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(i)

SECTION I

ABSTRACT

An electronic differential analyzer system has been developed

of complete mathematical generality, and a functioning model, capable

of solving ordinary differential equations of orders through the fourth,

both linear and non-linear, has been constructed and operated. The

electronic differential analyzer has a high speed of operation and is

extremely flexible with regard to equation parameters and initial-

conditions. This flexibility permits rapid investigation of wide

ranges of equation solutions and the quick qualitative determination

of the nature of these solutions with regard to periodicity, instability,

and discontinuities; it further permits rapid cut and try adjustment

of unknown initial conditions to fit prescribed final conditions.

The development of this differential analyzer has required the

invention of two new computing elements, an electronic function

generator and an electronic multiplier. These components together

with the balance of the differential analyzer have been used in the

solution of a number of representative differential equations of the

linear and non-linear types.

Comparison of observed and calculated solutions reveals an accu-

racy of from 1 to 5 percent, depending upon the equation solved. This is

completely adequate for a great many engineering problems. The observed

precision of the solutions ranges from 0.002 to 0.1 percent. An analy-

sis of the errors introduced into differential equation solutions by

the frequency limitations of the computing elements, such as the inte-

grators and adders, has been made and the results of this analysis

verified experimentally.

30047 73



(ii)

The cost of construction of an electronic differential analyzer

can be expected to lie between $4000 and $20,000, depending upon the

range of problems to be treated. It is the feeling of the author that

this electronic differential analyzer should find considerable appli-

cation in mathematics, physics, and engineering.
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SECTION II

INTRODUCTION

History

This thesis is concerned with the development of an electronic

differential analyzer. In order that the position of this work in

the field of mathematical machines may be clearly understood it is

worthwhile to review very briefly past work in this field.

Early in the history of mathematics as a science the develop-

ment of mathematical machines was begun. These machines were developed

as labor saving devices to perform routine operations, which mathe-

maticians could do without machines, with a considerable saving in

time and energy. The ancient abacus, the slide rule, and the modern

desk calculator are all machines of this type. The differential

analyzer, a machine to solve ordinary differential equations, is one

of the more recent developments.

2.1 Preious 2rk o.n Differential Analyzers

The first conception of a differential analyzer appears to be

due to Lord Kelvin toward the end of the 19th century. This idea

was independently rediscovered by Vannevar Bush at the Massachusetts

Institute of Technology in 1925.2,3 The first comprehensive differen-

tial analyzer was built in 1930.1 This first machine and those

1 Sir William Thomson (Lord Kelvin)- a series of papers, and one by
his brother James Thomson, published in Proceedings of the JRoy-al
Soeiety, v.24, 262-275, Feb. 1876.

2 Bush, V., Gage, F.D., and Stewart, H.R., "A Continuous Integraph,"
Jouir. Frank. Insi, v.208, 63-84, 1927.

3 Bush, V., and Hazen, H*L., "Integraph Solution of Differential
Equations," Jogur. Fa. Instj., v.208, 575-615, 1927.

Bush, V., "The Differential Analyzer. A New Machine for Solving
Differential Equations," Jour. . k ,ji., V.212, 447-488, 1931.

a
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developing immediately from it were characterized by complete generality,

the ability to solve any ordinary differential equation, subject only

to the limitations of the number of machine components available.5,
6,7,8

These machines utilize mechanical shaft rotations for the various

dependent and independent variables, and are rather slow in their

operation, requiring from 20 to 40 minutes to run through a typical

problem solution and from 2 to 24 hours of preparation or set-up time

before the solution of each new problem. The accuracies obtainable

with these machines may in certain cases be as good as 0.1%, although

in other cases the accuracy is not so good as this. Machines with

such performance are rather costly to construct and operate.

It was soon recognized by a number of English workers that there

would be considerable utility for a differential analyzer of more

moderate accuracy, perhaps 1 to 5%, which could be constructed and

operated at a considerably reduced cost. A number of small differen-

tial analyzers were built along this general line.9,l0,1

Travis, Irven, "Differential Analyzer Eliminates Brain Fag,"
Machine Design, 15-18, July 1935.

6
Hartree, D.R., " The Differential Analyzer," Nature, v.135, 940,
June 1935.

Rosseland, Svein, "Uechanische Integration von Differentiagleichungen,"
Die Naturwissenschaften, 27 Jahrg., Heft 44, 729-735, 1939.

8 Kuehni, H.P., and Peterson, H.A., "A New Differential Analyzer,"
Trans. A.,I.E.E., v.63, 221-228, May 1944.

Hartree, D.R., and Porter, A., "The Construction of a Model Differen-
tial Analyzer," Mem. and Proc. Manchester Lit. and Phil. Soc.,
'.79, 51-72, July 1935.

10 Massey, H.S.W., Wylie, J., and Buckingham, R.A., "A Small Scale
Differential Analyser: Its Construction and Operation," Proc. Royal
Iris~h Aad., v.45, 1-21, 1938.
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2.2 Present Trends in Differential Analyzers

Two of the more Vecently developed differential analyzers have

been aimed at strengthening some of the weaknesses of the early

mechanical machines. 891 These new machines are considerably larger

than those previously developed and can thus handle problems of

much greater complexity. A considerable increase in flexibility has

been achieved by interconnecting the various mechanical computing

elements by means of electrical servomechanisms. The set-up of these

analyzers is thus accomplished by suitable electrical rather than

mechanical interconnections. These machines afford for many cases

even greater accuracy than was previously possible, of about 0.01%

in favorable cases; they have a running time per solution of about

20 minutes and an initial set-up time of from 20 minutes to 2 hours.

They are, however, extremely expensive to build and operate; for

example the use of the M.I.T. Differential Analyzer for the period

of one hour on a problem requiring the entire machine costs about $50.

The solving of a completely new problem on a differential

analyzer introduces a third very important time period in addition

to the initial set-up time and final solution times indicated above.

That is the time necessary to determine what range of initial conditions

and equation parameters are of importance. In order to determine this

information it may frequently be necessary to run a large number of

exploratory solutions. This situation becomes particularly difficult

Lennard-Jones, J.E., Wilkes, M.V., and Bratt, J.B., "The Design
of a Small Differential Analyser," Po~c. Camb. Phil. Soc., .35 (III),
485-493, July 1939.

Bush, V., and Caldwell, S.X., "A New Type of Differential Analyzer,"
Jg2r. Fran.. Inst., v.240, 255-325, Oct. 1945.



-4-

in those problems for which not all the initial conditions, but instead

some of the final values of the desired solution, are known. For these

situations it is necessary to guess at the unknown initial conditions,

run a solution, see how the final values thus obtained differ from

the desired final values and then attempt to readjust the initial con-

ditions to correct the observed deviations. This process may well

require 30, 100, or more trial solutions before the desired final

solution is obtained. The time and money thus consumed on even the

most modern of the differential analyzers is so great as to render

the solution of problems of this type impractical, yet there are a

multitude of problems of this nature which are continually confronting

the physicist, mathematician, and engineer.

As a result of the increased interest during the recent war in

the automatic control of all manner of mechanical devices such as

aircraft, marine craft, guided missiles, and the like, there has

recently been considerable work done in the field of specialized

differential analyzers, frequently called simulators.13,14,15,16,17,18

13 Instruction Booklet prepared by the Bell Telephone Laboratories
for the Western Electric M-IX antiaircraft gun director.

4 Ragazzini, J.R., Randall, R.H., and Russell, F.A., "Analysis of
Problems in Dynamics by Electronic Circuits," Proc. I .R.E., v.35,
444-452, 1947.

15 Scientific Research and Experiment Department, Admiralty Computing
Service Report. "Solution of Differential Equations by an Electronic
Differential Analyzer."

16 Korn, G.A., "Elements of D-C Analogue Computers," Electronics,
Apr. 1948, p. 122.

17 Philbrick, G.A., "Designing Industrial Controllers by Analog,
Electronics, June 1948, p. 108.
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These differential analyzers are designed to solve the differential

equations associated with the motion or operation of a particular

device or perhaps class of devices, and thus fall far short of complete

mathematical generality. They utilize electrical voltages as the

dependent variables and time as the independent variable. Because

these machines are concerned with simulating the operation of various

physical devices, they normally operate on a real time scale. This

results in solution times of a few seconds to a few minutes depending

on the characteristics of the device being simulated. Short set-up

time is not of great importance in simulators because most of the

operation is concerned with the solution of a single differential

equation.

All of the differential analyzers mentioned above belong to the

general class of measurement or continuous-variable, machines. One

of the simplest mathematical machines of this type is the common slide

rule. The other broad class of mathematical machines are those of

the counting, discrete-variable, or digital, type; a standard desk

calculating machine is of this type. Currently there is a large

amount of development being done on high speed electronic discrete-

variable or digital machines.19 , 20 One of the new fields which will

be opened by the ultimate development of these machines is that of

partial differential equations which are not separable into ordinary

Reeves Instrument Corp., Booklet on an Electronic Analogue Computer;
Electronics, p. 231, Apr. 1948.

19 Rockett, F., "Selective Sequence Digital Computer for Science,"
Electronics. p. 138, Apr. 1948.

20 Burks, A.W., "Electronic Computing Circuits of the ENIAC," Proc. I.R.E.,
v.35, 756-767, Aug. 1947.
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differential equations, This type of work is completely beyond

the scope of the existing differential analyzers. At the present

time it would appear that the digital machines will be even more

costly than any existing calculators and will therefore, for some

time to come, find their principal application to those problems of

complexity beyond the scope of existing machines.

The present trends in the field of differential analyzers can

be briefly summarized as follows. The continuous variable differential

analyzers are being expanded in the direction of (1) greater accuracy,

(2) greater size - to handle more complicated problems - and (3) conse-

quently greater cost. Some work is being done on simulators which

have (1) reduced accuracy, (2) reduced cost, but are (3) specialized

in the types of differential equations they can handle. The field

of digital differential analyzers is just beginning to develop; these

machines will be characterized by (1) the ability to solve hitherto

insoluble problems, (2) extremely high speeds of operation, (3) highest

accuracies, (4) large size, and (5) high cost.

2, Qualitative Description of Electronic Differential Analyzer

Early in the fall of 1945 it was felt that there was a considerable

need for a differential analyzer of somewhat different characteristics

from any then in existence or under development.21 There appeared

to be the need for a machine having the following characteristicss

(1) moderate accuracy, of perhaps 1 to 10%, (2) large reduction in

cost over the existing differential analyzers, (3) high speed of

21
This need was first recognized and pointed out to the author by
Prof. H. Wallman, Department of Mathematics, Massachusetts of
Technology, who suggested development of such a machine as a thesis
program.
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operation, (4) complete mathematical generality, and (5) above all,

extreme flexibility to permit the rapid investigation of wide ranges

of equation parameters and initial conditions.

A differential analyzer of this type bears the same relation to

the larger differential analyzers that a slide rule bears to a desk

calculating machine. Its uses are numerous. (a) It can be used as

a slide rule is used to give rapid solutions of moderate accuracy

to the differential equations encountered by the engineer, physicist,

and mathematician. In this role it is useful not only in solving

non-linear equations or equations with variable coefficients, but also

in solving higher order ordinary differential equations with constant

coefficients, which are very tedious to handle analytically. (b) Such

a differential analyzer can also be used as an adjunct to one of the

larger differential analyzers. It can be used to carry out the time-

consuming exploratory solutions necessary to determine those ranges

of equation parameters and initial conditions of interest. This

preliminary work could be done at a great saving in time and money,

and then, if warranted, the larger and more accurate machine could

be used to obtain the final desired solution. (c) Such a differential

analyzer, by nature of its moderate cost and great flexibility, is

very useful as a teaching tool in the fields of mathematics, engineering

and physics.

It appears clear that such a machine should be electronic in

nature. The differential analyzer described in this thesis has been

developed to fulfil this need. From time to time during the process

of this development it has been apparent that a number of other



investigators are planning a similar machine.
22,23,24 ,25,26 ,27

These papers, however indicate that the work described has not been

developed as far as the electronic differential analyzer of this thesis.

Philosophy of a Continuous Variable Differential Analyzer

24 The Feedback Concept

In order that the problems facing the development of a differential

analyzer may be understood a brief discussion of the general idea

behind continuous variable differential analyzers as conceived by

Vannevar Bush will be given here.

This idea can best be presented by considering a particular

example of a differential equation and indicating the general procedure

22 Mynall, D.J., "Electrical Analogue Computing," Electronic Engineer,
four parts, June--Sept., 1947.

Bruk, I.S., "A Device for the Solution of Ordinary Differential
Equations," Comptes Rendues de l'Acad6mie des Sciences de l'URSS.,
v.LIII, 6, 523-526, 1946.

MacKay, D.M., Nature. v.159, Jan. 22, 1947.

25 Koehler, J.S., "An Electronic Differential Analyzer," Jour. of
Applied Physics. v.19, no.2, 148-155, Feb. 1948.

26 Korolkov, N.V., "The results of the-Development and Testing of
an Experimental Apparatus for the Solution of Systems of
Differential Equations," B Ig. Acad. Sci. U.R.S.S., Classe Sci.,
p. 585-596, 1947.

27 Gradstein, I.S., "The Solution of Systems of Linear Equations
by L.I. Guttermaher's Electrical Models," .BtjU. Aega, _9i. U.R.S.S.
Classe Sci., Tech., p. 529-584, 1947
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for obtaining its solution on a differential analyzer. Consider

the equation

2
+ & + y 0; (1)

it will be assumed that physical quantities have been chosen to be

used as the dependent and independent variables and that devices are

available to perform the mathematical operations such as addition,

multiplication, integration and the like. For the mechanical differen-

tial analyzers the physical quantity used as a variable is shaft

rotation and the various units of the differential analyzer must there-

fore be capable of adding, subtracting, integrating, etc. shaft

rotations. In an electronic differential analyzer the variables are

voltages and units are required to perform the necessary mathematical

operations on voltages. The general procedure for solving a differen -

tial equation is to isolate the highest derivative in the equation.

Thus for Eq. (1) one writes

2
A: = -(& + y) (2)

From this point on the step by step procedure of setting up this

differential equation is illustrated with block diagrams in Fig. 1.

In Fig. l(a) a particular shaft or terminal post is assumed to be the
2

highest derivative, in this case .2 In Fig. 1(b) this point is

connected to a cascade of two units which perform the mathematical

operation of integration with respect to x. The outputs of these two

units are then and y respectively. In Fig. 1(c) these outputs

are then supplied to a third unit which performs addition; its output

is + y. This output is put through a fourth unit which changes
dx



d2 y 10
d x2

(a)

d N TEGR ATOR d,, INTEGR ATOR

a

(b)

d dy

INTEGRATOR INTEGRATOR

ADDER

(C)

INTEGRATOR dx INTEGRATOR

- I ADDER
dy + ______ I_______
d~x

(d)
FIG- I Set-up of simple differential equation

-a



the algebraic sign, forming the quantity -( + y) as shown in Fig. l(d).

This output appears at the terminal or shaft a' but according to
2

Eq. (2) is equal to . Therefore to solve the differential equation

one connects the terminals or shafts a-a' thus closing the feedback

loop. If now the independent variable is permitted to vary, the

various shafts or voltages in this interconnection of units are con-

strained to vary in such manner as to solve the desired differential

equation. In order to obtain a useful solution for a particular case

it is necessary to have some process for giving the various dependent

variables in this set-up their proper initial values before the solution

process is begun, and some means has to be available to present the

results of each solution in a form easily comprehensible by the operator.

The fundamental principle of the procese 1 tlined above for the

solution of a differential equation is that of feedback. The process

consists of (1) assuming one of the unknown dependent variables,

(2) performing such operations on this quantity as are necessary to

generate all the other unknowns in the differential equation, (3) generat-

ing such functions of the independent variable as may be required for

the equation, and (4) interconnecting these generated quantities in

the manner specified by the differential equation being solved.

25 The Possibility of Different Systems

It should be recognized, in particular, that the use of integration

in the example considered wqs not of fundamental importance. One might

as well, on the face of it, rewrite Eq. (1) in the form

y +d- + ) . (3)dh dx2

W1hen written in this way it is apparent that one could as well solve

L

-11-



this differential equation by using units which perform differentiation

of the dependent variables. Such a set-up is indicated in block form

in Fig. 2.

2
_ dy
Sdx dX2

Differentiator Differentiatorl

0d

dx +dx2

dx dx2

Fig. 2 Alternate set-up of simple differential equation

Carrying this procedure one step further one can see that by

using a combination of integration and differentiation there is a large

number of possible ways in which any differential equation can be

solved on a differential analyzer. For any particular case the system

used will depend largely upon the difficulty of realizing practical

units to perform the mathematical operations required.

Statement of the Thesis Problem

The basic problems in the development of an electronic differential

analyzer can now be stated. They are:

(1) The choice of a system to be used in the differential analyzer.

This choice must result in a system whose component units can be

I
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realized economically by electronic means. It must be a completely

general system permitting the solution of any ordinary differential

equation.

(2) The components for this system must be developed into a form

giving satisfactory performance, and if some components are not

available new ones must be invented.

(3) A model differential analyzer must be built and tested as

a functioning unit.

(4) This differential analyzer should then be used to solve a

variety of typical problems. The test problems must be so chosen

as to verify the full mathematical generality of the machine.

(5) Finally an investigation of the accuracies obtainable with

the differential analyzer, the principal sources of errors and

steps that can be taken to minimize them.

-9-
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SECTION III

SYSTEMS

Before entering into a detailed discussion of the various

possible differential analyzer systems, we restate the principal

features the electronic differential analyzer is desired to have;

(1) moderate accuracy, of perhaps 1-10%,

(2) low cost of construction and operation,

(3) complete mathematical generality, so that any ordinary

differential equation can be handled,

(4) high speed of operation, and

(5) above all, extreme flexibility to permit rapid investigation

of wide ranges of equation-parameters and initial-conditions.

The relative merits of various possible differential analyzer

systems will now be considered in the light of these basic requirements.

Possible Systems

3.1 The Choice of Variables

Electrical voltage is the most natural choice as the physical

quantity to represent the dependent variables in view of the require-

ments of high speed operation and flexibility. Electrical voltage

can be varied as rapidly, with existing techniques, as any physical

quantity known. If the various components of a differential analyzer

are designed to perform mathematical operations on voltages, the

interconnection of these various units can be easily accomplished by

means of patch cords or cables.

Having chosen to use voltages for the dependent variables one

still has the possibility of using another physical quantity for

-U
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the independent variable. It is apparent from the general discussion

of the feedback method of solving differential equations given in the

introduction that some component in any differential analyzer must

perform the operation of integration or differentiation of the depen-

dent variables with respect to the independent variable. The set-up

indicated in Fig. 1 requires only integration, while the set-up of

Fig. 2 utilizes only differentiation, but it is manifest that either

one or both of these operations must be performed in any differential

analyzer no matter what its nature.

Having voltages as dependent variables, a possible choice for

the independent variable is also a voltage. If this is to be the case,

it will be necessary to develop electronic units to perform either

integration of one voltage with respect to another voltage or differen-

tiation of one voltage with respect to another. Let us consider the

case of integration. A unit which performs integration of one voltage

with respect to another, that is the operation

W = PdQ, (4)

where P and Q are voltages, will henceforth be designated as a general

integrator. The differential dQ can also be written as

Q d.d* , (5)
dt

where dt is the time differential. Thus the integral of Eq. (4) can

be rewritten

W 5(P)dt * (6)

It is apparent from this that general integration of one voltage with

respect to another can be accomplished by integration with respect

to time of the product of a voltage and the derivative of a voltage
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with respect to time. The wheel and disc integrators used in the

mechanical differential analyzers perform integration with respect

to time of the product of a shaft rotation and a shaft angular velocity.

All general integrators known to the author involve in their

construction the operation of multiplication. If one chooses to per-

form general integration in an electronic differential analyzer with

voltages as variables, it would appear to be necessary to have a

circuit or device which gives the product of two voltages as a component

part of every integrator. It is unfortunately true that multiplication

is the most difficult mathematical operation that one is called on to

perform electrically, for although it is easy to obtain an electronic

device which will have a product term in its output, it is very diffi-

cult to isolate this term; more will be said about this in Section IV.

Although there is an element of advantage in building an electronic

differential analyzer using general integrators, because then the

analogy between it and the large mechanical machines would be exact,

the difficulties of realizing a practical electronic general inte-

grator are great enough to warrant investigation of other possible

schemes. These are based on the fact that although the operation

of multiplication is a very difficult one electronically, integration

and differentiation, with respect to time, are very easily performed.

Because differentiation and integration are easily performed

on voltages with respect to time, it was decided to use time as the

independent variable in this electronic differential analyzer.

.3.2 The Limitation on the Use of Time Differentiators

With time as the independent variable there still remains the

choice of whether differentiation, as in Fig. 2, or integration as

in Fig. 1, or some combination of the two should be employed.



Fortunately a clear-cut answer can be given to this question by con-

sidering the limitations which are encountered in any practical time

differentiator due to the finite bandwidths of practical amplifiers.

Suppose one has an ideal differentiator. The input and output

of such a unit is related by Eq. (7)
de

e2 dt . (7)

The Laplace transform of the transfer characteristic for this unit

is then2 8

( ) = -(s) = sK
i 1

This shows that for real frequencies, s = jw, the transfer

characteristic of an ideal differentiator is

e2
-(w) jwK ,
el

(8)

(9)

that is, it has a phase characteristic which is constant at +90 degrees

and a magnitude characteristic which increases directly with frequency.

