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ABSTRACT

We prove reducibility criteria for generalized
principal series representations of GL(n,R) .and give
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INTRODUCTION

In 1973, R. Langlands worked out a classification of
all irreducible quasisimple representations for connected
semisimple real algebraic groups G . The representations
are uniquely determined by their '"Langlands parameter"
(P,%,v) , where P 1is a parabolic subgroup with Langlands
decomposition P = MAN , £ is an irreducible tempered
representation of M , and eV is a dormant character
of A . Then the representation with Langlands parameter
(P,8,v) 1is equivalent to the restriction of the generalized
principal series representation ind%(%@e'v) to the

unique minimal invariant subspace. [12]
These results raise the following natural questions:

A) When are the generalized principal series representation

reducible?

B) If they are reducible, what are the lLanglands parameters
of the representations occuring in the Jordan-Hdlder

series and what are the corresponding multiplicities?

In my thesis I give necessary and sufficient irre-

ducibility criteria for generalized principal series of



GL(n,R) [Theorem II.D.1]. Reducibility occurs iff the
character is contained in a union of hyperplanes, which
satisfy certain invariance conditions under the Weyl group
of the parabolic. The proof is based on a reduction to
computations for certain subgroups. which play a role
similar to that of the rank 1 subgroups in the spherical
case.

By refining the methods used to answer question A), I give
a procedure to compute the Langlands parameters of the
representations in the Jordan Hdlder series for an arbitrary
generalized principal series representation of GL(n,R)
[I.F].

This procedure applied to SL(4,R) together with some
multiplicity considerations for K-types allows us to give
an explicit example of a principal series representation
whose Jordan Holder series contains a certain irreducible
representation with multiplicity two. [Remarks: Page 112].
Furthermore using some results about unitarity which show
that representations of GL(n,R) whose continuous
parameter is "too large" cannot be unitary [I.G.5], we
obtain a classification of all unitary representations of

GL(3,R) , GL(4,R) . [II.B.8][II.C.11]

The reducibility question was studied by B. Kostant in
the spherical case [11] and by Bruhat [2] and Knapp-Stein

[9,b,c] in the unitary case. N. Wallach generalized



Kostant's methods to arbitrary & € M for M compact
and G = SL(n,R) n odd, [19,a], whereas the complex case

was solved by Parthasarthy, R. Ranga Rao and V. Varadarajan

[13].

The composition series problem was solved recently by
N. Wallach for all rank 1 groups and all principal series
representations with nonsingular A character [19b].

J. A. Fomin obtained a complete answer for SL(3,R) [6].

About unitarity not much is known. M. Duflo classified
all irreducible representations for complex simple Lie
groups of rank 2 [5], and I. Vakhutingskii classified the
unitary dual of SL(3,IO [17]. For a precise statement

of the present knowledge see [10b].

The thesis is organized as follows: It is divided into

two parts. In Chapter I we filrst present the relevant
definitions and results (Sec A,B,C) which are then used

to reduce the reducibility problem and the Jordaﬁ—Hdlder
series problem to the corresponding problems for GL(2,R) ,
GL(3,R) and GL(4,R) (Sec D,E,F). The last section of
Chapter I is devoted to deducing some results about
unitarity.

The second part contains the calculations of Jordan Holder
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series for GL(3,R) and GL(4,R) (Sec B,C). Using these
results, we then give a classification of unitary
representations for GL(3,R) and GL(4,R) (Sec. B,C).
Complete proofs are given even for the known results on
GL(3,R) since our methods are based on an entirely
different approach. In the last section of Chapter II

we derive a closed formula for reducibility of generalized

principal series representations of GL(n,R) .

At this point, T want to acknowledge the influence and
assistance of a number of people in the department of
mathematics. I would especially like to thank my advisor
Professor Kostant for calling my attention to reducibility
questions. Professor Segal's seminar was a good training
ground for many of the techniques and ideas used in this
thesis: David Vogan's constant interest and encouragement
during this work and the many long discussions with him
were extremely helpful.

T also would like to thank Professor Harder from the
University of Wuppertal (Germany) for introducing me to
representation theory and supporting my plans to continue
my research in the United States.

Finally I would like to thank Michael Forger for trans-
forming my "German English" into English (and thus making
the set of readers nonempty) and Marjorie Zabierek for

her patient and excellent typing.



CHAPTER I

A. Notation and some technical Lemmata.

Let G = GL(n,R), Gg = GL(n,C¢) , and consider G as

a subgroup of GG . Let r € W and

[ AN A
coselsinel al
-sinelcosel al
Acosersiner a,
Cr==< -sinercoser X a.
b
1
€1 .
\ en—2r bn—2r
. J \ Y,

+
lo, € [0,27),I=1,...,r, €, =41,1=1,...,n-2r, a;,b; € R" ]

Cr is a Cartan subgroup of G , and every Cartan subgroup
of G 1is conjugate to some Cr .
Let N(C,) be the normalizer and z(C,) be the
C
centralizer of C_. in Gg, and define W = N(Cr)/Z(Cr) .

Then

¢ ~ r
Wr = 0, x @ze) X O _op *

The factor o is the permutation group of the ai’s R

the factor °n;2 is the permutation group of the b,'s ,

r
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and QZ2)r describes the direction changes in the S0(2,R)
factors.

A character of Cr is called nonsingular 1if the
restriction to each S0(2,R) factor is nontrivial. The
group Wg operates on the set Or of all nonsingular
characters as well.

The next paragraph will be devoted to explain the

following theorem and some of its consequences.

Theorem 1. The set & of all irreducible quasisimple
representations of G can be parametrized by 6}/Wg s

1<r<n/2.

This 1s essentially due to Langlands in a very
different formulation, and in this formulation due to
D. Vogan.

In order to explain this theorem, we have to establish
some notations.

r

Let A, ~ R T pe the vector part of C. and F ,x

r’’r
be the corresponding Lie algebras. Let T be the roots
of (#,8€)' and B be a set of simple roots. The

restriction of T to ot is denoted by Zr .

Definition. Let a € Zr . Then a has multiplicity n

if there are n roots B in I s.t. Bhn = id .
T
We write mult(a) for the multiplicity of a .
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Let Nr be the normalizer of Ar and Zr the

centralizer of Ar in G . The Weyl group Wr of Ar

in G 1is defined as Nr/zr . It is easy to see that

r r n-2r
and
r C
W, x@e) = W, .

The Weyl group Wr acts on Zr through the action induced

by the adjoint representation.

Lemma 2. Each o € T has multiplieity 1, 2, or L, The
Weyl group Wr operates transitively on the restricted
roots of multiplicity 1, 4.

Proof. Let G& = {H € ogj tr H = 0} . We may assume that

we have a set A of simple roots s.t. the restrictions of

a1’°3""’“2r-1 to ot, are zero. Then

and the restrictions of the simple roots, if nonzero, are

linearly independent. ko
Each positive root is of the form E:ai =8,
io

ay € A and io < ko . We write B = BI + BII , where



Hm w
[toa ] 4

1§ i}
o 7

Q
}—h

Q

Y

Hence BI o # BI and aII'ct = BII . Furthermore if

r
BBy # 0, then BIl“r and S:[Ilm,r are linearly
independent.
Case 1: i, > er
Claim: mult(B) =1 .
We have B = BII = B'qr . Let vy = yp + vy be

another positive root. Then Y11 and B are linearly
independent unless Y = 8 . On the other hand, if
YIINT # 0 , then YI'”& s YIIIm} s B are linearly
independent. Hence y and $ are linearly independent.
Thus

and BI are linearly independent unless

ot
r
Y= vr=*f-
We notice that the roots 8 with i, > 2r can be
considered as the positive roots for a subalgebra of type

A with Cartan subalgebra

n-2r-1

. 2r

. n_2r

bn-2r
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Wr permutes these roots transitively.

Case 2: io > 2r , ko < 2r .

Claim: mult(g) = 2 .

We have B =By +B;7 > B #0 , By #0 and Br,Bpq
linearly independent. ILet vy = Y1 + Y11 be another
positive root. Then YL“r = S'mf iff YIlﬂi = BIIMr and

Y11 = SII . But YIlﬂr = ﬂllm_r iff Yp = BI-i o with

o€ A, o o, = 0. This leaves us with 2 possibilities
R

for Yr -

Case 3: 0 < io,ko < 2r .

Claim: mult(B) = 4 .

In this case B8 = BI . Let vy = Yr + Yrp - Then

iff YII = 0 and YIIGl Vut this
T

Y = B = B -
Jor, = Plax, e,

is only possible if vy ; = B + 6, + &, - Where 61,62 € A
and bllo% = bz,lwr = 0 . This leaves us with 4 possi-

bilities for Yr -

The roots with 0 < io,ko < 2r restricted to <xr are
multiples of roots for a subalgebra of type Ar—l with

Cartan subalgebra
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1
‘. 2r
8r
8y
0
‘. m-2r
k 'y
and are therefore permuted transitively by Wr . 0

Lemma 3. There are 2r(n- 2r) roots of multipliecity 2
in Er .

Proof. Each such root is the restriction of a root of

the form

We showed furthermore that Wr operates transitively
on the sets of r(n-2r) roots of multiplicity 2, where
exactly 1 roots are restrictions of negative roots. This

implies

Corollary 4: Let Gi be a connected component of
nonsingular elements in & (with respect to the restricted
root system I ) s.t. Oi is negative with respect to

exactly 1 roots of multiplicity 2. Then Wr acts
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transitively on the set of ci's

Definition. A Weyl chamber of m; is a connected

component of nonsingular elements of m% .
Hence we get the following

Corollary 5. |{Weyl chambers}/wrl = r(n-2r) .

Definition. Let Gr be a Weyl chamber and ﬂi be the

corresponding set of positive roots. The Weyl chamber

Gg opposite to Gr is the Weyl chamber which is positive

with respect to —fi .

Remark. Or and cg are usually not conjugate under Wr
as one can easily see in the example GL(3,R) . In fact,

if r =1, then lzr|=2 and W_ = {1d} .

One special and remarkable example of a restricted
root system is the following: Let G = SL(2n,R) and
r =n . Then the restricted root system is of type
An-l , and each root has multiplicity 4. Therefore all
Weyl chambers are conjugate. If we take the scalar
product on o, induced by the scalar product on o¢r  , the

o}
restricted roots have length 1.
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Let Yp be the Cayley transform Cr - Co . Then we
have yr(ozr) =0T, and we can consider Wr as a subgroup
of Wof. Let C'/o be the Weyl chamber corresponding to
the upper triangular matrices, and let C(r) be the set
of all connected boundary components of co which are
singular with respect to exactly r strictly orthogonal
roots. Using that € 1is a fundamental domain for W, on

oro s Wwe deduce:

Lemma 6.

a) Each Gi is conjugate to an element in C(r)

under Wo .
b) G;L‘ , Gg are conjugate under W_ iff 1 =73 .

c) Let a € ot . There exist w € W, and

grec(r) s.t. wa €C_ .

Now let a € I, . Then write OJ_O' = {x egl [H,x] =a(H)X

(o2 o4
for all H € c'co} , and for Or <, define #% , = ZO]ROA'

and Nc = exp 14«6 p t"'Lezr
r r

Let Lr be the centralizer of Ar in G . The subgroup
B
- r

associated to Gr . It is well known that in this way we

= LrNG will be called the parabolic subgroup
r

get all parabolics which have Ar as a split component in the
Langlands decomposition. We extend the Weyl group action
from the Weyl chambers to the parabolics as follows: Let

m, be a representative of w in the normalizer of A0 s
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then w o gb&‘= g%cr =m, gzrm;l , and hence two parabolics
are conjugate if the corresponding Weyl chambers are
conjugate. It is not hard to show that this condition

is necessary and sufficient [20].

Corollary 7. There are r(n-2r) orbits of W, on the

set of parabolics with split component Ar .

Definition. We call a parabolic a standard parabolic if

it contains the upper triangular matrices.

Corollary 8. Each parabolic i&& is conjugate to exactly
- T

one standard parabolic under V%.

Examples.

a) G =G6L{3,R), r =1 . The two standard parabolics

are the matrices

P is the parabolic opposite to P2 , 1.e. the parabolics

1
are associated to opposite Weyl chambers.

b) G = GL(4,R), r =1 . We have |Zr| =6 . There
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are four restricted roots with multiplicity 2 and two roots

with multiplicity 1. But W Therefore there are

1= 0
three conjugacy classes of Weyl chambers and hence three
conjugacy classes of standard parabolics.

The graph of the restricted root system is as follows:

Let us consider Gqys Cps a3 ag positive roots. The
corresponding parabolic is then conjugate to its opposite
parabolic, since the corresponding Weyl chambers are
conjugate under the Weyl group. The other two parabolics

are not conjugate to their opposite parabolics.

For later use, the following convention is introduced:

Let Ci be a Weyl chamber in otr, and Fs the parabolic
=-r
associated to Or . We call the standard parabolic 33
r

conjugate to 33 the standard parabolic associate to
-'r

c_ .
r

Let 33 = MbApr be the standard parabolic associated
T
to a Weyl chamber cr c qq_. Then there is a set Zg of

r strictly orthogonal simple roots such that <wb is
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Just the intersection of their kernels. Now let w € W
be such that W(Zi) is again a set of simple strictly
orthogonal roots. We associate to w(i‘.:,) a standard

parabolic as follows:

Let L be the centralizer of wer and
pr p
r
o
" = & .
W‘ZE ae)::+ oa,
>0
e, #°
oy
Define N = exp Y and P =1 N . If
wzr WZE w}.."g wzg w):l;

Pa, # P D’ then P, and P p are not associated to
iy w‘z:‘r r WL

r
conjugate Weyl chambers.

To simplify notation, I introduce the convention

P = wP .
P c
wEr r
Now let Pc be a standard parabolic associated to a Weyl
r

chamber Gr . We construct a wcr s.t. Pc and chr

T
are associated to opposite Weyl chambers. This construction
will later be used in the definition of intertwining

operators for generalized principal series.

Lemma 9. Let Gr CEO , Or € C(r) . There exists a

wcr €W, s.t. wcrcr c -C, and L(wcr) = 4(n(n-1) - ),
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where {4 denotes the length of w .

be the simple roots orthogonal

Proof. Let ai ,...,ai
1 r
to GT . If a, 4 {ail...air} , define
Wy = s“ﬁ-l...sal 3 Sai is the reflection of the simple

root a, . Then z(ﬁi) = n-1 , and ﬁi&r is positive or
zero with respect to al,...,aﬁ_z s but negative or zero
with respect to all positive roots not contained in the
subsystem generated by al,...,an_2 . We have therefore
reduced the problem to finding a suitable Qé in the

Weyl group of GL(A;I,IU . If a, € {ail,...fair} , define

S N

= 8 S see S S s
(1.2 0.3 G.l CL2

w
1 %h-1 %n
Then 4(W,) = 2(n-2) = (n-1) + (n-3) , and w,C. 1is
positive or zero with respect to all positive roots not
contained in the subsystem generated by the first n-3
roots. This reduces the problem to solving the problem

for GL(n-2,R). Now we proceed by induction. 0

Now rewrite ﬁz as follows:

r
s if i41 € {1i

r
a) Assume ay ¢ {ail,...,ai } . If 1€ {il,...,ir} ,

write w; = ir}, write

S S ge e
oy Qs q 1 *

id 5 otherwise write wi = Sa + Then

Wy, =W, _q--.Ww; and L(wy) = f z(wi) .

i

Wy
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b) Assume o, € {a, ,...,a, }. If 1€ {i.,...,1i },
1 i, ir 1 : r ,
write w,=8_8_- s 8 s if 1,iv1¢1(41.,...,1
R B R 1 e’
write w; = sais i—l ,and if i+l € {il,...,ir} s

3 ~ ~ \ -l

w;, = 1d. Then Wy =W 5,...,W, and L(wl) -Z?_ L(wi) .
Proceeding by induction on the rank of the root system, we

thus construct a decomposition ?v'cr = Wpeo Wy for ;cr

such that z(ﬁar) = T #(w;),and for k> i > 1,

W, o0.W,C is again singular with respect to r strictly

io 1 r

orthogonal simple roots. O

Now let P be a standard parabolic associated to a
Weyl chamber C_ corzf , and let W€ W s.t. w, <l .

Define Wo = wﬁ .
r Or

Lemma 10: Wo, P is a standard parabolic associated to the
r

Weyl chamber opposite to Gr .

Proof. Let C! cT_n wcrozlf be the subset of elements
singular with respect to exactly r simple roots. We have
to show that ?z'lwélal" and C_ are opposite Weyl
chambers. But thisris equivalent to showing that "w"cr
and W(:,lc;. are opposite, which is immediate from the
definit;‘on of W, . )

r
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Using the decomposition G'c = Wi oWy given above,
r

we can now construct a chain

P, wP,

1 wawlP,...,wcP

r

of standard parabolics Joining P and Wa, P.
r
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B, Classification of representations.

The character group 6r of Cr is isomorphic to

n-2r
2

define a parabolic as follows: If Re(log %) is contained

@Z\0)T x ¢ T xz . For each X € 1x€" Tx1c8_ we

in the interior of a Weyl chamber Gr s define 'gx to be

the parabolic associated to Gr . Otherwise there is a
minimal number of Weyl chambers c%,...,cﬁ which contain
X in their closure. Then define 'BX to be the smallest

parabolic which contains all the parabolics associated to

these Weyl chambers. If <« 1is the trivial character,

then of course -EX = G .
Let EX =-—'AX§X be the Langlands decomposition of
P . We consider ¥ as a character on AN, by

= X X
x(an) = x(a) , a € AX , n€ NX .

Now assume Re(log %) 1is nonsingular. Then the

connected component of M is Just the product of r

X

copies of SL(2,R), i.e.

M° _ Ar A

:X 1 i. € SL(Q;R)’j.:l’-‘o’r} .

Define
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+ _ 0
and gx = gx X Zr .

To each T € (Z\0)T x1 x1c 6r we associate a
representation 51_.1., of —Fg{ as follows: If

F = (rl,...,rr) x 1 x1, then

E-’= nr ®..C @ﬂr
-T 1 r

where nr is the discrete series representation with
: i
Harish-Chandra parameter ry . The representation nr

i
is characterized by its minimal X-type (in the sense
of Vogan-Schmid), which is

n+l if n > 0
n-1 if n< 0 .

- n-2r_ A
Letp=1®l®p€l®l®22 c:Cr be a character of
Z,. . We define a representation g_#_,_ of _tgt by

_r,p —
'r_[* ‘. = E_’Q 3
—-?,P —7T
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and a representation n of M, by
-7 )y =X
’
I = ind Er it .
=T, M# =7,p
2 X »
Then n is irreducible and equivalent to 1 s Where
""r’p "‘Ir s P

|7l = (lr I,...,Ir 1) x 1 x1.
We now define representations of PX and G as

follows: Let p = (Th)X,p) € C , then

-1

5, - 1, ®X
and - —T,P
_ G

____T.I“ = indP H“ .

The induced representation is defined in such a way that G
acts on the left and that the representation is unitary if

¥ is unitary. U and U are equivalent iff u = wu'

-u —u'
with w € Wf‘ . Since if X = wX' for w € Wr ’ PX and
PX' are conjugate to the same standard parabolic, we can

get rid of the ambiguities by assuming that Uu is induced

from this standard parabolic and that T = |7} .

Now assume 4 = (?,x,p) with Re(log %) singular.

= h n ds d .
Let :_sz _I:g AX—-X be the Langlands decomposition of _EX
Then Cr ﬂ _lgx is a Cartan subgroup of EX . Now we
define a representation of HX as follows:

Let Pr be the standard parabolic with Langlands



decomposition

Then Pr n MX is a parabolic of :_NE

M.(a, N :r{,;) (%, O M)

X and PN :ﬁ.=

We consider Y% as a unitary character on

(A, NM ) (N, NM) Dby

x(an) = x(a) a ngx NA., NEN N M. .
Now define
() = I ® X
=M g
and =X r,p IArNr N ’_Délx
) = (m,)
(U = indg™ 4 (n .
SN
Then (U .) ®'§'l is an irreducible representation
My ‘A N
- ==K
of EX , and we define
G _-1
= ind U @ .
- - XK
Again .gp and gu, are equivalent iff u = wyp' with

w € Wg . We will always co

U as induced from

nsider
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a cuspidal parabolic as follows: Let Or be a Weyl
chamber s.t. log ¥ € G , and let B, Dbe the associate

-
parabolic. Then 153 N M X is a cuspidal parabolic of
M, . e parabolics P for different choices of
=X The p olic —Cr OEX

cr are usually not conjugate but nevertheless for each

(n ) , there is a representation ) s.t.
—n My “Mx

and hence

G )O -1
S = WMy _A_XNX

Again we consider Uu as induced from a standard

|7l

By a theorem of Langlands [f2] the representation ‘gu

parabolic and assume T
contains exactly one minimal invariant subspace.

