
Aptamers for Detection and Diagnostics (ADD): Can mobile systems process optical data from 
aptamer sensors to identify molecules indicating presence of SARS-CoV-2 virus? Should healthcare 
explore aptamers as drugs for prevention as well as its use as adjuvants with antibodies and vaccines?   
 
Shoumen Palit Austin Datta1, 2, 3, *, Brittany Newell4, James Lamb5, Yifan Tang6,  Patrick Schoettker7, 
Catherine Santucci8, Theresa Gräfin Pachta9, Sanjay Joshi10, Oana Geman11, Diana C. Vanegas12, Daniel 
Jenkins13, Carmen Gomes14, Pramod P. Khargonekar15 , Molood Barati16 and Eric Scott McLamore17 
 
1 MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology,                     
Room 35-206, 77 Massachusetts Avenue, Cambridge, MA 02139, USA (shoumen@mit.edu)  
2 MDPnP Interoperability and Cybersecurity Labs, Biomedical Engineering Program,                                        
Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School,                           
65 Landsdowne Street, Suite 232, Cambridge, MA 02139, USA (sdatta8@mgh.harvard.edu)  
3 NSF Center for Robots and Sensors for Human Well-Being (RoSeHuB), Collaborative Robotics Lab,            
School of Engineering Technology, Purdue University, 193 Knoy Hall, West Lafayette, IN 47907, USA 
4 Adaptive Additive Technologies Lab (AATL), School of Engineering Technology, 189 Knoy Hall, 
Purdue University, West Lafayette, IN 47907, USA 
5 Saturn Cloud Inc and former IoT Data Scientist, Amazon Web Services (AWS), Amazon Inc, USA 
6 Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson 
University, Clemson, SC 29631, USA  
7 Department of Anesthesiology, Lausanne University Hospital and University of Lausanne, Rue du 
Bugnon, CH-1011 Lausanne-CHUV, Lausanne, Switzerland 
8 Barts and the London School of Medicine and Dentistry, Queen Mary University of London Malta 
Campus, Triq l-Arċisqof Pietru Pace, Victoria, Gozo, VCT 2520, Malta 
9 Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End 
Road, Bethnal Green, London E1 4NS, London, UK 
10 Industry CTO Healthcare, Global CTO Office, Dell EMC, Hopkinton, MA 01748, USA 
11 Department of Health and Human Development and Department of Computers, Electronics and 
Automation, Stefan cel Mare University of Suceava, Strada Universității 13, Suceava 720229, Romania 
12 Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson 
University, Clemson, SC 29631, USA 
13 Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI  96822 
14 Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA 
15 Vice Chancellor for Research, University of California, Irvine and Department of Electrical 
Engineering and Computer Science, University of California, Irvine, California 92697, USA 
16 School of Engineering, Computer and Mathematical Sciences Auckland University of Technology,             
Auckland 1010, New Zealand 
17 Department of Agricultural Sciences, Clemson University, Clemson, SC 29634, USA 
 

*Corresponding author – Dr Shoumen Datta shoumen@mit.edu or sdatta8@mgh.harvard.edu  

mailto:shoumen@mit.edu
mailto:sdatta8@mgh.harvard.edu
mailto:shoumen@mit.edu
mailto:sdatta8@mgh.harvard.edu


2 ▪ ADD is in the MIT Library https://dspace.mit.edu/handle/1721.1/128017 and ChemRxiv https://doi.org/10.26434/chemrxiv.13102877  

This article is dedicated to the memory of 

Bernard Lown 
June 7, 1921 – February 16, 2021 

 

 

Friend, mentor, inventor, physician, scientist, cardiologist, 
statesman, humanist and grandfather to Ariel Lown Lewiton. 

 
Dr Bernard Lown with Dr Hélène Langevin Joliot-Curie, granddaughter to                    
Marie Curie and Pierre Curie (middle) and Mrs Louise Lown (1946-2019).                    
Photograph by Shoumen Datta. March 01, 1997. Bedford, Massachusetts.  
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Aptamers for Detection and Diagnostics (ADD): Can mobile systems process optical data from 

aptamer sensors to identify molecules indicating presence of SARS-CoV-2 virus? Should medicine 

explore aptamers as drugs for prevention as well as its use as adjuvants with antibodies and vaccines?   

Datta et al 

“CITCOM” precedes this proposal. PDF is in the MIT Library https://dspace.mit.edu/handle/1721.1/128017   

 

ABSTRACT 

Engineering a biomedical device as a low-cost, non-invasive, detection, and diagnostic platform for 

surveillance of infections in humans, and animals. The system embraces the IoT “digital by design” 

metaphor by incorporating elements of connectivity, data sharing and (secure) information arbitrage. 

Using an array of aptamers to bind viral targets may help in detection, diagnostics, and potentially 

prevention in case of SARS-CoV-2. ADD may spawn a broader approach from ADD diagnostics to 

AAAD (aptamer-as-a-drug) therapeutics. CoVID-19 as an airborne endemic infectious disease (EID) 

may be analogous to a social IED (improvised explosive device) which may profoundly transform geo-

political economy. Desperate demand for alternatives to high energy consuming RNA vaccines may be 

partially met by lower cost DNA and RNA aptamers both for diagnostics and for therapeutics, globally. 
 

 

1. ADD for SARS-CoV-2 

The scale of mortality and morbidity due to SARS-CoV-2 evokes us to explore unconventional 

approaches to mitigate the risks presented by pandemics. Scientists may be less aware of the discovery of 

aptamers thirty years ago but the “fit” of aptamers with respect to the molecular biology of the current 

problem makes it worthwhile to propose new tools. Innovation may arise from the combination of  

chemistry and molecular biology with sensor engineering and opportunity for data dissemination1 to 

benefit public health2 by integrating the principle3 of internet of things4 (IoT5 as a design metaphor). 
 

 
 

Table I: Is the eight6 year interval between SARS, MERS and COVID-19 just an unrelated coincidence? 

>> 100 million 

https://dspace.mit.edu/handle/1721.1/128017
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2. Aptamers for Detection and Diagnostics (ADD) 

Single stranded (ss) DNA aptamers (ssRNA7 are equally useful8 but susceptible to degradation 

by ribonuclease) bind with specificity to SARS-CoV-29 proteins (Nucleocapsid, Spike, Nsp1). 

Aptamers are conjugated with carbon or cadmium quantum (QT) nano-dots. If there are viruses (1, 10, 

100, 1000) in a sample (sputum, saliva) at a detectable level, then it triggers QT.DNA (QTD) conjugated 

complex to transmit optical property change (EIS or electrochemical impedance spectroscopy is another 

option for signal transduction). An optical signal transduction mechanism may offer low cost data 

acquisition, enabling billions of people to use ADD (detection tool) at home or anywhere (AHA). The 

end-user must have access to the "QTD" conjugate (distributed by health departments in hamlets, towns 

and cities). QTD (product) may be a slurry in a tube labeled as "CoV-2-DETECTION & DIAGNOSIS” 

(C2DD). It remains to be investigated if inclusion of endo-b-N-acetylglucosaminidases (ENGases10) in 

the slurry may be necessary to expose the binding sites by partially removing the N-glycan coat if the 

viral Spike protein is the target (Figure 20).  Imagine C2DD as a tube of lip balm or similar form factor. 

For supply chain and logistics, it will reduce operational cost of distribution if C2DD may be shipped as 

a tamper-proof sterile vial without the need for cold supply chain or special storage to extend shelf-life.  

 

First, end-user uses her smartphone holo-lens "QTD" app (not limited to Microsoft HoloLens, 

the concept can be re-developed anywhere to reduce cost) to take an image of the C2DD vial/tube 

without sample (no virus). Priming (tuning) step is critical to establish a baseline for signal transduction 

and app-embedded data analytics engine to set the system to "without virus" ground state to obtain an 

optical "ground zero" (baseline will be different for EIS). Open question for instrumentation is the need 

for UV activation (for traditional nanodots) to record the shift (valence electron transfer). Can the app 

be configured to perform the activation and record the photoluminescence change? Using visible light to 

activate and coupling activation/quenching with the app needs innovative chemical/device engineering.  

Second, the end-user spits (or adds a small volume saliva or sputum using a swab/spoon) in the 

test tube (vial). There is room for controversy in this step but it is the easiest non-invasive procedure. 

Third, end-user uses her smartphone holo-lens "QTD" app to record optical change (as soon as 

possible after adding saliva/sputum). Perhaps similar to bar code or EPC or QR code scanning. 