Such a magnitude characteristic is plotted in decibels versus the

logarithm of the frequency in Fig . 3 and is labelled ideal.*

It is evident that this ideal characteristic can never be achieved

in practice since it requires irfinite gain at infinite frequency.

Rather it is known that due to unavoidable stray capacities any physical

28 Gardner, M.F., and Barnes J.L., Transients in Linear Systems.,
Vol. I, John Wiley & Sons, New York, 1942, 126-130.

*
It is interesting to note that any high-pass filter can be thought
of as a time differentiator over a portion of the frequency range;
similarly any low-pass filter will have the characteristic of a
time integrator for some frequencies. A time integrator or
differentiator can also be thought of as an amplifier whose ampli-
tude-frequency characteristic has been rotated to a slope of minus
or plus 6db/octave respectively.

-17-
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Fig. 3 Log-db characteristics of time-differentiators

characteristic at high frequencies has a slope of at least -6 db per

octave rather than the ideal slope of +6 db per octave. 29 A realizable

characteristic of this type is also plotted in Fig. 3. The simplest

time-differentiator characteristic is therefore of the form

e2O) i LAi 
(10)

el (1 + joe6 )(1 + jWF)

where normally both

0K

and

?<< K .(12)

For the characteristic sketched in Fig. 3, i =fe,-but in general

the relative values of these two high frequency time constants will

aBode, Hendrik W., Network Analysis ad Feedback Amplifier Desig.
D. Van Nostrand Co., New York, 1945, Chapt. XVII.
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depend on the practical circuit used. The important point is that

at least two such time constants must always be present in order that

the requirement of physical realizability be satisfied.

The importance of this limitation will be realized by considering a

simple differential equation for which the solution is easily calculated.

Such an equation is

(K) - y 0 (13)

The characteristic equation of this differential equation is

(sK - 1) = 0 , (14)

and therefore this equation has the solution

y = Cet/K , (15)

where C is a constant determined by the initial condition of the

solution. The differential analyzer set-up necessary to solve this

equation, using a time differentiator, is indicated in Fig. 4.

y dt
0- DIFFERENTIATOR -0

Fig. 4 Block diagram of set-up for equation K d - y 0.dt-y
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If the time-differentiator were ideal, this set-up would give

the solution of Eq. (15). If one assumes that the differentiator

has the simplest realizable characteristic, given by Eq. (10), one

observes by making el = e2 and letting jw = s that the characteristic

equation of the differential equation actually solved is

( + s)(l+s1 ) = sK, (16)

which has roots

OC(S 9qS
(17)

If now, as is usually the case, Eqs. (11) and (12) are satisfied, these

roots are -

Kl (19)
K

2 (20)

The solution obtained by the differential analyzer set-up of Fig. 4

is therefore

y = C et/K + CetK/oef (21)

Comparing this solution with the desired one of Eq. (15), one sees

that there is an error term C2 etK/'bp . In theory at least it is possible

to adjust, the initial conditions so as to make C- equal to zero. In

practice, however, this is completely impossible since the time-constant

of the error term is much smaller than the time-constant of the desired

term according to the assumptions of Eqs. (11) and (12). It is there-

fore not possible to obtain a usable solution to eq. (13) with a

differential analyzer employing time-differentiators. This is an ex-

tremely serious limitation on the generality of such a differential
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analyzer, which is encountered whenever one attempts to solve a differen-

tial equation whose characteristic equation has roots with positive real

parts, that is in the right half of the complex &-plane.

The conclusion therefore is that because of the limitations im-

posed on physically realizable time-differentiators by the bandwidth

limitations of amplifiers, a general electronic differential analyzer

cannot be designed using differentiators as a basic unit.

One is forced therefore to use time-integrators as the basic unit

of an electronic differential analyzer.

Details of Electronic Differential Analyzer System

For the reasons indicated above, the system chosen for the elec-

tronic differential analyzer of this thesis utilizes voltages as the

dependent variables and time as the indeg4ndent variable. The basic

functional operation for this analyzer is time integration.

L. Solution Display

The solutions obtained from such an analyzer are in the form of

a voltage as a function of time or a voltage as a function of another

voltage, if one dependent variable is plotted as a function of another.

An electronic device well suited to the plotting of one voltage as a

function of another is a cathode-ray tube. Such a tube is used to

display the solutions obtained by the differential analyzer. In dis-

playing a solution as a function of the independent variable time,

a periodic voltage varying linearly with time (a saw tooth wave)

is applied to the horizontal deflecting plates of the tube, and a

voltage corresponding to the desired solution is applied to the vertical

deflecting system.



J.A Repetition Rate

In order that the solution displayed on the cathode-ray tube face

appear as a stationary curve to the observer's eye, it is necessary

that the solutions traced on the screen be repeated at a reasonably

high rate. If the cathode-ray tube screen employs the common P-1

phosphor, this repetition rate should be at least 30 c.p.s. If one

of the more persistant screens such as the P-7 phosphor, which was

developed for radar PPI displays, is used, a repetition rate as low

a 1 c.p.s. might be employed.* In the differential analyzer described

here the repetition rate is 60 c.p.s. This is convient as it permits

use of the a-c power mains as a standard source of synchronizing

signals.

.5 Sequence of Operation

At this repetition frequency a new solution is run-off every 1/60

of a second, and these solutions are displayed superimposed one upon

the other on the face of the output cathode-ray tube. In order that

this display appear as a single line on the output screen it is neces-

sary that each successive solution be identical with its predecessor

as long as the same solution is being displayed. This imposes the

requirement that the initial conditions at the beginning of each

solution be identical with those of the preceding solution. In general

the voltages in the differential analyzer at the end of a solution

*
It will be shown in Section V that component limitatious at high
and low frequencies introduce errors into solutions obtained on
an electronic differential analyzer. The choice of a repetition
rate is a compromise; a high repetition rate requires excellent
high-frequency response of all analyzer components while a low
repetition rate places the emphasis on the low-frequency response.

-22-
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will not be the same as those required by the initial conditions;

it is therefore necessary to allow some time between the end of each

solution and the beginning of the next solution to permit the reestab-

lishment of the proper initial conditions. In this differential

analyzer this is accomplished by allotting approximately 1/120 of a

second for the solution of the differential equation and 1/120 of a

second for the reestablishing of the initial values prior to the next

solution. Fig. 5 is a sketch of the solution of a typical equation

as it would appear in this analyzer if two complete sowution periods

are displayed. Figs. 6(a) and 6(b) are photographs of observed solu-

tions of the differential equation

dt y. (22)

Y

Final
Condition

Initial
Condition

0 2060 4 0 30
- OFF-TIME ON -TIME TIME IN SECONDS

SOLUTION TIME

Fig. 5 Appearance of a typical differential analyzer
solution as a function of time.

-1
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y

I

Fig. 6(a) Two complete periods of the solution

of the equation ky.dt

Fig. 6(b) Solution of ky as normally displayed,dy
with off period blanked out by an intensity gate.
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Fig. 6(a) displays two complete solution periods, showing both the

on- and off-times. Fig. 6(b) gives the solution as normally displayed

in the differential analyzer; here a blanking voltage has been applied

to the intensity grid of the cathode-ray tube during the off-time

of the solution period so that only the solution is displayed.

3.6 Initial Conditions

To satisfy the initial conditions of the differential equations

requires establishment of specified initial values of all voltages

throughout the differential analyzer at the beginning of each solution

period. This is accomplished by forcing all voltages in the analyzer

to a constant reference level, usually close to zero volts, during

the off-time. At the beginning of the on-time for the differential

analyzer voltage steps are introduced at the proper points throughout

the machine to set the desired initial values. These initial value

voltage steps remain constant throughout the solution time; they are

adjustable by the operator through ordinary potentiometers. The

operator varying these initial condition potentiometers sees instan-

taneously the effect of his adjustment, since a new solution is traced

out every 1/60 of a second. Fig. 7 is a triple exposure photograph

of the solution of Eq. (22) for three different initial values.
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I

t

Fig. 7 Triple exposure photograph of the solutions of

= ky for three different values of y0 .

Units Required For Electronic Differential Analyser

37 Ordinary Djfferential Eqations with Constant Coefficients

Having settled on the broad general features of the electronic

differential analyser one can now congider in detail what units had

to be developed for its realisation. In this regard it is probably

easiest to start out with the special case of ordinary linear differ-

ential equations with constant coefficients. The additional components

necessary to solve the more difficult non-linear equations and equa-

tions with variable coefficients will be considered later.

An ordinary linear differential equation with constant coefficients

can always be written in the form

An d F(t), (n = l,2,...,m) (23)
ni dt;
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where

(1) F(t) is an arbitrary driving function of time,

(2) the coefficients An are constants, and

(3) m is the order of the differential equation.

For the purpose of solution on the differential analyzer this

equation can be rewritten by isolating the highest derivative:

m - 1

-x A 9a + -(24)
dtm dtn Am

n = 0

A block diagram of a general set-up to sol-e r differential equation

of this form with the electronic differential analyzer is given in

Fig. 8.

dt_ dtm- dt y

Am Am Amr Am

F(t)
ADDER A

- mI ll + ~F(t)Am n dn Am

n=0

Fig. 8 Block diagram of set-up for solution of
an ordinary linear differential equation
of order m with constant coefficients

There are four basic units required by this set-up. First there

are the blocks labeled with the integral sign in Fig. 8; these are

units which perform integration with respect to time. Second there
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m-1

are the boxes labeled - -; these are amplifiers with constant gains;

a negative algebraic sign is obtained by a 180 degree phase shift be-

tween the input and output of the amplifiers. Third there is the box

marked adder, which is to be capable of forming the sum of a number

of voltages. Finally there is the box , which is to generate a
Am

voltage that is an arbitrary function of time.

There are a number of other units not indicated in Fig. 8 which

will also be necessary in an electronic differential analyzer. First

there must be some means of introducing initial conditions into the

set-up shown. Second, since the solutions of this equation are to

be repeated periodically in time, there must be some means of turning

the differential analyzer on and off at the proper times and of restor-

ing the final voltage values to zero at the end of every solution

on-time. These last two functions are closely related and can be com-

bined into a single unit which will be called an initial condition

and gate pulse generator. Other necessary units are (1) a viewing

scope on which the solutions can be displayed to the operator, (2) cal-

ibrating equipment to permit quantitative measurements on the solutions

obtained, and (3) power supplies to run the various units.

The block diagram of Fig. 8 does not represent the only inter-

connection of units which will give a solution to Eq.(23). Some of

the scale-factor amplifiers might be incorporated into the integrators

or the adder, and it is not necessary to do all the summing in a single

adder. Partial sums might first be formed and then combined in a

final adder. All of these variations, however, are of minor nature

and will not introduce any change in the types of components required.

A summary list of the components necessary to solve ordinary linear
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differential equations with constant coefficients on the differential

analyzer is therefore:

(1) Time integrators,

(2) Adders,

(3) Amplifiers to provide scale factor and sign changes,

(4) Initial condition and gate pulse generator,

(5) Viewing cathode-ray tube oscilloscope,

(6) Calibrating equipment to permit quantitative measurement of

(a) Time, the independent variable, and

(b) Voltages, the dependent variables,

(7) A Function generator to generate arbitrary voltage functions

of time,

(8) Power supplies.

The additional apparatus needed for differential equations with

variable coefficients and non-linear differential equations will now

be considered.

3.8 Ordinary Linear Differential Equations with Variable Coefficients

For linear equations with variable coefficients Eq. (23) is still

applicable provided one removes the restriction that the coefficients

An be constants and write instead that

An = An(t) . (25)

The block diagram of Fig. 8 must now be modified as shown in Fig. 9,

where every constant coefficient box has been replaced by (a) a function
An(t)

generator box to generate - Antand (b) a unit performing multipli-

cation of one voltage by another.

The presence of variable coefficients requires the use of one new
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dM dm-1 y dy

dtM df'M-1 dt y

Am-1(t0A-(I X-X 0 -
Am(t) X AM( t) AmW AMW

a

SADDER F(t)

Fig. 9 Block diagram of set-up of differential analyzer
for the solution of a linear differential

equation with variable coefficients.

type of unit, an electronic multiplier,* plus additional function

generators to generate the variable coefficients as voltage functions

of time.

3.2 Non-Linear Differential Equations

The most general type of ordinary differential equation can be

written in the form

F (Amy ,.., ,yt) = 0. (26)

* We see, therefore, that the choice of time as the independent vari-
able, which permits the use of time-integration rather than general-
integration of the voltage variables, does not completely obviate
the necessity for electronic multiplication. It does, however, re-
duce the number of multiplications required to that minimum explicitly
indicated by the differential equation. In view of the difficulty
of performing multiplication this is a very worthwhile step. Thus
in-the present system, no multipliers are required in the solution
of a linear differential equation with constant coefficients, no
matter how high the order of the equation. If a voltage independent
variable and general integrators were used, the solution of an ordina-
ry linear differential equation with constant coefficients of order
m would require m electronic multip.iers as components in the nec-
essary general integrators.
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The only new operation required in going from a linear differential

equation with variable coefficients to this most general ordinary differ-

ential equation, is that it is now necessary to generate functions of

the dependent as well as the independent variables. Thus the non-linear

equation

2 F(y) , (27)
dt2

would be set up according to the block diagram of Fig. 10.

dy
dtZ d

a

0

d% F(y

Fig. 10 Block diagram of set-up for the solution of the

non-linear differential equation = F(y) on
dt2

a differential analyzer.

The new component required is the unit labelled F(y). This is a unit

which will generate a voltage that is an arbitrary function of any

input voltage. It will be designated here as an arbitrary function

generator; its analog in the mechanical differential analyzers is the

input table. Note that an arbitrary function generator can be made to

generate functions of the independent variable, time, by connecting to
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its input a voltage varying linearly with time over the solution period,

that is, a saw tooth wave.

For a differential analyzer of full generality then, two additional

items must be added to the list of components on page (29); they are

(9) Multipliers, units whose output voltage is proportional to

the product of two input voltages, and

(10) Arbitrary function generators, units that generate an output

voltage which is an arbitrary function of the input voltage.

Of the components listedthese last two did not exist when the

work of this thesis was begun. It has been necessary to invent

electronic devices to perform the operations of multiplication and

function generation.

Although some basic circuits for the performance of such opera-

tions as time integration and addition have been described by other

workers, it has been necessary in this development to go into consid-

erable detail concerning the characteristics of these units in order

that sources of error be identified and studied.
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SECTION IV

DIFFERENTIAL ANALYZER COMPONENTS

Multiplication

_.1 Important Multiplier Characteristics

As has been indicated, multiplication is a difficult operation

to perform electronically. Much previous work has been done on this

subject, and it will be reviewed briefly here. First, however, it

is worthwhile to investigate the desired objectives of the multiply-

ing unit.

(a) Since voltages are the dependent variables, the multiplier

must form the product of two voltages.

(b) For complete mathematical generality the multiplier must be

capable of treating input voltages of both algebraic signs,

that is, it must be a four-quadrant multiplier.

(c) Because the repetition frequency of the differential equation

solution is to be 60 c.p.s., the multiplier must be capable

of dealing with frequencies much higher than 60 c.p.s., at

least as high as perhaps 60 Kc/s.

(d) The accuracy should be as high as possible.

(e) The size and cost must be kept to a minimum.

(f) The balancing adjustments in the multiplier should be as

stable and easy to control as possible.

That any four-quadrant multiplier will involve some form of bal-

ancing can be easily seen by considering the block diagram of such

a unit in Fig. 11.
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El

kEjE 2

E2 MULTIPLIER

Fig. 11 Block diagram of electronic multiplier.

This unit must have the characteristic that if the input voltages

are El and E2, the output voltage is kl1E2 , where k is a constant. In

particular, if El is zero, the output voltage must be zero no matter

what the value of E2 . Therefore there must exist in the multiplier

some means to balance the output to zero when E, is zero. A similar

argument can be applied to the case for which E1 is non-zero and E2

zero. Any four-quadrant multiplier will thus have somewhere hidden

in its design at least two balances. The nature of these balances

is probably the most important single feature of a multiplier. This

point can be illustrated by considering the case of a multiplier for

which these balances are not perfect. Such a multiplier might have

the characteristic

multiplier output = E1E2 + .025E1 + .025E2 1 (28)

assuming (1) Bpis one input voltage,

(2) E2 is the second input voltage, and
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(3) the maximum permissible value of either El or E2 is

unity.

When El and E2 both have their maximum values of unity, the

output of this multiplier will be correct to within 5%, which represents

usable accuracy. Consider, however, what happens when E1 is held

constant at its maximum value and E2 is reduced to 0.1. The desired

product is then 0.1, but the output of this multiplier is 0.128; the

error is now 28%. This clearly shows that the reliability with which

the zero balances can be made imposes most stringent limitations on

the usable dynamic range of the multiplier.

.2 Previous Multiplier Developments

A linear potentiometer can be used to perform multiplication,

as indicated in Fig. 12.30

E,

SERVO2

- E,

Fig. 12 Servo-driven multiplier.

30 Murray, F.J., The Theor f Mathematical Machines, King's Crown
Press, New York, 1st Edition, 1947, p. 25.

t
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For this set-up

E3 = k.QE1 . (29)

If a servomechanism is used to position the potentiometer shaft, 8 is

proportional to the voltage E2; then

E3 = KE1E2 * (30)

This multiplying circuit has been used in fire-control computers; it

is not satisfactory for the present application because its operating

speed is limited by the mechanical shaft and motor inertia.

Because of our requirement of high speed, all mechanical or electro-

mechanical multiplying schemes can be ruled out at the outset. There

exist, however, a wide variety of proposed methods for performing

multiplication with all-electronic circuits. One such idea is shown

in Fig. 13.

El log (E,)
0- LOGARITHM

log(E E 2

E 3

ADDER ANTILOG- -

E

0-- LOGARITHM
I Iog (E2)

Fig. 13 Block diagram of logarithmic multiplier

The two input voltages E% and E2 are first applied to units which form

their logarithms. These logarithms are then added and supplied to a
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device which forms the antiIog arithnm; the output from this unit, E,

is the desired product. Kallmann 3 and Wingate32 have developed multi-

pliers of this type. Kallmann used weided germanium crystal rectifiers

to achieve the necessary exponential current-voltage characteristics,

while Wingate employed 6AL5 diodes. A logarithmic multiplier has the

major disadvantage, from the point of view of a general mathematical

machine, that it is limited to one-quadrant multiplication. There

is also the difficulity of finding an accurate logarithmic device.

The 6AL5's used by Wingate had to be operated at currents of the order

of 0.1 pia., which has the disadvantages of any low level devicey-.sensi-

tivity to hum pickup, etc. The characteristics of the germanium diodes

were hard to match and maintain with age.

Another general class of multipliers can be described as double-

modulation multipliers. The concept employed is to impress the input

voltages E1 and E2 through suitable modulating circuits on a common

carrier signal, which is then detected in a manner to give the desired

product as the output. Since amplitude, frequency and many forms of

pulse modulation can be applied to this scheme, the ramifications of

this method are numerous.

Siebert33 has developed a multiplier of this general class employing

double amplitude-modulation as indicated in Fig. 14. In this circuit

a 400 c.p.s. carrier signal is passed through two linear amplitude

31 Kallmann, H.E., "Log Bridge and Ratio Meter," Radiation Laboratory
Internal Group Report 41, July 16, 1945.

32 Wingate, S.A., Master's Thesis in Electrical Engineering,
Massachusetts Institute of Technology, 1946.

Siebert, W.M., Masterts Thesis in Electrical Engineering,
Massachusetts Institute of Technology, Feb. 1948.
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Fig. 14 Siebert multiplying circuit.

modulators and then detected in a phase detector; in this manner four-

quadrant multiplication is obtained.

Double pulse-modulation has been used by Ham34 in the development

of a general integrator. A block diagram of this circuit is shown in Fig.15.

In this circuit the pulse width is made proportional to and
dt

the height to E2 . The pulse area is therefore

pulse area = E2 w , (31)

which when integrated with respect to time gives the output

E3 = E2dE' (32)

Two such integrators can be combined, as in the mechanical differ-

ential analyzer, to perform multiplication according to the relation

ElE2 = E2dE1 + E dE2  ( C33)

Ham, J.M., Master's Thesis in Electrical Engineering,
Massachusetts Institute of Technology, 1947.
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dEl

El Pulse Width Pulse Height
-- Differentiator

Modulator Modulator

E2 Time E2 d E

int egrator

Fig. 15 Ham general integrator.

The principal limitation of any modulation multiplier from the

point of view of rapid computation is the fact that the speed of the

multiplier is limited by the carrier frequency employed. It is probably

desirable to have the carrier frequency at least ten times the high

frequency cut-off of the multiplier. If, for example, frequencies up

to 60 Kc/s are to be treated, the Siebert multiplier should employ

a carrier frequency of 600 Ke/s, and the Ham general integrator a pulse

repetition rFte of about the same value. If the problems presented

by this carrier - ncy can be overcome without too great circuit

complexity, either of these. schemes might well be employed in an

electronic differential analyzer.

Another possibility for electronic multiplication is the difference-

of-squares system.35 A block diagram of such a multiplier is shown in

Fig. 16.

35 Murray, op. cit., p. 31, reference 30.

A
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Fig. 16 Difference-of-squares multiplier.

This circuit requires the formation of the sums and differences

of the two input voltages El and E2 . These two voltages, E, + E2 and

El - E2 are then supplied to two identical squaring circuits. The

outputs of these two squaring circuits, E2 + 2E 2 + E2 and

E - 2E1E2 + E2, are then subtracted, yielding the desired output,

4E1 E2 . This circuit is sometimes referred to as the four-squares

multiplier.