Definition. g restricted to this minimal invariant

subspace will be called the representation Ju with

Langlands parameter u .

A result of Langlands [i2 ] now asserts that each
irreducible quasisimple representation of G 1is iso-
morphic to one of the representations Ju .

More generally, according to Langlands, all irreducible
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quasisimple representations of a connected semisimple

matrix group are parametrized by 3 parameters:

a) a parabolic subgroup P = MpApr containing a fixed
minimal parabolic subgroup Po ’

b) an equivalence class of irreducible tempered repre-
sentations of Mp with T as a representative,

¢) a complex-valued linear function v on the Lie
algebra ap such that Re v is in the interior of

the negative Weyl chamber.

The Langlands representation Jp(v,v) ~is then the
restriction of the representation indg(‘n'@v) =ev to the

unique minimal invariant subspace.

Theorem 1. Langlands [i2].
The representations Jp(r,v) are irreducible,
quasisimple, infinitesimally inequivalent and exhaust

the irreducible quasisimple representations of G .
The following theorem tells us what the tempered
representations w appearing in the above theorem look

like.

Theorem 2, Harish Chandra Trombi [(6]:
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Every irreducible tempered representation of G 1is
infinitesimally equivalent with a constituent of some
representation unitarily induced from a limit of discrete

series representationsof a cuspidal parabolic.

For SL(n,R), this theorem means that each tempered
representation is equivalent to a constituent of the
restriction of a representation J, , with u = (Ps%s0)

and Re(log X) = 0 , to SL(n,R) .

Theorem 3. Knapp-Stein [gea].

a) The restriction of Ju to SL(n,R), is irreducible
if n 1is odd.

b) The restriction of Ju to SL(n,R), n even, splits

into at most two inequivalent pieces.

Studying case b) more closely and using the previous
congiderations, one can show that if the representation
Ju restricted to the connected component GL+(n,IU
becomes reducible, there are at most two constituents
and both are inequivalent. Moreover the representation
of G 1is then uniquely characterized by the property
that its restriction to GL+(n,IU containg one of themn.
However, if its restriction to GL+(n,IQ is irreducible,
then the representation is not uniquely determined by

this restriction because there are two inequivalent
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extensions.
The following theorem is a special case of a theorem
of Knapp‘—Zuckerman [lo0a] and determines the equivalence

classes of tempered irreducible representations.

Theorem 4. [Knapp-Zuckerman]

Ny

et uw = (?,x,p) with ¥ unitary, then Uu
iff w = wu! ,wEWr.

This completes the rough sketch of the ideas involved
in proving the classification theorem.

Finally we recall some definitions and theorems of [I8].

Let V, Dbe an irreducible representation of K=0(n).

N

If v, restricted to SO(n) 1is an irreducible repre-
sentation with highest weight X , we define )\ to be the
highest weight of the representation V)\ of 0O(n). Ir VX
restricted to SO(n) is the direct sum of two irreducible
representations with highest weights xl,xe s we pick the
highest weight of one component as follows: In this case
n=2m. We enumerate the simple roots oy s i=1,00.,m

as in Bourbaki [4 ]. Then
(tpo1o21) = (Opodp)
(Oy2g) = (opry)
(ogoyohy) # (apsry) o

We now choose )\ € {xl,xel such that (O‘n’)‘) > (O‘m-l’)‘)
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and call )\ the highest weight of Vi .

Let now \ be the highest weight of an irreducible

K-module, where X = O(n) , &, be half of the sum of

K
the positive roots of so(n,C) , and

I = < + 28y, A +20p>

Now let X be an irreducible quasisimple representation
of G and Vi be a representation of K with highest
weight )\ . Let Kx be the set of all highest weights of

so(n,€) s.t.
dim HomK(Vi,X) £ 0 .

Theorem 5 [Vogan].
There exists exactly one xo € Kx which is minimal

with respect to || || . It satisfies

dim Homg(V, ,X) = 1 . a
(o]

We will call VX the minimal K-type of X . More
o

generally we call an irreducible representation V of K

a K-type of X if dim HomK(V,X) # 0 .

For later use we now give a list of minimal K-types
for the representations Ju . We will notice immediately
that unfortunately there aie inequivalent representations
with the same central character and the same minimal

K-type.
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For each simple root o we define an 81(2,R)
subalgebra in the usual way: Let H, € « , H coroot
to o, X, €9%, X €of® s.t. [X,X ]=H ,
[H,,X ] = 2X, , [Hy,X ;] = 2X o, then S1(2,R) =
RX, ® RX__ ® RH_ .

It is easy to see that m, = Xa'x-a € MO . We
consider ¢ € (l.xla(ﬁr) as a character on M, and define
|p|,. to be the maximal number of strictly orthogonal
simple roots a , which are orthogonal to the first
2r-1 roots and such that p(mu) = -1 .

Now let n be even. We identify the imaginary part
in the dual of the complexification of the maximal abelian
subalgebra h, of so(n) with RY2 . Let S REERFLIA

be an orthonormal basis. Then the simple roots of SO(n,m)

are
O.l—-el-e2,0.2—82-'93,...,0.2- =en—l"e£’
2 2 2
NS A
2
The minimal K-type of Jp , u= (ThXsp) and T =
(rl,...,rr) » r; >0, has highest weight
(r. +1,...,r, +1,1,...,1,0,...,0) where r, > r.
i, ir 1j - 1J+l ?

and the number of 1l's is |p|r .
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Now let n beodd. We identify the imaginary part in
the dual of the complexification of the maximal abelian
subalgebra hg of so(n) with Igbj)/2 . Let eg,....e 4
be an orthonormal basis. The simple roots are

G.l = el- 62, ae = el- 83,...,0.n_1— l = en"'l ’ G‘n-l = 2en-1 .
- - -
The minimal X-type of Ju , = (¥,%,p) and ?==(r1,...,rg

has highest weight

(ry +l,...,r, +1,1,,..,1,0,...,0) , where r. >r,
il ? i, ? i iin

and the number of 1's is Iplr .
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C. Intertwining operators I.

We now fix once and for all a maximal set of non-
conjugate Weyl chambers G},...,Oe and the corresponding

r
parabolics P- pe

syttt tisy

For each W = (?ﬂx,p) € 6r we define

i

Pr G
" = 1ind Ji! ® X
. Pl 7,0

Definition:

P
Iet r= 0 . The representation Uﬁo is called a

principal series representationi(p.s.r.) of G . Let
P
r ¥ 0 . The representation Uﬁr is called a generalized
principal series representation (g.p.s.r.) of G .
Let P0 be the Borel subgroup and Pi be the

standard parabolic associated to the Weyl chamber Gi .
i i i -1

wp €EW s.t. Er = m iPrm i s and define nu by
_ w w
p p
-1 i
nu(p) = gu(mWimei) pEP, .
b p
i i
Pr G Pr
Then Uﬁ = ind inu , and we shall always write Uu
iPr |
P

instead of Uﬁr .
Using step by step induction, we can always consider

the g.p.s.r. as invariant subspaces of suitable p.s.r. as
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follows:
Let Po be the Borel subgroup and Pr be a standard
parabolic associated to a Weyl chamber in o, - Then for
M € 60 we have

P

Po G G
U,” = indg I = indj (ind m) .
u P, = P, u

r,r.r T aTyT
But P = MrArNr » Mr = KMAMNM and P n M = MMAMNM ’

where M§ is the normalizer of Aﬁ in KM , which is

M . Then we can write

o]
P M AN
indp,T 1. = ind,T T r(n ® X)

Po H Po

T )
= (ind rop(, ®X ® X .
o] r,.r

MoAMNM AMNM ArNr

Since Mr is isomorphic to a product of a finite abelian
group Zr with r copiles of SL+(2,IU-, we can choose a

suitable pair (p,¥% r)
M
is isomorphic to the restriction of 1ind

= A
t
for each uy' € Cr s.t. “u'IM
Mr

A I
A

to an invariant subspace.

Lemma 1:
X| is uniquely determined by this requirement but
A
M
we have 2T  choices of p .
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Proof.

For a discrete series representation SL+(2,IU there
are exactly 2 p.s.r. s.t. the discrete serieg_repre-
sentation is isomorphic to the restriction of this p.s.r.
to an invariant subspace. Both these p.s.r. have the
same continuous parameter but different ﬁ' parameter

[see II A]. m

Now assume that r =0 . PFor w € Wo let m be
a representative of w in the normalizer of A . We

define

-1
N, = mNm~ N exp(e(wo))
where 6 denotes the Cartan involution. Let dn be

the euclidean measure on N_ and for u = (x,p) define

-1
H, = (£ € c™(c)| £(gman) = p"2(m)x(a™1)e® (1082 ) £(g)}
where &8 1is the half sum of the positive roots m € Mo »
a € Ao , N € No . H is the space of ¢® vectors for

u
indg vp , and for w € W we define
o)

(A(ww)E) (8) = ij £(gmn)dn .
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The integral converges if Re(logx) 1s strictly positive
with respect to all positive roots, that are transformed
into negative ones by w . In this case, it defines an

intertwining operator from

P P
o o
Uﬁ to Uwu .
If A(u,w) 1is convergent and w = W W, s.t. 4(w) =
L(wl) + L(wg) , then
A(Weu,wl)A(u,wg) = A(u,wlwz)

and A(wgu,wl),A(p,we) are convergent. [ /%] [9e]
To define the operator for g.p.s.r., we use the

embedding in p.s.r.
Pi
Let Uur be a g.p.s.r. induced from a standard parabolic

which is defined by a set Ei = {ai,,...,ai } of simple
1l r
orthogonal roots and let w € W s.t. wzg is contained in
P
thg set of simple roots. Now if Uu? is a p.s.r. in which
P

Uur can be embedded by step by step induction, we define

A(Pi,u,w) to be the restriction of the formal integral
i
P

operator A(u',w) to the subspace Uur . In this case

wPi is again a standard parabolic for a Weyl chamber

(1) _ed
r r

If the integral converges, it defines an intertwining
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i i
Pr WPr Jyv-21 1
operator from Uu to UW(H) , where w(u) = (W) “wwu .

Hence this operator, if defined, allows us to intertwine
between representations induced from non-conjugate para-
bolics. Up to a nonzero scalar factor, this definition
is independent of the embedding.

The integral converges if (wi)'llog X 1is strictly
positive with respect to all positive restricted roots

which w transforms into negative ones.

Theorem 2: Knapp-Stein [9b], Schiffmann [i4].
For each w € W there is a function Yu! o'(é@(ﬂ ¢

s.t.

K(u,w) = ¥ (log X)A(u,w)

is defined if Re(log X,0) > Ova € st s.t. wa € -at R

P
and it defines an intertwining operator from Uuo to
UP°
Wi

We can also extend the domain of definition of

A(Pi,plw) to singular values of the continuous parameter.

Theorem: Knapp-Stein [Y9a].

P
Let Uui , r>0, be a p.s.r. For each iw EW s.t.
P

A(Pi‘_,p,w) is defined, there is a function YWr: or;‘ad! - @
s.t.
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i
P
ot(et,u,w) = (v, (log %)) " A(PL.uW)

is defined if Re((wi)'l(log x),a) > & for all positive

roots a which are transformed into negative ones by w ,

P
and it defines an intertwining operator from Uur to
UPr . O
w{u)

If w=ww, and L(w) = £(wy) + £(wy) then for w
in the domain of definition of Olu,wyw,) , (W () »wy)

and GKp,wg) are defined and we have the product formula

H(p,w) = Oqwy(m) ,wy) Ou,w,) .

If wzi and wezi are even contained in the set of simple
roots, then if OKPr,u,w) is defined, so are
(WP sW, (1) ,w;) and O(P,,u,W,) , and we have the product

formula

Cﬁ(Pr,u,w) = O«wePr,we(u),wl)Cﬂ(Pr,u,we) .

Definition. Assume Pr = 33 and let Yo, be defined
r r
as in I.A. The operator

CXKPr’“’Wg ) for u = (r,%X,p) of Re(log %) € Er
r

will be called the long intertwining operator for (Pr,u) .




39

The product formula for Wa, implies a product
r
formula for the long intertwining operator. Before we
can deduce any results about reducibility or composition

series, we have to study these intertwining operators

more closely.
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D. Intertwining operators II.

Let W € 66 s, PD Po standard parabolics. Using

G

P

o}

f € Cw(G) , with an indg nu-valued function £ on G
o}

step by step induction, we identify f € ind nu s

by the formula

f(gp) = (%(&))(p) pEP, g€Eq.

Then

~ P
f(e) € indPonu .

Now assume w € W 1s contained in the Weyl group of Mp 5
and define

[A(P,u,w)E()](P) = A(u,w)£(ep)
for w s.t. A(u,w) 1is convergent. X(P,u,w) is well

defined, and since A(u,w) is an intertwining operator,

so is K(u;w) . Hence if P = MAN ,

[A(P,u,w)F(g)](p)

oo "Ly A, u,w)F(e) ] (p)
w(u) (g [ ( sMLIW (e (p

UPO
w(

i

Ly (E7HA W) £(p)



n

P
U Q&) | £(pm,n)an

i

P w
Uw?u) (g'l) ‘YN f(manm, n)dn
P
o

w
- 0,2 (€ (x &%) (ma™tah)

jN f(mm _n)dn .

w

M
But f € indPoﬂM(nuIMﬂPo) and f(m) F-’XN f(mmwn)dni

lMp w

is an intertwining operator

| M M
A, (w,u): ind (n Y - ind (n_ (W) ) .
M\ PoﬂM PoﬂM W PoﬂM

ul
MNP,

Therefore

(A(P,u,w)F](e) € ind (AM(w,u)indgonM(n )®X'AN .

ul
PoﬂM

This proves

Lemma 1: Image of K(P,u,w)

.G M
= ind5( (A, (w,u)ind (n Yex ) .
PLYMAYTY P MM “'Ponm | an
0

Corollary 2: A(u,w) 1is an isomorphism iff AM(w,u) is

an lsomorphism. O
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Together with the product formula for intertwining
operators, this lemma allows us to reduce the problem of
determining the kernels of intertwining operators to
lower dimensional groups.

Similar considerations apply to g.p.s.r.. Here we are
in the situation Po c Pr CP= MAN , and w 1is contained
in the Weyl group of M . Let u € 6? ,» then by exactly

the same arguments, we prove.
Lemma 3:

Image of K(P,u,w) = Image of A(Pr,p.,w)

.G M
= 1ndP(AM(PrﬂM,u.,w)indPrnM(n )@xIAN) . O

u' o
Pr M
We will now study the operator AM(PrﬂM,p.,w) more

closely. We have
M= SLi_(ml,]R) X SLi(mi,]R) X .aa X SLi(ml,]R) xzw R

)
where 2. 1is a finite subgroup of Z_ and f SL,(m,,R)
W r i + i

is the subgroup whose Weyl group contains w . Then
PrﬂM = Pr n SL_j_-(ml’]R) X ooo X Pr n SLi(mz,]R) X ZW

and



ina _ (n ) =1 dSL+(m - F) n
n = n
Mnp_\My P NSL, (m, , R) u!
r lPr”M L A P_NSL, (m, , R)
1 SL+(mL,R) -
= Prr\SLi_(mz,]R) Zo

Since Prf\SL+(mi,IU s, 1=1,...,4 , is a parabolic of
SL+(mi,IU ’ é;ch factor in the tensor product is a g.p.s.r.
of— SL+(mi,IU , and the intertwining operator
AM(Prdﬁi,u,w) is the product of the intertwining operators
for the corresponding g.p.s.r. of the SL+(m,}U factors.
Similar results are of course valid for ége normalized
operators OL(P,u,w) .

This result therefore allows us to reduce the compu-
tations for kernels and images of intertwining operators
to the corresponding computations for lower dimensional
groups, if the Weyl group element w 1is contained in a
suitable subgroup.

If w does not satisfy these conditions, we usually can
rewrite it as a product w = wlw2 Q —wzo s 8.t.

t(w) = 2121 £(w;) and such that each of the factors is
contained in a suitable subgroup. In this way we can at
least reduce the problem of proving injectivity of the
intertwining operators to a similar problem for lower-

dimensional subgroups.
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E. Reducibility.

In our previous description of Langlands' classi-

fication we constructed representations ‘Eﬁ s W€ er , Which

contain the Langlands representation with parameter u as
the minimal invariant subspace. Now we go to the contra-

gradient picture:

Let U°

be the representation

indg (_Il_> 2 %) if ¥ 1is nonsingular
=X —=T,p

indg (_I_!_i @Y Yy if « is singular.
=X —T,p | P
p =

As before, ga = qu . Then [{2] the representation with

Langlands parameter (Fﬁx,p) is a quotient of _ga by

the closure of the kernel of

[
(A(B W) (x) = [ f£(xA)dh
Ty
where f 1s a K-finite function in Ea and :EX =

exp(e(nx))

If ¥ 1is nonsingular, then

A(PX’“’W@,r) = R(n\,,cr)A(___le,u) ,
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where R(mw Y is the right regular representation of
(&

r
m . Therefore
Ye,
r
(]
AP, = "’
ker (:X W) ker A(PX " qzr)

This proves

Lemma lé Let W € Gr s M€ (?}X,p) with X nonsingular.
Then qu 1s reducible 1f A(P,,U,%, ) has a nontrivial
” ‘ .

kernel.

We now assume that ¥ 1is singular. Then we choose

¢, s.t. Re(log X) € Cr and rewrite w, as a product
r

Wg wé where W% is contained in the M-part of the
r°r r
parabolic P, and ms N (m2 )—l =N . Using the product
X (&2 Px W
r r

formula for O(F, ,u,% ) » We get
r r
ot 1l 1 2 1
(Pa sHWa ) = OT(WG P@ s (WG ) (H) sWa, ) O'((Pc sM W )
r r r r r r r r

The second factor in this product is an isomorphicm since

W% is contained in the Weyl group of MP and the

r MP cr
representation indP XnM H_’ ® Y is unitary.
cr P r,o

X "y M

On the other hand,

- 2 1l .1 2
v +By > (G1)(W)W5 ) = e (NA(WE Ba 5 (W Ju,wy )
r r 1 r r r r r
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with cw(x) a nonzero constance, since ¥ 1is strictly

positive with respect to all roots not contained in M&
r
Thus by the same argument,

1 )—l

- .
A(wGrPcr,(wc (W5 ) = yR(m , JA(R, M) 5 Y € O\ .

r r Wc
r

This proves:

(-]
Theorem 2: Let u € Cr . Then .gu is reducible iff

A(Pcr,u,wcr) for C . s.t. Re(log y) €C_ has a

nontrivial kernel.

If an intertwining operator has a nontrivial kernel
and has a product representation, then at least one of
the factors has a nontrivial kernel. Therefore the formula

Wo =W and the product formula for intertwining

k’° 1l
r
operators reduced the problem to showing that the inter-

oo’w

twining operator for one of the wi's has a nontrivial
kernel. But for the wi's we can always choose a smallest

parabolic Pw containing wi_l...wlPt3r and containing

i
a representative of mwi , hence containing LA 1-1"'“133r'
a) If G(wi) =1 , we can choose Pwi = M,AN, s.t. M,

is a product of r+l SL+(2;R)'s with a finite group,
and m_ is contained in an SL, (2,R) factor. The

representation
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M
Miﬂ(w w. P )(n(w
i i-1""""1 Gr

)

ind
o170 W) () MWy _q-eWy) B
r

is a tensor product of discrete series representations

of r of the SL+(2,IO factors, a p.s.r. of the remaining
SL+(2,IU factor;*and a character of the finite group,
whereas the operator AMi(wi_l...wlgzrﬂMi,wi_l...wl(u),wi)
is the product of a long intertwining operator of the
p.s.r. factor and the identity on all other factors. Since

A(wi_l...wlﬁzr,wi_l...wl(u),wi) has a nontrivial kernel
iff AMi(Wi_l'""133T”M1’“1-1'""1(“)’Wi) has a nontrivial

kernel, we have reduced the problem to finding necessary
and sufficient conditions for reducibility of g.p.s.r. of
SL+(2,}U . These conditions have been known for quite a

long time [see for example II.A.]

b) If #(w;) =2 , we can choose P = M;A;N, such that
i
is a product of r-1 SL+(2,IU factors, an SL+(3,IH

)

is a tensor product of discrete series representations of

My

factor, and a finite group. The representation
M
: i

ind I
M,N(w, ,...w.P )( (Wy qeeeWa) (W)

the SL+(2,IU factors, a g.p.s.r. representation of
SL+(3,IU factor, and a character of the finite group. In
this case AMi((wi_l...wl)gzrﬂMi,wi_l...wl(u),wi) is a
product of a long intertwining operator of the g.p.s.r.
and the identity on all other factors. By the same argu-

ments as above, we reduce this case to finding necessary
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and sufficient conditions for reducibility of g.p.s.r. of
SL,(3,R) . This will be done in II.B.

i1
is a product of 1r-2 SL+(2,}U factors, an SL+(4,IH

)

is a tensor product of discrete series representations of

e) If L(wi) = 4 , we can choose P, = M,A;N, , such that
i
My

factor, and a finite group. The representation
M
i

indMin(wi_l...wlgzr)(ﬂ(wi_l...wl)(u) Mn(wi—l"'wl)gzr
the SL+(2,IU factors, a g.p.s.r. representation with
r = 2 ;f the SL+(4,Iﬂ factor, and a character of the
finite group. Iﬁ—this case,
AMi((Wi-l'""1)33r”M1'w1-1"'Wl(“)’wi) is a product of
a long intertwinling operator of the g.p.s.r. and the
identity on all other factors. Again by the same argu-
ments, we reduce this case to finding necessary and
sufficient conditions for reducibility of g.p.s.r. of
SL+(4,IQ . This will be done in II.C.