Fourth, end-user uses her smartphone holo-lens "QTD" app to record optical changes every 5 

minutes for 30 min (from the time of adding the sample). There will be questions about ENGase activity, 

binding kinetics of the aptamer, signal to noise ratio ([filtering algorithms (Kalman11 filter), error 

correction], activation/quenching issues, damping of signals due to interference from host proteins, 

salinity and pH of mucus-mucin/saliva/sputum sample (any or all could jeopardize binding and signal).  

 

https://dspace.mit.edu/handle/1721.1/128017
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3. ADD Digital Data Design 

Baseline versus change over time will appear as a plot in the app (analytics, Figure 1, uses basic 

machine learning (ML) tools, for example, SVM or support vector machine). Fool-proof visualization by 

generating a "traffic signal" visual [green oval (NO virus detected); red oval (virus detected); yellow oval 

(inconclusive/ambiguous)]. Data gathered by the smartphone app (if enabled by user) to be transmitted 

to national centers of epidemiology (eg CDC in USA, ECDC in EU) and local hospitals (the choice will 

be user-dependent). Allowing collection of anonymized data may be one alternative (without recording 

IPv6/IPv4 addresses) but pros/cons to be considered for the greater good, public safety and privacy12. 

This app is a "frontline" detection tool which may be used everyday or each week, At Home or 

Anywhere (AHA), by individual users. The "C2DD" vial has no therapeutic value. Positive results (red 

oval - virus detected) may have to be re-confirmed using lab tests (PCR, mAbs) in a clinic or hospital. 

C2DD PRODUCT and associated SERVICE "QTD" app if combined, are data-informed tools. It does not 

offer or guarantee further testing or treatment. Distribution and pricing of the hypothetical C2DD 

product and proposed pay-per-use (PAPPU13) service for QTD will be debated by corporations. Free 

distribution of C2DD and a micro-payment model (pay-per-use) for the "QTD" app is advocated. 

Users may hide or selectively control data/information sharing as well as access to surveillance 

data (data from daily screening for infection by the infectious agent in question). Secure sharing of 

surveillance data by users (citizen science) is recommended to generate a robust and representative 

status of the community or infected demographics in the region in terms of molecular epidemiology.  

In general, data from molecular epidemiology is critical for resource-constrained healthcare 

supply chains to optimize planning (humanitarian logistics), allocate human resources (medical 

professionals) and organize transportation of materials to areas where assistance is needed. Citizen 

science14 efforts are germane for the efficacy of healthcare systems in case of widespread infections 

(epidemics/pandemics). The tools which makes citizen science possible and effective may be viewed as 

global public goods. Similar systems for animal surveillance (farms, cattle, poultry, meat) are necessary 

to reduce infection in domestic animals (pets) and from crippling the food supply chain.  

Components of the ADD system (QTD, C2DD) including mobile data collection, information 

arbitrage and public health applications are not limited to SARS-CoV-2 but is a platform approach 

which includes digital design elements illustrated15 in Figure 1. Citizen science supported public health 

may immensely benefit from detection of viruses, bacteria, fungi, prions or any infections agent as long 

as an aptamer (oligonucleotide based on the idea16 of an “anti-sense” approach17) may bind a small 

molecule or a macromolecule (peptides or proteins) with sufficient specificity, sensitivity and selectivity 

to generate credible data which may be distributed in real-time to inform and initiate subsequent steps. 

Scoring data from test sample, negative and positive control (for same person) will improve accuracy.  

https://dspace.mit.edu/handle/1721.1/128017
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Figure 1: ADD system also includes data acquisition, analytics and data distribution which includes 

elements of the concept referred to as internet of things (IoT) which is a “digital18 by design” metaphor. 

Cartoon shows the potential path of raw data from the hypothetical binding between a sensor and a 

target19 molecule. Raw data from signal transduction due to binding activity is transmitted and acquired 

at the “edge” by the smartphone. The raw data is “processed” using tools either at the edge (embedded 

operations in the smartphone) or data may be uploaded to the cloud. Post-cloud computing analytics is 

returned to the edge device for display within an ADD application portal on the smartphone. The choice 

between edge versus cloud computing is a function of infrastructure (availability of wireless bandwidth, 

at the edge). The user may observe a difference in the time that it takes to process the data and display 

information (delayed visualization due to latency, function of bandwidth and speed).   
 
 

Data scoring and processing is recommended due to variability of systems. ADD proposes the 

use of aptamers but other alternative arrays (see section 6) which may use the general approach (above) 

may “weigh” the information based on probability of false positive / false negative outcomes from tests20 

(separate from false positives / false negatives in machine learning21 models). Assigning weighted risk to 

data and running other analytics can be performed on the mobile device (smartphone) or in the cloud, 

depending on access to and quality of telecommunications infrastructure. Cloud computing could add 

latency22 between upload and display of information or prediction, depending on availability, reliability 

and connectivity to the internet. Several regions of the world still lack sufficient access to the internet23. 

https://dspace.mit.edu/handle/1721.1/128017
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Scoring, processing and assigning risk within the analytical engine may benefit from machine 

learning (ML) tools to create a set of models or rules, to be described by and agreed on by experts. The 

system may scan and screen the image or data from the holo lens app (optical signal) to compare with 

these models or rules. Assigning an “image risk score” (IRS) may influence the presentation of the raw 

data where the “traffic signal” “red” may be provided with a sub-text containing a confidence score or 

include a qualitative comment (likely presence of virus) associated with a Likert-type24 indicator/scale. 

In any procedure, enabling the IRS to influence the raw data must be stringently controlled. 

Models or rules must be agreed by global experts whose credibility may be above question. Hence, these 

models and rules must stay outside the realm of testing services or labs or groups that are involved with 

creating systems, for example, ADD. It is preferable if model scoring (assigning risk score to an upload) 

runs on a platform which is not influenced by the local operator or the mobile user. The smartphone 

uploading the data may use a “tool” that applies the IRS engine residing in a secure infrastructure in a 

public cloud (FDA, NIH, NSF, CDC, ECDC) using appreciable level of cybersecurity (eg. Microsoft 

Azure, Amazon AWS). The smartphone must have the permission and physical availability to wireless 

internet or mobile data network to remotely access analytical tools in the cloud, such as, the IRS engine. 

One alternative is to install (and update) the data scoring models/rules (IRS engine) in the ODS 

(operational data store, see Figure 1). The ‘message broker’ receives uploads and sends them to the ODS, 

which serves “hot” data to the app. ODS database is tuned for rapid reads, and serves requests made by 

the mobile app (only recent uploads and metadata about those uploads, including “risk scores”). 

Risk scores are generated from models which are trained from historical data relevant to the test 

in question (using aptamer or antibody or other molecules, for example, hACE2). There must be access 

to sufficient statistical data from each type of test to create a credible risk score. If the model is based on 

bad data (garbage in), the risk score and IRS engine will spew bad information (garbage out). The 

model’s responsibility to assign “risk score” impacts the “traffic signal” and could alter the outcome. 

Model training25 requires vast quantities of historical data, curated and pooled across multiple users who 

used the test and verified their outcome. If the binding was positive it must be corroborated by PCR26 or 

another test with even higher specificity to confirm the result from the binding test using ADD tool. 

Model-building is an iterative exercise that requires lab data from testing to be evaluated by 

credible scientists before data scientists can use it (curate?) to train ML models, which are error prone27. 

In model scoring, a model (in the IRS engine) is called to act on the uploaded (input) data. This analysis 

generates a prediction, displayed on the smartphone as information or recommendation for the user. 

The outcome the user views depends on the design choices made in ML model28 training. It is absolutely 

central that model scoring requires “features” (characteristics germane to model/analysis). Creating 

features29 is the task of a team of specialists (scientists collaborating with data experts). Harvesting 

https://dspace.mit.edu/handle/1721.1/128017
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feature vectors and data relevant to the feature is the task of feature extractors. It may be provided by 

humans or we may use automated30 feature31 selection/extraction32 to generate features from raw data. 

 

4. Beyond ADD  

Scientific and engineering challenges to design ADD must embrace trans-disciplinary activities. 

But, no new physics is necessary. ADD may be available to billions, as a low-cost mobile AHA (at-home) 

product linked to IoT-type service app. The user experience is related to the service, not the product. The 

convergence of hardware and software with science and engineering as well as analytics and machine 

learning to meaningfully ascend the DIKW pyramid (data, information, knowledge, wisdom) is key to 

creating any detection platform where other tools and devices may upload data using open data APIs 

and standards-compliant data interoperability (DDS33) tools to aggregate or explore cumulative 

analytics, integrated with other systems, for example, geographic information systems34 or GIS. 

