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INTRODUCTION

In 1973, R. Langlands worked out a classification of

all irreducible quasisimple representations for connected

semisimple real algebraic groups G . The representations

are uniquely determined by their "Langlands parameter"

(P,_,v) , where P is a parabolic subgroup with Langlands

decomposition P = MAN , is an irreducible tempered

representation of M , and eV is a dormant character

of A . Then the representation with Langlands parameter

(P,,v) is equivalent to the restriction of the generalized

principal series representation indp( ge-V) to the

unique minimal invariant subspace. [12]

These results raise the following natural questions:

A) When are the generalized principal series representation

reducible?

B) If they are reducible, what are the Langlands parameters

of the representations occuring in the Jordan-Hdlder

series and what are the corresponding multiplicities?

In my thesis I give necessary and sufficient irre-

ducibility criteria for generalized principal series of



GL(nR) [Theorem II.D.1]. Reducibility occurs iff the

character is contained in a union of hyperplanes, which

satisfy certain invariance conditions under the Weyl group

of the parabolic. The proof is based on a reduction to

computations for certain subgroups, which play a role

similar to that of the rank 1 subgroups in the spherical

case.

By refining the methods used to answer question A), I give

a procedure to compute the Langlands parameters of the

representations in the Jordan H*Older series for an arbitrary

generalized principal series representation of GL(n,]R)

[I.F].

This procedure applied to SL(4,R) together with some

multiplicity considerations for K-types allows us to give

an explicit example of a principal series representation

whose Jordan H6lder series contains a certain irreducible

representation with multiplicity two. [Remarks: Page 112].

Furthermore using some results about unitarity which show

that representations of GL(n,IR) whose continuous

parameter is "too large" cannot be unitary [I.G.5], we

obtain a classification of all unitary representations of

GL(3,]R) , GL(4,]R) . [II.B.8][II.C.11]

The reducibility question was studied by B. Kostant in

the spherical case [11] and by Bruhat [2] and Knapp-Stein

[9,b,c] in the unitary case. N. Wallach generalized
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Kostant's methods to arbitrary t E M for M compact

and G = SL(n,IR) n odd, [19,a], whereas the complex case

was solved by Parthasarthy, R. Ranga Rao and V. Varadarajan

[13].

The composition series problem was solved recently by

N. Wallach for all rank 1 groups and all principal series

representations with nonsingular A character [19b].

J. A. Fomin obtained a complete answer for SL(3,3R) [6].

About unitarity not much is known. M. Duflo classified

all irreducible representations for complex simple Lie

groups of rank 2 [5], and I. Vakhutinskii classified the

unitary dual of SL(3,]R) [17]. For a precise statement

of the present knowledge see [lob].

The thesis is organized as follows: It is divided into

two parts. In Chapter I we first present the relevant

definitions and results (See A,B,C) which are then used

to reduce the reducibility problem and the Jordan-H6lder

series problem to the corresponding problems for GL(2,JR) ,

GL(3,]R) and GL(4,JR) (See D,E,F). The last section of

Chapter I is devoted to deducing some results about

unitarity.

The second part contains the calculations of Jordan Hlder
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series for GL(3,]R) and GL(4,iR) (Sec B,C). Using these

results, we then give a classification of unitary

representations for GL(3,]R) and GL(4,)R) (Sec. B,C).

Complete proofs are given even for the known results on

GL(3,]R) since our methods are based on an entirely

different approach. In the last section of Chapter II

we derive a closed formula for reducibility of generalized

principal series representations of GL(n,JR).

At this point, I want to acknowledge the influence and

assistance of a number of people in the department of

mathematics. I would especially like to thank my advisor

Professor Kostant for calling my attention to reducibility

questions. Professor Segal's seminar was a good training

ground for many of the techniques and ideas used in this

thesis; David Vogan's constant interest and encouragement

during this work and the many long discussions with him

were extremely helpful.

I also would like to thank Professor Harder from the

University of Wuppertal (Germany) for introducing me to

representation theory and supporting my plans to continue

my research in the United States.

Finally I would like to thank Michael Forger for trans.

forming my "German English" into English (and thus making

the set of readers nonempty) and Marjorie Zabierek for

her patient and excellent typing.
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CHAPTER I

A. Notation and some technical Lemmata.

Let G = GL(n,JR) , G = GL(n,G) , and consider G as

a subgroup of G . Let r E IN and

Cr=

cose 1 sin98
-sin61cos e

cosOrsiner
-sinercoser

rer

e n-2 rJ

Ia 1

x
ar
ar

b n-2r

|e i - [0.,27r),I=1,...,r, e = +1, i=1,.p@o.,n- 2r, al J.b EM +

Cr is a Cartan subgroup of G , and every Cartan subgroup

of G is conjugate to some Cr

Let N(Cr) be the normalizer and Z(Cr) be the

centralizer of Cr in G and define Wr = N(C )/Z(C)

Then

Wr r 
=CrX (2 an-2r*

The factor ar is the permutation group of the ai's ,

the factor an-2r is the permutation group of the bi's ,
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and QZ2 r describes the direction changes in the SO(2,JR)

factors.

A character of Cr is called nonsingular if the

restriction to each SO(2,)R) factor is nontrivial. The

group W operates on the set r of all nonsingularr r

characters as well.

The next paragraph will be devoted to explain the

following theorem and some of its consequences.

Theorem 1. The set 6 of all irreducible quasisimple

representations of G can be parametrized by A 0
r r

1 <r <n/2

This is essentially due to Langlands in a

different formulation, and in this formulation

D. Vogan.

In order to explain this theorem, we have

some notations.

Let Ar n-r be the vector part of Cr

be the corresponding Lie algebras. Let E be

of (V r@D)' and A be a set of simple roots.

restriction of Y to Ocr is denoted by Er

very

due to

to establish

and Ir 'Xr

the roots

The

Definition. Let a E Z . Then a has multiplicity n

if there are n roots S in E s.t. 01Er id

We write mult(a.) for the multiplicity of a.
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Let Nr be the normalizer of Ar and Zr the

centralizer of Ar in G . The Weyl group Wr of Ar

in G is defined as N /Zr . It is easy to see that

Wr r XOn-2r

and

r 2 r = r

The Weyl group Wr acts on Er through the action induced

by the adjoint representation.

Lemma 2. Each a E Er has multiplicity 1, 2, or 4. The

Weyl group Wr operates transitively on the restricted

roots of multiplicity 1, 4.

Proof. Let arr = (H E orr| tr H = ). We may assume that

we have a set A of simple roots s.t. the restrictions of

CL1 3,...,$2r-1 to atr are zero. Then

aE A 'ir

and the restrictions of the simple roots, if nonzero, are

linearly independent. k0

Each positive root is of the form I = ,
io

C E A and io ko . We write 0 = I+ Ol , where
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2rI CL

io

2r+l

Hence 0I lot/ r 0 and On = IT . Furthermore if

%A, 1 1, / 0 , then r and I are linearly

independent.

Case 1: i0 > 2r

Claim: mult( 0) = 1

We have = = . Let y =y + y be

another positive root. Then y and @ are linearly

independent unless y = 0 . On the other hand, if

YI 101 O, then y or , 0 are linearly

independent. Hence y and 0 are linearly independent.

Thus y and o are linearly independent unless

Y = Yjl= 0 -

We notice that the roots $ with 10 > 2r can be

considered as the positive roots for a subalgebra of type

An-2r-1 with Cartan subalgebra

0
2r

0 b

n-2r

bn-2r
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Wr permutes these roots transitively.

Case 2: 10 > 2r , k < 2r

Claim: mult(P) = 2 .

We have 0 = + , / o , / and sI

linearly independent. Let y =y + yII be another

positive root. Then y iotfr O I1r= r and

ii= i. But y - IOTr iff = 0+ a with

a E A , = 0 . This leaves us with 2 possibilities

for yj .

Case 3: 0 1 0 ,k0 < 2r

Claim: mult(O) = 4 .

In this case .= . Let y = yI + y1  . Then

Y = 0'cr iff = 0 and y r . Vut this

is only possible if Y - 6,. 6 . Where 61,62 E A

and 6lI. = 62|or = 0 . This leaves us with 4 possi-
r r

bilities for y.

The roots with 0 < i0,k 0 < 2r restricted to 0cr are

multiples of roots for a subalgebra of type Ar-1 with

Cartan subalgebra
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a
a1

2r

ar
ar

0

0. m- 2r

and are therefore permuted transitively by Wr 0

Lemma 3. There are 2r(n- 2r) roots of multiplicity 2

in E,

Proof. Each such root is the restriction of a root of

the form

k0

+ z , l< i < r k > 2r. 0

io

We showed furthermore that Wr operates transitively

on the sets of r(n-2r) roots of multiplicity 2, where

exactly i roots are restrictions of negative roots. This

implies

Corollary 4: Let 0 be a connected component ofr

nonsingular elements in or4 (with respect to the restricted

root system Er ) s.t. C is negative with respect to

exactly i roots of multiplicity 2. Then Wr acts



transitively on the set of a 'sr

Definition. A Weyl chamber of oz' is a connectedr

component of nonsingular elements of cc'r

Hence we get the following

Corollary 5. |{Weyl chambers}/W rI = r(n-2r)

Definition. Let Cr be a Weyl chamber and L be the

corresponding set of positive roots. The Weyl chamber

C90 opposite to C, is the Weyl chamber which is positiver r

with respect to -1r

Remark. Cr and C, are usually not conjugate under Wr r r

as one can easily see in the example GL(3,R). In fact,

if r = 1 , then EI| = 2 and Wr = (id .

One special and remarkable example of a restricted

root system is the following: Let G = SL(2n,]R) and

r = n . Then the restricted root system is of type

An-1 , and each root has multiplicity 4. Therefore all

Weyl chambers are conjugate. If we take the scalar

product on exr induced by the scalar product on (n , the
0

restricted roots have length 1.
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Let yr be the Cayley transform Cr -+ C0 . Then we

have yr(Ocr) = Otr , and we can consider Wr as a subgroup

of W . Let a- be the Weyl chamber corresponding to
07 0

the upper triangular matrices, and let C-(r) be the set

of all connected boundary components of ao which are

singular with respect to exactly r strictly orthogonal

roots. Using that Z is a fundamental domain for W on

C% , we deduce:

Lemma 6.

a) Each is conjugate to an element in C'(r)r

under W .
b) C- , aJ are conjugate under W iff i j

c) Let a Et . There exist w E W andr0

-r E C(r) s.t. wa E C.

Now let a E 'r . Then write o = ,xE j [H,x] =a(H)X
a- a

for all H E ox} ,and for a cr , define 14, = Rct

and N. =exp* r r
r

Let Lr be the centralizer of Ar in G. The subgroup

Pg = LrNa will be called the parabolic subgroup
- r r
associated to C- . It is well known that in this way we

get all parabolics which have Ar as a split component in the

Langlands decomposition. We extend the Weyl group action

from the Weyl chambers to the parabolics as follows: Let

mw be a representative of w in the normalizer of Ao ,
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then * T-1
then w * = = mw Pcm~ , and hence two parabolics

- r - r -r
are conjugate if the corresponding Weyl chambers are

conjugate. It is not hard to show that this condition

is necessary and sufficient [20].

Corollary 7. There are r(n-2r) orbits of Wr on the

set of parabolics with split component Ar .

Definition. We call a parabolic a standard parabolic if

it contains the upper triangular matrices.

Corollary 8. Each parabolic P

one standard parabolic under WO

Examples.

a) G = GL(3,IR) , r = 1

are the matrices

x x x

P = x x x Pre

0 O|x

is conjugate to exactly
r

The two standard parabolics

x x x

x x

O x

P 1 is the parabolic opposite to P2 , i.e. the parabolics

are associated to opposite Weyl chambers.

b) G = GL(4,JR) , r = 1 . We have IFr' = 6 . There
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are four restricted roots with multiplicity 2 and two roots

with multiplicity 1. But W 1 2 . Therefore there are

three conjugacy classes of Weyl chambers and hence three

conjugacy classes of standard parabolics.

The graph of the restricted root system is as follows:

a

CL 1 * x2

Let us consider a., a.2, a.3 as positive roots. The

corresponding parabolic is then conjugate to its opposite

parabolic, since the corresponding Weyl chambers are

conjugate under the Weyl group. The other two parabolics

are not conjugate to their opposite parabolics.

For later use, the following convention is introduced:

Let Cr be a Weyl chamber in o' and P the parabolic
r rr - r

associated to a . We call the standard parabolic Pa

conjugate to the standard parabolic associate to
rC, ~ r

Let P = pA N be the standard parabolic associated

to a Weyl chamber C c ' Then there is a set Er

r strictly orthogonal simple roots such that orp is
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just the intersection of their kernels. Now let w E W

be such that w(EP) is again a set of simple strictly
rp

orthogonal roots. We associate to w(E ) a standard

parabolic as follows:

Let L be the centralizer of wom and
YPpr

wE SE E

c>0

1wC

Define N = exp 14,
r WwErr

and P = L N . If

r r r

P / P p , then P. and P P are not associated
r wEr r Wr

conjugate Weyl chambers.

To simplify notation, I introduce the convention

P W
r

to

= wPC
r

Now let P. be a standard parabolic associated to a Weyl
r

chamber Cr . We construct a w s.t. PC and wP,r r r r
are associated to opposite Weyl chambers. This construction

will later be used in the definition of intertwining

operators forgeneralized principal series.

Lemma 9.

WO E Wr

Let Cr c: o ' r E C(r) . There exists a

s.t. w a c- and A(w.) =(n(n-1) - r)
r r
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where A denotes the length of w

Proof. Let am 1,...,ra be the simple roots orthogonal

to Cr If' i Jai 1.. r , define

w= s ...s ; s is the reflection of the simple
n-1 1 i

root a* . Then A('l) = n-1 , and 1 Cr is positive or

zero with respect to a...,an-2 , but negative or zero

with respect to all positive roots not contained in the

subsystem generated by a . . n-2 . We have therefore

reduced the problem to finding a suitable w, in the
r

Weyl group of GL(n-l,]R) .If a 1 E {a ,...,a , define
1 r

1 s .. .s s 2S5 S

Then )= 2(n-2) = (n-1) + (n-3) , and wCr is

positive or zero with respect to all positive roots not

contained in the subsystem generated by the first n-3

roots. This reduces the problem to solving the problem

for GL(n-2,R) . Now we proceed by induction. 0

Now rewrite W as follows:
r

a) Assume al f a ,... ,a~ . If i E i,...,irI '
1 r

write w = S s if i+1 E (i i , write

w = id ; otherwise write wi = s . Then
n-1 i

1 = w n-...w and A(Vj) = w )
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b) Assume a E (a , r a 1''''' r) '

write w =s a s as ;if 1,i+l5zi,...,i r)
i i-1 1-2 i-1

write w = sC s , and if i+1 E (i19,...ir) '
ii-

w = id. Then '" =wn-1,.''wl and A(wl) = - .~(w )

Proceeding by induction on the rank of the root system, we

thus construct a decomposition w = wk...w for
r r

such that A(w ) = I L(w ) , and for k > i 0 > 1,
r

w ... w C- is again singular with respect to r strictly
1 1r

orthogonal simple roots. 0

Now let P be a standard parabolic associated to a

Weyl chamber C- c r , and let w E W s.t. i r c .

Define w =
r W-r

Lemma 10: wCr P is a standard parabolic associated to the
r

Weyl chamber opposite to -r .

Proof. Let a' c 5 n w OTI be the subset of elementsr o C- rrr
singular with respect to exactly r simple roots. We have

to show that W~1w~ ' and C- are opposite Weyl
rr r

chambers. But this is equivalent to showing that Pi-r

and W~'C are opposite, which is immediate from the
r

definition of WC-
r
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Using the decomposition we wkO...wl given above,
r

we can now construct a chain

P, wP, w2wjP ,..., P
r

of standard parabolics joining P and w, P
r
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B. Classification of representations.

The character group of Cr is isomorphic to

(Z\O)r xn-r n-2r For each E 1 x an-r x 1 r we

define a parabolic as follows: If Re(log x) is contained

in the interior of a Weyl chamber Cr , define P to be

the parabolic associated to C- . Otherwise there is a

minimal number of Weyl chambers 04, .. ., C which contain

K in their closure. Then define P to be the smallest

parabolic which contains all the parabolics associated to

these Weyl chambers. If y is the trivial character,

then of course P = G.

Let P M A N be the Langlands decomposition of

P . We consider ' as a character on A N by

y(an) = y(a) , a xE A n E N .

Now assume Re(log X) is nonsingular. Then the

connected component of M is just the product of r

copies of SL(2,2R) , i.e.

Mo = Ar A E SL(2, R) i = ,...,r.

Define
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2r+1

and M = M 0x Z
T -h r

To each r? E \~ r we associate a

representation n of 14" as follows: If-x
e = (ri,...,rr) X 1 x 1 , then

I = ®r.'' r.-r r1 r

where fl is the discrete series representation with

Harish-Chandra parameter r . The representation nrri
is characterized by its minimal K-type (in the sense

of Vogan-Schmid), which is

n+1 if n > 0

n- 1 if n < 0

n-2rC ALet l p El~@ 1c91 C be acharacter of2 r
Z .We def ine a representation n#_
r

-"P

11#

of _M by

= 1--4,+

- r

Zr
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and a representation n-, of _Mx by
-r,p -

Mr #
11 ind -# Rd.

S-r,p

Then n is irreducible and equivalent to n , where
-r .,p -- Ix , p

|E|~ = (Iry|,...,|irr 1

We now define representations of P and G as

follows: Let 4 = (rx, p) E 0 r , then

and

U = indG n

The induced representation is defined in such a way that G

acts on the left and that the representation is unitary if

y is unitary. U and U9, are equivalent iff 4 =w'

with w E W . Since if x= wx' for w E Wr P and

P , are conjugate to the same standard parabolic, we can

get rid of the ambiguities by assuming that U is induced

from this standard parabolic and that r = ri|.

Now assume p = (i,%,p) with Re(log x) singular.

Let P =M A N be the Langlands decomposition of P

Then C n M is a Cartan subgroup of M . Now wer -Zx _
define a representation of M as follows:

Let Pr be the standard parabolic with Langlands
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decomposition

Pr = MrA rNr

Then Pr M is a parabolic of M and PfM =

Mr( Ar n M)) (Nr nM)
We consider y as a unitary character on

(Ar M ) (N nM ) byr % r =%

X(an) = y(a) a E M n A , N E Nr Mr r =

Now define

n -rp
-r ,. p A rNr n-m
M

(tU ) = ifd.M p M

(U )M 0 V 1 is an irreducible representation

, and we define

U = indGP (U )MMx
- 1

XIA N

Again U and U, are equivalent if f p = wp' with

w E Wr. We will always consider U as induced from

and
- M

Then

of P-;-x

*
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a cuspidal parabolic as follows: Let Cr be a Weyl

chamber s.t. log )( E 5 , and let r be the associate
r -r

parabolic. Then P My is a cuspidal parabolic of
- r

M . The parabolics P n M for different choices of
X -r ,
r are usually not conjugate but nevertheless for each
ra
(nI) , there is a representation (T_ ) r s.t.

