.

2,1 Previous Work on Differential Analyzers

The first conception of a differential analyzer appears to be
due to Lord Kelvin toward the end of the 19th century.l This idea
was Independently rediscovered by Vannevar Bush at the Massachusetts
Institute of Technology in 1925.2’3 The first comprehensive differen-

tial analyzer was built in 1930.% This first machine and those

1 Sir William Thomson (Lord Kelvin)- a series of papers,and one by

his brother James Thomson, published in Proceedings of the Royal
Society, V.24, 262-275, Feb. 1876.

Bush, V., Gage, F.D., and Stewart, H.R., "A Continuous Integraph,"

Jour. Frank. Inst., v.208, 63-84, 1927, '

3 Bush, V,, and Hazen, H.L., "Integraph Solution of Differential
Equations," Jour. Frank. Inst., v.208, 575-615, 1927.

4 Bush, V., "The Differential Analyzer. A New Machine for Solving
Differential Equations," Jour. Frank. Inst., v.212, 447-488, 1931.
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developing immediately from it were characterized by complete generality,

the ability to solve any ordinary differential equation subject only

to the limitations of the number of machine components available.

5’6,7,8

These machines utilize mechanical shaft rotations for the various

dependent and independent varlables, and are rather slow in their

operation, requiring from 20 to 40 minutes to run through a typical

problem solution and from 2 to 24 hours of preparation or set-up time

before the solution of each new problem. The accuracies obtainable

with these machines may in certain cases be as good as 0,1%, although

in other cases the accuracy is not so good as this., Machines with

such performance are rather costly to construct and operate.

It was soon recognized by a number of English workers that there

would be considerable utility for a differential analyzer of more

moderate accuracy, perhaps 1 to 5%, which could be constructed and

operated at a considerably reduced cost. A number of small differen-

tial anelyzers were bullt along this general line.

9,10,11

10

Travis, Irven, "pDifferential Analyzer Eliminates Brain Fag,
Machine Design, 15-18, July 1935.

Hartree, D,R., " The Differential Analyzer," Nature, v.135, 940,
June 1935.

Rosseland, Svein, "Mechanische Integration von Differentialgleichungen,®
Die Naturwissenschaften, 27 Jahrg., Heft 44, 729-735, 1939.

Kuehni, H,P., and Peterson, H.A., "A New Differential Analyzer,™
Trans. A’I.EQE., Vo63’ 22.1"228, Hay 1944.

Hartree, D.R., and Porter, A., "The Construction of a Model Differen-
tial Analyzer," Mem. and Proc. Manchester Lit. and Phil, Soc.,
v.79, 51-72, July 1 1935,

Msssey, H.S.W., Wylie, J., and Buckingham, R.,A., "A Small Scale
Differential Analyser: Its Construction and Operation,® Proc. Royal
II‘iSh Aca.do’ 7045’ 1."21, 1938-
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2+2 DPresent Trends in Differential Analyzers

Two of the more yecently developed differential analyzers have
been aimed at strengthening some of the weaknesses of the early
mechanical machines.s’12 These new machines are considerably larger
than those previously developed and can thus handle problems of
much greater complexity. A considerable increase in flexibility has
been achieved by interconnecting the various mechanical computing
elements by means of electricel servomechanisms, The set-up of these
analyzers is thus accomplished by suitable electrical rather than
mechanical interconnections. These machines afford for many cases
even greater accuracy than was previously possible, of about 0.01%
in favorable cases; they have a running time per solution of about
20 minutes and an initial set-up time of from 20 minutes to 2 hours.
They are, however, extremely expensive to build and operate; for
example the use of the M.I.T. Differential Analyzer for the period
of one hour on a problem requiring the entire machine costs about $50.

The solving of a completely new problem on a differential
analyzer introduces a third very important time period in addition
to the initial set-up time and final solution times indicated above.
That is the time necessary to determine what range of initial conditions
end equation parameters are of importance. In order to determine this
information it mey frequently be necessary to run a large number of
exploratory solutions. This situation becomes particularly difficult

1 Lennerd-Jones, J.E., Wilkes, M.V., and Bratt, J.B., "The Design

of a Small Differential Analyser," Proc. Camb. Phil, Soc., v.35 (III),
485-493, July 1939. :

12 Bush, V., and Caldwell, S.H., "A New Type of Differential Analyzer,"
Jour. Frank. Inst., v.240, 255-325, Oct. 1945.
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in those problems for which not all the initial conditions but instead
some of the final values of the desired solution,are known. For these
gituations it is necessary to guess at the unknown initial conditions,
run & solution, see how the final values thus obtained differ from
the desired final values and then attempt to readjust the initial con-
ditions to correct the observed deviations. This process may well
require 30, 100, or more trial solutions before the desired final
solution is obtained., The time and money thus consumed on even the
most modern of the differential analyzers is so great as to render
the solution of problems of this type impractical, yet there are a
multitude of problems of this nature which are continually confronting
the physicist, mathematiciaen, and engineer,

As a result of the increased interest during the recent war in
the automatic coﬁtrol of all manner of mechanical devices such as
aircraft, marine Eraft, guided missiles, and the like, there has
recently been considerable work done in the field of specialized

differential analyzers, frequently called simulators.13’14’15’16’17’18

13 Instruction Booklet prepared by the Bell'Telephone Leboratories
for the Western Electric M-IX antiaircraft gun director.

14 Ragazzini, J.R., Randell, R.H., and Russell, F.A., "Analysis of
Problems in Dynamics by Electronic Circuits," Proc. I1.R.E., v.35,

Lbh~452, 1947,

Scientific Research and Experiment Department, Admiralty Computing
Service Report, "Solution of Differential Equations by an Electronic

Differential Analyzer."

15

16 Korn, G.A., "Elements of D-C Analogue Computers, Electronics,
Apr. 1948, p. 122.

17 Philbrick, G.A., "Designing Industrial Controllers by Analog,

Electronics, June 1948, p. 108,
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These differential analyzers sre designed to solve the differential
equations associated with the motion or operation of a particular
device or perhaps class of devices, and thus fall far short of complete
mathematical generality. They utilize electrical voltages as the
dependent variables and time as the independent varisble. Because
these machines are concerned with simulating the operation of various
physical devices, they normally operate on a real time scale. This
results in solution times of a few seconds to a few minutes depending
on the characteristics of the device being simulated. Short set-up
time is not of great importance in simulators because most of the
operation is concerned with the solution of a single differential
equation.

All of the differential analyzers mentioned asbove belong to the

general class of measurement, or continuous-varisble, machines. One
of the simplest mathematical machines of this type is the common slide
rule. The other broad class of mathematical machines are those of
the counting, discrete-varisble, or digital, type; a standard desk
calculating machine is of this type. Currently there is a large
amount of development being done on high speed electronic discrete-

19, 20 One of the new fields which will

variable or digital machines.
be opened by the ultimate development of these machines is that of

partial differential equations which are not separable into ordinary

18 Reeves Instrument Corp., Booklet on an Electronic Analogue Computers

Electronics, p. 231, Apr. 1948.

19 Rockett, F., "Selective Sequence Digital Computer for Science,”
Electronics, p. 138, Apr. 1948.

20 Burks, A.W., “Electronic Computing Circuits of the ENIAC," Proc. L.R.E.,

v.35’ 756"’767’ Atjgc 19470
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differential equetions. This type of work is completely beyond
the scope of the existing differential analyzers. At the present
time it would appear that the digital machines will be even more
costly than any existing calculators and will therefore, for some
time to come, find their principasl application to those problems of
complexity beyond the scope of existing machines.

The present trends in the field of differential analyzers can
be briefly summarized as follows. The continuous variable differential
anal&zers are being expanded in the direction of (1) greater accuracy,
(2) greater size - to handle more complicated problems - and (3) conse-
quently greater cost., Some work is being done on simulators which
have (1) reduced accuracy, (2) reduced cost, but are (3) specialized
in the types of differential equations they can handle. The field
of digital differential analyzers is just beginning to develop; these
machines will be characterized by (1) the ability to solve hitherto
insoluble problems, (2) extremely high speeds of operation, (3) highest
accuracies, (4) large size, and (5) high cost.
‘2;3 Qualitative Description of Electronic Differential Analyzer

Early in the fall of 1945 it was felt that there was a considerable
need for a differential analyzer of somewhat different characteristics
from any then in existence or under development.zl There appeared
to be the need for a machine having the following characteristics:
(1) moderate accuracy, of perhaps 1 to 10%, (2) large reduction in

cost over the existing differential anelyzers, (3) high speed of

=1 This need was first recognized and pointed out to the author by

Prof. H. Wallman, Department of Mathematics, Massachusetts of
Technology, who suggested development of such a machine as a thesis

program,
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operation, (4) complete mathematical generality, and (5) above all,
extreme flexibility to permit the rapid investigation of wide ranges
of equation parameters and initial conditions.

A differential analyzer of this type bears the same relation to
ﬁhe larger differential analyzers that a slide rule bears to a desk
calculating machine. Its uses are numerous. {a) It can be used as
a slide rule is used to give rapid solutions of moderate accuracy
to the differential equations encountered by the engineer, physicist,
and mathematiclan. In this role it is useful not only in solving
non-linear equations or equations with variable coefficients, but also
in solving higher order ordinary differential equations with constant
coefficients, which are very tedious to handle analytically. (b) Such
a differential analyzer can also be used as an adjunct to one of the
larger differential analyzers. It can be used to carry out the time-
consuming exploratory solutions necessary to determine those ranges
of equation parameters and initial conditions of interest. This
preliminary work could be done at a great saving in time and money,
and then, if warranted, the larger and more accurate machine could
be used to obtain the final desired solution. (c) Such a differential
analyzer, by nature of its moderate cost and great flexibility, is
very useful as a teaching tool in the fields of mathemaiics, engineering
and physics.

It appears clear that such a machine should be electronic in
nature. The differential analyzer described in this thesis has been
developed to fulfil this need. From time to time during the process

of this development it has been apparent that a number of other
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investigators are planning & similar machine.22’23’24’25’26’27'
These papers, however indicate that the work described has not been

developed as far as the electronic differential analyzer of this thesis.

Philosophy of a Continuous Variable Differential Analyzer
2.4 The Feedback Concept
In order that the problems facing the development of a differential
analyzer may be ﬁnderstood a brief discussion of the general idea
behind continuous variable differential analyzers as conceived by
Vannevar Bush will be given here 4?12

This idea can best be presented by considering a particular

example of a differential equation and indicating the general procedure

=2 Mynall, D,J., "Eleetrical Analogue Computing," Electronic Engineer,

four parts, June--Sept., 1947.

23 Bruk, I.S., "A Device for the Solution of Ordinary Differential
Equations,® Comptes Rendues de 1'Académie des Sciences de 1'URSS.,
v.LIII, 6, 523-526, 1946.

24 MacKey, D.M., Nature, v.159, Jan. 22, 1947.

25 Roehler, J.S., "An Electronic Differential Analyzer," Jour. of
Applied Physics, v.19, no.2, 148-155, Feb. 1948.

26 Korolkov, N.V., "The results of the-Develepment and Testing of
an Experimental Apparatus for the Solution of Systems of
Differential Equations," Bull. Aced. Sci. U.R.S.S., Classe Sci.,
p. 585-596, 1947.

27

Gredstein, I.S., "The Solution of Systems of Linear Equations
by L.I. Guttenmaher's Electrical Models," Bull. Acad. Sci. U.R.S.S.,
Classe 8ci., Tech., p. 529-584, 1947
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for obtaining its solution on a differential analyzer. Consider

the egusation

&y, d
d12+7‘§+y=0; (1)

it will be assumed that physical quantities have been chosen to be
used as the dependent and independent varisbles and that devices are
available to perform the mathematical operations such as addition,
multiplication, integration and the like., For the mechanical differen-
tial analyzers the physical quantity used as a variable is shaft
rotation and the various units of the differential analyzer must there-
fore be capable of adding, subtracting, integrating, etc. shaft
rotations. In an electronic differential analyzer the variables are
volteges and units are required to perform the necessary mathematical
operations on volteges. The general procedure for solving a differen -
tial equation is to isolate the highest derivative in the equation.

Thus for Eq. (1) one writes

&y | @
dxz = -(dx + Y)° (2)

From this point on the step by step procedure of setting up this
differentiel equation is illustrated with block disgreams in Fig. 1.

In Fig. 1(a) a particular shaft or terminal post is assumed to be the
2

4y
dx?’
connected to a cascade of two units which perform the mathematical

highest derivative, in this case In Fig. 1(b) this point is

operation of integration with respect to x. The outputs of these two
units are then %% and y respectively. In Fig. 1(c) these outputs
are then supplied to a third unit which performs addition; its output

is %;E +y. This output is put through a fourth unit which changes



dx2
Ol
(a)
d2y dy
2 ™ y
dx |NTEGRAT0;L——91-——~1NTEGRAT0R~———
a (;
(b)
dz; 9_y_ y
dx® | \NTEGRATOR —3* INTEGRATOR
a (;
> Y
dy
Y
ADDER
(c)
2y dy Yy
2
dx® | \NTEGRATOR dx INTEGRATOR
ol |
O] —— y
T
d » -1 —— ADDER
_dy
(a;"‘y)
(d)
FiG-1 Set-up of simple differential equation
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the algebraic sign, forming the quantity —(%i + y) as shown in Fig. 1(d).
This output appesrs at the terminal or shaft a' but according to
Eq. (2) is equal to g;%. Therefore to solve the differential equation
one connects the terminals or shafts a-a' thus closing the feedback
loop. If now the independent variable is permitted to vary, the
verious shafts or volteges in this interconnection of units are con-
strained to vary in such manner as to solve the desired differential
equation. In order to obtain a useful solution for a particular case
it is necessary to have some process for giving the verious dependent
variebles in this éet—up their proper initial values before the solution
process is begun, and some means has to be available to present the
results of each solution in 2 form eassily comprehensible by the operator.

The fundamental principle of the process outlined above for the
solution of a differentiel equation is that oif feedback. The process
consists of (1) essuming one of the unknown dependent variables,
(2) performing such operations on this quantity as are necessary to
generate all the other unknowns in the differential equation, (3) generat-
ing such functions of the independent verisble as may be required for
the equation, end (4) intercomnecting these generated quantities in

the manner specified by the differential equation being solved.

2.5 The Possibility of Different Systems

It should be recognized,'in particular, that the use of integration
in the example considered wgs not of fundamental importance. One might
as well, on the face of it, rewrite Eq. (1) in the form

2
= _(9y ey

When written in this way it is apparent that one could as well solve
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this differential equation by using units which perform differentiation

of the dependent variasbles., OSuch a set-up is indicated in block form

in Fig. 2.
dy d2Y
y dx dx2
CL Differentiator Differentiator
a

g% dy &

-9y 2y
%x+d¢)

Fig. 2 Alternate set-up of simple differentiel equation

Carrying this procedure one step further one can see that by
using & combination of integration and differentiation there is a large
number of possible ways in which any differential equation can be
solved on a differential snalyzer. For any particular case the system
used will depend largely upon the difficulty of realizing practical

units to perform the mathematical operations required.

Statement of the Thesis Problem
The basic problems in the development of an electronic differential
analyzer can now be stated. They are:

(1) The choice of a system to be used in the differential asnalyzer.

This choice must result in a system whose component units can be
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realized economically by electronic mesns. It must be a completely
general system permitting the solution of any ordinary differential
eguation.
(2) The components for this system must be developed into a form
giving satisfactory performance, and if some components are not
available new ones must be invented.
(3) A model differential analyzer must be built and tested as
a functioning unit.
(4) This differential analyzer should then be used to solve a
variety of typical problems. The test problems must be so chosen
as to verify the full mathematical generality of the machine.
(5) Finally an investigation of the accuracies obtainable with
the differential analyzer, the principal sources of errors and

gteps that can be taken to minimize them.
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SECTION III
SYSTEMS
Before entering into a detailed discussion of the various
possible differential analyzer systems, we restate the principal
features the electronic differentisl analyzer is desired to have:
(1) moderate accuracy, of perhaps 1-10%,
(2) low cost of construction and operation,
(3) complete mathematical generality, so that any ordinary
differential equation can be handled,
(4) high speed of operation, and
(5) above all, extreme flexibility to permit rapid investigation
of wide renges of equation-parameters and initisl-conditions.
The relative merits of various possible differential analyzer

systems will now be considered in the light of these basic requirements.,

Possible Systems

3.1 The Choice of Varisbleg

Electrical voltaege is the most naturel choice as the physical
quantity to.represent the dependent variables in view of the require-
ments of high speed operation and flexibility. Electrical voltage
can be varied as rapidly, with existing techniques, as any physical
quantity known. If the various components of a differentiel analyzer
are designed to perform mathematical operations on voltages, the
interconnection of these various units can be easily accomplished by
means of patch cords or ceables.

Having chosen to use voltages for the dependent varisbles one

still has the possibility of using another physicel quantity for
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the independent varisble. It is apparent from the general discussion
of the feedback method of solving differential equations given in the
introduction that some component in any differential analyzer must
perform the operation of integration or differentiation of the depen—~
dent variebles with respect to the independent varisble. The set-up
indicated in Fig. 1 requires only integration, while the set-up of
Fig. 2 utilizes only differentiation, but it is manifest that either
one or both of these operations must be performed in any differential
anaelyzer no matter what its nature.

Having voltages as dependent variables, a possible choice for
the independent variable is also a voltege. If this 1s to be the case,
it will be necessary to develop electronic units to perform either
integration of one voltage with respect to another voltsge or differen-
tiation of one voltege with respect to another. Let us consider the
case of integration. A unit which performs integration of one voltage
with respect to another, that is the operation

W o= g PAQ, (4)

where P and Q are voltages, will henceforth be designated as a general
integrator., The differentisl dQ can also be written as

szg%.dt, (5)

where dt is the time differential. Thus the integral of Eq. (4) can

be rewritten

W = S(Pg%)dt . (6)

It is apparent from this that general integration of one voltage with
respect to another can be accomplished by integretion with respect

to time of the product of a voltage and the derivative of a voltage
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with respect to time. The wheel and disc integrators used in the
mechanical differentiel analyzers perform integration with respect
to time of the product of a shaft rotation and a shaft angular velocity,.
A1l general integrators known to the author involve in their
construction the operation of multiplication. If one chooses to per-
form general integration in an electronic differentisl analyzer with
voltages as varisbles, it would appear to be necessary to have a
circuit or device which gives the product of two volteges as a component
pert of every integrator. It is unfortunately true that multiplication
is the most difficult mathemetical operation that one is called on to
perform electrically, for although it is easy to obtein an electronic
device which will have & product term in its output, it is very diffi-
cult to isolate this term; more will be said about this in Section IV.
Although there is an element of advantage in building an electronic
differential analyzer using general integrators, because then the
analogy between it and the large mechanlcel machines would be exact,
the difficulties of realizing a practical electronic general inte-
grator are great enough to warrant investigation of other possible
schemes, These are based on the fact that although the operation
of multiplication is & very difficult one electronically, integration
and differentiation, with respect to time, are very easily performed.
Because differentiation and integration are easily performed
on voltages with respect to time, it was decided to use time as the

independent variable in this electronic differential enalyzer.

—— ——— —— S—  —— —

With time as the independent variable there still remains the
choice of whether differentiation, as in Fig. 2, or integration as

in Fig. 1, or some combination of the two should be employed.
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Fortunately a clear-cut answer can be given to this question by con-
sidering the limitations which are encountered in any practical time
differentiator due to the finite bandwidths of practical amplifiers.
Suppose one has an ideal differentiator. The input and output

of such a unit is related by Eq. (7).

del

K=, (7)

& = &

The Laplace transform of the transfer characteristic for this unit

is then28
e e
2 2
T3 - 2 - . (8)
el el

This shows that for reel frequencies, s = jw, the transfer

characteristic of an ideal differentiator is
ez .
;'l'(w) = jwK , (9)

that is, it has a phase characteristic which is constant at +90 degrees
and & magnitude characteristic which increases directly with frequency.
Such a msgnitude characteristic is plotted in decibels versus the
logarithm of the frequency in Fig. 3 and is labelied ideal.*

It is evident that this ideal characteristic can never be achieved
in practice since it requires irnfinite gein at infinite frequency.

Rather it is known that due to unavoidable stray capacities any physical

28 Gardner, M.F., and Barnes J.L., Transients in Linear Systems,

Vol. I, John Wiley & Sons, New York, 1942, 126~130.

It is interesting to note that any high-pass filter can be thought
of as a time differentiator over a portion of the frequency range;
similarly any low-pass filter will have the characteristic of a
time integrator for some frequencies. A time integrator or
differentiator can also be thought of as an amplifier whose ampii-
tude-frequency characteristic has been rotated to a slope of minus
or plus 6db/octave respectively.
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Fig. 3 Log-db characteristics of time-differentiators

characteristic at high frequencies has a slope of at least -6 db per
octave rather than the idesl slope of +6 db per octave.29 A realizable
characteristic of this type is also plotted in Fig. 3. The simplest
time-differentiator characteristic is therefore of the form

e K

U9 T T R T - (10)
where normally both
*<< K, (11)
end
g<< K . (12)

For the characteristic sketched in Fig., 3, « =@ ,-but in general

the relative values of these two high frequency time constants will

<9 Bode, Hendrik W., Network Analysis and Feedback Amplifier Design,

D. Van Nostrand Co., New York, 1945, Chept., XVII.
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' depend on the practical circuit used. The important point is thet
| at least two such time constants must always be present in order that
the requirement of physical realizasbility be satisfied,
The importence of this limitation will be realized by considering a
simple differentiel equation for which the solution is easily calculated.

Such an equation is
d %
(K) g8 - v = 0. (23)

The characteristic equation of this differential equation is

(K - 1) =0, (14)
and therefore this equation has the solution
t
y = Ce /K R (15)

where C is & constant determined by the initial condition of the
solution. The differential analyzer set-up necessary to soive this

equation, using a time differentiator,is indicated in Fig. 4.