A number of multipliers of this type were built by the author

using balanced modulators as the square-law elements. They can be

made to have very high operating speed and a satisfactory dynamic

range. Difficulties were encountered in attempting to maintain the

two square-law circuits identical. The balanced modulators suffered

from tne usual troubles of vacuum tube parameters changing with age,

filament voltage, plate voltage, and the like. If these difficulties
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could be overcome, or if a more satisfactory type of square-law circuit

could be developed, the difference-of-squares multiplier would be entire-

ly satisfactory for the electronic differential analyzer. For the

present the new multiplying circuit described below, called the crossed-

fields electron-beam multiplier, appears to afford a more satisfactory

solution to the problem.

_.2 The Crossed-Fields Electron-Beam Multiplier

A beam of electrons moving in vacuum has extremely low inertia

and its three degrees of freedom afford a number of possibilities for

high speed multiplication. The standard cathode-ray tube provides a

beam of electrons and electronic means of controlling its motion in

cartesian coordinates. A sketch of such a tube is shown in Fig. 17.

El E3

ELECTRON GUN4T

1 ?2 3 1

Ez I IZZ CATHODE --

E E E

Fig. 17 Geometry of a typical electrostatic
deflection cathode-ray tube.

The cathode and first three grids of this structure make up that

portion of a cathode-ray tube normally referred to as the electron gun.

It is the purpose of this electron gun to form a narrow beam of electrons
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having a velocity along the axis of the tube kvz, where i,k, E are

unit vectors in the xyz directions respectively. The number of

electrons in this beam at any instant, that is the beam intensity,

is controlled by the voltage on grid No. 1, E g0 The magnitude of

the axial speed vz is proportional to the square root of the voltage

on the third and final grid of the electron gun, Eg3'

Ijl. Principal of Operation

If the electron beam leaving the electron gun with velocity kv,

passes between the first pair of deflecting plates across which there

is a potential El, the electron beam is given a component of velocity

in the y-direction jvy, according to the relation

j(~)IVY .z (34)

The electron beam is then moving in the region a-a' with velocity

v = kvz + ivy. (35)

In this region a-at there is a force Fx acting on the electrons in

the beam in the x-direction due to the electrostatic field between

the x-deflecting plates;

Fxe = e x , (36)

where e = the electron charge, 1.60 x 10719 coulombs, and

Ex = the electrostatic field between the x-deflecting

plates due to the impressed voltage E ,

E *E3 (37)

If an axial magnetic field kBz is also present in the region

a-at (such a field might be generated for example by a coil so wound

as to have its axis of symmetry coincident with the z-axis of the

cathode-ray tube), there is an additional force FXm exerted on the

electron beam in this region:

rxm e v x EB) , ()(38)
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where the x denotes vector cross product. The vector F points in

the x-direction. The speed v, is proportional to El and the magnitude

of the axial field Bz can be made proportional to some other external

voltage E2; then one can write from Eq. (38)

( - 1E .E 2 . (39)

Looking at Nqs. (36) and (38) one sees that in the region a-at there

are two forces Fxe and Px acting on the electron beam in the x-direc-

tion because of the crossed electric and magnetic fields.

If some means is available to make these two forces equal and

opposite, then

I y x kBS (40)

and from Eqs. (37) and (39) one finds

E3  k( 1 .B);(41)

the voltage E3 is thus proportional to the product of the two input

voltages El and E2.

In the arrangement described above the only forces acting to

deflect the electron beam in the x-direction are those in the region

a-a'. If these forces add up to zero, there is no x-deflection of

the electron beam. This fact can be used to bring about the desired

quality of the forces Fie and -Fxm as indicated in Fig. 18.

At the face of the cathode-ray tube screen two photocells V1 and

V2 are located. Between these two photocells a vertical partition

is placed coincident with the y-axis of the cathode-ray tube. If no

x-forces act on the electron beam, it will strike somewhere along

the edge of this partition. The outputs of the two photocells are

subtracted and fed to an amplifier which is connected to the electro-
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E I 1 E2

y V2

AMPLIFIER

Fig. 18 Feedback method of equating the forces in the
crossed-fields electron-beam multiplier.

static x-deflecting plates. For no x-deflection the outputs of the

two photocells are equal and opposite so that there is no voltage E,.

This is the case when the magnetic force, Fxm, is zero, that is when-

ever either B7 or vy are zero. If both BZ and vy are non-zero, there

is a magnetic force and the electron beam is deflected to the right

or left of the partition on the output screen depending upon the rela-

tive signs of the two inputs E1 and E2. Such a motion of the electron

beam results in increased output for one photocell and decreased out-

put from the other. The difference of these outputs is fed back to the

electrostatic plates as E3 with the proper phase to oppose the magnetic

force. If the gain around the feedback loop is made sufficiently

large, then the feedback voltage E3 is proportional to the magnetic

force and thus to the product E1 * E2 **

The fundamental characteristic of this multiplier is the use of the
crossed electric and magnetic fields in the region a-a', while the
manner in which the forces FW and Pxm are made equal is of secondary
importance.
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The magnitude of the magnetic force IFxm is proportional to the

product of El and E2, and the force changes direction when either El

or E2 change sign; therefore four-quadrant multiplication is obtained.

The speed of response for this multiplier is determined by (a)

the speed with which the voltage El on the y-deflecting plates and the

field Bz can be varied, and (b) by the speed with which the feedback

loop can respond. More will be said below concerning these points

in discussing the crossed-fields multiplier that has been built and

tested. It is relevant now to inquire, however, as to the balances

required by this multiplier. These can be separated by considering

the two cases for which the inputs El and E2 are each made independently

zero.

First assume that both input voltages E1 and E2 are zero; is the

output voltage zero? In any practical circuit the answer is certainly

no. E3 is the voltage at the output of an amplifier and even though

the amplifier input is zero there is always a certain amount of noise

voltage present. Some sources of noise can be controlled, while

other sources, such as shot noise in tubes and thermal agitation noise

in resistors are ultimate limiting factors. Suppose now the voltage

El is made non-zero while the voltage ,2 is kept zero. Then there is

a -y-deflection of the electron beam. In order that this deflection

cause no change in the light intensity on the two photocells, the

photocell partition has to be oriented to coincide with the path of

the electron beam. If this path is not a straight line, an error

results unless the partition can be so shaped as to take account of

this effect. Even though the partition is made to fall exactly along

the path corresponding to zero fields in the region a-a', some output
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is obtained unless care is taken to keep stray fields in this region

to a minimum. A common source of such stray fields are the 60 c.p.s.

power mains; these fields can be reduced by proper magnetic shielding.

Finally consider the third case, in which El is zero but E2 and corre-

spondingly the axial magnetic field is non-zero. Here zero output

requires zero velocity in the y-direction for zero voltage on the

y-deflecting plates. One requirement then is that the electron gun

produce a truly axial electron beam. If this is not the case, a small

biasing voltage may have to be introduced on the y plates for compensa-

tion. Another requirement is that the magnetic field be exactly axial.

For any practical coil this is only approximately true, and as a result

there are some forces on the electron beam due to cross-products be-

tween the field and the axial velocity kCvz.

Although the paragraph above contains a rather long list of possi-

ble sources of error in this multiplying scheme, considerations of this

type are necessary if a true evaluation of the worth of any multiplying

scheme is to be obtained. The incisive question is what happens in the

three cases for which the output of an ideal multiplier should be zero,

namely:

(a) both inputs zero,

(b) input No. 1 maximum and input No. 2 zero, and

(c) input No. 1 zero and input No. 2 maximum.

It is important to note from the above discussion in the crossed-

fields electron-beam multiplier the adjustments and sources of error

depend upon rather stable matters, such as the geometry of the cathode-

ray tube structure and the physical location of the error-sensing photo-

cells. Inherently variable processes, such as primary emission from
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the cathode, or secondary emission from some other surface, enter into

this multiplier only in the secondary manner in that they can cause

variations in the gain around the feedback loop; provided this gain

is always kept high these effects are negligible. This stability has

been borne out by measurements made on the practical multiplier de-

scribed below.

4.32 Practical Multiplying Unit

The complete circuit diagram of a crossed-fields multiplier is

shown in Fig. 19.

This unit is built around a Dumont 208 oscilloscope employing a

5LPIlI cathode-ray tube. The power supply and centering controls for

this tube are those normally provided in the Dumont instrument. The

P-l screen was chosen because of its short persistence, and high light

output in the blue and ultra-violet range where the 931-A photomulti-

plier tube is most sensitive. For the fastest possible response a

P-5 phosphor could have been utilized in either this unit or the func-

tion generator; the speeds obtained with the P-il phosphor were found

to be adequate in this differential analyzer.

The error sensing unit consists of two RCA 931-A photomultiplier

tubes. The outputs of these two tubes are subtracted and amplified

by a 12AU7 cathode-coupled phase inverter. This tube drives the 5LPll

horizontal deflecting plates directly to close the feedback loop. The

difference voltage from the photomultiplier tubes, which is the de-

sired product, is also connected to a 6J6 cathode follower providing

a low impedance output terminal.

The 931-A photomultiplier tube provides a convenient source of

stable d-c gain. An alternative feedback loop which has been employed
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is indicated in block form in Fig. 20.

929

5LPI I

Carrier Phase Carrier -

Oscillator Detector Amplif ier --

Fig. 20 Carrier feedback loop.

In this circuit the beam intensity of the cathode-ray tube and

thus the light output from the spot at which the electron beam strikes

the tube face is modulated at a carrier frequency, (of about 400 Kc/s).

The output of the pickup photocells is modulated at the carrier fre-

quency, and the difference of their outputs is amplified by a band-

pass radio-frequency amplifier. The output of this amplifier is phase-

detected and applied to the horizontal deflecting plates to close the

feedback loop. Similar results have been obtained from both these

feedback loops, but the unit shown in Fig. 19 is preferred because of

its simplicity.

The multiplier input to the vertical deflecting plates is made

through a pair of 6V6's connected to form a cathode-coupled phase

inverter. These tubes form the last stage of amplification normally

present in the Dumont oscilloscope; the only modification made was
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to disconnect the low level amplifying stages. The centering adjust-

ment associated with this amplifier is very convenient in setting the

zero balance on this input.

The axial magnetic field is generated by the ccil Ll, which is

wound about the horizontal deflecting plates of the 5LPll cathode-ray

tube. This coil is driven by a two stage d-c amplifier as shown. The

unbalanced input voltage to this amplifier, Em, is connected to a

cathode-coupled phase inverter of two 6AG5's. This stage in turn

drives the 829-B output amplifier. All of the tubes in this unit are

operated Class A1 .

4.32 Measured Multiplier Characteristics

The measured characteristics of the open feedback loop are plotted

in Figs. 21 and 22. To obtain Fig. 2.1 he feerdbvik loap iwa3 broken at

tne cat.ode-ray tube plates and a plot made of the output voltage of

the feedback loop as ordinate against the horizontal plate voltage as

abscissa. The second plot, Fig. 22, gives the loop gain as ordinate

against the horizontal plate voltage as abscissa. The horizontal plate

voltage could also be labelled horizontal spot displacement for the

cathode-ray tube beam, since horizontal plate voltage and horizontal

spot displacement are linearly related by the constant deflection

sensitivity of about 50 volts per inch. Fig. 22 could be obtained by

differentiating the curve of Fig. 21. It was measured in this case

independently by applying a small a-c signal to the horizontal deflect-

ing plates and measuring the a-c output of the feedback loop as a func-

tion of the d-c voltage on the horizontal plates.

It is important to observe that the gain of the feedback loop is

only constant over a very narrow region, corresponding to very small
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displacement of the electron beam from its zero-signal position direct-

ly below the vertical partition. This non-linearity in the feedback

loop is reflected in the high frequency response of the multiplier.

The balance characteristic of the multiplier is described by say-

ing that the output has the form

Output = E0 = k(E* Ee + .009Ee + .015Em + .0005), (42)

where k = 0.66.

This shows that both inputs are balanced-out to within 1.5% of

the full-scale output and that the residual noise in the output of

the unit is .05% of the full scale output. Fig. 23 is a triple exposure

photograph of the crossed-fields multiplier output for three different

conditions which should produce zero output. The signal used in making

this test was a 240 c.p.s. sine wave, which was synchronized with the

line frequency of 60 c.p.s. The output observed for both Ee and Em

zero is principally shot noise amplified by the 931-A photomultipliers.

There is also a small amount of power supply hum present. When Em is

zero and Ee is maximum, some second harmonic of tne signal Ee is observed

in tne output. This is caused by the fact that there is some change

in gain of the feedback loop as a function of the vertical position of

the cathode-ray beam. This results in some output from the feedback

loop because of the fact that the gains from the two photocells are

not identical. The residual output observed for the case of Ee sero

and Em maximum appears to be caused primarily by non-uniformities of

the magnetic field and defocusing effects.

The speed of the multiplier is best measured by observing its

output rise time for a square wave input signal. Photographs of the
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Fig. 23 "Zero output" of crossed-fields multiplier.

square wave response of the crossed-fields multiplier are shown in

Figs. 24 and 25. Fig. 24(a) shows a multi-exposure photograph of the

multiplier output when Em is a constant and BE is a 10 Kc/s square

wave of fixed amplitude, for various values of, EA. Fig. 24(b) is a

similar photograph for fixed Em and variable amplitude of square Wave.

One notes that in both cases the rise time remains constant at about

5 psec for small amplitude outputs, but increases linearly with out-

put for larger amplitudes. The reason for this behavior lies in the

nature of the feedback loop output as a function of displacement from

the zero position, as indicated in Fig. 21. For small signals this

output varies linearly with displacement of the cathode-ray beam,

and a linear response is obtained. Because of the high-frequency

time-constants in the feedback loop, however, there is a maximum rate

of change of output voltage with time which the unit can generate.
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6w- 50 psec.-4

Fig. 24(a) Multiplier square wave response; Ee
10 Kc/s square wave, Ethree different values.

Fig. 24(b) Multiplier square wave response; Ew coiatant.
E a variable amplitude 10 Ke/s square wave,

6*-- 50 psec.--
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If the input to the multiplier requires that this rate be exceeded,

the feedback loop can no longer follow; and the cathode-ray tube beam

is moved away from equilibrium into a region of very low feedback gain.

As long as the cathode-ray tube beam is completely to one side or the

other of the vertical partition the output voltage of the feedback

unit increases or decreases at a constant rate, independent of the

error present. The non-linear response shown in Fig. 24 is thus the

result of the non-linear characteristic of Fig. 21.

This effect can be overcome by redesigning the error sensing unit

of the feedback loop to give a constant loop gain for all possible

errors. One possibility would be to replace the partition used here

with a photographic film having uniformly varying density from com-

plete opacity along a vertical center line to transparency along the

edges of the cathode-ray tube screen.

Tne output of the multiplier with Ee constant and Em a 500 c.p.S.

square wave is given in Fig. 25. The rise time for thio channel is

considerably longer than for the electrostatic input channel being

about 450 psec. The limiting factor in this case is the amplifier

driving the axial field coil Ll. For the multiplier built, this coil

has an inductance of about 2 henrys and requires a maximum current of

about 25 milliamperes. The design of magnetic deflecting circuits

for cathode-ray tubes is amply discussed elsewhere.36,37 Through

suitable redesign it should be possible to increase the speed of

36 M.I.T. Radar School Staff, Principles, of Radar. McGraw-Hill,
New York, 1946, 2nd Edition, Chap. III.

Schade, 0.H., "Magnetic Deflection Circuits for Cathode-Ray Tubes,"
RCA Review, v. 8, p. 506, September 1947.
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I*IOOOpsec.--I

Fig. 25 Multiplier sqtnare wave response; Be constant,
Em a 500 o.p.s. square wave.

response of the axial field to give a rise time of a few microseconds.

It will be shown in Section VI that for many cases this lack of speed

in a single channel of a multiplier is not a very serious drawback.

Photographs of the complete multiplier characteristics are given

in Figs. 26 and 27. A qualitative measure of response linearity is

given by these photographs, which are taken by photographing on a

cathode-ray tube screen plots of the input versus output of the multi-

plier with fixed input on one channel and variable input on the other.

A more quantitative check of the multiplier linearity can be

made by subtracting the input from the output and amplifying the

difference. The photographs of Figs. 28 and 29 are obtained in this

manner. In each case a sinusoidal input is applied to one channel

and the second channel input is held constant. Fig. 28 shows plots

versus time of the input, output, and difference between the input
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0.I

IN PUT
Fig. 26 Multiplier input-output characteristic; sine wave

input for 10 and various constant values for E.

a-

0f

INPUT
Fig* 27 Multiplier input-output characteristics for various

fixed values of Es and sine wave input for Em,.
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Fig. 28 Multiplier linearity check, E. held constant.

Fig. 29 Multiplier linearity check, B, held constant.
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and output for E, held constant. The three photographs are super-

imposed by a triple exposure and the difference signal was amplified

by an extra factor of ten so that it would be clearly visible. In

addition to the shot noise from the photomultiplier tubes there is

about 14 second harmonic distortion evident.

Fig. 29 shows the similar situation for the case E constant

and E% variable.

Fig. 30 shows the output of the multiplier plotted versus time

for two sinusoidal input signals having a frequency ratio of 8 t 1.

This pattern is a useful one for quickly adjusting the zero-balances

of the multiplier. Fig. 31 shows the effect of an unbalance in the

magnetic input and Fig. 32 shows the effect of unbalancing the electro-

static input.

Fig. 30 Multiplier output versus time for Ba 480 c.p.s.
sine wave and 16 a 60 c~p~s. sine wave,
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Fig.* 31 Same aa Fig. 30 with electrostatic input unbalanced.

Fig. 32 Same as Fig. 30 with magnetic input unbalanced.
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In summary then, a crossed-fields multiplier has been built and

tested. Its output is linear in each input to within 2% and the zero-

balance errors amount to about 2.5% of the full scale input. The causes

of the various zero errors have been determined; it should be possible

without much redesign to reduce these errors by a factor of about ten.

The balance adjustments are easy to establish and maintain.

The application of this multiplier to the solution of differential

equations with variable coefficients is described in Section VI.

There are a few further modifications of this multiplying method

which may be worthy of further consideration. One is the possibility

of building a special cathode-ray tube with the error-sensing detector

inside the evacuated envelope of the tube. One such scheme would

be to mount two parallel collector plates within the tube, where the

tube face is now located, to replace the photocells used in the present

model. Use might also be made of the fact that the velocity ivy is

inversely related to the axial velocity of the electron beamaccording

to Eq. (34). Since vz is controlled by the voltage on the third grid

of the electron gun Eg3 there is a possibility of obtaining division

in addition to multiplication, at least over a limited range, in the

same tube.

A number of other schemes for multiplying with special cathode-

ray tube structures have been considered. Unless a long-term develop-

ment project were envisaged, however, the time necessary to construct

satisfactory vacuum tubes is such as to render these ideas unattractive.
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Function Generation

Some Methods of Function Generation

A second unit indicated as necessary in the discussion of Section

III is the arbitrary function generator, or input table. Such a unit

must be capable of generating an output voltage that is an arbitrary

function of the input voltage. As has been pointed out, such a func-

tion generator can be made to generate functions of time by making

the input signal a voltage which is linearly related to time.

It should be recognized, however, that there are other possible

ways of generating voltage functions of time without the use of an

arbitrary function generator. One well known method is to approximate

the desired time function by a power- or Fourier-series expansion. A

series of voltages varying as t, t2 t3, etc., can be generated and

then combined in adding and subtracting circuits to approximate the

desired function. Alternately a harmonic synthesizer might be con-

structed, generating a series of sine waves of controllable phase

and amplitude with frequencies harmonically related to the repetition

rate of the differential analyzer. Combinations of these voltages

could be made to approximate any desired function of time according

to well known Fourier-series techniques. A harmonic synthesizer of

this type has been developed in the Biology Department at the

Massachusetts Institute of Technology.

Another possibility is to utilize the technique frequently employ-

ed on the mechanical differential analyzers to generate functions which

Welti, G., Masters Thesis in Mechanical Engineering at the
Massachusetts Institute of Technology, Spring 1948.
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can be specified as solutions of differential equations. In this

manner any function of time for which the differential equation can

be found can be generated on an auxiliary portion of the electronic

differential analyzer. This technique is used to generate the func-

tions sinwt and cost in the solution of the Mathieu and Hill equa-

tions described in Section VI. This method permits one to generate

functions of any variable on the mechanical differential analyzer,

where the independent variable is arbitrary. On this electronic differ-

ential analyzer it is only applicable to the generation of functions

of time, because time is always the independent variable. This is

the only place where the use of time as the independent variable

appears to impose any real restriction on the electronic differential

analyzer. As will be seen this restriction is only minor and can

easily be avoided.

A.5 Arbitrary Function Generation

To generate an arbitrary function the mechanical machines utilize

an input table. The desired function is drawn on the table and an

operator manually tracks this curve with a cross-hair as the machine

moves. Some work has been done on automatic means of tracking the

desired function, but in so far as the author is aware no general

application of such a scheme has been made.39 Because of the high

speed of operation required, a function generator for the electronic

differential analyzer must be entirely automatic in its operation.