-~MX
-M _- M

-M Cr -MX
ind~ ( ) M ind~~ ()M

P r) M -P ny P M --6 r -x - -Z)

and hence

G C- -l
U = nd (X )Mr A

- r

Again we consider U as induced from a standard

parabolic and assume r = rE1

By a theorem of Langlands [ J the representation U

contains exactly one minimal invariant subspace.

Definition. U restricted to this minimal invariant

subspace will be called the representation J with

Langlands parameter p

A result of Langlands [12 ] now asserts that each

irreducible quasisimple representation of G is iso-

morphic to one of the representations J .

More generally, according to Langlands, all irreducible
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quasisimple representations of a connected semisimple

matrix group are parametrized by 3 parameters:

a) a parabolic subgroup P = A N containing a fixed

minimal parabolic subgroup P 0

b) an equivalence class of irreducible tempered repre-

sentations of MP with r as a representative,

c) a complex-valued linear function v on the Lie

algebra op such that Re v is in the interior of

the negative Weyl chamber.

The Langlands representation

restriction of the representation

unique minimal invariant subspace.

Jp (rv) is then the

indG (rev)= ev to the
p

Theorem 1. Langlands [121.

The representations J (r,v) are irreducible,

quasisimple, infinitesimally inequivalent and exhaust

the irreducible quasisimple representations of G .

The following theorem tells us what the tempered

representations r appearing in the above theorem look

like.

Theorem 2. Harish Chandra Trombi [ 16 ]:
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Every irreducible tempered representation of G is

infinitesimally equivalent with a constituent of some

representation unitarily induced from a limit of discrete

series representationsof a cuspidal parabolic.

For SL(n,IR) , this theorem means that each tempered

representation is equivalent to a constituent of the

restriction of a representation J , with i = (Yxp)

and Re(log )) = 0 , to SL(n,]R)

Theorem 3. Knapp-Stein [9aj.

a) The restriction of J to SL(n,IR) , is irreducible

if n is odd.

b) The restriction of J to SL(n,]R) , n even, splits

into at most two inequivalent pieces.

Studying case b) more closely and using the previous

considerations, one can show that if the representation

J restricted to the connected component GL+(n,]R)

becomes reducible, there are at most two constituents

and both are inequivalent. Moreover the representation

of G is then uniquely characterized by the property

that its restriction to GL+(n,]R) contains one of them.

However, if its restriction to GL+(n,JR) is irreducible,

then the representation is not uniquely determined by

this restriction because there are two inequivalent
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extensions.

The following theorem is a special case of a theorem

of Knapp-Zuckerman [IOm] and determines the equivalence

classes of tempered irreducible representations.

Theorem 4. [Knapp-Zuckerman]

Let u = ( 9,,p) with y unitary, then U U ' U

iff 4 = W , w E Wr '

This completes the rough sketch of the ideas involved

in proving the classification theorem.

Finally we recall some definitions and theorems of [ 8].

Let V be an irreducible representation of K= O(n).

If V restricted to SO(n) is an irreducible repre-

sentation with highest weight X , we define X to be the

highest weight of the representation VX of 0(n). If V

restricted to SO(n) is the direct sum of two irreducible

representations with highest weights X1,X2 , we pick the

highest weight of one component as follows: In this case

n= 2m. We enumerate the simple roots a, i = 1...,m

as in Bourbaki [4 1. Then

(CLm-l3Xl) = C$2

(CLM-' 1 2'

(aM-l' 2) =1 (CLM'X 1

We now choose X E (X ,X2} such that (anqx >am-1'X
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and call X the highest weight of VX .

Let now X be the highest weight of an irreducible

K-module, where K = O(n) 6 K be half of the sum of

the positive roots of so(n,C) , and

|1|X| = < + 28 K, +2 K>

Now let X be an irreducible quasisimple representation

of G and V be a representation of K with highest

weight X . Let Kx be the set of all highest weights of

so(n,) s.t.

dim HomK(VXX) / 0

Theorem 5 [Vogan].

There exists exactly one X E Kx which is minimal

with respect to |f || . It satisfies

dim HomK(VX ,X) = 1

We will call V the minimal K-type of X More

generally we call an irreducible representation V of K

a K-type of X if dim HomK(VX) / 0 .

For later use we now give a list of minimal K-types

for the representations J . We will notice immediately

that unfortunately there are inequivalent representations

with the same central character and the same minimal

K-type.
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For each simple root a we define an 81(2,])

subalgebra in the usual way: Let HM E c , H coroot

to a, XC E C- s.t. [X ,X_ ] = Ha

[HCLXCL] = 2XCL , [HPX CL] = 2 Xa , then Sl(2,]R),=

R X ® R X @ RH .

It is easy to see that MCL X -X E M0 . We

consider p E (1 X 1 x r) as a character on Mr and define

SP~r to be the maximal number of strictly orthogonal

simple roots a , which are orthogonal to the first

2r-l roots and such that p (ma) = - '

Now let n be even. We identify the imaginary part

in the dual of the complexification of the maximal abelian

subalgebra hK of so(n) with ]Rn/2 . Let e1 .... , n/2

be an orthonormal basis. Then the simple roots of so(n,C)

are

CL e-e -. =e -
S 1 2 , a2 =2 3 ''' n1_ 1

2 T2

Ca =e + e
n n-1 n

The minimal K-type of J , p = ( P, ,p) and r =

(rl,...,rr) , r > 0, has highest weight

(r +1,...,r +ll,...,l,0,...,0) where r > r ,
1 r j s+1

and the number of l' s is ' p r
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Now let n be odd - We identify the imaginary part in

the dual of the complexification of the maximal abelian

subalgebra hk of so(n) with 4ni)/2. Let e9,.,en-1

be an orthonormal basis. The simple roots are

1 = e 1 - e2, a2 1-e3 P 0 Ln-1 n-1 ' n- = 2e n-1

The minimal K-type of J , P = (r,%,p) and r= (r ,

has highest weight

(r1 +1...,r +1,1,,..,,,...,O) where r >r rJ+l

and the number of l's is 'p'r 9
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C. Intertwining operators I.

We now fix once and for all a maximal set of non-

conjugate Weyl chambers ',...,r and the correspondingr r

parabolics P ,...,P r '

For each . = (ir,yX, p) E Cr we define

P
= indG - 0%Pi

=r

Definition:
P

Let r = 0 . The representation TFO is called a

principal series representationi(p.s.r.) of G . Let
P

r / 0 . The representation lFr is called a generalized

principal series representation (g.p.s.r.) of G

Let P be the Borel subgroup and Pr be the
0r

standard parabolic associated to the Weyl chamber Cr *r

w E W s.t. Pi = M P m , and define fl by

wp wp

n (p) = n (m iPm~1) p E- P .
- w w i 

r

P P

Then Lr = ind G , and we shall always write U r

p i p r

instead of Ir

Using step by step induction, we can always consider

the g.p.s.r. as invariant subspaces of suitable p.s.r. as
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follows:

Let P be the Borel subgroup and Pr be a standard

parabolic associated to a Weyl chamber in or . Then for

g E O we have

p P
U 0 = indG n =ind G (ind r IQ

M r r r

But Pr = MrArNr Mr =KW N and P0 O Mr = jN ,

where M is the normalizer of A in K , which is

M . Then we can write

= MrArNr

rO MIWMI r r( r
indpr9= ny (H@x

M
=(ind rrrYpx ~M 1~~

Since Mr is isomorphic to a product of a finite abelian

group Zr with r copies of SL+(2,2R)- , we can choose a
A

suitable pair (p,)( IA r) for each t' E Cr s.t. H4'|Mr
AM M

is isomorphic to the restriction of ind rr(lpOX r

to an invariant subspace. o AM

Lemma 1:

xI r is uniquely determined by this requirement but

AM
2 choices of pwe have
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Proof'.

For a discrete series representation SL+(2,IR) there

are exactly 2 p.s.r. s.t. the discrete series repre-

sentation is isomorphic to the restriction of this p.s.r.

to an invariant subspace. Both these p.s.r. have the

same continuous parameter but different M parameter

[see II A]. 0

Now assume that r = 0. For w E W let mW be

a representative of w in the normalizer of A . We

define

N = 1 NOJ~ 0 exp(e(w0))

where e denotes the Cartan involution. Let dn be

the euclidean measure on Nw and for 4 = (x,p) define

H = (f E CO(G) I f(gman) p1(m)-(a- )e fg(loga- )

where & is the half sum of the positive roots m E MO ,

a E A,, n E N . H is the space of C vectors for

indG Gr , and for w E W we define

Po

(A(p,w)f)(g) = N f(gmin)dn
w
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The integral converges if Re (log %) is strictly positive

with respect to all positive roots, that are transformed

into negative ones by w . In this case, it defines an

intertwining operator from

p p0

U 0 to U

If A(p,w) is convergent and w = w1 w2  s.t. A(w) =

(w 1 ) + t(w2 ) , then

A(w2Pw1 )A (pw2 ) = A (p,wlw2)

and A (w2 .Lw ),A (,w 2 ) are convergent. I'-t l9b'-I

To define the operator for g.p.s.r., we use the

embedding in p.s.r.

Pi
Let U r be a g.p.s.r. induced from a standard parabolic

which is defined by a set i = , } of simple
1 r

orthogonal roots and let w E W s.t. WE is contained in
P r

the set of simple roots. Now if U., is a p.s.r. in which
P

U r can be embedded by step by step induction, we define

A(Pi4,w) to be the restriction of the formal integral
pi

operator A(p',w) to the subspace U r In this case

wP is again a standard parabolic for a Weyl chamberr
~w(i)-
r r

If the integral converges, it defines an intertwining
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P wPi
operator from U r to U where w() = (wJ )l w i

Hence this operator, if defined, allows us to intertwine

between representations induced from non-conjugate para-

bolics. Up to a nonzero scalar factor, this definition

is independent of the embedding.

The integral converges if (w )_ log x is strictly

positive with respect to all positive restricted roots

which w transforms into negative ones.

Theorem 2: Knapp-Stein [9b]., Schiffmann [I 1].

For each wE W there is a function yw: MIMC -+
w 0

s.t.

(p,w) = y~ 1 (log %)A(p,w)

is defined if Re(log %,x) > 0Vm E A+ s.t. we E -t+
~~ P

and it defines an intertwining operator from U 0 to

U .

We can also extend the domain of definition of

A(P'44 1w) to singular values of the continuous parameter.

Theorem: Knapp-Stein [9a].
Pi

Let U , r > 0 , be a p.s.r. For each w E W s.t.
VI dPi

A (P i p,w) is defined, there is a function Yw r,.or C-

s.t.
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P
07(pi,4,w) = yr(lg X-l A(P ,p W)

is defined if Re((w ) (log %),a) > a for all positive

roots a which are transformed into negative ones by w ,
P

and it defines an intertwining operator from U r to
P r1
Ur

If w = w1w2  and A(w) = A(w1 ) + '(w 2 ) then for y

in the domain of definition of O7(4,wlw2) C (2(-),wl)

and O((4,w2) are defined and we have the product formula

(pw) = O W2 (t) , wl) M , w. '

If W r and w2Z are even contained in the set of simple

roots, then if CX(Pr WV w) is defined, so are

cQ(W2PrW 2() ,wi) and OT(Pr'9w2) , and we have the product

formula

Or(Pr, 4.W) c(w2 Prw2 () ,w) CR(PrY ,w2)

Definition. Assume P P and let w be definedr r r
as in I.A. The operator

Cx(Prwr) for p = (r,%,p) of Re (log x) E Cr
r

will be called the long intertwining operator for (P r-OVA
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The product formula for w implies a product
r

formula for the long intertwining operator. Before we

can deduce any results about reducibility or composition

series, we have to study these intertwining operators

more closely.



D. Intertwining operators II.

Let p E %h , P > P0  standard

step by step induction, we identify

f E C (G) , with an indy fl -valued
0 0

by the formula

f(gp) = (f(g))(p)

parabolics. Using

f E indGl
P0

function f on G

p E P , g E G.

Then

Pf (e) E ind P T1

Now assume w E W is

and define

contained in the Weyl group of M ,

[A(P.,p,w)f(g)](p) = A(p,w)f(gp)

for p s.t.

defined, and

so is A(piw)

A(g,w) is convergent. A(P,p,w) is well

since A(p,w) is an intertwining operator,

. Hence if P = MAN ,

[A(P,p,w)f(g)](p) = U )(g~)[A(Ppw)f(e)](p)

P
= Uw (g ) A (ti, w) f (p)



N f (p mw n)dn

w

S f(m an mw n)dn
w

(g1 e) 1a 1

Nwf (numgn) dn

But f IMp E ind fM~p|MfP )M
0 0~l~~no

and f(m) H- S f(mm n)dn
Nw

is an intertwining operator

indo
P0 M P ) -+ ind nM (fw I

0noP

Therefore

E ind(AM(w,p)ind fM p|
o

This proves

Image of A(P,p,w)

= ind ((AM(w,pS)ind$ M p
P P 0 ti

Corollary 2: A

an isomorphism.

P 0 AM

is an isomorphism iff

41

P
U (~ )

=U04 (g~)

P
0U

P 0M

P 0OM

Lemma 1:

IAN

I AN

AM(wp.t)

0

is

0
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Together with the product formula for intertwining

operators, this lemma allows us to reduce the problem of

determining the kernels of intertwining operators to

lower dimensional groups.

Similar considerations apply to g.p.s.r.. Here we are

in the situation P0 c Pr C P = MAN , and w is contained

in the Weyl group of M . Let p E Cr , then by exactly

the same arguments, we prove.

Lemma 3:

Image of A(P,pi,w) = Image of A(P 'w)

= i n d G (A M rO M , ,w )i n d ~ rO M 4 r ®M A N
P MPr~lll) rI"PrnM AN

We will now study the operator AM(PrOM',w) more

closely. We have

M E SL (m,R) X SL (mi,]R) X ... X SL+ (m.,R) X Zw '

where Zw is a finite subgroup of Zr and 1 SL (mi,2R)
i

is the subgroup whose Weyl group contains w . Then

Pr n M Pr SL (m 1, - )... Pr SL+ (mlR) X Zw

and
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M SL+ (ml., 1R
indMfPr( ( pM) = ind Pr7SL (m ,

r Prr(1SL)(mR ,R)

SL+(m ,]R)

Pr0S (I, Zw

Since Pr n SL+(mit) , i = 1,..., , is a parabolic of

SL+(mi,)R) , each factor in the tensor product is a g.p.s.r.

of SL+(miBR) , and the intertwining operator

AM(Pr nMp4,W) is the product of the intertwining operators

for the corresponding g.p.s.r. of the SL+(m,JR) factors.

Similar results are of course valid for the normalized

operators Q7(PA,w) .

This result therefore allows us to reduce the compu-

tations for kernels and images of intertwining operators

to the corresponding computations for lower dimensional

groups, if the Weyl group element w is contained in a

suitable subgroup.

If w does not satisfy these conditions, we usually can

rewrite it as a product w = w1 w2 - -w , s.t.
A00

A(w) = iEl A(wi) and such that each of the factors is

contained in a suitable subgroup. In this way we can at

least reduce the problem of proving injectivity of the

intertwining operators to a similar problem for lower-

dimensional subgroups.
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E. Reducibility.

In our previous description of Langlands' classi-

fication we constructed representations U , E er , which

contain the Langlands representation with parameter L as

the minimal invariant subspace. Now we go to the contra-

gradient picture:

Let U0 be the representation

G
indGp ( Ty')

-x--r,p
indG (P 3 ex )

P ~
As before, U0 = U . Then

Langlands parameter (-4,.,p)

the closure of the kernel of

(A(P ,p)f)(x) =

if y, is nonsingular

if ' is singular.

[12] the representation with

is a quotient of U0 by

f (xi) d R

where f is a K-finite function in U0  and N =

exp(e(n ))

If y, is nonsingular, then

A(PV ,pw ) = R(mW )A(Pp) ,
rr

IRX
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where R(m ) is the right regular representation of

r
a
werCr

. Therefore

0
ker A(P,w.) = ker A(P,,W r

T-por

This proves

Lemma 1: Let p E 0̂  , p E (ixp) with ( nonsingular.
-Pr

Then U is reducible if A(P(4pwr) has a nontrivial
r

kernel.

We now assume that *. is singular. Then we choose

C, s.t. Re(log Y') E r and rewrite wc

2 1 1
SwCw where wC is contained in

r r r 2 2 1
parabolic P and mw NP (m )

r C C r

r
as a product

the M-part of the

= ' . Using the product

formula for 0 ((? ,u,wc. ) , we ge t
r r

1(1 2 ) OT1(p )

r r r r r r r r

The second factor in this product is an isomorphicm since

1
WC.
r

is contained in the Weyl group of M

r

and the

representation ind nm 11
PC. f r,p A N

On the other hand,

is unitary.

r r

1 -l2 -11 2
S r r) = r()A , w
r ,r 1r r r r r
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with cw (%) a nonzero constance, since X is strictly

positive with respect to all roots not contained in b .r
Thus by the same argument,

A(wCP, ,(wr ) (p),w ) = yR(m 2 )A(P ,t) , y E C\O
r r r r wC

r

This proves:

0

Theorem 2: Let j E Cr Then U is reducible iff

A(PC ,Vwe) for Cr s.t. Re(log y) E Cr has a
r r

nontrivial1 kernel.

If an intertwining operator has a nontrivial kernel

and has a product representation, then at least one of

the factors has a nontrivial kernel. Therefore the formula

w, = wk...,wl and the product formula for intertwining
,r k

operators reduced the problem to showing that the inter-

twining operator for one of the w ' s has a nontrivial

kernel. But for the w i s we can always choose a smallest

parabolic P containing wl. .O.wlPC and containingPWi ,r
a representative of m , hence containing w w il.w P-

w i il* Crs

a) If C.(wi) = 1 , we can choose Pi = Mi A iNi s.t. Mi

is a product of r+l SL (2,]R)'s with a finite group,

and mw is contained in an SL+(2,]R) factor. The

representation
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Mf
indM in(wi ... ) (n ... w) (4 iM n(w _..i

r
is a tensor product of discrete series representations

of r of the SL+(2,F) factors, a p.s.r. of the remaining

SL+(2,JR) factor, and a character of the finite group,

whereas the operator AM (Wi -... wPa P Miwil...w(l),wi)

is the product of a long intertwining operator of the

p.s.r. factor and the identity on all other factors. Since

A(wi. .. wP P,w .. .w( ) ,wi) has a nontrivial kernel

iff AM (W .1..wP M ,w w. . .w ,w) has a nontrivial
i r i

kernel, we have reduced the problem to finding necessary

and sufficient conditions for reducibility of g.p.s.r. of

SL+(2,]R) . These conditions have been known for quite a

long time [see for example II.A.]

b) If A(wi) = 2 , we can choose P = Mi A N such that

M is a product of r-l SL (2,]R) factors, an SL+(3,JR)

factor, and a finite group. The representation
Mi

indM 0 )(wk .. r (wi ...wl) IMw(w ..M _. wpr 100O *Gw)ar
is a tensor product of discrete series representations of

the SL+(2,R) factors, a g.p.s.r. representation of

SL+(3,)R) factor, and a character of the finite group. In

this case AM -((Wi*..w)P r rM ,wi1 ...wl(4),wi) is a

product of a long intertwining operator of the g.p.s.r.

and the identity on all other factors. By the same argu-

ments as above, we reduce this case to finding necessary
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and sufficient conditions for reducibility of g.p.s.r. of

SL (3,)R) . This will be done in II.B.

c) If 4(wi) = 4 , we can choose P = M A N , such that

Mi is a product of r-2 SL+(2,IR) factors, an SL+(4,]R)

factor, and a finite group. The representation
Mi

ind M n (w .. wP) (n .. w)MMw .. w)

is a tensor product of discrete series representations of

the SL+(2,JR) factors, a g.p.s.r. representation with

r = 2 of the SL+ (4,JR) factor, and a character of the

finite group. In this case,

AM ((wi-...wl)P Mwi...w l(),w,) is a product of

a long intertwining operator of the g.p.s.r. and the

identity on all other factors. Again by the same argu-

ments, we reduce this case to finding necessary and

sufficient conditions for reducibility of g.p.s.r. of

SL (4,]R) . This will be done in II.C.