K3y
y - a1
o DIFFERENTIATOR 0
s
&

Fig. 4 Block diegram of set-up for equation K at ~ T = 0.
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If the time-differentiator were ideal, this set-up would give
the solution of Eq. (15). If one assumes that the differentiator
has the simplest realizable characteristic, given by Eq. (10), one
observes by making e] = e, and letting jw = s that the characteristic
equation of the differential equation actually solved is

(l+sd)(1+'8(9) = sk, (16)

which has roots
. kK-x-g /(k-x~g)l_ 4

$i7 TZx@ 8 )

x@ (17)

. K-%-3 K-x-g\% .
Elr "/ (“::@E )- e (18)

If now, as is usually the case, Eqs. (11) and (12) are satisfied, these

roots are
1
81 = E ) (19)
K

The solution obtained by the differential analyzer set-up of Fig, 4
is therefore
t/K

y = (e

tK/a¢
1 e /%€

+ 02 - (21)

Uomparing this solution with the desired one of Eq. (15), one sees
that there is an error term CzetKAx@ + In theory at least it is possible
to adjust, the initial conditions so as to make Co equal to zero. In
practice, however, this is completely impossible since the time-constant
of the error term is much smaller then the time-constant of the desired
term according to the assumptions of Eqs. (11) and (12). It is there-
fore not possible to obtain a usable solution teo eq. (13) with a
differential enalyzer employing time-differentistors. This is an ex-

tremely serious limitation on the generaiity of such a differential
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analyzer, which is encountered whenever one attempts to solve a differen-
tiel equation whose characteristic equation has roots with positive real
parts, that is in the right half of the complex s-plane.

The conclusion therefore is that because of the limitations im-
posed on physically realizable time-differentiators by the bandwidth
limitaticns of amplifiers, a general electronic differential analyzer
cannot be designed using differentiators as a basic unit.

One is forced therefore to use time-integrators as the basic unit

of an electronic differential analyzer.

Details of Electronic Differential Analyzer System

For the reasons indicated above, the system chosen for the elec-
tronic differential analyzer of this thesis utilizes voltages as the
dependent variables and time as the indeusndent variable. The basic
functional operation for this analyzer is time integration.
3.3 Solution Display

The solutlions obtained from such an analyzer are in the form of
a voltage as a function of time or a voltage as a function of another
voltage, if one dependent variable is plotted as a function of another.
An electronic device well suited to the plotting of one voltage as a
function of another is a cathode-ray tube. Such a tube is used to
display the solutions obtained by the differential analyzer. In dis-
playing a solution as a function of the independent variable time}
a periodic voltage varying linearly with time (a saw tooth wave)
is applied to the horizontal deflecting plates of the tube, and a

voltage corresponding to the desired solution is applied to the vertical

deflecting system.



3.4 Repetition Rate
In order that the solution displayed on the cathode-ray tube face

appear as a stationary curve to the observer's eye, it is necessary
that the solutions traced on the screen be repeated at a reasonably
high rate. If the cathode-ray tube‘screen employs the common P-1
phosphor, this repetition rate should be at least 30 c.p.s. If one

of the more persistant screens such as the P-7 phosphor, which was
developed for radar PPI displays, is used, a repetition rate as low

a 1 c.p.8. might be employed.* In the differential analyzer described
here the repetition rate is 60 c.p.s. This is convient as it permits
use of the a-c power mains as a standard source of synchronizing
signals.

3.5 Sequence of Operation

At this repetition frequency a new solution is run-off every 1/60
of a second, and these solutions are displayed superimposed one upon
the other on the face of the output cathode-ray tube. In order that
this display appear as a single line on the output screen it is neces-
sary that each successive solution be identical with its predecessor
as long as the same solution is being displayed. This imposes the
requirement that the initial conditions at the beginning of each
solution be identical with those of the preceding solution. In general

the voltages in the differential analyzer at the end of a solution

It will be shown in Section V that component limitatious at high
and low frequencies introduce errors into solutions obtained on
an electronic differential analyzer. The choice of a repetition
rate 1s a compromise; a high repetition rate requires excellent
high-frequency response of all analyzer components while a low
repetition rate places the emphasis on the low-frequency response.
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will not be the same as those required by the initial conditionms;
it is therefore necessary to allow some time between the end of each
solution and the beginning of the next solution to permit the reestab-
lishment of the proper initial conditions. In this differential "
enalyzer this is accomplished by allotting approximately 1/120 of a
- second for the solution of the differential equation and 1/120 of a
second for the reestablishing of the initial values prior to the next
solution., Fig. 5 is a sketch of the solution of a typical equation
as 1t would appear in this analyzer if two complete solution periods
are displayed. Figs. 6(a) and 6(b) are pnotographs of observed solu-

tions of the differential equation

4y _ 22
at ky » (22)
Yr J—
Final
Condition
B Initial
Condition
i /| 1 |
0 o * T i 1 L
20 &0 30 30
_— OFF-TIME-_»%—— ON-TIME —= TIME IN SECONDS
e SOLUTION TIME ——=f

Fig. 5 Appearance of a typical differential analyzer
solution as a function of time.



Fig. 6(a) Two complete periods of the solution

of the equation % = ky.

.

t

Fig. 6(b) Solution of %% = ky as normally displayed,

with off period blanked out by an intensity gate.
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Fig. 6(a) displays two complete solution periods, showing both the
on- and off-times. Fig. 6(b) gives the solution as normally displayed
in the differential analyzer; here a blanking voltage has been applied
to the intensity grid of the cathode-ray tube during the off-time
of the solution period so that only the solution is displayed.

3.6 Initial Conditions

To satisfy the initial conditions of the differential equations
requires establishment of specified initial values of all ?oltages
throughout the differential analyzer at the beginning of each solution
period. This is accomplished by forcing all voltages in the analyzer
to a constant reference level, usually close to zero voits, during
the off-time. At the beginning of the on-time for the differential
analyzer voltage steps are introduced at the proper points throughout
the machine to set the desired initial values. These initial value
voltage steps remain constant throughout the soiution time; they are
adjustable by the operator through ordinary potentiometers. The
operator varying these initial condition potentiometers sees instan-
taneously the effect of his adjustment, since a new solution is traced
out every 1/60 of a second. Fig. 7 is a triple exposure photograph

of the solution of Eq. (R2) for three different initial values.
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Fig. 7 Triple exposure photograph of the solutions of

%% = ky for three different values of Yoo

Units Required For Electronic Differential Analyzer

3.7 Ordinary Differential Equations with Constant Coefficients

Having settled on the broad general features of the electronic
differential analyzer one can now condider in detail what units had
to be developed for its realization. In this regard it is probably
easiest to start out with the special case of ordinary linear differ-
ential equations with constant coefficients. The additional components
necessary to solve the more difficult non-linear equations and equa-
tions with variable coefficients will be considered later.

An ordinary linear differential equation with constant coefficients

can alwayé be written in the form

m
qn
> B -rw, @eLzeen (@)

n=0
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where
(1) F(t) is an arbitrary driving function of time,
{2) the coefficients A, are constants, and
(3) m is the order of the differential equation.,
For the purpose of solution on the differential analyzer this

equation can be rewritten by isolating the highest derivative:

m-1

& | 1 E dy . F(t),

at® T Ay bn an Ap (24)
n=20 '

A block diagram of a general set-up to solwe » differential equation

of this form with the electronic differential analyzer is given in

Fig. 8.
" amy dy
arm atm-1 dt y
Y )
Pma Am-2 A LTS
Am Am Ay, Amg
A
Flt)
i ADDER —<— -
| dn)’ + E(_'.) "
- — An_-. A
Am dfn m
n=0

Fig. 8 Block disgram of set-up for solution of
an ordinary linear differential equation
of order m with constant coefficients
There are four basic units required by this set-up. First there
are the blocks lebeled with the integfal gign in Fig. 8; these are

units which perform integration with respect to time. Second there
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are the boxes labeled - iAE-_-J—'; these are amplifiers with constant gains;

a negative algebralc signA?s obtained by a 180 degree phase shift be-
tween the input and output of the amplifiers. Third there is the box
marked adder, which is %o be capable of forming the sum of a number
of voltages. Finally there is the box zﬁil s Which is to generate a
voltage that is an arbitrary function of time.

There are a number of other units not indicated in Fig. 8 which
will also be necessary in an electronic differential analyzer. First
there must be some means of introducing initial conditions into the
set-up shown. Second, since the solutions of this equation are to
be repeated periodically in time, there must be some means of turning
the differential analyzer on and off at the proper times and of restor-
ing the final voltage values to zero at the end of every solution
on-time. These last two functions are closely related and can be com-
bined into & single unit which will be called an initial condition
and gate pulse generator. Other necessary units are (1) a viewing
scope on which the solutions can be displayed to the operator, (2) cal-
ibrating equipment to permit quantitative measurements on the solutions
obtained, and (3) power supplies to run the various units.

The block diagram of Fig. 8 does not represent the only inter-
connection of units which will give a solution to Eq. (23). Some of
the scale-factor amplifiers might be incorporated into the integrators
or the adder, and it is not necessary to do all the summing in a single
adder. Partial sums might first be formed and then combined in a
final adder. All of these variations, however, are of minor nature

and will not introduce any change in the types of components required.

A summary list of the components necessary to solve ordinary linear
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differential equations with constant coefficients on the differential
analyzer is therefore:

(1) Time integrators,
(2) Adders,
(3) Amplifiers to provide scale factor and sign changes,
(4) Initial condition and gate pulse generator,
(5) Viewing cathode-ray tube oscilloscope,
(6) Celibrating equipment to permit quantitative measurement of
(a) Time, the independent variable, and
(b) Voltages, the dependent varisbles,
(7) A Function generator to generate arbitrary voltage functions
of time,
(8) Power supplies.
The additional apparatus needed for differential equations with
variable coefficients and non-linear differential equations will now
be considered,

3.8 Ordinary Linear Differential Fquations with Variable Coefficients

For linear‘equations with variable coefficients Eq. (23) is still
applicable provided one removes the restriction that the coefficients
A, be constants and write instead that

A, = A(E) . (25)
The block disgram of Fig. 8 must now be modified as shown in Fig. 9,
where every constant coefficient box has been replaced by (a) a function
generator box to generate - é%ﬁ%%), and (b) a unit performing multipli-

cation of one voltage by another,

The presence of variable coefficients requires the use of one new
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Fig. 9 Block diagram of set-up of differential analyzer
for the solution of a linear differential
equation with variable coefficients.
type of unit, an electronic multiplier,* plus additional function
generators to generate the variable coefficients as voltage functions
of time.

3.9 Non-Linear Differential Equations

The most general type of ordinary differential equation can be

written in the form

d o
F (_mz:"':a%,)”ty) = 0. (26)

at™

* We see, therefore, that the choice of time as the independent vari-
able, which permits the use of time-integration rather than general-
integration of the voliage variables, does not completely obviate
the necessity for electronic multiplication. It does, however, re-
duce the number of multiplications required to that minimum explicitly
indicated by the differential equation. In view of the difficulty
of performing multiplication this is a very worthwhile step. Thus
in the present system, no multipliers are required in the solution
of a linear differentiesl equation with constant coefficients, no
matter how high the order of the equation. If a voltsge independent
variable and general integrators were used, the solution of an ordina-
ry linear differential equation with constant coefficients of order
m would require m electronic multipliers as components in the nec-

essary general integrators.
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The only new operation required in going from a liﬁear differential

equation with variable coefficients to this most general ordinary differ-
ential equation, is that it is now necessary to generate functions of

the dependent as well as the independent variables. Thus the non-linear

equation

d
'5% = F(y) , (27)

would be set up according to the block diagram of Fig. 10.

d12 dt

[ f >~ I
q

|
[
o |

T - Fly) <

Fig. 10 Block diagram of set-up for the solution of the
non-linear differential equation gt2 = F(y) on

a differential analyzer,

The new component required is the unit labelled F(y). This is a unit
which will generate a voltege that is an arbitrary function of any
input voltage. It will be designated here as an arbitrary function
generator; its analog in the mechanicel differential analyzers is the
input table. Note that an arbitrary function generator can be made to

generate functions of the independent variable, timé, by connecting to
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its inputl & voltage varying linearly with time over the solution periocd,
that is, a saw tooth wave.

For a differential analyzer of full generality then, two additional
items must be added to the list of components on page (29); they are

(9) Multipliers, units whose output voltage is proportional to

the product of two input voltsges, and

(10) Arbitrary function generators, units that generate an output

voltage which is an arbitrary function of the input voltage.

0f the components listed, these last two did not exist when the
work of this thesis was begun. It has been necessary to invent
electronic devices to perform the operations of multiplication and
function generation.

Although some basic circuits for the performance of such opera-
tions as time integratiqn and addition have been described by other
workers, it has been necessary in this development to go into consid-
erable detall concerning the characteristics of these units in order

that socurces of error be identified and studied,
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SECTION IV
DiFFERENTIAL ANALYZER COMPONENTS
Multiplication

4ol Important Multiplier Characteristics

As has been indicated, multiplication is a difficult operation
to perform electronically. Much previous work has been done on this
subject, and it will be reviewed briefly here. First, however, it
is worthwhile to investigate the desiréd objectives of the multiply-
ing unit.

(a) Since voltages are the dependent variables, the multiplier
mst form the product of two volteges.

(b) For complete mathematical generality the multiplier must be
capable of treating input voltages of both algebraic signs,
that is, it must be a four-quadrant multiplier.

(¢c) Because the repetition frequency of the differential equation
solution is to be 60 c.p.3., the multiplier must be capable
of dealing with frequencies much higher than 60 c.p.s., at
least as high as perhaps 60 Kc/s.

(d) The accuracy should be as high as possible.

(e) The size and cost must be kept to a minimum,

(f) The balancing adjustments in the multiplier should be as
stable and easy to control as possible.

That any four-quadrant multiplier will involve some form of bal-

ancing cen be easily seen by considering the block diegram of such

a unit in Fig. 1l.
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Fig. 11 Block diagram of electronic multiplier.

This unit must have the characteristic that if the input voltages
are Ey and Ep, the output voltage is kEjE;, where k is a constant. In
perticular, if E; is zero, the output voltage must be zero no matter
what the value of E;. Therefore there must exist in the multiplier
some means to balance the output to zero when Ey is zero. A similar
argument can be applied to the case for which El is non-zero and E2
zero. Any four-quadrant multiplier will thus have somewhere hidden
in its design at least two balances. The nature of these balances
is probably the most important single feature of a multiplier. This
point can be illustrated by considering the case of a multiplier for
which these balances are not perfect. Such a multiplier might have
the characteristic

multiplier output = E;E, + .025E; + .025E,, (28)

assuming (1) B is one input voltsge,

(2) E2 is the second input voltsge, and
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(3) the maximum permissible value of either Ey or E; is
unity. |
When E; and E, both have their maximum values of unity, the
output of this multiplier will be correct to within 5%, which represents
usable accuracy. Consider, however, what happens when El is held
constant at its maximum value and E; is reduced to 0.1. The desired
product is then 0.1, but the output of this multiplier is 0.128; the
error is now 28%., This clearly shows that the reliability with which
the zZero balances cen be mede imposes most stringent limitations on
the usable dynamic range of the multiplier.

4.2 Previous Multiplier Developments

A linear potentiometer can be used to perform multiplication,

as indicated in Fig,. 12.3O

E
2
SERVO
—
E
3
O
Fig. 12 Servo-driven multiplier.
30 Murray, F.J., The Theory of Mathematical Machines, King's Crown

Press, New York, 1lst Edition, 1947, p. 25.
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For this set-up

If a servomechanism is used to position the potentiometer shaft, © is
proportional to the voltege E,; then
E; = KEjE; (30)

This multiplying circuit has been used in fire-control computers; it
is not satisfactory for the present application because its operating
speed 1s limited by the mechanical shaft and motor inertia.

Because of our requirement of high speed, &ll mechanical or electro-
mechenical multiplying schemes can be ruled out at the outset., There
exist, however, a wide variety of proposed methods for performing

multiplication with all-electronic circuits. One such idea is shown

in Fig. 13.
E, log (E)
O—— LOGARITHM
E3
ADDER —e—t ANTILOG: PO
)
O— LOGARITHM >
log (Ep)

Fig. 13 Block diagram of logarithmic multiplier
The two input voltages E; and E, are first applied to units which form

their logarithms. These logarithms are then added and supplied to a



-3
device wiicn forms the antiiogaeritim; the output from this unit, Eq,

L and Wingatejz have developed multi-

is the desired product. Kallmann3
pliers of this type. Kallmann used weided germanium crystal rectifiers
to achieve the necessary exponentiel current—voitage characteristics,
while Wingate employed 6AL5 diodes. A logarithmic multiplier has the
major disadvantege, from the point of view of a general mathemstical
machine, that it is limited to one-quadrant muitiplication. There

is also the difficulity of finding an accurate logarithmic device.

The 6AL5's used by Wingate had to be operated at currents of the order
of 0.1 pa., which has the disadvanteges of any low level device,~sensi-
tivity to hum pickup, etc. The characteristics of the germenium diodes
were herd to match end maintein with sge.

Another general class of multipliers can be described as double-
modulation multipliiers. The concept employed is to impress the input
voltages E; and E2 through suitable modulating circuits on a common
carrier signal, which is then detected in a manner to give the desired
product as the output. Since amplitude, frequency and many forms of
pulse modulation can be applied to this scheme, the ramifications of
this method are numerous.

Siebert33 has developed a multiplier of this general class empleying
double amplitude-modulation as indicated in Fig. 14. In this circuit

& 400 c.p.s. carrier signal is passed through two linear amplitude

31 Kallmann, H.E., "Log Bridge and Ratio Meter,"™ Radiation Laboratory
Internal Group Report 41, July 16, 1945.

32 Wingate, S.A., Master's Thesis in Electrical Engineering,
Massachusetts Institute of Technology, 1946.

33 Siebert, W.,M., Master's Thesis in Electrical Engineering,
Massachusetts Institute of Technology, Feb. 1948.
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Fig. 14 Siebert multiplying circuit,

modulators and then detected in a phase detector; in this manner four-
quadrant multiplication is obtained.
Double pulse-modulstion has been used by Ham34 in the development
of a general integrator. A block diasgrem of this circuit is shown in Fig.1s,
In this circuit the pulse width is made proportional to g%l and
the height to E,. The pulse area is therefore

- JGEy
pulse area = Lz*ag— , (31)

which when integrated with respect to time gives the output
5, = e, (32)
Two such integrators can be combined, as in the mechanical differ-

ential analyzer, to perform multiplication according to the relation

E1E2 = jE.?dEl + gEldEz . (33)

34 Hem, J.M., Master's Thesis in Electrical Engineering,
Massachusetts Institute of Technology, 1947.
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Fig. 15 Ham general integrator.

The principal limitation of any modulation multiplier from the
point of view of rapid computation is the fact that the speed of the
multiplier is limited by the carrier frequency employed. It is probably
desirable to have the carrier frequency st least ten times the high
frequency cut-off of the multiplier. If, for example, frequencies up
to 60 Kc/s are to be treated, the Siebert multiplier should employ
& carrier frequency of 600 Kc/s, and the Hem general integrator a pulse
repetition rate of about the same velue, If the problems presented
by tanis carrier fre-mency can be overcome without too great circuit
complexity, either of these. schemes might well be employed in an
electronic differential analyzer.

Another possibility for electronic multiplication is the difference-

35

of-squares system, A block disgram of such a multiplier is shown in

Fig L ] 16.

35 Murray, op. cit., p. 31, reference 30.
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Fig. 16 Difference-of-squeres multiplier.

This circuit requires the formation of the sums and differences
of the two input voltages E, and E;. These two volteges, El + E2 and
E; - E, are then supplied to two identical squaring circuits. The
outputs of these two squaring circuits, Ei + 2E1E2 + E% and
ES - 2EE, + E3, are then subtracted, ylelding the desired output,
4E E,. This circuit is sbmetimes referred to as the four-squares
multiplier.

A number of multipliers of this type were built by the author
using balanced modulators as the square-law eiements. They can be
made to have very high operating speed and a satisfactory dynamic
range. Difficulties were encountered in attempting to maintain the
two square-law circuits identical., The balanced modulators suffered
from the usual troubles of vacuum tube paremeters changing with sge,

filament voltsge, plate voltasge, and the like., If these difficulties
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could be overcome, or if a more satisfactory type of square-law circuit
could be developed, the difference-of-squares multiplier would be entire-
ly satisfactory for the electronic differentiael analyzer. For the
present the new multiplying circuit described below, called the crossed-
fields electron-beam multiplier, appears to afford a more satisfactory

solution to the problem.

4¢3 The Crossed-Fields Electron-Beam Multiplier

A beam of electrons moving in vacuum has extremely low inertia

and its three degrees of freedom afford & number of possibilities for
high speed multiplication. The standard cathode-ray tube provides a
beam of electrons and electronic means of controlling its motion in
cartesian coordinates. A sketch of such a2 tube is shown in Fig. 17.
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Fig. 17 Geometry of a typical electrostatic
deflection cathode-ray tube,
The cathode and first three grids of this structure mske up that
portion of a cathode-ray tube normelly referred to as the electron gun.