39 Hazen, H.L., Jaeger, J.J., and Brown, G.S., "An Automatic Curve
Follower," Rev. Sci. Inst., v.7, 353-357, September 1936.
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For this unit the function to be generated is cut out in the form

of an aperture in some opaque material which is placed in front of a

cathode-ray tube screen. A photocell is located in front of this

aperture, and its output, suitably amplified, forms the output voltage

of the function generator. The electron beam is forced to sweep over

the vertical line a-at continuously at a high frequency; the light

radiated by the portion of the vertical line that is visible through
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The task of reproducing a completely arbitrary wave shape at a

repetition frequency of 60 c.p.s. might at first glance seem extremely

difficult. Televisionwhich has been generating arbitrary functions

of not one, but two variables, at such repetition frequencies suggests

the answer.

One simple scheme for the generation of arbitrary functions is

indicated in Fig. 33.
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the function aperture is proportional to the length of the visible

line. The photocell has an output linearly proportional to this light,

and the horizontal position of the line is proportional to input volt-

age applied to the x-deflecting plates of the cathode-ray tube. If

the aperture is so made to have its width linearly related to the

function to be generated, then the photocell amplifier output is pro-

portional to the plotted function of the input voltage.
4 0 , 41, 42

This function generator is simple in its construction, but has

the disadvantage of depending on the uniformity of the cathode-ray

tube screen, the photocell characteristic, and the cathode-ray tube

electron beam.

1.6 The Feedback Function Generator

The function generator shown in Fig. 34 was first developed by

the author in July 25, 1947. It has been described independently by

other investigators in this country and England.43, 44, 45

4.61 Principal of Operation

The difference between this system and that of Fig. 33 is the

use of a feedback circuit to reduce the sensitivity of the output to

the instable chPrPe&Pristics of the cathode-ray tube and photocell.

4+0 Koehler, op. cit., reference 25.

41 Gilson, W.E., "Medical Stimulus Circuits," Electronics, p. 99
July 1945.

42 A function generator of this type has been built by H. Logemann in
the Biology Department of the Massachusetts Institute of Technology.

43 MacKay, op. cit., reference 24.

Mynal, op. cit., reference 22.

45 Sunstein, D.E., "The photoformer," presented at the National Con-
vention of the Institute of Radio Engineers in March 1948.
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Fig. 34 Feedback function generator.

In Fig. 34 the desired function is again cut out of some opaque material;

this time in the form of a mask rather than an aperture. This mask is

placed across the face of a cathode-ray tube. The output of a photo-

cell located in front of the masked cathode-ray tube screen is fed

through an amplifier to the vertical deflecting system of the tube. The

phase of this amplifier is chosen to give a downward deflection of the

cathode-ray tube beam when the amount of light striking the photocell

is increasing. Finally a biasing voltage at the output of this ampli-

fier is so chosen that the electron beam strikes the screen along the

line b-bt if no light enters the photocell. The line b-b' must every-

where be above the function mask. If the feedback loop is closed, then

as long as the electron beam strikes the screen above the function mask

the photocell develops an output forcing the electron beam down toward

the mask. As the electron beam reaches the mask the light-spot on the

owl
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screen begins to be obscured by the edge of the mask; as a result the

light striking the photocell, and correspondingly the voltage forc-

ing the electron beam downward, is reduced. The beam takes up an

equilibrium position such that the light striking the photocell gen-

erates just enough voltage at the amplifier output to hold the beam

stationary.

If the electron beam is now moved in a horizontal direction by

a voltage applied to the horizontal deflecting system, the beam is

constrained to follow the silhouetted function mask at every point.

If the horizontal position of the beam and the input to the horizontal

deflecting amplifier are linearly related, the output of the feedback

loop is the plotted function of the input voltage.

4.62 Practical Function Generating Unit

The circuit diagram of a practical arbitrary function generator

is given in Fig. 35. This unit, like the crossed-fields multiplier,

was built, for convenience, around a Dumont 208 oscilloscope. The

cathode-ray tube utilized is the 5LPll.

A 931-A photomultiplier tube is used as the detecting photocell

in Fig. 35. Its output is amplified by the 6J6 phase inverter and

applied directly to the vertical deflecting plates of the cathode-ray

tube. The zero signal operating point is adjusted by the biasing

potentiometer P-1 so that the unit tracks over the entire range of the

function mask. The input to the function unit utilizes the last stage

of the horizontal amplifier normally employed in the model 208 oscillo-

scope. This consists of a push-pull 6V6 cathode-coupled phase inverter.

The zero point for this input can be set by the potentiometer marked

P-2.
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k.L6. Measured Function Generator Characteristics

The open circuit characteristic of the feedback loop is plotted

in Fig. 36; the 6J6 is iisconnected from the cathode-ray tube plates.

This figuxe gives the measured plate to plate voltage of the 6J6 as

the electron beam is moved from below to above a portion of the function

mask. Note that here, as in the crossed-fields multiplier, the error

sensing is linear over only a very small region about the edge of the

function mask. Fig. 37 is a plot of the feedback loop gain over the

same range of spot positions.

A test of the speed of a function generator can be made by generat-

ing tsie step-function shown in Fig. 38. The technique used is to place

a mask of this function in the function generator and then generate it

as a function of time by applying a linear sweep voltage to the function

generator input. The output can then be studied on the linear time base

Fig. 38 Function generator test mask.



of a standard cathode-ray oscillograph. A photograph of the results

of such a test for the function generator of Fig. 35 is given in Fig. 39.

In this test the feedback loop gain was experimentally adjusted to give

the best observable response. One notes that the non-linearity of the

error sensing device in the feedback loop causes the rise time to be

a function of the amplitude as was the case with the multiplier. The

rise times indicated in Fig. 39 range from 8 to 16 microseconds while

the fall times run from 4 to 16 microseconds.

-- 4 1'- 50 psec -

Fig. 39 Response of feedback function generator
to test mask of Fig, 38,
pius 50 psec marker pips.

That there is an optimum gain for the feedback loop of this func-

tion generator is recognized by considering the nature of the electron

beam as it strikes the cathode-ray tube screen. This beam ideally has

sharply defined edges; in practice the electron density of the beam

cross section is as sketched in Fig. 40.
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Fig. 40 Probable distribution of electron density
through the cross section of a cathode-ray

tube electron beam.

As a result the light intensity radiated from the cathode-ray

tube screen is a similar function of position across the diameter of

the spot. If the gain of the feedback loop is moderate, a light

intensity corresponding to a height hl is necessary to hold the electron

beam to the mask edge and the effective diameter of the electron beam

is a-a'. If the feedback gain is reduced, sufficient output is not

available to permit tracking over the entire function mask. If, on

the other hand, the gain is increased too much, the intensity necessary

to-hold the cathode-ray tube beam to the mask may be reduced to some

value such as h2 in Fig. 40. For this condition then, because of the

bell shaped intensity destribution of the electron beam, the effective

diameter of the electron beam has been increased to b-b'. This effec-

tively blunts the function generator error sensing device; the broad

beam cannot follow fine detail on the function mask and resolution is
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lost. This effect is illustrated in Fig. 41, which is a triple expo-

sure photograph of the function generator output, generating the test

pattern as a function of time, for feedback gains that are optimum,

greater than optimum, and less than optimum.

LOW

-- OPTIMUM

*-HIGH

FIg. 41 Effect of feedback loop gain on the generation
of a function test pattern.

The overall linearity of the function generator was tested by

generating the linear function of Fig. 42. With this function mask

in place a sinusoidal input was applied to the function generator.

The function generator output was then applied to a subtracter and

compared with the input signal. Fig. 43 is a triple exposure photo-

graph of the results of this test. A 240 c.p.s. sine wave is the

test signal. Fig. 43 gives plots of the input, output, and difference

between input and output versus time for the function generator. The

difference trace was photographed with an additional gain in the

observing oscilloscope of ten times. One sees from this test that
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Fig. 42 Linearity test function

Fig. 43 Results of linearity test.
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the overall non-linear distortion of the function generator is 2.5%. 1

The function generator described here has been utilized as a

component of the electronic differential analyzer to solve a number

of non-linear differential equations, see Section VI.

4.64 Possible Modifications of Function Generator

The carrier type of feedback loop described in connection with

the crossed-fields multiplier can also be applied to the function

generator. This has been done by the author and satisfactory re-

sults were obtained. As in the case of the multiplier, however, the

increased complexity of the carrier system does not seem to be war-

ranted. If the improved signal to noise characteristics of the

carrier amplifier and phase detector system were required, this

scheme could be employed. A rather minor advantage of the carrier

system is that it removes the necessity for an elaborate light shield

around the photocell pickup, since a carrier system is only sensitive

to light modulated at the proper carrier frequency.

In addition to the obvious applications of the function generator

to the solution of differential equations, the unit may be used as

a component in either the logarithmic cr difference-of-squares multi-

plying schemes. This application would require two or three function

generators per multiplier, and would therefore be considerably more

complicated than for example, the crossed-fields multiplier.

Photographs of the photocell pickup and feedback amplifier for

the function generator are shown in Fig. 44. Fig. 45 shows the com-

plete function generator with the photocell unit in place before the

face of the modified Dumont 208 oscilloscope.
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Fig. 44 Photocell pick-up unit for feedback function generator.

I
U

Fig. 45 Feedback function generator.
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Addition and Subtraction

.7 Common Adding Circuits

Three common means of obtaining the sum of two voltages are given

in Fig. 46. Although this figure shows the connections for addition

of only two voltages, any of these schemes can be generalized to sum

any number of voltages. For the circuit of Fig. 46(a) the various

voltages to be added are connected to the grids of a number of pentode

tubes having a common plate load resistor RL, If this load resistance

is chosen to be much smaller than the parallelled plate resistances

of all the tubes connected to it, then the output voltage is given by

Eout = (gmlE1 + gm2E2 +...+ gmnEn)RL , (43)

where n is the number of tubes with parallelled plates,

gmn is the transconductance of the nth tube, and

En is the grid input voltage to the nth tube.

This adding circuit requires one tube per input. The multiplying

constants for each term in the sum of Eq. (43) can be varied by adjust-

ing the quiescent operating point and thus the transconductances of the

various tubes. This dependence of the sum coefficients on the tube

parameters is usually more of a drawback than an advantage, because of

the difficulty in preventing these constants from varying with age,

line voltage, and the like.

The passive adder of Fig. 46(b) forms the sum according to the

relation

Eout = Eli +1 A++.+ j + E2 R 2+R+ j+
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where n voltages El through En are connected through resistors RH through

Rn to the common point x on the output resistor Ro. If all the resistors

RO, Rj,...,Rn are made equal, then Eq. (44) simplifies to the expression

Eout ~~ (n + 1) (El + E2 + E3 +...+ E). (45)

This adder has the advantages of extreme simplicity, and dependence

for its calibration on the relatively stable characteristics of a pas-

s3ve resistance. Its principle disadvantage lies in the fact that the

gain of such an adder is always less than one. This can be overcome

by ampiifying the voltage Eout in an amplifier stabilized against changes

in tube parameters, power supply hum, and the like, by negative feed-

back.

_4. The Feedback Adder

The feedback amplifier adder of Fig. 46(c) combines the passive

adder and stabilized amplifier into a single unit. This is the type of

adder employed in the electronic differential analyzer of this thesis.

To understand the behavior of this amplifier let us assume that the

amplifier labelled -p in the figure has a constant gain of -p for all

frequencies of interest, infinite input impedance, and zero output

impedance. For this case one finds

Eout E + E2 +...+
pu + 1 + R ( + + . . )( 60 R 1 R 2 (46)

which reduces, for the special case of Ro, Ri,...,Rn all equal, to

Lout - (jM + + n) (l + E2 + E3 +...+ Ed . (47)

One sees that if p is considerably greater than (n + 1), the sum thus

formed is substantially independent of changes in the amplifier gain p.
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Comparing this expression with Eq. (45) for the passive adder case,

one observes that the passive adder plus an amplifier has exactly the

same characteristic as that of Eq. (47) provided the amplifier gain

is - n + . This is just the characteristic that one achieves

if the amplifier were designed with an open loop gain of -p and a neg-

ative feedback circuit to reduce the gain to the value - n + 1)

Thus the feedback adder of Fig. 46(c) is exactly equivalent to the

passive adder of Fig. 46(b) plus a stabilized feedback amplifier hav-

ing the same open loop gain as the amplifier used in the feedback adder.

The use of the passive adder and separate feedback stabilized

amplifier has perhaps a small advantage in that it isolates the two

functions; thus there is no danger that changes in the adding resistors

will influence the stability of the feedback unit. The feedback add-

ing scheme is convenient, however, since with a very minor change it

can be converted into a time integrator or differentiator. Its use

therefore provides maximum flexibility in a small differential analyzer.

The feedback adder is basically a feedback amplifier and all the

precautions normally employed in the design of amplifiers with large

amounts of feedback must be observed to avoid poor transient response

and oscillation. Some discussion of this point is given when the

particular unit used in this electronic differential analyzer is de-

scribed. The literature on the subject of stability in feedback

amplifiers is very lengthy and the problem certainly cannot be treated

in any detail here. 46,47,48,49 It should be noted that the feedback

46 Bode, H.W., Network Analysis and Feedback Amplifier Desun.
D. Van Nostrand, New York, 1945.

Radiation Laboratory Series, Vol. 25, Theory of Servomechanisms,
McGraw-Hill, New York, 1947.



48 Hall, A.C., The Analysis and Synthesis of Linear Servomechanisms,
Technology Press, Massachusetts Institute of Technology, May 1943.

19 Brown, G.S., and Campbell, L .P., Principles of Servomechanisms,
Wiley, 1948.
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adder changes the algebraic signs of the voltages it adds due to the

180 degree phase shift in the feedback amplifier. An auxiliary use

of such a unit is thus that of a sign-changer.

As indicated in Section III the present differential analyzer

repeats the entire solution of the differential equation every 1/60

second. In order that these repeated solutions be identical, the

output voltages of every unit in the differential analyzer must be

identical at the beginning of every solution period. This condition

requires the d-c output of each adder be uniquely determined by its

input$

.81. D-c Restoration

One means of accomplishing this is to use a direct-coupled ampli-

fier in the feedback adder. It is desirable, however, to make the

gain of that -unit very high in order that considerable net gain be

achieved with a reasonable amount of negative feedback stabilization.

Further, since the d-c output of each adder influences the initial

conditions of the differential equation being solved, this output

should not vary with time because of extraneous factors such as tem-

perature, tube age, power supply voltage, and the like. High gain

d-c amplifiers are notoriously poor in this regard, and it was felt

that they should be avoided wherever possible.

A-c coupled amplifiers are free from the difficulties of long-

time instability and drift, but do not transmit the necessary zero
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frequency component. Each RL coupling circuit in such an amplifier

can be thought of as a time integrating circuit. In general the final

value of the integral of the voltages being treated is not equal to

the desired initial value; hence some means of forcing the condensers

to assume the proper initial charges must be employed. There is for-

tanately a certain amount of time for this purpose, namely the off-time

of the differential analyzer, approximately 1/120 second each 1/60

second. This problem is very analogous to one encountered in television

where a zero-frequency component must also be transmitted and some un-

used time, the backsweep period for the television scan is available.

To accomplish this result a number of pulsed d-c restoration or

clamping schemes have been developed.

One such circuit which is particularly well adapted to the present

problem is shown in Fig. 47.50,51 When the diode in this circuit is

not conducting, one has a normal a-c coupling consisting of the coupling

condenser Cc and a shunt resistance to ground due to the input resist-

ance of the amplifier tube and the back resistance of the diodes.

During the clamping time gate signals from an external gate generator

cause both diodes to conduct and thus form a low impedance path from

the grid to a fixed potential, depending in the circuit shown on the

setting of the potentiometer R2 - Provided the time constant CoRi is

long compared to the clamping time, Ri being the internal impedance

of the gate generator, the impedance of this clamping action is 2Rd + 2

50 Roe, J.H., "New Television Field Pick-up Equipment Employing the
Image Orthicon, " Proc. I.R.E., v. 35, 1532-1546, Dec. 1947.

51 Wendt, K.R., "Television DC Component," RCA Review, v. 9, 85-111,
March 1948.
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Fig. 47 RCA diode clamping circuit.

where Rd is the conducting resistance of the diodes. By using the

circuit of Fig. 47 it is possible to obtain the necessary zero-frequency

response over the solution period for the differential analyzer and

still avoid sensitivity to changes in plate supply voltages, cathode

emission, etc.

The resulting amplifier is more complicated than a simple a-c

coupled amplifier since one of these clamping circuits must be employed

for each interstage coupling condenser. The complexity is considerably

less, however, than would be required if a d-c amplifier of comparable

performance were employed.

The differential analyzer off-time is utilized for the clamping

period and every clamping circuit in the entire analyzer is driven

by a single gating pulse, thus insuring synchronous operation.

An ordinary relay could also be used instead of the diode clamp-

ing circuit if sufficiently precise operation could be obtained.

CO R CO

RI m
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Brown Instrument Vibrators were used by the author for this purpose.52

These relays gave good performance from the point of view of noise

and contact chatter, but they were not easily adjusted for synchronous

opening and closing times.

4.82 Practical Adding Unit

The circuit diagram of the complete adder used in the electronic

differential analyzer is shown in Fig. 48. Miniature tubes are employed

in this amplifier in the interest of small size and power consumption.

The 6AG5 pentode first stage is followed by a cathode-coupled 6J6

amplifier. The cathode-coupled circuit is employed here to yield the

180 degree net phase shift necessary for stable negative feedback.

The 6J6 output cathode follower gives a very low output impedance and

prevents the output load from appreciably influencing the feedback

stability.

The two a-c coupling circuits are d-c restored by the 6AL5 diodes

shown. The first of these clamping circuits, between the 6AG5 and the

first 6J6, is a d-c connected version of the circuit of Fig. 47. This

saves two large coupling condenqers. The gate pulses are equal and

opposite in magnitude, so that the grid of the first 6J6 is clamped

to zero volts by this circuit. The clamper on the output 6J6 grid

employs a-c coupling of the gate pulses. This permits adjusting the

potential to which the grid of the output tube is clamped with the

potentiometer, and thus serves as an' output d-c level adjustment.

The shunt feedback resistor Ro plugs into the terminal marked

J5 and the series resistors for the adding circuit plug into terminals

52 Synchronous Converter No. 75828-1, Brown Instrument Co., Philadelphia,
Pennsylvania.
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J3 and J4. In normal operation R0 is 51,000 ohms. The adder gain for

either input channel is then variable over a range of 10 : 1 by means

of the input controls. Changes in gain greater than 10 : 1 are

achieved by varying the values of the series input resistors at the

terminals J3 and J.

Equations (46) and (47) give the characteristics of a feedback

adder built around an amplifier whose gain -pL is constant for all

frequencies. The amplifier of Fig. 48 is not such an ideal amplifier;

rather it has a characteristic at high frequencies of the form

(1 + jwR3C3)(1 + jwR4C4). (48)

The measured amplitude and phase characteristics of the amplifier

without feedback are plotted in Fig. 49(a) versis a logarithmic fre-

quency scale. From this figure one finds the high frequency time-

constants of the unit to be

R3C3 = 1.59 peconds, (49)

R4C4 = .568 pseconds. (50)

For a two channel adder such as this, Eq. (46) becomes

Eout U- E i E- + ER2} (51)
+ 1 + R +

In obtaining this expression stray capacities across the resistors

were neglected. At high frequencies this assumption is no longer

justified, and one must replace

Re
R by +RO ,(52)

Rj by 1 + jwR1C , and (53)

R2 by - +' 2 , (54)
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where C., 01, and 02 are the shunt capacities associated with Ro, R1 ,

and R2 respectively. Substituting Eqs. (48), (52), (53), and (54) in

E q . (51 ) g iv es Il i 1  + J R [ + Jw R 2C 2J 3
I 

1 1 + JROO 2R2 1 + JmR202

+x ,e (1+jw (1+jaR 4 T )R 2 (1+jwR 1 )0+ R1 (1+JwR2c2

RiR2(1 + jwRoC0)
(55)

as an accurate expression for the behavior of the feedback adder at

high frequencies.

In this unit the time constants R3C3 and R4 C4 are associated with

load resistors and stray capacities within the amplifier and are not

very easily varied. The external time constants R0 CO, RC1, and R2C2

are, however, easily varied. Through suitable adjustment of these

external time constants, by analytic or experimental means, an optimum

transient response for the unit can be achieved. The adder pulse

response is shown in Fig. 49(b).

1w--- 2psec-- 1

Fig. 49(b) Adder pulse response.
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4.83 Measured Adder Characteristics

The open loop characteristics of this amplifier (no feedback)

are as listed below:

Voltage gain - - - - - - - - - - - - - - 1500 times or 63.5 db.

Upper half power frequency - ------ 100 Kc/s.

Lower half power frequency - - - - - - - 0.16 c.p.s.

This adder can be operated at a variety of gains, according to

the setting of the various controls and values of the plug-in resistors;

it is never run with a gain for either channel of more than 150, or

43.5 db. The characteristics of the unit as normally operated are

given below:

Voltage gain - - - - - - - - - - - 150 times or 43.5 db. maximum

Upper half-power frequency - - - - 650 Ke/s.

Lower half-power frequency - - - - 0.016 c.p.s.

Rise time - - - - - - - - - - - - 0.4 sec. (10% to 90%)

Overshoot - - - - - - - - - - - - 2% maximum

Output noise - - - - - - - - - - - 1-10 millivolts

Maximum output - - - - - - - - - - 20 volts

Output impedance - - - - - - - - - 10 ohms maximum

The linearity of the adder unit was tested by applying a sinu-

soidal signal to the input; the gain was set to 100, and the output

attenuated and subtracted from the input in a second adder. The

results of this test are shown in Fig. 50 which is a triple exposure

photograph of the input, output, and difference between the input

and the output. The difference voltage is to a scale 100 times that

of the input and output. From this figure one sees that the harmonic

distortion is less than 0.2%. This data was taken for an output signal
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Fig. 50 Linearity test for adding and inverting unit.

having 30 volts peak to peak amplitude.