In part II.D. I will then use all this to derive

explicit formulas for reducibility.
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F. Jordan-Hlder series.

Let V be a Banach space, II: G -+End V a quasi simple

representations of G .

Definition. (r,v) is of finite length if we can find a

family

0 V V l V V (k < oo)

of closed G-invariant subspaces such that G acts irre-

ducibly on Vi,/Vi_1 , i = 0,...,k . Let us write r for

the representation of G on V /Vi 1 . The family

(7riV/Vi1 ) , i = 0,...,k is called the Jordan-Holder

series of ('r,V) , and k is the length of the Jordan-

H6lder series. We will say that an irreducible repre-

sentation r' occurs in the Jordan-Hblder series of (r,V)

with multiplicity I if I of the representations in the

Jordan-HOlder series are equivalent to 7r' . To the

representations in the J. H. series it will be referred to

as composition factors of (V,r)

p
Now assume that (r,V) = U r E 8r By a theorem

of Harish-Chandra [20] , U r is of finite length.

P P
Lemma 1: Let i E r, U r and U r have the same

r W4
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Jordan-Holder series.

Proof: If a representation 7r has a Jordan-Hblder series,

then its character is the sum of the characters of the

composition factors. On the other hand, the characters

of the p s.r. and g.p.s.r. are invariant under the Weyl

group Wr [20]. Hence if U9 and U had different

J.H. series, we could write the character of U in two

different ways as a sum of characters of irreducible

representations. But since characters of irreducible

representations are linearly independent [20], this is a

contradiction.

P P
Since U U w E Wr are in general not

equivalent as representations, we will, except in some

special cases, not try to determine the lattice of closed

invariant subspaces of U , but try to compute the

J. H. series instead. To do this, we have to compute

a) the Langlands parameters of all the composition

factors and

b) their multiplicities in the J. H. series.

Consider now the problem of determining the Langlands

parameter of the composition factors.

Let g E ec , 4 = (%,p) with Re(log x) dominant,

and let Or(,w ) be the long intertwining operator for
P P

U 4 . By Langlands [12], O(p,w )U 0 = J is irreducible,
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and therefore all composition factors except J are

contained in the kernel of 0( ,w0) . To analyse the

kernel of CX(,w0 ) , we use the product formula. Write

w = wn,...,w1

with w a simple reflection and obtain

M4,w) = q(( n- 9,0...w l)~ (p),w n),..., * OTNwl).

Obviously a composition factor is contained in the kernel

of O(p,w ) iff it is contained in the J. H. series of

the kernel of at least one of the factors. To compute

the kernel of such a factor, we use our results on inter-

twining operators. We choose the parabolic P = M A N

to be the smallest parabolic whose M-part contains m .
i

Since w is a reflection of a simple root, the M-part

of P is isomorphic to SL (2,JR) X Zw . Hence if
W i wi0

((W i-11*,.,wl) ),w ) is not injective; its kernel is

a discrete series representation of SL+(2,]R) . Thus the

kernel of OT((w i_,...,wl)(),wi) is either 0 or a

g.p.s.r., whose parameter can be computed in terms of the

parameters of the OTM (w- 1 ...wl)~',wi) by the formula

I.D.l.

This 'reduces" the problem of computing composition series
P

for U 0 to the problem of computing composition series
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for the g.p.s.r. r = 1 with these new parameters.

Now let Up, with p' = (r',y', p') E 61 be such a

g.p.s.r. Applying the lemma above, we may assume that

P = P 1 for some a 1 s.t. Re log %' E a'1 , i.e. that

P
U = ,. Now repeat the above argument for O(P,p',W ).

Here

w= wm...w

where the w i's are either reflections of simple roots

or contained in a SL+(3,JR) subgroup which is associated

to 2 simple non orthogonal roots.

In the first case, 0(M -((wi...w) (4 ),wi) is a product

of an intertwining operator for a p.s.r. of an SL+(2,]R)

factor and the identity on the other component. Hence

the kernel of c((wi 1 ...wP 1,(wi ...w 1 ) (4),wi) is 0

or a generalized p.s.r. with r = 2 .

In the second case, OT ((w 1 ... w 1 )P(wi...w) (,wi)

long intertwining operator for a g.p.s.r. of the SL (3,R)

factor of M . We will later in part II show that the

kernel of a long intertwining operator for a g.p.s.r. of

SL (3,9R) is either 0 or again a g.p.s.r. of SL (3,JR)

Hence the kernel of O(((wi ... w)P,(wi1 .. .w1 ) (W),wi)

is 0 or a g.p.s.r. with r = 1 .

In both cases the parameters of the kernels can be computed
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in terms of the parameters of the kernels of the

N i ((Wj_l,...,wl)Pl(w _g,...,-wl)(4),W ) .

Now we start our procedure all over again. In the

case r = 2 , the above argument reduced the problem to

intertwining operators for p.s.r. of SL+(2,3R) , long

intertwining operators for g.p.s.r. with r = 1 for

SL (3,JR) , and long intertwining operators for SL(4,JR)

with r = 2 . It will turn out that for SL (4,:R) the

kernel is in general not a g.p.s.r., but that we can find

at most three g.p.s.r. such that each composition factor

of the kernel is a composition factor for at least one

of the three g.p.s.r. Again we compute the parameter of

the generalized principal series in the kernels. We get

g.p.s.r. with r = 1 , r = 2 and r = 3 . For r > 2

the above argument always reduced the computations to

analogous computations for SL+(2,]R) , SL+(3,]R) and

SL (4,R). We repeat this procedure until we come to an

irreducible g.p.s.r.

Obviously this procedure yields the Langlands para-

meters of all representations in the J. H. series, but it

fails to give us the multiplicities. In fact, the

multiplicity of a composition factor for the kernel of the

long intertwining operator can be strictly less than the

multiplicity with which this composition factor appears

in the J. H. series for the direct sum of the kernels of

all its factors.
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The computations involved in the above procedure

can be simplified by using Gregg Zuckerman's results on

tensor products:

Let M be an indecomposable H. Ch. module of } with

central character v and V be a finite-dimensional

irreducible representation with highest weight X . Then

M V is again a H. Ch. module. Let P V+ be the pro-
X V

jection on the summand with central character v +X

Let V be the functorV

M - P+ (V®M)

Theorem 2: (Zuckerman [21]).

Let WV and W be the stabilizer of V and

v +X in the Weyl group, respectively. If WV = W ,

then V is an exact functor in the category of H. Ch.
V

modules.

For the rest of this paragraph, let the assumptions

of the theorem be satisfied.

Let U be a p.s.r., pt = (%,p) with Re(log x) Ea .

Then U has central character log y, and

U @Vy = ind G (7r )@ V

= indG (r e% X P
P0 P10
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The representation )r y V 0 has a composition series

and as a minimal invariant, hence irreducible, subspace

the space of weight log ) + X . Let ir be the repre-

sentation of M on the highest weight space of V , then

ind G (r r x U

is an invariant subspace of U 0 V

log Y + x .

(p, px CX )

with central character

Proposition 3: log1, +x U*log Y I = U

Proof: We need another result of Zuckerman:EI

Let M be a H.Ch-module with central character v' and

V be the contragradient module to V . Let P~V

be the projection from M®Vr on the submodule with

central character v' - X , and define cp ,~A to be the

functor

M -+ V (M aV) .

Then under the assumptions of the theorem

CP V+) M = M
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Now we want to show that CplogY UlogY,+X (p,pX,Xex)

contains the representation U as a composition factor.

We have

U 0 V (U ev
(p, P),,Xe ) ( p, P ,x 1e- )

where * denotes the contragredient representation:

Our previous considerations show therefore that

U = U * is contained as an invariant sub-

space in U _ ®V . Going to the dual again and

applying the projection, we see that U ) is contained

at least as a quotient in the image of the projection.

Assume now that *19O+x U = M 3 U then

log+ ) U
logy Y (UlogY, x (p, PI ,Xe X)

On the other hand we showed that U is a quotient

of P log U , which yields a contradiction.
10og,+X (p,p ,XeX)

Applying these results to our composition series

problem, we see

Proposition 5: To determine the length of the J. H. series

and the multiplicities of the composition factors, it is
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enough to do so for the representations U( , where

A 
-

PEo , = i 1 9 0 > %> 1 The , are here

the fundamental weights. 1

We will now show how the parameters of the composition

factors change under the functor + . Since this is an

exact functor it is enough to compute

Plog Y,++ P.

where X is dominant and logx = logx' + 32i- '
i=1

We have already proved that for 4 E C , P dominant

P log+X(U V) = ind (7 r V )
log Y ( nP 0+.,(rPXy Xp 0

where 0X is the projection on the invariant subspace

of weight log %+X . But if Po 0 Pr , we can also write

this in the form

P
P log%+X (U AV ind G (indPr,+ (r xVlogy X bkX .nP o P I

G X P
indG + indpr (r 0 VXIP)

Pr 0 r

where

P ror (ind P (r 0 -) 0 VX pr -- ind, r. T XV
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Now let ' = (8',X',p') E and assume that U ,

can be embedded in some U , = (PX) E C, with x

dominant by step-by-step induction, i.e. that we are given

an embedding

P
7rA, -*ind 7r .

Then

_ plog %+X indG (r
logX r 'p

- indG 9r (r
r ,P

0 ®VxI Pr)

eyO VI p r)

= ind G r (rr VxjP

which reduces the problem to studying 0 . The

definition of 9 r implies that

r (nP r(9 +x [ind P0 (7x)) r

rF n Mr
+- ind M M. A~

= indMr (rX )
Mr o Mr o ArNr

Let Vr be the representation of Mr

Pr invariant subspace of V)Ipr * Since

by (F 2) .

on the minimal

P log %+X (UIO
log Y p 4 x

0 V" I P r I
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Mr SL+(2,]R) x ... x SL (2,R) X Zr

the representation is characterized by an r-tupal xr =
*r

(X... Xr) of highest weights, together with the

representation of the representatives of the 2 connected

components which are indicated by the +,- sign, and

a representation p of Zr M
On the other hand, the representation indMr lP (Ir IV)r o~ I MrflP

is a tensor product of p.s.r. U of the SL+ (2, IR)

factors, and a representation pr of Z . The index

p is the restriction of (x,p) to the corre-

sponding SL+(2,2R) factor. For each factor we define
log % +X - log %+xrP as previously and define PM to be the

lox log x+X1 ,
product of the P .log Then

log x+ Mil

PM r(ind(Mr p 0 ( Y

Mr
= indM r rp %Mr o X IMr Por 0 l~rr o

and therefore

r+( (indMrfl ( )
r o IMr P A Nr Pr

log x+X M
=P rindMrnp (tr.1 'V) 0ye.

r r 0o Mr 0 iArNr
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Hence

+ ArNr VXIP

log x+x

r rp A rNr

Thus we have shown

Proposition 5: The diagram

P P P
indpr 0 g+ [(inda) x r = o eVeind p e

0 X+ 0 , r Po (pp ,, x)

p +x P Pr

is commutative, where the inclusions are obtained by step

by step induction.

P
But $log X+U U- is uniquely determined by the

log x P)
data of a p.s.r. and a standard cuspidal parabolic Pr

such that it arises by step by step induction from P0 to

P r . Proposition 5 provides all the necessary information

on these data.

Similar considerations apply of course to the functor

C log x+X under the same assumptions as before.log x
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Now we drop the assumption that log X' + r+ .2i-1

is dominant.

First assume that r = 0 . Let P, = (p,x) , log x E

and let w E W be such that w c . Now let VWX

be the subspace of V 0 of weight wX and V be

P0 (Vw) , i.e. the smallest P -invariant subspace

containing Vwx V w is the direct sum of spaces of

weight smaller or equal to w% and we can find a largest

P0  invariant subspace Vwx of Vwx which does not

contain VwX and is such that VwX/Vw is one dimensional

and irreducible. We write 7 wX for the representation

of P on VYX/VwX
GG

Thus (ind rW0 ) ®V = ind0 (nr@VXp) contains

indG (T n )as a composition factor. But ind (n or

0 ~-l0
has the central character w log x+X and therefore is

in the image l = w log x+ . Exactly as before
w logx

we show

log x+wX U P - U 0
log x P (PPw ,xe )

where p is the restriction of n to M . Again we

define 9 _ to be the map which associates to
w X+X

TT ® VX I p the composition factor n. ® (vw/Vw ) . Then

P 1 log x+X (U 0 9 V) = nG e-l (*I9n

w log x P w +XI
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Now if r / 0 , let Pr D

and define

P
-1 :(ind, P ) TT V X P

w- x+X 0 r

be a standard parabolic

P
-+ ind r((, -, ( V ® )) .

0 W x+X 0

A
If p' E Cr , then by the same arguments as before we get

a commutative diagram

P rP ,. Pr
ind[ (indprn9) @V = ind, Pr wX

o w log X+X 0 r o (PP , xe)

-1 TP LP I
w log x+X r

where all inclusions are obtained by step by step induction.

Hence we can compute the parameter of 'w~ log X+ from
w log x

the parameter of the parabolic Pr and the parameter of

w log x+XU P
W- log x

Example: Assume r is maximal and P = P . Then
(rx)P P -r

1' =( ) ndU U 0 , where U P has the continuous

Er a2i-l/
2parameter x = X le w logxX~Then w -log( UP can

.? 
A-fl

-1l P
be embedded in '- log x+XU 0 which has the continuous

w log x

parameter xe . This implies that the parameter

is given by
-i P

( ,xx) of *W_1 log x+XU r
w log x

P t
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(rX)i = ('2i-1 , logXt + E r a21-1/2 + wk)

and

log X = log x' + E r -1/2 + wx - Ei(rk)ia2.-1/2 '
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G. Unitarity.

In this paragraph we establish some results concerning

unitarity, which will be used later to classify the

unitarity dual of GL(n,JR), n < 4 .

Let U be an irreducible quasisimple representation

of G on V and Uk the representation of the enveloping

algebra U(ct) on the subspace Vk of k-finite vectors.

We call U infinitesimally unitary if there is a positive

definite, U(oP)-invariant, hermitian form < , > on Vk

Since there is a one-to-one correspondence between infinite-

simally unitary representations and unitary representations,

it is enough to classify the former. Furthermore, Dixmier's

lemma [4 ] implies that a U(o1)-invariant form, if it

exists, is unique up to a scalar multiple.

To classify infinitesimally unitary representations,

we can therefore proceed as follows. In the first step

we give necessary and sufficient conditions for the

existence of a U(.)-invariant hermitian form, and in the

second step we find necessary and sufficient conditions

for this form to be positive definite. Unfortunately,

the second step is much harder than the first one. We

call a representation U hermitian if Uk admits a

U(O-)-invariant hermitian form, and we call a representation

unitary if it is infinitesimally unitary.
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Theorem 1: Let p E r

iff there is a w E Wr

sP= Pt.

S. t.

is hermitian

Proof: This theorem is a reformulation in our notation of

Theorem 7 in [lob].

The form is constructed as follows:

J is the minimal invariant subspace in4

I = (r, R-1, p) and P = PC

-Re(log X) E Cr ,

contragradient to

for some 0
r

Let (U )* be the

U- Then4

UPU , where

such that

representation

(UP) = U P4 tU *

Let <.,.> be the pairing between (Un)k

(U )k . The theorem implies that there is a w E W s.t.

I(P, 4,w)(U )k -> (U )k and in fact P-9(P,4 ,w)(UP)k = pk'
Define

<., .>4

Then <.,O>4 defines a degenerate hermitian U(cl)-invariant

form on (U )k and a nondegenerate hermitian form on

and

= <.OT(P,9 P, . >
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(U,)k / ker T(P,4,w)k p k A

This shows that the problem of classifying unitary repre-

sentations of GL(n,]R) is equivalent to finding necessary

and sufficient conditions for the operator O((P,4,'w) to

be positive or negative semidefinite.

Now assume w E Wr , order w = 2 . We assume that

there exists a unitarily induced irreducible representation

U with p= (rxp) E Cr s.t. 40 = wp . Then the

operator OT(P, 40,W) commutes with Uf, and is therefore

a scalar. Let t = (r,x, p) E 0r such that wx = X ,

and let x(t) . 0 < t < 1 , be a one-parameter family of

characters s.t.

xl = x

x= wx0

wX t t

Let us also assume that U with 4(t) = ( , xtP) iswih4()= rx)p

irreducible for all t E [0,1] . By [,b], this implies

that < , >4(t) is definite for all t E [0,1] , and hence

U P(t) is unitary.

Definition 1. The set of all irreducible representations

U with p = (i, x,p) E C and P = P , for which we can
4 r r
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find w E Wr with w2 = id and a one-parameter family

U with "(t)= (r, (t),), < t < 1, of

irreducible representations s.t.

P P

$A(0) 4(o)

SP P
U(t) U(t)

is called the complementary series.

Obviously we are able to determine all complementary

series for GL(n,R) as soon as we have explicit formulas
P

for the reducibility of the representations U r E 8 re

An explicit classification of these complementary series

by other methods is already contained in [9a.].
A

Let J , E Cr , be hermitian and J U . Assume

furthermore that there is a w E Wr with w2 = id s.t.

= w4 , and. that we can find a sequence U with

r,= (r, 1,p) E Cr ,i E IN , of complementary series

representations s.t. -+i ,i.e. X -+ C ,and w.i =

Then J is unitary and is called a limit of complementary

series representation.

Lemma 2. Let J , E 6r 'J, U be a limit of comple-

mentary series representation. Then U- has at least 2



68

unitary composition factors.

Proof: Let w E Wr with w2 < id s.t. wp = i and let

~P POT(Pp,w): U9 -U- be the intertwining operator corre-

sponding to w . Now assume that

r(t) = (i,%(t),p) E Cr s.t. g(l) =

wLI(t) = y (-t) = (t)

and that U ( is in the complementary series for

-1 < t < 1. Then c{(P,i(t),w) is defined for 0 < t < 1,

and we can define

< (Pj(t),w).,.> 0 < t < 1

Since U(t) and U(t) are equivalent for -1 < t < 1 ,

both forms are equivalent up to a scalar, i.e. both are

definite. But this implies [9b that <.,.>

lim <.,.>- is definite or divergent. Choosing a
t-+l ON.t
regularization of C((P,j(1),w) , we get a definite

hermitian U()-invariant form on U- ()/ker N(Pj(l),w)

The representation U /ker OT(P,i,w) is not equivalent to

J (for example Vogan [1i]), but a composition factor of

U .
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The unitary representations obtained in this way are

in general very hard to identify in terms of their

Langlands parameters. There are examples where a slight

modification of this technique is the only "natural" way

to show the positively of the hermitian form.