It is the purpose of this electron gun to form a narrow beam of electrons
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having a velocity along the axis of the tube kv,, where 1,7, k are
unit vectors in the x,y,z directions respectively. The number of

electrons in this beam at any instent, that is the beam intensity,
is controlled by the voltage on grid No. 1, Egl‘ The megnitude of
the axial speed Vg is proportional to the square root of the voltege
on the third and final grid of the electron gun, EﬁB'
4.31 Principal of Operation
If the electron beam leaving the electron gun with velocity Evz
passes between the first pair of‘deflecting plates across which there
is a potential E;, the electron beam is given a component of velocity
in the y-direction Evy, according tg the relation
Jvy %—?— . (34)
The electron beam is then moving in the region a-a' with velocity
v=kvy + Jvy . (35)
In this region a-a' there is a force ixe acting on the electrons in
the beam in the x-direction due to the electrostatic field between
the x~deflecting plates;)
ixe =€ Ex ’ (36)

19

where e = the electron charge, 1,60 x 10 -’ coulombs, and

éx = the electrostatic field between the x-deflecting
plates due to the impressed voltege EB’
|£x‘ x E3 (371)
If an axial magnetic field EBZ is also present in the region
a-a' (such a field might be generated for example by a coil so wound
as to have its axis of symmetry coincident with the z-axis of the
cathode-ray tube), there is an asdditional force Exm exerted on the

electron besm in this region:

Fen = o(Gvy x kB3) , (38)



~43~
where the x denotes vector cross product. The vector Exm points in
the x-direction. The speed vy is proportional to Ey and the magnitude

of the axial field By can be made proportional to some other external
voltage E5; then one can write from Eq. (38)

(Fxm| © Ep « B o (39)

Looking at Bgs. (36) and (38) one sees that in the region a-a' there
are two forces er and ?xm acting on the electron beaﬁ in the x-direc~
tion because of the crossed electric and magnetic fields.

If some means is available to make these two forces equal and

opposite, then

= vy x kB, (40)

x
and from Egs. (37) and (39) one finds

E3 = k(E; +Ep) ; (41)
the voltsge E5 is thus proportional to the product of the two input
voltsges El and Ez.

In fhe arrangement described above the only forces acting to
defiect the electron beam in the x-direction are those in the region
a-a', If these forces add up to zero, there is no x-deflection of
the electron beam., This fact can be used to bring about the desired
quality of the forces Fye and -Fyy as indicated in Fig. 18.

At the face of the cathode-ray tube screen two photocells V; and
Vo, are located. Between these two photocells a vertical partition
is placed coincident with the y-axis of the cathode-ray tube. If no
x-forces act on the electron beam, it will strike somewhere along

the edge of this partition. The outputs of the two photocells are

subtracted and fed to en amplifier which is connected to the electro-
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Fig. 18 Feedback method of equating the forces in the
crossed-fields electron-beam multiplier,

static x-deflecting plates. For no x-deflection the outputs of thne
two photocells are equal and opposite so that there is no voltage E3.
This is the case when the megnetic force, fxm, is zero, that is when-
ever either B, or Vy are zero. If both By and Vy are non-zero, there
is a megnetic force and the electron beam is deflected to the right
or left of the partition on the output screen depending upon the rela-
tive signs of the two inputs E; and Ep. Such a motion of the electron
beam results in increased output for one photocell and decreased out-
put from the other. The difference of these outputs is fed back to the
electrostatic plates as E3 with the proper phase to oppose the magnetic
force. If the gain around the feedback loop is made sufficiently
large, then the feedback voltage E3 is proportional to the megnetic

force and thus to the product Ej « Eoe*

* The fundamental characteristic of this multiplier is the use of the

crossed electric and magnetic fields in the region a-a', while the
menner in which the forces Fygand Fyxy are made equel is of secondary

importance,
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The magnitude of the magnetic force l@xml is proportional to the
product of Ej and Ep, and the force changes direction when either Ej
or Ep change sign; therefore four-quadrant multiplication is obtained.

The speed of response for this multiplier is determined by (a)
the speed with which the voltage Ej on the y-deflecting plates and the
field By can be varied, and (b) by the speed with which the feedback
loop can respond., More will be said below concerning these points
in discussing the crossed-fields multiplier that has been built and
testeds It is relevant now to inquire, however, as to the balances
required by this multiplier. These can be separated by considering
the two cases for which the inputs El and E, are each made independently
Zero. ‘

First assume that both input voltages E; and Ep ere zero; is the
output voltage zero? In any practical circuit the answer is certainly
no. E3 is the voltage at the output of an amplifier and even though
the amplifier input is zero there is always a certein amount of noise
voltage present. Some sources of noise can be controlled, while
other sources, such as shot noise in tubes and thermsl agitation noise
in resistors are ultimate limiting factors. Suppose now the voltage
E} is made non-zero while the voltsge Es is kept zero. Then there is
a "y-deflection of the electron beam, In order that this deflection
cause no change in the light intensity on the two photocells, the
photocell partition has to be oriented to coincide with the path of
the electron beam. If this path is not a straight line, an error
results unless the partition can be Bo shaped as to take account of
this effect. Even though the partition is made to fall exectly along

the path corresponding to zero fields in the region a-a', some output
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is obtained unless care is taken to keep stray fields in this region
to & minimum, A commen source of such stray fields are the 60 CePeSe
power mains; these fields can be reduced by proper megnetic shielding.
Finally consider the third case, in which E) is zero but E, and corre-
spondingly the axial megnetic field is non-zero. Here zero output
requires zero velocity in the y-direction for zero voltsge on the
y-deflecting plates. One requirement then is that the electron gun
produce a truly axial electron beam. If this is not the case, a small
biasing voltage may have to be introduced on the y plates for compensa-
tion. Another requirement is that the megnetic field be exactly axial.
For any practical ccil this is only approximately true, and as a result
there are some forces on the electron beam due to cross-products be-
tween the fleld and the axial velocity Evz.

Although the parsgraph above contains a rather long list of possi-
ble sources of error in this multiplying scheme, considerations of this
type are necessary if a true evaluation of the worth of any multiplying
scheme is to be obtained. The incisive question is what happens in the
three cases for which the output of an ideal multiplier should be zero,
namelys

(a) both inputs zero,

{(b) input No. 1 maximum and input No, 2 zero, and

(c) input No. 1 zero and input No. 2 maximum.,

It is important to note from the above discussion in the crossed-
fields electron-beam multiplie;?ihe adjustments and sources of error
depend upon rather stable matters, such as the geometry of the cathode-
rey tube structure and the physical location of the error-sensing photo-

cells., Inherently variable processes, such as primary emission from
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the cathode, or secondary emission from some other surface, enter into
this multiplier only in the secondery menner in thet they can cause
variations in the gain around the feedback loop; provided this gain
is always kept high these effects are negligible. This stability has
been borne out by measurements made on the practical multiplier de-~

scribed below,

432 Practical Multiplying Unit

The complete circuit diagram of a crossed-fields multiplier is
shown in Fig. 19.

This unit is built around a Dumont 208 oscilloscope employing a
5LP11 cathode-ray tube. The power supply and centering controls for
this tube are those normally provided in the Dumont instrument. The
P-11 screen was chosen because of its short persistence, and anign light
coutput in the blue and ultra-violet range where the 931-A photomulti-
plier tube is most sensitive. For the fastest possible response a
P-5 phosphor could have been utilized in either this unit or the func-
tion generator; the speeds obtained with the P-il phosphor were found
to be adequate in this differential analyzer.

The error sensing unit consists of two KRCA 931~-A photomultiplier
tubes. The outputs of these two tubes ere subbtracted and amplified
by a 12407 cathode-coupled phase inverter., This tube drives the 5LP1l1
horigontal deflecting plates directly to close the feedback loops The
difference voltage from the photomultiplier tubes, which is the de-
sired product, is also connected to a 6J6 cathode follower providing
a low impedance output terminal.

The 931-A photomultiplier tube provides a convenient source of

stable d-c gain. An alternative feedback loop which has been employed
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is indicated in block form in Fig., 20.

——— j 929 |

R SLPII
929 #
~Corrier Phase Carrier
-~ | <
Oscillator Detector Amplifier

Fig. 20 Carrier feedback loop.

In this circuit the beam intensity of the cathode-ray tube and
thus the light output from the spot at which the electron beam strikes
the tube face is modulated at a carrier frequency, (of about 400 Ke¢/s).
The output of the pickup photocells is modulated at the carrier fre-
quency, and the difference of their outputs is ampiified by a band-
pass radio-frequency amplifier. The output of this amplifier is phase-
detected and applied to the horizontal det'lecting piates to close the
feedback loop. Similar results have been obtained from both these
feeaback loops, but the unit shown in Fig. 19 is preferred because of
its simplicity.

The multiplier input to the vertical defliecting plates is made
through a pair of 6V6's connected to form a cathode-coupled phase
inverter. These tubes form the last stage of amplification normally

present in the Dumont oscilloscope; the only modification made was
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to disconnect the low level amplifying stages. The centering adjust-
ment associated with this amplifier is very convenient in setting the
zero balance on this input.

The axial magnetic field is generated by the ceil Ly, which is
wound about the horizontel deflecting plates of the 5LP11 cathode-ray
tube. This coil is driven by a two stege d-c amplifier as shown. The
unbalanced input voltage to this amplifier, Eps is comnected to a
cathode-coupled phase inverter of two 6AG5's, This stege in turn
drives the 829-B output amplifier. All of the tubes in this unit are
operated Class Al.

4433 Measured Multiplier Characteristics

The measured characteristics of the open feedback locp are plotted
in Figs. 21 2and 22. To obtain Fig, 21 the feeaback Loop wos dbrokeu at
tne eavidde-ray tube plates and a plot made of the output voltage of
the feedback loop as ordinate sgainst the horizontal plate voltage as
abscissa. The second plot, Fig, 22, gives the loop gain as ordinate
against the horizontal plate voltage as abscissa. The horizontal plate
voltage could also be labelled horizontal spot displacement for the
cathode-ray tube beam, since horizontal plate voltage and horizontal
spot displacement are linearly related by the constant deflection
sensitivity of about 50 volts per inch. Fig. 22 could be obtained by
differentiating the curve of Fig. 2i. It was measured in this case
independently by applying a small a-c signal to the horizontal deflect-
ing plates and measuring the a-c output of the feedback loop as a func-
tion of the d-c voltage on the horizontal plates.

It is important to observe that the gain of the feedback loop is

only constant over a very narrow region, corresponding to very small
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displacement of the electron beam from its zero-signal position direct-
ly below the vertical partition. This non-linearity in the feedback
loop is reflected in the high frequency response of the multiplier.

The balance characteristic of the multiplier is described by say-
ing that the output has the form

Qutput = Eg = k(Ep ¢ Eg + .009Eg + .O15Ep + .0005), (42)

where k = 0.66,

This shows that both inputs are balanced-out to within 1.5% of
the full-scale output and that the residual noise in the output of
the unit is .05% of the full scale output. Fig. <3 is a triple exposure
photograph of the crossed-fields multiplier output for three different
conditions which should produce zero output. The signal used in making
this test was a 240 c.p.s. sine wave, which was synchronized with the
line frequency of 60 c.p.s. The output observed for both Eg and Ey
zero is principally shot noise amplified by‘the 931-A photomultipliers.
There is also a small amount of power supply hum present. When Ej is
zero and Eg is maximum, some second harmonic of tae signal Eg is observed
in the output. This is caused by the fact that there is some change
in gain of the feedback loop as a function of the vertical position of
the cathode-ray beam. This results in some output from the feedback
loop because of the fact that the gains from the two photocells are
not identical. The residual output observed for the case of Eg zero
and Ep maximum appeers to be caused primarily by noﬁ-uniformities of
the megnetic field and defocusing effects.

The speed of the multiplier is best measured by observing its

output rise time for a square wave input signal. Photographs of the
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Fig. 23 "“Zero output" of crossed-fields multiplier.

square wave response of the crossed-fields multiplier are shown in
Figs. 24 and 25. Fig. 24(a) shows a multi-exposure photograph of the
multiplier output when Ey is a constant and Eg is a 10 Kc/s square
wave of fixed amplitude, for various values of Ey. Fig. 24(b) is a
similar photograph for fixed E, and variable amplitude of square wave.
One notes that in both cases the rise time remains constant at about
5 usec for small amplitude outputs, but increases linearly with out-
put for larger amplitudes. The reason for this behavior lies in the
nature of the feedback loop output as a function of displacement from
the zero position, as indicated in Fig. 21. For small signals this
output varies linearly with displacement of the cathede-ray beam,

and a linear response is obtained., Because of the high-frequency
time-constants in the feedback locp, however, there is a maximum rate

of change of output voltage with time which the unit can generate,
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le— 50 psec-—el

Fig. 24(a) Multiplier squrre wave response; Eg
10 Kc/s square wave, Ey three different values,

la— 50 psec.—wl

Fig. 24(b) Multiplier square wave response; E, constant,
Ee & variable amplitude 10 Kc/s square wave,
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If the input to the multiplier requires that this rate be exceeded,
the feedback loop can no longer follow; and the cathode-ray tube beam
is moved away from equilibrium into & region of very low feedback gain.
As long as the cathode-ray tube beam is completely to one side or the
other of the vertical partition the output voltage of the feedback‘
unit increases or decreases at a constant rate, independent of the
error present. The non-linear response shown in Fig. 24 is thus the
result of the non-linear characteristic of Fig. 2l.

This effect can be overcome by redesigning the error sensing unit
of the feedback loop to give a constant loop gain for all possible
errors. One possibility would be to replace the partition used here
with a pnotographic film having uniformly varying density from com-
plete opacity along a vertical center line to transparency along the
edges of the cathode-ray tube screen.

ine output of the multiplier with Eg ceonstant and ky & 500 C.p.s.
square wave is given in Fig. 25. The rise time for this channel is
considerably longer than for the electrostatic input channel being
about 450 psec., The limiting factor in this case is the amplifier
driving the axial field coil Lj. For the multiplier built, this coil
has an inductance of about 2 henrys and requires a maximum current of
about 25 milliemperes, The design of magnetic deflecting circuits

36,37

for cathode-ray tubes is amply discussed elsewhere, Through

suitable redesign it should be possible to increase the speed of

36 M.I.T. Radar School Staff, Principles of Radar, McGraw-Hill,

New York, 1946, 2nd Edition, Chap. III.

3 Schade, 0.H., "Magnetic Deflection Circuits for Cathode-Ray Tubes,"
RCA Review, v. 8, p. 506, September 1947.
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k1000 psec.—

Fig. 25 Multiplier square wave response; Eg constant,
Ep a 500 ¢c.p.s. square wave.

response of the axial field to give a rise time of a few microseconds.
It will be shown in Section VI that for meany cases this lack of speed
in a single channel of a multiplier is not a very serious drawback.

Photographs of the complete multiplier characteristics are given
in Figs. 26 and 27. A qualitative measure of response linearity is
given by these photographs, which are taken by photographing on a
cathode-ray tube screen plots of the input versus output of the multi-
plier with fixed input on one channel and variable input on the other.

A more quantitative check of the multiplier linearity can be
made by subtracting the input from the output and amplifying the
difference. The photographs of Figs. 28 and 29 are obtained in this
manner. In each case a sinusoidal input is applied to one channel
and the second channel input is held constant. Fig. 28 shows plots

versus time of the input, output, and difference between the input
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QUTPUT

INPUT

Fig. 26 Multiplier input-output characteristic; sine wave
input for Eg and various constant values for E.

OUTPUT

INPUT

Fig. 27 Multiplier input-output characteristics for various
fixed values of Eg and sine wave input for Ep.



Fig., 28 Multiplier linearity check, Ej held constant.

Fig. 29 Multiplier linearity check, E, held constant.
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and output for E; held constant. The three photographs are super-
imposed by a triple exposure and the difference signal was amplified
by an extra factor of ten so that it would be clearly visible. In
addition to the shot noise from the photomultiplier tubes there is
about 12% second harmonic distortion evident.
Fig. 29 shows the similar situation for the case E, constant
and Ey variable.
Fig. 30 shows the output of the multiplier plotted versus time
for two sinusoidal input signals having a frequency ratio of 8 t 1.
This pattern is a useful one for quickly adjusting the zero-balances
“of the multiplier, Fig. 31 shows the effect of an unbalance in the
megnetic input and Fig. 32 shows the effect of unbalancing the electro-

static input.

Fig. 30 Multiplier output versus time for Eg & 480 c.p.s.
sine wave and Ey a 60 c.p.s. sine wave.
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Fig. 31 Same as Fig. 30 with electrostatic input unbalanced.

Fig. 32 OSame as Fig, 30 with magnetic input unbalanced.



—62—

In summary then, a crossed-fields multiplier has been built and
tested. Its output is linear in each input to within 24 and the zero-
balance errors amount to sbout 2.5% of the full scale input. The causes
of the various zero errors have been determined; it should be possible
without much redesign to reduce these errors by a factor of about ten.
The balance adjustments are easy to establish and maintain,

The application of this multiplier to the solution of differential
equations with variable coefficients is described in Section VI.

There are a few further modifications of this multiplying method
which may be worthy of further consideration. One is the possibility
of building a special cathode-ray tube with the error-sensing detector
inside the evacuated envelope of the tube. One such scheme would
be to mount two parallel collector plates within the tube, where the
tube face is now located, to replace the photocells used in the present
model. Use might also be made of the fact that the velocity Evy is
inversely related to the axial velocity of the electron beam according
to Eq. (34). Since vy is controlled by the voltage on the third grid
of the electron gun 5%3 there is a possibility of obtaining division
in eddition to multiplication, at least over a limited range, in the
same tube,

A number of other schemes for multiplying with special cathode-
ray tube structures have been considered. Unless a long-term develop-
ment project were envisaged, however, the time necessary to construct

satigfactory vacuum tubes is such as to render these ideas unatiractive.
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Function Generation

4e4 Some Methods of Function Genersation

A second unit indicated as necessary in the discussion of Section
III is the arbitrary function generator, or input table. Such a unit
must be capable of generating an output voltasge that is an arbitrary
function of the input voltage. As has been pointed out, such & func-
tion generator can be made to generate functions of time by making
the input signal a voltage which is linearly related to time.38
It should be :ecognized, however, that there are other possible
ways of generating voltage functions of time without the use of an
\ arbitrary function generator. One well known method is to approximate
the desired time function by a power~ or Fourier-series expansion. A
series of voltages varying as t, tz, t3, etc., can be generated and
then combined in adding and subtracting circuits to approximate the
desired function. Alternately & harmonic synthesizer might be con-
structed, generating & series of sine waves of controllable phase
and amplitude with frequencies harmonically related to the repetition
rate of the differential asnalyzer. Combinations of these voltsges
could be made to approximate any desired fumction of time according
to well known Fourier-series techniques. A harmonic synthesizer of
this type hes been developed in the Biology Department at the
Massachusetts Institute of Techmology.
Another possibility is to utilize the technique frequently employ-

ed on the mechanical differential snalyzers to genmerate functions which

38 Welti, G., Masters Thesis in Mechanical Engineering at the
Massachusetts Institute of Technology, Spring 1948.
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can be specified as solutions of differential equations. In this
manner any function of time for which the differential equation can
be found can be generated on an suxiliary portion of the electronic
differential analyzer. This technique is used to generate the func-
tions sinwt and coswt in the solution of the Mathieu and Hill equa~-
tions described in Section VI, This method permits one to generate
functions of any variable on the mechanical differemntisl analyzer,
where the independent variable is arbitrary, On this electronic differ-
ential analyzer it is only applicable to the generation of functions
of time, because time is always the independent variable. This is
the only place where the use of time as the independent variable
appears to impose any real restriction on the electronic differential
analyzer. As will be seen this restriction is only minor and can
easily be avoided.

4.5 Arbitrary Function Generation

To generate an arbitrary function the mechanical machines utilize
an ingut table., The desired function is drawn on the table and an
operator manually tracks this curve with a cross-hair as the machine
moves. Some work has been done on automatic means of tracking the
desired function, but in so far as the author is aware no general
application of such a scheme has been made.39 Because of the high
speed of operation required, a function generator for the electronic

differential analyzer must be entirely automatic in its operation.

3 Hazen, H.L., Jaeger, J.J., and Brown, G.S., "&n Automatic Curve
Follower," Rev. Sci. Inst., v.7, 353-357, September 1936.
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The task of reproducing & completely arbitrary wave shape at a
repetition frequency of 60 c.p.s. might at first glance seem extremely
difficult. Television,which has been generating arbitrary functions
of not one, but two varisbles, at such repetition frequencies suggests
the answer.

One simple scheme for the generation of arbitrary functions is

indicated in Fig. 33.

-
<Co ==

|

PHOTOCELL

SWEEP
GENERATOR AMPLIFIER
O <i
INPUT OuTPUT

Fig. 33 A simple arbitrary function generator.

For this unit the function to be generated is cut out in the form

of an aperture in some opaque material which is placed in front of a
cathode~ray tube screen. A photocell is located in front of this
aperture, and its output, suitably amplified, forms the output vollage
of the function generator. The electron beam is forced to sweep over
the vertical line a-a' continuously at a high frequency; the light

radiated by the portion of the vertical line that is visible through
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the function aperture is proportional to the length of the visible

line, The photocell has an output linearly proportional to this light,

and the horizontal position of the line is proportional to input volt-

ege applied to the x-deflecting plates of the cathode-ray tube. If

the aperture is so made to have its width linearly related to the

function to be generated, then the photocell amplifier output is pro-

portional to the plotted function of the input voltage.

40, 41, 42

This function generator is simple in its construction, but has

the disadvantage of depending on the uniformity of the cathode-ray

tube screen, the photocell characteristic, and the cathode-ray tube

electron beam,

4.6 The Feedback Function Generator

The function generator shown in Fig. 34 was first developed by

the author in July 25, 1947, It has been described independently by

other investigators in this country and Engiand.

43, 44, 45

4461 Principal of Operation

The difference between this system and that of Fig. 33 is the

use of a feedback circuit to reduce the sensitivity of the output to

the instable cherscteristics of the cathode-ray tube and photocell.

40
41

45

Koehler, op. cit., reference 25,

Gilson, W.E,, "Medical Stimulus Circuits," Electronics, p. 99

A function generator of this type has been built by H. Logemann in
the Biology Department of the Massachusetts Institute of Technology.

MacKay, op. cit., reference 24.
Mynall, op. cit., reference 22.

Sunstein, D.E., "The photoformer," presented at the National Con-
vention of the Institute of Radio Engineers in March 1948.
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Fig. 34 Feedback function generator.