The application of adding units to the solution of differential

equations on the electronic differential analyzer is described in

Section VI. An investigation of the manner in which the finite band-

width of the adding units can introduce errors into the solution of

differential equations is given in Section V.

Integration

A large number of circuits designed to integrate a voltage with

respect to time have been developed in recent years. This develop-

ment has been done with two applications in mind (1) the generation

of linear sweep voltages for television and radar and (2) computation



in fire-control computers and electronic simulators.53,54,55,56,57,58,59,

One of the simplest integrating circuits is the common RC low-pass

filter shown in Fig. 51.

El C EZ

Fig. 51 RC Integrator.

Bell Telephone Laboratories, op. cit., reference 13.

Ragazzini, et al., op. cit., reference 14.

Admiralty Computing, -op. cit., reference 15.

Korn, op. cit., reference 16.

Mynall, op. cit., reference 22.

M.I.T. Radar School Staff, op. cit., reference 36.

?uckle, 0.., _Time Bases John Wiley & Sons, New York, 1943.

Radiation Laboratory Series, Electronic Instruments, Vol. 21.

Radiation Laboratory Series, Electronic Time Measurements, Vol. 20.

53
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60

61
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is circuit

F2(W) 1 .
E2 1 + jWRC

.gh frequencies, I RC,

(56)

(57)
E2  0:: .

Y1_(O ~ W1

This is the frequency response of an ideal time integrator, for which

E2 (t) C 1 (t)dt . (58)

In order that this simple integrator perform accurately the time

constant RC must be large. This makes the scale factor in Eq. (58)

very small. Most of the more complicated integrating circuits have

as their objective increasing the effective time constant without this

reduction in scale factor.

It is not possible here to go into a detailed discussion of all

the various integrating circuits which have been proposed. Instead

attention is focused on that circuit employed in the present electronic

differential analyzer in order that its characteristics be well under-

stood for future error analysis.

4 The Feedback Integrator

The basic feedback integrator employed in this work is indicated

schematically in Fig. 52.

4.91 Ideal Characteristic

The similarity between this unit and the adder of Fig. 46(c) Is

evident. The only difference is the use of a condenser in the shunt

feedback arm instead of a resistor. If one assumes the ideal case-

for which the amplifier has infinite gain and bandwidth together with

zero output impedance and infinite input impedance, this circuit has
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Fig. 52 Feedback integrator circuit.

the transfer characteristic

E.
= - --in (59)Bout -jwRC

4.2 Limitations of Realizable Integrators

This is a characteristic that can only be approximated in practice,

because practical amplifiers do not have infinite gain or bandwidth.

The amplifiers used in this differential analyzer have at least one

low- and one high-frequency time constant; they also have finite mid-

band gain. Such an amplifier has a gain

(1 + jwT)(l + jo() , (60)

where po = bandcenter gain of amplifier,

Tj = low frequency time constant of amplifier,

o( = high frequency time constant of amplifier,

W = 2xf = frequency in radians per second.
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Using this realizable gain characteristic in the circuit of Fig. 52

and assuming that p '1 at all frequencies of interest one finds that

the integrator transfer characteristic is

out JORC jWT1  1 . (61)
Ein jwRC 1 + jwpoRC + jwT2  I + jW c

The manner in which this characteristic differs from the ideal of Eq.(59)

is best studied by considering a plot of the magnitude of Eq. (61) in

decibels versus the logarithm of the frequency. Such a plot is given

in Fig. 53.

-IDEAL

0

- jFREQUENCY IN RAD-/SEC-

-12-

I-z "N I SIOPS -6db/octave

0
4

R 
-24 -Rslope -2db/octov \

frequency with a slope of -6 db per octave. The gain is zero rb or

unity at the frequency = The response in the time domain of

this ideal integrator to a negatively applied unit step of voltage
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0

0

0
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otted in Fig. 54 as a dotted line.

Jo0

lp0
T

0
) 3poRC

TIME IN SECONDS

Fig. 54 Output voltage of time integrator versus
time for a negative unit step input voltage.

Separately considering the deviations of the realizable charac-

teristic of Eq. (61) from the ideal of Eq. (54), one observes first

that because of the finite bandcenter gain p0 of the amplifier the

gain characteristic approaches the maximum value p. at the frequencies

near . The effect on the integrator step function response of
p0RC

this first limitation is shown by the solid line in Fig. 54. The

output voltage, instead of rising linearly with time, is given by
-t

Eout = o(l - e4ORC); (62)

this is exponential in character with a time constant of poRC.

At high frequencies, because of the finite bandwidth of the

amplifying unit, the characteristic also departs from the ideal. At

?.RC
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Fig. 55 Short-time behavior of time integrator.

One sees from this that at the beginning of the step response

the unit behaves not as a single integrator, but as a cascade of two

integrators. We can speak of the integrator as having a high-frequency

cut-off at L or as having a rise-time 2.2 . This high frequency

point is, of course, analogous to the upper half-power frequency nor-

mally considered in an amplifier. The high frequency effects in inte-

grators are equally as important as the bandwidth limitations in the

adders.

In the case of ordinary amplifiers this high frequency cut-off is

something that cannot be avoided, because of the stray circuit capacities

ZZ

ZZ

ZZ
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the frequency -1- the slope of the amplitude characteristic increases

from -6 to -12 db per octave. This high frequency effect influences

the short time behavior of the integrator. This is illustrated for

a step voltage input in Fig. 55.



JWj 0RC
1 + jW(PoRC + RCC)

jWT
1

1 + jWTl,

1 + j(RCC * (63)
1 + jW aC

(64)

the high frequency response is exactly compensated. The limitation

of this scheme lies in the assumption that the amplifier high frequency

response can be represented by a single high frequency time-constant

as was done in Eq. (60). It has been found possible in practice, how-

ever, to make the integrator high frequency response so much better

than that of the adders and inverters that it is negligible in differ-

ential equation solutions.

The other effect which must be considered in practical integrators

is the low frequency time constant T, of the amplifiers. In Fig. 53

it was assumed that this time constant

T, = 4pRC . (65)

As long as TI is equal to or greater than this value, its effect is

to cause another break in the gain-frequency characteristic at the

very low frequency , as shown in Fig. 53. At this point the slope

changes from zero to +6 db per octave. Fig. 56 shows the influence

of this effect on the step function response of an integrator. In

Eout

Ein joRC

For this case, if Cc is chosen so that
0(

.ORCC = - ,P
Vo
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which inevitably are encountered. For the integrator, however, there

appear to be possibilities of removing this high frequency effect by

suitable compensating schemes, since no gain-bandwidth limitation is

violated by so doing. One such scheme is to shunt the series input

resistor of Fig. 52 with a small capacity Cc. If this is done, the

transfer characteristic of Eq. (61) becomes
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Fig. 56 Influence of a-c coupling on integrator
step function response.

Two other practical limitations ffecting integrator operation

are leakage across the integrating condenser C and the finite input

impedance of the amplifier. These effects both reduce the bandcenter

gain I of the amplifier. The new gain is
____ RL

I = L RinR ILRL' (66)0 PRi + R poR + RL, 66
where Rin the amplifier input resistance,

R = the leakage resistance across the condenser C.

If Eqs. (61) and (63) are rewritten with po everywhere replaced by

, exact expressions are obtained.

0
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the present differential analyzer the integrators are not permitted to

operate longer than a short time interval To, as indicated in Fig. 56.

When this is the case, the use of a-c coupled amplifiers is not a funda-

mental limitation on the integrator operation.



-101-

4.93 Practical Integrating Unit

The circuit diagram of the integrator used in the electronic

differential analyzer is given in Fig. 57. Comparing this circuit

with Fig. 48 one sees that both the adding and integrating units

are built around the same amplifying unit. In the integrator the

integrating condenser is inserted in the shunt feedback jack J5

while the series resistor, R of Fig. 52, plugs into J4. The scale

factor of the integrator can be varied over a range of 10 to 1 with

the input potentiometer; larger ranges than this are obtained by

changing the integrating condenser at J5 or the integrating resistor

at J4. The integrator input is at J2, and the output appears at

jacks J8 and J9.

4.9A Integrator Initial Conditions

The 6AL5 twin diodes are d-c clampers, as in the adding unit.

The use of these clamping tubes is particularly convient in this

integrator application. As pointed out earlier it is necessary

to establish the proper initial conditions for each integrator at the

beginning of each solution period. This can be done by bringing the

charge on the integrating condenser to zero and connecting a battery

in series with the output of the integrator at the beginning of each

solution period. This scheme is indicated in Fig. 58. For this circuit

the switches S1 and S2 should both be at position (1) during the differ-

ential analyzer off-time, and at position (2) during the on-time.

The d-c clamped amplifier automatically performs the operation

of switch Sl in Fig. 58. During the clamping period the input of the

integrator is zero because it is driven either by an adder or another

integrator. In addition the grid of the last 6J6 is clamped to a
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S0 (2)

C (2)
C

R

(I)
AMPLIFIER

Fig. 58 Initial condition switching circuit.

potential forcing the cathode of that tube to zero volts. Thus during

the off-time both the input and output of the integrator unit are forced

to a potential of zero volts. Under this circumstance the integrating

condenser discharges to zero with time constant RC. If RC and the

duration of the off-time are properly chosen, the integrating condenser

is almost completely discharged at the end of each off-time; hence the

function of S1 in Fig. 58 is automatically performed by the diode-

clamped amplifiers.

It is still necessary to add an initial value to the output of

the integrator at the beginning of every solution period. This is

accomplished by adding an adjustable voltage step to the integrator

output, as shown in Fig. 57. The adjustable height step is derived

from the standard gating pulse by a potentiometer. . A 10 to 1 change

in the step height is also provided by Sl. The initial condition is
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added to the integrator output by the passive adding circuit consisting

of R1, R2, and R3. This sum is then applied through the output cathode

follower to give a low output impedance for the unit. The 33 ppif con-

denser is inserted for high frequency compensation of the voltage divider.

4.95 Measured Integrator Characteristics

The integrator characteristic of Eq. (61) was calculated on the

assumption that an amplifier described by Eq. (60) is employed. The

gain-frequency characteristic of the amplifier of Fig. 57 is somewhat

more complicated than this since it involves at least two high and two

low frequency time constants of importance. The second high frequency

time constant is particularly important since it can lead to oscillation

in the integrator at high frequencies. A brute force method of prevent-

ing this is to make one of the high frequency time constants in the

amplifier considerably longer than the other so that the amplifier

does essentially have the high frequency behavior of Eq. (61) until

the loop gain around the feedback loop is less than unity. This is

the purpose of the condenser C1 in Fig. 57.

A photograph of the pulse response of this integrating circuit is

given in Fig. 59. The fuzziness of this photograph is caused by lack of

synchronization between the test pulse and the integrator gating pulse.

Because of the finite gain of the integrator amplifier its step

function response is that given by Eq. (62) rather than a linearly in-

creasing wave with time, Eout = t Equation (62) can be rewritten

Eut = t [1 t + 1 t2 7 (67)EOut RC ~21poRC +31 * (poRC)g ... (7

In this form one sees the way in which this integrator response

differs from the response of an ideal integrator, t . The error

increases with time; thus for a given RC there is a maximum time over
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14-5 usec-+4

Fig. 59 Integrator pulse response.

which the integrator is accurate to within a given percentage error.

For the electronic differential analyzer of this thesis the solution

time is about second, and the gain of the integrating amplifier120

is 1500. For an error equal to or less than 1% one has from Eq. (67)

T 1 .01 , (68)
2pORC

which indicates that the minimum permissible RC for a 1% error is

RC = T (69)

= 2.78 x 10~4 seconds = 278 psec.

For the differential equations discussed in Section VI a time constant

at least twice this value was employed.

In order that condenser leakage be negligible, the leakage

resistance RL of.-the condenser must be

RL 2 14LOR . (70)
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For R = 50,000 ohms in the unit of Fig. 57 this requires a leakage

resistance exceeding 300 megohms. It has been found necessary to use

mica integrating condensers to achieve this condition in practice.

For the minimum value of RC determined by Eq. (69) the integrator

time constant poRC is 0.416 seconds. In order that the a-c coupling

circuits of Fig. 57 not limit the integrator operation, their time

constants must be at least four times larger, that is, 1.66 seconds.

This large interstage time constant is realized with the relatively

small coupling condensers shown in Fig. 57 by virtue of the fact that

the only resistance from grid to ground of the d-c clamped stages

during the on-time is the leakage of the insulation, the input impedance

of the tubes operating at a negative bias voltage, and the back resist-

ance of the clamping diodes. This, in practice, is of the order of

hundreds of megohms. Occasionally after a spell of very damp weather

some reduction in this resistance occurs, but it has always been the

case that with a half hours operation, the heat generated by the units

themselves is sufficient to dry things out and bring the leakage

resistance back to its normal high value.

Division

4.10 Dividing Circuits Employing a Multiplier

The operation of division is necessary for the electronic differ-

ential analyzer. Using the units aiready described, there are at least

two possible methods of performing this operation. One is indicated

in Fig. 60.

One voltage El is applied to a function generator fitted with

the reciprocal mask 1 The output of this unit is then this is



C

Fig. 60 Division with function generator and multiplier.

This method has the drawback of complexity in requiring the use of

a function generator plus a multiplier. It is, however, very straight-

forward.

The dividing method actually used in the electronic differential

analyzer is shown in Fig. 61.62 If the multiplier has a gain constant

k and zero output impedance, and the amplifier of gain -p has zero

output impedance and infinite input impedance, then this connection

gives the characteristic
E2  R 1

E3 2 ,_2 R (71)
S kRl 1 + 1 + R2

kpRlE

62 Radiation Laboratory.Series, op. cit., reference 60.
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applied to a multiplier and there multiplied by the second input

voltage E2 - The multiplier output is then the desired quotient .

EE EgRECIPROCAL I I
O--- GENERATOR MULTIPLIER

EZ



and as

we have

E2  R2
El * kR'

kE E 3
MULTIPLIER

EM2 R E
AMPLIFIER ---

E 3

-4W--O

Fig. 61 Divider.

This connection was used for the solution of the Hill equation

described in Section VI. It requires an adder plus a multiplier, but

since the adder is a simpler unit than the function generator, it is

less complicated than the method of Fig. 60. In practice it is some-

what more difficult to achieve since it involves a feedback loop with-

in a feedback loop. The multiplier, which contains a feedback loop,

is part of the negative feedback loop of the adder amplifier. For

the multiplier of Fig. 19 mathematical analysis of this situation is

long as

R + R2
E1 1

h

(72)

r

(73)
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where El is the feedback voltage to the y-plates,

E2 is the input to the axial field amplifier, and

E3 is the input applied to the x-plates.

The only change necessary to convert the circuit of Fig. 19 to a

-109-

complicated by the fact that the multiplier operates non-linearly at

t
high frequencies, which is just the region where instability is enoun-

A

tered. Because of these difficulties an analytic investigation of

the stability of this circuit has not been made. Experimentally, how-

ever, it is possible to operate this circuit over a dynamic range

exceeding 50 to 1 in the output. The frequency response achieved is

at least as good as that of the multiplying unit alone.

4.11 Modification of Crossed-Fields Multiplier for Division.

Mr. W. Green of the Massachusetts Institute of Technology

Instrumentation Laboratory has pointed out to the author that the crossed-

fields electron-beam multiplier can be made to perform division directly

by the following modification. The amplified output from the photocells

in Fig. 19 is applied to the y-deflecting plates of the cathode-ray

tube instead of the x-deflecting plates. Then the voltage applied to

the x-deflecting plates becomes one of the inputs of the unit. Now as

long as the x-deflection is held to zero by the feedback circuit Eq. (41)

requires

E3 = k(E1 . E2) (41)

With the change of connections indicated, however, E3 is now one of

the input voltages and the output of the feedback unit is El; therefore

for this connection

El = ,
kED2
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divider is to interchange the connections to the x and y deflecting

plates of the cathode-ray tube. This dividing method has been checked

experimentally and found satisfactory over a range of 10 to 1. The

limitation on the range is the stray magnetic fields present in the

unit employed.

This dividing method was conceived and tested after the completion

of the experimental work of this thesis and has not therefore been

fully investigated or applied to the solution of any differential

equations. The method appears worthy of further investigation.

Gate Generation and Calibration

4.12 The Gate Generator

In the discussion of the adding and integrating units reference

was made to the use of gate pulses for the purposes of d-c clamping

and the insertion of initial conditions. As outlined in section III

the basic system of the present differential analyzer solves differ-

ential equations periodically at a repetition frequency of 60 c.p.s.

Two important switching functions must be performed, involving:

(1) turning the various units of the differential analyzer off and

on at the proper times and (2) removing the final conditions at the

end of each solution period; this requires zero clamping or d-c restor-

ing and inserting the proper initial values at the beginning of each

new solution.

All these functions are performed by 60 c.p.s. square waves which

are formed by the master gate generator and supplied to the various

units by coaxial cables. A circuit diagram of the master gate generator

unit is given in Fig. 62.
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A 60 c.p.s. sine wave, obtained from the power mains, is converted

to a square wave by the two 6AC7 limiter stages. The last 6AC7 drives

the grids of the two 6AS7 power output tubes. These output tubes oper-

ate as a phase inverter driving the two 100 ohm resistors.

The use of a very low resistance load assures a low output imped-

ance for the unit. This is of importance since one of the functions

of this unit is to provide gating pulses far the d-c clamping circuit

of Fig. 47. In this circuit effective clamping action is achieved

only if the internal impedance of the gate generator is at least as

low as the impedances of the 6AL5's when conducting.

The two half 6AL5's of Fig. 62 are d-c restorers. By adjusting

the setting of potentiometers R, and R2 it is possible to control the

level to which they restore and correspondingly the d-c level of the

gate signals. This is required because the first clamper in the add-

ing and integrating amplifiers of Figs. 48 and 57 is d-c coupled. It

is desirable to have the amplitude of these gate pulses as great as

possible since this amplitude limits the maximum output level of the

adding and integrating units. If the signals in these units exceed

the peak value of the gating pulses, the d-c clamping tubes conduct

during the on-time and thus limit the output. For the unit of Fig. 62

the output pulses have a height of about 25 volts.

The gating pulses are used not only for d-c clamping and initial

condition setting, but also to blank out the intensity of the viewing

scope during the off-time of the differential analyzer.

4.12 Time and AMolitude Calibrating Circuits

The gating pulses can also be used to synchronize the time cali-

brating circuit. Since the two quantities utilized in this differential
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analyzer are time and voltage, a calibrating unit must be capable of

measuring both of these quantities. The time calibrating circuit

shown in Fig. 63 is a type frequently utilized in radar applications

for this same purpose.63

The gate pulse turns on the cathode-coupled oscillator, in this

circuit a 12AU7 twin triode. The feedback in the 12AU7 oscillator

can be adjusted in this circuit by means of the regeneration control

potentiometer R1 * In operation this control is adjusted to the

point for which stable oscillation is just achieved over the time the

gate pulse is applied. The frequency of this oscillation is adjustable

by a tuned circuit in the grid of this tube. The output of the oscil-

lator is supplied to a three stage triode limiter consisting of the

three half-12AU7 tubes labelled V3, V4 , and V5. The square waves at

the output of the last limiter are then differentiated by the RC cir-

cuit C 2 and R2 . One half of the resulting pips are limited by the

1N34 crystal at the grid of V6 , and the remaining positive pips are

applied to cathode-follower V6 to provide a low output impedance.

The spacing of these pips is equal to the period of oscillation of

the pulse oscillator V1 , V2 and is controlled by the tuned circuit.

In Fig. 63 three pip spacings, 50, 200, and 1000 pseconds, can be

selected by the switch S2 '

Amplitude calibration is obtained with the very simple circuit

shown in Fig. 64. A battery whose potential is measured with the

d-c voltmeter M is connected to a Brown Instrument vibrator.6 4 This

63 M.I.T. Radar School Staff, op. cit., reference 36.

64 Brown Instrument Co., op. cit., reference 52.
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Fig. 64 Amplitude calibrating circuit.

unit 'chops' the d-c at a frequency of 60 c.p.s. in synchronism with

the mains frequency. By suitable adjustment it is possible to make

the vibrator perform this operation during the differential analyzer

on-time. This chopped wave, which is a pulse of repetition frequency

60 c.p.s., is applied to a series of calibrated T-pad attenuators.

The height of the pulse and the attenuation of the pads can all be

measured with accurate d-c meters. The output of the attenuator chain

is therefore a pulse, the amplitude of which is known to within 1%,

which occurs during the on-time of the differential analyzer units.

This calibrating pulse can be used to calibrate the deflection of the

output viewing oscilloscope. The gains of the various adders, inverters,

and multipliers can be measured by comparing the input and output levels

on the oscilloscope, using this calibrating signal as input.

20db 20db 6db 6db 0FF

-115-
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Calibration of the time-integrators is achieved by using a com-

bination of the test pulse and the time calibrator. The test pulse

is applied to the integrator and the output viewed on the oscilloscope.

Time intervals are marked on the display by applying the calibrating

pips to the intensity grid of the oscilloscope. In this manner the

value of the integral of a known pulse amplitude after a known time

can be measured, and the calibration obtained.

Photographs of the timing pips, the test pulse, and the output

of an integrator with the test pulse applied are shown in Figs. 65,

66, and 67.

50 psec.

200 psec.

1,000 psec.