In the broader spectrum, ADD is an embryonic element of a potential global health surveillance 

platform (GSP) which may be pivotal as an early warning signal for humans and animal farms. Lessons 

from tsunami detection are sorely missing from public health policy discussions. Implementation of 

GSPs are neither a part of any local public health strategy nor on the agenda of precision population 

health management organizations (CDC, ECDC, WHO).  

An important element of the global health surveillance platform (GSP) may include data from 

non-invasive profiling, referred to as “pay-per-pee” healthcare, which may be instrumental in molecular 

profiling for longitudinal studies on health and wellness35. GSPs may try not to dwell on genomics36 

(DNA) and expression37 (RNA38) in imprecision39 medicine but include proteomics because gene 

expression is insufficient unless the functions are implemented by proteins. Aptamers40 in proteomic 

profiling (GWAS41, metabolomics) and other applications42 including ADD may benefit from synergistic 

integration to help predict status of health (collected papers43 provide select applications of aptamer).  

Genomics is a “snapshot” (static structure of the infrastructure) and transcriptomics (RNA, 

GTEx) is an indicator of expression, which is data, but data may not (always) contain information. 

Proteins bind44 in a myriad of ways45 and translates data to usable information to maintain standard 

dynamic operating procedures (physiology, homeostasis, metabolomics).  

Proteomics is a “time series” but its analysis over time may be interrupted due to feasibility and 

logistics of implementing programs like pay-per-pee healthcare, not to mention the complexity involved 

in extracting sense, often cryptic, from thousands of protein profiles, over time. Static protein profiles 

using NMR and mass spec46 tools only capture snapshots. Can proteomics make sense47 of a cytokine 

storm as markers of counter-anti-inflammatory response48 even before the infectious agent is detected? 

Perhaps it is utopian to expect proteomic profiling as a daily practice in healthcare and home-health. 

https://dspace.mit.edu/handle/1721.1/128017
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Figure 2: (Top) Pay-per-pee healthcare may provide time 

series data for precision medicine. (Left) “Collection of 

saliva samples by patients themselves negates the need for 

direct interaction between health care workers and 

patients. This interaction is a source of major testing 

bottlenecks and presents a risk of nosocomial infection. 

Collection of saliva samples by patients themselves also 

alleviates demands for supplies of swabs and personal 

protective equipment. Given the growing need for testing, 

our findings49 provide support for the potential of saliva 

specimens in the diagnosis of SARS-CoV-2 infection.” 
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5. Prevention follows Detection and Diagnostics  
 

If viewed50 as non-classical antibodies51 then the role of aptamers vastly exceeds that of 

detection. It spills over into prevention, perhaps as an alt-vaccine, albeit non-immunogenic. Identifying 

aptamers that can detect viral proteins in saliva implies that the aptamers may also bind the same protein 

(albeit with altered kinetics52) if administered topically (nasal spray, throat spray, soft-mist inhaler). 

Protecting the naso-pharyngeal area by saturating it with aptamers which binds (irreversibly?) to 

proteins from respiratory viruses (SARS) may be a preventative measure. Asymptomatic53, pausi-

symptomatic and COVID-19 patients clearly expressing symptoms associated with SARS-CoV-2 may 

continue application of the aptamer cocktail to reduce the spread of infection by disabling (?) nascent 

virions. Aptamers preventing the spike protein (S1 RBD) of SARS virion from attaching to the ACE-254 

viral receptor protein of uninfected cells may slow down the infection and development of COVID-19. 

It follows that aptamers can also bind to any or all viral proteins not only in the extracellular 

space but also inside the cell. Delivering a portfolio of functional aptamers inside the cytosol must face 

the challenges posed by bio-availability and toxicity due to the potential for perturbing functions of 

essential55 cellular proteins. Creating aptamers as alt-vaccines for any infecting organism (virus, bacteria, 

fungi, prion) which uses a protein in its lifecycle may be an (~30 year) old idea. Will the use of aptamers 

gain greater prominence in global public health practices, as a low-cost global public goods tool to 

contain the current and future epidemics and/or pandemics, worldwide, in humans and animals?  

Single stranded RNA or ssDNA aptamers are not linear “tapes” but 3-dimensional shapes as 

illustrated by the discovery of tRNA56 by Paul Zamecnik, Mary Louise Stephenson and colleagues at 

MGH, HMS. Publication of the discovery of tRNA by Zamecnik in 1958 catalyzed an array of milestones 

including the discovery of mRNA by Brenner57 and Gros58 as well as the lac operon model of feedback 

inhibition by Jacob and Monod59, all three published in 1961. The role of proteins in regulation60 

emerged as central to physiology and metabolism. In transcription, translation and replication61 the 

binding between proteins and nucleic acids acted as a “switch” (mechanism of action). The notion62 of 

aptamers63 germinated64 in 1990 but it drew on knowledge from binding between oligonucleotides and 

proteins. Aptamers may be 20-6065 oligonucleotides or more. Binding specificity66 of an enriched pool 

may be orders of magnitude different (Kd) between a nearest neighbor or an analog. Sequential steps67 

are necessary from a starting sample (for example, 9×1014 ssDNA oligonucleotides) to arrive at an 

enriched pool of aptamers (19 ssDNA aptamers). The process has evolved68 in complexity69 and unique 

structures may be involved70 in conferring specificity. In many applications71 of aptamers72 the debate 

also involves issues pertaining to trust and doubts73 due to the constant demand for increasing accuracy 

and precision with respect to sensitivity, selectivity and specificity, in detection and diagnostics. 

https://dspace.mit.edu/handle/1721.1/128017
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Current and future74 application75 of aptamers include chemistry76, chemotherapy77, food78 

safety, diagnostics79, antibodies80, alt-vaccines81, imaging82 and different83 types84 of biosensors85. ADD as 

a detection tool for SARS-CoV-2 proposes aptamer-based sensors (aptasensors) to detect SARS-CoV-2 

proteins. When an aptamer binds with the target, the signal (data) will be transduced and captured by a 

mobile device. Analytical tools will process data and display information on smartphones (Fig 1). Data 

dissemination will follow according to user preferences, to inform public health authorities or hospitals.  

Optimism for aptamers as detection tools86 extend to SARS-CoV-2 due to the detection of 

SARS-CoV (etiologic agent of 2008 SARS epidemic) C-terminal of N (nucleocapsid) protein at a 

concentration as low as 2 picograms/mL using a RNA87 aptamer in a nanoarray. Tests using saliva88 may 

be unsuitable for RNA89 aptamers due to presence of ribonuclease90 (RNase). DNA aptamers previously 

shown to bind to the N protein of SARS-CoV (Kd 4.93±0.3nM91) also92 binds to the N protein of SARS-

CoV-2. The N protein93 of SARS-CoV-2 shares 91% sequence homology with the N protein94 of SARS-

CoV but is less similar (16% - 38%) with N protein from the other 5 known human coronaviruses. Thus, 

detection95 of N protein in saliva using an aptamer-based ADD aptasensor is possible. Aptamer-based 

technologies96 directed toward SARS-CoV-2 Spike protein are gaining97 momentum98. Blocking99 the S 

protein from attaching to hACE-2 may perturb viral entry and prevent100 the spread of infection. 

Aptamers created against the S1 RBD101 may block binding to hACE-2 (internally) or serve as a detection 

tool (external ADD aptasensor) to test saliva/sputum for SARS-CoV-2. Other102 SARS-CoV-2 targets103 

including Nsp1104 may be less accessible in saliva because they are synthesized after viral entry. But, 

during the burst cycle, when new virions are released, viral proteins inside the host cell may be exposed. 

The targets are not limited to external viral proteins (spike, nucleocapsid, envelope proteins; Figure 4). 