In part II.D.I will then use all this to derive

explicit formulas for reducibility.
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F. Jordan-Htlder series.

Let V Dbe a Banach space, 0N: G-EndV a quasi simple

representations of G .

Definition. (m,v) 1s of finite length if we can find a

family

c c =
0 S Vo E Vi i cee § Vk-l T Vk \' (B < )

of closed G-invariant subspaces such that G acts irre-
ducibly on Vi’/vi—l , 1 =0,...,k . Let us write Ty for
the representation of G on Vi/vi-l . The family
(vi,Vi/Vi_l) s 1=0,...,k is called the Jordan-Hdlder

series of (m,V) , and k 1is the length of the Jordan-
Holder series. We will say that an irreducible repre-
sentation w' occurs in the Jordan-HBlder series of (7,V)

with multiplicity £ if £ of the representations in the

Jordan-Hdlder series are equivalent to 7' . To the
representations in the J. H. serles it will be referred to

as composition factors of (V,w)

P
Now assume that (7,V) = Uur s b € er . By a theorem
P

r

of Harish-Chandra [20] , UH is of finite length.

P P

Lemma 1: Let u € 8 » UY and U T nave the same
— r | wH
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Jordan-Holder series.

Proof: If a representation 7 has a Jordan-Holder series,
then its character is the sum of the characters of the
composition factors. On the other hand, the characters

of the p s.r. and g.p.s.r. are invariant under the Weyl
group Wr [20]. Hence if Uu and Uwu had different
J.H. series, we could write the character of Uu in two
different ways as a sum of characters of irreducible

representations. But since characters of irreducible

representations are linearly independent [20], this is a

contradiction. O
Pr Pr
Since Uﬁ and Uwu w € Wr are in general not

equivalent as representations, we will, except in some
special cases, not try to determine the lattice of closed
invariant subspaces of Uu , but try to compute the
J. H. series instead. To do this, we have to compute
a) the Langlands parameters of all the composition
factors and
b) their multiplicities in the J. H. series.
Consider now the problem of determining the Langlands
parameter of the composition factors.
Let W € ﬁo , b= (Xsp) with Re(log %) dominant,
and let Ouu,wo) be the long inter;wining operator for

Uu° . By Langlands [(2], O{(u,w )Uu° = J, 1s irreducible,
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and therefore all composition factors except Ju are
contained in the kernel of U«u,wo) . To analyse the

kernel of O«u,wo) s we use the product formula. Write

with w; a simple reflection and obtain

OqM,w,) = OU(W _qs0-- ,wl)'l(u) W) 5w e, OM,w,)

Obviously a composition factor is contained in the kernel
of Cx(u,wo) iff it is contained in the J. H. series of
the kernel of at least one of the factors. To compute
the kernel of such a factor, we use our results on inter-
twining operators. We choose the parabolic Pw = M,A,N

17171
i
to be the smallest parabolic whose M-part contains m, -

i
Since Wy is a reflection of a simple root, the M-part
of P, 1is isomorphic to SL _(2,R)xZ_ . Hence if
A wy
0& ((wy_qs--+5%7) (W), W) 1is not injective; its kernel is
s -
a discrete series representation of SL_(2,R). Thus the
kernel of (3«(wi_l,...,wl)(u),wi) is either 0 or a
g.P.s.r., whose parameter can be computed in terms of the
-1
parameters of the CKMi(wi_l...wl) u,wi) by the formula
I.D.1.

This '"reduces" the problem of computing composition series

for Uuo to the problem of computing composition series
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for the g.p.s.r. r =1 with these new parameters.
Now let Uﬁ, with w' = (r',%',p') € ei be such a
g.p.s.T. Applying the lemma above, we may assume that

P = 33 for some 61 s.t. Re log %' € Ei , 1.e. that

1
(-]
Uﬁ, =<gu, . Now repeat the above argument for CS'((P,u',W(3 ).
—_— 1
Here

w =W ...w
Gl m 1

where the wi's are either reflections of simple roots

or contained in a SL+(3,IU subgroup which is associated
to 2 simple non orthogonal roots.

In the first case, (Xﬁi((wi—l"‘wl) (u'),wi) is a product
of an intertwining operator for a p.s.r. of an SL+(2,IU
factor and the identity on the other component. Hence

the kernel of (jq(wi-l’"wl)PP(wi-l°"W1) (W),w;) 1is O

or a generalized p.s.r. with r = 2 .

In the second case, CRMi((wi_l...wl)g(wi_l...wl) (W) ,wy)
long intertwining operator for a g.p.s.r. of the SL+(3,IU
factor of M. We will later in part II show that the
kernel of a long intertwining operator for a g.p.s.r. of
SL+(3,IQ is either O or again a g.p.s.r. of SL+(3,IU .
Hence the kernel of (Y((wi_l...wl)P,(wi_l...wl) (u’),wi)
is O or a g.p.s.r. with r =1 .

In both cases the parameters of the kernels can be computed
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in terms of the parameters of the kernels of the
(Rﬁi((wi-l”"’wl)Pl(wi-l""’wl)(“)’Wi) .

Now we start our procedure all over again. In the
cagse r = 2 , the above argument reduced the problem to
intertwining operators for p.s.r. of SL+(2,IU s, long
intertwining operators for g.p.s.r. witﬁ— r=1 for
SL+(3,Iﬂ , and long intertwining operators for SL+(M,IU ,
with r = 2 . Tt will turn out that for SL+(4,]R)— the
kernel is in general not a g.p.s.r., but théz we can find
at most three g.p.s.r. such that each composition factor
of the kernel is a composition factor for at least one
of the three g.p.s.r. Again we compute the parameter of
the generalized principal series in the kernels. We get
g.p.s.r. with r=1, r=2 and r=3 . For r > 2
the above argument always reduced the computations to
analogous computations for SL+(2,IU , SL+(3,IU and
SL+(4,IU . We repeat this prézedure untiI we come to an
if;educible g.p.8.T.

Obviously this procedure yields the Langlands para-
meters of all representations in the J. H. series, but it
fails to give us the multiplicities. In fact, the
multiplicity of a composition factor for the kernel of the
long intertwining operator can be strictly less than the
multiplicity with which this composition factor appears
in the J. H. series for the direct sum of the kernels of

all its factors.
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The computations involved in the above procedure
can be simplified by using Gregg Zuckerman's results on
tensor products:

Let M be an indecomposable H. Ch. module of ¢ with
central character v and Vi be a finite-dimensional
irreducible representation with highest weight X . Then
M®V, 1is again a H. Ch. module. Let PV be the pro-
jection on the summand with central character v+ .

Let Q’*" be the functor
M - P::H‘(V@M) .

Theorem 2: (Zuckerman [21]).
Let Wv and Wv+x be the stabllizer of v and

v+\ 1in the Weyl group, respectively. If Wv = Wv+m s
then v3+l is an exact functor in the category of H. Ch.

modules.

For the rest of this paragraph, let the assumptions
of the theorem be satisfied.

Let UU. be a p.s.T., W = (%X,p) with Re(log x)e'c";o .
Then Uu has central character log % and

_ G
U @V, = indPo(vrp@x) ® V,

G
ind] (r_®X®V ) .
P_\p >\|1=o
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The representation wp @Y% ® VXIP has a composition series
o
and as a minimal invariant, hence irreducible, subspace

the space of weight log ¥ + 2 . Let vp be the repre-
X

sentation of Mo on the highest weight space of Vi » then

G . Ay oL
indp (Wp pr) ® (x,") = U

) (p,px,xc'«x)

is an invariant subspace of Up ® VX with central character

log ¥ + )\ .

]@gx+xU - U .

Proposition 3: *lOgX W (psp ,')(Ox)
Y

Proof: We need another result of Zuckerman:[2 1]

Let M be a H.CﬁQmodule with central character v' and
3; be the contragradient module to VX . Let P’ -}
be the projection from M@Vr on the submodule with
central character v'-\ , and define wzl'l to be the
functor

"
M -)%3, A

(MQV)\) .

Then under the assumptions of the theorem

Vo VR,
Pypty M = M .
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log X

Now we want to show that mlogx+)\ U

(P:P)\:Xe)‘)

contains the representation Uu as a composition factor.

We have

o~ *
®V, = (U 1 v, )",

U
A (p’pxyif e—X) X

(P:pX:XﬁX)

where * denotes the contragredient representation:
Our previous considerations show therefore that

1) is contained as an invariant sub-

R SR (0l

space in U _ 4_)\ ®V, . Going to the dual again and
(p, P)\,Xe )

applying the projection, we see that U( is contained

p:X)
at least as a quotlient in the image of the projection.

log X +x;r _
Assume now that *1ogx Uu— MLH'E‘ 3 U(p ) xe)‘) then
3 k,

wlog ¥ (U

log X +) X)) T U(p,x) :

(p:P)\:Xe

On the other hand we showed that U( is a quotient

PsX)

log x
of Plog X+ U(p,px,xe)‘) s Which yields a contradiction.

8]

Applying these results to our composition series

problem, we see

Proposgition 5: To determine the length of the J. H. series

and the multiplicities of the composition factors, it is
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enough to do so for the representations U( s Where

N -1 #s%)
peMo, X = i=lxibi,0_>_x_>_l. The bi are here
the fundamental weights. 0

We will now show how the parameters of the composition
factors change under the functor i&ﬂ . Since this is an

exact functor it is enough to compute

*1ogx+x P
log X (F,x',0)

L r
A
where %' 1is dominant and log¥ = log¥x' + L —2-1— Qpy_1 °
i=1

We have already proved that for W € 60 » X dominant

log X+\ - G
Plogx (Uu®V)\) = indP°0x+x(Wp® X QV”PO) s
where 9X+X is the projection on the invariant subspace

of weight 1log ¥+\ . But if Po c Pr s We can also write
this in the form

G Pr
indPr(lndpooxﬂ (T, ® %8, | Po))

i

log ¥+
Plogx (UuOVX)

G

P
indPr(O; ﬂ[indpz (T, ®%) ®V, ’Pr-_\) ;

where

P P
r T r
O'X‘H\' (1ndPo(1rp ®¥) 0V}~|Pr — indPOQX‘*'X (‘Irp ®XQVX|PO) .
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Now let W' = (?",x',p') € 6r and assume that U,

o

can be embedded in some Uu > b= (p,X) € 85 » With ¥

dominant by step-by-step induction, i.e. that we are given

an embedding

P
T ——— ind Ty .
u e "
Then
1ogx+x log X+ G
, @V = P 'V
- 1na® oT. (v ox' ®V, |5 )
P X\ sh v )\-IP
r',p r

G r
indg 0x+x ("u' ®VX'Pr)

1

which reduces the problem to studying OX_H\ . The

definition of #F implies that

YA\
x+x[(indP (m )>° le ]

M,
ind ®@% V.
x+k[ M NP, utMrnPo |ArNr ler]

M.

N
= indM ne, (1r

lax,

@xe*)IM ® e by (F2)

oY

r
Let VX

Pr invariant subspace of VXIPr . Since

be the representation of Mr on the minimal
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M, = SLi_(e,]R) X ... xSLi(2,]R) XZ.,

the representation is characterized by an r-tupal )_"r =
(),;',. .o ,):) of highest weights, together with the
representation of the representatives of the 2 connected
components which are indicated by the +,- sign, and

a representation Py of Zr .

M
On the other hand, the representation ind r (m _&x)
MNP, P 'MrﬂP

is a tensor product of p.s.r. Uu of the SL+(2,]R)

i =
factors, and a representation P of Zr . The index
Wy 1s the restriction (xi,pi) of (¥X,p) to the corre-

sponding SL+(2,1R) factor. For each factor we define

log xi+x 1 - log X+ r
10 as previously and define PM to be the
g%y log X\ i
product of the Pl og X . Then
log %+ Mi
P T(ind (r_®x) ®v’)
M MrnPo ) Mrnpo by

= iner (m ™ @xe)‘)
MNP, e oY ‘MrﬂPo

and therefore

M
r r
9x+x[((i“dmrnPo(Wp®X)’M np )®x,A N )‘”VHPI.]
Tr rr

o)

r Mrm:o AN

log X'H‘r M )‘l
rr

=P (ind, T o (T ®Vl) ®xe
M “'MrnPo A
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Hence

9;+x[(“;,0 ® X w ) Y\ e, ]

rr
log x+A
= P Tn, oV))exet .
My Tsp M
ArNr
Thus we have shown
Proposition 5: The diagram
P P P
r r . r
ind Tn — ¢, [(ina,"n ) eV = ind Tn
+
P, u X x[ P, W ler] P, (0pysxe™)

r

is commutative, where the inclusions afe obtained by step

by step induction. o

P
But wlog L= is uniquely determined by the

log X (-I?’xl’p)

data of a p.s.r. and a standard cuspidal parabolic Pr

such that it arises by step by step induction from P0 to

Pr‘ Proposition 5 provides all the necessary information

on these data.

Similar considerations apply of course to the functor

log x+A

cplog X

under the same assumptions as before.
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J 4

Now we drop the assumption that 1log X' Z-—éj—‘ 04-1
is dominant. i=1

First assume that r =0 . Let u = (p,x) , log X€C
and let w € W be such that w'@o CT. Now let V¥
be the subspace of VMP of weight wh and V w be
P (VW)‘) » i.e. the smallest P _-invariant subspace
containing Vwk . wa is the direct sum of spaces of
weight smaller or equal to wA and we can find a largest
Po invariant subspace %w)\ of ?/"w)\ which does not
contain Vw)‘ and is such that wa/%‘w)\ is one dimensional
and irreducible. We write Tk for the representation
of P on "\fw)‘ wh
Thus (1ndg
ind (n ®rro)\) as a compositlon factor. But indP (n en )\)

o

)@V, = indP (m ®V>\|P ) contains

has the central character w-l log x+A and theref‘ore is
1l

in the image ﬁgg ;+w>~ ww—llog x+X . Exactly as before
g w Tlog %
we show
P P
wlog X+WA g -yo

X ’
tog x W (P, ps xe™)

where Py is the restriction of T\ to M . Again we

define €& _, to be the map which associates to
W OUXFA
e VMP the composition factor " ® (V )\) Then
o)
-1 P
P _q e XH‘(UHO ®v,) = ind} @ , (m ®mn.) .
log X% O W “XHA
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Now if r # 0, 1let Pr o Po be a standard parabolic

and define

( ’r ) Ir ( ))
& ind"m ) ® V — ind, ((@ T, OV .
i 1x+X Po H )"P Po 0 lx+x i )‘I Po

A
If u' € Cr » then by the same arguments as before we get

a commutative diagram

Pr r [' P ") P
ind, o= & _ (ind Tnm Y@V = ind
j)o W W 1log X+A P "u M P, J Po (ppwk,Xe X)
™ - ¢ (7, ®Vyp ]
K W 1 log x+A M )‘I 1Dr

where all inclusions are obtained by step by step induction.
w -1 log XH'U r

Hence we can compute the parameter of \V w from
log %
the parameter of the parabolic Pr and the parameter of
-1 log x+A P
\# -1 U}‘L
log %

Example: Assume r 1is maximal and P = gr .  Then
P P -

u' = (¥,x) and Uu' UMO , where Uuo has the continuous
P N S -1 P

parameter x = Xx'e 1%21-1/2 . Then ww llogX+>‘Uu, can

-1 log %
be embedded in w o8 X’“"Uu" which has the continuous
log X
parameter xe wh . This implles that the parameter

-1
(—‘)\, X,) of ‘l’ 1log x“‘U T is given by
log X
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A
(rk)i = (a2i_l,log X' + Ei ry a’21-1/2 + Wh)
and

log xi = log %' + Zi ri°‘21-1/2 + WA - zi(rx)iazi—l/e . 0
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G. Unitarity.

In this paragraph we establish some results concerning
unitarity, whiéh will be used later to classify the
unitarity dual of GL(n,R), n < 4 .

Let U Dbe an irreducible quasisimple representation
of G on V and Uk the representation of the enveloping
algebra U@?) on the subspace Vk of k-finite vectors.
We call U infinitesimally unitary if there is a positive

definite, U(%Q-invariant, hermitian form < , > on V. .
Since there is a one-to-one correspondence between infinite-
simally unitary representations and unitary representations,
it is enough to classify the former. Furthermore, Dixmier's
lemma [ 4 ] implies that a UQQJ-invariant form, if it
exists, is unique up to a scalar multiple.

To classify infinitesimally unitary representations,
we can therefore proceed as follows. In the first step
we give necessary and sufficient conditions for the
existence of a U@QQ-invariant hermitian form, and in the
second step we find necessary and sufficient conditions
for this form to be positive definite. Unfortunately,
the second step is much harder than the first one. We
call a representation U hermitian if Uk admits a

U(qp-invariant hermitian form, and we call a representation

unitary if it is infinitesimally unitary.
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Theorem 1: Let W € 6r s M= (?,x,p) P Ju is hermitian
iff there is a w € Wr s.t.

W-lp' = (?s i—l: )

Proof: This theorem is a reformulation in our notation of

Theorem 7 in [105].

The form is constructed as follows:

Ju is the minimal invariant subspace in U? » Wwhere
M
M= (?,i_l,p) and P = P, for some G} such that

T
-Re(log %) € @} . Let (Uﬁ)* be the representation
contragradient to UL . Then
Pyve _ P
(Uu) = U, .

Let <.,.> be the pairing between (U&)k and
UY). . The theorem implies that there is a W € W s.t.
Mk P P
~ . ~ P
G((P,u,w)(Uu)k > (Ui)k and in fact O«P’“’w)(Uu)k = (Ju)k'
Define

<-, .>“ = <0’W(P,u,ﬂﬁ)0> .

Then <.,.> defines a degenerate hermitian U@%)-invariant

M
form on (Uﬁ)k and a nondegenerate hermitian form on



66

(Uu)k / kerfﬂ(P,u{W)k = (Ju)k .

This shows that the problem of classifying unitary repre-
sentations of GL(n,R) is equivalent to finding necessary
and sufficient conditions for the operator OUP,u,w) to
be positive or negative semidefinite.

Now assume w € Wr s, order w =2 ., We assume that

there exists a unitarily induced irreducible representation

P A

U“o with u = (F,x,,p) € C. s.t. M, = wu, . Then the

operator (3KP,uO,§) commutes with Up and is therefore
o)

a scalar. Let u = (T,x,p) € 6r such that wx = X1,

and let X(t) , 0t <1, be a one-parameter family of

characters s.t.

Xl = X
Xo = WX,
wx, = igl .

Let us also assume that Uﬁ(t) with w(t) = (F,%.,p) is
irreducible for all t € [0,1] . By [9b], this implies
that < , >u(t) is definite for all t € [0,1] , and hence

P
Uu(t) is unitary.

Definition 1. The set of all irreducible representations

P
M

U with u = (?;x,p) € 6} and P = P, , for which we can

r
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find w € Wr with w2 = 1d and a one-parameter family

P - A
Uu(t) with w(t) = (r,x(t),e) € C.>0<t<1, of

irreducible representations s.t.

P

Ya(t) M
P P
%) = Y(o)
P P
Use) = Uwia(e)

is called the complementary series.