Fig. 65 Triple exposure photograph of timing pips.



-117-
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Fig. 66 Amplitude calibrating test pulse.

Fig. 67 Output of integrator with calibrating pulse
applied to the input; 200 psecond marker pips.
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Power Supplies

All the tube filaments in the electronic differential analyzer

are heated by 60 c.p.s. alternating current. One side of this fila-

ment supply is grounded to minimize hum in the amplifiers. The high

voltage supplies are three in number, providing voltages of +250 volts,

1 1
+22 volts, and -110 volts. The 22- volt supply is for the screens

z 2

of the 6AG5 tubes in the adding and integrating units. The current

drain for these tubes is only 6ma and therefore this voltage is

supplied by an ordinary heavy-duty B battery. The +250 volt and -110

volt supplies are electronically regulated. This provides a low out-

put impedance thus preventing interaction between the various units

of the differential analyzer.

7'jW



Multiplier

Maximum rate of change of output is 0.151 volts/psec.

Maximum output voltage is t2 volts.

Output normalized is 0.66 (EeEm + .009Ee + .015Em + .0005) volts,

where Em is voltage controlling coil current,

Ee is voltage controlling y-deflection.

Non-linear distortion S 2%.

Output impedance = 100 ohms.

Function Generator

Maximum output rate of change = .073 to .11 volts/psec.

Maximum output voltage = 2 volts.

Output impedance = 100 ohms.

Non-linear distortion 1 2.5%.

Amplifiers, Adders, and Inverters

without feedback wl = 0.16 c.p.s.

w2 = 100 Kc/s

Po = -1500x, 63.5 db

as used in analyzer

"2

rise time

overshoot

noise

maximum output

output impedance

non-linear distortion

= .016 c.p.s.

= 650 Kc/s

= 0.4 ksec (10% to 90%)

= 2% or less

= -150x maximum

= 0,4 to 5 my

= +20 volts

= 10 ohms maximum

4 0.2%

-121-

Summary of Component Details



Int egrators

Low-frequency time constant = 0.75 sec. minimum.

(this makes error after 10,000 psec = 1%)

High-frequency transient has 2 psec duration.

Output impedance is 100 ohms.
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SECTION V

ERRORS DUE TO COUMPONENT LIMITATIONS

Precision and Calibration Accuracy

here are three principal types of error encountered in the.

on of differential equations by electronic means; errors caused

1)

2)

lack of precision,

loss of accuracy, due to

(a) lack of calibration accuracy, and

(b) limitations in the time (or frequency) domain of the

differential analyzer components.

5j Precision

Precision is of great importance in this system of solving

differential equations because of the high solution repetition rate

employed. A lack of precision in setting initial conditions, for

example, results in a slightly different solution for the differential

equation every 1 second. Because these solutions are superimposed

on the output cathode-ray tube screen there results a 'jitter' or

fuzziness of the displayed solution.

The precision of the differential analyzer limits its operation

on equations whose solutions increase rapidly with the independent

variable, in this case time. This is because the maximum output level

of the analyzer components is fixed at about 20 volts peak to peak by

the clamping circuits employed; if, for example, an equation solution

increases by a factor of 2.5 during the solution time, then for a

precision of 1% in the observed solution the initial value of the
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solution must be constant to .01 x = 0.1 volts. If on the other2.5

hand a solution increases by a factor of 25 times during the solution

period then for the same precision of solution the initial value must

be constant to within 0.01 volts.

The fact that the precision of setting the initial values limits

equations which grow rapidly with time provides a convenient check.

The photograph of such a test is shown in Fig. 70.

Fig. 70 Precision check of differential analyzer.

The equation being solved in this test is

-2' +2y = 0, (75)

which has the solution

y = Ceitcos(Wt + 9) ,

where

(0 >1 ,

WI 2w 12.

(76)

(77)

(78)
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Fig. 70 is a double exposure photograph of this sine wave with

an exponentially increasing envelope. One exposure shows the entire

solution, and the fuzziness at the end of this solution indicates

that there is about 10% jitter in the initial value. The mean value

of the last positive peak is 1.54 volts. The second exposure is taken

with a ten-fold increase in gain of the output viewing oscilloscope.

One can see that this solution increases in amplitude by a factor of

5.5 per cycle. The initial value for this solution is therefore

134 = 3.95 mv. Since the jitter is 10%, the variability in the ini-390

tial value is about 0.4 mv. The maximum output level for this elec-

tronic differential analyzer is 20 volts; this shows that initial

conditions are precise to within 0.002% of the maximum output level.

For example with a more normal initial value of perhaps 1 volt the

precision would be 0.04%.

It should be apparent that lack of precision can be due to causes

other than hum or jitter in the initial condition pulses themselves.

Other important effects are power supply hum in the output of the

analyzer components and microphonics in the vacuum tubes employed.

When originally built, the adding and integrating amplifiers, Figs.

48 and 57, used a 6AK5 tube as first stage. This tube was very micro-

phonic in operation. Changing to 6AG5's reduced microphonism by a

factor of about ten.

Precision of the differential analyzer is important in the solu-

tion of non-linear equations. Exploration of the regions between

stable and unstable solutions, for example, requires extreme precision.

An example of such a situation is the solution of the differential



equation for a physical pendulum. In this case stable operation is

that for which the pendulum oscillates back and forth while unstable

operation corresponds to rotation of the pendulum. In the critical

transition case the pendulum just balances in a position of unstable

equilibrium. The degree to which one can approach this transitional

case on the differential analyzer is limited by the precision of the

operation,

Another situation which requires the utmost precision in the

differential analyzer occurs in solving equations in which only a

particular solution is desired. Such a situation is encountered,

for example, in the equation

(79)4,d - 5y=,
dt2 t

which has the general solution

y = Cle-t + 02e
5t . (80)

If it is desired to observe only the first term of this solution,

it is necessary to chose those initial values in the differential

equation which make C2 zero. The precision with which this adjustment

can be made limits the range over which the particular solution

y = Cle-t (81)

can be observed, since the second, undesired solution will eventually

mask the desired solution. The problem of isolating particular solu-

tions can sometimes be made easier by a change of variable as discussed

in Section VI, part 6.13.

The principal factor limiting precision in the present electronic

differential analyzer is noise and microphonics in the outputs of the

-126-
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various units. The total output noise is between 0.4 and 10 millivolts,

according to the unit considered. By improving the power supplies,

etc., the precision could be improved by another factor of ten.

In order to obtain a good qualitative picture of the nature of

the unknown solutions of a given differential equation, with regard

to instability, periodicity, discontinuities, etc., the important

requirement on the differential analyzer is that of precision rather

than calibration accuracy. In this respect the present electronic

differential analyzer is very satisfactory because of its high preci-

sion. For many engineering and physical applications this qualitative

information is, alone, of the greatest value.

522 Calibration Accuracy

The calibration accuracy of the electronic differential analyzer

is less than its precision, a desirable situation, and is limited by

the calibrating system used to about 2%. In obtaining quantitative

information two possibilities are open; one is to calibrate the various

components, connect them to solve the equation, and observe the solu-

tion; the other is to connect the units to solve the equation, adjust

the parameters by observing the solutions, and then to measure only

those settings which give solutions of interest. Because of the extreme

flexibility and ease of rapidly varying the equation coefficients this

latter approach has been found most satisfactory for all equations

investigated by the author. If the operator knows some of the physical

background of the problem for which the differential equation is written,

it is possible to adjust the equation parameters very quickly to give

that range of solutions which is of interest. Quantitative information
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Errors Due to Frequency or Time Limitations

The errors introduced into differential equation solutions on

the electronic differential analyzer by the time or frequency limita-

tions of its components are of the greatest importance, because, as

will be shown, these limitations can cause the differential analyzer

to solve an entirely wrong equation.

These limitations are most easily treated in two separate groups:

(1) the short-time or high-frequency effects and (2) the long-time

or low-frequency effects. For the case of ordinary differential

equations with constant coefficients, analytic treatment of this

problem is possible.

j5. Errors due to Adder Finite Bandwidths

Consider the differential equation

+ .+ dn-l aA + aay = 0 (82)

where n = order of the differential equation

am = the constant coefficient of the mth derivative in

the equation (m = 0, l,...,n),

The characteristic equation of this differential equation is obtained

by setting y = e t as

F(s) =.sn + an-ln-1 +.,.+ als + ao = 0 (83)

which has roots si, s2"**''5 n in the complex s-plane. The solution

of Eq. (82) is of the form

n

y Aes (84)
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this region can then be obtained by calibrating the units

y have been adjusted to give the desired solutions. Examples

ation accuracy are included in Section VI.
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Fig. 71 Differential analyzer set-up for the solution
of an arbitrary ordinary linear differential

equation with constant coefficients.

5.31 Derivation of General Error Relation

There are only two types of components required by this set-up,

adders and integrators. If these components are ideal, the correct

solution Eq. (84) is obtained. As we know from Section IV, the

components are not ideal. At high frequencies it is possible to make

the integrator response considerably better than the adder response.

Therefore the high frequency limitation in the set-up of Fig. 71 can

be expected to come from the finite bandwidth of the adding unit.

In order to investigate the effect of this bandwidth it will now be

assumed that the Laplace transform of the adder characteristic is of

Tt

Fj

II

77V . -
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where the Am's are constants depending upon the initial conditions

of the particular solution desired. The electronic differential ana-

lyzer set-up for solving this equation is given in Fig. 71.
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the form

t cE1 + c2E2 +1.0+ cE(n
out (s) =1+ .(85)

The adder is thus assumed to have a single high frequency cut-off at

1
a frequency f - .

In the set-up of Fig. 71 the constants of the adder would be so

adjusted as to make

c2 = &-2 , (86)

=. ao.

The characteristic equation of the differential equation actually

solved by this differential analyzer set-up is therefore

= -an.lsn-1 +...+ als + ao (
sn _1 + P s

which can be written as

F(s) + p sn+l = 0, (88)

where F(s) = 0 in Eq. (88) is the original characteristic equation

of Eq. (83).

The equation actually solved therefore has n+l roots, that is,

it is one order higher than the equation one wishes to solve. If

is zero, the roots of Eq. (88) are the desired roots. When (as

in practice) this is not the case, the equation solved has n+1 roots,

n of which differ only slightly from the desired roots, and one new

root at a very high frequency. By assuming that the changes in the

values of the desired roots are very small (a necessary condition if

the errors are to be small), a quantitative measure of the first order

11



errors can be obtained.

Equation (88) has n roots s', s ,...,s, which do not differ

greatly from the roots sl, S2,*..sn, of Eq. (83). In addition there

is the new root sn+l- This last root can easily be determined on the

assumption of very small , since then the second term of Eq. (88)

becomes large only for very large values of s. For large values of

s one can write approximately

F(s) sn (89)

and therefore Eq. (88) becomes

5n + 5n+l = 0

which has the solution

S=-.

(90)

(91)

This is the new root s'

If the other new roots st differ only slightly from the desired

roots, sm, one can write

sI = Sm + em m=1 2,...,n)

+ m) (92)
sm

Substituting Eq. (92) in Eq. (88) one obtains

F(s') + 5'n+l = 0 (93)

Now if

em<< l,em (94)

n

sm (1 + e) sn (1 + ); )m nm

F(sm) = 0

by definition.

one has

also

(95)

(96)

-131-
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Making use of Eqs. (95) and (96) in Eq. (93) one obtains

nemsmn~1 + an-(n-l)emsmn-2 +...+ alem ~smn+1 (97)

This equation can be solved for the difference em between the

desired roots and the roots actually obtained;

-p2

n e m n- )s-1 +,,+ a1(+n)S-n+l

Equation (98) enables one to determine the errors caused by the

finite bandwidth of the adder in Fig. 71 if that bandwidth, the coeffi-

cients of the differential equation,and the roots of the characteristic

equation of the differential equation are known.

An experimental check on errors due to the finite bandwidth can

always be made by changing the scale factor of the equation being solved

as discussed in Section VI, part 6.1. This will change the values of

the equation coefficients an and the characteristic roots sm, but the

value of q will remain constant; therefore the errors em will change

value. If no change in the character of the solution is observable

when the scale-factor is changed, then the errors em are negligible.

5.32 Examples

A rather good Ifeelt for the situation ,an be obtained by applying

this analysis to a few simple differential equations whose solutions

are easily calculated. Consider the equation

d 2  aoy = O (99)
dt2  0

The roots of the characteristic equation of this differential equation

are

si = + , and (100)

S2 = - rao -
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When solving this equation on a differential analyzer whose adder

bandwidth is -, the roots of the equation solved are from Eqs. (91),

(92), and (98),

s2 + ao - , (101)

s2  Va - 2 , and (102)

1 .(103)

S3 - -(9

If the difference between sl, 82 and sl, st is to be kept to

1%, for example, then one has for this equation the requirement

2 .01 , (104)

which sets the maximum value of , or the minimum adder bandwidth

once the ao of the equation to be solved is known. If the equality

sign is taken in Eq. (104), the observed solution is of the form

y = Coe-50 (- t + C1e+.99 (a t + c2il.01raot . (105)

The first term of this solution, which is an error, dies out

very rapidly since its time constant is 1 that of the other two terms.
50

The second and third terms in this expression are the desired solution,

with the exception that their time constants are in error by 1%.

This is of slight importance, since the nature of the solution is not

basically changed.

This first example was a differential equation whose characteristic

equation had roots on the real axis of the complex s-plane. Its solu-

tions therefore increase or decrease monotonically with time. As a

second example consider the differential equation

- JZ + aoy = 0 . (106)
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This equation has a characteristic equation whose roots are

Si LL (1 +j) ,and (107)

which lie on 45 degree lines through the origin of the s-plane and

in the right half plane. The solution of this equation therefore

increases with time in an oscillatory manner with an exponential

envelope. One form of the solution is

a( t

y=Cle 2 cos( t + Q) (109)

If the adder time constant is again , the roots of the equation

the differential analyzer solves when it is set-up according to Eq. (106)

are

sif= (l - L )(1 + j) , (110)

2=2 (1 - LO)(' j) , (111)

s I . (112)

The observed solution is therefore

-t (1- )
y = Coe $ + Cle 2 cos(IL2 (1- )t + e) . (113)

If the adder bandwidth is made wide enough that

(9F2- .01 ,(114)

then again the first term in Eq. (113), which is an error, damps

out very rapidly and leaves a solution which differs from the de-

sired solution of Eq. (109) only by the rather minor detail that



the period of oscillation of the solution and the time constant of

the exponential rise are in error by 1%.

A third simple case of considerable interest is that of a differen-

tial equation whose solution is an undamped sine wave. Such an equa-

tion is

2 + a y = 0 ,dt2 (115)

which has the characteristic roots

S, = + i yJ ', (116)

S2 = - i fao; (117)

these roots lie on the imaginary axis of the complex s-plane. For

an adder of bandwidth , the roots of the equation actually solved

are, from Eq. (98),

st!a + j r ,29

2 2 -
st j ,

3 - .

(118)

(119)

(120)

Therefore the equation solved has the solution

y = Coe + Cle 2 cos(O t + 9) (121)

instead of the desired solution, which is

y = Cl cos( _t + 9) . (122)

For this case one sees that although making k3 small causes the

first term to damp out rapidly and thus eliminates error from this

source, there still is an error in the solution because the amplitude

of the sine wave, instead of remaining constant, increases exponen-

tially with time. The error from this effect is greatest at the

-135-
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end of the solution period T0 . If this error is to be held to 1%,

then one can write as a necessary condition the inequality

fao
( )To- .01 . (123)

This can be put in a more useful form by writing

fo = = frequency of oscillation of the solution in c.p..s

tf = - = bandwidth of adder unit in c.p.s.,

which converts Eq. (123) to

Af= l00cfaT . (124)

For the present differential analyzer the solution period T0 is

1
second. If one wishes to solve Eq. (115) for f0 = 600 c.p.s.

(for this frequency five complete cycles of the solution are displayed

on the cathode-ray tube screen), the adder bandwidth must be

Af = 942 Kc/s , (125)

if a one percent amplitude increase can be tolerated. This case of

the undamped sine wave imposes the most stringent conditions on the

necessary component bandwidths for the differential analyzer of any

equation investigated, The corresponding condition, for example,

for the solution of Eq. (106) to one percent error is found from

Eq. (114) to be,

A = 60 Kc/s , (126)

for the same natural frequency of the solution.

For this reason the solution of Eq. (115) on the electronic

differential analyzer affords a good test of one aspect of the analyzer

operation. It is interesting to note that this is the same equation

used to test mechanical differential analyzers in the well-known

"circle-test." Experimental verification of the validity of this

65 Bush, op. cit., reference 4, p. 469.
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x- location of original equation roots
o- location of new roots due to finite adder bandwidth

Fig. 72 Plot of s-plane roots for Eqs. (99), (106), and (115)
and the corresponding differential equations solved by

a differential analyzer of finite bandwidth.

5.4 Errors Due to Integrator Low-frequency Limitation

The effect of low frequency limitations on the differential ana-

lyzer solution of differential equations can be handled analytically

-137-

error analysis is included in Section VI, where observed solutions

for Eq. (115) are given.

The results of the three examples considered here are displayed

qualitatively in Fig. 72. This is a plot of the complex s-plane.

The locations of the three original sets of roots are marked by crosses

on the plane, while the new root positions resulting from the use of

an adder with a finite bandwidth are marked by circles. The distance

between the crosses and circles has been exaggerated so as to be readily

apparent.

0: s- plane
0 X a$
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in a manner quite analogous to that employed for the high frequency

case. As indicated by Eq. (61) each integrator has a low frequency

time constant p0RC due to the finite gain of the feedback amplifier

employed. For the a-c coupled units there is also a second time con-

stant due to the coupling circuit. For simplicity of analysis, how-

ever, it is assumed that each integrator has a single low frequency

time constant and that this time constant is the same for all inte-

grators employed. To be precise, it is assumed that the Laplace

transform of the transfer function of each integrator is

Eout _1 Ts(12

Ein S 1 + Ts . (l2

5.41 Derivation of General Error Relation

If integrators having this characteristic are used to solve Eq. (82),

according to the set-up of Fig. 71, the characteristic equation of the

differential equation actually solved is

a + an-isn-( ) +...+ als( )n-) + ao(I+j n = 0 . (128)

This further assumes that the high-frequency effects can be neglected

in this low-frequency analysis and that the low frequency time constant

of the adder is much greater than T. Both of these assumptions are

justified in normal practice with the electronic differential analyzer.

In order to calculate the first order effects of the low fre-

quency time constants one can write

Ts 1 1
1 + Ts + ~ Ts

Ts
(129)

and similarly

Ts m m
1 + Ts ~ -s (130)

7)
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These approximations assume that Ts'>> 1, a condition which has to be

met if the errors are to be small and which permits an evaluation of

the first order errors. Making use of Eq. (130), Eq. (128) becomes

sn+a - - (1 - +...+ ais(l - li) + a (1 - = 0, (131)

which is the characteristic equation of the differential analyzer

set-up of Fig. 71. This can be rewritten in the form

F()=an - 11' + 2an - 28 n -s 2 +...+ (n - 1)ajs + na. 12F(s) = -l T2% s ,..(-~~~a (132)

where F(s) is the characteristic equation of Eq. (82) as given in

Eq. (83).

For the case of perfect low frequency response, Ts = cn, and

Eq. (132) becomes

F(s) = 0, (133)

which has the roots sl, S21***fsn* When Ts is large but finite,

Eq. (132) has n+1 roots, n of them differ only slightly from the

roots of Eq. (133) and there is one new root for s very small

(very low frequencies). This new root can be identified immediately.

For s very small, Eq. (132) becomes approximately

a na (134)a0~ Ts

therefore

-n

Sn + 1 im = (135)

If the other n roots of Eq. (133) differ only slightly from the roots

of Eq. (132), one can write

s 5 = Sm + em (m = 1,2,...,n) , (136)

and since em<< smP

(,,)n = sn(l + ne) (137)
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Now substituting Eq. (137) in Eq. (132) and remembering that F(sm)

is zero by definition, one can write

nemsn- + al(n-l)ems- 2 +...+ ae (138)

(n-l)em (n-2)e m+
an-l() + )s-1 + 2an-2(l + 5m )5n-2 + (n-1)a1(1 + 0+ na

Tsm(1 + em

If one now assumes

Tsm7 n - 1, (139)

then Eq. (138) can be solved for the difference em between the new

and old roots,

n + n-2 +,,,+ (n-l)aism + nao

em Ts (nsn-l + (n-l)an-ls-2 +...+ a,) (140)

This expression is completely analogous to Eq. (98) for the high

frequency error, and it is used in the same manner to determine how

the low-frequency time constants of the differential analyzer integrators

perturb the differential equation solutions.

5.g Examples

This result will be applied to the three particular equations

considered in the high frequency analysis. For the differential

equation (99) the new roots are

St = + F a 1 (141)

s= - Vro 1 (142)

St = + . (143)
S3  T

The differential analyzer solution is therefore

+2- +( a J -1)t -(ao + )t
y = Coe T + Ce + C2e
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second and third terms in this solution differ from the de-

ution only in their time constants. If this difference is

t to 1%, one should have

.01 r . (145)

term in Eq. (144) is an error term which is most noticeable

d of the solution period. If this term is essentially con-

r the solution period, the error is not bothersome. This

can be assured by requiring, for example, that the term

nt to within 1% over the solution period To. This condition

ovided

T = 200 To (146)

ution period of second this indicates that the integrator120

tant should be not less than 1.66 seconds.

ying Eq. (140) to Eq. (106) for the x sine wave with exponen-

owing awo2litude, one finds the solution to be

2t + +)

ye F120T+0 e Cos(j-0t + ) .(147)

For 1% error the conditions on T are again

T >1 100 , (148)

(149)T 1 200 To .