Signal transduction and data acquisition follows detection. In addition to EIS (electrochemical 

impedance spectroscopy105) signals, optical signals are preferred because data acquisition using cameras 

and apps in smartphones are feasible in locations where resources may be limiting. Protein106 

detection107 by conjugating aptamers with quantum dots108 is a tried109 and true110 process111 which may 

be the optical signal (data) for this system. Changes in optical characteristics due to binding may be 

captured by cameras on mobile phones or HoloLens112 app in smartphones may scan the saliva sample 

(think barcode or QR113 code scan). Cameras (sensors) associated with the holo-lens (Kinect114) can scan 

the “field” and collects data to create a digital geometry115 (digital model, 3D image). For ADD, 

HoloLens tools required for holographic functions116 may be unnecessary, for example, accelerometer 

(speed of movement), gyroscope (tilt, orientation) and magnetometer (compass). Optical data captured 

from saliva containing testing vials will be analyzed (machine learning tools; see Figure 1) followed by 

visualization of information on the mobile device and (secure) information arbitrage, if authorized. 
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6. Alternative Arrays 

 

Figure 3: Multiplexed117 Detection Tool for SARS-CoV-2. Upper panel presents potential recognition 

and detection  chemistries. The data (fusion, middle panel) will be analyzed and assay results displayed 

(bottom). The data and information will be displayed on a mobile device (see cartoon in Figure 1). Three 

distinct binding targets for SARS-CoV-2 spike protein RBD are presented in sections A, B (ADD) and C.           

In (A) RBD-antibody (SARS-CoV-2 strain specificity) is functionalized with EDC-NHS chemistry to 

metal (gold, Au) nanoparticles (or may be attached/adsorped on laser inscribed graphene, LIG).             

In (B) single-stranded DNA aptamers with thiol linker is adsorbed to metallized LIG (ADD aptasensor).       

In (C) histidine-tagged human ACE2 is adsorbed to metallized LIG. (D) Binding elicits signal (EIS, 

impedance spectroscopy) which is transduced to a mobile device. Data acquisition is followed by “hot” 

data upload to embedded tiny database (tinyDB118) in the device (ODS in Figure 1). Analytics may be 

executed on the device (embedded logic, machine learning tools) or uploaded to cloud server. The data 

fusion (model scoring) step may be necessary to make sense of the data, in combination, to provide not 

only raw data (results from A, B and C) but information, extracted from data and processed according to 

a simple SNAPS119 paradigm to convey the meaning of the outcome, to inform the non-expert end-user. 
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Interpretation of data may be necessary due to the caveats of target binding and recognition. The 

specificity of the antibody used in the tool may not bind or bind with lower affinity (Kd) with viral target 

protein (Spike protein) due to mutations in the epitope which generated the immunoglobulin (IgG). 

Lack of binding or lower affinity of binding can interfere with signal generation and failure to log signal 

over noise. Thus, individuals carrying SARS-CoV-2 may fail to test positive (false negative) if the viral 

variant possesses mutations preventing the antibody (A) to bind with the mutated Spike protein. Other 

factors (temperature, pH, salinity) may also interfere with signal (see “model scoring” in Appendix).  

In (B), binding with the aptamer is highly specific but it depends on precisely which 

oligonucleotide (sequence of the ssDNA from an enriched pool) binds to which part of the Spike 

protein. For ADD, one aptamer may bind to the RBD (receptor binding domain) of the SARS-CoV-2 

Spike protein. The length of the RBD (primary sequence) used in screening and enriching for the 

aptamer(s) may influence the shape (structure) of the RBD during selection phase. The complementarity 

of the shape of the RBD and the secondary/tertiary structure of the ssDNA complex is key to the binding 

specificity and affinity. If the test sample contains the whole Spike protein (includes RBD) as well as 

fragments (peptides with different lengths of amino acid sequence) which may or may not contain the 

RBD then the binding to the aptamer may fluctuate (widely) because the primary sequence of the protein 

may influence the secondary and tertiary structural outcome. The latter may change the configuration of 

the RBD in a given fragment and prevent binding to the aptamer, generating a false negative. If a sample 

contains other proteins and peptides, it is possible that the 3D configuration of an arbitrary protein or 

protein fragment could mimic or compete, albeit partially, with the RBD, and elicit a signal by binding 

with the aptamer, even if the binding is ephemeral due to reduced affinity (false positive result). 

Binding of the Spike protein RBD to the immobilized hACE2 protein target (C) is probably the 

weakest link in this tripartite approach. Presence of mutations, dynamic or modified configuration and 

the effect of the environment (temperature, pH, salinity) may perturb binding and corrupt the signal.  

Error correction and data curation may be necessary to prevent data corruption (false negative, 

false positive, limit of detection) to improve the information and recommendation for end-users. If the 

confidence in the raw data from each element is high, then the data may be responsibly combined (after 

data scoring, image risk score) to display the information with an assigned degree of  confidence which 

may be more than the sum of the parts (positive, negative, false positive, false negative). The strategy 

from data acquisition and display vs information and recommendation must reduce risk, optimize level 

of precision and accuracy to maximize the value of the information for the user and/or the community. 

Of greater concern is the accumulation of errors, which when aggregated (time series data from ADD 

used as a surveillance tool), may generate spurious results with respect to the status of the population.  

https://dspace.mit.edu/handle/1721.1/128017
https://doi.org/10.26434/chemrxiv.13102877


15 ▪ ADD is in the MIT Library https://dspace.mit.edu/handle/1721.1/128017 and ChemRxiv https://doi.org/10.26434/chemrxiv.13102877  

7. Array of Targets  

 The ADD approach for detection of infectious agents is based on targets identified from the 
biology and/or lifecycle of the organism and its interaction with the host (humans, animals). The RBD 
(receptor binding domain) of the Spike protein from SARS-CoV-2 and the human ACE2 cellular 
receptor (in bats, rats, pangolins and related animals in the phylogenetic tree; reviewed in reference 9) 
are under intense scrutiny. But, exploring the biology of SARS-CoV-2 reveals other equally potent 
targets. Developing drugs, antibodies and aptamers may benefit from a brief review of the viral biology. 
For SARS-CoV-2 detection alone, there are at least two other external proteins which may serve as 
targets for binding to aptamers, the M protein and the E protein in addition to S protein (Figure 4). 

 

Figure 4: ssRNA genome of SARS-CoV-2 is longer compared to other RNA viruses (HIV, Influenza, 
Zika, Ebola; see Figure 16). It is encased in a nucleocapsid core (N protein120) and resides inside the 
virus. External surface of the virus is studded with S (spike), M (membrane) and E (envelope) proteins.  

 

 The receptor binding domain (RBD) of the Spike protein appears to make the first contact with 
the human cellular receptor ACE2 (angiotensin converting enzyme 2). Disrupting this event is the Holy 
Grail for preventing the virus from entering the cell. The mechanism by which Spike protein facilitates 
viral entry is not merely due to the recognition (between RBD and ACE2) but a cascade of events that 
begins after successful binding. The events that follow result in fusion of the viral envelope with the cell 
membrane, thereby allowing the viral genetic material (+ssRNA) to be delivered inside the cell in order 
to create progeny viruses. Fusion is mediated by the fusion machinery and fusion peptide sub-segments of 
Spike S2 protein which includes a step resembling a “jack-in-the-box” toy121. These segments of the 
Spike protein are better conserved and occupy a distinctly different part of the Spike protein (Figure 5).  
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Figure 5: Sequence conservation122 of sarbecovirus S glycoproteins plotted on the SARS-CoV-2 Spike 
protein structure [viewed from the side (A) and top (B)]. The receptor binding domain (RBD S1) is 
separate from the region of the Spike S2 protein necessary to initiate viral entry. The latter is better 
conserved (fusion machinery, fusion peptide) and perhaps better targets for ADD aptasensors.  
 
 
 The better conserved segment of the Spike protein may offer valuable epitopes123 and potential 
binding sites for aptamers (unless glycan moieties interfere). In addition to the RBD (which appears to 
be more variable), the conserved portions of the S2 subunit responsible for fusion (fusion machinery, 
fusion peptide) are likely targets for aptamer binding. It remains to be seen if reagents (monoclonal 
antibodies, aptamers) aimed at the fusion specific domain of the S protein can disrupt viral entry and 
serve as tools for detection as well as prevention. 
  