For some p's in Cr and J U' there is still

another way of proving the definiteness of the form: Let

P = MpApNp be an arbitrary standard parabolic. Let r

be a unitary representation of M, and Xp a one-

dimensional representation of APN, . We will now find

some conditions for indGreyp = U(P,rmxp) to be unitary

or at least to have a unitary invariant subspace.

a) It is obvious that U(P,re 'y) is unitary if %p

is unitary.

b) Asbefore we can try to construct "complementary

series".
P P

Let U r and U r be a g.p.s.r. or p.s.r. s.t.

P
U(P, r (V P) ) U r

Pr
U(P, 7r l) . UU

by step by step induction. Then a necessary condition for

U(P, r 0x p) to be hermitian is that there is a w E Wr

with w2 = id s.t. =wu'

Now let U(P, r rx*) be a unitarily induced irreducible
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representation. Assume that

P
U (P., r@" 0 X) U r1

and that there exists a w E Wr such that w2 = id and

wu0 = .- Let x(t)p , t E [0,1] , be such that

1) x(0)p = X(

2) U(P, irt®(t)p) is irreducible and
p

U (P , r 0 )(t) p) c Ur

3) U(P, TX R(t)p) is irreducible and

U(P, r 0~(t)P) C U , and wp(t) = al(t)

If we can again define an intertwining operator

B(P, q Sx(t)P, w): U(P, x(t)P)1C ) U(P,9r 0 @X -1

such that B(P., rKp,w) is hermitian for unitary x),

then by the same arguments as in [9b], we deduce the

existence of new unitary representations. If r is

unitary, or in the complementary series of M , then these

representations can be shown to be in the complementary

series. Otherwise we call these unitary representations

degenerate complementary series or limit of degenerate

complementary series.

After explaining the most important procedures to
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construct unitary representations we now state conditions

under which hermitian representations are not unitary.
P PA Pr Pr

Let u E C , and U qU by g.p.s.r. Assume that
r 4 4

there exists a w E W with w 2 = 1 , such that OT(Priw)

is defined and that CX(Pru,w)U- C U . Assume furthermore

that w is contained in the Weyl group of the M-part of

a parabolic P = MAN ~ Pr. Then

P
is a hermitian form on U- which we can rewrite as

follows:
P

For f1 ,f2 E r

,Pr, ,wg2 G/Pr 1 (,),wL2(r) d

G/P 
2 .

P
Claim 3: Assume OI(Pr,p5,w)U is irreducible, and the

form <.,CM(iw).> is indefinite. Then <.,O(Pr,4,w).>

defines an indefinite form in the irreducible representation

U / ker OC(Pr, ,w).

Proof: We have to find f1,f2 K-finite s.t.
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<f 1 (g) A%(uw )(g)> > 0 for all g E G

<f2 () or(,w)f2 (g)> 0 for all g E G

This is obvious if we formulate the question in terms of

bundles. 0

This result is not very hard, but extremely useful.

To get more precise information, we need some detailed

analysis: To get estimates on Re(log x) for unitary

J , we use the asympotic expansion of H. Ch. together

with the

Theorem (for example [B]).

The coefficients of unitary representations are

bounded functions attaining their maximum at the identity.

More precise information about coefficients of unitary

representations is in the following

Theorem 4: Let r be an irreducible unitary representation,

r not one-dimensional, and let fr be a coefficient s.t.

fr(e) / 0 . Then lim f,(a) = 0 , where a goes to

infinity in exp(' 0 ) .

Proof: This theorem is a corollary to T. Sherman's thesis
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He proved [15, Theorem 2.16]:

Let r be a unitary representation of G = SL(n,ER) on a

Hilbert space H. Assume that the identity representation

does not occur in r . Then (H,r) is unitarily equivalent

to (,) , where

a) H is the Hilbert space of functions from cjI to a

Hilbert space HI with norm

If112 = ,II(x)I2dx < co

where jj ||' is the norm of Hb and dx is Lebesgue

measure on o .
'0

b) For xEc,, yEo,, f EH

(r(exp x)f)(x) = e(f(y) .

Now let g E H such that for x E oro

fr(exp x) = <r(exp x)g,g>

= ( y ,
r'
0

i.e. fr is the Fourier transform on an 1i-function, and

therefore by Riemann-Lebesgue tends to zero at infinity. M
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In paragraph A we constructed for each 4 = ( ,X,P)

a parabolic P = M A N . We now choose the positive roots

in OT s.t. x is contained in the closure of the
0

corresponding dominant Weyl chamber . Let 6 be
0 X

half the sum of the positive roots restricted to O=

Lie A . Then

Theorem 5: The coefficients of J, ,p = (7, X,p) are

unbounded if (Re(log x - Sx, H))> 0 for all dominant

H c Or
Xe

Proof: For the proof we use "the philosophy of leading

coefficients". To simplify the notation we will always

assume that we are dealing with SL (n,]R).

Let V be an irreducible representation of K with

highest weight X , and let J (k) , J*j(X) be the isotypic

components of type Vx in (J )K respectively

(J*)K = (J4 K* , the star denotes as usual the contra-

gredient representation. Assume Jp (X) ' 0 and define

f4(g): J 1(A) J*(%) - -

u ® v - <Jp4(g)u,v>

By [2.0], there is a countable set L(p., X) in (o0 9 C)'

s.t.
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f9 (a) = e %0" pv(H)ev(H)

vEL(p, X)

where a = exp H for an H E t , s.t. a(H) > 0 for all

positive roots a , 80 half the sum of the positive

roots, and the p.'s are J (X) 9 J*(X)-valued polynomial

functions which do not vanish identically.

If V 1, V2 E L(4, X) , we write v > v2

Re V1 = Re V2 + x , x E )R+

1 simple

The maximal elements in L(4,X) are called leading

coefficients and are the same for all V s.t. J9(X) ' 0 J'2j

Let v0 be a leading coefficient and let o. be the

intersection of the kernels of all simple roots a which

are orthogonal to Re v. Then 0-c = o Or , and we
0 0

have the following expansion for a = exp H1 -a2 = exp H

with H1 E Ct amd a2 E exp t
p0

-<6 opH> v( Hz)
f1P(a) = e P (H1 ,a2 )e

L, G, X)

Here the are J(X) 9 J*(X)-valued functions which

for fixed a2  are polynomials in H1  and for fixed H

are analytic functions in a2 , and L1 (t,X) is a

countable set in (M. 9 4)' 7]
0
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Now if V =V1 +V with v1 E (MV ®0)' and
0 0 0 1 0 V

E VY(C I)' then v E L1 (P,X), and furthermore we
n fI J )

can find u ®& v E J (k) ®&.J*(X) s-t.

P (H , a2 )(u 9 v) is not identically zero.

0

[f 2]

The uniqueness of the parabolic as "Langlands parameter"

of Jp implies that CT= . On the other hand the

uniqueness ofthe continuous parameter implies that

v = log x0

Claim: Let

and

V E Ll(p, X) . Then there exist xi E 1R+

I
Ssimple

x i a 1 v .
0

Proof: Let v0 be another leading coefficient. Then

since the whole construction was independent of the choice of

the leading coefficient, at( =0Z,
0 V

and V

0

On the other hand let V E L(p,X) be arbitrary, then there

is a leading coefficient v s.t.

v= 
- i

Mi simple

x a , xi E IR+.

But then

V = V -

s.t.

= log x .
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'v MV0 0 z
V0 X simple

= log x - 3 C-vI
0

0

13

Now we consider the asymptotics of f (ala2 )(u @v)

We want to show that the exponential term e l o x

determines the asymptotic behavior of

e 0, H>f(a)(uv)

in certain directions.

Choose H1  and a2  s.t. p V(H,a2)(uv) / 0

0

consider p. (tH,a2 )(u 9v) as a function of
0

Since it is a nonzero polynomial in t,

lim Re p (tH a.)(u 9
t -+ 0

On the other hand, since m(H ) > 0

a 1, 4 0 , the term

Now

t, t > 1 .

0 .

for all a s.t.

limIRe e(8ovtHl + log a2 ) fP(exp tH1 a2 )(u@v)I
t-+oo

is dominated by

log x(tH )
lim Re p (tH ,a2)(utv)e

t-+oo V

.



In other words,

limlRe f (exp tH1 -a2 )u@v)/
t -+ OC

is dominated by

-(6%,log a2 ) +(log x-80 )H /elim|IRe p9(tH. ,a2)(u e )
t-+oo V

and therefore

Re f ((exp tH )a)(u v) -- oo if Re(log x-8 )H >

which implies the theorem.

0

0

Corollary 61 The representations J , p = (Y, x, p) , are

not unitary if log X is real and (Re log x-6 ) dominant

in . 0

This corollary was also proved by Knapp and Zuckerman

for r = 0 with completely different methods.

We can prove an even stronger result:

Corollary 7: The representations J , -P = (, x,p) , are

not unitary if x =6x

representation.

and J is not the one-dimensional
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Proof: We have shown above that for these parameters we

can find a coefficient and on asymptotic direction in which

this coefficient does not vanish at infinity, contradicting

Theorem lt . 0
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CHAPTER 2

A. GL(2, R)

Let us recall some results about GL(2,v]R)

In this case, A are just the diagonal matrices

with nonzero entries, and we can identify the character

group A of A with C 2 by (V1 ,V2  V

(a 0) = (a)Vl/2 (a-b)V2/2

We have Mo =
0

Pi E Roby

po(m)

0

2 el'2 = +l} and define

= 1, m E MO

P e 1

0 e2

P(e 1 0

0 e2

P3c 
1 2
0 2

P
Theorem: Up0,

p = p0 or

p = p1 or

= 1

- C2

= e2 ' i P e 3 = = 2

p = (p,), p E M - E Ao is reducible iff

p3 and v 1 /2 = 1 mod 2

p2 and v 1/2=Omod2 and p 1 /10. 0
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Let w E W , w nontrivial and v1 > 0. Then
0P

A(I,w) is an isomorphism if U 0 is irreducible.

Otherwise, the image is finite-dimensional and the kernel

is a discrete series representation with parameter

(v1/2,v2 /2)

Remark:

This implies: Let 7r (V/2,v 2 /2) be a discrete

series representation. Then there are two characters of

M s.t. r(v /2) can be infinitesimally embedded
(v01/2Pv2/2

in U 0 v = -9v,2 '

Assume now that v < 0 . Then one can obtain an

intertwining operator O(ti,w): U 9 v U )
S1 2 1 2

by constructing a regularisation of A(uw) . This

operator is an isomorphism if U(PX) is irreducible.

Otherwise, the kernel is finite-dimensional and the image

is a discrete series representation with parameter

(v 1 /2,9V 2 /2)

GL(2,]R) has the following unitary representations

a) the unitarily induced p.s.r.

b) all discrete series representations

c) the complementary series representations for

= ( p0,') v2 E i1R, 0 < 1vl/21 < 1

p = (p3'() v2 E im , 0 < | 1/21 < 1
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d) the one dimensional representation for purely

imaginary P2 *

For proofs, see for example [20].
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B. GL(3,R) .

We will first compute the composition series for

p.s.r., then use this information to settle the reducibi-

lity and composition series problem for g.p.s.r. with

r = 1 , and finally classify all unitary representations

of GL(3,IR)

The composition series problem for p.s.r of GL(3,]R)

was recently solved by Fomin [6 ]. Since his methods

are based on an entirely different set of ideas, we will

present our proofs here.

We have GL(3,3R) = SL(3,R) X JRx as groups. Therefore

a p.s.r of GL(3,JR) is a tensor product of a p.s.r. of

SL(3,]R) and a one-dimensional representation of R .

Hence it is enough to determine the composition series

and to classify the unitary representations for SL(3,]R)

In SL(3,R) we have

MO =2 Ci = + 1, C 1 C2 C3

and we will use the notation

C 2 )-1
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C 1
p1: (c

A
The character group A 0

A =

2 3 - i , i = 1,2,3.

3

of

a2 a |) a a2 ,a 3 E R , a1a2a3  
a 3

will be parametrized by $2 as follows:

2 l 16 + 92 62
S) v = (v1 ,9v 2) -v = e +.

Here 6162 are the fundamental weights. As before we

denote the minimal standard parabolic, i.e. the upper

triangular matrices, by P . We identify the character
0

group A of

A , = a ) a- E

a-2

with 0 by

0 ) V -+xv = e V2 0

Then the two Weyl chambers of Oj are

( v E IR I v > 0)
di =
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C = v E IR v < 0)

x x x

= iix xx)
0Ox

x x x
0 x x .
0 x x

We abbreviate P = P and P,, = P2 , and if it simplifies
CIL

the notation, we will write log y, instead of . without

further mention.

In I.F, we have shown that to solve the composition

series problem for p.s.r., it is onough to do so for

p = (p,%V) with p E and 0 , 1 . Hence in

particular the reducibility question is settled by the

following

Lemma 1. Let 0 < V1 9V2 < 1 . Then U PO is reducible

p = pO and v = 1 or v2 =1 or v1 = V 2-

p = p and v2 =1

P = P2 and V 1 = V2 1

p = p 3 and V = 1

and

PC, 1

P

iff
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Proof. This lemma is a special case of theorem II.D ,

which will be proved later. It can also be derived

directly from the results on GL(2,]R) , together with

those at the end of the paragraph on reducibility.

The following diagrams help to visualize the situation,

with the bold lines denoting the domain on which reducibility

occurs.

Al 2 2

For the rest of this paragraph, we will make use of the

formulas derived in I.D for computing kernels of

intertwining operators without further mention.

Lemma 2. The following p.s.r. have J.H. series of

length 2:

p = p0 and v1 = 1 , 0 < V2 < 1 or 0 < v1 < 1,

v2 = 1 or v =1- v2 .

P = Pl and 0 < v < 1 , V 2 =

P = P2 and v1 = 1- v 2



p = p 3 and v1 = 1 ,O _< v 2 <1.

One composition factor is a degenerate p.s.r. and the

other one a g.p.s.r..

Proof. Unless we are in the case p = p0 and v1= 0, V2 = 1

or p = p0 and v1 = 1, V2 = 0, only one of the factors of

the long intertwining operator has a kernel. This kernel

is a g.p.s.r.. Therefore we only have to show that the

corresponding long intertwining operator for this g.p.s.r.

has no kernel. This is easy and is left to the reader.

Now to the case p=p0 , vi=0, V2=1. We write

w0 =s a 1 2 1 , where s is a reflection of the simple

root m . (Assume that we have again the standard

ordering of the simple roots). Then OT(p.,s, )U = U

and by [%], OT(p,s C) is a scalar. Moreover,

OT(p, s C 1s CL2) = sCs 2 (4) , S 1) Cqp, SC2)I

and ( CL ) and O((s2 (4),s,, ) have the same kernel,
2 2 1

namely the g.p.s.r. with discrete series parameter r= (1)

and ' = . We have to prove two assertions:

a) U 2 is irreducible.
((W)--2/2)

b) U( ) /2) occurs with multiplicity one in the
(W-V'62' P0

J. H. series of U 0 .
(pe,62 l

We first prove a): We have to show that the long inter-



88

twining operator O(P2 $ ((W)'-62/2),s s ) is injective.

To show this, we use the step by step embedding of

U 2/2) in U . Then OC (P2 ( -6 2/2),sL S )

is the restriction of O(P, 2 s 1 to U '~92/2) .

But direct calculations based on the product formula

prove the injectivity of 01( ((p, 62 ),'E s ) , hence of

(X (P 2( (1),'- 82/2), 'Sa2 1)
To prove b), we use the regularisation p,w) of

the intertwining operator A(pw) as computed in [9b],

which allows us to define this operator for arbitrary x

All formulas in the paragraphs I.C and I.D then continue
PO

to be valid for O(pw) . Let us consider U (=

U . By I.D and the results on GL (2, R)
(o 'sCL s CL2IdO 1 62)

in the previous paragraph,

P p

o,-6),s )U 0 U '~0

and

p P

0~ C(- )), ) (POIS ,s15 ) = U( ), /2) *

Using the product formula for O((pO,-61 ),wo) , where

w = s s s 1 , and the fact that

^0 - #0P
04'(o1 ),'wo)U~oo-l 3' 0
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we get

P P

C ,- (P0)U(P --6 CX( (PO,- ), s s ( 61)

P
89- ), sU

0( o,-s SC ),S 1s Ots )Ot((pO,- ), Os PO)U1

P

or 9sa 1 ),X )U( 1),9-62/2)

=U 2  j,-
( (1) 2/2)

Now assume that U 2 /2) occured with multi-

plicity 2, i.e. that

ke r o-c((Po~ 62, ) im M((Po,

Then

im o((ps s 62,s ) = ker c ((p 0,s 8),s )
(P0.sX1 1 2 1r( -sC ~262 c

is contained in

im (2 = ker NC((p 0sa 2 )

P
But this contradicts 0(((p -8 1 ),wo)U 0 P 0 . Therefore

we have proved b).

Exactly the same considerations can be applied to the
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P
representation U P0  , and hence the proof of the

lemma is now complete.

Therefore we now are left with computing the compo-
P P

sition series for the p.s.r. U( 6 U0 and

U( , 8+620

Now introduce the following notation. Let V1 , V2

be closed invariant subspaces of a p.s.r. or g.p.s.r.

If V1 c V2 and V2/V1  is irreducible, with V1 -+ V2
Otherwise do not join these spaces by an arrow.

P
Theorem 3: The subspace diagram for U 0,i+

and for U , and U is
(P1,61+62)(3f6 82

Corollary 4. The J. H. series for p.s.r. of GL(3,R)

have length 1, 2, 3 or 4. The J. H. series for g.p.s.r.

of GL(3,3R) have either length 1 or length 2.

Proof of the proposition:
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P
Case 1: U 0

(P,81 +62 )
Using step by step induction, we see immediately that

U 1 and U 2 can be considered as invariant

subspaces of U(P 1 +62 ) . We will show

P P P P

) ( (),l9-U2) = ((2),0) = U((2),0)
P

b) U ((2),0) is irreducible.

1 PP
c) U( 1 ),) /U( 2 ), ) and U 2 ~)( 2 are

irreducible.

P
Assertion b) is due to the fact that U((2).0) is

unitarily induced.

Now let us assume a) and prove b): Let

a(P , ((l),82 ) s s ) be the long intertwining operator
p 2 1

for U ((l)2) . By definition m(P,((l),62 ),s2 s 1) is

the restriction of ot((po,8l+a2),s sO ) to the subspace

U 1 . Since the kernel of ot((p ,6 2 ),sM sa) is

just the representation U the kernel of

P P
OZ(Pi,((l),6,),s, s ) is equal to U(% ) \ n u _

21 .92 Y2
Since the image of the long intertwining operator is

irreducible, we have proved c).