Obviously we are able to determine all complementary

series for GL(n,R) as soon as we have explicit formulas
- P

for the reducibility of the representations Uur s M € er .

An explicit classification of these complementary series
by other methods is already contained in [9a].
A
Let Ju s M€ Cr » be hermitian and Ju < Ui . Assume
furthermore that there is a w € Wr with w2 = id s.t.
4 = wid , and that we can find a sequence Uﬁ with
i
My = (Eﬂxi,p) €C., i1 € N, of complementary series
representations s.t. u; »u , l.e. ¥ - %X, and wﬁi = M4 -

Then Ju is unitary and is called a limit of complementary

series representation.

P

Lemma 2. Let Ty s W € Gr , J, g Us bea limit of comple-

has at least 2

(oo
i

mentary serles representation. Then
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unitary composition factors.

Proof: Let w € Wr with w2

OKP,p,;): Uﬁ —»Ug be the intertwining operator corre-

< id s.t. wy =y and let

sponding to w . Now assume that

u(t) = (Fox(t),e) € & s.t.  u(1)

i
gt

u(-1)

It
=

wu(t) = u(-t) = G(t)
and that Ui(t) is in the complementary series for
-1 <t<1. Then O(P,i(t),w) 1s defined for 0 < t < 1,

and we can define
<¢,0>n(t) = £ (P,u(t)’W)o,o> Oi t < l .

Since Uu(t) and Uu(-t) are equivalent for -1 < t <1,
both forms are equivalent up to a scalar, i.e. both are
definite. But this implies [95b] that <"‘>ﬁ(t) =

1im <.,.>- " is definite or divergent. Choosing a

£ 51 u(t) N

regularization of (P,u(l),w) , we get a definite
hermitian U(Ga)—invariant form on Ua(l)/ker A(P,a(1),w) .
The representation Uu/keriﬁ(P,ﬁ,;5 is not equivalent to
Iy (for example Vogan [I8]), but a composition factor of

P
Uﬁ' 0O
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The unitary representations obtained in this way are
in general very hard to identify in terms of their
Langlands parameters. There are examples where a slight
modification of this technique is the only "natural" way
to show the positively of the hermitian form.

For some u's in ﬁr and Ju T U& there is still
another way of proving the definiteness of the form: Let
P = MPAPNP be an arbitrary standard parabolic. Let T
be a unitary representation of MP , and XP a one-
dimensional representation of APNP . We will now find
some conditions for indir®xp = U(P,m®xp) to be unitary
or at least to have a unitary invariant subspace.

a) It is obvious that U(P,m® XP) is unitary 1if Xp
is unitary.

b) Asbeforewe can try to construct "complementary
series".

P P
Let Uur and qu be a g.p.s.r. or p.s.r. s.t.

o

U(P, T®Xp) > vl

=

r
1

U(P, T®%p) o> U

[ =3 -

by step by step induction. Then a necessary condition for
u(P, 1r®xP) to be hermitian is that there is a w € W,

With W2 = id Sotn u = Wu' .

Now let U(P, W@Xg) be a unitarily induced irreducible
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representation. Assume that

p
0P, ToxY) > U

O

and that there exists a w € Wr such that w2 = id and

Wuo o= g e Let x(t)P , t € [0,1] , be such that
1) x(0)p = %p

2) u(p, 1r®x(t)P) is irreducible and

P
U(P, T x(t)p) < Uul(‘t) ,

3) U(P, T®X 1(t)p) 1is irreducible and
P

U(P, T®X T (t)p) Uul,"(t) , and wu(t) = u'(t) .

If we can again define an intertwining operator

such that B(P,wwsxp,w) is hermitian for unitary ¥Xp
then by the same arguments as in [9b], we deduce the
existence of new unitary representations. If wT is
unitary, or in the complementary series of M , then these
representations can be shown to be in the complementary
series. Otherwise we call these unitary representations

degenerate complementary series or limit of degenerate

complementary series.

After explaining the most important procedures to
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construct unitary representations we now state conditions
under which hermitian representations are not unitary.

PP

A r r
Let u € Cr , and Uu ’Uﬁ

by g.p.8.r. Assume that
there exists a w € W with w° = 1 , such that OU(P_,i,w)
is defined and that G«Pr,ﬁ,w)Ug c Ui . Assume furthermore
that w 1s contained in the Weyl group of the M-part of
a parabolic P = MAN D Pr . Then

<.,O«Pr,ﬁ,w).>

P
is a hermitian form on Uﬁr which we can rewrite as
follows:
Pr
For fl,f2 € Uu
<ty (BT = [ £ (8) OURLE W, (8)

r

]

J

P
Claim 3: Assume Ol(Pr,{],,w)Uﬁr is irreducible, and the

o/ <F (&) Oy (W) F,(8)>a8

form <.£Xk(ﬁ,w).> is indefinite. Then <.£X(Pr,ﬁ,w).>

defines an indefinite form in the irreducible representation
uF / xer OUYP_,0,w)
‘1 rJ . ¥ .

f K-finite s.t.

Proof: We have to find fl’ 5
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<?i(8)$§h(u,W)?i(g)> >0 forall g€ G

<§é(g)iK10nW)EE(g)> < 0 forall gé€G

This 1is obvious if we formulate the question in terms of

bundles. m

This result is not very hard, but extremely useful.
To get more precise information, we need some detailed
analysis: To get estimates on Re(log X) for unitary
Ju s we use the asympotic expansion of H. Ch. together
with the

Theorem (for example [ 8]).
The coefficients of unitary representations are

bounded functions attaining thelr maximum at the identity.

More precise information about coefficients of unitary

representations is in the following

Theorem 4: ILet 7 be an irreducible unitary representation,
T not one-dimensional, and let fw be a coefficlent s.t.
fv(e) # 0 . Then 1lim f”(a) = 0 , where a goes to
infinity in exp@&o) .

Proof: This theorem is a corollary to T. Sherman's thesis
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He proved [15, Theorem 2,16]:

Let T be a unitary representation of G = SL(n,R) on a
Hilbert space H . Assume that the identity representation
does not occur in 7 . Then (H,m) is unitarily equivalent

to ('I:I',‘F) , where

a) H is the Hilbert space of functions from mé to a

Hilbert space H1'r with norm

el = ] Nee )l Bex <=

%o

where || ||' is the norm of H! and dx is Lebesgue

measure on cc(') .

b) For x€oy, , y€a),f€H
(F(exp x)f)(x) = eiy(x)f(y) . 0

Now let g € H such that for x € oty

f,"_(exp x) <r(exp x)g,g>

- [ @ gmy ey
ay

i.e. f1r is the Fourier transform on an =£l~function, and

therefore by Riemann-Lebesgue tends to zero at infinity. 7
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In paragraph A we constructed for each M = (?,x,p)
a parabolic gx = MXAXEX . We now choose the positive roots
in 1 s.t. _x igizgztained in the closure of the
corresponding dominant Weyl chamber Cg . Let bx be

half the sum of the positive roots restricted to R =

Lie Ax . Then

Theorem 5: The coefficients of J, , u = (T,x,p) are

unbounded if (Re(log x - 8., H))> 0O for all dominant

H<c ot
X

Proof: For the proof we use "the philosophy of leading
coefficients". To simplify the notation we will always
assume that we are dealing with SL+(n,}U .

Let Vx be an irreducible reﬁ;esentation of K with
highest weight XA , and let JH(X) , Jﬁ(k) be the isotypic
components of type V, in (Ju)K respectively
(Ja)K = (JM)K* , the star denotes as usual the contra-

gredient representation. Assume J“(X) # O and define

£.(g): 3 (2) ® IX(X) —> ¢

u ® v —_— <Ju(g)u,v> .

By [20], there is a countable set L(u,A) in @mb<®c)'

s.t.
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-<6 ,H
ru(a) = e Y pyme¥®)

VEL (1, \)
where a = exp H for an H € oL, s.t. a(H) > 0 for all
positive roots a , 60 half the sum of the positive
roots, and the p,'s are Ju(x) ® J;(X)—valued polynomial
functions which do not vanish identically.
If v,V € L(M,A) , we write Vi > Vv, if

Re Vl = Re v2 + z: xiai s X, € R .

ai simple

The maximal elements in L(H4,A) are called leading

coefficients and are the same for all V, s.t. J“(k) #£o0 [12]

Let vo be a leading coefficient and let T, be the
o

intersection of the kernels of all simple roots & which

1
are orthogonal to Re Vo . Then thb = c@o ® ORB , and we

have the following expansion for a = exp H1°a2 = exp H
with H1 €6, amd a, € exp O,
P o
<8 ,I> v(H, )
o) ~ 1
£.(a) = e ) B(H ,ay)e X
Ly (1))

Here the ‘ﬁv are Ju(k) ® J;(X)-valued functions which

for fixed a, are polynomials in Hl and for fixed H

are analytic functions in a

1

o and Ll(u’ ).) is a

countable set in (o, ®€)' [7].
o
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= ot 1
Now if Vv = Vv + vﬁ with V- € @Hvo ® ¢)' and
Vﬁ € @K% ® ¢)' then Vi € Ll(u,X), and furthermore we
o

can find u ® v € JM(X) ®‘Ja(k) s.t.

B l(Hl’ag)(u ® v) is not identically zero. [r2]

v
o

The uniqueness of the parabolic as "Langlands parameter"
of J“ implies that %& = ORB . On the other hand the
uniqueness of the continuous parameter implies that

vi = log x , and
Claim: Let Vv € Ll(u,k) . Then there exist x; € R" s.t.

1
Vo= Vo - E: X. aikxvo .

i
oy simple

Proof: Let ?g be another leading coefficient. Then
since the whole construction was independent of the choice of

the leading coefficient, o, =0r_  and & or = log x .
o v oFty
o o

On the other hand let Vv € L(4,)) Dbe arbitrary, then there

is a leading coefficient gy s.t.
ve¥ y

But then
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~
V'or\, = Yolor ) *1%jor,,
v o, simple o}
° 0 i
= log X - z Xiai'ocv . )
o

Now we consider the asymptotics of fu(al,ag)(u ®v)

e1og X _

We want to show that the exponential term X

determines the asymptotic behavior of

<60,H>
e Tt (a)(usvy)

in certain directions.

Choose H, and a, s.t. pvl(Hl,ag)(u@Dv);éO . Now

o
consider bp,, (tHl,ae)(u ®v) as a function of t , t > 1 .
o

Since it is a nonzero polynomial in t ,

t=-rx

1im Re Svl(tﬂl,ag)(u ev) £ 0 .
o]

On the other hand, since a(Hl) > 0 for all a s.t.

o # 0 , the term
o, #© >
o
(8 ,tH, + log a,) ‘
1lim|Re e o’ ™1 2" ¢ (exp tH, ae)(u @v)/
t -+ L
is dominated by
_ log x(tHl)
1lim Re p (tHl,aE)(u ®v)e .

t—= o Vl
(o]
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In other words,

lim{Re f Yu®v) |

A X

u(exp tH, -a,

is dominated by

- -(8 ,1log a,) +(log x-8_)H
Inmmep]fﬁhmgﬂu®vh °© 2% ° l!
N

T =+
o]

and therefore
[ Re £,((exp tHl)aQ)(utgv)/m » if Re(log x-8_)H; > O
which implies the theorem. _ O

Corollarx 6: The representations Ju sy B o= (?,x,p) s are

not unitary if 1log x is real and (Re log x-ax) dominant

in <ni . 0

This corollary was also proved by Knapp and Zuckerman
for r = 0 with completely different methods.

We can prove an even stronger result:

Corollary 7: The representations J, , M = (F,%x,0) , are

not unitary if x =6x and Ju is not the one-dimensional

representation.
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Proof: We have shown above that for these parameters we
can find a coefficient and on asymptotic direction in which
this coefficient does not vanish at infinity, contradicting
Theorem % . ]
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CHAPTER 2

A. GL(2,R) .

Let us recall some results about GL(2,R) .
In this case, A0 are just the diagonal matrices
with nonzero entries, and we can identify the character

group A of A with c by (vl,ve) = Vo,
ao 2 V5 /2
(6 9) = &) 1/ (a-p) 277 .

We have M = {( l )I l’ = il} and define
Py € ﬁé by
po(m) = 1, mé€M,
e. O
1
91<0 . ) = 9
2
e, O
1l
°2(0 . ) = &
2
e. 0
1
p = €.€ i.e. p, = pqp .
3(0 82> 172 ° 3 172
A
Theorem: Uuo, m=(ra%)), PEM, ¥, € Ko is reducible iff

1l mod 2

]

©
i

Po OT 3 and vl/e

P =9y Or p, and v1/2 O mod 2 and My £ 0 . 0O
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Let w € W0 s W nontrivigl and vl'> 0 . Then
Au,w) is an isomorphism if Uuo is irreducible.
Otherwise, the image is finite-dimensional and the kernel
is a discrete series representation with parameter

(v /2,9,/2)

Remark:
This implies: Let T be a discrete
(v1/2,v5/2)
series representation. Then there are two characters of
Mo Sﬁt' W(vl/e’va/g)
in Uv.° Vo= (9/2,9,/2) .

PJ'XV ?

Assume now that vl < O . Then one can obtain an

can be infinitesimally embedded

intertwining operator OU(u,w):
172

by constructing a regularisation of A(u,w) . This

U(pvalve) - U(Q,X_v v )

operator is an isomorphism if U( is irreducible.

Ps%y)
Otherwise, the kernel is finite-dimensional and the image
is a discrete series representation with parameter

GL(2,R) has the following unitary representations

a) the unitarily induced p.s.r.

b) all discrete series representations

¢) the complementary series representations for
u= (pgs%,) Vo €1iR, 0 lvl/al <1

(p35%,) Vv € 1R, 0 | 172l <1

o
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d) the one dimensional representation for purely

imaginary My

For proofs, see for example [20].
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B. GL(3,R) .

We will first compute the composition series for
p.s.r., then use this information to settle the reducibi-
lity é,nd composition series problem for g.p.s.r. with
r =1, and finally classify all unitary representations
of GL(3,R) .

The composition series problem for p.s.r of GL(3,R)
was recently solved by Fomin [ ]. Since his methods
are based on an entirely different set of ideas, we will
present our proofs here.

We have GL(3,R)= SL(3,R) % R® as groups. Therefore
a p.s.r of GL(3,R) is a tensor product of a p.s.r. of
SL(3,R) and a one-dimensional representation of IRx .
Hence 1t is enough to determine the composition series
and to classify the unitary representations for SL{3,R) .

In SL/{3,R) we have

Mo = { . 62 €, = +1, 616263 = 1}
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will be parametrized by ¢2 as follows:

Vo8, +VY 8

) 11 272
mav:(vl’vE) _’sze o

Here 61,62 are the fundamental weights. As before we

denote the minimal standard parabolic, i.e. the upper

triangular matrices, by Po . We identify the character

A

group Al of

with € by

vé

il
1]

C OV -3y

Then the two Weyl chambers of <ﬂi are

e, = {ve rR|v>o0}
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C, = {veR| v<o0}
and
X X X
Pcl={xxx}
Oolx
X X X
Pc ={0xx}.
2 Olx x

We abbreviate Pcl =P, and P, =P2 , and if it simplifies

1
2
the notation, we will write log X instead of % without

further mention.

In I.F, we have shown that to solve the composition
series problem for p.s.r., it is cnough to do so for
W= (p,xv) with p € fi and 0 < ¥, 5V,
particular the reducibility question is settled by the

< 1l . Hence in

following

Ps

< * i d i
1 Then U(pl’xv) s reducible

p = p and v1=1 or v2=1 or vl=v-1
P =Py and v2=l
P = Py and v1=v2-l

p=.p3 and vlzl
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Proof. This lemma is a special case of theorem II.D ,
which will be proved later. It can also be derived
directly from the results on GL(2,R), together with

those at the end of the paragraph on reducibility.

The following diagrams help to visualize the situation,
with the bold lines denoting the domain on which reducibility

occurs.

For the rest of this paragraph, we will make use of the
formulas derived in I.D for computing kernels of

intertwining operators without further mention.

Lemma 2. The following p.s.r. have J.H. series of

length 2:

P =9y and v 1,0¢< v2 <1l or O 5'v1 <1,

1
v2 1l or vl = l-v2 .

p = pl and O‘S vl <1, v2 =1
p = p2 and vl = l-v2



One composition factor is a degenerate p.s.r. and the

other one a g.p.s.r,.

Proof. TUnless we are in the case p= o and vl=0, v2=1
or p=9p, and vl =1, v2 =0, only one of the factors of
the long intertwining operator has a kernel. This kernel
is a g.p.s.r.. Therefore we only have to show that the
corresponding long intertwining operator for this g.p.s.r.
has no kernel. This is easy and is left to the reader.
Now to the case P=1p,> v1=0, v2=1 . We write
Wo==8alsu28a1 s Where sai is a reflection of the simple
root a, . (Assume that we have again the standard
ordering of the simple roots). Then G((u,sal)Uu =U ,

M
and by [9al, C)'((p.,su ) 1is a scalar. Moreover,
1

OUnssg 8q) = sy (Wi5g ) Kussg )

and O’((u,saQ) and G((saa(u),sal) have the same kernel,
namely the g.p.s.r. with discrete series parameter r= (1)
and x ¥ -3 - We have to prove two assertions:

a) U( is irreducible.

b) occurg with multiplicity one in the
((1)!“62/2) P
J. H. gseri f U
ries o (p 2)
We first prove a): We have to show that the long inter-
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twining operator Q{(Pz,((l),-bz/Q),sOL s is injective.
2

al)
To show this, we use the step by step embedding of
P P

2 : o]
U((l),-bz/a) in U(pl,be) . Then Ul(Pe,((l)é;be/Q),Sagsal)
is the restriction of 0,8 s _ to U :
o ( 2)£a2 al) ((1),—62/2) .

But direct calculations based on the product formula
prove the injectivity of (X((pl,bg),sagsal) , hence of
UKPQ((l),-bg/e),suesal).

To prove b), we use the regularisation éﬁ(u,w) of
the intertwining operator A{yw) as computed in [9b],
which allows us to define this operator for arbitrary ¥ .

All formulas in the paragraphs I.C and I.D then continue

to be valid for d(u;w) . Let us consider Ule ,-8.) =
P , o’ "1
u,° . By I.D and the results on GL(2,R)
(p.,8. s 8 b&,)
0’"a, 6, 0,2

in the previous paragraph,

_ P
Ol( (Po;-él) ’Sae)u(go,-al) = U(c()l) :"62/2)

and

~ o P,
cc((po’sal('bl»’saz)u(po,-salbl) - U((1),-62/2) y

Using the product formula for e&«po,-bl),wo) , Where

W_=8_8_8 , and the fact that
(o} oy Gy ey

- : P
m((po)"bl) 3WO)U((;°,_61) 7'{ 0
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we get

P

P
~ [») _ ~ - o
m(("o"bl)’wo)U(Po:*bl) = 0l(eo 61)’8"‘18“28“1)[](90"61)

N — P
:=CX((po,—Salblxsalsag)oa@o:'blL )U(p ,_61)

N P
O[((po,salbl), Sag) U(](‘l) -8,/2)

P
2 .
U(2),-6,/2)

P .
2 .
Now assume that U((l),-62/2) occured with multi-

plicity 2, i.e. that
Then
im =(p ,s, s_ 8),8 ) = ker o CNED
0 0.1 c.2 2) al o’ a2 2 1
is contained in

im (> 62)’843,2) = ker O'c((po,sa262),sa2)

P
But this contradicts ({((ey-8;»%,)U

O .
( P, ) # Therefore

we have proved b).

Exactly the same considerations can be applied to the
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P
representation U(i 5.) ’ and hence the proof of the
o’’1
lemma is now complete. |

Therefore we now are left with computing the compo-
P

o o
sition series for the p.s.r. U s U and
P (Pgr01+85) " "(py58,+8,)

u,°
Now introduce the following notation. Let Vi R V2
be closed invariant subspaces of a p.s.r. or g.p.s.r.

If Vi c VQ and V2/V1 is irreducible, with Vi -»VQ .

Otherwise do not Join these spaces by an arrow.

P

Theorem 3: The subspace diagram for U(g 5 is
- - 0,

l+62)

P P

(o] (o]
and U

1
(p5s8,485) °°

and for U

Corollary 4. The J. H. series for p.s.r. of GL(3,R)

have length 1, 2, 3 or 4. The J. H. series for g.p.s.r.
of GL{3,R) have either length 1 or length 2.