In Fig. 34 the desired function is sgein cut out of some opaque material;
this time in the form of a mask rather than an esperture. This mesk is
placed across the face of a cathode-ray tube. The output of a photo-
cell iocated in front of the masked cathode-ray tube screen is fed
through an amplifier to the vertical deflecting system of the tube. The
phase of this amplifier is chosen to give a downward deflection of the
cathode-ray tube beam when the amount of light striking the photocell
is increasing. Finally a biasing voltsge at the output of this ampli-
fier is so chosen that the electron beam strikes the screen along the
line b-b' if no light enters the photocell, The line b-b' must every-
where be ebove the function mask, If the feedback loop is closed, then
as long as the electron beam strikes the screen above the function mask
the photocell develops an output forcing the electron beam down toward

the mask. As the electron beam reaches the mask the light-spot on the
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sereen begins to be obscured by the edge of the mask; as a result the
light striking the photocell, and correspondingly the voltage forc-
ing the electron beam downward, is reduced. The beam takes up an
equilibrium position such that the light striking the photocell gen~
erates just enough voltage at the amplifier output to hold the beam
stationary.

If the electron beam is now moved in & horizontal direction by
a voltage applied to the horizontal deflecting system, the beam is
constrained to follow the silhouetted function mesk at every point.
If the horizontal position of the beam and the input to the horizontal
deflecting amplifier ere linearly related, the output of the feedback
loop is the plotted function of the input voltage.

4.62 Practical Function Genereting Unit

The circuit diagram of & practical erbitrary function generator
is given in Fig. 35. This unit, like the crossed-fielde multiplier,
was built, for convenience, around a Dumont 208 oscilloscope. The
cathode-ray tube utilized is the 5LP11.

A 931-A photomultiplier tube is used as the detecting photocell
in Fig. 35. Its output is amplified by the 6J6 phase inverter and
applied directly to the vertical deflecting pletes of the cathode-ray
tube. The zero signal operating point is adjusted by the biasing
potentiometer P-1 so that the unit tracks over the entire range of the
function mask. The input to the function unit utilizes the last stage
of the horizontsl amplifier normally employed in the model 208 oscillo~
scope. This consists of a push-pull 6V6 cathode-coupled phase inverter.

The zeroc point for this input cen be set by the potentiometer marked

p-2.
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463 Measured Function Generator Characteristics

The open circult characteristic of the feedback loop is plotted
in Fig. 36; the 6J6 is aisconnected from the cathode-ray tube plates.
This figure gives the measured plate to plate voltege of the 6J6 as
the electron beam is moved from below to above & portion of the function
mask. Note that here, as in the crossed-fields multiplier, the error
sensing is linear over oniy & very small region sbout the edge of the
function mask, Fig. 37 is & plof of the feedback loop gain over the
same renge of spot positions.

A test of the speed of a function generator cam be made by generat-
ing iue step-function shown in Fig. 38, The technique used is to place
& mask of this function in the function generator and then generate it
as & function of time by epplying & linear sweep voltsge to the function

generator input. The output can then be studied on the linear time base

- e

Fig. 38 PFunction generator test mask.



L

of a standard cathode-ray oscillograph. A photograph of the results

of such a test for the function generator of Fig. 35 is given in Fig. 39.
In this test the feedback loop gain was experimentally adjusted to give
the best observeble response. One notes that the non-lineerity of the
error sensing device in the feedback loop causes the rise time to be

a function of the amplitude as was the case with the multiplier. The
rise times indicated in Fig. 39 range from & to 16 microseconds while

the fall times run from 4 to 16 microseconds.

—= — 50 psec-

Fig. 39 Response of feedback function generator
to test mask of Fig. 38,
plus 50 psec marker pips.

That there is an optimum gain for the feedback loop of this func-
tion generator is recognized by considering the nature of the electrom
beam as it strikes the cathode-ray tube screen. This beam ideally has

sharply defined edges; in practice the electron density of the beam

cross section is a8 sketched in Fig. 40.
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Fig. 40 Probable distribution of electron density
through the cross section of & cathode-ray
tube electron beam.
As a result the light intensity radiated from the cathode-ray
tube screen is a similar function of position acrbss the dismeter of
the spot. If the gain of the feedback loop is moderate, a light
intensity corresponding to a height hj is necessary to hold the electron
beam to the mask edge and the effective diameter of the electron beam
is a-a'., If the feedback gain is reduced, sufficient output is not
available to permit tracking over the entire function mask. If, on
the other hand, the gain is incresased too much, the intensity necessary
to -hold the cathode-~ray tube beem to the mask may be reduced to some
value such as ho in Fig. 40. For this condition then, because of the
bell shaped intensity destribution of the electron beam, the effective
diameter of the electron beem has been increased to b-b'. This effec-
tively blunts the function genmerator error sensing device; the broad

beam cannot follow fine detail on the functlion mask and resolution is



.
lost. This effect is illustrated in Fig. 41, which is a triple expo-
sure photograph of the function generator output, generating the test
pattern as a function of time, for feedback gains that are optimum,

greater than optimum, and less than optimum.

- LOW
~<— OPTIMUM

<— HIGH

Fig. 41 Effect of feedback loop gain on the generation
of a function test pattern.

The overall linearity of the function generator was tested by
generating the linear function of Fig. 42. With this function mask
in place a sinusoidal input was applied to the function generator.
The function generator output was then applied to a subtracter and
compared with the input signal, Fig. 43 is a triple exposure photo-
graph of the results of this test. A 240 c.p.s. sine wave is the
test signal. Fig. 43 gives plots of the input, output, and difference
between input and output versus time for the function generator. The
difference trace was photographed with an additional gain in the

observing oscilloscope of ten times. One sees from this test that
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Fig. 42 Linearity test function

Fig. 43 Results of linearity test.
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the overall non-linear distortion of the function generator is 2.5%.
The function generator described here has been utilized as a
component of the electronic differential analyzer to solve a number
of non-linear differential equations, see Section VI,

4.64 Possible Modifications of Function Generator

The carrier type of feedback loop described in connection with
the crossed-fields multiplier can also be applied to the function
generetor., This has been done by the author and satisfactory re-
sults were obtained. As in the case of the multiplier, however, the
incressed complexity of the cerrier system does not seem to be war-
ranted., If the improved signal to noise characteristics of the
carrier amplifier and phese detector system were required, this
scheme could be employed. A rather minor advantege of the carrier
system is that it removes the necessity for an elaborate light shieid
around the photocell pickup, since a carrier system is only sensitive
to light modulated at the proper carrier frequency.

In addition to the obvious applications of the function generator
to the solution of differential equatiors, the unit may be used as
a component in either the logarithmic cr difference-of-squares multi-
plying schemes. This applicaetion would require two or three function
generators per multiplier, and would therefore be considerably more
compliceted than, for example, the crossed-fields multiplier.

Photographs of the photocell pickup and feedback amplifier for
the function generator are shown in Fig. 44. Fig. 45 shows the com-
plete function generator with the photocell unit in place before the

face of the modified Dumont 208 oscilloscope.
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Fig. 44 Photocell pick-up unit for feedback function generator.

Fig. 45 Feedback function generator.
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Addition and Subtraction
4+7 Common Adding Circuits

Three common means of obtaining the sum of two voltages ere given
in Fig. 46. Although this figure shows the connections for addition
of only two voltages; any of these schemes can be generalized to sum
any number of volteges. For the circuit of Fig. 46(a) the various
volteges to be added are connected to the grids of a number of pentode
tubes having a common plate load resistor RL’ If this load resistance
is chosen to be much smeller than the parallelled plate resistances
of 8ll the tubes connected to it, then the output voltsge is given by

Eout = (gm1E1 + gm2E2 *««o¥ Emnfn)Ry, » (43)
where n is the number of tubes with parallelled plates,
gmn 1s the transconductance of the nth tube, and
En is the grid input voltage to the nth tube.

This edding circuit requires one tube per input. The multiplying
constants for each term in the sum of Eq. (43) can be varied by adjust-
ing the quiescent operating point and thus the transconductances of the
various tubes. This dependence of the sum coefficients on the tube
parameters is usually more of a drawback thuan an advantege, because of
the diifficuity in preventing these constants from varying with age,
line voltege, and the like.

The passive adder of Fig. 46(b) forms the sum according to the

reletion {
1 L
E = E - + E - +
out 11+§;_+§:_L_+ﬂl+...+§; 2l1+_f_ig+§g+§g+,,,+32
R, R, I@ n R, R Rg
--0+ En‘ L

(44)

“
&l
+
55
I
iy
5
o
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where n voltages E; through E, are connected through resistors Kj through
Ry to the common point x on the output resistor kg, If all the resistors
Ryy RlpessyRp are made equal, then Eq, (44) simplifies to the expression

1 ,
Eout = (o + 1) (Ep + Ep + E3 +euot Ey). (45)

This adder has the advantages of extreme simplicity, and dependence
for its calibration on the relatively stable characteristics of a pas-
~ive resistance. Its principle disadvantage lies in the fact that the
gain of such an adder is always less than one. This can be overcome
by emplifying the voltage Eouf in an amplifier siabilized against changes
in tube parameters, power supply hum, and the like, by negative feed-
back.

4.8 The Feedback Adder

The feedback amplifier adder of Fig. 46(c) combines the passive
adder and stabilized amplifier into a single unit. This is the type of
adder employed in the electronic differential analyzer of this thesis.
To understand the behavior of this amplifier let us assume that the
amplifier labelled —-i in the figure has & constant gain of -l for all
frequencies of interest, infinite input impedance,land zero output

impedance. For this case one finds

- b CEo By  Bq
Eout = - 1,1 1 Bigy T B, teeet By | o
u+l+Ro(_+__+'.‘+ .——)
‘R’l R2 RB . (46)

which reduces, for the special case of Rg, Rj,eee,ip all equal, to

Bout = = rw o wm) (Bt B2t By e By . 47)

One sees that if p is considerably greater than (n + 1), the sum thus

formed is substantially independent of changes in the amplifier gain u.
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Compering this expression with Eq. (45) for the passive adder case,
one observes that the pessive adder plus an amplifier has exactly the
same cheracteristic as that of Eq. (47) provided the amplifier gain

is - 5¥E?§%%;I o This is just the charscteristic that one achieves

if the amplifier were designed with an open loop gain of -y and a neg-

g(n + l}

p+n+1"°

Thus the feedback adder of Fig. 46(c) is exactly equivalent to the

ative feedback circuit to reduce the gain to the value -~

passive adder of Fig. 46(b) plus a stabilized feedback amplifier hav-
ing the same open loop gain as the amplifier used in the feedback adder.
The use of the passsive adder and sepafate feedback stebillzed
ampilifier has perhaps e small advantage in that it isolates the two
functions; thus there is no danger that changes in the adding resistors
will influence the stability of the feedback unit. The feedback add-
ing scheme is convenient, however, since with a very minor change it
can be converted into a time integrator or differentiator. Its use
therefore provides maximum flexibility in a small differential analyzer.
The feedback adder is basically & feedback eamplifier and all the
precautions normally employed in the design of amplifiers with large
amounts of feedback must be observed to aveid poor transient response
and oscillation. Some discussion of this point is given when the
particuiar unit used in this electronic differential analyzer is de-
scribed. The literature on the subject of stabiliity in feedback
amplifiers is very lengthy and the problem certainly cannot be treated

in any detail here.*0247248:49 14 5h0u1d be noted that the feedback

46 Bode, H.W., Network Analysis and Feedback Amplifier Design,
D. Van Nostrand, New York, 1945.

47 Rediation Laboratory Series, Vol. 25, Theory of Servomechanisms,
McGraw-Hill, New York, 1947.
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adder changes the algebraic signs of the voltages it adds due to the
180 degree phase shift in the feedback amplifier. An auxiliary use
of such a unit is thus that of e sign-changer,

As indicated in Section III the present differential anslyzer
repeats the entire solution of the differentiel equation every 1/60
second. In order that these repeated solutions be identical, the
output voltages of every unit in the differential analyzer must be
identical at the beginning of every solution period. This condition
requires the d-c output of each adder be uniquely determined by its
input,

4481 b»c Restoration -

One means of acecomplishing ﬁﬁas is to use a direct-coupled ampli-
fier in the feedback adder. It is’desirable, however, to meke the
gain of that unit very high in.order that considerable net gain be
achieved with a reasonable amount of negative feedback stabilizaetion.
Further, since the d-c¢ output of each adder influences the initial
conditions of the differentiasl equation being solved, this output
should not vary with time because of extrsneous factors such as tem-
perature, tube age, power supply voltege, and the iike. High gain
d-c amplifiers are notoriocusly poor in this regard,end it was felt
that they should be avolded wherever possible.

A-c coupled amplifiers are free from the difficulties of long-

time instability and drift, but do not transmit the necessary zero

48 Hall, A.C., The Analysis &end Synthesis of Linear Servomechanisms,

Technology Press, Massachusetts Institute of Technology, May 1943.
49 Brown, G.S,, and Campbell, Y.P., Principles of Servomechanisms,
Wiley, 1948,




-84
frequency component. HKach RC coupling circuit in such an amplifier
can be thought of as a time integrating circuit. In general the final
value of the integral of the voltages being treated is not equal to
the desired initial value; hence some means of foreing the condensers
to assume the proper initial charges must be employed. There is for-
tunately a certain amount of time for this purpose, namely the off-time
of the differential analyzer, approximately 1/120 second each 1/60
second. This problem is very analogous to one encountered in television
where a zero-fregquency component must also be transmitted and some un-
used tine, the backsweep period for the television scan is available.
To accomplish this result a number of pulsed d-c restoration or
clamping schemes have been developed.

One such circuit which is particulariy well adapted to the present
problem is shown in Fig. 47.°0?°1 When the diode in this circuit is
not conducting, one has a normal a-c coupling consisting of the coupling
condenser C, and a shunt resistance to ground due to the input resist-
ance of the amplifier tube and the back resistance of the diodes.
During the clamping time gate signals from an external gate generator
cause both diodes to conduct and thus form a low impedance path from
the grid to & fixed potential, depehding in the circuit shown on the
setting of the potentiometer Rp. Provided the time constant CoRj is
long compared to the clamping time, Ry being the internal impedance

of the gate generator, the impedance of this clamping action is 2Ry + <R;

50 Roe, J.H., "New Television Field Pick-up Equipment Employing the

Imsge Orthicon, " Proc. L.R.E., V. 35, 1532-1546, Dec. 1947.

51 Wendt, K.R., "Television DC Component," RCA Review, v, 9, 85-111,
March 1948.
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| +
O
2

Fig. 47 RCA diode clamping circuit,

where Ry is the conducting resistance of the diodes. By using the
circult of Fig. 47 it is possible to obtain the necessary zero-frequency
response over the solution period for the differential analyzer and
still avoid sensitivity to changes in plate supply voltages, cathode
emigsion, etc.

The resulting amplifier is more complicated then a simple a-c
coupled amplifier since one of these clamping circuits must be employed
for each interstage coupling condenser, The complexity is considerably
less, however, than would be required if a d-c amplifier of comparable
performance were employed,

The differential analyzer off-time is utilized for the clamping
period and every clamping circuit in the entire analyzer is driven
by a single gating pulse, thus insuring synchronous operation.

An ordinary relay could also be used instead of the diode clamp-

ing circuit if sufficiently precise operation could be obtained.
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Brown Instrument Vibrators were used by the author for this purpose.52
These relays gave good performance from the point of view of noise
and contact chatter, but they were not easily adjusted for synchronous
opening and closing times.

4.82 Practical Adding Unit

The circuit diagram of the complete adder used in the electromic

differential analyzer is shown in Fig. 48. Miniature tubes are employed

in this amplifier in the interest of small size and power consumption.
The 6AG5 pentode first stége is followed by a cathode-coupled 6J6
amplifier. The cathode-coupled circuit is employed here to yield the
180 degree net phase shift necessary for stable negative feedback.
The 6J6 output cathode follower gives a very low output impedance and
prevents the output load from appreciably influencing the faedbaék
stability.

The two a~c coupling circuits are d-c restored by the 6AL5 diodes
shomn. The first of these clamping circuits, between the 6AG5 and the
first 6J6, is a d-c connected version of the circuit of Fig. 47. This
saves two large coupling condengers. The gate pulses are equal and
opposite in magnitude, so that the grid of the Tirst 6J6 is clamped
to zero volts by this circuit. The clamper on the output 6J6 grid
employs a~c coupling of the gate pulses, This permits adjusting the
potential to which the grid of the output tube is clamped with the
potentiometer, . and thus serves as an output d-c level adjustment.

The shunt feedback resistor Ry, plugs into the terminal marked

J5 and the series resistors for the adding circuit plug into terminals

52 Synchronous Converter No. 75828-1, Brown Instrument Co., Philadelphia,

Pennsylvania.
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J3 and J;. In normal operation R, is 51,000 ohms. The adder gain for
either input channel is then variable over a range of 10 : 1 by means
of the input controls.. Changes in gain greater than 10 : 1 are
achieved by varying the values of the series input resistors at the
terminals J3 and JA'

Equations (46) and (47) give the characteristics of a feedback
adder built around an amplifier whose gain -U is constant for ail

frequencies. The amplifier of Fig. 48 is not such an ideal amplifier;

rather it has a characteristic at high frequencies of the form
u = o
(1 + JwRBCB)(l + 3‘”RAG 4). (48)

The measured amplitude and phase characteristics of the amplifier
without feedback are plotted in Fig. 49(a) versis a logarithmic fre-
quency scale, From this figure one finds the high frequency time-

constants of the unit to be

R303 = 1059 p.seconds, (49)
R;C; = .568 pseconds. (50)
For a two channel adder such as this, Eq. (46) becomes
R R
1} 2o fol

fout, = - + 14 R (R + ) [ElRl YRR (51)
u P S
°'R; Ry

In obtaining this expression stray capacities across the resistors
were neglected. At high frequencies this assumption is no longer

justified, and one must replace

Ro

Rq by-if;rgaﬁggg , (52)
3 A

Ry by T3 Jui;C; * and (53)
R

Rg by = (54)
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where Gy, C;, and C, are the shunt capacities associated with RO, Ry,
and R, respectively. Substituting Eqs. (48), (52), (53), and (54) in
Eq. (51) gives Ro [1+ jukgly| Ko |1+ juRy0p
~Ho ElRl 1+ juRgCo 2R2 1+ JwR;Cq

Eout= R (1+J0R5C5) (1+JwR,C,) | B, (1+JwR,C1)+ Ry (1+j0R,Co)
L os1sle 3C3 4°4) } %2 Rl RS s
o Rle(l + jUJRoCO)

(55)

as an accurate expression for the behavior of the feedback adder at
high frequencies.

In this unit the time constants R4C3 and R;C; are associated with
load resistors and stray capacities within the amplifier and are not
very easily varied. The external time constants R,C,, RyC;, and RyC,
are, however, easily varied. Through suitable adjustment of these
external time constants, by analytic or experimental means, an optimum
transient response for the unit can be achieved. The adder pulse

response is shown in Fig. 49(b).

oe—— 2 psec. ——=
Fig. 49(b) Adder pulse response.
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4.83 Measured Adder Characteristics

The open loop characteristics of this amplifier (no feedback)

are as listed below:

Voltage gain = = = = = = — = = = ~ - - - 1500 times or 63.5 db.
Upper half power frequency — — - - - — - 100 Kc/s.
Lower half power frequenCy — - - - - - - 0.16 c.p.s.

This adder can be operated at a variety of gains, according to
the setting of the various controls and values of the plug-in resistors;
it is never run with a gain for either channel of more than 150, or
43.5 db. The characteristics of the unit as normally operated are

given below:

Voltage gain -~ = - - = = = = = =~ ~ 150 times or 43.5 éb. maximum
Upper half-power frequency - - - - 650 Kc/s.

Lower half-power frequency - - - - 0,016 c.p.s.

Rise timeg = = = = = = = = - = - - 0.4 psec. (10% to 90%)
Overshoot - « = = = = = = = = ~ - 2% maximum

OQutput noise - = = = = = = = = - = 1-10 millivolts

Maximum output - - = ~ = = - = = = + 20 volts

Output impedance - - = = = — = = = 10 ohms maximum

The linearity of the adder unit was tested by applying a sinu-
soidal signal to the input; the gain was set to 100, and the output
attenuated and subtracted from the input in a second adder. The
results of this test are shown in Fig. 50 which is a triple exposure
photograph of the input, output, and difference between the input
and the output. The difference voltage is to a scale 100 times that
of the input and output. From this figure one sees that the harmonic

distortion is less than 0.2%. This data was taken for an output signal



e

Fig. 50 Linearity test for adding and inverting unit.

having 30 volts peak to peak amplitude.

The application of adding units to the solution of differential
equations on the electronic differential analyzer is described in
Section VI. An investigation of the manner in which the finite band-
width of the adding units can introduce errors inte fhe solution of

differential equations is given in Section V.

Integration
A large number of circuits designed to integrate a voltage with
respect to time have been developed in recent years. This develop-
ment has been done with two applications in mind (1) the generation

of linear sweep voltages for television and radar and (2) computation
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in fire-contrel computers and eﬁ%tronic simulators.53’54’55’56’57’23’22’
. b4

One of the simplest integrating circuits is the common RC low-pass

filter shown in Fig. 51,

Fig. 51 RO Integrator,

53
54
55
56
57
58
59
60
61

Bell Telephone Laboratories, op. cit., reference 13.

‘Ragazzini, et al., op. cit., reference 14.

Admiralty Computing, op. cit., reference 15.

Korn, op. cit., reference 16.

Mynall, op. cit., reference 22.

M.I.T. Radar School Staff, op. cit., reference 36.

Puckle, 0.S., Time Bases, John Wiley & Sons, New York, 1943.

Radiation Laboratory Series, Electronic Instruments, Vol. 21.