Now we come to assertion a): First we show
P P

U 1 n U 2 0. We have

0o9~8l2),sa CL2 a,1 ( ,- 6 ' 0 and
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P P

aPos, a. (- l-82)),s )U( 0o, (-81-62)) = ((1),62)

Hence

#f., - UP 0P

On the other hand,

or((PO0 6 6dSa 1 ( ,- ((P0  SM '2 S S )

and therefore by the same argument

P 0 P

-61-2),s 1sC2S )U(P 0,-61 -6 2) U((1 ),- 62)

Hence

S 

o 1 -2 )' s) U -a ) 0  C U 2
( U(( 1 ),162)

To compute this intersection we use that we can find

another embedding of U 1 in a principal series

representation. By step by step induction U 1  ',2) can

also be considered as an invariant subspace of
P

U( , Hence the long intertwining operator

(P4 ,(1),' 2), 1 s ) is the restriction of
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m((p3, 1+6)$5 S CL) to this subspace. But

c(p3 $ 1+6 2),' 1Sc"S2I C'P (( 2 , s ( 2 +(8 1 '+6 2 )),3' 1+123's a 3

Here oc((p3 '61 +62),s ) is injective and

2P

ke r s ((12 s (8+12)),s ) = (2),0)

P
Hence ker vT($, +621S S ) U( 12 ~lCL2 ((2).90)

which implies that o(O3 ' 1 +62),s s ) restricted to
P3 1 2

U '2) is either injective or by b) has kernel

P1  P1
U But we already proved that U( 2 ) 0 ) is

reducible. Thus the long intertwining operator has kernel

U 2 . This completes the proof of case 1.

P P
Case 2: U ,, 0

Because of the symmetry of the situation it is enough
P

to deal with U 0 . In the proof of case 1 we
( p3 61+62)

showed that we have the following chain of invariant

subspaces

P P P

(p3 1+62) U(( 1),62) U(( 1)52)

We will show U( /U 1  ) is irreducible.
(p3 1 61+62) (l.62
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To prove this, it is enough to show that the kernel of the

long intertwining operator is just
P

U((1),62) . We proved

ker ot(( 3, 1 +62),sM SM )

P

P3 6l+6),sa s ) U( 1) ,

((1),o2) / (a3 61+621 sL 1sa 2

(P2
= U(2),5

P

2)
U

-((2).96)

ker O((p , SL (61+82)), s2 )

ker ot((p3 '61 +62),s s 2

= ker ot((p 19s1 s2 (61+2)),s

UP1

((1)562)

This completes the proof of the theorem.

Proof of the Co

0 < v 1 ,v 2 < 1,

have length 1,

M )Om((p 3 '6 1 +6 2 'Sa Is.1 )

0

rollary. We have shown that for p
P

all J. H. series of U ,2 +V +v2)
2, 3, or 4.

A
E M

On the other hand by the

all p.s.r. have this property.

already

But

Thus

06 2)

)

UP2
= U1

proposition
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Remarks:

a) Another proof of case 1 of the proposition is possible

along the following lines:

Let Vn be the n-dimensional representation of
P

It is not hard to prove that in (U ))K ,

SO(3)

y E AQ ,9 V5

occurs with multiplicity 2,

1, and Vn , n

is the minimal

V7 occurs with multiplicity

= 2,3,4,6 do not occur at all.

K- type of U ( and U 2

( (1)

occurs in (U( 1 )

with multiplicity one.

K-type of

to our list of minimal

K-type of

P

( (1),62)

K-types,

,2) )K as well as in

Hence V7 is the

1)9-2) .
According

V7 is the minimal

U(2), ) which is irreducible.

b) In the proof of the proposition above, we have actually

derived the following additional statements.

Proposition 5. The J. H. series of
P

U P0, 6 +2)0Po1 2)
consists

of the representations J(Po .1+62)) ' (+6 (l),-62)
J((2),90), and each of these representations occurs with

P
multiplicity one. The J. H. series of U0

contains
( 1 

, 2).9

P
J.H.s of U , +82)(P3'81 62)

( (c 1)1 , 2)

contains

and J (2) ,0

S(P3 61 +6 2 )

) , the

((1)962)

and J ((2),0) , and each of these

and V7
P2

minimal

But V5

~ 2 ))K

representations occurs
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with multiplicity one.

Now we come to the reducibility and composition series

problem for g,p.s.r. In order not to confuse the

notations, I will write (n) instead of (r) for the

discrete series parameter.

P.
Theorem 6. U( , i = 1,2 , is reducible iff((n),vb 2 )

|v| - E IN.

Proof. Without loss of generality assume n > 0 . We
P 1

first consider U((n),v6 2 ) . By the results at the end

of I.F, rednicibility occurs if

CL-1

n + V62

i.e. if (n + v6 2 'CL)l

and (n + v6 2 'a.2 )

nfll + n262 for some nl 2 E 

= n1 = n

=- = n2

For all other parameters v s.t.

(n 2+ V6 2' L2) > 0

the representation is irreducible. By the results at the

end of I.F. it is also irreducible if - -- + v = 0.
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nWe assume -7+v< and v>O. We know already that

the representation is irreducible if n= 2 and v = 0 or

if n = 1 and -< v <. Again by the results at the

end of I.F., the proof of its irreducibility for the other

parameters is equivalent to showing that either n+ V6

L + n 6 -n 2 2  for some n1 ,n2 E I or + V8 2

a,1/2 + v6 2 + n1 61 - n262  for some n1 ,n2 E E , -i < v< }.

In the first case we get the conditions

1) 2+ n =n, n E IN and n + v n n E I

and in the second case.

2) n=l+n1n, n 1 E R and + V + n2

n2 E I, -} < v<}.

It is easy to check that one can always find n1 , n2' V

which satisfy either condition 1) or condition 2).

To prove the theorem for v < 0 we use that we have
P~~ P

an intertwining operator from U(n)v6 ) ( n)v 

and that therefore U i for V c 0 is reducible
i ((n),v62 )

iff U((n),v62 ) is reducible. For U ((n),v6 ) V_ 0

we repeat the above arguments with the central character

|v181 + (InI/2)c'2

Theorem 7. Let 4 = ((n,v6 2) s.t. jvj - }|nI E IN. If

V > 0 , then
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ker ex(Pl, ((n),v629'Sa s )

= Ul
( (i n| + v, s (|n a|1

- (1InI +v)+)

If v < 0 , then

ker ox (P2, ( (n) , v62) s 2 sa

P
= U 2

((~InI +v, s (In
2

We use the

+ JvI61) - (JinI +I 0)2

formulas in the example at the end

of I.F. For v>0,let (m),v'6
2

be the parameters

the kernel in the statement. Then

+ V 2 = S a 2
(4L

= V'82 =s (

In = I# ( + IV' I (62,a, 2 ' )

lvi - =ifJ - lv'1 - (all sts a 2 ) + Iv' 1 (8 2 ,sa, a,2 )

and therefore ImI

Iv'|

= }InI + lvi

= }($InI - v').

) -

Proof.

J1

of

+ v62 )

+ v6 2 ) -1mI<L

)-S a1
2

+ Iv I

.
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For v < 0 we argue in exactly the same way. o

Finally I give a classification of all unitary

representations of SL(3,IR) :

Theorem 8. The unitary dual of SL(3,R) consists of the

following representations:

a) unitarily induced p.s.r.

b) unitarily induced g.p.s.r.

c) complementary series representations

d) unitarily induced degenerate series representations

z limits of complementary series.

e) the one-dimensional representation.

Proof. First we classify all unitary irreducible repre-

sentations with parameter i. E G .
A

We may assume that p = (px) , p E M and x s.t.

e = 1v 2 2 with Re v > 0 , Re v2 > 0 . Besides

the unitarily induced representations, the representations

with the following Langlands parameters are hermitian.

p = p0 2 log X = V(61 +8 2 ) + i)s a6 , VA E M.

P = P2 $ log X. = V (8 1 +62 + iKsc 61 VjX E JR .
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P
The representations U , ( 1+62 )+ixs 6i) are reducible

iff 1

v = 2m+l/2

V = m

and X /0

and X = 0

m E l

m E N\O

P
and the representations U 2,0 +6 are reducible

p2 'v(861+62 )+if81 )
iff

v = 2m+1/2 X E JR m E I .

Hence we get complementary series representations for

P = Po, P2 , X E R and 0 < v < and limits. of comple-

mentary series for p = pO 9p2 ,XE IR and v=}.

If v > 1 , then by theorem G7 the hermitian repre-

sentations are not unitary. They are not unitary as well

for

p = p2

p = P0

v=l

v=

X arbitrary

X arbitrary

x3/ 0

as one can see as follows.

The representations with these Langland parameters

p = pO, P2
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are irreducible principal series representations and
P

therefore equivalent to the ps.r. U 0 . But
P 0s (S"1 )"

U ( can be considered as induced from the

parabolic P1 with a non unitary representation on the

M part and a unitary character on Al , and hence we

can apply Lemma ( ).

For p = po ' =l , X = 0 the Langlands repre-

sentation is the one-dimensional representation, hence it

is unitary.

For p = pOp2 , v = , X arbitrary, we get the

two series of representations, which are unitary induced

form P and one of the two onde-dimensional representation

of M . This completes the list of all unitary repre-

sentations with the Langlands parameter p C 80 *

For p E 6 , the only hermitian representations are

the unitary induced ones, which implies that our list

is complete. 0

This classification of unitary representations was also

proved by I. Vakhutinskii [17].
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C. GL(4,JR).

Again the composition series for p.s.r. is computed

first, but only for nonsingular parameters. For singular

parameters, the Langlands parameters for all composition

factors are given, but their multiplicities or the

composition series were not successfully computed. Next,

the reducibility and composition series problem for g.p.s.r.

with r = 2 is settled, and finally all unitary repre-

sentations of GL(4,2R) are classified.

All results in this chapter are new and apparently

have not been published in any of the literature consulted.

In GL(4,IR) we have

C 1le
M 0= 1 2 e3 e4 =

and write the elements of as follows:

e2

/l)
P-: 2 C3 i

\ 4
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ee /C 1

'1234 = det

The characters of the group Zi = ( e |l =

will be denoted by pi = 0 ,9

P1 P 1a 1
31 P4 = P4  and P = P341Z

We parametrize the charactergroup A of

Ao = { 2a3) | ai E ]R\03

by C as follows:

S4 )V = (VV2'3' 4) = e V6 + e + e (det) 4

where 8 , i = 1,2,3 , are the fundamental weights for

the standard ordering of the roots. The character groups

A1 respectively A2 will be identified with the

subgroups of A with vi = 0 respectively vi = = -0

In or, we choose the dominant Weyl chamber CO
and associate to it the standard minimal parabolic P ,

i.e. the upper triangular matrices. In O(i we choose the

nonconjugate Weyl chambers
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4 =t(v262 +v3 3 1 V2,V3

C = [v2V 2 + v3  V 3 > 0 0 > V 2 > -V

a3 = (v2 2 + V353  V2  3 
0 V < 0

and set

P = P , P 2 =P1 0

3 o

1 0

In oz we have only one conjugacy class of Weyl chambers

and choose the Weyl chamber

Cd2 = tV6 2 1 v > 03

and

P2 = P2

Again I will write log y instead of y, if it simplifies

the notation, and assume V4 = 0 .

In I.F. we have shown that to solve the composition

series problem for p.s.r. it is enough to do so for

u=(p,) with pEM and 0 < v < 1 , i = 1,2,3. Hence
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in particular the reducibility question is settled by

the following

p
Lemma 1: Let 0<z < 1 , i = 1,2,3. Then U 0i

reducible iff

p = p0  or p12 34  and one of the v ' s equal to 1

or v1 +V = 1 or v2 +V- 1
or v1 +V 2 +v 3 = 1

P = P or det p and one of the v 's with i ' 4 ,

4-1 is equal to 1

or if j = 1: v +V= 1 or1 2
v2 +V - 2 or v1 +V 2 +v3 = 2

or if = 2: v2 +V 3 = 2 or

V1 +V2 +V3 1
or if J = 3: v +V2 = 2 or

V1 +V 2 +V 3 = 1

or if j = 4: v1 +V 2 = 1 or

V2 +V3 = 2 or v1 +V 2 +V3 = 2

p =p or det pi and if i =1, j = 2: v1 = 1 or v 3
or v1 +V 2 = 2 or V1+V3 = 2 or

v1 +V 2 +V = 2

or if i=1, J=3: v 1 +v 2 =1 or

v2 +v 3 = 1 or v1 +V 2 +v 3 = 2
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or if i = l, j = 4: v 2 = 1 or

V1 +V 2 +V = 1 or vi +2 = 2 or

V2 + V3 = 2 .

Proof: As in the case of GL(3,]R) , this lemma is a

special case of Theorem II.D.1, which will be proved later.

It can also be derived directly from the results on

GL(2,JR) , together with those at the end of the paragraph

on reducibility. 0

For the rest of this paragraph, we will again make use

of the formulas derived in I.D for computing kernels

of intertwining operators without further mention.

Lemma 2: Let Y be a subsystem of type A2 of A3
which contains two simple roots. Assume that log y,

for y E A0 , does not satisfy any integrbility condition

with respect to roots not contained in Z . Then we can
P

compute the Jordan-HOlder series of U for =

as follows:

Let P be the standard parabolic s.t. Lie(A,) is the

intersection of the kernels of the roots in r , and let

(J1,...,J A be the Jordan-H6lder series of

it J . Then the J.H.s. of U is
M nP IM n P *
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indG jA N ),..,nd O A

Proof: Step by step induction shows that for

J E (,J1,...J 0 we can find closed invariant subspaces

V1 ~ V2  s.t. indG (J Or . Therefore all
SA V/V2

we have to show is that indG ( i ) is irreducible.

Let 4j be the Langlands parameter of J and let

U = U . Then we can find 4' E C0 , conjugate under

the Weyl group to u , s.t.

P?, P
ind GU M . r ) c U0

A Y

as an invariant subspace. We may assume that t' is

dominant.

Then let OT(P,u',w ) be the long intertwining

operator for UP, , where P = PMA7N . We rearrange

w = ww0 , where w0  is contained in the Weyl group of

I and is such that OVMPM'uJ'wo) is the long inter-

P
twining operator for U M, . Since the image of

0%(PMuj,wo) is just J and since

OT(PU',Vw0) = O(w 0P,W0 ',wMPU, )
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it suffices to prove that Y0((wj9 wPw"' ,w) is an isomorphism.

But w transforms all positive roots of Y into

negative ones. Hence if a is a positive root that w

transforms into a negative one, then w0~ is not in, .

This implies that for u' = (p',x') , (w0x.',c) = (x'0w

is not an integer. Thus 0 (P,p',w ) is an isomorphism.
00

Let U E 8 , and assume now that we have a subsystem

Y of type A2 , which does not contain two simple roots,

but otherwise satisfies the conditions of the lemma. Then

we can find w E W s.t. w" and wE satisfy all the
P

conditions of the lemma. Since the J.H. series of U 0
P

and U 0 are the same, we have an inductive procedure

to calculate the J.H. series in this case too.

Assume now that we have a subsystem of type A 1 XA1

which satisfies the conditions of the lemma. Then we can
P

compute the J.H. series for U 1 from the J.H. series
ME

of indM nP exactly as before.

These considerations show that we are left with

computing the J.H. series for

a) U( ++) p E M

P0A
b) U (5 6 + , ij Efl,2,3), i < j , p E M

P
c) U , i = 1,2,3U(P,6i
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We will first deal with Case a):

Let p = p0 and % = 61 + 2 +63 . Using step by step

induction, together with the formulas for SL(3,]R) , we

see that the representation with the following Langlands

parameters are contained in the composition series:

PO, 6i + 2 + 2

3
(1), 62 + 63 'o

(1), - - 63

(i), 362 + 363

(2), 263 ' 1
3 p3

(2), -263 ' 13 p3

(3), 263 -62 1

(2,2), 62

(3,1), 0

(1,1), 262

Using step by step induction we also derive the

following relations between subspaces
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3P 2
U(3,91),0)

P2
((2,2),-6,

) , -26 )

33

2

P P3
TU 2  U 1

((1,1),26< ((2)

P2 P3

0U 2-330 P ( (1)1

U P-(p0 - 2-6 -6)

2+2636 Pb

,+263

,' 2 2

use the following convention:

Let V be a representation of G and V1
a closed

invariant subspace of V . Then we write

V/V
1

V

Otherwise we do not join the two representations by a line.

The representation with Langlands parameter

((3),263-
P

U 0
2 ' P4)

is contained in the J.H. series of

k P -9 1 -t02
1 -03 )

Proof: We use again the regularized

/
P

U(

( (
U((

Here we

Claim:

intertwining operator



1il

for E G , w E W .
Step by step induction shows

1P 
2

U((1,1),262)

P0
,s61 +6 2+63)

We will show that the representations J

occurs in the J.H.

in the J.H. series

series off

of U

p
U 2

((1.,1)

, -262)

2A

((3) ,262-63 ' 3 1

) or equivalently

We have

234 ', -6 o- 62- 3 +0

( p1 2 3 4, -6 1-6 2-6 3,s 13

P0
) V(pl 2 3 4' -61-62-63)

(P 1 
)

= U(l 1)

On the other hand,

P
U

1 2 3 49 621-62-l3 + + 3 234' 0 61- 82~83 +a 1+0.3)

P 2
=U 1((3).9-26 3-62 -tP3 4)

O(u,w)

P2
U ( (1,91) ,-26 2) U 91

and

,-262)

(p
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P
Since U 0 1 contains only one minimal

((3),-26 3-62'9 P3 4)
invariant subspace, namely the representation

((3),283-62 'p3 4) , we have only to show that

ON.0 P

(P1 2 3 4' 6 4- 2-3 +CL1 + a3 , s )U( 1 ,1 ), 2 6 2 ) /0

But

p

(P1 2 3 4, -1- 2- 63 + 2-9 + a2'" )(,)-2)
2

(P1 234 '8 1- 2- 3+a 1 3,s ) (P1 23 4 , 1- 2-, 3 )C

PU

( 91234, 1 - 52 03)

l234,9-6 -623,s s Ls ) 2 346 6 ) / 0

P
Remark: Since the restriction of U , ++

(Po.6 1 +6 2+6 3 ) t
SL(4,]R) is irreducible and the restrictions of

J 1 and J 1 to SL(4,]R) are
((3),263-62 'P34) ((3).263-82 '9P)

P
isomorphic, the restriction of U 0 +63 to SL(4,m)

(P0,61+62+ 3)toS(,)
is an example of a p.s.r. of a connected semisimple Lie

group, in which one composition factor occurs with multi-

plicity 2. The first example of a representation in which
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one composition factor has a multiplicity larger than

one, was given by Conze-Duflo in [3 ], but they could not

determine the multiplicity exactly. We will later see

that this phenomenon occurs quite frequently if the

continuous parameter is singular.

P
Theorem 3: U(, 1 2+ 3) has the Jordan-Holder series

o'61 +62+ 3 ( (( ),382+ , ( (l)r 62~ 1

J JJ

Proof: To prove the theorem we proceed as follows:

First compute the minimal K-type for all irreducible

representations with this central character. Then compute

the multiplicities of these K-types in the representation
P

U - -)6 . By comparing these two lists, we will

see that for almost all representations which are not

contained in the list of the theorem, the minimal K-type
P

does not occur in U 0 . On the other hand,
(p0, 8 l-862-63 )

it has already been proved that all representations

occuring in the list are actually contained in the J.H.
P

series of U 0 . Therefore we are left with
(o 12-3
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computing the multiplicities with which these K-types

occur in each representation of the list above. These

tedious computations constitute the main, lengthy, part

of the proof, and they will finally allow us to deduce

that each of the representations above occurs with multi-

plicity one.