Proof of the proposition:
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PO

(p,b +62)
Using step by step induction, we see immediately that
P

Case 1:

P
1 .
U((l),62) and U((l),—be) can be considered as invariant
subspaces of U(p 8 +6 ) We will show
;]
2
P P P P
1l : 1 2
n = = -
2) U),6,) " U0 ,-8,) = U((2),0) = Y((2),0)
P
1l
b) U((2),O) is irreducible.
P P P P
1 1l 2 - 2
d
) U((1),8,)"%((2),0) 2% U1,.8,)Y((2),0) 2T
irreducible.
Py
Assertion b) is due to the fact that U((2) 0) is

unitarily induced.
Now let us assume a) and prove b): Let

qul,((l),bg),saesal) be the long intertwining operator
P

1
for U((l),b ) By definition m(Pl,((l),bz),sazsal) is
the restriction of ox(p,,8 +62)s ) to the subspace
2 |
P
U((l),be) . Since the kernel of &((p_,8 +62) Sa2 cLl) is
P
Just the representation U((l) 5.) ° the kernel of
A o p
1l 2
Py, ((1),8 ) “2 al) is equal to U((l,)be) n U((l),-bz)

Since the image of the long intertwining operator is
irreducible, we have proved c).
Now we come to assertion a): TFirst we show
P P
1
U . We h
((1) ) N U((l), 8 ) # 0 e ave

0«“ 62)Sa o

)U Yo # 0 and
2701 (Pgsm81-85)
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S, »5. 5. (<8,-8,)»s, )U,° | = UPl
o’ e, m VU127 ey (po,saasal(-bl-bz)) ((1),85)

Hence

P
) © U(%n,a

c:;(("c:"t’l'%) ay a ) (p ,-6 —62 o)

On the other hand,

gz((p s~-8.-8,)8_ s8_ 8 )=gz((p -8,-8),8. s, s )
o 1 2) 0, 0,70y o’ "1 Q’ 0, 0,0, s

and therefore by the same argument

P P
~ 0 2
C‘T((pl -61"62)186'13“230‘1){]( —6 "62) [od U((l))"be) .
Hence
_ : P P,
o (por-81-80:84 85 8¢ Uy s 5. ) © Ucl1),-5.)
1 %o &7 (Pgs=8y-85) 2
Py
"YU,y 7O

To compute this intersection we use that we can find
another embedding of Ui%l) 62) in a principal series
representation. By step by step induction U((l) 62) can
also be considered as an invariant subspace of

PO

U
(P (1),6,) 58, 54 ) 1is the restriction of
172

Hence the long intertwining operator
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m«p3,61+6g,salsa2) to this subspace. But

m«p3,61+62)salsae) = m«pe,sa2(61+62»,sal)od@3,6l+6éxsa3) .

Here 0«93,61+6Q,sa2) is injective and

P
ker cd@e,sal(61+62»,sal) = U(%Q),O) .

P
_ 1
Hence ker q(@3,61+62)3a13a2) = U((2),0) ’

which implies that ot(p,,6,+8),s_ s_ ) restricted to
P 3’71 Q 0y Op

U(%l) 5.) is either injective or by b) has kernel
T2

P
1l 1 .
U((2),O) . But we already proved that U((E),O) is

reducible. Thus the long intertwining operator has kernel
P
1
. This completes the proof of case 1.
Y((2),0) P P

P P
) o o

Because of the symmetry of the situation it is enough
P

to deal with U(O

93:61+62) ’
showed that we have the following chain of invariant

In the proof of case 1 we

subspaces
P P P
o] 1 2
U o U > U .
(03:61+62) ((1L62) ((l),52)

P P

o 1l
i -
We will show U(p3,61+62)/U((1),62) is irreducible
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To prove this, it is enough to show that the kernel of the
P

long intertwining operator is Jjust U(%l) 5.) We proved
3’
2

already
P2
ker Ot((o3,6l+62),sulsa2) = U((2),6)
Py Fo
“(("3’61”23’%1%2)”((1),52) < U((1),8,)
P Pl P

2 1
U((1),8,) /"‘(@3’51*52)'%1%2)0((1),52) = U(2),8)
But ker oz((pl,salsae(bl+bg)),sa2) = U(%l),be)
Thus

ker of((pB) 61-{-63! SG‘QSG‘]_SG'Q)

it

ker W((pl’ Salsq2(61+62))’ 80.3 )m((PB ’ 61+62, Sq'lsal)

P
1
= T(w),8y

This completes the proof of the theorenm. 0

Proof of the Corollary. We have shown that for o € ﬁ s
P

2
<1, all J. H. series of U
o S b (p,v161+v262)

have length 1, 2, 3, or 4. On the other hand by the

0 < vl,v

proposition all p.s.r. have this property. r]
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Remarks:

a) Another proof of case 1 of the proposition is possible
along the following lines:

Let V, Dbe the ﬂ;dimensional reprgsentation of S0(3) .

It is not hard to prove that in (U(;’O,X))K P X €A, Vg
occurs with multiplicity 2, V# occurs with multiplicity

1, and V , n = 2,3,4,6 do not occur at all, But Vs

P P
1 2
is the minimal X-type of U((l),62) and U((l),_be) s

1l
and V, oceurs in (U((l),be))K as well as in

P
(U((l),~62))K with mgltiplicity :ne. Hence V7 is the

- 1 2
minimal K-type of U((l),bg) f U((l),-bg) . According

to our list of minimal K-types, V7 is the minimal
: P
K-type of U(%E) 0) which is irreducible.

>

b) In the proof of the proposition above, we have actually

derived the following additional statements.

P
Proposition 5. The J. H. series of U ° consists
(po’b +62)

of the representations J s J ,» J
P (90161"'62) ((1)’52) ((1):"62)

J((Q) 0) ’ and each of these representations occurs with
s

P
multiplicity one. The J. H. series of U °

contains J(pl’51+62), J((l),62) and J((Q),O) ’ the

P

J.H.s of Uu,°

‘ J s J
(p3,61+62) contains (93,61+62) ((l)’bz)

and JK(Q) 0) ’ and each of these representations occurs
»
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with multiplicity one. i

Now we come to the reducibility and composition series
problem for g,p.s.r. In order not to confuse the
notations, I will write (n) instead of (r) for the
discrete series parameter.

Py
Theorem 6. U((n),vb

lvl--Lglem.

Proof. Without loss of generality assume n > O . Ve
AL P Z

1
first consider U((n),vag) « By the results at the end

2) , 1 =1,2 , is reducible iff

of I.F, reducibility occurs if

a-1
r;zr.+-v62 = n;8 +n,8, for some n; , €EN
!
i.e. if (51? + vbe,al) = n = n
!
and (57? + vb,,a,) = --g +v = n, .

For all other parameters v s.t.

Gq

(51? + V8,5, a2) >0

the representation is irreducible. By the results at the

end of I.F. it is also irreducible if -«% +v=20,
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We assume -%+v <0 and Vv>0. We know already that
the representation is irreducible if n=2 and v=0 or
if n=1 and ‘-%<v<% . Again by the results at the
end of I.F., the proof of its irreduciblility for the other

parameters is equivalent to showing that either % + v62 =

n
04 + nlbl - n262 lfor some nl,n2 €E N or s + v62

A
<
A

o

a,/2 + vb, + n,8; - nyd, for some n,,n, € N, -1

In the first case we get the conditions

1) 2+n, =n, n, € N and -

1 1
and in the second case.

ols

+v=-1l-n,, neél\l

2) n=1+n, ng €N and "-%+v=—%+v-n2,
n, € N, -3<vci}.

It is easy to check that one can always find ny, Ny, v

which satisfy either condition 1) or condition 2).

To prove the theorem for v < 0 we use that we have
| P

2 1
an intertwining operalt;or from U((n),v62) to U((n),vbe)
and that therefore U 1 ),v6.) for v < 0 1is reducible
P, ((n),v8, T,
iff U((n),%z) is reducible. PFor U((n),v62) v < 0

we repeat the above arguments with the central character

Ivle, + (In|/2)a2 .

Theorem 7. Let w = ((n,v8,) s.t. vl - 4in] € W. 1f

v > 0, then
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ker<n(Pl,((n),v62Lsalsu2)

Py

=0 oy \ !
((%'nl'fV:SaQ(,nljf‘*V52)‘ (?ln"+v)1y)
If v < 0, then

ker<x(P2,((n),v62),saesa1) =

P

((Rlnl +v,5,_(Inl2+[v1,) - Blnl + |v] )

Proof. We use the formulas in the example at the end
of I.F. For v >0, let (m),v's, be the parameters of

the kernel in the statement. Then

lgla, s, - 5, 2l e, + v,

= V'8, = sag(igla + vb, l?f“l ’
In| = igl(a,sagal) + |v'|(62,sa2al) = i%i + Jvt|
I\’l - —'%L =:—|—x;L - I\)" =l%n—'-(al,sq'2G.2) + '\)"(62,3&20-2)

3|n| + |v]

and therefore {m]

<
!

33| - vy .
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For v < 0 we argue in exactly the same way. CJ

Finally I give a classification of all unitary

representations of SL(3,R) :

Theorem 8. The unitary dual of SL(3,R) consists of the
following representations:
a) wunitarily induced p.s.r.
b) unitarily induced g.p.s.r.
c) complementary series representations
d) unitarily induced degenerate series representations
S limits of complementary series.

e) the one-dimensional representation.

Proof. TFirst we classify all unitary irreducible repre-
sentations with parameter u € ao .

We may assume that W = (p,X) , ¢ € ﬁ and ¥ s8.t.

V. 6.8
x=et1 22 yith Rev; >0, Rev,>0 . Besides

2
the unitarily induced representations, the representations

with the following Langlands parameters are hermitian.

il

P = 9g s log % v(61-+62) + iXSa 8 » Vs € R,

1

v, € R.

I

P =p,, logx v(61-+62) + iks 8

2
1 1



100

P
(o} R
The representations U<p V(6 +8 )+irs_ 8. ) are reducible
(o} 1 72 oq 1l
iff
v =2mtl /2 and A # O meéeN
vV=nmn and A =0 m € WN\O
Po
and the representations U(pe,v(61+62)+1X61) gre reducible
irf
vV =2m+l /2 A€ R me€E€ W .

Hence we get complementary series representations for
P = PgsPy > A € R and 0 < v < 4 and limits of comple-
mentary series for p = p;,0, > A € R and v = 2.

If v > 1, then by theorem G7 the hermitian repre-
sentations are not unitary. They are not unitary as well

for

P = 0gsPs 2 <v<l A arbitrary
P = Po v=1 A arbitrary
P = pg v =1 A # O

as one can see as follows.

The representations with these Langland parameters
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are irreducible principal series representations and
therefore equivalent to the p,s.r. U(‘s’ (w)) - But
o \B

P
U © can be considered as induced from the
(8, (W)

parabolic Pl with a non unitary representation on the
M part and a unitary character on Al s and hence we
can apply Lemma ( ).

For o = Po » V = l, N =0 the Langlands repre-
sentation is the oné-dimensional representation, hence it
is unitary.

For ¢ = pgspy » V = 1 , A arbitrary, we get the
two series of representations, which are unitary induced
form P1 and one of the two onde-dimensional representation
of M . This completes the list of all unitary repre-
sentations with the Langlands parameter p C 60 .

For o € 6 » the only hermitian representations are
the unitary induced ones, which implies that our list

is complete. O

This classification of unitary representations was also

proved by I. Vakhutinskii [17].
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C. GL(4,R).

Again the composition series for p.s.r. is computed
first, but only for nonsingular parameters. For singular
parameters, the Langlands parameters for all composition
factors are given, but their multiplicities or the
composition series were not successfully computed. Next,
the reducibility and composition series problem for g.p.s.r.
with r = 2 1is settled, and finally all unitary repre-
sentations of GL(4,R) are classified.

All results in this chapter are new and apparently
have not been published in any of the literature consulted.

In GL(4,R) we have

€
e,
p e € ——3 1
o) \ 364
€
182
LPE e3 — ei
\ €y
€
;/ :L62
piJ 93 ——) eleJ s i<}
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(€1
b€y
eijk: K €3€ —-———9eiejek », 1 <3<k
M
l N,
1l
The characters of the group 2, = ey [l e = #1
1 e

will be denoted by g = °°'z »
1

1 1 1
p3 = p3|21 s pu = pu.’Zl and 034 = 934 7

1
We parametrize the charactergroup ﬁo of
/131
[ 8
A, = \ a3 | a; € R\03
ay

by c“ as follows:

Gua Vv = (vl,vg,v3,v4) > % = ev161-+ev262-+ev363 (det)vu

where 61 » 1 =1,2,3 , are the fundamental weights for

the standard ordering of the roots. The character groups

ﬁl respectively ﬁz will be identified with the

subgroups of ﬁc with vV, = 0 respectively Vi = v3 = 0 .
In cxé we choose the dominant Weyl chamber ao

and associate to it the standard minimal parabolic Po »

i1.e. the upper triangular matrices. 1In mi we choose the

nonconjugate Weyl chambers
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1
e = {v262 +v363l VpsVy 0}

1
2
el = {v8, + v363| V3 >0, 0> v, > -v3}
3 _
ey = {vyb, + v3b3| V, < 0, V3 < 0}
and set
- pl - pe _
P~ F1 (o 0 ) 0 PP (8 )
1 00 1 00
_ o3 _ /10
ety )
1 00

In cxé we have only one conjugacy class of Weyl chambers

and choose the Weyl chamber

e, = {vael v > 0}

332 = P2 = (Erfﬂ') .
00

Again I will write 1log ¥ instead of x if it simplifies
the notation, and assume vy = o .

In I.F. we have shown that to solve the composition
series problem for p.s.r. it is enough to do so for

u=(,x,) with p €M and 0<v, <1, 1=1,2,3. Hence
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in particular the reducibility question is settled by

the following

Lemma 1: Let O0< v, <1, 1i=1,2,3. Then U

reducible iff

P = po or 9123)_‘,

o
i

pJ or det pJ

p = °ij or det pij

Fo

and one of the \’i

or vl+v2=1 or v2+v3=

or vl+v2+v3 = 1

(P,X\,)

is

's equal to 1

1

and one of the vi’s with 1 # 73,

J-1 1is equal to 1

or if J = 1: vl+v2=1 or

v2+v3 2 or vl+v2+v3=

or if j = 2: v2+v3=2 or

vl+v2+v3=l
or if J = 3: vl+v2='2 or
v1+v2+v3=1
or if j = 4: Vy+Vv, =1 or
v2+v3=2 or v1+v2+v3=

and if 1=1, j=2: v, = 1l

or V1+V2=2 or V1+V3=

v1+v2+v3 = 2

or if 1i=1, J=3: vy, +v,=1

1l 2

\¢2+v3 =1 or vl+v2+v3 =

2
2
or v3 =
2 or
or
2
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or if i=1, j=4: vV, =1 or
vl-+v2-+v3 =1 or vl-+v2 = 2 or
Proof: As in the case of GL(3,R), this lemma is a
special case of Theorem II.D.1l, which will be proved later.
It can also be derived directly from the results on
GL(2,R) , together with those at the end of the paragraph
on reducibility. 0

For the rest of this paragraph, we will again make use
of the formulas derived in I.D for computing kernels

of intertwining operators without further mention.

Lemma 2: Let T be a subsystem of type A2 of A3
which contains two simple roots. Assume that log X ,
for ¥ € ﬁo s does not satisfy any integrbility condition
with respect to roots not contained in ¥ . Then we can
compute the Jordah;Hblder series of Uio for w = (p,¥%X)
as follows:

Let Py be the standard parabolic s.t. Lie(Az) is the
intersection of the kernels of the roots in T , and let

{Jl”"’JL} be the Jordan-Holder series of

My P

I . Then the J.H.s. of U ° 1isg
MAP M N P o
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. oG
{fmd (J T )see.,indg (szrul )} .

AZNE z AENZ

Proof: Step by step induction shows that for

J € {Jl""’JL} we can find closed invariant subspaces

G ~
V; 2V, s.t. indg QIwwh ) = Vl/V2 . Therefore all
p> AN
PIg Y
we have to show is that indg (TJor ) 1s irreducible.

AN

pIY
Let My be the Langlands parameter of Jl and let

P

U M U . Then we can find y' € Co ,» conjugate under

My g
the Weyl group to u , s.t.

P P
1ndg Ut Mer > cuf
u u u
AN
T
as an invariant subspace. We may assume that ' 1is

dominant.
Then let OKP,u',wo) be the long intertwining

operator for Uﬁ, s Wwhere P = PMAZNE . We rearrange

LA wgg » Where ;; is contained in the Weyl group of
T and is such that CX&(PM,uJ,wo) is the long inter-
« P
twining operator for UUMo . Since the image of
*J

mﬁ( ,uJ,w is just J and since

Ot(P,u' on) = O’((WOP,WOU' sWOU(P,u! ;;0)
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it suffices to prove that GKGQP,GQH',W) is an isomorphism.
But Gg transforms all positive roots of T into
negative ones. Hence if o is a positive root that w

transforms into a negative one, then 521

¢ 1is not in T .
This implies that for u' = (p',X') , (WoX',a) = (X',¥5'0)
is not an integer. Thus O«P,u',ag) is an isomorphism.

0

Let 4y € 60 , and assume now that we have a subsystem
¥ of type A2 s which does not contain two simple roots,
but otherwise satisfies the conditions of the lemma. Then
we can find w € W s.t. wy and wI satisfy all the
condit%ons of the lemma. Since the J.H., series of Uio
and Uﬁg are the same, we have an inductive procedure
to calculate the J.H. series in this case too.

Assume now that we have a subsystem of type Alel
which satisfies the conditions of the lemma. Then we can
compute the J.H. series for Uio from the J.H. series
of insznPo exactly as before.

These considerations show that we are left with

computing the J.H. series for

) UPO e f
& (P26 +0,+85) * °
P
o R '
b) U(°’61+6J) s 1,] 6{132:3}: 1<3, p €M
c) © i=1,2,3.

U P
(9)61)
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We will first deal with Case a):
Let p = s and Y = 6l-+62-+63 . Using step by step
induction, together with the formulas for SL(3,R) , we
see that the representation with the following Langlands

parameters are contalned in the composition series:

Por b + 8 F L
(1), 28, + 83, oy
(1), 38, - b3+ 5
(1), 38, + 385: 5
(2), 285, 93
(2), -285 03
(3), 265 - 8, , o5

(2,2), 8,
(3,1), o
(1,1), 262 .

Using step by step induction we also derive the

following relations between subspaces
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P
2
Y((3,1),0)
2
P, . P
2 : 1
((2,2),-8,) U((3),-8,4285,87)
pl 3 p3
1 2 1
U((2),-285,03) U((1,2),-28,) _=Y((2),4285,03)
lpl P§)<l1g
U((1),- 30,m83.00)  U((1),38,-385,00) V((1),38,+6,, 05)
P
o

U
(poy"bl ) "63)

Here we use the following convention:
Let V Dbe a representation of G and Vl a closed

invariant subspace of V . Then we write

V/Vl

Otherwise we do not join the two representations by a line.

Claim: The representation with Langlands parameter

(£3),263—62,p%4) is contained in the J.H. series of

UO
(ps8y+8,+85)

Proof: We use again the regularized intertwining operator
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aﬁu,w) for uy € Go , WEW

*

Step by step induction shows

P2 Po
1) — U .
((1’1)1252) (9016 +8 +63)
We will show that the representations
P «3) 28 ‘631934)
occurs in the J.H. serie; of tkf,l),Ebg) or equivalently
. 2
in the J.H. series of '%(1,1),-262) . We have
P2 P
U ) » U o §.-5,.-6, +a, +a.)
((1,1),-28, (Py o 3ys ~83-65783 ¥y +ag
and
P
o
(py 2342 -8178578355, a) (Pyp34s =8y-85-83)
P>

- U((l,l),—ng)

On the other hand,

P

. |
(Py o gys=81-85-85+0, +°‘3’Sa2) (py p3ys ~83-85-83 +ay +ag)
o

Py

= U((3),-285-8,,03 )
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P
Since U ° contains only one minimal

1
((3) :‘263"‘52: 93 )4)
invariant subspace, namely the representation

J((3) 253 2,% 4) s We have only to show that

P
G 2
O} U .
°12:3u"64‘52‘53‘*“1'*G3:Sa2) ((1,1),-28,) # 0

But

P
& g
(91234: -61-62-63+a1+a2,sa2) ((1,1),—262)

("1234"6 ~bp=b3tagtag, s, ) (Pyo3ys=81-85- °3’Salsa3)

P
(9123u: ) '6 -63)

P
u,° 0 . 0O
(91234,“6 ‘62 63,Sa23a13a3) (91234,"61-6 ) )

P
Remark: Since the restriction of U(p ,61+6 +63) to

SL(4,R) is irreducible and the restrictions of

J 1 and J 1, to SL(4,R) are
«3)’263"62:934) ((3),263"62990)
P
isomorphic, the restriction of U(g L+ ) to SL(4,R)
3

is an example of a p.s.r. of a connected semisimple Lie
group, in which one composition factor occurs with multi-

plicity 2. The first example of a representation in which
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one composition factor has a multiplicity larger than
one, was given by Conze-Duflo in [3 ], but they could not
determine the multiplicity exactly. We will later see
that this phenomenon occurs quite frequently if the
continuous parameter is singular.