Radiation Laboratory Series, Electronic Time Measurements, Vol. 20.
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For this circuit

E

2 1 . 6)

El(“’) 1 + jwRC (5
For high frequencies, w »>» —1%5-,

E

Z2ly) ~ —

This is the frequency response of an ideal time integrator, for which
Bp(t) = 35 SEl(t)dt . (58)

In order that this simple integrator perform accurately the time
constant RC must be large. This makes the scale factor‘ég in Eq. (58)
very small. Most of the more complicated integrating circuits have
a8 their objective increasing the effective time constant without this
reduction in scale factor.

It is not possible here to go into & detailed discussion of all
the various integrating circuits which have been proposed. Instead
attention is focused on that circuit employed in the present electronic
differential analyzér in order that its characteristics be well under-

gtood for future error analysis.

4.2 The Feedback Integratoer

The basic feedback integrator employed in this work is indicated
schematically in Fig. 52.

4491 Ideal Characteristic

The similarity between this unit and the adder of Fig. 46(c) is
evident. The only difference is the use of a condenser in the shunt
feedback arm instead of a resistor. If one assumes the ideal case-
for which the amplifier has infinite gain and bandwidth together with

zero output impedance and infinite input impedance, this circuit has
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Fig. 52 Feedback integrator circuit.,

the transfer characteristic
E.
—t
Eout - JWRC . (59)

4,92 Limitations of Realizable Integrators

This is a characteristic that can only be approximated in practice,
because practical amplifiers do not have infinite gain or bandwidth.
The amplifiers used in this differential analyzer have at least one
low- and one high-frequency time constant; they also have finite mid-
band gain. Such an amplifier has a gain

_ ~(JuT1 )Mo
R G JoTy) (1 + jo) 2 (60)

where Lo = bandcenter gain of amplifier,
T1 = low frequency time constant of amplifier,
& = high frequency time constant of amplifier,

w = 2xf = frequency in radians per second.
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Using this realizable gain characteristic in the circuit of Fig. 52
and assuming that p»?1 at all frequencies of interest one finds that

the integrator transfer characteristic is

Eout = -1 JouRC  jeTy 1 . (6
Ein = JWRC 1 + jwuoRC T+ juTy 1+ jo g_
(o]

The manner in which this characteristic differs from the ideal of Eq.(59)
is best studied by considering a plot of the megnitude of Eq. (61) in

decibels versus the logarithm of the frequency. Such a plot is given

in Figo 53.
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Fig. 53 Log-db plot for time integrator circuit.
The ideal integrator characteristic is plotted in dotted lines in this

figure. It runs from infinity at zero frequency to zero at infinite
frequency with a slope of -6 db per octave. The gain is zere db or
‘unity at the frequency w =‘§E. The response in the time domain of

this ideal integrator to & negatively applied unit step of voltage
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is plotted in Fig. 54 as a dotted line.
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Fig. 54 Output voltage of time integrator versus
time for a negative unit step input voltage.

Seperately considering the deviations of the realizasble charac-
teristic of Eq. (61) from the ideal of Eq. (54), one observes first
that because of the finite bandcenter gain po of the amplifier the
gain characteristic approaches the maximum value Ko at the frequencies
near Eiﬁa « The effect on the integrator step function response.of
this first limitation is shown by the solid line in Fig. 54. The

output voltage, instead of rising linearly with time, is given by
-t

Bout = Holl = eHoRE); (62)

this is exponential in character with a time constant of p RC.
At high frequencies, because of the finite bandwidth of the

amplifying unit, the characteristic also departs from the ideal, 4t
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Ho
the frequency o the slope of the amplitude characteristic increases
from -6 to -12 db per octave. This high frequency effect influences
the short time behavior of the integrator. This is illustrated for

e step voltage input in Fig. 55.
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Fig. 55 Short-time behavior of time integrator,

One sees from this that at the beginning of the step response
the unit behaves not as a single integrator, but as a cascade of two
integrators. We can speak of the integrator as having a high-frequency
cut—off at %? or as having a rise-time 2.2 %%’. This high frequency
point is, of course, analogous to the upper half-power frequency nor-
mally considered in an amplifier. The high frequéncy effects in inte-
grators are equally as important as the bandwidth limitations in the
adders.

In the case of ordinary amplifiers this high frequency cut-off is

something that cannot be avoided, because of the stray circuit capacities
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which inevitably are encountered, For the integrator, however, there
appear to be possibilities of reméving this high frequency effect by
suiteble compensating schemes, since no gain-bandwidth limitation is
violated by so doing. One such scheme is to shunt the series input
resistor of Fig. 52 with a small capacity C,. If this is done, the

transfer characteristic of Eq. (61) becomes

Eoup = - 1, JuHoRO > SR e T ()
Eyp jwRC 1 + jw(poRC + RC,) 1+ joTy 1+ joo
o
For this cese, if C, is chosen so that
3
RCe = — , (64)
Ho

the high frequency response is exactly compensated. The limitation
of this scheme lies in the assumption that the amplifier high frequency
response can be represented by a single high frequency time-constant
as was done in Eq. (60). It has been found possible in practice, how-
ever, to make the integrator high frequency response so much better
than that of the adders and inverters that it is negligible in differ-
ential equation solutions.

The other effect which must be considered in practical integrators
is the low frequency time constant Ty of the amplifiers. In Fig. 53
it was essumed that this time constant

T1 = 4koRC . (65)

As long as T1 is equal to or greater than this value, its effect is
to cause another bresk in the gein-frequency characteristic at the
very low frequency'gi, as shown in Fig. 53. At this point the slope
changes from zero to +6 db per octave. Fig. 56 shows the influence

of this effect on the step function response of an integrator. In
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the present differential analyzer the integrators are not permitted to
operate longer than a short time interval T,, as indicated in Fig. 56.
When this is the case, the use of a-c coupled amplifiers is not a funda-

mental limitation on the integrator operation.

Mo
/

~~__D-C COUPLED
AMPLIFIER

A-C COUPLED
/F‘— AMPLIFIER
T, =6u,RC

/

" . . L

0 2poRC 4u,RC 6uRC
TIME IN SECONDS

Fig. 56 Influence of a-c coupling on integrator
step function response.
A
Two other practical limitations fffecting integrator operation

are leaksge across the integrating condenser C and the finite input
impedance of the amplifier. These effects both reduce the bandcenter

gain p, of the amplifier. The new gain is

R; R
t in L
Ho = (66)
%Ry + R pgR + Ry’
where Ry, = the amplifier input resistance,
R = the leakage resistance across the condenser C.

If Egs. (61) and (63) are rewritten with u, everywhere replaced by

pé, exact expressions are obtained.
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4.93 Practical Integrating Unit

The circuit diagram of the integrator used in the electronic
differential analyzer is given in Fig. 57. Comparing this circuit
with Fig. 48 one sees that both the adding and integrating units
are built around the same amplifying unit. In the integrator the
integrating condenser is inserted in the shunt feedback jack J5,
while the series resistor, R of Fig. 52, plugs into JA' The scale
factor of the integrator can be varied over a range of 10 to 1 with
the input potentiometer; larger ranges than this are obtained by
changing the integrating condenser at J5 or the integrating resistor
at J,. The integrator input is at J,, and the output appears at
jacks Jg and Jg.

4.94 Integrator Initial Conditions

The 6AL5 twin diodes are d-c clampers, as in the adding unit.
The use of these clamping tubes is particularly convient in this
integrator application. As pointed out earlier it is necessary
to establish fhe‘proper initial conditions for each integrator at the
beginning of each solution period. This can be done by bringing the
charge on the integrating condenser to zero and connecting a battery
in series with the output of the integrator at the beginning of each
solution period. This scheme is indicated in Fig. 58. For this circuit
the switches S; and S, should both be at position (1) during the differ-
ential analyzer off-time, and at position (2) during the on-time.

The d-c¢ clamped amplifier automatically performs the operation
of switch Sq in Fig. 58, During the clamping period the input of the
integrator is zero because it is driven either by an adder or another

integrator. In addition the grid of the last 6J6 is clamped to a
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Fig. 58 1Initial condition switching circuit.

potential forcing the cathode of that tube to zero volts. Thus during
“the off-time both the input and output of the integrator unit are forced
to a potential of zero volts. Under this circumstasnce the integrating
condenser discharges to zero with time constent RC, If RC and the
duration of the off-time are properly chosen, the integrating condenser
is almost completely discharged at the end of each off-time; hence the
function of 51 in Fig. 58 is automatically performed by the diode-
clamped amplifiers,

It is still necessary to add an initiel value to the output of
the integrator at the beginning of every solution period. This is
accomplished by adding an adjustable voltage step to the integrator
output, as shown in Fig. 57. The adjustable height step is derived

from the stendard gating pulse by a potentiometer. . A 10 to 1 change

in the step height is also provided by S;. The initial condition is
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added to the integrator output by the passive adding circuit consisting
of Rl, RZ’ and RB' This sum is then applied through the output cathode
follower to give a low output impedance for the unit. The 33 puf con-

denser is inserted for high frequency compensation of the voltage divider.

4+95 Measured Integrator Characteristics

The integrator characteristic of Eq; (61) was calculated on the
assumption that an amplifier described by Eq. (60) is employed. The
gain-frequency characteristic of the amplifier of Fig. 57 is somewhat
more complicated than this since it involves at least two high and two
low frequency time constants of importance. The second high frequency
time constant is particularly important since it can lead to oscillation
in the integrator at high frequencies. A brute force method of prevent-
ing this is to make one of the high frequency time constants in the
amplifier considerably longer then the other so that the amplifier
does essentially have the high frequency behavior of Eq. (61) until
the loop gain around the feedback loop is less than unity. This is
the purpose of the condenser Cq in Fig. 57.

A photograph of the pulse response of this integrating circuit is
given in Fig. 59. The fuzziness of this photograph is caused by lack of
synchronization between the test pulse and the intégrator gating pulse.

Because of the finite gain of the integrator amplifier its step
function response is that given by Eq. (62) rather than a linearly in-
creasing wave with time, E 4 = é%. Equation (62) can be rewritten

Eout = %% [1 - Zl:ORC *”%? . Taigayz —...] . (67)

In this form one sees the way in which this integrator response

differs from the response of an ideal integrator, é% « The error

increases with time; thus for a given RC there is a maximum time over
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le-5 usec-—»

Fig. 59 Integrator pulse response.

which the integrator is accurate to within a given percentage error.
For the electronic differential analyzer of this thesis the solution

time is about —;—'second, and the gein of the integrating amplifier

120
is 1500. For an error equal to or less than 1% one has from Eq. (67)
I _<
TR .01, (68)
which indicates that the minimum permissible RC for a 1% error is
RC = 2L (69)
o

= 2.78 x 10~4 seconds = 278 usec,
For the differential equations discussed in Section VI a time constant
at least twice this value was employed.
In order that condenser leskage be negligible, the lezksge

resistance Ry, of the condenser must be

Ry, 2 4HoR . (70)
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For R = 50,000 ohms in the unit of Fig. 57 this requires a leakage
resistance exceeding 300 megohms. It has been found necessary to use
mica integrating condensers to achieve this condition in practice.

For the minimum velue of RC determined by Eq. (69) the integrator
time constant PGRC is 0.416 seconds. In order that the a-~c coupling
circuits of Fig. 57 not limit the integrator operation, their time
constents must be at least four times larger, that is, 1.66 seconds.
This large interstege time constant is realized with the relatively
small coupling condensers shown in Fig. 57 by virtue of the fact that
the only resistance from grid to ground of the d-c clamped stages
during the on-time is the leakage of the insulation, the input impedance
of the tubes operating at a negative blas voltage, eand the back resist-
ance of the clemping diodes. This, in practice, is of the order of
hundreds of megohms. Occasionalily after a spell of very damp weather
some reduction in this resistance occurs, but it has always been the
case that with a half hours operation, the heat generated by the units
themselves is sufficient to dry things out and bring the leaskage

resistance back to its normel high value,

Division

4,10 Dividing Circuits Employing a Multiplier

The operation of division is necessary for the electronic differ-
entisl esnalyzer. Using the units aliready described, there are at least
two possible methods of performing this operation. One is indicated
in Fig. 60.

One voltage E; is applied to a function generator fitted with

the reciprocal mask %u The output of this unit is then %“; this is
1
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applied to a multiplier and there multiplied by the second input
E
s s 2
voltege E5. The multiplier output is then the desired quotient'iz.

' |
E & &
' RECIPROCAL E, ER
O—— GENERATOR ——=—— MULTIPLIER —0
(1/x)
)
O —

Fig. 60 Division with function generator and multiplier.

This method has the drawback of complexity in requiring the use of
a function generator plus a multiplier. It is, however, very straight-

forward.

The dividing method actually used in the electronic differential

62

analyzer is shown in Fig. 61. If the multiplier has a gain constant

k and zero output impedence, and the amplifier of gain -y has zero
output impedance and infinite input impedance, then this connection

gives the cheracteristic
Eoc" Ry 1

BTE T LshrRy 7
kjR7 By

(71)

62 Radietion Laboratory Series, op. cit., reference 60.
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and as long as

k“RlEl « 1, (72)
we heve
E> Ry

E3 = B ¢ Ry (73)
EI
O —

kEIE3

MULTIPLIER

Es R, Es
O AN/ AMPLIFIER

Fig. 61 Divider.

This connection was used for the solution of the Hill equation
described in Section VI. It requires an adder plus a multiplier, but
since the adder is a simpler unit than the function generator, it is
less complicated than the method of Fig., 60. In prectice it is some-
what more difficult to achieve since it involves a feedback loop with-
in a feedback loop. The multiplier, which contains a feedback loop,
is part of the negative feedback loop of the adder amplifier. For

the multiplier of Fig. 19 mathematical analysis of this situation is
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complicated by the fact that the multiplier operates non-linearly at
high frequencies, which is just the region where instability is e%%un—
tered. Because of these difficulties an analytic investigation of
the stability of this circuit has not been made. Experimentally, how-
ever, it is possible to operste this circuit over a dynamic range
exceeding 50 to 1 in the output. The frequency response achieved is

at least as good as that of the multiplying unit alone.
4.11 Modification of Crossed-Fields Multiplier for Division.

Mr. W. Green of the Massachusetts Institute of Technology
Instrumentation Leboratery has pointed out to the author that the crossed-
fields electron~beam multiplier can be made to perform division directliy
by the following modification. The amplified output from the photocells
in Fig. 19 is epplied to the y-deflecting plates of the cathode-ray
tube instead of the x-deflecting plates. Then the voltage applied to
the x-deflecting plates becomes one of the inputs of the unit. Now as
long &s the x-deflection is held to zero by the feedback circuit Eq. (41)
requires

Ey = k(E] .« Ep) . (41)

With the change of connections indicated, however, Eg is now one of
the input voltages and the output of the feedback unit is E,; therefore

for this commection

E} = %2' ’ (74)

where E; is the feedback voltage to the y-plates,
E, is the input to the exial field amplifier, and
EB is the input applied to the x-plates.

The only change necessary to convert the circuit of Fig. 19 to a
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divider is to interchange the connections to the x and y deflecting
plates of the cathode-ray tube. This dividing method has been checked
experimentally end found satisfactory over a range of 10 to 1. The
limitation on the range is the stray magnetic flelds present in the
unit employed.

This dividing method was conceived and tested after the completion
of the experimental work of this thesis and has not therefore been
fully investigated or applied to the solution of any differentisal

equations. The method appears worthy of further investigation.

Gate Generstion and Cslibration

4.12 The Gate Generator

In the discussion of the adding and integrating units reference
was made to the use of gate pulses for the purposes of d-c clamping
and the insertion of initiel conditicns. As outlined in section ITI
the basic system of the present differential analyzer solves differ-
entisl equations periodically at a repetition frequency of 60 c.p.s.
Two important switching functions must be performed, involving:
(1) turning the various units of the differential analyzer off and
on at the proper times and (2) removing the final conditions at the
end of each solution period; this requires zero clamping or d-c restor-
ing and inserting the proper initial values at the beginning of each
new solution.

A11 these functions are performed by 60 c.p.s. square waves which
are formed by the master gate generator and supplied to the various
units by coaxial cebles. A circuit disgram of the master gate generator

unit is given in Fig. 62.
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A 60 c.p.s. sine wave, obtained from the power mains, is converted
to a square wave by the two 6AC7 limiter stages. The last 6AC7 drives
the grids of the two 6AS7 power output tubes. These output tubes oper-
ate as a phase inverter driving the two 100 ohm resistors.

The use of a very low resistance load assures a low output imped-
ance for the unit. This is of importance since one of the functions
of this unit is to provide gating pulses for the d-c clamping circuit
of Fig. 47. 1In this circuit effective clamping action is achieved
only if the internal impedance of the gate generator is at least as
low as the impedances of the 6AL5's when conducting.

The two half 6AL5's of Fig. 62 are d-c restorers. By adjusting
the setting of potentiometers R; and Ry, it is possible to control the
level to which they restore and correspondingly the d-c level of the
gate signals. This is required because the first clamper in the add-
ing and integrating amplifiers of Figs. 48 and 57 is d-c coupled. It
is desirable to have the amplitude of these gate pulses as great =as
possible since this amplitude limits the meximum output level of the
adding and integrating units., If the signals in these units exceed
the peak value of the gating pulses, the d-c clamping tubes conduct
during the on-time and thus limit the output. For the unit of Fig. 62
the output pulses have a height of zbout 25 volts.

The gating pulses are used not only for d-c clemping and initial
condition setting, but also to blank out the intensity of the viewing
scope during the off-time of the differentisal enalyzer.

4,13 Time and Amplitude Celibrating Circuits

The gating pulses can also be used to synchronize the time cali-

brating circult. Since the two quentities utilized in this differential
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analyzer are time end voltege, a calibreting unit must be capable of
measuring both of these quantities. The time calibrating circuit
shown in Fig. 63 is a type frequently utilized in radsr applications
for this same purpose.63

The gate pulse turns on the cathode-coupled oscillator, in this
circuit a 12AU7 twin triode. The feedback in the 12AU7 oscillabor
can be adjusted in this circuit by means of the regeneration control
potentiometer Ry « In operation this control is adjusted to the
point for which stable oscillation is just achieved over the time the
gate pulse is applied. The frequency of this oscillation is adjustable
by a tuned circuit in the grid of this tube. The output of the oscil-
lator is supplied to a three stage triode limiter consisting of the
three half-12AU7 tubes labelled Vi, ¥, and Vs. The square waves at
the output of the last limiter are then differentiated by the RC cir-
cult C;Zand R2 « One half of the resulting pips are limited by the
IN34 crystal at the grid of V¢, and the remaining positive pips are
applied to cathode-follower Vg to provide a low output impedance.
The spacing of these pips is equal to the period of oscillation of
the pulse oscillator Vi, V, and is controlled by the tuned circuit.
In Fig. €3 three pip spacings, 50, 200, and 1000 pseconds, can be
selected by the switch S,.

Amplitude calibration is obtained with the very simple circuit

shown in Fig. 64. A battery whose potential is measured with the

d-c voltmeter M is connected to a Brown Instrument vibrator.64 This

63 M.I.T. Radar School Staff, op. cit., reference 36,

64 Brown Instrument Co., op. cit., reference 52.
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Fig. 64 Amplitude calibrating circuit.

unit 'chops! the d-c at a frequency of 60 c.p.s. in synchronism with
the mains frequency. By suitable adjustment it is possible to make
the vibrator perform this operation during the differential analyzer
on-time. This chopped wave, which is a pulse of repetition frequency
60 c.p.8., is applied to a series of calibrated T-pad attenuators.

The height of the pulse and the attenuation of the pads can all be
measured with accurate d-c meters. The output of the attenuator chain
is therefore a pulse, the amplitude of which is known to within 1%,
which occurs during the on-time of the differential snalyzer units.
This calibrating pulse cen be used to calibrate the deflection of the

output viewing oscilloscope. The gains of the various adders, inverters,
and multipliers can be measured by comparing the input and output levels

on the oscilloscope, using this calibrating signal as input.
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Calibration of the time-integrators is achieved by using a com-
bination of the test pulse and the time calibrator. The test pulse
is applied to the integrator and the output viewed on the oscilloscope.
Time intervals are marked on the display by applying the calibrating
pips to the intensity grid of the oscilloscope. In this manner the
value of the integral of a known pulse amplitude after a known time
can be measured, and the calibration obtained.

Photographs of the timing pips, the test pulse, and the output

of an integrator with the test pulse applied are shown in Figs. 65,

66, &nd 67.
50 psec:
.
200 Psec —--:-. ...... - —————— - e e e b W e e W SN
1,000 psec-

Fig. 65 Triple exposure photograph of timing pips.
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Fig. 66 Amplitude calibrating test pulse.

Fig. 67 Output of integrator with celibrating pulse
applied to the input; 200 psecond marker pips.
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Power Supplies

All the tube filaments in the electronic differential analyzer
ere heated by 60 c.p.s. alternating current. One side of this fila-
ment supply is grounded to minimize hum in the amplifiers. The high
voltege supplies ere three in number, providing vol%ages of +250 volts,
+22% volts, end -110 volts. The 22% volt supply is for the screens
of the 6AG5 tubes in the adding and integrating units. The current
drain for these tubes is only 6éma and therefore this voltege is
supplied by an ordinary heavy-duty B battery. The +250 volt and -110
volt suﬁplies are electronically regulated. This provides a low out-

put impedance thus preventing interaction between the various units

of the differential analyzer.
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Summary of Component Details

Multiplier

Meximum rate of change of output is 0.151 volts/usec.

Meximum output voltage is *2 volts.
Output normalized is 0.66(E.E; + .009E, + .O015E, + .0005) volts,
where Ej; is voltage controlling coil current,

E. is voltage controlling y-deflection.

Non-linear distortion £ 2%.

Qutput impedance = 100 ohms.

Function Generator

Maximum output rate of change

Maximum output voltage = 2 volts.

Output impedance = 100 ohms,

Non-linear distortion & 2.5%.