We use the formulas of I.B for computing the minimal

K-types of an irreducible representation with a given

Langlands parameter. We get the following list of

minimal K-types for all irreducible representations with

central character 61+ 62+ 63 :
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Highest weight
of minimal
K-typeLanglands parameter

( p ,91+23 1234 81+62+63)

(Pi, 6l+62+63 ),1 =lv,2, 3, ( pik'* 8 1+6 2+6 ), i< j<k

,61+62+6 ), i<

rV7 2 1- O

, 62+,po),

r 9 +36 )

,9.f $2+3, P3),

-f 2- 3 -9P

J

1),9362+6,p)

(1) r 362-, )2- 3,p34)

-38 +36 , 1 , +36 )
- 223 3 2 (()- 2 3- 4)

((2) ,263, p ) ,((2) ,26 ,1j)

((2),-263, p ), ((2) ,-263 ,p)

( (2),283 1 )j,( (2),263 1$)

( (2)1,-26 3,P3 ).,o((2).,-2 63,4)

( (3),2536 ' 1) ( (3)92 ,2 -62 p 1))

( (3)1263~62'1 ) ( (3),263-6 1

((1,1),262)

((2,2),62)

((3,1),0)

(

(

(

(

(1)

(1)

(1)

((1)

((1)

((1)

(0,0)

(1,0)

(1,1)

(2,0)

(2,0)

(2,0)

(2,1)

(2,1)

(2,1)

(3,0)

(3,0)

(3,1)

(3,1)

(4,0)

(4-,1)

(2,2)

(3,3)

(4,2)
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Lemma 4: We have the following multiplicity for K-types
0

in U 0 1 +2 + 3

Highest weight

(0,0)

(1,0)

(1,1)

(2,0)

(2,1)

(2,2)

(3,0)

(3,1)

(3,3)

(4,0)

(4,1)

Proof: Appendix to this

If we compare those

that the representations

Multiplicity

1

0

0

3

0

2

0

3

0

1

0

paragraph.

two lists we see immediately

J(P o 1+ + 3) I J

T dvv JT

3 1 ) I
(1),17P2+83' PO

3 8 1 ) 1~ 36 1 U U. WJ-LI
((2),- 92-03' 2+363'-p

multiplicity one. On the other hand we see that the only

irreducible representations with this central character,

whose minimal K-type occurs with nonzero multiplicity,

0
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are the representations in the list of the theorem, and of

course all representations of this list tensored with the

determinant representation.

One of the two K-types with highest weight (2,2)

is the minimal K-type of the representation J ((1 ,1 ),2 62)
and the other one is contained in the representation

induced from the one-dimensional representation of the

parabolic P2 , since this K-type has an Mo-invariant

vector in the space of weight (0,0) [Appendix]. Hence

this K-type is contained in J 3 63 '((l) ,- 6 2+363: 2 3-po)

Now to the K-type (3,1). This K-type occurs in

the representations J and J
((2),p2 63-'P3) 1((2),j-263' P3

exactly once. On the other hand this K-type is contained
P

in the representation U0. If this K-type is

not contained in J((1 ,1 ),26 ) , then either J

or J would be contained in the J.H. series of

((2) ,-263,p3 )

U 2,l),262) . But we have an outer automorphism of GL(4,JR)

which maps J to J and leaves
((2),.283' P3) ((2) r263' P3)
i narian+ nWcn i-f J ccred

2(1,1) ,2,2)
), 2 ((2) 263 P3

n the J.H. series of U ,11),262, then so would

2 -. Since the K-type (3,1) has multiplicity

((2) ,-3

T 2

i
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T A T t4- k 4- V%

( 2 ) ,v2 8 3 ' 4) ((2 ) ,92 6 3 ' .0X33" %

in the J.H. series.

This proves the multiplicity 1 statement for J

and J 1.
((2),-283-"

3 )

The K-type (4,0) is more complicated to deal with.

This K-type is contained again in the representation

induced from the one-dimensional representation of the

parabolic P2 , since Mo operates trivially on the space

of weight (0,0) [Appendix]. Hence one of the seven

K-types is contained in J 3
((l) ,7 62+383)

On the other hand the restriction of (4,0) to the

subalgebra so(3,T) contains the one-dimensional

representation exactly once. Here we consider so(3,)

as a subalgebra of so( 4 ,O) in either of the following

ways:

so(3,4) A , A E so(3,C)
0 0 0 0 0

0 A 0 A

so (3, C) 0 A ,A E so (3., () 0

Hence this K-type is contained in the repre-

sentations induced from the one-dimensional representations

V VccUr

((2),j-263' 1
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of the parabolics

Pi=

0 0 01

Thus this K-type occurs in each of the representations

and J 3 6 6  exactly once. The

(()J ,2+3o(() 2- 3'

The above arguments take care of three of the seven

K-types with highest weight (4,0) . We already know that

two of the remaining K-types are contained in the

representations J 1 and J .
((3),283- 2 'PO) ((' 3) 2'-P34)

Claim: In each of the representations J 1 and
((2),_9263 . 3)

the K-type with highest weight (4,0) is
((2),9-28 3-'P3

contained exactly once.

PI
Proof: In each of the representations U, and

; 3 ~((2)0p26 3 -'P

U this K-type is contained exactly twice.((2),q2%~~ , thi K-yp iscnane xclytie

To prove the claim we have to show that the long inter-

twining operator has one of these two K-types in its

kernel. 1 1 a
1 1 1We rewrite w0 = w w2 w3 , where
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w 2

w 3

The results on

= 5

= ( 5

GL (3, R) imply that

a) -9(PI,((2),263 , p),w31 ) is an isomorphism.

a,1  1C 2 9 1

b) 0t(W3 ( 2) , 23, P3) ,OW2 ) =3({ (9 (2,2 3p)

has kernel U

((3,23- 2P'34)

c) 0((w 2 
1w 3 P1w 11((2)28 12 3 , 1 3P3-

((P3 ((2), -28C 1 has kernel

Hence only one of the factors has the K-type (4,0)

its kernel, and in this kernel it occurs with multiplicity

one.

Similar considerations

This proves the claim.

3
P1

apply to U 1
((2),263'

The above considerations show that the representations

J 1
((3),926362k *0)

and J
((3)5 26 3- 6'9 3)

occur with

C,1

22

((22,2) ,62)

in

1 )
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P
multiplicity one in the J.H. series of U 0

(P 0 V61 + 2 +6 3 ) 4

The formulas for constructing minimal K-types for

irreducible representations with a given Langlands

parameter, together with the K-type multiplicities, show

that no other representations than those in the theorem

can occur in the J.H. series. Therefore to prove the

theorem we are left with considering the representation

J((3,),o) , and to prove multiplicity one for this

representation. The multiplicity for the minimal K-type
P0

of J((3 ,1),0) in U( is very high, so that

it is very complicated to apply similar considerations as

above. We therefore use a different method.

To this end, we first complete the diagrams on

page I 0

Lemma 5: We have

P2
a) U 1 1

((3),-.63+62'vP
34 )

P( P3
U 1U11
((2)J , 6 -3,P3) ((2) ,26 3'3



122

P

((3,1) ,0)

P2
U((29~2).- 2

U

JU 1((3) ,- 6
2+2 6 3 , P 0 )

P

(3,1) ,0)

(3 U2
((3) , - 2+263,p 4

P

U((2, 2) ,-62)

2
((1,1)-,-262)

We will prove this lemma later.

Hence we get the following diagram

b)

U 1 +

c)

I

d)



p
U 2

((3,1) ,o)

P 2  2 2
U~ 1 1P U U

((3),-62+26 3,p 0 ) 2 ((3).,-62+263- P3)

P1  P3

U 1  2U 1

((2) ,. -283 .P1((1,1)1,-262) U()92

p P2 P3
U 3 6U 36-6 1 U 36+

((1 ,,-6-1--6 2- 3'

Now consider the long intertwining operator for

U , . The Jordan-H'lder series of its kernel
(P 0 P-b 1 -6 2-6 3 )

is contained in the union of the J.H. series of

P P2 P3

U , U 1 and U 3
((l),-.62 63) ((1), 6 -36 p) ((1), 6+6

'23)2 3'PO 2 '2 P
Hence if V1 ,V2 V 3 are subspaces s.t.

P1

U 0U

3 = ((1)2- ~.63"oP p2

(Po,- 1-62- 3)2 1 
-363

P P3
U 0 U 1

0, - 1 23 3 (( 2+, 32+$3
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P
Then U 0 

-6 6 ) IV, (p , 6 +8 +63
0- 12- 3jvn v nv3  0 12 3

Let U be a g.p.s.r. contained in the diagram

induced from a parabolic P( , i = 1,2,3. Then direct

calculations using I.F and the previous results on

GL(2,]R) and GL(3,]R) show that the J.H. series of the

kernel of the corresponding long intertwining operator

is contained in the union of the J.H. series of these

g.p.s.r. which lie above and are joint with U by a line.

Now we can argue as before.

We will now show by case by case arguments that the

above considerations are also true for the g.p.s.r.

induced from P2

Case a) U 2((.0l) o-26 2)

Here two of the factors of the long intertwining operator

considered as an operator of the p.s.r. have a nontrivial

kernel. These kernels have the same J.H. series as

P2 
P2

U and U respectively.

((),52-36 3' -P) ((3),-62+263 1P0 )

Computing the intersection by using the diagram, we see

that the image of the long intertwining operator for

U(,l),-262) is the intersection of the spaces V.,V

S.t.



((1 , 1 ).,-26 2 ) / 1

P 2

P
U((1,1) ,-252)/3

125

~ 21

((3)9- 62+263' PO

P~ 2

((2,2),-262)

P2
~ 1
= ((3),9-6 2+2 3-'34

Hence the lemma is true in this case too.

P
Case b) U 2

Here we use K-type multiplicities. The K-type with

highest weight (4,2) is contained in the representation

U(2,2),-5) exactly once. Hence J((3,),) is contained

in U 2 only once. Hence the lemma is true in((2.92) -682)
this case too.

Now we can directly read off the multiplicity one for
P

U(2  = ( from the diagram. This completes
((3,tl),vO) =(.1 0
the proof of the theorem, except for the

Proof of the lemma 5:

Case a)

Let us consider the product formula for the long

intertwining operator for
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P1
U 1

((2).,263' 
32

. By I.D and the computations for GL(3,]R)

and GL(2,JR) , the kernels of the factors are

UP((2.,2), 82)
and

P2

U 1  +
(() ,6 2 +26 3 ,fP34 )

The same considerations can also be applied to

P3

((2),-26 3- 3
P3

U 1
((3), -82+263, P 4 )

The multiplicity one statement for

P
as a quotient of U 0

(d d-1- 623)

implies the lemma.

Case d)
p

The minimal K-type of U, 2 ) 6 ) has highest

weight (3,3) and is contained in

exactly once. But it is also contained in
P

U((11)-262) . Hence the lemma.

U( ,o-6 62~ 63)

Case b)

Let P = P, i = 1,2,2 , and p = ((r),%,-p) E C1

s.t. Re(log x) E -4 We use the regularisation of

6-T(P.9.w ) to define the intertwining operator

P V ) . All formulas in the paragraphs I.C and I.D

1dthen continue to be valid for cY((P,~jsw, ).

then



127

Now take P =P (r) = (1) , 3 = = 3631 1

We write

w = s s S s s L
C,1 12 32 1

= w 3 w 2 w1

w 1= 
2 s 1

= S

w 3 = s S 2

Then

YTP(, ( (1),. 2-3 3 ,p ),w) -

1 
'P3((), P3 ) w 3) ( ) 3 3

P' 2 3 1
O-C(PE, ((1), -P562-3635 P),2wl)

and

01%01P P2
p (P ,()$ 3 3 1),Ww W)U 1 1 =U((,)-(P (()2 ((,),V362-3 ' 1 (9)' 223 ' w~l)( 1 978 339P0) t (,)-

Hence

where

w 2
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P

#--. 0, 1-6 2 - 3  0U( ),-U(-8 2~8 3

UP 1~ 2~ 3)
= C

(P0 2 ((1), 26-2-6 3 Pw3 w 1)U 1) 36,01

((1,$5-36' O)

= cY(PI,w2wl((1),3 2 -36 3, 1),w)U 2

U
2

= ((3,1) , 0)

This proves b).

Case c)

The following considerations imply the assertion:

Let 7r: G -+End V be a quasisimple representation

of G on a Hilbert space V , s.t.

7r det ' n (Naimark equivalent [ J).

Thus r det and n has the same J.H. series. Hence if

W c V is an invariant subspace s.t.
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129

V/W

is not equivalent to ' det , then we can find an

invariant subspace W' s.t.

I': G -+ 'End V/W'

is equivalent to IT Mdet

Assume now that there is an invariant subspace V s.t.

TI: G -+End V/V

is irreducible and I o det = T.

But then V 7 W and V :) W' , hence we get the diagram

-TI

Now apply these considerations to

TI = (,1),282

p2
= U

((3),-62+26 3 9P0 )
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((3) ,9-62+2639 P3 4)

((3 ,1),0)

Without further comments, we now give the Jordan-

HOlder series of all p.s.r. with central character

-61- 6 2 3 . To compute these, we do not need any other

tool than the results in I.F and those on GL(4,JR) and

GL(3,IR) . We also draw the diagrams but we replace the

symbol for the corresponding g.p.s.r. by a dot.

Theorem 6:

P
a) The Jordan-H6lder series of U 0 is

(J P '6 1+6 2+ 3) (1) - 362 63 P ) (( 3) ,- +38 1

((2).,-26 () 2)-,2 1) , 2 , 62)3 ,vP3 4 ) ((2)-2%Po)(22,2

((3 ), 62- 2 6 ' 334) ((3,1),0)

and the diagram:
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b) The Jordan-Hblder series of U p(p2 -6 1-62-63 )

( (P2, 81+62+63)
((1)

(
((3).,82226 3- p1) ((3 , 1 ) ,0)

and the diagram

c) The Jordan-H6lder series of

1p2,5'2 '3 ((1)

p
U( 0

, 2- 3' 0 (M)- 2-63 9P34 )

(3) 962-2639 1) ((3), 62-263 4) '(( 3 91 ) ,0)'

S 1,J 1((1,2),26 3 P34 ) ((2),-283 'p0 )

and the diagram

is

is

((

}

,-9 -3 , ) -9U((2).-263 1

I
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P
d) The Jordan-Holder series of U 0 - is

(P(3,61 

622+633

P
e) The Jordan-Holder series of U 0 is

JP1 1-,J
1P 4 ' 1 + 2 + 3). (1)V 3- 6 2-36 , 1 ) ((2).9 ,2.3

1~ ~~~ '9 l (2_,2),6 ) (,)0((2),-263 P4 ) ((3),62-263'9o 2 1

and the diagram

All other J.H. series for p.s.r. with parameter

e 1 2 3 can be computed using the J.H. as above,

either by applying symmetry considerations or by tensoring

with the determinant.

Remark: Comparing these results with the corresponding

p-adic results, we see that they are entirely different.

In the p-adic case, there is a one-to-one correspondence

between composition factors and parabolics. Nevertheless
P

the J.H. series of U 0 contains exactly one
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tempered representation, namely the representation

(1),0) This representation corresponds to the

so-called "Steinberg representation".

This completes the computation of the Jordan-HOlder

series of p.s.r. with non singular continuous parameter.

Before we can describe all J.H. series of p.s.r. we

have to deal with two more special cases, namely the
p p

representations U( and U 0

P
Case 1 U 0

(P o J1 +6 2 )

Using step by step induction, we see that

J1J 1 and
0o 1+ 3 ((l) ,}j62+ 3, - P) ((4) , -}62-63

J((l 1) 8) are contained in its J.H. series and that we

get the diagram

P2

P p3

U 1 . 1 1 U 91 6 +6 , 1
((1)2,-} 2- 3 p) '1 2 3

U P
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Claim 1.

((2),0, P
is also contained in the J.H. series of

P
U 0
(P0 ,-6j-63

and we have the d iagram

U
((2),o, pO)

U '~ 2

The proof is exactly analogous to the proof of the lemma

on page 110. Therefore it will be omitted.

Claim 2.

P
((), 2 has J.H. series (J

Proof: The minimal K-type of J has highest

weight (3,1). This K-type occurs with multiplicity three
P

in U 0, but only with multiplicity one in

P
U 2. Hence J occurs with multiplicity

((1,V1),.9- 62) ((2), , )
one.

Using the formulas on page 31 for computing minimal

K-types, we see that the minimal K-types of irreducible

representations with central character 6l + 63 have the

following highest weights:
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(0,00), (1,90), (1,1),g (2,0O), (2,1),9
P

The minimal K-type of U((1,1).962)

(2,2), (3,0), (3,1).

has highest weight

(2,2), and the only representation whose minimal K-type

has a highest weight larger or equal to

representation J
((2) ,0, p )

Thus we conclude:

Proposition 7.

(
PO, 61+63)

The J.H.

r
((1),9662+63

P
series of U( ,6 +3 0

1o 13'

J(( 1 1) 96 2) ((2)

and we have the diagram

U

((2),90, PO)

P2
Uf 'I' 2

P
U
((l).,-}82-3 6 390)

P
U 0

P3

U 1

((1) ,6 2+63

(2,2) is the

is

3
,0 , p
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Proof: We apply the considerations of I.F. of the factors

of the long intertwining operator have a kernel, and the

J.H. series of their kernel is equal to the J.H. series

Pi P3
and of I respectively.

Hence let VVV2 be the subspaces s.t.

P
o 13

P
U~ ,- 0 -63 2

~U
((l),-162~63$P

~ ul

= 1 026 .9

P
then J (p0,61+62 '

The kernel of the long intertwining operator for

T 1
dL~ U

((1) 9j82+63 12 YPo)

P
i s U 2

((1,91) ,9- 62)

Hence iff

are s.t.

P 1

((l),T - 6 3' O)
and W2 c U

((1),j 62 +6 3'o

P1

((l),I 6 2- 63- PO

P3
U1 1

'k(l). 1482+83 p)U f 2+ 3 ")/2

P1
U
((1) ,-}628 03 -0 PO

then

-
Pk2
((1,91),9- 62)

UP 2
(( 1,V1),-9 82)

'-J2+ 1

of I i 1

P
U l
((1). ,-J82- 63, - P)

((1),.962+6'

4&LAn
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P3
U 1

((1), j62+63 Po)/W2
((1'91) V-f2+63 f

Together with the previous claim, this proves the

proposition.

P
Case 2 U 0

Using step by step induction techniques, we see that

and J((2,1),62)
P

contained in the J.H. series of U 0
(pr-61 - 62 )

diagram is

are

The

((2,1),-162

((2) ,63 )

U

I((l) , T $2

U P ,.-6-2

Proposition 8: There are no other composition factors

than those listed above.