P

. u,° _ -
Theorem 3: U(po,61+62+63) has the Jordan-Holder series

{J(p 8. +8,+8,)"7

0"81%%2%83)"" ((1),3,485,61) " (1) - 36,-85.00)"

J J J
. l 3 » »
(1) 38,4385,00)  ((2),285,03) " ((2),-265.03)

T((1,1),28,) 7 ((3:1),0))

Proof: To prove the theorem we proceed as follows:
First compute the minimal K-type for all irreducible
representations with this central character. Then compute

the multiplicities of these K-types in the representation
P

o - - -
U(0gs=8,-8,-8)
see that for almost all representations which are not

By comparing these two lists, we will

contained in the list of the theorem, the minimal K-type
P

does not occur in U o . On the other hand,
( 61 62-63)

it has already been proved that all representations

occuring in the list are actually contained in the J.H.

Po

series of U( 6 -8 -6 Therefore we are left with

3) "
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computing the multiplicities with which these K-types
occur in each representation of the list above. These
tedious computations constitute the main, lengthy, part
of the proof, and they will finally allow us to deduce
that each of the representations above occurs with multi;
blicity one.

We use the formulas of I.B for computing the minimal
K;types of an irreducible representation with a given
Langlands parameter. We get the following list of
minimal K;types for all irreducible representations with

central character 61+ 62+ 63 :



115

Langlands parameter

(Pgs81+85 +63) (9123u,61+6 +63)
(pys8,+85+83),1=1,2,3, (piJk,bl+6 +63) i<k
(pij,61+62+63), 1<3
((1),38,+55:05) 5 ((1) 438,485, 03))

((l)r-%b2 2,91) ((l)r”%52-53,9§4)

((1) - 26,4385, 07 )(m»r—a«n3m;p
(<1),362+a3,p3) ((1),38 +o3,94)

((1) - gag 3,p3> ((1),-562 850%)

((1),-28 +363,p3) ((1),- a +363,p4)
((2),263,pi),((2),263,p34)
((2),-285,03) 5 ((2),-285,0)
((2),285,63),((2),285, )

((2),—263,p§) ((2),-283,0)

((3), 263—62,9 Y ((3), »285- 2,934)
((3),284-8,,03) ((3),283-8,,0%)

((1,1),28
((2,2),8,)
((3,1),0)

5)

Highest weight
of minimal
K-type

(0,0)
(1,0)
(1,1)
(2,0)
(2,0)
(2,0)
(2,1)
(2,1)
(2,1)
(3,0)
(3,0)
(3,1)
(3,1)
(4,0)
(4,1)
(2,2)
(3,3)
(4,2)
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Lemma 4: We have the following multiplicity for K-types
=

in U(p 58, +8 +63)

Highest weight Multipliecity

(0,0)
(1,0)
(1,1)
(2,0)
(2,1)
(2,2)
(3,0)
(3,1)
(3,3)
(4,0)
(4,1)

C H O W O M O W O O M

Proof: Appendix to this paragraph. D

If we compare those two lists we see immediately

that the representations J
(p781+85783) * (1) 3,485, 00)

J 3 and J 3 1 occur with

((1)9"'262'63)P0) ((1)’“'262+363:po)

multiplicity one. On the other hand we see that the only
irreducible representations with this central character,

whose minimal K-type occurs with nonzero multiplicity,
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are the representations in the list of the theorem, and of

course all representations of this list tensored with the

determinant representation.

One of the two K-types with highest weight (2,2)
is the minimal K-type of the representation J((l,l),262) s
and the other one is contained in the representation
induced from the one-dimensional representation of the
parabolic P2 » Since this K-type has an Mo~invariant
vector in the space of weight (0,0) [Appendix]. Hence
this K-type is contained in J 3 1, *

((1) = '? 62"'363’ po)
Now to the K-type (3,1). This K-type occurs in

the representations J and J

1 1
((2),263,p3) ((2) .9"263.0 93)
exactly once. On the other hand this K-type is contained
P
. o) 4
in the representation U«l,l),ebz)' If this K-type is
not contained in J » then either J
«1:1):262) ((2),26 ,pl)
3’73

or would be contained in the J.H. series of

J ’ 1
((2) ,=28,,03)
P 3’73
1%(§ 1),28 . But we have an outer automorphism of GL(A,]R)

o)

which maps J 1 to J 1 and leaves
P2 ((2)’2631 93) ((2) !‘263! 93)

U invariant. Hence if J occured
((1,1),28,) (2) 285, 03)

P
2
i - L ]
n the J.H. series of .%(1,1),262) s then so would

J . Since the K-type (3,1) has multiplicity

((2) :""263, p%)
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one, J and cannot both occur

(2),285,03)
in the J.H. series.

J
((2) 285, 63)

This proves the multiplicity 1 statement for J 1
((2) :'253: 93)
and J 1, °
((2) :'253’ 93)

The K-type (4,0) is more complicated to deal with.
This K-type is contained again in the representation
induced from the one-dimensional representation of the
parabolic P2 » Since Mo operates trivially on the space

of weight (0,0) [Appendix]. Hence one of the seven

K-types is contained in J "3 .
((1) :“'?62'*'363)

On the other hand the restriction of (4,0) to the
subalgebra so(3,f) contains the one-dimensional
representation exactly once. Here we consider so(3,¢)
as a subalgebra of so(4,8) in either of the following

ways:

o
so(3,e) = A g , A € so(3,¢)
00000
ocooo
_llo
o

Hence this K-type is contained in the repre-

sentations induced from the one-dimensional representations
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of the parabolics

=

o)
Pﬁ (o .
o

Thus this K-type occurs in each of the representations

u

J 3 1 and J 3 1 exactly once. The
«l)’§62+63’p0) «1)3 562‘63,90)

The above arguments take care of three of the seven
K-types with highest weight (4,0) . We already know that
two of the remaining K-types are contained in the

representations and J 1

J ' .
«3),263’62190 4)

Claim: In each of the representations J and

1
, the K-type with highest weight (4,0) is

J
1
«2),‘263:93)

contained exactly once.

1

P

Proof: In each of the representations qxé) 26.,p1) and
"“B’“Pl »<237 3

I%(2)1253’Pé) ’

To prove the claim we have to show that the long inter-

this K-type is contained exactly twice.

twining operator has one of these two K-types in its

kernel.
1 c1 C',l cl

¢
4 1 1.71.71
We rewrite wo = wl we w3 + Wwhere
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ey
W, = sal

¢
W, = SagsaB
;zi = 8_ 8 )
3 oy Oo 4

The results on GL(3,R) imply that

Ol
a) (ﬂxPi,((E),263,p§),w31) is an isomorphism.
1l 1 1 1
c c (&2 e
v) ouugtel, (Wl ((2),285,03) W) =0UPE, ((2),285,03) .W,")
P
has kernel U : 1 .
((3):253‘625934)
etel elel el

c) O«w21w3lP%,w L 1((2),263,p%),w

3 ‘ 1 ci o
OUPY 5 ((2),-285,0)),Ww,") has kernel Y2,2),8,) °

Hence only one of the factors has the K-type (4,0) in
its kernel, and in this kernel it occurs with'multiplicity

one.
P3

Similar considerations apply to U 1 1. °

((2):263:93)

This proves the claim.

The above considerations show that the representations

J 1 and J 1 occur with
((3),285-8,,0,) ((3), 283-8,,03)
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P

multiplicity one in the J.H. series of U(p ,61+6 3)

The formulas for constructing minimal K-types for
irreducible representations with a given Langlands
parameter, together with the K-type multiplicities, show
that no other representations than those in the theorem
can occur in the J.H. series. Therefore to prove the
theorem we are left with considering the representation

«3 1),0) ° and to prove multiplicity one for this

representation, The multiplicity for the minimal K;type
P

°f %(3,1),00 M U(s ,0048,48,)

it is very complicated to apply similar considerations as

is very high, so that

above. We therefore use a different method.

To this end, we first complete the diagrams on

page l]l©

Lemma 5: We have

2

a) ul 1
((3) ""63"'623 934)

l‘////////’ \\\\\\\ ;
P P
vl gl

((2) ,-283,03) (2),285,01)

P
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P
b) %3,1),0)
Pz/ \ Pi

U U
(2,2) ,-85) ((3),-85+8,5,03,)
o
C) / %@3.,1),0)
Upi : \\\\\\\\\Upi
((3),-62+263,pi) ((3),-62+263,P%4)
| P,
d) [)’((2:2),"62)
P2

%(1,1),-2s,)

We will prove this lemma later.

Hence we get the following diagram :



P

((3,1) 0)

U3y -t 5+285,60) «2 2),-8) «3),-6 5*265,03)

3
2 S

(2),283,03)
3

U U o1

(1) -38,-83,07) (1) 38,7385, 00) (1),38,455.01)

.

U
(po,"‘bl ) '63)

Now consider the long intertwining operator for

Fo

U . The Jordan-Hdlder series of its kernel
(Pgr=8y-5 -53)

is contained in the union of the J.H. series of

1 2 3
UPl UPl and UPl
3 ? 1l 3 1, °
((1)1'562’63) ((1), 363’9 ) ((1): 8 +53:P°)
Hence 1f Vl’ 2,V3 are subspaces s.t.
1
UPO - UPl
(pO’_bl 8 -63)/Vl «l) ,——362-53,0(])')
2
UPo - UPl
(por=81-8283) Vo~ (1) ,38,-385,07)
P P3
u,° = 1
(°0"61’62'63)/V3 «l),36 o+03505)
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P

Then U,° '

= J .
(pgs=87-6,-83) v 0, 0 v, (Pgs81+8,+83)
et U be a g.p.s.r. contained in the diagram

induced from a parabolic Pi s, 1 =1,2,3. Then direct
calculations using I.F and the previous results on
GL(2,R) and GL(3,R) show that the J.H. series of the
kernel of the corresponding long intertwining operator

is contained in the union of the J.H. series of these
g.p.8.r. which lie above and are joint with U by a line.

Now we can argue as before.

We will now show by case by case arguments that the
above considerations are also true for the g.p.s.r.

induced from P2 .

P2
Case a) U((l,l) ,-262) o

Here two of the factors of the long intertwining operator
considered as an operator of the p.s.r. have a nontrivial

kernel. These kernels have the same J.H. series as

2 2
Pl Pl
U 3 1 and U : 1 respectively.
(1) »58,5-385507) ((3),-8,+283507)

Computing the intersection by using the diagram, we see
that the image of the long intertwining operator for
0.2
(1,1),-28
s.t.

is the intersection of the spaces Vl,Vg,V3
5)



2
UP2 ~ UPl
(1,1),-285) /¥y ((3),—62+263,p%)
UP2 ~ UP2
«1:1):'262)/V2 «2:2):“262)

2
P Pl

U((il) o8 Y, = U 1
i e 3 «3))'62+2531934)

Hence the lemma 1s true in this case too.

P

2
Case b) U((2,2),-62) :

Here we use K-type multiplicities. The K-type with
highest weight (h,?) is contained in the representation
P

]%(2,2),—6 exactly once. Hence J«3,1)’0) is contained

Py
in ‘%(212)"62)
this case too.

N

only once. Hence the lemma is true in

Now we can directly read off the multiplicity one for
P
2 —
U3,1),0) = %(3,1),0) from the diagram. This completes

the proof of the theorem, except for the
Proof of the lemma 5:
Case a)

Let us consider the product formula for the long

intertwining operator for
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1

vl
1

((2) :253: 93)

and GL(2,R) , the kernels of the factors are

. By I.D and the computations for GL(3,R)

2
Py Py

U and U ’ .
«2,2),62) «3),-62+253,P%u)

The same considerations can also be applied to

3

| 4
U 1 . The multiplicity one statement for
«2),-263,P§)

3

P P
1¢) 1 1 as a quotient of U(p -8 ~6 -6 ) then
«3))*62+253193u) 3

implies the lemma.

Case d)
. PO i
The minimal K-type of '%(2 2),-5.) has highest
s L ) P _
weight (3,3) and is contained in U(z \81-8,-62)
17 3

exactly once. But it is also contained in
P

2 .
%(l,l),-zbg) . Hence the lemma.

Case b)

i
l s
s.t. Re(log %) € 43% . We use the regularization of

OYP,u,wW 4 ) to define the intertwining operator

o
¢
SKP,u,qél) . All formulas in the paragraphs I.C and I.D

then continue to be wvalid for SﬂP,u,q% )
1



2
Now take P=Pl,(r)=(1),x=%62-363,p=
We write
w = 5 8 8 8.8 = WoWAW
ci al a2 a3 a2 al 37271
where
w = 8_ 8
1 a2 al
w = 8
2 a3
w = 8 8
3 o Co
Then

P~ 1
ET2L, ((1),3857383:05) ¥ ) =
1

BUPL wwy(1) 3853855 05 w3 JR(PT w0y((1) 138 53854 00) )
SUPZ((1) 38,7385, p8) ¥y

and

2
P
~ 2 3 1 1
PS5 ,((1) ,=8,-38,50) sW W, )U
(P15((1) ,585-383505) sWowy ((l),%62*363’9i)

_ e
= Y2,2),-8

Hence

2) .



128

-~ (o]
oeys-8y 62’63"’0)”(90, 81-8,-35)

=6:((p0, ( 61 62 3)’W3 1)0{(0 "61 2 3)8 2)

Po

Y(0gr-81-85-85)
2
3 1
p2

OZ(DO’SGQ( 61 2 3),W3 l)

il

Sp2 i1y . 3 1
AP (1), 505383:05) W3Wa¥ )T 1) 36,-383,07)
2 k) o

P
OI(Pl,Wgwl((l),e 2 36319 ) W3)U((2 2),_6 )

P
2
= Y3,1),0)

This proves b).

Case c)
The following considerations imply the assertion:
Let 7: G - End V be a quasisimple representation

of G on a Hilbert space V , s.t.
T ® det = 1 (Naimark equivalent [ ]).

Thus 77 ®det and 0 has the same J.H. series. Hence if

Wc V 1is an invariant subspace s.t.
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N: G 2 End VW

is not equivalent to N ® det , then we can find an

invariant subspace W' s.t.
M': G »End VW'

is equivalent to NW®det .

Assume now that there is an invariant subspace V s.t.

N: G - End VA

~

is irreducible and i ® det =11 .

But then VOW and VO W , hence we get the diagram

o s
N,

Now apply these considerations to

Po

T = Fa,),28,)
P2

T - vl

((3) 3"62"'263: pi)
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2
!
(3) ,-8,+285,03))
~ P,
T = %G00 - °

Without further comments, we now give the Jordan‘-
Hélder series of all p.s.r. with central character
>-61-62—63 . To compute these, we do not need any other
tool than the results in I.F and those on GL(4,R) and
GL(3,R) . We also draw the diagrams but we replace the

symbol for the corresponding g.p.s.r. by a dot.

Theorem 6:

P
o

a) The Jordan-Holder seriles of U(pl"bl'52'63)

is

J J
s l 2 1 ,
((l),—-32-62-53,pr) (1) - 28,+385.03)

.3 .7 :
(2),-283,034)  ((2),285.03) ((2,2),8,)

J 1 .7 }
((3):62'263’934) ((3:1):0)

and the diagram:

2\
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b) The Jordan-H&lder series of UP

is
(92,—61"62-63)

J' ,
{ (92,5 +8 +63) (1), .§62-63,P3) ((2)’ 263,p34)

(3),8,-285,01) (301, 0!

and the diagram

P
o]

¢) The Jordan-Hdlder series of U
(012,-61-‘62’53)

is

{s »J ;
(p1ps81%85%83)” «l),%62-63,p§) (1) - 38,855 03,)

(1,0),28,) 77 5 18,7285, 07) ") ,8,-285,03)) (3,1),0)”
1.3
«1 2), 263,934) «2) »=263,0,)

and the diagram
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P
d) The Jordan-Holder series of U © is
. (py3s=81-85-83)
J
(913, +6 +63)
s
e) The Jordan-Holder series of U is

(plu"‘al- 62'63)
s (pyys8yt8,+03)” 3 1 .09 1.°
14°°1 3 «1),~§52-363,o34) «2),263,p4)

J »J ,J ,
(2),-285,08) ((3),8,-285,05)  (2:2):80) (3,1),0)?

and the diagram

All other J.H. series for p.s.r. with parameter
6 +6 +63

X = e can be computed using the J.H. as above,

either by applying symmetry considerations or by tensoring

with the determinant.

Remark: Comparing these results with the corresponding
p-adic results, we see that they are entirely different.
In the p-adic case, there is a one-to-one correspondence

between composition factors and parabolics. Nevertheless
P

the J.H. series of U( 6 +8 +6 contains exactly one
}

3)
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tempered representation, namely the representation
J«3’1),o) . This representation corresponds to the

so-called "Steinberg representation".

This completes the computation of the Jordan-Holder

series of p.s.r. with non singular continuous parameter.

Before we can describe all J.H. series of p.s.r. we

have to deal with two more special cases, namely the
P

o

representations U( )b +63) and U( ,6 +62) .
P

Case 1 U

Case 1 U(y .5 +5,)

Using step by step induction, we see that

| e ,J _ and
(90:61+63) ((1),%62"“53’ pg;) ((l)’-%62-63,pi)

‘%(1 1) 5..) are contained in its J.H. series and that we
s
2

get the diagram

2
|/
((111) :"62)
1 3
vl vl 1
((1),"%62’53, Pi) ((1):%624'63:90)
P

Y(pgs=81-85)
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Claim 1.

J 1 is also contalined in the J.H. series of
«2)30’93)
o

U(po"61'63) and we have the diagram

2
gL 1
(2),0,05)

Po

%(1,1),-8,)

The proof is exactly analogous to the proof of the lemma

on page 110. Therefore it will be omitted.

Claim 2.

P2

le,l),bg) has J.H. series {J«1,l),62)’J«2),O,p%)} .

Proof: The minimal K-type of J 1

«2):0:93)

weight (3,1). This K-type occurs with multiplicity three
P

has highest

in U(g ,—61-63) , but only with multiplicity one in
o
P2
U _ . Hence J occurs with multiplicity
«111), 52) «2),O,p%)

one.

Using the formulas on page 3] for computing minimal
K-types, we see that the minimal K-types of irreducible
representations with central character 61-+63 have the

following highest weights:
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(0,0), (1;0): (1:1): (210%1 (2)1)’ (2’2)1 (3:0)’ (3:1)-

The minimal K-type of '%(i 1),6 has highest weight
b

,6,)

(2,2), and the only representation whose minimal K-type

has a highest weight larger or equal to (2,2) is the

representation J m
((2) 0, 93)

Thus we conclude:

P
Proposition 7. The J.H. series of U is
D ! (o 0r81+83)

{7
T (pgr81%83) (1) ,38,%65500) “@,- ~38,-85,00)

J sd
((1,1),62) ((2),0’9%-)
and we have the dlagram

2

P1

1(2),0, 05 1y

1

Y U
(1) ,-38,-85,07) //////////’ (1),38,+85,00)
(

p F 61-63)
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Proof: We apply the considerations of I.F. of the factors
of the long intertwining operator have a kernel, and the

J.H. series of their kernel is equal to the J.H. series

1 3
Pl P1
U and of U 1 respectively.
Hence let Vl,V2 be the subspaces s.t.
F pl
o) Ty 1 1
(po: 6 3)/Vl ((l),-%62-63,90)
P P3 |
u,° = U 1y s
(por=81-83) NV (1) 38 o+63501)
then J = U .
(po,61+62) (po,-bl-ba)/vl n v,

The kernel of the long intertwining operator for

1 3
P P P
U 1 1 and U 1 1 is ‘%(i 1),-5.)
«1)9’%62'63190) «l) %62+63!9 ) P T2
P P
Hence if W1 cU 1 and - W2cU 1
«l): 262 3,9 ) «1)’%62+63’P°)
are s.t.
1
g1 . _ e
(1), 38,-85,05) My (Bs2)om8)
3
UPl 1 1 = UP2
((1)356 +6 ,P )/W ((131)3—6 )
2 °3’%o 2 2
then
Py
U : =

) 1 J 1
«1):'552‘53,00)/w1 «1)1%52+63’Po)
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3
UPl
(1), 38,+85,00) M,

J 1
((111) J'%62+63, po)

Together with the previous claim, this proves the

proposition. B
Po

Case 2 U

PEEE U(ogr-81-8p)

Using step by step induction techniques, we see that

J(po’°1+62)’Jﬁl),%be)’%(g)’°3) ani (20),38,) *7°

contained in the J.H. series of U(g 5 The
o’

~8)-85)
diagram is
P
2
Y(2,1),-38,)
Py
((2) :"‘63)

(o]

1
P
u 3
((l) )""é 62)
P

o
8)
(po_’-bl-b

5)

Proposition 8: There are no other composition factors

than those listed above.