 Interfering124 with the human cellular proteins ACE2 and TMPRSS2 (which are viral targets) to 
prevent viral binding may not be prudent. Reagents directed against proteases, usually non-specific, may 
perturb physiological functions essential for homeostasis. The events which follow after the viral Spike 
protein docks with the human ACE2 protein are illustrated (Fig 6 copied from Scientific American125). 
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Figure 6: Cascade of events126 leading to viral entry into host lung cell identifies the “jack-in-the-box” 
mechanism as a pivotal tool used by the fusion machinery of the Spike protein to deliver the viral RNA 
inside the host cell. Selectively disabling the fusion machinery of the Spike protein is an attractive target 
for aptamers and other reagents. If available, the latter may not only detect and diagnose but prevent 
infection, even if virus particles may have already reached the human apical surface127 area. Superior 
region of the lungs are more vulnerable to infection due to higher number of hACE2 receptors. The 
number of hACE2 decreases from superior to inferior. Lower part of the lungs have less ACE2 and 
TMPRSS2 proteins, corroborated by the observation that these genes are expressed at a higher level in 
upper nasal epithelial tissue compared with bronchial and small airway epithelial brushings128. 
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 The +ssRNA of SARS-CoV-2 (positive strand serves as mRNA) generates at least 27 or more 
viral proteins by creatively manipulating the host translational machinery. Theoretically, any or all viral 
proteins could serve as targets for anti-viral129 strategies. Virus-encoded proteases130 are distinct131 from 
cellular proteases and may serve as good132 targets. The viral protease133 3-chymotrypsin-like protease134 
or 3CLpro135 aka Mpro  is encoded by Nsp5 and appears136 to cleave (see “scissors” in Figure 7) essential 
viral proteins from “polyproteins” generated from translation of open reading frame (ORF) 1a and 1b 
(Fig 7). Papain-like protease137 PLpro (ORF 1a, Nsp3138), cleaves139 proteinaceous post-translational (ref 
131) modifications on host proteins to evade host anti-viral immune responses. Nsp1140 suppresses host 
translation by cleaving cell mRNAs141 and competes142 with mRNAs for binding to human 40S ribosomal 
mRNA channel143 (as well as 43S, 80S subunits). Type 1144 interferon145 (IFN-1) response146 is modulated 
by Nsp1, Nsp 6 and Nsp13, which interferes indirectly with IFN-1 by suppressing the phosphorylation 
and/or nuclear translocation of other cellular molecules147 involved in catalyzing the IFN-1 response.  
 

 
 

Figure 7: (Top) SARS-CoV-2 genome148 encodes nonstructural proteins (nsp), structural and accessory 
proteins. Nsps are encoded by ORF1a & ORF1b generating pp1a (nsps 1-11) or pp1ab (nsps 12-16). The 
structural and accessory proteins are synthesized by translation of their respective sub-genomic mRNAs. 
(Bottom) Translational repression (Kamitani et al) and binding to 40S ribosome (Thoms et al) by Nsp1. 
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Figure 8: The positive sense (+ss) RNA genome is translated by the host translation machinery to make 
polyproteins that are co-translationally cleaved by proteases (PLpro/Nsp3 and 3CLpro/Nsp5) encoded 
in the polyprotein to generate components of RdRp or RNA dependent RNA polymerase (Hartenian 
and Nandakumar et al). The RdRp complex uses the genome as a template to generate negative sense 
subgenome and genome length RNAs, which are in turn used as templates for synthesis of positive sense 
full length progeny genomes and subgenomic mRNAs. Each and/or any protein factor in this complex 
may be a target for anti-viral reagents, for example, aptamers, antibodies, small molecules and inhibitors. 

 

The conundrum and complexity presented by an abundance of anti-viral targets, a variety of 
strategies and potentially many cell types susceptible to infection, adds to the pharmaceutical dilemma 
where the problems of bio-availability, cross-reactivity and toxicity may force a solution to extinction. 
Viral proteins are distinct but structural homologies and overlapping functional issues are non-trivial.  

 

 

Figure 9: Identification of 
ACE2 receptors on many 
other cells (humans). The 
SARS-CoV-2 virus is not 
only a respiratory virus or 
results only in pneumonia. It 
is causing systemic diseases 
presenting a vast array of 
symptoms and acuity.   
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 The medical chaos due to our lack of understanding of the biological minutiae of SARS-CoV-2 is 
not completely without a silver lining, albeit bleak. The ray of “hope” emanates from ExoN (Figure 8) 
the protein produced from Nsp14 segment of ORF1b (see Figure 7). It appears that SARS-CoV with 
inactivated ExoN is growth impaired and mutates at a much higher level (>20-fold149 higher, see right 
panel in Figure 10). SARS-CoV with one of the longest genomes (see Figure 16) among common RNA 
viruses (HIV, Influenza, Rhino, Ebola) abhors errors150 in replication (not corrected in other common 
RNA viruses with low fidelity RNA replication). High fidelity replication has enabled SARS-CoV to 
maximize its genome size (see Figure 16) using RNA-dependent proof reading system, repair and error 
correction implemented by Nsp14-ExoN (there are Nsp14 homologs in other viruses). Lack of error 
correction in humans151 may result in disease, dysfunction and death, even due to point mutations. 

  
 

Figure 10: Mutated or inactivated Nsp14-ExoN results in >20-fold increase (Eckerle et al 2010) in 
genomic errors (B, right panel). ExoN in RdRp of SARS-CoV-2 enables error correction (left panel). 

 

 Error correction in SARS-CoV-2 may have implications for optimizing target selection for anti-
viral strategies. The choice of the receptor binding domain in subunit 1 (S1 RBD) of the SARS-CoV-2 
Spike protein, therefore, may be incomplete as a target (Figure 3). It appears that the fusion machinery 
and the fusion peptide (FP) region of the Spike protein (subunit 2) is better conserved and will continue 
to remain better conserved due to the error correction mechanism (see Figure 10). Hence, sub-segments 
within subunit S2 of S protein may be better targets. The obvious caveat in this discussion is whether the 
chosen sub-segments in S2 may be sufficiently exposed or available to bind with the anti-viral molecules. 
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Figure 11: S protein (trimer) consists of 2 structurally noncovalently linked domains, S1, contains RBD 
(receptor binding domain) and S2 contains the fusion machinery and the fusion peptide152 (FP). Site of 

proteolytic cleavage → vertical arrow. S2 contains 2 HR (heptad repeat)153 regions HR1 (898 –1005) and 
HR2 (1145–1184) connected by 22-amino acid linker (LVPRGSGGSGGSGGLEVLFQGP). Hydrophobic 
residues (a and d positions in heptad repeat regions) are conserved. SS (N-terminal signal sequence), TM 
(transmembrane domain, C terminus), FP (fusion peptide, bottom154), IBV (infectious bronchitis virus), 
FIPV (feline infectious peritonitis virus), MHV (murine hepatitis virus - murine coronavirus). 
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8. Discussion 
 

Could we detect SARS-CoV-2 in saliva, prevent155 membrane fusion and block viral entry156 with 
the same aptamer or another type of molecule based157 on the better conserved S2 of the SARS-CoV-2 
Spike protein? Could we detect SARS-CoV-2 in saliva of asymptomatic individuals without COVID-19? 
ADD may use better targets for its aptasensors beyond RBD S1 and hACE2. ADD can be accomplished, 
as suggested by the evidence from creation of DeMEA158 (but it uses high cost microfluidics159).  

Even if ADD is successfully engineered to be a low-cost biomedical device for non-invasive 
detection, dissemination of ADD and other systemic surveillance tools will still depend on community-
specific economics of technology160 to facilitate diffusion and adoption. Bringing data and information 
together to make sense and extract foresight (uncertain of the value of hindsight161) will be a challenge 
which new initiatives162 must address. Diffusion of the tool to vulnerable communities will be restricted 
unless the end-to-end system is cost-effective at a level where it is sustainable for repeated use, preferably 
daily, as a surveillance tool for humans, pets and farm animals.                                                         

Data when transformed into usable information may deliver value for the greater good, for the 

greatest number. ADD is one small surveillance tool but it isn’t enough. Healthcare cannot be a knee-

jerk reaction to epidemics and pandemics. Continuous monitoring (even for high risk individuals) may 

remain a mirage in view of the disproportionate socio-economic imbalance. While we must ADD up to 

address the crisis163 at hand, we must also utilize this disaster as an opportunity to deploy profiling as a 

healthcare staple. Other tools, for example, wastewater164 analysis165 may offer transparency166 and guide 

public health strategies regarding elements the community must address, in advance, to prevent melt-

down of health services. When an emergency presents itself we must not disintegrate into quagmire. 

Precision medicine and precision public health may benefit if we probe the broader question of 

physiological status as expressed by proteins but further complicated by our microbiomes167. Isolated 

snapshots of data may be rate-limiting for communities under economic constraints. But, convergence 

of data from ADD along with multiple levels of profiling168 (DNA, RNA, protein, RDW169) as well as 

environmental170 and wastewater171 data172, if included173, may augment the value of information, which 

could be catalytic for medicine174, in general, if aggregated and shared between open175 platforms.  