Proof: Comparing minimal K-types we prove that

P
U , is irreducible.'4(2,91).9-162)
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1

The kernel of the long intertwining operator for U()

is U 2 . Thus

P P
1 2

U(( 2 ).,6 3 ) ((2,l) ,}2) ((2), 3

The kernel of the long intertwining operator for U
1 ((1) ,6

is U, . Thus
((2).9683)

Pi Pi
U11 #=. j

U1) 36)/U((2),63 (('),3362

Finally the kernel of the long intertwining operator for

P
U 0
U(O 62+63)

P1
is U 3

((1) '$2 2

. Thus

P P

(oV62+63) ((l),36
03

(p0 361+62)

In the second appendix to this chapter, I will give

a list of all J.H. series of p.s.r. with continuous

parameter log ) = 8l +62062 +6 39 61 +6 3,9 69 2, 63 . Since

the proofs are based on the previously employed ideas,

they will be omitted.

Now we came to the reducibility question for g.p.s.r.

induced from P2 "
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P
Theorem 9: Let p = ((n ,n2 ),v6 2 ) E 02 . Then U is

reducible iff

a) n, > n2 > 0 , v E JR and lvI - nl/2 + n 2 /2 E N \0 ,

b) n 2 >nl>0, vEIR and lvI + nl/2 - n2/2 E IN\0 .

P P
Proof: U 2 is reducible if U 2 2 is

((n., n 2),v62) ((n., n 2)s-v62 )
reducible. Hence we may assume v > 0 , and furthermore

using symmetry consideration we assume n1 > n2 >0

a) First assume that (nl/2)a 1 + (n2 /2)a 3 + v62 is

contained in the interior of the positive Weyl chamber

C- , i.e. that

-(nl/2) - (n2 /2) + v > 0

We can find X E 0 , X integral s.t.

(nl/2) 1 + (n2/2) 3 + V62 - X = (C/2) + (a3 /2) + V6 2

1 < v < 2

and s.t. the assumptions of Zuckerman's theorem are

satisfied. Then

U 2 = (n/2) + (n2 /2)c.3 +V62 = U

((1 ,l),v62~( 1/2) + (L2/2) +v6 2
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Thus U is reducible if (n 1/2)a1 + (n2 /2)m 3 + V62 is

integral, i.e. iff ((n/2) a + (n2/2)a3 +v62,L 2) =

-(nl/2) - (n2/2) + v E N \ 0, which is equivalent to

v - (n1 /2) + (n2/2) E N\ 0, since by assumption

-(nl/2) - (n2/2) + v > 0 .

b) Now assume (n1/2) a1 + (n2 /2)a 3 + v82 is contained

in the wall of a , i.e. that

-(n 1 /2) - (n2/2) + v = 0

We can find X E F , X integral, s.t.

(n1/2)a1 + (n2/2)a 3 + v62 - X = (CL/2) + ( 3/2) + 2

and s.t. the assumptions of Zuckerman's theorem are

satisfied. Then

P2  (nl/2)cx + (n2/2)a 3 +V6 2 P2
U (al/2) + (a3/2 ) +82 U '2

and thus by II.C.7, U 2 is reducible.

c) Next assume (n1/2) a1 + (n2/2)a 3 + v6 2 is contained

in the interior of s Co , i.e. that
20
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- (n1/2) -

-(nl/2) +

We can find X E ,

(n2/2)

(n2/2)

+ v < 0

+ v > 0 .

X integral, s.t.

(nl/2)cxl + (n2 /2) 3 + V62 - S CX = CL1 + 2 + v8 2

0 < v < 1

and s.t. the assumptions of Zuckerman's theorem are

satisfied. Then

U 2
(nl/2)+ (n2/2) a3 +V6 2 U2

O 1 + a + v o2 ((2, 2) ,v6 2 )

Thus U 2  is reducible if f s ((nl/2) a, + (n2/2) 3 +v82

is integral i.e. if -(nl/2) + (n2/2) + v E IN\ O .

d) Now assume (n1/2)a 1 + (n2 /2)a 3 + v6 2
is contained

in the wall of s C , i.e. that
20

- (nl/2) + (n 2 /2) + v = 0

We can find X E C, , X integral, s.t.

(ni)a, + (n2/2)a 3 + V62 - sL2 = (a.) + (a3 /2) + 2
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and s.t. the assumptions of Zuckerman's theorem are

satisfied. Then

P2 (nl/2)c + (n2 /2)a 3 +v82 P2
U9 = Ya + (CL3 /2) +1 i2 U( 1 2)

Thus by II.C.8. the representation is irreducible.

e) Finally assume that (nl/2)cm + (n2/2)oL 3 + v6 2 is

contained in the interior of s s CL , i.e. that
120

-(n1/2) + (n 2 /2) + v <

Assume first -(nl/2)+ (n2/2)+v ( . Then we can find

X E o , X integral, s.t.

(nl/)m + (n2/2)Mt3 + V62 - s C2 = 1 + (a3/2) + v8 2

0 < v < 1/2

and s.t. the assumptions of Zuckerman's theorem are
P

satisfied. Then by the same arguments as above U is

irreducible.

Now assume -(nl/2) + (n2 /2) + V E E . Then we can find

x E C , integral, s.t.

(nl/2)c,1 + (n2 /2)a 2 + V6 2 - s as X = (3/2)a + (1/2)a2



of Zuckerman's theorem are

satisfied.
P

Hence the representation U 2 is irreducible.

If v = 0 the representation is unitarily induced

and hence irreducible.

This completes the proof of the theorem.

Theorem 10: The J.H. series of the kernel of the long

intertwining operator for ( 

P n2

U((n. ,n2) ,v6
2 )

, with n,>n2 >0,

v > 0 , is

-(nl/2) - (n2/2) + v E IN\0 contained

union of the J.H. series of

(((nl/2)+(n2/2) +v),s ((n1/2)a 1 +(n 2 /2)a 3 -V8 2) -
2

((n 1/2) + (n 2 /2) +v)a 2, p(n1 ,n2 ,v))

P2

U
(((nl/2)+(n2/2) +v) ,s2 ((nl/2)ml+(n2 /2)a.3-v6 2) -

2

P2
U2

(2)-( (2n/2)- (n 2/2)+v)o,. ( ((n/2)a+(n 2/2)a3+v82)

-((n 1/2)-(n 2/2) +v) ey - ( (n 2/2)-(n 2/2) +V) C3)

f)

a) if in the

and s.t. the assumptions

(ni,n2.,~ 1)( (n 1/2) +(n 2/2) +v) a2,PP
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where

p (n 1 ,n2,v)

p(n1 ,n 2 -,v)

1
= p3

1
- PO

b) if - (n /2) - (n2/2)

series of

U 1
((n 1+n,) ,((n, /2) -

c) if - (nl/2) - (n 2/2)
E 0\O

if 3n + .n + v

2 1 2 +

+ v = 0

+ v < 0

is equal to the J.H.

is even

is odd.

is equal to the J.H.

(n2/2)) 62' 13

and - (n 1 /2) + (n2 /2) + v > 0

series of

P
U 2

(( (n /2)+(n2/2)+v, (n /2)+(n 2 /2) -v),

s CL38a2 S3 ( (nl/2 CL a+(n 2/2) a 3 +V62)

Proof:

In Theorem
P

we showed that U 2 has a J.H.((l-,l),9-282) hsaJH

series of length 5 and the diagram

a)

- ( (n, /2) +(n 2/2) +V) al-

( (n, /2) +(n 2/2) - v) cx3)



P 2

((3) ,-6 2+263 ,p )

145

P2

((3,1) ,0)

P2  12U 1
'~,62 ((3),-62+26 VP1

U((1, 1 ) ,-262)

Hence the arguments in the proof above show that
P

1,n2 ),-v62) also has a J.H. series of length 5 if

-(nl/2) - (n2/2) + |vI E I\O , and calculations using

the results in the last part of I.F. show that it has

the diagram

U((n 1 ,n 2 ),-v6 2 )

where the dots in the middle row are substitutes for the

representations listed under a) above. Since the calcu-

lations are exactly parallel to those in the proof of T.&/

they will be omitted.

b) In Theorem we proved that U,2 has a J.H.

series of length 2, namely
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J , J .
((,1 , 2) ((2) ,90, P3)

Hence by the arguments in the proof of the previous

theorem, U 1 ,n2 ),v6 2 ) with -(nl/2)-(n2 /2) + |v| = 0

has a J.H. series of length 2. Then calculation exactly

parallel to those in the proof of 18, give the formulas

of the theorem.

c) In Theorem 7 we proved that U 2 has a J.H.
(2,v 2)9 , 62)

series of length 2, namely J(( 2 ,2 ), 6 )' ((3,1),6 )

Hence by the arguments in the proof of the previous theorem

( ,2 with -(n 1 /2) + (n2 /2) + v > 0 and((n, In2'622

-(n 1 /2) - (n2 /2) + v < 0 has a J.H. series of length 2.

Again calculations exactly parallel to those in the proof

of VD. 7. give the formulas of the theorem. 1

Using this theorem on GL(4,]R) and the analogous

theorems on GL(3,2R) and GL(2,]R) together with the

reduction technique of I.F. we are now able to compute

the Langlands parameters of all composition factors for

p.s.r. of GL(n,]R) .

In the last part of this paragraph, we will classify

all unitary representations of GL(4,]R).

Proposition 10: The following non unitarily induced
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representations J. are hermitian.

a) u E 62

b) u E 81O:

c) u E Q0:

t = ((n,n),a6 2 ) a E R+

= ((n),-(a/2) 2 +a83,p )

U = ((n),-(a/2) 2+a6 3 ,p )

U = (p0,a(61 +63 )

u = (p0,a62 )

, n E W \0

a E R+

a C R+

n E IN\0

n E N \0

+ib61+ic6
3-i(c+b) 2

a E JR+

a E R+

( =( a(61+6 3 ) +b82 +c(6- 3))

a , b E IR +

b,c E JR

, c E R

(Pl 4 , a(6,+63 )+ib6 1 +ic 63 -(c+b) 62)

U = (pl 4 ,a62 )

t = (P23 , a (1+6 3)+ib6

" = (p23 ,a82 )

a E JR+

a E R+

b,c E JR

1 +ic 63 -i(c+b) 62)

a E JR+

a E R+

b,c E JR

U = (P1234 ,a(61+63)+ib81 +ic3-i(c+b)62)

U = (p1 234 ,a62 )

a E IR+

a E R+

' = (P 1 2 3 4 ,a(6 1 +83)+b6 2 +c(6 1 -8 3

a,b E R+,

b,c E JR

c E JR .
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Each hermitian irreducible quasisimple representation is,

up to tensoring with a one dimensional unitary representation

equivalent to one of these.

Proof: We have to check when the conditions of theorem LEG. [

are fulfilled. This is a straightforward computation

and left to the reader. 7

Using case by case arguments, we will now find out

which of these hermitian representations are (infinite-

simally) unitary.

Case 1 U E 62 , = ((n,n),a6 2 ) , a E R+_, n E IN \0

P
By Theorem II.D 1 U is reducible if

P2 ((n, n) ,a,6 2 )
a E \ 0. Hence U,n),) being irreducible, we have

complementary series representations for a 1 and

a limit of complementary series representation for a = 1 .

On the other hand, Theorem I.G. shows that the repre-

sentations J((nn)a 2 are not unitary if a62  6 = 26 '
'k'')a '2' 2>6P2  62

iff a > 2. For 1 < a < 2 J((n,n),a6) is not

unitary, since the nonunitary representation Jn,n),262

is a "limit" of J((n,n),a62) =U(,n),a for a -+2
(()na 2 )

Case 2: U E Ol , u= ((n),-(n/2)62 +a6 3 ,p ) , a E R+

n E \T\O.
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P 2
By Theorem II.D.1. U 1 1 is

reducible iff ((n),-(a/2)6 2+a63,'P0 )

a = 2m + 1, m E l , if n is odd

a=2m+1, and a=n+2m, mE IN

if n is even.

P2

Hence U 1 1 being irreducible, we have complementary
((n),0,p 0 )

series representations for 0 < a < 1 and a limit of

complementary series representations for a = 1 . On the

other hand, Theorem I.G shows that the representations

J 1 are not unitary if
((n).,-(a/2)8 2+a8 ,p0 )

(a/2)82 + a83 > 2 = -(3/2)62+363 , i.e. if a > 3.

Nowlet la<2. Te
Now let 1 < a < 2 .Then J (()-(/6 +a

((n),-(a/2) 62+a63 p
unitary since the nonunitary representation

J is a "limit" of
((n) ~

is not

22

1 U 1 for a
((n) ,-(a/2) 6 2 +a63 , p ) ((n) ,-(a/2) 62+a6 3,p0 )

For = ((n),-(a/2)6 2 +a63 ,p ) exactly the same

considerations can be applied.

-2.

A
Case 3 pE C0

a) " = (p0,a(61+63 )+ib61+ic63 -1(c+b)6 2 ) , a E 1R+, b,c E R:
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P
By Theorem II.D.l., U a( +6)+b6+c6i(c+b)63

is irreducible iff

a 2m +1 if b,c / 0

or

a =2m+1 or a = 2(2m+l) if b = 0 or

c = 0, m E I.

P
Since U 0 with b,c E JR isU(p 0.ib 1+ic 3 -.i(c+b)8 2)

irreducible and unitarly induced, we have complementary

series representations for 0 < a < 1/2 and a limit of

complementary series representations for a = 1/2 and

for all b,c E R . On the other hand, Theorem I.G5shows

that the representations J((p,a(61+63 )+ib81+ic63 -i(c+b)63

for a(6 +63  > = 3 + 3 , i.e. for a > 3/2 ,

are not unitary.

Now assume b,c / 0 . Then
P

U( ,a( +63 )+ib6 +ic3 -i(c+b)62 ) is equivalent to

P
U 0, and the intertwining operator
(po,2a - ib62+2ic6 3)

defining the hermitian form is OL(p 0 ,2a6 -ib6 2+21c6 3 ,s ) .

Let P = P = M A N and consider

ind P (p ,2a8 -ib8 2+21ic) . The representation

indM Op( p,2a-ib+2c6 3 M ) is a tensor product
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of a p.s.r. of SL,(2,IR) with parameter (po,e 2a) and

the trivial representation of the other Z2 - factors.

Hence OlM1 (P 0 PM, r(P,2a6 1-ib6 2+2ic63 ) P , M S ) does

not define a positive definite scalar product on
M

indPO M ((p 0 ,2a8 1 -ib 2 +2ic6 ) 1P0  for a > 1. But if

< a < 7, the p.s.r. of GL(4,]R) is irreducible, and

hence the assumptions of lemma G3are satisfied. We

conclude that the representations

(po,a(61 +62 )+ib61 +ic -i(c+b)62 ) ,for < a < ,

b,c / 0 , and not unitary.

Assume next b / 0 , c = 0 or b =0 , C /0 .

3For < a < 1 and 1 < a < 7 , we use the above arguments

to show that the representations are not unitary. Let
P

a = 1 , b = 0 , c / 0. Then U( ,+6+i6ic62) is

reducible, and we can identify J (P8+6+ic63-ic62

c /1 0 , with a representation unitarily induced from a

one-dimensional representation of the parabolic

A*
P = t

0 0 01 *j

Hence the representations for this parameter are unitary.
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Similar considerations prove that the representations

with parameter a = 1 , c = 0 , b / 0 are unitary.

Now assume c = b 0 0 . Again we apply the above

proof to show that the representations are not unitary for

1/2 < a < 1 and 1 < a < 3/2 . Hence let a = 1 . Then

J(P,61 +6 ) is the representation unitarily 
induced from

the trivial representation of P . Hence it is unitary.

a') In the case p = (Pl234,a(61+83)+ib 1+1C63-i(b+c)63)

with a E IR+, b,c E FR, we proceed exactly as in a).

b) p = (p14a(81+63 )+ib6 1 +ic 3 1 (b+c)6 2 ) : By Theorem

II.D.l., U(p1 ,a(61+63)+ib1+ic63- (b+c)63) is reducible

iff

a = (2m+l)/2 if b,c / 0

or

a= (2m+l)/2 or 2= 2m if b= 0 or c= 0 , m C I.

Thus we have complementary series representations for

0 < a < 1/2 and a limit of complementary series repre-

sentation for a = 1/2 and for all b,c E F.

On the other hand Theorem I.G.5shows that the repre-

sentation J (P14 ,a(61+6 3)+ib61+ic6 3-i(c+b)3) , for

a( 1 +83 X = (3/2)81 + (3/2)83 , i.e. for a > 3/2
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are not unitary. For 1/2 < a < 3/2 , the argument in

the first part of case a) can be applied to prove the

representations are not unitary.

bl) In the case j = (p23 ,a( 1 +6 3 )+ib61 +ic 3-i(b+c)6 2) :

with a E JR+, b,c E IR, we proceed exactly as in b).

c) U = (po ,a62 )

By Theorem II.D.l., U 0 is reducible iff a = 2m+l ,
0 (Po ,a82 )

m E IN. Since U ( is irreducible, we have comple-
(po)

mentary series representations for o < a < 1 and a limit

of complementary series representations for a = 1

Otherwise the representations are not unitary.

c') u = (p1234,a 2 ) In this case we proceed as in c).

d) u = (pa6 2) :

By Theorem II.D.l., U , is reducible if a = 2m+l ,
(p 0 ,a6 2 )

m E IN, and we have complementary series representations

for 0 < a < 1 and a limit of complementary series

representations for a = 1 . Otherwise the representations

are not unitary.

d') Q = (p34 ,a 2): In this case we proceed as in d).



154

e) j = (p0 ,a(61+63 )+b62+ic(6 1-6) a E JR+, b E JR+J

c E R .
P

By Theorem II.D.l. U 0 a(6 +8)+b6+ic 6 is
(POPa ( 1 53)+b 2+i( 1-63 )

reducible iff

c /0 and b =2n+1 or 2a+b = 2m+1

or

c = 0 and b = 2n+l or 2a+b = 2m+1 or a+b = 2m+l

or a = 2m+l m E IN

P
Since U( , ic(- 3 is irreducible and unitarily

induced, we have complementary series for 0< a+(b/2) <1/2,

and limits of complementary series for a+(b/2) = 1/2 ,

c arbitrary. On the other hand Theorem I.G.5 shows that

the representations J (po ,a(6+63)+b62+ic(6 1-63) ab > 1

are not unitary except if a = b = 1 and c = 0. In

this later case J (Po +2+6 3) is the one-dimrep, and

hence unitary.
P

Now assume c / 0 . Then U 0p,a(6 +8)+b6+ic(6-3 is
P(Po a( 1 +)3b 2+i( 1-%3)) i

isomorphic to %, (2a+b)6 +b3+ic63 ) and the inter-

twining operator defining the hermitian form is

ot(p0,(2a+b)6 +bb 3+icb 2, s C ) . Let P2= M2A2N2 and

and consider ind 2 r ( b63+ic . The
P0 (Po,(2a+b)6 1 + 3 +i62)

M
representation ind M 2 Po r(po (2a+b)6 +b6 3 +1C62 I2n is
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is the tensor product of two p.s.r. of the two SL(2,R)

factors with parameters (pOe(2a+b) and (p0,eb 6)

Hence %TM (Po M2 ,ind flM (, (2a+b)M r+b6 3+ic62 MCnP, )

defines a positive semidefinite hermitian form iff

0 < 2a+b < 1 . But by lemma !0 3 j(poa(1+6+3)+b +ic(61-3))
is isomorphic to

indG (((p 0,e(2a+b) 6) s)U 0
P 0 0 a,(PO,2a+b)

Ot((p ,ebb ),s )U (,b) ei 2

P P
Here U(p,2a+b) and U(p0 +b) are p.s.r. of SLt(2,,R)

and 0~(((pO,e(2a+b)6)s ) and CYTp0,eb6 ,s ) are the

corresponding intertwining operators, respectively.