Proof: Comparing minimal K-types we prove that

P
2 - .
ducible.
U((2,l),-%62) is irreducible
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1
P
The kernel of the long intertwining operator for WK%) 5.)
P * 03
2
is ‘%(2,1),%62) . Thus
Py o
Y2).69) %200 ,38,) T 2),85)
P1
The kernel of the long intertwining operator for U 1 3
pl (1) ,38,)

1
is U«Q)’63) o Thus

1
Pl P

U ! =
(1) ,%62)/U((2) 83) (1) ,26.,)

1

Finally the kernel of the long intertwining operator for

P_ ' P :
U is U . Thus
+
(p5s85%83) (1),38,)
1
P Py

u,° /U =S | .
CIFLPALEY (1),28,) (pg281+85)

In the second appendix to this chapter, I will give
a list of all J.H. series of p.s.r. with continuous
parameter log ¥ = 61-+62,52-+63,61-+63,6l,62,63 . Since
the proofs are based on the previously employed ideas,

they will be omitted.

Now we came to the reducibility question for g.p.s.r.

induced from P2 .
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P
((nl,nz),vbe) € @2 . Then Uu2 is

Theorem 9: Let u
reducible iff
a) n, >n, >0, vETR and |v|—n1/2+n2/2€]\1\0,

b) n,>n; >0, v€ER and lv|+nl/2—n2/2€1‘1\0.
P2 P2

Proof: U is reducible if U is

— ((ny,n,)v8,) ((ny5n5),-v8,)

reducible. Hence we may assume v > O , and furthermore

using symmetry consideration we assume n, > n, > 0.

a) TFirst assume that (n,/2)a; + (ng/é)a3 + Vb, 1is
contained in the interior of the positive Weyl chamber

Oo » 1.e. that

—(nl/2) - (n2/2) +v >0 .
We can find X € 50 , A 1integral s.t.

(n)/2) 1 + (np/2) 5 + V8, - X = (67/2) + (a3/2) + V8,

1<v<?

and s.t. the assumptions of Zuckerman's theorem are

satisfied. Then

UP2 _ Y(nl/'2)a1+(n2/2)i3+v62 _ UP2 )
K (0y/2) + (a,/2) +36, (1,1),962)
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P
2 . .
Thus Uu is reducible if (nl/é)al + (ng/?)a3 + Vb, 1is

integral, i.e. iff ((nl/e)al-k(n2/2)a3-+v52,a2) =
—(nl/2)-(n2/2) +v € N\0, which is equivalent to
v - (n1/2) + (n2/2) € N\O, since by assumption
-myﬂ-(%M)+v>O.

b) Now assume (nl/E)u1 + (n2/2)a3 + vb, 1is contained
in the wall of co » 1.e. that

-mﬂﬂ—(%ﬂ)+v= o .
We can find )\ € 50 s X integral, s.t.
(ny/2)aqy + (n2/2)a3 + Vb, - X = (ay/2) + (a3/2) + b,

and s.t. the assumptions of Zuckerman's theorem are

gsatisfied. Then

UP2 ) Y(nl/é)ul~+(n2/?)a3-+v62 UP2
W = Y(e1/2) + (ag/p) + 8, (1.1),8,)

P
and thus by TI.C.7, Uuz is reducible.

c) Next assume (nl/Q)al + (n2/2)o.3 + V8, is contained

in the interior of s_C_, i.e. that
6, O
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-(nl/2) - (n2/2) +v <O

-(ny/2) + (ny/2) +v >0 .
We can find )\ € Eo s A 1integral, s.t.

(ny/2)ay + (n2/2)a3 + Vb, - 8, X =0, +ta, + v8

and s.t. the assumptions of Zuckerman's theorem are

satisfied. Then

UP2 _ W(‘n]_/E)cz.:L + (n2/2)<:t3 +v8, UP2
b @, +a +v8, (2,2),v8,)
P2
Thus Uu is reducible iff sug((nl/z’)cnl + (112/2)c:r.3 +v62)

is integral i.e. if -(nl/e) + (n2/2) + v € N\O0.

d) Now assume (nl/e)on1 + (n2/2)o.3 + v62 is contained

in the wall of s_.C_ , i.e. that
a.2 o

-(nl/'a) + (n2/2) +v=0 .

We can find 1\ € Go , X\ integral, s.t.

(111/2)01l + (n»2/2)<::.3 + Vb, - saex = (al) + (a3/2) + %62
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and s.t. the assumptions of Zuckerman's theorem are
satisfied. Then

P2 Y(nl/2)al+(n2/2)a3+v62 P2

U = U,
u al-r(a3/2)-+%62 (1,1),8

*

o)

Thus by II.C.8. the representation is irreducible.

e) PFinally assume that (nl/é)al + (ne/'e)c.3 + Vb, 1is
contained in the interior of s_s_ ¢ _ , i.e. that
0y 05 0

I-(n1/2) + (ny/2) +v <o .

Assume first —(nl/2) + (n2/2) +v ¢ %Z . Then we can find

X € Eo s X\ integral, s.t.

(ny/2)a; + (ny/2)ag + v, - salsaex = ay + (ag/2) + ’;62

0 <V <1/

and s.t. the assumptions of Zuckerman's theorem are
P

satisfied. Then by the same arguments as above Uu2

is

irreducible.
Now assume -(n,/2) + (ny,/2) + v €Z . Then we can find
A\ € 55 s X integral, s.t.

(nl/e)al + (n2/2)a2 + vb, - salsagx = (3/2)a1 + (1/2)0.2



143

and s.t. the assumptions of Zuckerman's theorem are
P
satisfied. Hence the representation Uu2 is irreducible.

f) If v = 0 the representation is unitarily induced

and hence irreducible.
This completes the proof of the theorem. m

Theorem 10: The J.H. series of the kernel of the long
P

2
Y(nysny) 2v8,)

intertwining operator for s with nl_z n, >0,

v >0, is

a) if -(nl/e) - (n2/2) +vVv € N\0 contained in the

union of the J.H. series of

p2
1
% (ny/2)+(ny,/2)+v) ,sae((nl/z')a1+(n2/2)a3-v62) -

((n1/2)+(n2/2)+v)a2,p(nl,ng,v))

2
P
1
U
(((ny/2)+(ny/2) +v) ,SGQ( (ny/2)oq+(ny/2)ag-v8,) -

((nq/2) +(n2/2).+V)a2, p(n,,n,,v) 9%4)

P
2
U .
«(nl/?)-(n2/2)+v,(n2/2)-(n1/2)+v),sa2((nl/2)a1+(n2/2)a3+v62)

- ( (nl/2)- (n2/2)+v)a.1 - ((n2/2)" (n2/2)+V)G.3)
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where
p(nl,n2,v) = p% ir -%nl +-%n2 + v 1s even
p(nl,ne,v) = pi if -%nl +-%n2 + v 1is odd.

b) if —(nl/é) - (n2/2) +v =0 1is equal to the J.H.
series of
P2

1l
U
«n1+n2>,<<n1/2)—<n2/e>)62,p;)

e) if -(nl/e) - (n2/2) +v <0 and -(nl/e) + (n2/2) +v>0
€ W\0O 1is equal to the J.H. series of
P

2
U
((n/2)+(ny/2)+v, (ny /2) +(ny/2)-v) ,

sa3sazsa3((n1/2)a1+(n2/2)a3+v62) - ((ny/2)+(ny/2) +v)ay -
((n1/2)+(n2/2)"v)°'3) .

Proof:
P

a) In Theorem we showed that th% 1),-2s,) has a J.H.
> ,
2

series of length 5 and the diagram
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P

2
/ U((3’l)’0)
. | \
UP]' UP2 _UP:"E
(3) ,-5,+283,03) (2,2),-85) (3) ,-8,+265, 03)
..

U(1,1),-28,)

Hence the arguments in the proof above show that
P
2

U‘((nlsne) 3-\’62)
-(ny/2) - (ny/2) + |v|] € W\0, and calculations using

also has a J.H. series of length 5 1if

the results in the last part of I.F. show that it has

the diagram

U((nl’ng) J"vae)

where the dots in the middle row are substitutes for the
representations listed under a) above. Since the calcu-
lations are exactly parallel to those in the proof of IL.8.7.
they will be omitted.

P2
b) In Theorem we proved that '%(l,l),be) has a J.H.

series of length 2, namely



{ )

Hence by the arguments in the proof of the previous

J sd 1
((1,1),8,)  ((2),0,03)

theorem, ) with - (ny/2)-(ny/2) +|v] = 0

U 2
has a J.H. series of length 2. Then calculation exactly
parallel to those in the proof of I.B.7 give the formulas

of the theoren.

Po

¢) In Theorem / we proved that U((2 2,5 has a J.H.
2 ’

5)
series of length 2, namely {J((Q 2),8 )’J((3 1) 5)} :
» 105 ’ ’

Hence by the arguments in the proof of the previous theorem
P .

2
U«nl’na)’vba’) with —(nl/z) + (n2/2) + v >0 and
-(ny/2) - (n2/2) + Vv <0 has a J.H. series of length 2.
Again calculations exactly parallel to those in the proof

of 87 give the formulas of the theorem., i

Using this theorem on GL(4,R) and the analogous
theorems on GL(3,R) and GL(2,R) together with the
reduction technique of I.F. we are now able to compute
the Langlands parameters of all composition factors for
p.s.r. of GL(n,R).

In the last part of this paragraph, we will classify
all unitary representations of GL(4,R) .

Proposition 10: The following non unitarily induced
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representations Ju are hermitian.

+

a) u€62: u=((n,n),a62) a€ R , n€ N\O

) u€ B u- ((n),;(a./e)agme:i,p})) a€ R, ne W\O

= ((n),-(a/2)8,+a85,03,) a € R*, n € W\0

5)
+
a€R , b,c €R

c) uel: y-= (P8 (8)+83) +1b8, +ico,-1(c+D)8

+
u = (po,abz) a€ R
u = (po,a(61+63)+b62+ic(61—63))
a,b € R, c ¢ R
M= (Dla,a(61+63)+ib61+icb3-—(c+b)62)
a€RY, p,eem
o= (914,%2) a € RY
o o= (923,3.(61 3)+ib6 +icd, i(c+b)t>2)
a € JR"', b,c € R
u = (91234,a(61+63)+ibal+icb3-i(c+b)62)
a € RY, b,c € R
+
g = (9123)4_’3'62) a € R
u o= (91234,a(61+63)+b62+ic(61-63))
a,b € RV, ce m .
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Each hermitian irreducible quasisimple representation is,
up to tensoring with a one dimensional unitary representation

equivalent to one of these.

Proof: We have to check when the conditions of theorem I:G,[

are fulfilled. This is a straightforward computation

3

and left to the reader.

Using case by case arguments, we will now find out
which of these hermitian representations are (iInfinite-

simally) unitary.

Case 1 y € 62 s u= ((n,n),ad;) , a € RY, ne w\o .

P

2
By Theorem II'Dl',l U((n,n),aag)

a € N\NO. Hence U((121 n),0) being irreducible, we have
;] ’

is reducible if

complementary series representations for 0 < a < 1 and

1.

a limit of complementary series representation for a
On the other hand, Theorem I.G. shows that the repre-

sentations J( are not unitary if a&ez_ 6P = 28
2

is not

(n,n) ,a62) 27

iff a>2 . For 1<ac<z2, J((n,n),abe)

unitary, since the nonunitary representation J((n n),28%
: b ]

Py

(n:n) 1362) B U((n’n) ’a62)

o)

is a "limit" of J( for a =2 .

Case 2: € ¢ M= ((n),—(n/2)52+a63,pi) , a € ]R+,

l.!
n € N\O.
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P
By Theorem II.D.1. U

: 1 is
«n),-(a/2)62+a63,p0)

reducible iff

a=2m+1, mé€ N, Iif n 1is odd

a=2m+1, and a=n+2m, m € N

if n 1is even.

P}
Hence U 1
«n):o:po)

series representations for 0 < a <1 and a limit of

being irreducible, we have complementary

complementary series representations for a =1 . On the
other hand, Theorem I.G shows that the representations

J 1 are not unitary if
«n),—(a/2)62+a63,pc)

3 __>_6P2 = -(3/2)8,43b5 , l.e. if a >3 .
1

Now let 1 < a <2 . Then J : 1 is not
«n),-(a/2)62+a63,p0)

unitary since the nonunitary representation

-(a/2)62 + ad

J 1, is a "1imit" of
«n)"(3/2)62+363590) P2
1

J 1 U : 1 for a -2 .
«n),-(a/2)62+a63,p0) «n),-(a/2)62+a63,p0)

For y = ((n),-(a/2)62+a63,p§4) exactly the same
considerations can be applied.

A
Case 3 y € Co

. + .
a) = (p,sa(b)+b;)+ibb +icss-1(cHb)s,) , a € R', b,c€ R:
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P

o “
By Theorem II.D.l., U(po,a(61+63)+1b61+icb3-i(c+b)63)

is irreducible iff

a = 2B 4 pe#oO
or
om + 1
a = —5= or a-=2(2m+l) if b =0 or

c=0, m€ N.

P

o
Since U(po,ib with b,c € R 1is

1+ic63—i(c+b)62)
irreducible and unitarly induced, we have complementary

series representations for 0 < a < 1/2 and a limit of
complementary series representations for a = 1/2 and

for all b,c € R. On the other hand, Theorem I.G5shows

that the representations J«po,a(bl+63)+ib6 +ic63-i(c+b)63)’

1l
for a(61+63) 28, = %61 +-gb3 » 1.e. for a > 3/2,

are not unitary.

Now assume b,c ¥ O . Then

PO

U

(po,a(61+63)+ibbl+ic63—i(c+b)&2) is equivalent to
Py
U
@o,2a61-1b62+21c63)

, and the intertwining operator

defining the hermitian form is Ol(p_,2a8,-1ibs_ +2ic8,,s_ ) .
o 1 2 37 ey

_ pt _
Let E = Pl = MlAlNl and consider
le
ind . . . The representation
P, (p°,2a61—1b62+21063)
M

1 )

(mr is a tensor product
M) NP (p0,2abl—ib52+i2ca3)|M1ﬂP°

ind
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2&5)

of a p.s.r. of SL,(2,R) with parameter (po,e and

the trivial representation of the other 22 - factors.

Hence Ol (P _NM,, T ,8_ ) does
My o1 (po,2a61-ib62+21c63)iPoan ay
not define a positive definite scalar product on
M

1
nd (m for a >1 . But if
P NM,y (po,2a6

i -1b8,+21cs

1 3)|p_me,

}<a<3, thep.s.r. of GL(4,R) is irreducible, and
hence the assumptions of lemma G3are satisfied. We
conclude that the representations

a + 3
J + +i s for 4 <a <=2
(Po: (51 52) ibbl 1c§§4(c+b)62) g 5

b,c #¥ 0 , and not unitary.
Assume next ¥ 0 , ¢ =0 or b=0,C#O0.
For 4 <a<1 and 1< a < % » we use the above arguments

to show that the representations are not unitary. Let
P

3 _ o
a=1,b=0,c#0. Then U(po,61+63+1c63~ic62) is

reducible, and we can identify J(p
o)

,61+62+ic63-1062) ?

c # 0O, with a representation unitarily induced from a

one-dimensional representation of the parabolic

e

i
X X
Ol X X »=
Of» X X
* ¥ X %

:

Hence the representations for this parameter are unitary.
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Similar considerations prove that the representations
with parameter a =1, ¢ =0 , b # O are unitary.

Now assume ¢ = b = 0 . Again we apply the above
proof to show that the representations are not unitary for
1/2 <a <1l and 1< a< 3/2 . Hence let a =1 . Then
J is the representation unitarily induced from
the trivial representation of P . Hence it is unitary.

a') In the case 4 = (p1234,a(61+63)+ib61+ic63-i(b+c)63)

with a € R', b,c € R, we proceed exactly as in a).

b) w-= (plwa(61+63)+ib61+1c6311(b+c)62) : By Theorem
IT.D.1., U is reducible
(plq,a(61+63)+1b61+ic63-i(b+c)63)

iff

a = (2m+l)/2 if Db,c # O
or

a=(2m+l)/2 or 2=2m if b=0 or ¢c=0, mé€ N.

Thus we have complementary series representations for
0 < a<l/2 and a 1limit of complementary series repre-
sentation for a = 1/2 and for all b,c € R.

On the other hand Theorem I.G.5 shows that the repre-

sentation T(py1yr8(87+83)+1b8, +icb =1 (c+d)8) for

a(61+63) 2 by = (3/2)8, + (3/2)63 , i.e. for a > 3/2,
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are not unitary. For 1/2 < a < 3/2 , the argument in
the first part of case a) can be applied to prove the

representations are not unitary.

b') In the case y = (p23,a(61+63)+1b61+1063-i(b+c)62) :

with a € RT, v,c € R, we proceed exactly as in b).

c) u= (pg,8d,) : o

By Theorem II.D.l., U °

p. (p5s88))

m € WN. Since U(g 0) is irreducible, we have comple-
o’

is reducible iff a = 2m+l ,

mentary series representations for o < a <1 and a limit
of complementary series representations for a =1 .

Otherwise the representations are not unitary.

e') u = (p123u,a62) : In this case we proceed as in c).

d) U= (plll-’a62) .

By Theorem II.D.l., U ° is reducible if a = 2m+l ,
(py-805)

m € N, and we have complementary series representations

for 0 < a <1l and a limit of complementary series

representations for a =1 . Otherwise the representations

are not unitary.

a') u = (p3u,a62): In this case we proceed as in d).
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+ +
e) 0 o= (po,&(61+63)+b62+10(6 a€ R ,b€eR

c € R.

1'63)

P

is
(o 028(8+83)+bb,+ie (8,-83)

By Theorem II.D.1.
reducible iff

c#0 and b = 2n+l or 2a+b = 2m+l
or
=0 and b = 2n+l or 2a+b = 2m+l or a+b = 2m+l
or a = 2m+l me N .
P
Since U(z ,1c(61 3) is irreducible and unitarily

induced, we have complementary series for O<a+(b/2)<1l/2,
and limits of complementary series for a+(b/2) =1/2 ,

¢ arbitrary. On the other hand Theorem I.G.5 shows that
the representations J(p ,a(61+63)+b6 +ic(61—b3))’ a,b >1,
are not unitary except if a =Db =1 and ¢ =0. 1In

this later case J(p ,61+6 +5.) is the one-dim.rep, and

hence unitary.
P

Now assume c¢ # 8 . Then U(p ,a(61+63)+b6 +ie (b -63)) is
o
isomorphic to Q@o,(2a+b)61+b53+ic63) and the inter-

twining operator defining the hermitian form is

i](po,(2a+b)61+b63+ic62,salsa2) . Let P, = MAN, and
P,
and consider ind.“T The
P, (po,(28+b)6 +b63+1062)
M,
representation indMgnP w(p ,(2a+b)6l+b63+ic62) is

MgﬂPo
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is the tensor product of two p.s.r. of the two SLi(E,IU

factors with parameters (po,e and (po,ebb)

M
Hence (P NM,,1ind T
°7M2 o "2’ TP _NM, (po,(2a+b)61+b63+ic62)|M P ,suls%)
270

defines a positive semidefinite hermitian form iff

0 < 2a+4b < 1 . But by lemmal.03 7 '
- y (po,a(61+63)+b61+ic(61-63))

is isomorphic to

P
G (2a+b) 8 o
indg (O (e, se )’Sa )U(p ,2a+b) ®
o] 1l o
P ics
bs o] 2
CY(p,-€ ),SGB)U(pO,b) ® e .

P P
o o
Here U(po,2a+b) and U(p0+b) are p.s.r. of SL,(2,R),

and OQ (» ,e(2a+b)6)s ) and OU»p ,ebb,s ) are the
o oy o ag

corresponding intertwining operators, respectively.