Analytical skills necessary to deconstruct the data and reconstruct its meaning, relevant to the 

individual and/or the community, may pose a rather insurmountable barrier in terms of tools and/or 

human resources. The ill-informed inclination is to hastily pursue a “quick and dirty” version (perhaps 

shoddy, yet masquerading as good enough) without a long term view or a vision that embraces a sense of 

service, science for the good of society and access to global public goods for all. It goes without saying 

that one shoe does not fit all. It is obvious that ADD is not enough to better prepare for the future176. 
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Figure 12:  Serum from a significant percentage of patients (one third) recovering from COVID-19 have 

low viral neutralizing activity. Depending on the acuity of the infection, patients may or may not follow 

standard immune profile (top177). Low variation (Fig 10) in SARS-CoV-2 Spike protein is good news but 

mutations, D614G (middle panel and bottom) may still complicate178 the immune response and 

expected anamnestic response to reinfection or use of classical179 approaches180 to vaccination.  

  

 

If immunity from traditional 

vaccines are uncertain181, can we 

supplement with alt-vaccines 

(which are non-immunogenic, 

for example, aptamers), to better 

prepare for low-cost and rapid182 

response to public health during 

future epidemics / pandemics? 

                          
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9. Complexity of the biomedical scenario, socio-economic catastrophe and the public health crisis 
 Since 1980’s the HIV epidemic has infected ~76 million people183 (~1% of the global population) 
and almost half are dead (~33 million AIDS related deaths, disease caused by HIV) and currently the 
other half is still living or struggling with the disease. Yet, the thrust for HIV vaccine pales compared to 
the warp speed vaccine development collaboration184 against SARS-CoV-2, which erupted in 2020 as the 
COVID-19 pandemic. Is it because SARS-CoV-2 is irreverent and indiscriminate in infecting humans? 
 

 
 

Figure 13: The timeline of SARS-CoV-2 Vaccine Development184 (mRNA-1273 vaccine185) to control 
COVID-19 (codeveloped by NIAID, NIH and Moderna, Cambridge, MA). The mRNA encodes the 
SARS-CoV-2 full-length spike glycoprotein trimer, S-2P (stabilized186 with two Proline187 substitutions at 
the top of the central helix in S2 subunit). mRNA is encapsulated in lipid nanoparticles (0.5 mg per mL) 
and diluted with normal saline to achieve the final target vaccine concentrations188. 
 

 

 
Figure 14: 7-day rolling average of new COVID-19 cases189 from January through September 21, 2020.  

https://dspace.mit.edu/handle/1721.1/128017
https://doi.org/10.26434/chemrxiv.13102877


25 ▪ ADD is in the MIT Library https://dspace.mit.edu/handle/1721.1/128017 and ChemRxiv https://doi.org/10.26434/chemrxiv.13102877  

Coronaviruses have long co-existed with humans and animals. Error correction (Figure 10) has 
made the genome of the coronavirus one of the largest among viruses (Figure 16). What does it mean? 
Compared to diseases190 due to relatively unknown viruses191, and despite the flu pandemic ~100 years 
ago, the coronavirus, in less than six months, has changed, perhaps permanently, global thinking, trends 
and technology. Tobacco Mosaic Virus (TMV) was discovered around 1890-1892192 but after more than 
100 years193 of virus discovery, we have just now acknowledged the threat to global health from viruses. 
Understanding the molecular basis of virulence is the single most important questions in basic biology 
which must be investigated by the best and brightest, if we ever expect to mitigate the risk from viruses.   
 

 
 

 

Figure 15: A family of (corona) viruses with pandemic potential (courtesy of S. M. Gygli, NIAID)194 
 

 

 
 

Figure 16: Coronavirus pandemic wasn’t really expected195 according to at least one global expert196. The 
coronavirus has the largest RNA genome. Is it just a coincidence or is there any bio-medical correlation? 
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 While we still remain clueless about what constitutes virulence, the genome size does not offer 
any solace or solution. New evidence about Neuropilin-1 as a host factor197 which facilitates cell entry198 
further thickens the plot. The deep quagmire199 about R0 and k200 for COVID-19 defies epidemiological 
models201 but prefers apocryphal Pareto202 principles which suggests that 80% of new infections may be 
caused by only 20% (or less - 10% - see Figure 17 and reference 216) of the infected individuals. Are 
these individuals a high risk group due to inborn errors of immunity caused by mutations of genes 
involved in regulation of type I and type III interferons203 (IFN)? How many more genetic factors may 
underlie the differentiation between super-spreaders204 vs sub-spreaders for SARS-CoV-2? If the latter is 
true then how valuable is generalizing infection dynamics205 from communities as a prediction tool for 
overall public health, advance planning and use as early warning206 for cautionary preparation? 

In future, genomic analysis may enlighten us if there are polymorphisms207 which may partially 
account for this differentiation. It may be worth digressing to note that some individuals may be more 
susceptible to leprosy, caused by Mycobacterium leprae. Genes208 associated with leprosy include HLA 
(human leukocyte antigen) proteins. Analysis of eleven HLA genes in 1155 Vietnamese individuals 
revealed 4 leprosy-associated independent amino acid variants [HLA-DRβ1 positions 57 (D) and 13 (F), 
HLA-B position 63 (E) and HLA-A position 19 (K)] which comprised 2 pairs of linked genes, with one 
set conferring susceptibility [HLA-DRβ1 and HLA-A] and one being protective209.  

The demographics of infection by SARS-CoV-2 may be due to genetic210 determinants211 and 
individual outcomes212 may be determined by our genes213 as well as epigenetic factors which may be 
mapped to biomarkers214. At this point it is unclear whether the etiologic agent of this 2019 coronavirus 
pandemic should be referred to as SARS-CoV-2 where SARS imply severe acute respiratory syndrome. 
 

 
 

Figure 17: What is COVID-19? Respiratory illness? Blood clotting disorder215? Cardiovascular disease? 
Autoimmune disease? Opportunistic “killer” for (~10%) patients with severe COVID-19 pneumonia 
and high titers of autoantibodies216 against different types (type I IFN-α2 and IFN-ω) of interferons? 
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Figure 18: Hypothetical217 5218 cent219 déjà vu graphene sensor (RIGHT) detects SARS-CoV-2 antigens. 
Can smartphone detection220 adapt221 to other222 sensors223 (LEFT) to detect224 SARS-CoV-2 in exhaled225 
breath226 by mouth? Smartphone227 breathalyzer for malaria228 and marijuana (tetrahydrocannabinol)229 
is close at hand. Can it serve230 as a global surveillance tool to bridge the chasm of inequity? 
 
 

 
 

 

Figure 19: Detection of one copy RNA per µL (microL) from SARS-CoV-2231 with mobile phone camera. 
Cas13a (C2c2) is complexed with a CRISPR RNA (crRNA) containing a programmable spacer sequence 
(red tube) to form a nuclease-inactive ribonucleoprotein complex (RNP). When the RNP binds to a 
complementary target RNA, it activates HEPN (higher eukaryotes and prokaryotes nucleotide-binding 
domain) motifs of Cas13a that then indiscriminately cleaves surrounding ssRNAs. Target RNA binding 
and subsequent Cas13 cleavage activity can therefore be detected with a fluorophore-quencher pair 
linked by an ssRNA, which will fluoresce after cleavage by active Cas13. Ott et al used the SARS-CoV-2 
nucleocapsid (N) gene as the template (detection target) to create an array of crRNA spacer (red tube).    
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The socio-economic fall-out from the stochastic spread of infection and non-deterministic 
trends affecting certain countries, select groups (race, ethnicity) and underserved clusters, may be an 
example of “writing on the wall” we are slow to acknowledge. The cost of testing 100,000 individuals in 
the US approximate $6 million. If 30 million tests are performed weekly it would require an additional 
$75 billion and adding the cost of contact tracing might bring the total to approach $100 billion232. 

The “writing” says that the successful NIAID-Moderna mRNA-1273 vaccine or any other safe 
and effective vaccine against SARS-CoV-2, when it may become available in 2021 or earlier, may still be 
out of reach for billions of people. CRISPR233-based tests may be promising234 in the future (see Fig 19). 
BinaxNOW $5 test235 is at hand but may not be feasible for daily use in communities under economic 
constraints. The case of Hepatitis-C236 is an example how even after nearly 50 years, anti-viral drugs are 
not within the buying power of billions of people. Success of vaccine is not equal to access to vaccine.  