Finally for the undamped sine wave of Eq. (115) one finds

2t t

y = Coe T + Ce T cos( ( t + 9) , (150)

and the condition for 1% error is again Eq. (149) or (146).

An s-plane picture of the root perturbation for these low frequency

examples is given in Fig. 73.
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Ij

x- location of original equation roots
o- location of new roots due to low frequency

time constant in integrators

73 Plot of s-plane roots of Eqs. (99), (106), and (115)
and the roots of the corresponding equations solved

by a differential analyzer utilizing
integrators with finite gains.

Summing up the above one sees that for ordinary linear differen-

tial equations with constant coefficients Eqs. (98) and (140) can be

used to determine the errors caused by high- and low-frequency limita-

tions of the differential analyzer components. These results are

verified experimentally in Section VI. Experimental determination of

the overall accuracy is also given there.

The situation for the equations with variable coefficients and

the non-linear equations is not as clear. One can linearize, or

hold the coefficients of such equations constant over limited ranges

of the solutions and get some idea of the errors to be expected, but

this does not permit the drawing of any general conclusions. There

is little reason to suppose that the errors at low frequencies (for

long times) differ appreciably from those observed for the linear
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equations. This is particularly true since we note in every example

considered that the most stringent requirement is that given by Eq.' (149),

which does not involve equation parameters at all, but merely the ratio

of integrator time constant to solution period.

Although the high frequency effects cannot easily be analyzed

for these more difficult types of equations, one can experimentally

check for high frequency errors by changing scale factors in the

differential analyzer and observing whether this causes any change

in the character of the solutions observed. If it does not, one is

reasonably justified in assuming that frequency limitations are not

causing difficulty.
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SECTION VI

RESULTS

General Set-up Procedure

The general procedure used in setting up a differential equation

on the differential analyzer can best be clarified by considering a

particular example and going through the various steps required.

6.1 Typical Example

First equation (115)

d2
dt2 + aoy = 0 , (115)

will be considered for the particular case of

a0 = 4Z2 , (151)

y(0) = y0 = 1 ,

dt It = 0 = '

for 0< t 4.

Since this is a second order equation, two integrators are

required. One starts out by assuming a voltage proportional to y

and integrating twice as shown in Fig. 74.

Since the constant multipliers to be used in these integrators

have not yet been chosen, they are indicated by k1 and k2. The

output of this cascade of two integrators is, as indicated, + klk2y'

From the differential equation, however, one sees that y is equal

to -agy, thus a change of algebraic sign is required. An amplifying

unit accomplishes this as shown in Fig. 75.

The output of the amplifying unit is -klk2k3y; and by connecting

the terminals a-at this is made equal to the assumed y. The differen-
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R CI

R2 C 2

k k2

k
I R ICI

k -
2 R2 C 2

k R4
3 R 3

-145-

2



-146-

tial equation solved by this set-up is

+ k1k2k3y = 0
dt2

(152)

If kik2k3 is made equal to a0 , then Eq. (115) is solved. Because

the differential analyzer solution period is only 1 second, however,

such an adjustment only gives the first second of the solution of
120

Eq. (115), whereas the first four seconds of the solution are desired.

This difficulty is overcome by making the change of variable

t' = , (153)

so that when the equation-time t = 4 seconds the differential analyzer-

time t' = second. For this change of variable one has

dt t- , and (154)

1d2y (55)

dt2  dt'2  (40)2

Therefore the transformed equation is

d2y + 2

dt'2 + (480) aoy = 0 , (156)

where now

Yo = 1 ,

o=0 ,

O<t'< .

It was shown in Section IV, Eq. (69), that the

coefficient is limited by the long time behavior of

mum of about 4000 sec~ . One might choose for this

the coefficients of both integrators k1 = k2 = 1000

is done, then on comparing Eqs. (151) and (156) one

(157)

(158)

(159)

maximum integrator

the unit to a maxi-

example to make

secA . If this

sees that k3 must
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be adjusted so that

k3 = (480)2a0 - 9.12 ; (160)

This is certainly a very modest gain requirement. The two integrators

and the inverter are calibrated as described in Section IV and then

connected according to the diagram of Fig. 75. Since the gating and

initial condition circuits are built-in, no additional connections

for these features are necessary. One merely sets the initial value

knob on the output of the first integrator to zero to satisfy Eq. (158)

and the initial value at the output of the second integrator to some

arbitrary unit value for Eq. (157). A voltage of 10 volts might be

chosen to correspond to y = 1.

If the differential analyzer is now turned on and a viewing scope

is connected at (1) in Fig. 75, one observes y as a function of t,

for values of t between zero and four. Connecting the oscilloscope

at (2) will give a display of - 480 versus t, for the same rangedt

of time.

There is no need, as a matter of fact, to have the differential

analyzer turned off while it is being set-up. All of the necessary

connections can be made with the units running and the entire procedure

outlined here can be accomplished in about 30 seconds. Fig. 76 is

a photograph of a single relay rack panel on which two integrators

and one inverter-adder have been built. In this panel no connections

are made to the units. Fig. 77(a) shows the same panel connected to

solve Eq. (156). The necessary interconnections are made with coaxial

cables so that complete electrostatic shielding is preserved. Fig. 77(b)

is a photograph of the same set-up together with the oscilloscope used



Fig. 76 Typical dielectronic differential analyzer panel
showing two integrators and one adder-inverter.

3,

Fig. 77(a) Differential analyzer panel co nected to
solve the differential equation* + cny 0.
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Fig. 77(b) Differential analyzer panel and viewing oscilloscope
solving the equation Y + 42y = 0 for 0 <t< 4.

for viewing the differential analyzer solutions. The solution can

be seen on the oscilloscope face.

6.2 Observed Solutions

6.21 Normal Solution Displays

Fig. 78 shows a photograph of the viewing oscilloscope. By means

of a double exposure photograph y and -480 are recorded on the same

photograph, between exposures the oscilloscope connection was moved

from point (1) to point (2) in Fig. 75. More than four complete

cycles of the solution are observed because the solution time is

somewhat longer than second.120

If the initial value of the first derivative given by Eqs. (151)

had not been zero, then the initial value of the first integrator

would have been set to 480 times the required initial value to take

account of the time scale change.
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-480 y -+ ,,

- ====--.Ellia

Is

?ig . 78 Plot of y and -480y versu t for the
differential equation 7 + 0.

The time scale in Fig . 78 is marked by the 200 p~second markers

applied to the intensity grid of the cathode-ray tube. These cause

the reduction in intensity at points along the solution trace.

6.222 Effect of _Poor Integrator Low-frequency Response

As was indicated in Section V, equation (115) is very useful for

checking the frequency limitations of components such as the inverter

and integrators. Poor low-frequency response in the integrators can,

for example, easily be introduced by reducing the gain of the integrat-

ing amplifier. This was done experimentally by connecting a resistor

across the integrating condenser of both integrators in the set-up

of Fig. 75 equal to lOOR; as indicated in Eq. (66) this has the effect

of reducing the internal gain of these units to 100 or about the

normal value. Fig. 79 shows the observed solution to Eq. (115) for
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this case. This verifies the error analysis result of Eq. (150).

t
Fig. 79 Solution of .+ 4&2y o on electronic differential

analyzer showing effect of poor integrator
low-frequency response.

6.23 Effect of Inadequate Adder Bandwidth

The high frequency effects can be observed experimentally by re-

ducing the adder bandwidth. This can be done, for example, by connect-

ing a small shunt capacity across R in Fig. 75. When this is done

the resulting solution is as shown in Fig. 80.

This result verifies the high-frequency error analysis by conform-

ing to Eq. (121) of Section V. The first term in that equation damps

out too rapidly to be observable on the time scale of Fig. 80. Fig. 81

is an expanded photograph of the first 2000 pseconds of Fig. 80. At

the very beginning of the solution a very small high frequency transient

is observable.
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t
Fig. 80 Solution of 3 + 4x2y = 0 on the electronic

differential analyzer showing the effect of
inadequate high-frequency response.

t

Fig. 81 Expanded photograph of first 2000 pseconds of Fig. 80.
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6,4L Circle Test

It is sometimes desirable to obtain differential equation solu-

tions plotted not only against the independent variable but also versus

one or more of the other dependent variables. This can be done in the

electronic differential analyzer very easily by connecting the two

dependent variables to the vertical and horizontal deflecting systems

of the viewing oscilloscope. If this is done for Eq. (115), the

well-known differential analyzer "circle-test" is obtained66 Fig. 82

shows the results of such a connection; six revolutions around the

circle are shown here. The slight flattening of the circle on the

left side is due to non-linear distortion in the viewing oscilloscope

amplifiers.

IIla

Fig. 82 Circle test of electronic differential analyzer.

66 Bush, op. cit., reference 4, p. 469.
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L,.2 Modification of the Differential Analyzer S-_t-p for the Solution
of Some Other Second Order Differential Equations with Constant
Coefficients

Some of the flexibility of the electronic differential analyzer

is illustrated by considering the change in the set-up of Fig. 75

necessary to solve

+ a + ay=O ,
dt2 1dt 0Y

(161)

for the case

a1 = -0.2 F2a. (162)

and the same conditions given by Eqs. (151).

Making the change of variable given by Eq. (153)

a new transformed equation

2 - (480)0.2 , + (480) 2 aoy
dt'2

one obtains

0.

for the new range

O<t'< 120'

and initial values

yO = 1, (164)

O = 0. (165)

Changing the set-up of Fig. 75 to solve this new equation requires

only a single new connection. The resulting set-up is shown in

Fig. 83.

The new constant k4 gives an adjustment on the coefficient of

the first derivative independent of the other coefficients in the

differential equation. For Eq. (163) one sees that it should be

k4 = 9 ,. = .853 .(166)

(163)

L

I
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Fig. 83 Block diagram of differential analyzer
set-up for Eq. (163).
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The resulting differential analyzer solution is shown in Fig. 84.

Since this solution increases rather rapidly with time, a gain set-

ting on the viewing oscilloscope which shows the last half cycle of the

solution reveals little about the behavior of the solution around

t = 0; Fig. 84 therefore gives a double exposure photograph of the

same solution with a change in gain of ten to one between exposures.

The higher gain setting permits study of the short time behavior of the

solution while the lower gain gives a better overall picture of the

entire solution.

In the block diagrams of Figs. 75 and 83 the coefficients of the

adding and indicating units are given in terms of their external feedback

elements alone. As indicated in Section IV the units actually used in

the electronic differential analyzer all have input potentiometers which

-I!
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y

annaMWM. a .imig

Fig. 84 Plot of y versus t for Eq. (163), y0 = 1, y,~ = 0.
This is a double exposure record with a gain

change of 10 to 1 between exposures.

permit a 10 to 1 change in scale factor without changing the feedback

elements. Normally the coefficient adjustments are made with these

potentiometers using the amplitude and time calibrators as indicated

in Section IV.

Figure 84 will be recognized as the solution for the behavior of

a parallel L.0 circuit shunted by a negative resistance. Since the differ-

ential equation considered is linear, it can impose no limit to the

amplitude build-up. This is, for example, the operation encountered

in a super-regenative detector operating in the "linear mode." The case

of a positive shunting resistance requires that the sign of the deriva-

tive term in Eqs. (161) and (163) be changed from negative to positive.

This change can be easily accomplished on the differential analyzer by
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inserting an amplifier having a gain of minus one (-1) in the position

indicated by a dotted box in Fig. 83. Solutions of Eq. (161) for the

cases of positive, zero, and negative damping are shown in Fig. 85.in

a triple exposure recording.

U.i nuunuEmmu=====.U

amm.n .mmmmmm uuaauu.a *um

tot

SOl "W"o I= 0o-ina Difre-a Equatio
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Fig. 85 Solutions, y versus t, for y + aij + a.7 0.

Solution of Non-linear Differential Equations

6. Solution of van der PolEquation

As has been indicated, Eq. (161) with a1 negative describes the

behavior of an oscillatory system having a negative damping term.

This is a situation encountered in any physical self-excited oscillator

for small amplitudes of oscillation. This equation therefore describes

the manner in which oscillation begins to build up in a vacuum tube

oscillator for example. Since this equation is linear, it provides

no information concerning the ultimate amplitude to which the oscilla-

tion builds up or the steady state waveform of the oscillation. In
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order that these most important characteristics be studied, it is

necessary to take account of the non-linearities which are inevitable

in any physical oscillator.

The well-known van der Pol equation,67

- (A-3By2) + y= 0 ,P (167)

is a non-linear equation pertaining to many types of oscillations,

which has been very extensively studied. One sees that this equation

describes a system for which the damping is negative for small ampli-

tudes of oscillation and becomes positive for large amplitudes of

oscillation.

6.41 Differential Analyzer Set-_

In order to solve Eq. (167) as it stands one would write it in

the form

= -y + Ad - 3BY , (168)
dt2  'td

from which the block diagram set-up of Fig. 86 can be determined.

This set-up is seen to require both a function generator to

generate y2 from y and a multiplier to form the product, y dt From

a practical point of view it is desirable to keep the number of multi-

pliers and function generators required by the differential analyzer

set-up to a minimum, since as shown in Section IV these are the most

complicated units of this electronic differential analyzer. It is

worthwhile therefore to consider whether Eq. (167) can be simplified

for machine solution by a change of variable. Such a change of

67 Minorsky, N., Introduction to Non-Linear Mechanics, J. W. Edwards,
Ann Arbor, 1947.
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y2
Y I

MULTIPL SQUARE

2.

ADDER
y

Fig. 86 Block diagram of differential analyzer set-up
for the solution of van der Pol equation (167).

variable can in fact be made, namely

x = ydt

Applying this to Eq. (167) one obtains

A~ d2x dx d2x dx
- + 3B- + = ,

dt3 - -dt2 d ;t2 dt

which can be integrated term by term with respect to time to give

d2x dx 2 dx

at2
-(A - B(rt) )T-+ x =0

(169)

(170)

(171)

This equation, discovered by Lord Rayleigh in connection with acoustic

phenomena, is known as Rayleigh's equation.68 On writing this equation

in the form

d2x - dx dx 3

at2 - x+ Art- B (-r) (172)

68 Minorsky, op. cit., reference 67, p. 178.
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the block diagram of the differential analyzer set-up can easily be

determined, as shown in Fig. 87.

x k iki k2X

R 5R

R4 CUBE

AD9DER R
R 3

Fig. 87 Block diagram of differential analyzer set-up
for the solution of Rayleigh equation (171).

The important difference between this set-up and that of Fig. 86

is the fact that now only a single function generator, to generate

the cube of the first derivative, is required instead of a function

generator plus a multiplier.

6.42 Typical Solutions

Rayleights equation has been solved on the electronic differen-

tial analyzer using the function generator described in Section IV.

If the first derivative is displayed versus time, according to Eq. (169)

the solution of the van der Pol equation is observed. A typical solu-

tion of this equation is photographed in Fig. 88.

The first few cycles of this solution are similar to the linear
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I

Fig. 88 Solution of van der Pol equation for high-Q case.

solution of Fig. 84, but for longer times the rate of amplitude rise

soon drops, and the amplitude approaches a constant value because of

the non-linear damping term. The case shown corresponds to what is

normally referred to as the high-Q case in electrical engineering

problems. It is the situation for which a large number of solution

oscillations occur during the build up period. Mathematically this

means that both A and B in Eq. (167) are small compared to unity.

Another solution display, which is of very great interest to

the mathematician and engineer is the phase space plot, which is a

plot of velocity versus displacement. Such a plot is easily ob-

tained on the electronic differential analyzer by connecting the

vertical deflecting system of the output oscilloscope at (1) and the

69 Minorsky, op. cit., reference 67, p. 7-124.
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horizontal input at (2) in Fig. 87. A phase space plot for the Rayleigh

equation is shown in Fig. 89. The build-up to the steady state limit-

cycle is clearly shown by this photograph. For the engineer the shape

of this limit-cycle is useful in determining the steady state waveform

of the oscillator. If the oscillation were exactly sinusoidal, the

limit-cycle would be exactly circular.

Fig. 89 Phase space plot for Rayleigh equation, high-Q case.

To obtain the low-Q solution, in which the oscillation very rapidly

reaches its steady state, it is merely necessary to increase the adder

gain on the inputs connected through R5 and R6 in Fig. 87. By decreas-

ing the gain at R3 at the same time the number of cycles of the solution

displayed is reduced so that the details of the initial rapid build up

for this case can be clearly seen. A typical low-Q solution is plotted

versus time in Fig. 90. The corresponding phase space plot, with now

much distorted limit-cycle, is shown in Fig. 91.
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y

t

Fig. 90 Solution of van der Pol equation for low-Q case.

x

*

Fig. 91 Phase space plot for Rayleigh's equation, low-Q case.
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It should be emphasized that the time necessary to shift between

these two widely different solutions of Figs. 87 and 90 on the elec-

tronic differential analyzer is merely the time necessary to adjust

two or three knobs. One can, for example, in a very short period

explore the entire range of solutions existing between the two cases

shown. If no record of the solutions is made, such an exploration

takes the operator a matter of minutes; if photographic records are

required, it is possible to obtain such recorded solutions at the rate

of at least two or three per minute.

Two other photographs of the solutions of this equation are given

in Figs. 92 and 93. Figure 92 is a plot of displacement versus time

for three different initial values, showing the build up to the same

steady state amplitude in each case. Fig. 93 is another phase space

y

so
t

Fig. 92 Solutions of van der Pol equation for three
different initial values.
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X

Fig. 93 Phase space plot of solution to Rayleigh equation
for an initial amplitude exceeding the steady

state amplitude of the stable limit cycle.

plot for the Rayleigh equation. For this case, however, the displace-

ment was given an initial value exceeding the peak displacement of

the steady state equilibrium motion. This figure therefore shows the

solution dropping down to the limit cycle instead of building up to it

as shown in Fig. 91.

6.5 Solution of Non-linear Force Equations

Another class of non-linear differential equations of considerable

interest are the equations of the form

= F(y). (173)dt2

These equations describe the one dimensional motion of a particle in

a potential field y

V(y) -JF(y)dy. (174)

0
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7

gran of the electronic differential analyzer set-up

ye this equation is given in Fig. 94.

Y . -ki k

R Rp
k 2 _ k

R4

R3 FUNCTION
k3 _GENERATOR

k k~k F( y) -ki k2F(y )

k2Y

R2C2

k= R4
3 R 43

0a

Fig. 94 Electronic differential analyzer set-up for the
solution of the equation y = -F(y).

The inverter is included after the function generator in this

set-up for convenience in changing scale factors. This allows one

to adjust the constant coefficients kl, k2 , and k3 so as always to

operate the function generator over its most accurate range. This

tends to minimize any error which may be introduced by the function

generation unit.

6.6 Cubic Potential Case

A number of differential equations of this form have been solved.

One interesting case is

F(y) = -(y 2 + y) .

From Eq. (174) one sees that this leads to a cubic potential curve

V(y) = + + Const.

(175)

(176)

C C
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A plot of this potential curve is shown in Fig. 95.

V(y

2 Oy y

Fig. 95 Plot of cubic potential V(y) versus displacement y.

From the nature of this potential curve qualitative information

70,71
concerning the differential equation solution can be obtained.

Physically, the differential equation describes the motion of a small

ball released on this curve at y = yo with an arbitrary initial veloc-

ity. From the shape of the potential curve it is apparent that if

the particle is released with zero initial velocity it simply oscillates

stably between the limits yo and yl indicated in Fig. 95. If on the

other hand the particle is given sufficient velocity to the left, it

is possible for the particle to get over the potential hump at y2,

after which it rapidly continues its motion in that same direction to

minus infinity. A third type of motion occurs if the particle is given

70 Slater, J.C., and Frank, N.H., Introduction to Theoretical Physics,
Chap. IV, McGraw-Hill Book Co., New York, 1933.

71 Minorsky, op. cit., reference 67, p. 24-39.
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a sufficiently large initial velocity to the right in Fig. 95; for

this case the particle traverses the potential minimum at 0 twice and

then drops over the potential hump at y2 to minus infinity.

These different modes of motion are easily observed on the elec-

tronic differential analyzer. Fig. 96 is a triple exposure photograph

showing the three types of motion described qualitatively above.

y

Fig. 96 Three solutions of the equation y = -(y2 + y)
for yo fixed and y variable.

In solving this equation the general set-up of Fig. 94 was used.

The function generator was made to generate the required square-function

by using a parabolic function mask.

6.7 Physical Pendulum

If the F(y) of Eq. 173 is made equal to -siny, one obtains an

equation which describes the motion of a physical pendulum under a

gravitational restoring force as shown in Fig. 97. For this case the



Fig. 97 Physical pendulum.

potential plot is

V(y) = -cosy + constant,

as shown in Fig. 98.

V(y)

0 yo

Fig. 98 Potential curve for physical pendulum.

(177)

y

-169-

y

F(y)
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If the pendulum is given any displacement and zero initial veloc-

ity, it oscillates about one of the potential minima of this curve.

If on the other hand it is given some initial displacement, such as

Yo in Fig. 98, and sufficient velocity in either direction it is

possible to obtain rotation in either direction. This is verified

by the differential analyzer solutions. Fig. 99 shows three different

solutions, for which the initial velocity is in every case zero, with

different initial values. For small initial displacements siny is

very nearly equal to y and sinusoidal motion of the pendulum results.