Amplifiers, Adders, and Inverters

without feedback @y
w2
Ko

as used in analyzer

0.16 c.p.s.
100 Kc/s

~1500x, 63.5 db

wy = 016 c.p.s.
wy = 650 Ke/s
rise time = 0.4 psec (10% to 90%)
overshoot = 2% or less
g = -150x maximum
noise = 0,4 to 5 nv
meximum output = #20 volts

output impedance

non-linear distortion

WA

10 ohms maximum

0.2%

.073 to .11 volts/usec.
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Integrators

Low-frequency time constant = 0.75 sec. minimum,
(this makes error after 10,000 usec = 1%)

High-frequency transient has 2 psec duration.

Output impedance is 100 ohms.
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SECTION V
ERRORS DUE TO COMPONENT LIMITATIONS

Precision and Calibration Accuracy

There are three principal types of error encountered in the
solution of differential equations by electronic means; errors caused
by

(1) lack of precision,

(2) loss of accuracy, due to

(a) lack of calibration accuracy, and
(v) limitations in the time (or frequency) domain of the
differential analyzer components.

5,1 Precision

Precision is of great importance in this system of solving
differential equations because of the high solution repetition rate
employed. A lack of precision in setting initial conditioms, for
example, results in a slightly different solution for the differential
equation every'i%E second. Because these solutions are superimposed
on the output cathode-ray tube screen there results a !jitter' or
fuzziness of the displayed solution.

The precision of the differential analyzer limits its operation
on equations whose solutions increase rapidly with the independent
variable, in this case time. This is because the maximum output level
of the analyzer components is fixed at about 20 volts peak to peak by
the clamping circuits employed; if, for example, an equation solution
increases by a factor of 2.5 during the solution time, then for a

precision of 1% in the observed solution the initial value of the
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solution must be constant to .0l x 55 0.1 volts., If on the other
hand a solution increases by a factor of 25 times during the solution
period then for the same precision of solution the initial value must
be constant to within 0.0l volts.
The fact thet the precision of setting the initial values limits

equations which grow rapidly with time provides a convenient check.

The photograph of such a test is shown in Fig. 70.

Fig. 70 Precision check of differential analyzer.

The equation being solved in this test is

2
43 29X v gy =0, (75)
dtz dt
which has the solution
y= CeS Ycos(wt + ) (76)
where

w = o -I2. ()
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Fig. 70 is a double exposure photograph of this sine wave with
an exponentially increasing envelope. One exposure shows the entire
solution, and the fuzziness at the end of this solution indicates
that there is about 10% jitter in the initial value. The méan value
of the last positive peak is 1.54 voits. The second exposure is taken
with a ten-fold increase in gain of the output viewing oscilloscope.
One can see that this solution increases in amplitude by a factor of
5.5 per cycle., The initial value for this solution is therefore
%égﬁ = 3.95 mv. Since the jitter is 10%, the variability in the ini-
tial value is about 0.4 mv, The maximum output level for this elec-
tronic differential analyzer is 20 volts; this shows that initial
conditions are precise to within 0.002% of the maximum output level.
For example with & more normal initial value of perhaps 1 volt the
precision would be 0.04%.

It should be apparent that lack of precision can be due to causes
other than hum or jitter in the initial condition pulses themselves.
Other important effects are power supply hum in the output of the
analyzer components and microphonics in the vacuum tubes employed.
When originally built, the adding and integrating ampiifiers, Figs.

48 and 57, used a 6AK5 tube as first stage. This tube was very micro-
phonic in operation. Changing to 6AG5's reduced microphonism by a
factor of about ten.

Precision of the differential analyzer is important in the solu-
tion of non-linear equations. Exploration of the regions between
stable and unstable solutions, for example, requires extreme precision.

An example of such a situation is the solution of the differential
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equation for a physical pendulum. In this case stable operation is
that for which the pendulum oscillates back and forth while unstable
operation corresponds to rotation of the pendulum. In the critical
transition case the pendulum just balances in a position of unstable
- equilibrium. The degree to which one can approach this transitional
case on the differential analyzer is limited by the precisioh of the
operation,

Another situation which requires the utmost precision in the
differential analyzer occurs in solving equations in which only a
particular solution is desired. OSuch a situation is encountered,

for example, in the equation

a
ﬁ%—q§—5y=o, (79)

which has the general solution
y = Cpe~% + Cedt | (20)
If it is desired to observe only the first term of this solution,
it is necessary to chose those initial values in the differential

equation which meke C, zero. The precision with which this adjustment

can be made limits the range over which the particular solution

y = Cle"t (31)
can be observed, since the second, undesired solution will eventually
mesk the desired solution., The problem of isolating particular solu-
tions can sometimes be made easier by & change of variable as discussed
in Section VI, part 6.13.
| The principal factor limiting precision in the present electronic

differential analyzer is noise and microphonics in the outputs of the
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various units. The total output noise is between 0.4 and 10 millivolts,
according to the unit considered. By improving the power supplies,
etc., the precision could be improved by another factor of ten.

In order to obtain a good qualitative picture of the nature of
the unknown solutions of a given differential equation, with regard
to instability, periodicity, discontinuities, etc., the important
requirement on the differential analyzer is that of precision rather
than calibration accuracy. In this resgect the present electronic
differential analyzer is very satisfactory because of its high preci-
sion. For many engineering and physical applications this qualitative
information is, alone, of the greatest value.

5,2 Calibration Accuracy

The calibration accuracy of the electronic differential analyzer
is less than its precision, a desirable situation, and is limited by
the calibrating system used to about 2%. In obtaining quantitative
information two possibilities are open; one is to calibrate the various
components, connect them to solve the equation, and observe the solu-
tion; the other is to connect the units to solve the equation, adjust
the parameters by observing the solutions, and then to measure only
those settings which give solutions of interest. Because of the extreme
flexibility and ease of rapidly varying the equation coefficients this
latter approach has been found most satisfactory for all eguations
investigated by the author. If the operator knows some of the physical
background of the problem for which the differential equation is written,
it is possible to adjust the equation parameters very quickly to give

that range of solutions which is of interest. Quantitative information
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concerning this region cen then be obtained by calibrating the units
after they have been adjusted to give the desired solutions. Examples

of calibration accuracy are included in Section VI,

Errors Due to Frequency or Time Limitations

The errors introduced into differential equation solutions on
the electronic differentis]l analyzer by the time or frequency limita-
tions of its components are of the greatest importance, because, as
will be shown, these limitations can cause the differential analyzer
to solve an entirely wrong equation.

These limitations are most easily treated in two separate groups:
(1) the short-time or high-frequency effects and (2) the long-time
or low-frequency effects. For the case of ordinary differential
eguations with constant coefficients, analytic treatment of this
problem is possible.

5,3 Errors due to Adder Finite Bandwidths

Consider the differential egquation

g anly dy =
E%i + a4 gy *ootapgy fagy = o, (82)

where n = order of the differential equation
a, = the constant coefficient of the mth derivative in
the equation (m = O, l,ess,n),
The charscteristic equation of this differential equation is obtained

st as

by setting y = e
F(s) = s® + an_lsn‘l toot 898 + a5 =0, (83)

which has roots sy, 82,+e4,8, in the complex s-plane. The solution

of Eq. (82) is of the form

¥ =§; a,emt (24)
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where the A 's are constants depending upon the initial conditions
of the particular solution desired. The electronic differential ana-

lyzer set-up for solving this equation is given in Fig. 71.

n-| ' n-
&y d 'y "4 . dy
dtn T an-2 dt y
X Y |
ol '
[+]
ADDER

Fig. 71 Differential analyzer set-up for the solution
of an arbitrary ordinary linear differential
equation with constant coefficients,

5.31 Derivation of General Error Relation

'There\a:pi§nly two types of components:;équired by this set-dp,
adders and integrators. If these components are ideal, the correct
solution Egq. (84) is obtained. As we know from Section IV, the
components are not ideal. At high frequencies it is possible to make

the integrator response considerably better than the adder response.
Therefore the high frequency limitation in the set-up of Fig. 71 can
be expected to come from the finite bandwidth of the adding unit.

In order to investigate the effect of this bandwidth it will now be

assumed that the Laplace transform of the adder characteristic is of
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the form
clEl + C2E2 oot ann
Eout(s) = T+@s . (85)
The adder is thus assumed to have a single high frequency cut-off at
1
a frequency f = 228’

In the set-up of Fig. 71 the constants of the adder would be so

adjusted as to make

€1 ¥ 8p.1 »
C2 =&z, (86)
h T 8 o

The characteristic equation of the differential equation actually

solved by this differential analyzer set-up is therefore

an_lsn—l oot als + ao
1+ @8s ’

st = - (87)

which can be written as
F(s) + @snﬂ' =0, (88)

where F(s) = 0 in Eq. (88) is the original characteristic equation
of Eq. (83).

The equation actually solved therefore has n+l roots, that is,
it is one order higher than the equation one wishes to solve. If
@ is zero, the roots of Eq. (88) are the desired roots. When (as
in practice) this is not the case, the equation solved hes n+l roots,
n of which differ only slightly from the desired roots, and one new
root at a very high frequency. By assuming that the changes in the
values of the desired roots are very small (a necessary condition if

the errors are to be small), a quantitative measure of the first order
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errors can be obtained.

Equation (88) has n roots sj, sb,...,s}, which do not differ
greatly from the roots s, SpsesesSy,y Of Eg. (83). In addition there
is the new root s£+1. This last root can easily be determined on the
assumption of very small @, since then the second term of Eq. (88)

. becomes large only for very large values of s, For large values of
'S one can write approximately
A F(s) ~ g R (89)
and therefore Eq. (88) becomes
sh+ @gsitl =0, - (90)
which has the solution
s = -ie . (91)
This is the new root s},;.

If the other new roots sﬁ differ only slightly from the desired

roots, s, one can write

t

Sp=8Sp*ey, (m=1, 2,.04,n)
e 92)
= sp(1 + E‘E) . (
Substituting Eq. (92) in Eq. (88) one obtains
F(sy) + @1 =0, (93)
Now if
e
= K< 1, (94)
m
one has
n
e ne
sp(l + -f) = SO(1 + ——Sﬁ); (95)
m m
also
F(sy) =0 (96)

by definition.
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Meking use of Egs. (95) and (96) in Eq. (93) one obtains
nemsmn“l +'an_1(n—l)emsmn‘2 Foost ajep = - @ smn+l . (97)

This equation can be solved for the difference e, between the

desired roots and the roots actually obtained;

: _ 2
= € . (98)

°m
o R -
n 1+ e, EDsl 44 e (Dt

Equation (98) enables one to determine the errors caused by the
finite bandwidth of the adder in Fig, 71 if that bandwidth, the coeffi-
cients of the differential equation,and the roots of the characteristic
equation of the differential equation are known.

An experimental check on errors due to the finite bandwidth can
always be made by changing the scale factor of the equation being solved
as discussed in Section VI, part 6.1. This will change the values of
the equation coefficients a, and the characteristic roots sy, but the
value of @ will remain constant; therefore the errors ep Will change
value. If no change in the character of the solution is observable
when the scale-factor is changed, then the errors e, are negligible.

5.32 Examples

A rather good 'feel! for the situation ~an be obtained by applying
this analysis to a few simple differential equations whose solutions

are easily calculated. Consider the equation
2

'3;% "EOY’O ] (99)

The roots of the characteristic equation of this differential equation

Sl +/a—c',,and
52 = = V2

are

L]

(100)
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When solving this equation on a differentisl analyzer whose adder

bandwidth is~§%;, the roots of the equation solved are from Eqs. (91),
(92), and (98),
si =+ 5, -22, (101)
b -
o Lt . (103)
378

If the difference between s, s, and s, s5 is to be kept to

1%, for example, then one has for this equation the requirement

—
> 2 . .01, (104)

which sets the maximum value of @, or the minimum adder bandwidth

once the a; of the equation to be solved is known. If the equality

sign is taken in Eq. (104), the observed solution is of the form

The first term of this solution, which is an error, dies out
very rapidly since its time constant is é% that of the other two terms.
The second and third terms in this expression are the desired solution,
with the exception that their time constants are in error by 1%.
This is of slight importence, since the nature of the solution is not
basically changed.

This first example was a differential equation whose characteristic
equation had roots on the real axis of the complex s-plane. Its solu-

tions therefore increase or decrease monotonically with time. As a

second example consider the differential equation

d a
& (Tl v agy =0 . (106)
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This equation has a characteristic equation whose roots are

sl‘j?.?_(l‘*j),and (107)
2
55 .—./?;9_ -3, (108)

which lie on 45 degree lines through the origin of the s-plane and
in the right half plane, The solution of this equation therefore
increases with time in an oscilletory manner with an exponential
envelope. One form of the solution is |

y = Cle cos(r t+0) . (209)

If the adder time constant is again @ the roots of the equation

the differential analyzer solves when it is set-up according to Eq. (106)

are
v (3 N .
s] = j-;'-(l -@ /?0)(1 + 3) (110)
oy = 2o o0 -0, (111)
83 -2 . (112)

The observed solution is therefore
t
Jr(l@/‘)

If the adder bandwidth is made wide enough that

é‘/‘i—; s .01, (114)

then again the first term in Eq. (113), which is an error, damps

y = Cge ( + Cqe cos( °(l -6{= °)t +0) . (113)

out very rapidly and leaves a solution which differs from the de-

sired solution of Eq. (109) only by the rather minor detail that
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the period of oscillation of the solution and the time constant of
the exponential rise are in error by 1%.
A third simple case of considerable interest is that of a differen-
tial equation whose solution is an undamped sine wave. Such an equa-

tion is

a<
&Ly agy = 0, (115)

which has the characteristic roots

sz = - J fao; (117)

these roots lie on the imsginary axis of the complex s-plane. For
an adder of bandwidth E%E, the roots of the equation actually solved

are, from Eq. (98),
a
si=@—2-9+jfa; ’ (118)

&8
-sé=€§2—jfa-°, (119)

1
| R -
Therefore the equation solved has the solution
_t *.an
¥y = Coe @, Cie 2 cos(‘}'a_o' t +8) (121)

instéad of the desired solution, which is
¥y = C1 cos(fa, t + @) . (122)
For this case one sees that although making e small causes the
first term to damp out rapidly and thus eliminates error from this
source, there still is an error in the solution because the amplitude
of the sine wave, instead of remaining constant, increases exponen-

tially with time. The error from this effect is greatest at the
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end of the solution period To‘ If this error is to be held to 1%,
then one can write as a necessary condition the inequality
820 <
(50T £ .01 | (123)

This can be put in a more useful form by writing

£y = Y20
° = 7%

= frequency of oscillation of the solution in c.p.s.,
1 . sy s
Af = "2';(;‘ bandwidth of adder unit in c.p.s.,

which converts Eq. (123) to

af = 1005£2T, . | (124)

For the present differential analyzer the solution period T, is
1%6 second. If one wishes to solve Eg. (115) for f, = 600 c.p.s.
(for this frequency five complete cycles of the soluticn are displayed
on the cathode-ray tube screen), the adder bandwidth must be
af = 942 Kefs (125)
if & one percent amplitude increesse can be tolerated. This case of
the undamped sine wave imposes the most stringent conditions on the
necessary component bandwidths for the differential analyzer of any
equation investigated, The corresponding condition, for example,
for the solution of Eq. (106) to one percent error is found from
Eq. (114) to be,
Af = 60 Ke/s , (126)
for the same natural frequency of the solution.
For this reason the solution of Eq. (115) on the electronic
differential analyzer affords a good test of one aspect of the analyzer
operation. It is interesting to note that this is the same equation

used to test mechanicel differential analyzers in the well-known

"circle-test.“65 Experimental verification of the validity of this

65 Bush, op. cit., reference 4, p. 469.



~-137~

error analysis is included in Section VI, where observed solutions
for Eq. (115) are given.

The results of the three examples considered here are displayed
qualitatively in Fig. 72. This is a plot of the complex s-plane.
The locations of the three original sets of roots are marked by crosses
on the plane, while the new root positions resulting from the use of
an adder with a finite bandwidth are marked by circles. The distance

between the crosses and circles has been exsggerated so as to be readily

apparent.
+‘j
O X s-plane Y
O x l‘\\k&
o
N? )
O~ ©-3%¢
- +
O Xx
Ox
-

x- location of original equation roots
o~ location of new roots due to finite adder bandwidth

Fig. 72 Plot of s-plane roots for Egs. (99), (106), and (115)

and the corresponding differential equations solved by
a differential analyzer of finite bandwidth.

5.4 Errors Due to Integrator Low-frequency Limitation

The effect of low frequency limitations on the differential ana-

lyzer solution of differentisl equations can be handled analytically
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in & manner quite analogous to that employed for the high frequency
case. As indicated by Eq. (61) each integrator has a low frequency
time constant pyRC due to the finite gain of the feedback amplifier
employed. For the a-c coupled units there is also a second time con-
stant due to the coupling circuit. For simplicity of analysis, how-
ever, it is assumed that each integrator has a single low frequency
time constant and that this time constant is the same for all inte-
grators employed. To be precise, it is assumed that the Laplace

transform of the transfer function of each integrator is

Eout, 1 Ts
o) =5 T3 - (127)

5.41 Derivation of General Error Relation

If integrators having this characteristic are used to solve Eq. (82),
according to the set-up of Fig. 71, the characteristic equation of the

differential equation actually solved is

-1, Ts s (B Ts B
8% + ap_3s” l(1+Ts) tooot arslyrg)  + aolgyyy)

=0 . (128)
This further assumes that the high-frequency effects can be neglected
in this low-frequency enalysis and that the low frequency time constant
of the adder is much greater than T. Both of these assumptions are
Jjustified in normel practice with the electronic differential analyzer.

In order to calculate the first order effects of the low fre-

quency time constants one can write

Is _ _ i_ . 1 - 1
1+Ts ,,1°7 Ts , (129)
Ts
and similarly
T m
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These approximations assume thet Ts?» 1, a condition which has to be

met if the errors are to be small and which permits an evaluation of

the first order errors. Meking use of Eq. (130), Eq. (128) becomes

n -1
Ts

n n-1 L

st +a (5 (1 -75) +euut a;s(1 -
which is the characteristic equation of the differentisl analyzer
set-up of Fig. 71. This can be rewritten in the form

a, _ lsn -1y ey _ 28n -2 +ooot (n - 1)ags + na,
Ts ’

F(s) =

where F(s) is the characteristic equation of Eq. (82) as given in
Eq. (83).
For the case of perfect low frequency response, Ts = o, and
Eq. (132) becomes
F(s) = 0,
which has the roots sj, 85yeee48,. When Ts is large but finite,
Eq. (132) bhas nt+l roots, n of them differ only slightly from the

roots of Eq., (133) and there is one new root for s very small

) *+ 2yl - g5) =0, (131)

(132)

(133)

(very low frequencies). This new root can be identified immediately.

For s very small, Eq. (132) becomes approximately

therefore

(134)

(135)

If the other n roots of Eq. (133) differ only slightly from the roots

of Eq. (132), one can write

'
Sp = Sy * ey (m = 1,2,.s0eyn) ,

and since ep << sy,
nep

(sm)” = sB(L +—) .
Sm

(136)

(137)
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Now substituting Eq. (137) in Eq. (132) and remembering that F(sm)

is zero by definition, one can write

n-1l . o

n-2
ne s n_l(n“l)emsm +.l.+ a.lem =

mm

(138)

(n-1)e, (n-2)e e
a,1(1 + “g;“’)sﬁ'l + 2a, o(1 + ——E;T—Q)SE’Z +oo0+ (n-1)ay (1 + Eﬁ)sm + na,

A/

en
Topu(1 + g;)

If one now assumes

Tsm77 n-1, (139)

then Eg. (138) cen be solved for the difference e, between the new

and old roots,

_ an_lsg“l + 2an_2sg‘2 +..o+ (n-1l)ajsy + na,

2-2 Feaot 8.1) (140)

€m

n-l
Tsm(nsm + (n-l)an_ls

This expression is completely analogous to Eq. (98) for the high
frequency error, and it is used in the same manner to determine how
the low-frequency time constants of the differential analyzer integrators
perturb the differential equetion solutions.

5.42 Exemples

This result will be applied to the three particular equations
considered in the high freqnéncy analysis. For the differential

equation (99) the new roots are

=+ /o -7, (141)
1

Sé=‘—ﬁ°—7f, (142)

sy=+5 . (143)

The differential analyzer solution is therefore

g o L R o

¥y = Cge + Cje + Gy (144)

»
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The second and third terms in this solution differ from the de-
sired solution only in their time constants. If this difference is

to be kept to 1%, one should have
1

The first term in Eq. (144) is en error term which is most noticeable
at the end of the solution period. If this term is essentially con-
stant over the solution period, the error is not bothersome. This
condition can be assured by requiring, for example, that the term
be constant to within 1% over the solution period T,. This condition
is met provided
T Z200 T, . (146)

For & solution period of i%a second this indicates that the integrator
time constant should be not less than 1.66 seconds.

Applying Eq. (140) to Eq. (106) for the x sine wave with exponen-

tially growing amn!itude, one finds the solution to be

a
-‘%t +(J _22 - %)t )
y=Cae + Cpe cos( 5 b+ 8) . (147)
For 1% error the conditions on T are again
T Z 100 [& , (148)
8o
T 2200 T, . (149)

Finally for the undemped sine wave of Eq. (115) one finds

2t t
Yo T
y=0Coe = +Cie cos( fagt+8), : (150)

and the condition for 1% error is again Eq. (149) or (146).

An s-plane picture of the root perturbation for these low frequency

examples is given in Fig. 73.
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o~ location of new roots due to low frequency
time constant in integrators
Fig. 73 Plot of s-plane roots of Egs. (99), (106), and (115)
and the roots of the corresponding equations solved
by a differentisl analyzer utilizing
integrators with finite gains.