Death, destruction and the decay of civilization237 may continue and may continue to amplify in 
certain regions of the world, long after the pandemic. If the current pandemic is substantially contained 
by the end of 2021, then the aggregated loss from mortality, morbidity, mental health conditions, and 
direct economic losses in the US alone is conservatively estimated at $16 trillion238. The US economy is 
about a quarter of the global economy239, hence, extrapolation suggests that losses due to this pandemic 
may be an estimated $64 trillion, globally (about 80% of the global GDP240). 

This mundane proposal is an elusive quest for an alternative path, albeit temporary and vastly 
incomplete, perhaps through the use of aptamers (or other variations based on oligonucleotides241) to 
partially bridge the chasm of inequity242 and  cushion the blow from the mortality and morbidity, yet to 
be witnessed. Healthcare is a pillar (FEWSHE - food, energy, water, sanitation, healthcare, education) of 
life and living but it is prudent to avoid indulging in any illusion or delusion because neither aptamers 
nor vaccines or CRISPR tools, irrespective of their respective efficacies, are a panacea for the restoration 
of civilization, even if this pandemic subsides in a few years. The quintessential ingredients for public 
health and global rejuvenation are scientific credibility, color-blind magnanimity and ethical leadership. 
 

 

Figure 20: Similar to HIV, SARS-CoV-
2 Spike protein uses a N-glycan 
shield243 to thwart the host immune 
response (coating of N-glycans in 
cobalt blue, right). Mutations244, 
inborn errors of the immune system 
and other factors may make SARS-
CoV-2 endemic245. Thus, it behooves 
us to explore other risk mitigation 
strategies. Anti-sense oligonucleotides, 
mini protein inhibitors246 and aptamers 
(this proposal) are alternatives. 
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10. Post-Pandemic Public Health and Healthcare: Broad Spectrum use of Sensors with Smartphones 
 

 Transaction cost247 of humans-in-the-loop detection or surveillance248 is often astronomical249 
and the burden of cost250 for public health and heathcare systems is prohibitive even for affluent nations. 
For resource constrained communities, the mortality and mobidity due to lack of access to primary care 
must be reduced. Can we effectively combine the ecosystem of sensors, smartphones and data informed 
decision analytics to deliver usable information at the point of care or point of need, in near real-time? 
 

In general, part of the solution may be found in remote sensing and imaging tools (oil and gas 
pipelines251, leaves252, tree253 canopy254,255, radiation256). SEE or “sense everything everywhere” (paint-
based computation257, sensors in fabrics258) was a ‘touchy-feely’ mantra at the turn of the millenium 
buoyed by the principle of ubiquitous259 computing260 but stumbled in practice due to the cost261 of 
computation262. Vinton Cerf’s “I P on Everything”263 (I pee on everything) was the witty clarion call for 
embedding the IPv6264 standard265 in all things266 to enable “bit dribbling” between “digital” objects. 
These ideas were preceded by “tangible bits”267 from Hiroshi Ishi268 and the “atoms to bits” paradigm269 
of “Internet 0” from Raffi Krikorian270 and Neil Gershenfeld271 followed by the origins272 of internet of 
things273 by Sanjay Sarma274, 275 and others276. The borborygmi of radio frequency identification (RFID) 
and standardization of the electronic product code (EPC277) shifted the thinking from stationary goods 
and products with static bar codes to dynamic digital objects which can be unqiuely identified in any 
process or supply chain and tracked and traced digitally between any number of transactions, globally. 
 

Project Oxygen278 offered extraordinary insight into the art of the possible279 and represented a 
consilience and confluence280 of ideas but it was cost-prohibitive for real world applications, circa 2000. 
With decreasing cost of computation281, memory282, data storage283 and transmission284, these streams, 
which were occasionally bubbling since Isaac Asimov’s285 Sally286 in 1953, turned into a raging river 
bursting its banks. The convergence of these tools with initial thoughts about the networked physical 
world287 were far more than the sum of the parts. It exploded to become the inescapable tsunami of 
IoT288 which has infected every domain. The anastomosis289 of IoT with cyberphysical systems290 
(CPS291) has penetrated almost every field from asteroids to zeolites and engulfed them within the new292 
laissez-faire world of DIKW293 hierarchy. The mobile smartphone represents the grand conduit for the 
aggregated dissemination of distributed facets emanating from the DIKW pyramid. The mobile platform 
appears to be the global choice to access and implement all and any service which is possible, via the 
smartphone, in some form or the other, where the ubiquitous device serves as the platform for 
information294 arbitrage.    
 

ADD is a recognition element and a tiny part of this landscape. ADD enables the sensor, data is 
captured, analyzed, communicated and visualized on a smartphone. It may detect infectious molecules 
relevant to SARS-CoV-2 in saliva and nasal swabs for early detection to prevent the spread of the virus. 
This principle is applicable to any infectious agent as well as any physiological molecule of interest (see 
Figure 21). The potential of developing a “breathalyzer” (identifying molecules in breath, see Figure 18) 
may make it easier to detect any molecule or molecules which are either volatile or lighter than air. ADD 
may be the “killer-app” that IoT295 was searching since its conception296 circa 1999. 
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 Based on the idea of swappable, modular, flash drives, sensors-on-a-chip in the form factor of 
flashdrives are not hypothetical but frontrunners as potential tools for dealing with infectious297 diseases. 
Cameras, accelerometers (speed, movement), gyroscopes (tilt, orientation), magnetometers (compass), 
lidars (range, depth sensing from reflected laser signal), GPS and other “sensing” tools are increasingly 
“standard” with smartphones. These “detectors” makes it possible to use multiple mediums and phases 
for detection of signals from molecules, changes in dipole moments (electro-magnetic field) and perhaps 
even perturbation ambient electromagnetic waves (transmission and capture of reflected radio waves).   
 

 
 

Figure 21: Billions of users in underserved geographies may access limited health services by using298 
ubiquitous tools that does not require installation of new infrastructure and re-uses “mobile lifestyle” 
devices to partially bridge the scarcity of resources. Smartphones may be catalytic for delivery of service, 
remote monitoring299 and health surveillance, not restricted to infectious diseases but as physiological 
probes for health and homeostasis or detecting onset of disequilibrium (BNP, Brain Natriuretic Peptide). 
 

Using information arbitrage to better contain the pandemic is the thrust of ADD. Expanding this 
principle as a routine for public health and healthcare, in general, is not a leap of imagination but natural 
progression. It bears reiteration that data informed decision analytics (DIDAS) must embrace sensor 
data plus smartphone (SDS) applications not as “pilot” projects but science in the service of society to 
catalyze the SENSIBLE system (SENSors and Information arbitrage via moBiLE system). The marriage 
of DIDAS with SDS in the affluent world is a matter of social acceptance of SENSIBLE  but the penchant 
for profit-first and lack of leadership are holding us back. In the rest of the world the barrier to diffusion 
of life-saving tools are, albeit with exceptions, greed, pursuit of unethical profitability, cost or paucity of 
infrastructure (engineering, energy, telecommunications) and rampant inequity in social cohesion. 
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One milestone for smartphone-based health surveillance may be the non-invasive300 glucose301 
monitoring302 system which the healthcare system failed to aggressively adopt303 despite significant304 
advances305. The chest-thumping about diabetes pandemic306 continues in parallel with avoidance of 
available307 solutions308. Cholesterol309 monitoring310 using smartphones311 may be a preventative 
measure for adults at increased risk for a slew cardiovascular diseases, a few of which may not show 
symptoms.  

 

Decades after the discovery of atrial natriuretic peptide312 (ANP, 1981), brain or B-type 
natriuretic peptide313 (BNP, 1987) and C-type natriuretic peptide314 (CNP, 1990), we still do not have 
SENSIBLE monitoring for BNP even though BNP sensors315 including an aptamer-based316 sensor for 
BNP-32 and cardiac Troponin I are available. These and other317 biomarkers (CRP5/CRP6, TNFα) are 
indicators of cardiovascular dysfunction including congestive heart failure (CHF) and state of the patient 
after myocardial infarction, in addition to other conditions. BNP and other markers are key to risk 
stratification, diagnosis, prognosis, disease monitoring, titration of therapy, and identification of 
therapeutic targets for cardiovascular disease. Brain Natriuretic Peptide concentrations >400 pg/mL and 
N-terminal (NT) pro-BNP >400-900 pg/mL (age related) are prognosticators of congestive heart failure. 
Analysis of 48,629 patients318 of acute decompensated heart failure found linear correlation between 
BNP levels and in-hospital mortality. Failure of BNP to decline during hospitalization predicts death or 
rapid re-hospitalization. However, BNP levels of 250 picograms per mL (pg/mL) or less during discharge 
predicts potential for survival. Accelerating availability of sensors319 and transforming innovations320 to 
SENSIBLE systems for prevention of cardiovascular disease should neither suffer from paralysis due to 
analysis nor asphyxiated by the rancour over margin of profitability.  
 