Therefore the assumptions of lemma& 3 are satisfied, and

we conclude that J (po,a(61+63 )+b62 +ic(6 1 - 3)) , with

c ,0 0 , are unitary iff 0 < 2a+b < 1 .

Next assume c = 0 . For a > 1 , b < 1 and b >1,a <1 ,

we use the above argument to show that the representations

for these parameters are not unitary except possible for

a+b = 2m+l and a = 2m+l , m E IN. To treat these cases

assume first a = 2m+l , m > 1 , b < 1 and define

t(t) = (poa(68 1 + 3 )+tb 2) --0 < t < 1 . Then < , >(t)

as defined in I.G., is a hermitian form. But JU(t) ,

t E (0,1] is a representation induced from P2 = M2A2N2

with a finite-dimensional representation of M2 and a
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a real character of A2N2 , and it follows from the

composition series results that this representation is

irreducible for t E (0,11 . Thus if < , > is

positive semidefinite for t E (0,1] , it is also positive

semidefinite for t = 0 by lemma 10 in [9.b]. But in b)

we proved that this form is not positive semidefinite

for p = (pO,a(6 +63 )) if a > 3/2 . Hence < , >

is not positive semidefinite for all t E [0,1] , and the

representation J (poa(6 +63)+b8) are not unitary for

b < 1 , a = 2m+l , m > 1

For c = 0, 0< b < 1 and a+b =2m+l , mE K\O

and c= 0 ,O < a < and a+b=2m+l, mE \0

a similar argumentation shows that the representations

with these parameters are not unitary.

Thus we are left with the cases

c = 0 , a+b = 1 a,b E (0,1)

once

c =0, a= , 0 <,b < 1

Let c = 0 ,a+b= 1 ,a,b E (0,1). The J.H. series

computations show that J( ,a ( +(a3()+b82) is a repre-

sentation induced from P2 = M2A2N2 with the trivial
a82

representation of M2 and the character y = e on

A2N2  and that J(PO,82 ) is unitarily induced from the

trivial representation of P2 . Now define
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p(t) = (po t(81 +63 )+(l-t)6 2 ) for t E [0,1) and consider

<.,.> . This form is semidefinite for all t E [0,1)

if it is semidefinite for one t E [0,1) . But we already

know that it is positive definite for t = 0 . Thus the

rep res entations J (P ,a(6 1 +3)+b6 2) are unitary for

a+b = 1 , a,b E (0,l) .

Finally, let c = 0 , a = 1 , < b < 1. To show that

in this case the representations J(P 61+6 3 +b63 ) are

not unitary we use lemma G2. These representations are

induced from P2 = M2A2N2 with the trivial representation

on M2 and the character X = e 2  on A2N2 . Now

if they were unitary, then by lemma G2 the representation

induced from P2 with the trivial representation of M226
and the character )( = e 2 on A2N2 would have 2

unitary composition factors. But checking in Theorem 3

we see that this has only two composition factors at all,

namely the representations J(P961+62+83 and

j 1, and by case 2 J

((1)-9(3/2) 62-3639 p) ((1), (3/2) 62-36 3'p0 )
is not unitary, which is a contradiction.

This completes the proof of e).

et) t = (p1 234,a( 1 +83 )+b6 2 +c(6 1 -63 )) , ab E JR+, c E JR.

In this case we proceed as in e).

f) tr = (P14 ,a(61+63)+b6 2+ic (6 1-3)) , a,b E JR+, c E R .
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p
By Theorem II.D.l., U , is

(P14 ,a(61+6 3 )+b6 2+ic(6 1-63) i

reducible iff

c /' O and b =2m+l or 2a+b = 2m+l

or

c = 0 and b = 2m+l or 2a+b = 2m+l or a+b = 2m

or a = 2m, m E I

P
Since U( 1 ic( 1 -62 )) is irreducible and unitarily

induced, we have complementary series for 0 < 2a+b < 1

and limits of complementary series for 2a+b = 1 ,

c arbitrary. Using the same techniques as in e), one

proves that these are the only unitary representations for

this family of parameters.

f') u = (P23 ,a( 81 + 3 )+b62+ic(61-63 )) , a E 3R+, b E R+

c E IR :

In this case we proceed as in f).

Theorem 11. The unitary dual of GL(4,]R) consists of

the following representations:

a) unitarily induced p.s.r.

b) unitarily induced g.p.s.r.

c) complementary series representations for p.s.r. and

g.p.s.r.
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d) limits of complementary series representations,

e) unitarily induced degenerate series representations,

f) complementary series representations for degenerate

series representations,

g) the one-dimensional unitary representations.

Compressing this result in terms of the parameters

of the proposition, we proved that the following not

unitarily induced p.s.r. or g.p.s.r. are unitary.

a) p E C2 ,P = ((n,n),a 2 ) , < a <1, n E \O

VI 
1

b) pE C, p = ((n) ,- (a /2)82 +a83,PO) , < a < , n E I\O

P = ((n),-(a/2)+a3, ) , O< a < 1 ,n E 1M\O

c) IE , = (poa(6 +63)+ibb +ic3-i(c+b)62

O <a< 1/2 , bc E R

or a=l b=O , c E JR

p = ab2) , < a < 1

V = (Po, a(b 1+6 3)+b6 2+ic(-6r3))

O<a+(b/2) <1/2 and O<b< 1 and cE JR

or a+b = 1 and O<a<l , O<bJ< , c=O

or a = b = 1 , c = 0 ,

P = (p14 ,a(81+63 )+ib 1 -ic6 3 -i(c+b)6 2)

0 < a < 1/2 , b,c E JR,
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P = (pl 4 ,a62 ) , 0 < a < 1 ,

= (P23 9a(61+63 )+1b61+ic 3-i(c+b)6 2

0 < a < 1/2, b,c E J,

= (p23 ,a82 ) , 0 < a < 1

= (P1 234 ,a( 1+63 )+ib51+icb -i(c+b)62)

0 < a < 1/2 , b,c E R

or a = 1 , b = 0, c E IR

p = (P1234 ,a62 ) , 0 < a < 1 ,

P 1 p234-,a (61+6 3)+b62+'c (61-83)

O < a+(b/2) < 1/2 and 0<b<1 and

c E :R

or a+b = 1 and O<a<l , O<b<l,

c = 0

or a = b = 1 , c = 0 .
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Appendix 1:

Before we can deal with SO(4, IR) , we need some

results on SO(3, R) :

We choose in SO(3,C) , the Cartan subalgebra

T3

Let N be the subgroup generalized by

m = 1

(~l

M2

m(3 =

l)

-l = exp 2 r - )

We also have

m 1 exp t - ) m

i.e. we can consider m 1

exp - t (- )

as a representative of the

nontrivial Weyl group element so(3,f) . We will now

compute the multiplicity of the M3 -fixed vectors in some0

low dimensional representation.
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We denote the n-dimensional representation by V n

Case 1: V3
There it is easy to see that V3 IM3 breaks up into

the direct sum of 3 inequivalent nontrivial representations.

Case 2: V5

We have V3 V3 5 3 and there are 3

Mi-fixed vectors in V V Since one is contained in

V and none in V two are contained in V5

Case 3: V7

We have V5 V3 V2 V5 and again there are

3 M3 -faixed vectors in V5 V Since 2 are containedo 5 3*
in V5 and none in V3 , just 1 is contained in V

We will now use these results to compute multiplicities

of K-types for GL(4,iR)
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Lemma 1: We have the following multiplicities for K-types
P

in U( Po, 1 +82+63

Highest Weight

00

11

20

21

22

30

31

32

33

40

Multiplicity

1

0

0

3

0

2

0

3

0

1

7

Proof: (Using Frobenius reciprocity.)

All the representations of so(4,]R) are

products of two representations of so(3,)R).

For so(4,C) we choose the Cartan subalgebra

1

~.4.4) .4

tensor

90

12
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where each of the two summands is a Cartan subalgebra of

one so(3,T) factor. M is generated by

m 2 =

-1

-1

_1 =exp 2n exp 2n ~r
1 22

-2 - -T

1 ), m3 =( 1), m4

We have

m m3 m 3m4
4~ 2-4~) ~ .

and

m2 = exp, 2 1

2rr ~*

We write Mo for MN fl SO(4, R) . It is enough to

compute the multiplicities of M fixed vectors in

representations of SO(4, R) (by Frobenius reprocity).

The formulas imply that the M -invariant vectors are

contained in the direct sum of all subspaces of integral

weight, and since the simple roots have the coordinates

(1,1) and (1,-l) , all K-types with highest weights

(a,b) , a+b odd, do not occur in (U '
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Hence the K-types (1,0), (2,1), (3,0), (3,2) and (4.1)

occur with multiplicity zero.

Now the representation with highest weight (1,1)

This is the tensor product of the 3-dimensional repre-

sentation of one so(3,C) factor and the one-dimensional

representation of the other factor. In this case we apply

case 1 in the first part of the appendix to show that

there are no M -invariant vectors.

The representation with highest weight (2,0) is 2

dimensional and has the following weight

2 0 1-1 0-2

1 1 0 0 -1-1

0 2 -1 1 -2 0

on the space -with weight (1,-1) , m2  operates as -1,

hence there is no Mo-invariant vector contained in the

direct sum of the spaces of weights (1,-l), (1,1), (-1,1)

and (-l,-l). The three orbits under R0 are

{(2,0),(-2,0)) , (0,2),(0,-2)} and (0,0) . Hence we

get at most three M fixed vectors. But since we know

that there are three irreducible inequivalent composition

factors which contain this K-type, it occurs with multi-

plicity three, and Mi operates trivially on the weight

space (0,0) .
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Now to the representation with highest weight (2,2) .

This representation is the tensor product of a 5-dimensional

representation of one so(3,O) factor and the one-

dimensional representation of the other factor. In this

case, m3mk operates as the nontrivial element in the

Weyl group of each so(3,C) factor. Hence we can apply

case 2 in the first part of the appendix, so this K-type

occurs with multiplicity two.

In the case of the representation with highest weight (3,3)

we use the same arguments to reduce the problem to case 3

in the- first part of the appendix and conclude that this

K-type occurs with multiplicity one.

The representation with highest weight (3,1) is

15 dimensional and has the following weights:

(E1 20 1-1 0-2 -1-3

2 2 1 1 0 0 -1-1 -2-2

1 3 0 2 -1 1 -2 0 -3-1)

Since m2  operates nontrivially on the spaces of weights

(1,1), (3,1) and (1,3) we get four orbits under M ,

namely ((2,2),(-2,-2)) , ((2,O),(-2,0)) , ((0,2),(0,-2))

and (0,0) . The representation of m m3 on the space

of weight (0,0) is nontrivial since it is the tensor

product of a trivial representation with a nontrivial
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representation. Hence there are three M invariant

vectors in this representation i.e. the K-type occurs

with multiplicity three.

The representation with highest weight (4,0) is

25-dimensional and has the following weights

4 0 3 1 2 2 1 3 0 4

3-1 2 0 1 1 0 2 -1 3

2-2 1-1 0 0 -1 1 -2 2

1-3 0-2 -1-1 -2 0 -3 1

0-4 -1-3 -2-2 -3-1 -4 0

Since m2  operates nontrivially on the spaces of weights

(3,1), (3,-l) and (1,1), we get exactly seven orbits

under M . The representation on the space of weight

(0,0) of MO is trivial since it is the tensor product

of two trivial representations, i.e. we have multiplicity

seven for this K-type.
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Appendix 2:

We give a list of J.H. series without multiplicities

for the representations with parameter

61+62 61+62 62+63e , e ,e ,

Parameter of
p. s.r.

6,
e e 6 2, e 63

Jordan-H*lder series

J 1 3 (l) (1/2) 3+639

62-'6 ,p)((1,1)2 ,2) ((2) ,0, p2 )

e61+63 Pi

e 3

1(p1,61 +63  ((1),- (1/2) 82-63 P4)

((2) ,O, p )

1 

P2' 61+62)5((l) , (/2)6 2+63 1

.0p 2

((1),- (1/2) 62-639'P0

((1), (1/2) 6 +6 p )2 30

J
((2),O, p )

((2) ,0, p )

(P12 61+63)'

((1),- (1/2) 62+63) ' 4)
61+63 1

e 3S(P14 561+63)

61+63
e , pO

(

0

e61+63 13

.
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6 +62e , p0

J
((2) ,(1/2) 62 3) ((1) ,- (3/2) 82+263

(pl1p+p 2) J((l) ,-(3/2) p2+2p 3

((2), (1/2)p2 ((, , (1/2) p2 )

e6 +2 J
(p 2 , 1 +62)

e p 1 3

e
61 +62

p 1 4

(P19 , 3 S (l, (3/2)82+263, 9 P3)J

((2)g ,(1/2) 62, P34 )

(Pil, 61+62) ((l) ,- (3/2) 62+26 , Pill)

J
(2) , (1/2) 62, ~

e , p

e

e ,

e ,

pi

P2

Pis,61 )J

(2,5') ((l), 1/2) 2'

13 1 ((l) , (1/2) 62p P34)
p1 3

e P
( ,1Jp1 4 i ((1) , (1/2)6 629po)

6 +6 2
e .9 P1

(0 1l+2'((, (3/2) 62, Po)'

( (( 5) l),- (1/2) 8 2'P

S(14'1 
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J J
((1),6 2' 0o

'((1,1) ,o)

P13' 2)

J J

((1,1) ,0)

J(1'2

(1),6
2 ,'P )

((1), 2 ) ((),62 'P34 )

), 1 )((1,, 0) ((1),62 P34 ) (1,1),0)

The J.H. series of the other representations we get by

symmetry considerations.

e PO

62
e p-

e 62' p1 3

62
e , p 14

h



D. Reducibility

Let 4 = (ixp) E Cr and S E I , positive with

respect to the ordering defined by a .

Assume mult(O ) = 1 . Then define m,, as in I.B.

Assume mult(P ) = 2 . Then by I.A. there is a simple

r

root x21(a)-l with i(a) E {l,...,r) , s.r. either

6 + a21() 1 E E or 2 - 2i(a)-1 E r . Define

r = (r(C)L)

Assume mult(O ) = 4 . Then by I.A. there are simple

roots a21(a)-l'2j(a,)-l with i(a) < j(a) and

i(a),j(a) E (l,...,r} , s.t. either + a 21(a)- E - or

-a 21(a)-1 E E ,and either + E2j(.)-1E or

- 2j(a)-1 E E . Define ra, = (ri (,) .rj(CL)

Now for r E (Z\O)r and p E r define HO'" r

as follows:

a) If mult(O) = 1 ,

H(

(a,log x)

(CL, log )

b) If mult($) = 2

HgrP = { (x |(a,log x)|

= 2m+1 , m E I , if p(m ) = 1

=2m, m e IN, otherwise

- I r,,) I E X\O and (a,log X)EER}
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c) If mult(O) = 4 ,

|(alog x)

if |r

j(a.,log %)

if Ir

I-Irj(,)I + r 9 E \

C> r and (a,log x) E JR

+ r (a.) - Irj (CL) I E IN\0

(r) 1 ri(a) and (a,log x) E E}

Let Cr be a Weyl chamber in and let (F +
be the poitv rotaytmo rdfndb r

be the positive roots system of Z r defined by ar

Then we can find an ordering (E)+ of T which is
+ r

compatible with (Er) , i.e. the restriction of

a E (E) to oz is either zero or contained in
ar r + +

contained in (Er)a . If a E (E)T , a simple, we

write for (a,-a} n E+ where +r is the ordering

defined by ., . Define

0U
, CL ,p)

r a

where a

a tr / 0

runs through all simple roots in (E)+
r

,and

,P)
r

U-, K) (p)
WEWr r

Theorem 1. Let P = P be parabolic associated to Cr
- ,r r-

Then U is reducible iff Y E ')
(11,Y.,P ) 1( r

H( )r,

s. t.
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For the proof we need the

Lemma: Let P 9 , 2 be two parabolics associated to Weyl
P

chambers in O( . Then U is reducible, iff

U is reducible.

This lemma will be proved later.

Proof of the theorem. First I will show that E OP
r

implies U is reducible.

Assume y, E . Then there is a w E Wr s.t.

Yr
E . The above lemma shows that it is enough to

r
prove the assertion for P = P . Now let 0 be a

+ - r H -+simple root in (E)+ s.t. - E H r, P
r

Assume mult(OI) = 1 . Then either Og(P_,(i', ,p),s )

or OT(Pa , is defined and by I.D. and II.A.
- r

has a nontrivial kernel. Hence the representation is

reducible.

Assume mult(oc) = 2 Then there is a 0' E ( r) s.t.

o' =1 c. Hence () - E and 0' - 0 is even
r r r

simple. Then either CT(_ r,,p),s , )O or

O((s 0) P s s (r,%,P),s W W is defined.

Using I.D., we reduce the problem to the reducibility

problem for the representation of GL(3,]R) with parameter
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(* , ) By II.B., C this representation is

reducible.

Assume mult(O,) = 4 . Then there are 0', t E (I)+
r ar

s.t. = M= are s.t. 01-P and 0"-P are

simple roots. Then either r(_Pr,Y.1 P),s 0 P O 0 s)

or .((( r, , s s _Os XP)sgsg_OsgtOsO) is

defined. Using I.D., we reduce the problem to the redu-

cibility problem for the representation of GL(4.,R) with

parameter (i ,(0,x),62) . By II.C.Ithis representation

is reducible.

Thus U is reducible if ' (P)
(r.,,p)r

Now we will show that U reducible implies

x E 14r'P).
rrX

Assumer r,,p) is reducible. By the above lemma we can

assume that ( is dominant with respect to P . Now let

wO = w,...,wl be a product decomposition of the Weyl

group element defining the long intertwining operator, and

let 10 be the first index such that the corresponding

factor of the operator has a nontrivial kernel. Then we

have 0 E F s.t. x E H( rP). The proof is complete if

we can show

= wy

or

-=wy for w E Wr and y simple in ()
rr
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If mult(O) = 1 or 4 this follows from I.A.2. and if

mult(O) = 2 from I.A.4. rl

Proof of the lemma.

In I.F.l. we showed that U is reducible iff
P
U -+ for w E Wr is reducible. But for P

(rw p)- 1-r

we have U r U . This proves the lemma
(iwy,wp) (YxP)

for parabolics associated to conjugate Weyl chambers.

On the other hand in II.B. we showed that the lemma is true

for SL(3,1R) . Hence assume now P ,P2 are associated to

Weyl chambers - ,2 s.t. (E r)+ n Y+ U a= (Er )+ and
+' 1 2 1
('E + U -CL = (1:r + for a E E with mult(a) = 2

1 2 2 r
But then by our results on GL(3,]R) we have an inter-

twining operator from

P
U

( I p)
to U 2

(r,%,p)

U 2 to U4

P P
Thus U 2 is reducible if U 1 is reducible

Y,. P) (", ,)
and hence the lemma is true also for non conjugate

parabolics.

or from
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