Summing up the above one sees that for ordinary linear differen-
tial equations with constant coefficients Egs. (98) and (140) can be
used to determine the errors caused by high- and low-frequency limita-
tions of the differential anaslyzer components. These results are
verified experimentelly in Section VI. Experimental determination of
the overall accuracy is also given there.

The situation for the equations with variable coefficients and
the non-linear equetions is not as clear. One can linearize, or
hold the coefficients of such equations constant over limited ranges
.of the solutions and get some idea of the errors to be expected, but
this does not permit the drawing of any general conclusions. There

is little reason to suppose that the errors at low frequencies (for

long times) differ appreciably from those observed for the linear
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equations. This is particularly true since we note in every example
considered that the most stringent requirement is that given by Eq. (149),
which does not involve equation parameters at all, but merely the ratio
of integrator time constant to solution period.

Although the high frequency effects cannot easily be analyzed
for these more difficult types of equations, one can experimentally
check for high frequency errors by changing scale factors in the
differential analyzer and observing whether this causes any change
in the character of the solutions observed.. If it does not, one is
reasonably justified in assuming that frequency limitations are not

causing difficulty.
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SECTION VI
RESULTS
General Set-up Procedure
The general procedure used in setting up a differential equation
on the differential analyzer can best be clarified by considering a
particular example and going through the various steps required.

6.1 Typicel Example

First equation (115)

2
aty

S+ 8y =0, (115)
at

will be considered for the particular case of

ao = Aﬁz 9 (151)

y(0) =y =1,

dy -
atlt = 0

i
64.
i
o

-

for 0Kt £ 4

Since this is a second order equation, two integrators are
required. One starts out by assuming a voltage proportional to §
and integrating twice as shown in Fig. 74.

Since the constant multipliers to be used in these integrators
have not yet been chosen, they are indicated by k; and k,. The
output of this cascade of two integrators is, as indicated, + klkzy.
From the differential equation, however, one sees that § is equal
to -a,y, thus a change of algebraic sign is required. An amplifying
unit accomplishes this as shown in Fig. 75.

The output of the amplifying unit is -kjkokgy; and by connecting

the terminals a-a' this is made equal to the assumed §. The differen-
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“kyy

k

k=
R C

2 R2C2

Fig. 74 First step in block disgrem of differential
analyzer set-up for Eq. (115).

) “ | %
y 1 ~kyy 1
R R,

—Aw i g
ll (2) (1)
| Rg

LY Ry

-k3 AAN

Fig. 75 Complete differential enalyzer loop for Eq., (115).
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tial equation solved by this set-up is

d

22 + kjkopksy = 0 . (152)

If kykok is made equal to a,, then Eq. (115) is solved. Because

the differential analyzer solution period is only 1%5 second, however,

such an adjustment only gives the first 3%5 second of the solution of

Eq. (115), whereas the first four seconds of the solution are desired.

This difficulty is overcome by making the change of variable

t

th =755 (153)

so that when the equation-time t = 4 seconds the differential analyzer-

time t' = i%a second. For this change of variable one has

d d 1
E% = E%T o and (154)

Ay _d%y . 1
dt2 - dt'2 (480)2' (155)

Therefore the transformed equation is

i%,l-z— + (1,.80)2aoy =0, | (156)
where now
Yo=1, (157)
o =0, (158)
0<t< 25 - (159)

It was shown in Section IV, Eq. (69), that the maximum integrator
coefficient is limited by the long time behavior of the unit to a maxi-
mum of about 4000 sec_l. One might choose for this example to make
the coefficients of both integrators k, = k2 = 1000 sec—l. If this

is done, then on comparing Egs. (151) and (156) one sees that k3 must
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be adjusted so that

k3 = (480)26'0
1%

= 9,12 ; (160)

This is certainly a very modest gain requirement. The two integrators
and the inverter are calibrated as described in Section IV and then
connected according to the diagram of Fig. 75. Since the gating and
initial condition circuits are built-in, no additional connections

for these features are necessary. One merely sets the initial value
knob on the output of the first integrator to zero to satisfy Eq. (158)
and the initial value at the output of the second integrator to some
arbitrary unit value for Eq. (157). A voltage of 10 volts might be
chosen to correspond to y = 1.

If the differential analyzer 1s now turned on and a viewing scope
is connected at (1) in Fig. 75, one observes y as a function of t,
for values of t between zero and fiur. Connecting the oscilloscope
at (2) will give a display of %% * 480 versus t, for the same range
of time,

There is no need, as a matter of fact, to have the differential
analyzer turned off while it is being set-up. All of the necessary
connections can be made with the units running and the entire procedure
outlined here can be accomplished iﬁ about 30 seconds. Fig. 76 is
a photograph of a single relay rack panel on which two integrators
and one inverter-adder have been built. In this panel no connections
are made to the units. Fig. 77(a) shows the same panel connected to
solve Eq. (156). The necessary interconnections are made with coaxial
cables so that complete electrostatic shielding is preserved. Fig. 77(b)

is a photograph of the same set—up together with the oscilloscope used
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Fig. 76 Typical cielectronic differential analyzer panel
showing two integrators and one adder-inverter.

| Il
ER

il

Fig. 77(a) Differential analyzer panel copnected to
solve the differential equation ’y + 4x<y = O.
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Fig. 77(b) Differential analyzer panel and viewing oscilloscope
solving the equation ¥ + 4x<y = 0 for 0<t< 4.
for viewing the differential analyzer solutions. The solution can
be seen on the oscilloscope face.

6.2 Observed Solutions

6.21 Normal Solution Displays

Fig. 78 shows a photograph of the viewing oscilloscope. By means
of a double exposure photograph y and -480y are recorded on the same
photograph, between exposures the oscilloscope connection was moved
from point (1) to point (2) in Fig. 75. More than four complete
cycles of the solution are observed because the solution time is
somewhat longer than E%a second. |

If the initial value of the first derivative given by Egs. (151)
had not been zero, then the initial value of the first integrator
would have been set to 480 times the required initial value to take

account of the time scale change.
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Fig. 78 Plot of y and —ASOy versug t for the
differential equation ¥ + Axsy = 0,
The time scale in Fig., 78 is marked by the 200 psecond markers
applied to the intensity grid of the cathode-ray tube. These cause
the reduction in intensity at points along the solution trace.

6.22 Effect of Poor Integrator Low-frequency Response

As was indicated in Section V, equation (115) is very useful for
checking the frequency limitations of components such as the inverter
and integrators. Poor low-frequency response in the integrators can,
for example, easily be introduced by reducing the gain of the integrat-
ing amplifier. This was done experimentally by connecting a resistor
across the integrating condenser of both integrators in the set-up
of Fig. 75 equal to 100R; as indicated in Eq. (66) this has the effect
of reducing the internal gain of these units to 100 or about —g the

normal value. Fig. 79 shows the observed solution to Eq. (115) for
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this case. This verifies the error analysis result of Eq. (150).

o

t

Fig. 79 Solution of ¥ + 4%°y = O on electronic differential
analyzer showing effect of poor integrator
low-frequency response.

6.23 Effect of Inadequate Adder Bandwidth

The high frequency effects can be observed experimentally by re-
ducing the adder bandwidth. This cen be done, for example, by connect-
ing a small shunt capacity across Rz+ in Fig. 75. When this is done
the resulting solution is as shown in Fig. 80.

This result verifies the high-frequency error analysis by conform-
ing to Eq. (121) of Section V. The first term in that equation damps
out too rapidly to be observable on the time scale of Fig. 80. Fig. 8l
is an expanded photograph of the first 2000 pseconds of Fig. 80. At
the very beginning of the solution a very small high frequency transient

is observable.
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Fig. 80 Solution of §¥ + 4x%y = 0 on the electronic
differential analyzer showing the effect of
inadequate high-frequency response.

t
Fig. 81 Expanded photograph of first 2000 pseconds of Fig. 80.



-153-
6.24 Circle Test

It is sometimes desirable to obtain differential equation solu-~
tions plotted not only against the independent variable but also versus
one or more of the other dependent variables. This can be done in the
electronic differential analyzer very easily by connecting the two
dependent variables to the vertical and horizontal deflecting systems
of the viewing oscilloscope. If this is done for Eq. (115), the
well-known differentiel analyzer "circle-test" is obtained.66 Fig. 82
shows the results of such a connection; six revolutions around the
circle are shown here, The slight flattening of the circle on the
left side is due to non-linear distortion in the viewing oscilloscope

amplifiers.,

Fig. 82 Circle test of electronic differential analyzer.

66 Bush, op. cit., reference 4, p. 469.



~154-

6,3 Modification of the Differential Analyzer Set-up for the Solution
of Some Other Second Order Differential Equations with Constant
Coefficients

Some of the flexibility of the electronic differential enalyzer
is illustrated by considering the change in the set-up of Fig. 75

necessary to solve

&y, 4
> + ala-% +a,y=0, (161)
at
for the case
8, = ~0,2 2aO (162)

end the same conditions given by Egs. (151).
Making the change of variable given by Eq. (153) one obtains

& new transformed equation

2
-3;%2 - (480)0.2 f22, I, + (480)%a0y = 0. (163)

for the new range

0< i< ==,
end initial values
Yo =1, (164)
Yo =0, (165)

Changing the set-up of Fig. 75 to solve this new equation requires
only & single new connection. The resulting set-up iSlShOWn in
Fig, 83.

The new constant kg gives an adjustment on the coefficient of
the first derivative independent of the other coefficients in the

x

differential equation. For Eq. (163) one sees that it should be

6 V2
kA = ?____.1;]_-.&_‘& = ,853 , (166)
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Fig. 83 Block diagram of differential analyzer
set-up for Eq. (163).

The resulting differential analyzer solution is shown in Fig, 84.
Since this solution increases rather rapidly with time, a gain set-
ting on the viewing oscilloscope which shows the last half cycle of the
solution reveals little about the behavior of the solution around
t = 0; Fig, 84 therefore gives a double exposure photograph of the
same solution with a change in gain of ten to one between exposures.
The higher gain setting permits study of the short time behavior of the
solution while the lower gain gives a better overall picture of the
entire solution.

In the block diasgrams of Figs. 75 and 83 the coefficients of the
edding and indicating units are given in terms of their external feedback
elements alone. As indicated in Section IV the units actually used in

the electronic differential analyzer all have input potentiometers which



Fig. 84 Plot of y versustt for Eq. (163), To = dy io = 0.
This is a double exposure record with a gain
change of 10 to 1 between exposures.

permit a 10 to 1 change in scale factor without changing the feedback
elements. Normally the coefficient adjustments are made with these
potentiometers using the amplitude and time calibrators as indicated
in Section IV. |

Figure 84 will be recognized as the solution for the behavior of
a parallel LC circuit shunted by a negative resistance. Since the differ-
ential equation considered is linear, it can impose no limit to the
amplitude build-up. This is, for example, the operation encountered
in a super-regenative detector operating in the "linear mode." The case
of a positive shunting resistance requires that the sign of the deriva-
tive term in Eqs. (161) and (163) be changed from negative to positive.

This change can be easily accomplished on the differential analyzer by
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inserting an amplifier having a gain of minus one (-1) in the position
indicated by a dotted box in Fig. 83. Solutions of Eq. (161) for the
cases of positive, zero, and negative damping are shown in Fig. 85.in

a triple exposure recording.

Fig. 85 Solutions, y versus t, for y + ali +ay=0.

Solution of Non-linear Differential Equations

6.4 Solution of van der Pol Eguation

As has been indicated, Eq. (161) with & negative describes the
behavior of an oscillatory system having a negative damping term.
This is a situation encountered in any physical self-excited oscillator
for small amplitudes of oscillation. This equation therefore describes
the manner in which oscillation begins to build up in a vacuum tube
oscillator for example. ©Since this equation is linear, it provides
no information concerning the ultimate amplitude to which the oscilla-

tion builds up or the steady state waveform of the oscillation. 1In
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order that these most important characteristics be studied, it is
necessary to take account of the non-linearities which are inevitable

in any physical oscillator.

The well-known van der Pol equation,67
2
d —— - d =
G2 ety =0, (167)

is a non-linear equation pertaining to many types of oscillations,
which has been very extensively studied. One sees that this equation
describes a system for which the damping is negative for small ampli-
tudes of oscillation and becomes positive for large amplitudes of
oscillation.

6.41 Differential Analyzer Set-up

In order to solve Eq. (167) as it stands one would write it in

the form
2
&y _ _ dy _ o 2dy

from which the block diagram set-up of Fig. 86 can be determined.
This set-up is seen to require both a function generator to

2 from Yy and a multiplier to form the product, yzg%. From

generate y
a practical point of view it is desirable to keep the number of multi-
pliers and function generators required by the differential snalyzer
set-up to a minimum, since as shown in Section IV these are the most
complicated units of this electronic differential analyzer. It is
worthwhile therefore to consider whether Eq. (167) can be simplified

for machine solution by a change of variasble, Such a change of

67 Minorsky, N., Introduction to Non-Linear Mechanics, J. W. Edwards,

Ann Arbor, 1947.
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y y
} 5
0 (1) ‘ (2)
I ,2
I “ | MULTIPLY —~=P— SQUARE
o - WA 5
| y'y
ADDER —
y

Fig. 86 Block diagram of differential analyzer set-up
for the solution of van der Pol equation (167).

variable can in fact be made, namely

x = Sydt . (169)
Applying this to Eq. (167) one obtains
3
&z _ d?x 3 & | ax _ -0, (170)
at3 2 t a2 at

which can be integrated term by term with respect to time to give

@) )E v x-0. ()
dat

This equation, discovered by Lord Kayleigh in connection with scoustic
phenomena, is known as Rayleigh's equation.68 On writing this equation

in the form

a%x _ o+ 28X _

a2 at B

68 Minorsky, op. cit., reference 67, p. 178.
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the block diagram of the differential analyzer set-up can easily be

determined, as shown in Fig. 87.

. Bl T
X | -k x | k| kox
R R
| 2
Ml kS AAA kS
a (1) (2)
: R
5
| Rq GUBE
0 WA \
R
—~ ADDER 6
R3

Fig. 87 Block diegram of differential analyzer set-up
for the solution of Rayleigh equation (171).
The importent difference between this set-up and that of Fig. 86
is the fact that now only a single function generator, to generate
the cube of the first derivative, is required instead of & function
generator plus a multiplier,

6.42 Typical Solutions

Rayleigh's equation has been solved on the electronic differen-
tial analyzer using the function generator described in Section IV,
If the first derivative is displayed versus time, according to Eg. (169)
the solution of the van der Pol equation is observed. A typical solu-
tion of this equation is photographed'in Fig. 88,

The first few cycles of this solution are similar to the linear



-161-

Fig. 88 Solution of van der1P01 equation for high-Q case.

golution of Fig. 84, but for longer times the rate of amplitude rise
soon drops, and the amplitude approaches a constant value because of
the non-linear damping term. The case shown corresponds to what is
normally referred to as the high-Q case in electrical engineering
problems. It is the situation for which a large number of solution
oscillations occur during the build up period. Mathematically this
means that both A and B in Eq. (167) are small compared to unity.
Another solution display, which is of very great interest to
the mathematician and engineer is the phase space plot, which is a
plot of velocity versus disPlacemgnt.69 Such a plot is easily ob-
tained on the electronic differential analyzer by connecting the

vertical deflecting system of the output oscillescope at (1) and the

69 Minorsky, op. cit., reference 67, p. 7-124.
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horizontal input at (2) in Fig. 87, A phase space plot for the Rayleigh
equation is shown in Fig. 89. The build-up to the steady state limit-
cycle is clearly shown by this photograph. For the engineer the shape
of this limit-cycle is useful in determining the steady state waveform
of the oscillator. If the oscillation were exactly sinusoidal, the

limit-cycle would be exactly circular.

3

Fig. 89 Phase space plot for Rayleigh equa;;on, high-Q case.

To obtain the low-Q solution, in which the oscillation very rapidly
reaches its steady state, it is merely necessary to increase the adder
gain on the inputs connected through Rs and Rg in Fig. 87. By decreas-
ing the gain at R3 at the same time the number of cycles of the solution
displayed is reduced so that the details of the initial rapid build up
for this case can be clearly seen. A typical low-Q solution is plotted
versus time in Fig. 90. The corresponding phase space plot, with now

much distorted limit-cycle, is shown in Fig. 91.
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B
t
Fig. 90 Solution of van der Pol equation for low-Q case.

X

Fig. 91 Phase space plot for Rayleigh's equation, low-Q case.
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It should be emphesized that the time necessary to shift between
these two widely different solutions of Figs. 87 and 90 on the elec-
tronic differentiel analyzer is merely the time necessary to adjust
two or three knobs. One can, for example, in a very short period
explore the entire range of solutions existing between the two cases
shown. If no record of the solutions is made, such an exploration
tekes the operator a matter of minutes; if photographic records are
required, it is possible to obtain such recorded solutions at the rate
of at least two or three per minute.

Two other photographs of the solutions of this equation are given
in Figs. 92 and 93. Figure 92 is a plot of displacement versus time
for three different initial values, showing the build up to the same

steady state amplitude in each case. Fig. 93 is another phase space

——

t

Fig. 92 Solutions of van der Pol equation for three
different initial values.
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‘ol

X
Fig. 93 Phase space plot of solution to Rayleigh equation
for en initiel amplitude exceeding the steady '
state amplitude of the stable limit cycle.
plot for the Rayleigh equation. For this case, however, the displace-
ment wes given an initial value exceeding the peak displacement of
the steady state equilibrium motion. This figure therefore shows the
solution dropping down to the limit cycle instead of building up to it
as shown in Fig. 91.

6.5 Solution of Non-linear Force Equations

Another class of non-linear differential equations of considerable

interest are the equations of the form

EY - p(y). . 17
it (173)
These equations describe the one dimensional motion of & particle in

a potential field ¥y

V(y) = -J-F(y)dsr : (174)

0
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A block diasgram of the electronic differential analyzer set-up

necessary to solve this equation is given in Fig. 94.

c
y '{ { 1N 02{ | Y
3& nf 35 ke R
T N \’:\3/ FUNCTION| | @
- K, kgkgFy) 3 k koFly) GENERATOR

Fig. 94 Electronic differential analyzer set-up for the
solution of the equation y = ~F(y).

The inverter is included after the function generator in this
set-up for convenience in changing scale factors. This aliows one
to adjust the constant coefficients ky, k,, and k3 so as always to
operate the function generator over its most accurate range. This
tends to minimize any error which may be introduced by the function
generation unit.

6.6 Cubic Potentisl Case

A number of differential equations of this form have been solved.

One interesting cese is

F(y) = (¥ +y) . (175)

From Eq. (174) one sees thet this leads to a cublc potential curve

3
V(y) = % + %g + Const., (176)
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A plot of this potentiel curve is shown in Fig. 95.

V(y)r

Fig. 95 Plot of cubic potential V(y) versus displacement y.

From the nature of this potential curve qualitative information
concerning the differential equation solution can be obtained.7o’7l
Physically, the differential equation describes the motion of & small
ball released on this curve at y = y, with an erbitrary initial veloc-
ity. From the shape of the potentisl curve it is apparent that if

the particle is released with zero initiel velocity it simply oscillates
stably between the limits y, and y] indicated in Fig. 95. If on the
other hand the particle is given sufficient velocity to the left, it

is possible for the particle to get over the potential hump at yo,

after which it rapidly continues its motion in that same direction to

minus infinity. A third type of motlon occurs if the particle is given

70 Siater, J.C., and Frank, N.H., Introduction to Theoretical Physics,
Chap. IV, McGraw-Hill Book Co., New York, 1933.

71 Minorsky, op. cit., reference 67, p. 24-39.
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a sufficiently large initial velocity to the right in Fig. 95; for
this case the particle traverses the potential minimum st 0 twice and
then drops over the potential hump at y, to minus infinity.
These different modes of motion are easily observed on the elec-
tronic differential analyzer. Fig. 96 is a triple exposure photograph

showing the three types of motion described qualitatively above,

——

t
Fig., 96 Three solutions of the equation § = (7% +y)
for y, fixed and y, variable.
In solving this equation the general set-up of Fig. 94 was used.
The function generator was made to generate the required square-function

by using a parabolic function mask,

6.7 Physical Pendulum

If the F(y) of Eg. 173 is made equal to -siny, one obtains an
equation which describes the motion of a physical pendulum under a

gravitational restoring force as shown in Fig. 97. For this case the
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v
Fly)

Fig. 97 Physical pendulum,

potential plot is
V(y) = -cosy + constant, (177)

as shown in Fig. 98.

Viy)

Fig. 98 Potential curve for physical pendulum.
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If the pendulum is given any displacement and zero initiel veloc-
ity, it oscillates about one of the potential minima of this curve.
If on the other hand it is given some initiel displacement, such as
Yo in Fig. 98, and sufficient velocity in either direction it is
possible to obtain rotation in either direction. This is verified
by the differential &nalyze£ solutions. Fig. 99 shows three different
solutions, for which the initisl velocity is in every case zero, with
different initial values. For smell initial displacements siny is
very nearly equal to y and sinusoidal motion of the pendulum results.
As the initiel emplitude is increased one notes that the most notice-
able change is in the period of oscillation. In addiﬁion, as is
noticeable to a lesser extent, the oscillation waveform is no longer

sinusoidal but is flattened on the peaks.

t

Fig. 99 Solutions of the equation y =-siny for y,
zero and y, variable.
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That the large amplitude motion is really non-sinusoidal is
demonstrated by Fig. 100, which shows the amplitude, velocity, and
acceleration for a large amplitude of swing. If the motion had been

sinusoidal, these curves would all have been sine waves.

Fig. 100 Plotg of Y=Y, and y versus t for the
equation ¥y = - siny, ¥pax =~ 120 degrees.

From the acceleration curve in this plot it is apparent that the
peak amplitude of swing in this case was ebout ¥ 120 degrees. It is
interesting to note that the displacement curve still eppears quite
sinuscidal to the eye.