As the initial amplitude is increased one notes that the most notice-

able change is in the period of oscillation. In addition, as is

noticeable to a lesser extent, the oscillation waveform is no longer

sinusoidal but is flattened on the peaks.

Ya

t

Fig. 99 Solutions of the equation y =-siny for y,
zero and yo variable.
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That the large amplitude motion is really non-sinusoidal is

demonstrated by Fig. 100, which shows the amplitude, velocity, and

acceleration for a large amplitude of swing. If the motion had been

sinusoidal, these curves would all have been sine waves.

t
Fig. 100 Plots of y,4, and y versus t for the

equation y - siny, yn Z 120 degrees.

From the acceleration curve in this plot it is apparent that the

peak amplitude of swing in this case was Pboutt 120 degrees. It is

interesting to note that the displacement curve still appears quite

sinusoidal to the eye.

Fig. 101 gives the solutions obtained for the case of a fixed

initial displacement of the pendulum and four values of initial velocity.

The four curves show the cases of oscillation, rotation to the right,

and rotation to the left. This verifies the expected behavior on the

basis of the potential curve of Fig. 98.

These two examples show that the electronic differential analyzer
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y

t
Fig. 101 Solutions of the eoquation = -siny,

for yo fixed and o variable.

is capable of very quickly and easily solving equations of the type

given in Eq. (173). The only time required between solutions is that

necessary to cut out a new function mask. The number of cases solved

will be determined by the need of mathematicians, physicists and engi-

neers to deal with new force functions F(y). The comparable mathemati-

cal difficulty of solving this general type of equation is indicated

by the large numbers of published works on the subject.72

Higher Order Linear Differential Equations with Constant Coefficients

6.8 Solution of Simultaneous Second Order Differential Equations.

The solution of simultaneous linear differential equations with

constant coefficients is of great practical importance to the engineer

72 Minorsky, op. cit., reference 67, Bibliography, p. 131.
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and physicist. Although it is possible to handle such equations direct-

ly by analytic means, a considerable amount of time and labor is re-

quired by that approach. The electronic differential analyzer affords

a means of obtaining solutions for such systems of equations quickly,

easily, and inexpensively.

An example of a practical electric circuit requiring the solution

of a pair of simultaneous differential equations is the coupled tuned

circuit of Fig. 102.

CI C2

LI L 2
R R2

22

2

Fig. 102 Coupled tuned circuit.

For this circuit one can write the two differential equations

d2 _R ~ d212d 1+ .i L + I. -- .21 = 0 (178)
dt2  L1  dt LiC1  l Ll dt2

dd2 R d12  1 M d211d +12  -- - + - . -12- = 0 (179)
dt2  L2 dt L2C2 2 L2 dt2

The differential analyzer set-up necessary to solve either of

these equations individually without the mutual coupling term was
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given in Fig. 83. The first step in solving the simultaneous equations

is therefore to set-up two separate loops on the differential analyzer

as indicated in the block diagram of Fig. 103 by solid lines.

Around these two loops all the dependent variables occurring in

Eqs. (178) and (179) appear. In order to solve these simultaneous

equations it is only necessary to interconnect these two loops as

required by the differential equations. These interconnections are

shown as dotted lines in Fig. 103. With these connections the set-up

of Fig, 103 solves the equations

d2Il k dIl
- -k4(klk211 + k ak1 ) +

d212
k5 dt2 '

(180)

d212  dI2sa d2+kj-j

d22 = -k9 (k6k7I2 + k6kd12 ) + kld2 11

Comparing these equations with Eqs. (178) and (179) one observes

by satisfying the conditions

klk2k = 1

R,
klk3k4 = ,

k5 = L

k6k7kg = L2C

R2
k6kk W ,

k9 = T2
"2

that

(182)

(183)

(184)

(185)

(186)

(187)

the desired solutions are obtained. There are aLso maximum permissi-

ble values of k1 , k2 , k6, and k7, the integrator constants, set by

the finite gain of the integrator amplifiers as discussed in Section IV.
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A practical procedure in setting up such a system of equations is to

start by assuming that these constants have their maximum permissible

value. This gives four additional constraints on the k's and permits

the determination of all the constants uniquely from Eqs. (182) through

(187). If for one reason or another the resulting k's are either

extrem ly large or extremely small, a change in time scale factor is

usually indicated.

It will be noticed in the set-up of Fig. 103 that the integrators

in the upper and lower right hand corners have been modified slightly.

For this connection the output of the unit is the integral plus a

fraction of the input as indicated. This is simply a device to save

an amplifying unit, as shown in Fig. 104. Both circuits of Fig. 104

form the integral of the input plus a fraction of the input. The

circuit to the left has the advantage of requiring one less adding

unit. It has the disadvantage that changing k2 independently of the

other constants requires changing the resistor R2, which is inside

a feedback loop. In the second circuit all constants can be varied

by potentiometers at the input terminals of the various units without

disturbing the feedback loops. For the higher order differential

equations, where the number of computing units required may become

very high, the circuit at the left and similar devices are very useful.

Some typical solutions of Eqs. (178) and (179) are shown in Figs.

105 and 106. The first figure shows the solution for the case of zero

resistance in both loops of Fig. 102. The familiar beat phenomena

is easily observed here. The photograph is a double exposure showing

the primary and secondary current as a function of time.

Fig. 106 shows the same currents with damping in both the primary

and secondary circuits.
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12

t

Fig. 105 Primary and secondary currents versus time
for ngn-dissipative coupled circuits.

I0 I2o 2o "Of lo# 0.

t

Fig. 106 Primary and seconda.Ty currents yersus time for a pair
of coupled circuits. 11 = I2o = 12o = 0, Ia A 0.
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It will be recognized that these solutions of two simultaneous

differential equations are equivalent from the differential analyzer

point of view to the solution of a single fourth order differential

equation. Differential equations of orders higher than this have not

been solved on the present electronic differential analyzer because

only four integrating units have been built. Since no unusual diffi-

culties have been encountered in solving equations of third and fourth

order, it is felt that the extension of the electronic differential

analyzer to the solution of equations of even higher orders should not

present any insurmountable difficulties.

Linear Differential Equations with Variable Coefficients

Linear differential equations with variable coefficients are of

the utmost interest in engineering and physics and are in general

not susceptible to analytic methods of solution. Special and relatively

simple examples of such equations are Bessel's equation, the Mathieu

equation, and the Hill equation. The electronic differential analyzer

has been used to solve a number of equations of this type.

6 Gaussian Error Equation

One of the simplest equations with variable coefficients is

+ yt = 0; (188)
dt

this equation is easily solved analytically, and its solution is the

well-known error function

y = c .e~ (189)

The set-up of the differential analyzer is shown in Fig. 107.
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-k -k R C
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R -kly kz k
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-k k k2k 3 k y k, kpk 3y-

Fig. 107 Differential analyzer set-up for the solution of y = -yt.

As in the set-up of Fig. 94 the amplifying unit included here is

superfluous; it is useful because it gives an additional degree of

freedom in the adjustment of the various unit constants. This equation

requires the use of a multiplying unit, as do all equations with vari-

able coefficients. Since the variable coefficient is a function of

the independent variable t, an arbitrary function generator is not

required for the solution of this equation; instead an auxiliary differ-

ential equation,

= -k2 , (190)

The multiplier used in all results described in this section is the
crossed-fields multiplier discussed in Section IV. The use of a
multiplier for the solution of equations with variable coefficients
illustrates a situation for which lack of speed in a single channel of

the multiplier is frequently tolerable. The multiplier channel con-
nected in the feedback loop must have the greatest possible speed to
avoid high-frequency errors as discussed in Section V, but lack of
speed in the channel to which -k2t is applied in Fig. 107, for example,
will not introduce a serious error.
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is solved

x = -k2t + constant, (191)

to give the necessary voltage varying linearly with time. This tech-

nique, as in the mechanical differential analyzer, of using auxiliary

differential equations to generate functions is applicable to many

linear equations with variable coefficients, since only functions of

the independent variable are involved in these equations.

The independent variable of the electronic differential analyzer

' always starts from zero at the beginning of every solution and in-

creases. If one desires to view the solution of Eq. (188) for

-to4t,< tl, it is necessary to make the change of variable

= to + t ; (192)

applied to Eq. (188) this gives the transformed equation

+ y(tf - to) = 0. (193)dt' 't) o(13

No change in the set-up of Fig. 107 is required other than the addition

of a constant at the output of the function-generating integrator;

that is, the constant in Eq. (191) is now non-zero.

A solution of Eq. (193) is given in Fig. 108; also plotted in

this figure by means of a photographic double exposure is the negative

of the derivative of y with respect to time.

6.10 Solution of Time Varying Force Equation

A more interesting group of linear differential equations with

variable coefficients, which are not as susceptible to analytic treat-

ment, are the equations of the form

+ F(t)y = 0. (194)
dt2
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to

Fig. 108 y and -y versus tt for the equation j + y(t' - to) = 0.

The differential analyzer set-up for the solution of equations

of this form is given in Fig . 109.

y - k k 

2 k2

kR R2R2

RR

-r k 3 m LIPLIER
-k4 (k3

- k k2k 3k 4F( yl -3

iFM

Fig. 109 Differential analzaer set-up for the
solution of equation y + F(t)y w 0.
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The only difference between this set-up and that of Fig. 107 is the

addition of another integrator. A multiplier is again required and

also a voltage proportional to F(t).

If one makes F(t) equal to bt2 in Eq. (194), one obtains

+ bt2y = 0. (195)
dt

The solution of this equation is given by Jahnke and Emde, as73

1
2 fV"'2

y = t Z ( 2-t) , (196)

4

where

Z1 (x) = c1J5(x) + c 2 N 1(x) ; (197)

4 4 4

Jn(x) is the nth order Bessel function of the first kind, and Nn x)

is the nth order Bessel function of the second kind.

To solve this equation with the set-up of Fig. 109 a voltage

proportional to t2 must be generated. This can be done by solving

the auxiliary differential equation

dx = b .(198)
dt2

The set-up for doing this is shown in Fig. 110.

A combination of Figs. 109 and 110 gives the complete set-up

necessary to solve Eq. (195) on the electronic differential analyzer.

A particular solution of this equation is shown in Fig. 111. The case

chosen is the one for which c2 is zero in Eq. (197) so that only the

Bessel function of the first kind is observed. Fig. 112 gives the

Jahnke, E., and Emde, F., Tables of Functions with Formulae and
Curves, Dover Publications, New York, 1943, p. 147.

A
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C C2
Xl k x k kx = b?2 F(t)

R R - X

-k -k2

k1 R C R2 C2

Fig. 110 Set-up of auxiliary differentlal equation
to generate a voltage x = bt

calculated solution for this special case, which was obtained by

computing values for Eq. (196). One sees that the agreement between

the two is very good.

Fig. 113 is a triple exposure photograph of another solution of

this equation. This figure also shows the behavior of y and y versus

time.

It is interesting to note that this equation describes a motion

in which, although the amplitude damps out with time, the velocity,

and therefore the energy in the motion, continually increases with

time. Motions of this type are encountered in oscillation of electrons

about the stable orbit in high energy accelerators such as the betatron. 4

Rajchman, J. A., and Cherry, W. H., "The h-lectron Mechanics of
Induction Acceleration," Jour. Frank. Inst., V. 243, p. 261,
Apr. 1947.

A
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y

t

Fig. 111 Observed solution of equation, y + bt2y .

CALCULATED SOLUTION OF = - 2 y

t

I I

1 2 3
/I I I I I

4 5 VY

Fig. 112 Calculated solution of equation, Y# + bt2y = 0.
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y

t

Fig. 113 Plot of y, y, and y versus t for the equation y + bt2 y = 0.

6.11 Solution of Mathieu Equation

If one chooses

2
F(t) = WO( + e cosomt) (199)

in Eq. (194), one obtains the well-known Mathieu equation. -This

equation is encountered in the solution of Laplace's equation in

elliptical coordinates and in connection with the following problem.

If for the non-dissipative circuit of Fig. 114 the capacity is

made to vary according to the relation

C C0 (l - E COSWmt) , (200)

one obtains for the differential equation describing the behavior

of the current in this circuit the relation

d2+ I0. (201)
dt2 L0C0(l - 6 coswmit)
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L 0 -O

Fig. 114 Parallel LC circuit.

This physical situation has been of considerable interest in

connection with the generation of acoustic warble-tones since Helmholtz

and Rayleigh, and more recently, has been studied in connection with

75
frequency modulation. If 4<< 1 and wm<< wo (where w L c)

Eq. (201) corresponds to a typical frequency-modulated oscillator,

as commercially employed.

Eq. (201), without the assumptions e << 1 and wm<< 'o, is of the

Hill type and is very difficult to handle analytically. Barrow in

76
studying this problem made the assumption that C << 1. This enabled

him to use the approximation

Z ~1 + coswmt .(202)
1- cosomt

van der Pol, B., "Frequency Modulation", Proc. I.R.E., V. 18,
1194-1206, July, 1930.

76 Barrow, W.L., "Frequency Modulation and the Effects of Periodic
Capacity Variation in a Non-dissipative Oscillatory Circuit",
Proc. I.R.E., V. 21, 1182-1203, Aug. 1933.
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Substituting Eq. (202) in Eq. (201) one obtains

d2I 2
d2 + W(1 + ( coswmt) I = 0 , (20
dt2

which is the Mathieu equation. Both this equation and the original

equation (201) of the Hill type can be handled with equal ease on the

electronic differential analyzer, although analytically Barrow found

it necessary to proceed immediately to the Mathieu equation from the

original Hill equation because of "The formidable mathematical

difficulties". Cambi has recently studied the Hill equation.77

The Mathieu equation is solved on the electronic differential

analyzer with the set-up of Fig. 109. It is only necessary to gen-

erate the time function given by Eq. (199). Such a function is most

easily generated by solving the auxiliary differential equation

d2x _ 2 (20
dt2

(2 4)

A detailed discussion of the solution of this equation was given

at the beginning of this section and need not be repeated here. The

differential analyzer set-up for its solution is given in Fig. 75.

The Mathieu functions are special solutions of the Mathieu

equation which are periodic in behavior. Fig. 115 shows the differ-

ential analyzer generation of the Mathieu function ce2 (t). Fig. 116

gives the calculated solution for this case.7 9

Cambi, Enzo, "Trigonometric Components of a Frequency-modulated

Wave", Proc. I.R.E., V. 36, 42-49, January 1948.

78 McLachlan, N.W., Theory and Application of Mathieu Function,
Oxford, 1947.

79 Jahnke and Emde, op. cit., reference 73, p. 293.

3)
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I

Fig. 115 Mathieu function, ce2(t),as observed
on the differential analyzer.

CALCULATED SOLUTION OF

+ 4v((I - qcos 2t) y = 0

1.5

1.0

0.5

0

V- TI

2r
2

0 TT
2

I.

Fig. 116 Calculated Mathieu function, ce2(t)*
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Two other photographs of differential analyzer solutions of the

Mathieu equation are shown in Figs. 117 and 118. Fig. 117 is a triple

exposure showing (1) the solution of the equation with : = 0, (2) F(t)

as a function of time, and (3) the solution of Eq. (203) for e Z 0.5.

... : .. p W.. ..a . 012 ft A" E a s e e ,& & I

- -- t o la n

a .-
-mma ----

itselfw

games

It is apparent from this figure that although a modulation of the

frequency of oscillation is certainly obtained, in this case the

amplitude of the oscillation is not constant. Fig. 118 pertains to

the same conditions; it shows the first and second derivatives of

the circuit current as a function of time, in addition to the current

itself.
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(1W EcOewmt) I :O0for-4 . 0.5.

6.12 Solution of Equation of the Hill Typ

Solving the, analytically more difficult, Hill equation requires

only that the multiplier in the set-up of Fig. 109 be replaced by a

divider. The new set-up is shown in Fig. 119. Comparing the two

set-ups of Figs. 109 and 119 one sees that by the very simple change

of moving one connection and adding one connection it is possible to

shift the differential analyzer set-up from the Mathieu to the Hill

equation. The analytic difficulty of the corresponding change is

enormous. This difficulty is so great as to have prevented any

considerable uie of equations of this level of difficulty in normal

engineering work. With a unit such as the electronic differential

analyzer of this thesis available, this situation no longer need exist.

A typical solution of the Hill equation is shown in Figs. 120

and 121. The first of these shows the unniodulated current, the
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Fig. 119 Differential analyzer set-up for the
solution of the Hill equation.
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Fig. 120 Solution of the Hill equation, d I1 ;O1
dt2  1 + 6 eoe t 0

for fE 0 and 6= 0.5, together with a

plot of fcoswmt versus t.
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FIg. 121 Solution of' the Hill equation showing I, -I, and Y versus t.

modulating term, and the resulting modulated current, while the second

shows the current and its derivatives as a function of time.

_6._1.. Third Order Linear Differential Equation with Variable Coefficients.

A problem which is of interest in connection with the transient

behavior of some electrical circuits is the evaluation of the Fourier

cosine transform of the frequency function e ,
CD

y =f(t) = Je 4 coset dw (205)
-CC

This problem can be transformed to the solution of a differential

equation as follows. Differentiating both sides of Eq. (205) with

respect to time three times gives the relation

dt3j-e sinwt dw . (206)

The right hand side of this equation can be integrated by parts with
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respect to w and this gives

Od3y. ifew 4

- e cosmt do , (207)

or from Eq. (205)

d3 + 0. (208)
dt3  4

Evidently Eq. (205) is a solution of this differential equation.

The differential analyzer set-up for solving this equation is shown

in Fig. 122.

There is nothing unusual about this set-up. When one observes

the solutions obtained from this set-up, it is found that they tend

to increase with increasing time rather than to approach zero. The

solutions of the integral of Eq. (205) should approach zero in an

oscillatory manner. This can be verified by a series of graphical

80
integrations or by evaluating the series solution

(2 n 2n + t2n (209)

n =0

Investigation of Eq. (208) and its derivation reveals that

although Eq. (205) is a solution of this differential equation it

is not the only solution of the equation. While the desired solution

approaches zero as time increases there is an extraneous solution

which approaches infinity. Even though considerable care is taken

in adjusting the initial conditions to suppress this growing solution,

because of' the speed with which it grows with time it soon masks the

80 Titclmarsch, E.C., The Theory of Functions, 1st Edition, Oxford

1936, p. 262.
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desired solution.* If a mechanical differential analyzer were employed

to solve this equation, this difficulty could be surmounted by reversing

the direction of motion of the independent variable so that the desired

solution would dominate as the machine solution progresses. This

same effect can be achieved on the electronic differential analyzer

by making the change of variable

t' = to - t , (210)

which gives a transformed equation

da + Z(t. _ t1) =0 (211)
dt

The solution of this transformed equation over the range 0 <t'< to

corresponds to the solution of the original Eq. (208) for to<t< 0.

This change of variable requires only minor changes of the set-up in

Fig. 122. The unit step into the lowest integrator must have its

sign reversed and a constant must be added at the output of this

integrator. This is conveniently done with the integrator initial-

condition control. A solution calculated from Eq. (205) directly by

repeated integration is plotted in Fig. 124. Figs. 123 and 125 are

observed solutions on the differential analyzer for the original and

the transformed equation respectively.

In Fig. 123 the fussiness toward the end of the solution results

from the fact that the undesired term in the solution is beginning

to dominate. The adjustment of the initial conditions to prevent

this occurrence has been made to within the precision of the differ-

ential analyzer and jitter in this critical adjustment causes the

*
This is a similar situation to that described in Section V in
connection with the solution of Eq. (79).

I
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t

Fig. 123 A solution of the equation + 0 versus t.
dt3  4

fazziness shown.

Fig. 125 gives a plot of y versus to - t'; it is printed backwards

from the way that the solution is observed on the differential analyzer.

In obtaining this solution it is necessary to try different initial

values in the transformed equation and observe the values obtained gt

t' M to. When these final values for the transformed equation match

the initial values of the original equation, the desired solution is

obtained. If it were not for the speed of operation and ease of vary-

ing the initial conditions on the electronic differential analyzer

this process would be very time-consuming, since it involves the

simultaneous adjustment of three different parameters. Even on the

electronic differential analyzer the adjustment of parameters to

obtain the solution shown in Fig. 125 required about one and a half

hours.
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SECTION VII

SUMMARY

An electronic differential analyzer has been developed and tested

which can handle ordinary differential equations of orders through

the fourth. Typical differential equations including examples of the

non-linear and variable coefficient types have been solved. The

observed precision of operation is extremely good, ranging from .002

to 0.1% depending upon the equation solved. The accuracy is between

1 and 5%,which is completely adequate for many applications in engineer-

ing, physics and mathematics.

The flexibility and speed of the electronic differential analyzer

permits rapid investigation of wide ranges of equation parameters and

solution initial conditions; this speed also renders feasible solution

of equations for which the final rather than the initial values of

the solution are known.

An analysis of the influence of high- and low-frequency limita-

tions of the differential analyzer components has been made. This

analysis permits quantitative determination of errors in the solution

of ordinary differential equations with constant coefficients and

has been verified experimentally.

The work on this electronic differential analyzer could be

extended in a number of directions. (1) Additional components, to

permit solution of more complicated differential equations, could be

built. (2) Further development of the components for multiplication

and division would appear worthwhile. In particular the modification

of the crossed-fields multiplier for direct division appears worthy
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of further investigation. (3) It would be desirable to apply the

electronic differential analyzer to the solution of new problems

in physics, engineering, and mathematics. The problems discussed

in this thesis have all been solved by analytic means; these were

chosen to permit verification of the operation of the analyzer.
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