Therefore the assumptions of lemma 63 are satisfied, and

we conclude that J(po,a(bl+63)+b62+ic(61—63)) s with

¢ ¥ 0, are unitary iff 0 < 2a+b < 1 .

Next assume ¢ =0. For a >1 , b <1l and bP>1l,a<l ,
we use the above argument to show that the representations
for these parameters are not unitary except possible for
a+th = 2m+l and a = 2m+l , m € W, To treat these cases
assume first a =2m+¥l , m > 1 , b < 1 and define

u(t) = (po,a(bl+63)+tb62) , 0<t<1. Then <, >u(t) ,
as defined in I.G., is a hermitian form. But Ju(t) s

t € (0,1] 1is a representation induced from P, = M;A N,

with a finite-dimensional representation of M2 and a
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a real character of A2N2 s and it follows from the
composition series results that this representation is
irreducible for t € (0,1] . Thus if < , >ﬂ(t) is
positive semidefinite for t € (0,1] , it is also positive
semidefinite for t = 0 by lemma % in [9.b]. But in b)
we proved that this form is not positive semidefinite

for u = (po,a(bl+63)) if a > 3/2 . Hence < , >u(t)

is not positive semidefinite for all t € [0,1] , and the

representation J are not unitary for

(pgsa(81+83)+08,)
b<l,a=2mtl , m>1.

For ¢ =0, 0<b<l and a+b = 2m+l , m € N\ O
and ¢ =0, 0<a<l1l and a+b = 2m+l , m € N\ O

a similar argumentation shows that the representations
with these parameters are not unitary.

Thus we are left with the cases

c=0, a+b =1 a,b € (0,1) R
dnce

c=0, a=1, 0<b<<l .

et ¢ =0, atb =1, a,b € (0,1) . The J.H. series

is a repre-

computations show that J(po,a(61+63)+b62)

sentation induced from P, = M,A.N with the trivial
2 222 as

representation of M2 and the character ¥ = e 2 on

A2N2 and that J( is unitarily induced from the

90:62)
trivial representation of P2 . Now define
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u(t) = (po,t(bl+63)+(l-t)62) for t € [0,1) and consider
<”'>u(t) . This form is semidefinite for all t € [0,1)
if it is semidefinite for one t € [0,1) . But we already
know that it is positive definite for t = 0 . Thus the

representations are unitary for

J
(po,a(61+63)+b62)
a+b = 1 ’ a’b e (O;l) .

Finally, let ¢ =0, a=1, 8<Db <1l . To show that

in this case the representations are

J(po,61+63+b63)
not unitary we use lemma G2, These representations are

induced from P, = M,A.N with the trivial representation
2 27272
(l+-a)62

on M and the character % = e on A2N2 . Now

2
if they were unitary, then by lemma 62 the representation
induced from P2 with tg: trivial representation of M2
and the character ¥ = e 2 on A2N2 would have 2
unitary composition factors. But checking in Theorem 3 »
we see that this has only two composition factors at all,

namely the representations and

J
(po,61+62+63)

J ' 1, ? and by case 2 J ~ 1
((1)5(3/2)8,-383.0;) (1), (3/2)8,-385,07)

is not unitary, which is a contradiction.

This completes the proof of e).

e') L= (9123413(51‘*’53)%624'10(61'63)) P a,b € ]R+, c € R.

In this case we proceed as in e).

+
f) u-= (plu,a(bl+63)+b62+ic (51-53)) ,a,b € R , c € R.
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P

u,° is
(P »8(8;+85) +Db +1c (61-62)

By Theorem II.D.1l.,
reducible iff

c#0 and b = 2m+l or 2a+b = 2m+l
or
c=0 and b = 2m+l or 2a+b = 2m+l or a+b = 2m
or a=2m, mé€eWN .
P |
Since U(zlu’i°<°1'°2)) is irreducible and unitarily

induced, we have complementary series for O < 2a+b < 1
and limits of complementary series for 2a+b =1 ,

¢ arbitrary. Using the same techniques as in e), one
proves that these are the only unitary representations for

this family of parameters.

£1) u = (ppgsa(b +83)4bb,+ic(8,-05)) , a € RY, b € R,
c € R:

In this case we proceed as in f).

Theorem 11, The unitary dual of GL(4,IH consists of
the following representations:

a) unitarily induced p.s.r.

b) unitarily induced g.p.s.r.

¢) complementary series representations for p.s.r. and

g.P.8.r.
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d) 1limits of complementary series representations,

e) unitarily induced degenerate series representations,

f) complementary series representations for degenerate
series representations, '

g) the one-dimensional unitary representations.

Compressing this result in terms of the parameters
of the proposition, we proved that the following not
unitarily induced p.s.r. er g.p.s.r. are unitary.

a) u€62 s u=((n,n),a62) ,0<a<l,n€NW\O ,

b) uedy , u=(n),-(a/2)s,4ab5,05) , O<a<l , neMoO ,

) ((n),—(a/2)+a63,p%‘4) » 0<a<l , n€ N\O ,

c) nel, ,w

I

(oo,a(61+63)+ib6 +ic63-i(c+b) 6

1 o)

0O<a<l/2 , Db,c € R
or a=1,b=0, CG]R »

w= (p,,a8,) , O<agl

Wo= (po,a(61+63)+b62+ic(51—53))
O<a+(b/2)_gl/2 and O<b<1l and c€R
or a+tbh =1 and 0<a<l , 0<b<l , e=0
or a=b=1,c¢=0 ,
o= (plu,a.(bl+63)+1bbl—ic63-i(c+b)62)

0<ac<l/2, b,c € R,
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=
|

M= (923,a(bl+63)+1b61+ic63-i(c+b)62)

0<ac<l/2, b,c € R,

T
1

= (923,&52) ’ O < ai l r)

b= (pypgys2(8)+83) +1b8; +icbo-1(c+D)b,)
0<a<1/2, b,c €R
or a=1,b=0, c€R ,

M= (p1234,a(61+63)+b62+ic(61-63)
O<a+(b/2)<1/2 and 0<b<1l and
c € R
or a+b =1 and 0<a<l , 0<b<1l,
c =20

or a=b=1,c=o.
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Appendix 1:

Before we can deal with SO(4,IR), we need some
results on SO(3,R):

We choose in S0(3,¢) , the Cartan subalgebra

my

il
} 1
]
|
I
=
\__’/

-l | %
’ 1
m3 = ( -1 = exp 21 (-5 ) .
v 0

We also have

e\t % t( : % >
m, exp - m exp - ti{-3
1 0 1 2 0

i.e. we can consider m as a representative of the

nontrivial Weyl group element so(3,C) . We will now
compute the multiplicity of the Mg-fixed vectors in some

low dimensional representation.
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We denote the n-dimensional representation by Vn .

Case 1: V3

There it is easy to see that V3IM3 breaks up into
(o}

the direct sum of 3 inequivalent nontrivial representations.

Case 2: V
5

® = 2] @
We have V3 V3 V5 V3 V1 s and there are 3
Mg-fixed vectors in V3 ® V3 . Since one 1s contained in

Vl and none in V3 s two are contained in V5 .

Case 3: V7
Y = & 2]
We have V5 V3 V2 V5 V3 s

3 Mg-faixed vectors in V5 ® V3 . Since 2 are contained

and none in V3 » Just 1 is contained in V7 .

and again there are

in V5

We will now use these results to compute multiplicities

of K-types for GL(4,R).
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Lemma_1: We have the following multiplicities for K-types

PO

in U :
(po,61+62+63)

Highest Weight Multiplicity
00 1
10
11
20
21
22
30
31
32
33
Lo

~N ~ O W O N O Ww O O

Proof: (Using Frobenius reciprocity.)
All the representations of so(4,R) are tensor
products of two representations of s0(3,R).

For so(4,C) we choose the Cartan subalgebra

{
N
-
I
1]
nj

Nj=
i
Nj

|
=
o=
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where each of the two summands is a Cartan subalgebra of

one so(3,C) factor. M, 1is generated by

-1 3 3
m = -1 = exp 2n 2 = exp 2m e 1
1 -1 Jﬁ' 2
_l __é_ _%
-1 -1 1
_ -1 _ 1 _ 1
ny = 1 s Mg = R L i -1
1 1 1
We have
1 ! 1
_% K] % Fl % 2
"3 3" T 2
1 1 1
-2 -2 2
and
1
. 2
— -]
m, = exp 21 0 .
0

We write ﬁo for M_ N SO(4,R). It is enough to
compute the multiplicities of ﬁo fixed vectors in

representations of SO(4,R) (by Frobenius reprocity).

The formulas imply that the ﬁo—invariant vectors are
contained in the direct sum of all subspaces of integral
welight, and since the simple roots have the coordinates
(1,1) and (1,-1) , all K-types with highest weights

Pa

(a,b) , a+b odd, do not occur in (U(po,61+62+63))K
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Hence the X-types (1,0), (2,1), (3,0), (3,2) and (4.1)
occur with multiplicity zero.

Now the representation with highest weight (l,l) .
This is the tensor product of the 3-dimensional repre-
sentation of one so(3,C) factor and the one-dimensional
representation of the other factor. In this case we apply
case 1 in the first part of the appendix to show that
there are no M_-invariant vectors.

The representation with highest weight (2,0) is 2
dimensional and has the following weight

20 1-1 0-2
11 00 -1-1
02 -11 =20

on the space with weight (1,-1) , m,,

hence there is no ﬁo-invariant vector contained in the

operates as -1,

direct sum of the spaces of weights (1,-1), (1,1), (-1,1)
and (-1,-1). The three orbits under ﬁo are
{(2,0),(-2,0)} , {(0,2),(0,-2)} and (0,0) . Hence we
get at most three Eo fixed vectors. But since we know
that there are three irreducible inequivalent composition
factors which contain this K-type, it occurs with multi-
plicity three, and ﬁo operates trivially on the weight
space (0,0) .
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Now to the representation with highest weight (2,2) .
This representation is the tensor product of a 5-dimensional
representation of one so(3,C) factor and the one-
dimensional representation of the other factor. In this
case, m3mu operates as the nontrivial element in the
Weyl group of each so(B,C) factor. Hence we can apply
case 2 in the first part of the appendix, so this K-type
occurs with multiplicity two.
In the case of the representation with highest weight (3,3)
we use the same arguments to reduce the problem to case 3
in the first part of the appendix and conclude that this
K~type occurs with multiplicity one.

The representation with highest weight (3,1) is

15 dimensional and has the following weights:

31 20 1-1 0-2 -1-3
2 2 11 00 -1-1 -2-2
13 o2 -1 1 -2 0 -3-1

Since m, operates nontrivially on the spaces of weights
(1,1), (3,1) and (1,3) we get four orbits under ‘ﬁo s
namely ((2,2),(-2,-2)} , {(2,0),(-2,0)} , {(0,2),(0,-2)]}
and (0,0) . The representation of mlm3 on the space
of weight (0,0) is nontrivial since it is the tensor

product of a trivial representation with a nontrivial
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representation. Hence there are three ﬁo invariant
vectors in this representation i.e. the X-type occurs
with multiplicity three.

The representation with highest weight (4,0) is
25-dimensional and has the following weights

40 31 22 13 oL
3-1 20 11 02 -13
2.2 1-1 00 -11 -22
1-3  0-2  -1-1 -20 =31
O-4 -1-3 2.2  -3-1 -4 0

Since m, operates nontrivially on the spaces of weights
(3,1), (3,-1) and (1,1), we get exactly seven orbits
under ﬁo . The representation on the space of weight
(0,0) of ﬁo is trivial since it is the tensor product
of two trivial representations, i.e. we have multiplicity

seven for this K-type.
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Appendix 2:

We give a list of J.H. series without multiplicities

for the representations with parameter
61+62 61+62 62+63 61 62 63
e ;s € s € s

X = e s e ’ e .

Parameter of

P.S.T. Jordan-Holder series
6.,+8
1+83
e 2P J sd 2
o] (90:61+63) «l),(l/2)63+63,pé)
J ,d ,J |
(1) - (1/2)8,-85,08) " (1:1)82)"((2) 0, 51
8, +8
17°3
e s P J !J 4
! (02:82%23) (1), (1/2) 8,85, 3)
J
(2),0,0%)
8. +8
1*°3
e s P J sd E]
2 (pyps8,+8)) (1) 5 (1/2) b8, 03,)
J ,J ’J
(10580 1) - (1/2)8,-85,02) (2,0, 63)
5,+8
1+%3
e ,p J )J »
73 (1),(1/2)8,+85,08) " (P12281%83)
J ,J
((2),0,05) (1), (1/2)8,485) ,93))
61+6

€ ,914 J(914,61+53)
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+8

5
17%2
e 2P J
o (50781%82) (1), (3/2)8,,, 61
J 1 sd 1
((2),(1/2)85,03) (1), (3/2)8,+285,07)
8, +8
1702
e s P J sd ’
1 (pyspq+ep) «1),-(3/2)°2+2°3’°§)
«2) (1/2)pp.05) (CF (1/2)e5)
8 +8
1702
e ) J(p2,61+62)
8,+8,
s J »J ’
e P13 (pl3,61+63) ((l),_(3/2)62+26319%}4)
(@)1 (1/2)8,, 2 ’
s 2:934)
8- +5
e 1 2,914 5, +8 )’J 147
7 (pyy08, 48, ((1),-(3/2) 6,+265, 3,,)
J 1
((2),(1/2)8,,¢3)
(
1
, J
e Thr, (pgs8)"7 (1), (1/2)6,,01)
5
1
e ’pl J(pl,61)
8
e 1,92 T (p,s8,)77 1
27717 (1), (1/2)85,03)
5
e 1"’13 7(013:61)"7
13°°17 (1), (1/2)52,p34)
5
e l,plq

J(pluy 61) ’J((l) s (1/2)62’ pg;)
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5

2

e 490 J sd »J

° (95782)"(1) 8,5, 1) " (2+1),0)

)

)

e 2’p13 J(p 8 ),J 1.9 1.
132727 ((1)585505)  ((1),8,5503y)

Y.1),0)

)

e 2,914 J(p ) )’J 1,°9 1 ’J«1 1),0)
142 °2 «l),b,po) «l),52,934) 2

The J.H. serles of the other representations we get by

symmetry considerations.
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D. Reducibility

Let o = (T,%X,p) € 61' and B € T, B positive with

respect to the ordering defined by Go .

il

Assume mult(BloT) 1 . Then define m  as in I.B.
r

L]

Assume mult(B' ) =2 . Then by I.A. there is a simple
Ct
r

B 4+ €T or B - °‘2i(cn)-1 € ¥ . Define

2i(a)-1

r = (r )

a i(a)’

Assume mult(8| ) = 4 . Then by I.A. there are simple
O(r _

Toots  Cps(0)-17%23(a)-1

i(_a),j(a) € {1,...,r} , s8.t. either B8 +°‘Qi(o,)-l € T or

with i(a) < j(eo) and

€ ¥ , and either B8 + o € Y or

P - %21(0)-1 23(0)-1
B - %4 (0)-1 € T . Define T_ = (ri(a)’rj(a)) .

-d
Now for T € (Z\0)T and o € ﬁr , define Hér’p) c ﬁ\r

as follows:

a) If mult(B) =1,

(a,l0g X) em+l , m € N, if p(ma) =1

Hé?;p) - 'SX .

( (o, 108 X) om , m € N, otherwise

il

b) If mult(B) = 2,

Hé?’p) = {xl | (a,10g %) | - |ri(a)l € N\O and (a,log x)EB}



172

c) If mult(B) =4 ,

1{T2) = (x| (w108 0 1-Izy gy | + Iry ()] € W0
if Iri(a)|_>_ lrj(a)l and (a,log X) € R

| (2,208 x)| + Iri(a)l - Iryqyl € ™0
if Irj(a)lzlri(a)l and (a,log X) € ]R}

+
Let C,. be a Weyl chamber in oy and let (Zr)cr
be the positive roots system of Er defined by Gr .
Then we can find an ordering (}:)g of £ which is
r .
compatible with (Zr)g s 1.e. the restriction of
r

a € ()3); to ot, is either zero or contained in
r

+ +
contained in (Zr)c . If a € (T )C’r , a simple, we

-+

write & for {a,-a} N ¥F where st is the ordering

defined by Go . Define

yé?ﬁp) = U Hé?’p)

r o

where o runs through all simple roots in (E)5  s.t.
r

amr;!O,and

Hé-f:P) - U ygﬁp)

WEWr T

Theorem 1., ILet P = f('/ be parabolic associated to Or .

— -
ducible i (Typ) |
Then UI(’T’,x,p) is reducible iff ¥y € HOr
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For the proof we need the

Lemma ¢ Let Pl’PE be two parabolics associated to Weyl
. ' 1 .
chambers in <xr . Then U(fﬁp,x) is reducible, iff

Py
d ble.
U(?ﬁx,p) is reducible

This lemma will be proved later.

-
Proof of the theorem. First I will show that Y € qér,p)
r

implies U? is reducible.

?9X, p)
Agssume ¥ € ﬁérﬁp) . Then there is a w € Wr s.t.
r

._.)
X € Méé’p) . The above lemma shows that it is enough to
r
prove the assertion for P = Ehc . Now let 8 DbDe a
— r -—
simple root in (z);;3 s.t. X € Hér’p) .

r
Assume mult(Bla ) =1 . Then either O(P ,(?,x,p),sa)
T =r

or (P ,sa(fix,p),se) is defined and by I.D. and II.A.
- r

has a nontrivial kernel. Hence the representation is

reducible.

Assume mult(B'O() = 2 . Then there is a B' € (2»; s.t.
r r
B'Lﬂ = a’or . Hence B8'-8 € (Zx; and B'-B 1is even
r r r
- v
simple. Then either CKggwjr,(r,x,p),s(s,_s)sa) or

CX(S(BI__B)SB gwr:3(av_3)ss(?:')(: p);SBS(B,_B)) is defined.

Using I.D., we reduce the problem to the reducibility

problem for the representation of GL(3,R) with parameter
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(?B,(B,x) ). By II.B., 6 this representation is
reducible,
Assume mult(BIm = 4 ., Then there are B8',p"¢€ (')::)c';~

r
s.t. are s.t. B8'-B and B"-B are

o
simple roots. Then either OUP . {T,%,P),SoSqn_aSq:_gSa)

—we ATrRePlaSgSgr_gSgr_gip
or O(P ,(?ss"_s Sa¥XsP) sSa8 Sgn_aoSg) is

=wC 21T TeTR -8R -8 ’TpTB'-gTB-878

defined. Using I.D., we reduce the problem to the redu-
cibility problem for the representation of GL(A,IH with
parameter (?B,(B,x),bz) . By II.cY9 this representation
is reducible.

Typ)
Thus UP—> is reducible if x4 s P
r

X:p)

Now we will show that UP—» reducible implies

X € Hér"’)
Assume U?

X:p)

r.%s0) is reducible. By the above lemma we can
assume that ¥ 1is dominant with respect to P . Now let
Wo = Wyseoo,sWy be a product decomposition of the Weyl
group element defining the long intertwining operator, and
let io be the first index such that the corresponding
factor of the operator has a nontrivial kernel. Then we

-3
have B8 € ¥ s.t. ¥ € Hér’p) . The proof is complete if

we can show

B = wy

or

3
w
]

wy for w € W,  and vy simple in (2)5: .
r



175

If mult(B) =1 or 4 this follows from I.A.2. and if
mult(B) = 2 from I.A.4. 0

Proof of the lemma.

In I.F.1l. we showed that UIZ—» is reducible iff

P r,¥X, P)

U(?,wx,Wp) for w € WrP 1s reducible. But for le_ljcr
P £ .
= " 1@

we have U _’r =U 5 T . This proves the lemma
(T,wx,wp) (T,%sp)

for parabolics associated to conjugate Weyl chambers.

On the other hand in II.B. we showed that the lemma is true
for SL(3,R). Hence assume now P,,P, are associated to
+ + +
Weyl chambers Ql,de s.t. (}L‘r)a1 n (Zr)c2Ua= ()Zr)c:L and
(T)a. N (S)a U-a=(E)3 for o €L  with mult(a)=2 .
1 2 2 ’
But then by our results on GL(3,R) we have an inter-

twining operator from

P P
vl to U2
(T5%,0) (T,%,p)
or from
P P
U i to U i
(I‘,X, p) (r:X: P)
P, Py
Thus U - is reducible if U > is reducible
(r:x: P) (I‘,X, p)

and hence the lemma is true also for non conjugate

parabolics. 0
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