Fig. 101 gives the solutions obtained for the case of a fixed
initial displacement of the pendulum and four values of initiel velocity.
The four curves show the cases of oscillation, rotation to the right,
and rotation to the left. This verifies the expected behavior on the
basis of the potential curve of Fig. 982,

These two examples show that the electronic differential analyzer



L

— S

t
Fig. 101 Solutions of the eguation ¥ = *Siny,

for yo fixed and y, varisble.
is capable of very quickly and easily solving equations of the type
given in Eq. (173). The only time required between solutions is that
necessary to cut out a new function mask. The number of cases solved
will be determined by the need of mathemsticiens, physicists and engi-
neers to deal with new force functions F(y). The comparable methemati-
cal difficulty of solving this general type of equation is indicated

72
by the large numbers of published works on the subject.

Higher Order Linear Differential Equations with Constant Coefficients

6.8 Solution of Simultaneous Second Order Differential Equations.

The solution of simulteneous linear differential equations with

constant coefficients is of great practical importance to the engineer

Lo Minorsky, op. cit., reference 67, Bibliography, p. 131.
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and physicist., Although it is possible to handle such equations direct-
ly by analytic means, a considerable amount of time and labor is re-
quired by that approach. The electronic differential analyzer affords
a means of obtaining solutions for such systems of equations quickly,
easily, and inexpensively.

An example of a practical electric circuit requiring the solution
of a pair of simultaneous differentiel equations is the coupled tuned

circuit of Fig. 102.

| 2/
in il
R, /ET\ /1—2\ Ry

Fig. 102 Coupled tumed circuit.

For this circuit one can write the two differential equations

2 2
d“I; Ry dI | a1
ST tDo L0 (178)
dt 1 101 1 at
o 2
d“I, R, dI 1 u 9
2, 0 Z2 1 X —=l_.4 (179)

& + I, -
at? Lo dt T L0y T2 Ly T g2
The differential analyzer set-up necessary to solve either of

these equations individually without the mutual coupling term was
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given in Fig. 83. The first step in solving the simultaneous equations
is therefore to set-up two separate loops on the differential analyzer
as indicated in the block diagram of Fig. 103 by solid lines.

Around these two loops all the dependent variables occurring in
Fgs. (178) and (179) appear. In order to solve these simultaneous
equations it is only necessary to interconnect these two loops as
required by the differentiasl equations. These interconnections are
shown as dotted lines in Fig. 103. With these connections the set-up
of Fig, 103 solves the equations

a“1 aI; 4?1,

—E = (kD) + kiks®) + kst , (180)

at< at?
&1, dI, &1
-ét—z—— = —kg(k6k712 + kékg"'-) + klodt.'?' . (181)

Comparing these equations with Eqs. (178) and (179) one observes that

by satisfying the conditions

kykok, =-ifzz , (182)
kyksgk, = %% S (183)
ks =1 (184)
kgkrkg =‘£§E; . (185)
kgkgkg = %f ’ (186)
K10 = %t , (187)

the desired solutions are obtained. There are aiso maximum permissi-
ble values of ky, ko, k¢, and kry the integrator constants, set by

the finite gain of the integrator amplifiers as discussed in Section IV,
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A practical procedure in setting up such a system of equations is to
start by assuming that these constants have their maximum permissible
value. This gives four additional constraints on the k's and permits
the determination of 2ll the constants uniquely from Egs. (182) through
(187). 1If for one reason or asnother the resulting k's are either
extremr ly large or extremely small, a change in time scale factor is
usually indicated.

It will be noticed in the set-up of Fig. 103 that the intégrators
in the upper and lower right hand corners have been modified slightly.
For this connection the output of the unit is the integral plus a
fraction of the input as indicated. This is simply a device to save
an amplifying unit, as shown in Fig. 104, Both circuits of Fig. 104
form the integral of the input plus a fraction of the input. The
circuit to the left has the advantage of requiring one less adding
unit. It has the disadvantage that changing k, independently of the
other constants requires changing the resistor R,, which is inside
a feedback loop. In the second circuit all constants can be varied
by potentiometers at the input terminals of the various units without
disturbing the feedback loops. For the higher order differential
equations, where the number of computing units required may become
very high, the circuit at the left and similar devices are very useful.

Some typical solutions of Egs. (178) and (179) are shown in Figs.
105 and 106. The first figure shows the solution for the case of zero
resistance in both loops of Fig. 102. The familiar beat phenomena
is easily observed here. ‘The photograph is a double exposure showing
the primary and secondary current as a function of time.

Fig. 106 shows the same currents with damping in both the primary

and secondary circuits.
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t

Fig. 105 Primary and secondary currents versus time
for ngn-dissipatiye coupled circuits.

T10 = T30 = 130 = 05 I, # 0.

t

Fig. 106 Primary and secondary currents yersus time for a pair
of coupled circuits. IlO = IZO = 120 = 0, IlO # 0.



-178-

It will be recognized that these solutions of two simultaneous
differential equations are equivalent from the differential analyzer
point of view to the solution of a single fourth order differential
equation. Differential equations of orders higher than this have not
been solved on the present electronic differential analyzer because
only four integrating units have been built. Since no unusual diffi-
culties have been encountered in solving equations of third and fourth
order, it is felt that the extension of the electronic differential
analyzer to the solution of equations of even higher orders should not

present any insurmountable difficulties.

Linear Differential Equations with Variable Coefficients

Linear differential equations with variable coefficients are of
the utmost interest in engineering and physics and are in general
not susceptible to analytic methods of solution. Special and relatively
simple examples of such equations are Bessel's equation, the Mathieu
equation, and the Hill equation. The electronic differential analyzer
has been used to solve & number of equations of this type.

6.9 Gaussian Error Eguation

One of the simplest equations with variable coefficients is

d
-é%+yt=0; (188)

this equation is easily solved analytically, and its solution is the
well-known error function
_tz

The set-up of the differential analyzer is shown in Fig. 107.
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Fig. 107 Differential analyzer set-up for the solution of § = -yt.

As in the set-up of Fig. 94 the amplifying unit included here is
superfluous; it is useful because it gives an additional degree of
freedom in the adjustment of the various unit constants., This equation
requires the use of a multiplying unit, as do all equations with vari-
able coefficients.* Since the variable coefficient is a function of
the independent variable t, an arbitrary function generator is not
required for the solution of this equation; instead an auxiliary differ-

ential equation,

dx

The multiplier used in all results described in this section is the
crossed-fields multiplier discussed in Section IV. The use of a
multiplier for the solution of equations with variable coefficients
illustrates a situation for which lack of speed in a single channel of
the multiplier is frequently tolerable. The multiplier channel con-
nected in the feedback loop must have the greatest possible speed to
avoid high-frequency errors as discussed in Section V, but lack of
speed in the channel to which -k,t is applied in Fig. 107, for example,
will not introduce a serious error.
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is solved'

x = -kt + constant, (191)

to give the necessary voltage varying linearly with time. This tech-
nique, as in the mechanical differential analyzer, of using auxiliary
differential equations to generate functions is appliceble to many
linear equations with variable coefficients, since only functions of
the independent variable are involved in these equations.

The independent variable of the electronic differential analyzer
t!' always starﬁs from zero at the beginning of every solution and in-
creases. If one desires to view the solution of Eq. (188) for
-t,<t<t;, it is necessary to make the change of variable

=ty + t; (192)

applied to Eq. (188) this gives the transformed equation

L+ y(ar - ) = o, (193)

No change in the set-up of Fig. 107 is required other than the addition
of a constant at the output of the function-generating integrator;
that is, the constant in Eq. (191) is now non-zero,

A solution of Eq. (193) is given in Fig. 108; also plotted in
this figure by means of a photographic double exposure is the negative
of the derivative of y with respect to time.

6,10 Solution of Time Varying Force Equation

A more interesting group of linear differential equations with
variable coefficients, which are not as susceptible to analytic treat-

ment, are the equations of the form

d
a'f% + F(t)y = 0. (192)
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Fig, 108 y and -y" versus t' for the equation y + y(t* - o) = 0,

The differential analyzer set-up for the solution of equations

of this form is given in Fig. 109.
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Fig. 109 Differential analyzer set-up for the

solution of equation y + F(t)y = 0.
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The only difference between this set-up and that of Fig. 107 is the
addition of another integrator, A multiplier is again required and
also a voltage proportional to F(t).

If one makes F(t) equal to bt® in Eq. (194), one obtains

gg% + ptéy = 0. (195)
dat
The solution of this equation is given by Jahnke and Emde, as73
: Vb
2 b
y = t°5 0249 , (196)
4
where
Z3(x) = cJ1(x) + eoliy(x) 5 (197)
4 4 4

Jn(x) is the nth order Bessel function of the first kind, and Nn(x)
is the nth order Bessel function of the second kind.

To solve this equation with the set-up of Fig. 109 a voltage
proportional to t2 must be generated, This can be done by solving

the auxiliary differential equation

e

2P (198)
The set-up for doing this is shown in Fig. 110.

A combination of Figs. 109 and 110 gives the complete set-up
necessary to solve Eq. (195) on the electronic differential analyzer.
A particular solution of this equation is shown in Fig. 111. The case
chosen is the one for which ¢, is zero in Eq. (197) so that only the

Bessel function of the first kind is observed. Fig. 112 gives the

73 Jahnke, E., and Emde, F., Tables of Functions with Formulae and
Curves, Dover Publications, New York, 1943, p. 147.
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Fig. 110 Set-up of auxiliary different%al equation
to generate a voltage x = bt”~.
calculated solution for this special case, which was obtained by
computing values for Eq. (196). One sees that the agreement between
the two is very good.

Fig. 113 is a triple exposure photograph of another solution of
this equation. This figure also shows the behavior of y and ¥ versus
time,

It is interesting to note that this equation describes a motion
in which, although the amplitude damps out with time, the velocity,
and therefore the energy in the motion, continually increases with
time, Motions of this type are encountered in escillation of electrons

about the stable orbit in high energy accelerators such as the betatron.74

T4 Rajchman, J. A., and Cherry, W. H., "The Electron Mechanics of
Induction Acceleration,” Jour. Frank. Inst., V. 243, p. 261,
Apr . 19470
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t
Fig. 111 Observed solution of equation, Sf + bt2y = 0,
dzy 2
g CALCULATED SOLUTION OF —-5 = -ty
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Fig. 112

Calculated solution of equation, ¥ + bt"y = 0.
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<.

Fig. 113 Plot of y, ¥, and ¥ versus t for the equation § + bty = 0.

6.11 Solution of Mathieu Equation

If one chooses
F(t) = wo(l + ¢ cosw t) (199)
in Eq. (194), one obtains the well-known Mathieu equation. -This
equation is encountered in the solution of Laplace's equation in
elliptical coordinates and in connection with +the following problem,
If for the non-dissipative circuit of Fig. 114 the capacity is
made to vary according to the relation
C = Co(l - € coswyt) , (200)
one obtains for the diffe?ential equation describing the behavior

of the current in this circuit the relation

2
a1 I
32 T TC.(1 - €cosugt) - O k40
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Fig, 114 Perallel LC circuit.

This physical situation has been of considerable interest in
connection with the generation of acoustic warble-tones since Helmholtz

and Rayleigh, and more recently, has been studied in connection with
frequency mc:d111at:1.on.75 If €<< 1 and wy<< @, (where Wy = ——I-J—]z-),
ovo

Eq. (201) corresponds to a typical frequency-modulated oscillator,
as commercially employed.
Eq. (201), without the assumptions €<« 1 and w,<< w,, is of the

Hill type and is very difficult to handle analytically. Barrow in
studying this problem made the assumption that €< 1.76 This enabled

him to use the approximation

1

T~ ¢ cosagt ~ 1+ £cosupt . (202)

73 van der Pol, B., "Frequency Modulation", Proc. I.R.E., V. 18,
1194~1206, July, 1930.

76, Barrow, W.L., "Frequency Modulation and the Effects of Periodic
Capacity Variation in a Non-dissipative Oscillatory Circuit",
Proc. I.R.E., V. 21, 1182-1203, Aug. 1933.
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Substituting Eq. (202) in Eq. (201) one obtains
41

St 02(1 + ecosuyt) I=0, (203)

which is the Mathieu equation. Both this equation and the original
equation (201) of the Hill type can be handled with equal ease on the
electronic differential analyzer, although analytically Barrow found
it necessary to proceed immediately to the Mathieu equation from the
original Hill equation because of "The formidable mathematical
difficulties", Cambi has recently studied the Hill equation.’’
The Mathieu equation is solved on the electronic differential

analyzer with the set-up of Fig., 109. It is only necessary to gen-

erate the time function given by Eg. (199). Such a function is most

easily generated by solving the auxiliary differential equation

-d-iz-+w§x=0 . (204)

at<

A detailed discussion of the solution of this equation was given
at the beginning of this section and need not be repeated here. The
differential analyzer set-up for its solution is given in Fig. 75.

The Mathieu functions are special solutions of the Mathieu
equation which are periodic in behavior.78 Fig. 115 shows the differ-
ential analyzer generation of the Mathieu function ce,(t). Fig. 116

gives the calculated solution for this caatse.79

77 Cambi, Enzo, "Trigonometric Components of & Frequency-modulated

Wave®, Proc. I.R.E., V. 36, 42-49, January 1948.
78

McLachlan, N.W., Theory and Application of Mathieu Function,
Oxford, 1947.

79 Jehnke and Emde, op. cit., reference 73, p. 293.
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t

Fig. 115 Mathieu function, ces(t),as observed
on the differential analyzer.

CE (t)
2
CALCULATED SOLUTION OF 15
‘fi - 449 gs2t)y =0
¢r2+4°‘“ = cos2t)y
10 |
=
0.5 -
L 0 l 1
_ T 0 fLE T
L 2 2
|

Fig. 116 Calculated Mathieu function, ce(t).
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Two other photographs of differential analyzer solutions of the
Mathieu equation are shown in figs. 117 and 118, Fig. 117 is a triple
exposure showing (1) the solution of the equation with € = 0, (2) F(t)

as a function of time, and (3) the solution of Eg. (203) for ¢ = 0.5.

w
Fig. 117 Solution of Mathieu equation for aﬁ = 4 and € = 0.5.

It is apparent from this figure that although a modulation of the
frequency of oscillation is certainly obtained, in this case the
amplitude of the oscillation is not constant. Fig. 118 pertains to
the same conditions; it shows the first and second derivatives of
the circuit current as a function of time, in addition to the current

itself.
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Fig. 118 I, —i, and T versus t for the equation
oe w,
T+w2(1+ €cosuyt) I =0 forﬁ-‘—&, & 0.5,

6.12 Solution of Equation of the Hill Type

Solving the, analytically more difficult, Hill equation requires
only that the multiplier in the set-up of Fig. 109 be replaced by a
divider. The new set-up is shown in Fig. 119. Comparing the two
set-ups of Figs. 109 and 119 one sees that by the very simple change
of moving one connection and adding one connection it is possible to
shift the differential analyzer set-up from the Mathieu to the Hill
equation, The analytic difficulty of the corresponding change is
enormous. This difficulty is so great as to have prevented any
considerable use of equations of this level of difficulty in normal
engineering work., With a unit such as the electronic differential
analyzer of this thesis available, this situation no longer need exist.

A typical solution of the Hill equation is shown in Figs. 120

and 121. The first of these shows the unmodulated current, the
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Fig. 119 Differential analyzer set-up for the
solution of the Hill equation.

2
d2I wel

Fig. 120 Solution of the Hill equation, 0

dt? Y1+ & cosupt =
for €=0and &€= 0.5, together with a

plot of €coswyt versus t.
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Fig, 121 Solution of the Hill equation showing I, -I, and T versus t.

modulating term, and the resulting modulated current, while the second
shows the current and its derivatives as a function of time.

6,13 Third Order Linear Differential Equation with Variable Coefficients.

A problem which is of interest in connection with the transient

behavior of some electrical circuits is the evaluation of the Fourier

cosine transform of the frequency function e'mA,
c 4
y = f£(t) = I e coswt dw (205)
-0

This problem can be transformed to the solution of a differential
equation as follows. Differentiating both sides of Eq. (205) with

respect to time three times gives the relation

@
3
i% = jm3e""4sinmt d . (206)
at
-0

The right hand side of this equation can be integrated by parts with
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respect to w and this gives

w
3
dy . _t f e cosut dw , (207)
-0
or from Eq. (205)
3

a7y ¥t _
103 + ’ 0. (208)

Evidently Eq. (205) is a solution of this differential equation.
The differential anslyzer set-up for solving this equation is shown
in Fig. 122.

There is nothing unusual about this set-up. When one observes
the solutions obtained from this set-up, it is found that they tend
to increase with increasing time rather than to approach zero., The
solutions of the integral of Eq. (205) should approach zero in an
oscillatory manner., This can be verified by a series of graphical

integrations or by evaluating the series solution80

a
n
A5 ElEe.

n=20
Investigation of Fq. (208) and its derivetion reveals that

although Eq. (205) is a solution of this differential equation it

is not the only solution of the equation. While the desired solution
approaches zero as time increases there is an extraneous solution
which approaches infinity. Even though considerable care is taken

in adjusting the initial conditions to suppress this growing solution,

because of’the speed with which it grows with time it soon masks the

80 pi¢chmarsch, E.C., The Theory of Functions, lst Edition, Oxford

1936, p. 262.
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desired solution.* If a mechanical differentlsl analyzer were employed
to solve this equation, this difficulty could be surmounted by reversing
the direction of motion of the independent variable so that the desired
solution would dominate as the machine solution progresses. This
same effect can be achieved on the electronic differential analyzer
by making the change of vearisble

t' =t,-1t, (210)

which gives a transformed equation

3
g—%-l-f(to-t')uo. (212)
dat :

The solution of this transformed equation over the range 0<t'< to
corresponds to the solution of the original Eq. (208) for t,<t<0.
This change of verlable requires only minor changes of the set-up in
Fig, 122, The unit step into the lowest integrator must have its
sigh reversed and a constant must be added et the output of this
integrator. This is conveniently done with the integrator initiel-
condition control. A solution calculated from Eq. (205) directly by
repeated integration is plotted in Fig., 124, Figs. 123 and 125 are
observed solutions on the differential anaslyzer for the original and
the transformed equatién respectively, _

In Fig. 123.the fugziness towsrd the end of the solution results
from the fact that the undesired term in the solution is beginning
to dominate, The adjustment of the initial conditions to prevent
this occurrence has been made to within the precision of the differ-

ential analyzer and jitter in this critical sdjustment causes the

This is & similar situation to that described in Section V in
connection with the sclution of Eq. (79).



-196-

3
Fig. 123 A solution of the equation g;x + It o 0 versus t.

fuzziness shown.
Fig. 125 gives a plot of y versus ty, - t'; it is printed backwards
from the way that the solution is observed on the differential analyzer,
In obtaining this solution it is necessary to try different initial
values in the transformed equation and observe the values obtained at
t' = t,. When these final values for the transformed equation match
the initial values of the original equation, the desired solution is
obtained. If it were not for the speed of operation and ease of vary-
ing the initial conditions on the electronic differentisl analyzer
this process would be very time-consuming, since it involves the
simulteneous adjustment of three different parameters. Even on the
electronic differential analyzer the adjustment of parameters to
obtain the solution shown in Fig. 125 required about one and a half

hours.
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SECTION VII
SUMMARY

An electronic differential analyzer has been developed and tested
which can hendle ordinary differential equations of orders through
the fourth. Typical differential equations including examples of the
non-linear and variable coefficient types have been solved. The
observed precision of operation is exﬁremely good, ranging from ,002
to 0.1% depending upon the equation solved., The accuracy is between
1 and 5%,which is completely adequate for many applications in engineer-
ing, physiecs and mathematics.

The flexibility and speed of the electronic differential analyzer
permits rapid investigatlion of wide ranges of equation perameters and
solution initial conditions; this speed also renders feasible solution
of equations for which the final rather then the initial values of
the solution are known.

An analysis of the influence of high- and low-frequency limita-
tions of the differential analyzer components has been made. This
analysis permits quantitative determination of errors in the solution
of ordinary differential equations with constant coefficients and
has been verified experimentally.

The work on this electronic differential asnalyzer could be
extended in a number of directions. (1) Additional components, to
permit solution of more complicated differential equations, could be
built. (2) Further development of the components for multiplication
and division would appear worthwhile, In particular the modification

of the crossed-fields multiplier for direct division appears worthy
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of further investigation. (3) It would be desirable to apply the
electronic differential analyzer to the solution of new problems
in physics, engineering, and mathematics. The problems discussed
in this thesis have all been solved by analytic means; these were

chosen to permit verification of the operation of the analyzer.



-200~
Biography

Alan B. Macnee was born in New York City on September 19, 1920.
He completed his secondary school education at the Holderness School,
in 1938.

He received his S.B, and S.M. degrees from the Massachusetts
Institute of Technology in February, 1943. While attending
Massachusetts Institute of Technology he worked three terms in the
Bell Telephone System as part of the Cooperative Course in Electrical
Engineering.

From February 1943 to December 1945 the author worked zs s Staff
Member in the M.I.T. Radiation Laboratory. His work in the Receiver
Group of that laboratory was concerned with the development of low-
noise wide-band i-f amplifiers.

Since March 1946 the author has been enrolled in the Graduate
School of Massachusetts Institute of Technology. In September 1946
the author joined the staff of the M.,I.T. Research Laboratory of
Electronics as a Research Assistant; more recently he has been ad-
vanced to the position of Research Associate.

The author wrote two chapters on VHF receivers for Volume 23

of the Radiation Laboratory Series, Microwave Receivers. He has also

written an article on "A Low-noise Amplifier" together with Professor
H. Wallmen and C.P. Gadsden which was published in the June, 1948

issue of the Proceedings of the Institute of Radio Engineers.

Mr. Macnee is a member of Eta Kapps Nu and an associate member

of Sigma Xi and the Institute of Radio Engineers.