 

Figure 22: Tip of the Ischemic 
Iceberg321 hides >63% of the 
individuals who lack symptoms 
but are increasingly at risk for 
CVD, ischemia, myocardial 
infarction, congestive heart 
failure. BNP and other bio-
markers may reduce the risk 
using the SENSIBLE system. 
We know these facts322 for    
~40 years. Yet, the proponents 
of prevention policies wear that 
perpetual unctuous grin 
assimilating both the promises 
of a television evangelist and 
the sympathies of a funeral 
home director of marketing. 
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Figure 23a: Smartphone cameras, LEDs, LiDARs and a FEAST323 of signal transduction tools (optical, 
Raman spectroscopy, electrochemical impedance spectroscopy, surface plasmon resonance) are now 
available as data carriers. Cartoon (top) shows smartphone-based blood pressure324 and non-invasive 
blood glucose325 monitoring326. The SENSIBLE system may be used to estimate blood cholesterol level, 
hemoglobin327, 328, 329 and uric330 acid331 as indicators of health, albeit imperfect. Data from smartphone 
based optic disc332 exam, photoplethysmography333, electrocardiograph for arrhythmias334 (see bottom 
panels), general ECG335, heart336 rate, respiratory337 rate (reflection of radio waves), pulse oximetry338 and 
other vitals, collectively, may create precision physiology portfolios (open data source interoperability). 
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Figure 23b: Example of smartphone tool using magnetic nanobeads in a microfludic immunosensor339 
which can detect SARS-CoV-2 nucleocapsid (N) protein in serum. The requirement for serum decreases 
its appeal as a tool for mass deployment. How many parents will consent to this invasive procedure for 
their children if the school requires testing? Smartphone tools must be non-invasive to be useful for all.  
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It is likely that hundreds of papers are published weekly on sensors, many of which may be 
adapted/adopted as a part of the SENSIBLE family. Biosensing using mobile devices at the point of use is 
a staple, for example, in the food industry (spoilage, contamination, security), soil, water, agriculture, 
manufacturing, chemical industry, transportation, energy, etc. But, lack of open data and restrictions on 
data interoperability makes the transformation of data to information quite difficult. Scientists are eager 
to drill deeper to develop yet another sophistcated340 sensor but real-world user are in quest of answers at 
the point of use, and does not have the luxury to deal with numbers, compilers and programmers.   
 

This discussion about the cacophony of available sensors is an embarrassment of riches from 
decades of research and development scattered as parts, in silos or locked by patents. The form and 
functional orchestration and integration necessary for sensors to contribute to precision physiology 
requires cross-pollination of ideas. Multi-disciplinary teams are necessary to create end-to-end working 
SENSIBLE systems which can be synchronized, if authorized, as a part of the public health information 
system. If that data is shared in real time, it may reduce mortality, morbidity, cost to society, decrease the 
burden on emergency medical professionals, and actually aid in preventing dysfunction. If this data is 
anonimized to serve molecular epidemiology, it may help precision public health and channel benefits to 
the community by revealing the environmental conditions or instances which need additional attention. 

 

A plethora of brilliant experts with deep knowledge can fill any university hall but few have the 
breadth of ideas which, if synthesized, synergized and integrated, may helps to address or even solve a 
real problem in the public domain where non-experts are the end users. Solutions based approach must 
combine depth with breadth to deliver the fruits of science to society as global public goods. The latter 
may be missing in the academic context where chronic search for scholastic erudition is the norm. The 
concept of essential products and services as global public goods may not be appetizing in the corporate 
context due to their perpetual penchant to promote profit and profiteering, first. The cleavage between 
purpose and profit needs a new bridge and a new breed of thinkers and leaders with altruistic traits. 
 

The laser-focus of biomedical professionals on saving the lives of those affected by COVID-19 
and the public health community on preventing the spread of infection by SARS-CoV-2 is the only path, 
at present, to lift us out of the quagmire of the raging pandemic. Yet it may be crucial to use this disaster 
as a global opportunity to strengthen public private partnerships (academic-industry-government) for 
the ubiquitous deployment of global tools for early detection and prevention, not only for pandemics, 
but for public health and healthcare, in general. It is an enormous task and requires global leadership. 
 

 Ubiquity of smartphones is the available SENSIBLE platform to create at least one bridge over 
the chasm separating the haves from have nots. Inextricably linked economies of the under-developed, 
developing and developed nations makes it imperative that the leadership for global public health must 
be agnostic of prejudice. Trans-disciplinary cooperation and collaboration between corporations must 
rise above conventional economics341, narcissism, egocentricity and personal wealth creation. We need 
an overwhelming force for good, for a greater purpose, for the greatest number342 (of people). 
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11. Comments 
 

 The complexity of the physiological dysfunctions associated with the SARS-CoV-2 pandemic 
calls for multiple routes for detection, prevention and therapy. ADD is a tool for detection and perhaps 
one of many other alternative343 treatment (nanobodies344) that does not depend on the immune system. 
Immune response may be heterogeneous345 based on individual genetic constitution (inborn errors) as 
well as natural decay346 of antibodies and antigenic evolution347 despite error correction in coronaviruses 
(see Figure 10, antigenic drift348 may not be exclusively due to genomic mutations during replication). 
 

 The global diffusion of smartphones as ubiquitous devices is an opportunity for digital349 public 
health to accelerate the use of smartphones for detection of any infectious agent. ADD is one tiny sub- 
component of the proposed SENSIBLE system. Realization of the SENSIBLE system is a difficult task. 
The deployment of the SENSIBLE system, with ADD and other sensor components, is an essential task, 
unless the veneer of health equity350 is only that, that is talk, or in other words lippenbekenntnis351. 
 

 The caveat in this line of thinking is the over-emphasis on the sensor and the SENSIBLE system 
as if the value proposition is undeniable. The latter is true for the affluent economies of the world but 
detection without follow-up is an exercise in futility. The latter is common in communities under 
economic constraints where tools to detect (SENSIBLE system) are impotent because there are very few 
resources to attend to the public health or healthcare need identified by the SENSIBLE system. Just 
because the user can detect the presence of mercury in drinking water does not mean that the user has 
another alternative source of drinking water in under-served or dystopian communities. Is it more or 
less psychologically debilitating to drink water or consume food if the user is cognizant that the water is 
contaminated with mercury352 or the food is laced with bacteria353 beyond the level of food safety? 
 

 Incongruity between the pursuit of science, implementation of the fruits of science and science as 
a measurable service to society is a conundrum beyond the horizon of tools and technology, for example, 
the SENSIBLE system. Entrepreneurial innovation can create SENSIBLE but implementing SENSIBLE 
requires leadership imbued with a sense of the future, especially for low-income countries with ultra-low 
per capita disposable income. In the absence of charity, SENSIBLE for public health and healthcare must 
carry with it a pay-per-use price tag which may be a micro-payment or even a nano-payment but still it 
must be a non-zero payment for the system to be sustainable and survive long enough to deliver value.  
 

Ephemeral gimmicks demonstrating SENSIBLE in geographies with GDP which may be less 
than an average household income in Europe is a deliberate act to deceive, dressed up in a marketing354 
garb by the glib, the smug and the smarmy. Enabling a SENSIBLE future and making it sustainable for 
most segments of the community, in greatest numbers, is a mission for a visionary leader who radiates 
the aura that kindness is a strength, not a weakness, humility is a virtue, not a lack of knowledge, that 
agreeing to disagree is a mark of civility355 and dignity, not a character flaw, that fear is not a tool for 
maiming diversity, speech or peace, that progress of civilization is development of the freedom356 to act 
on remediable injustices357 and lift many boats, not a few yachts. The best man for that job is a woman.   
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APPENDIX I - Components358 for SARS-CoV-2 ADD Decision System (Fig 1) and Data Templates 

 
 

Message Broker 

When users upload images (the data after scanning with the HoloLens app or equivalent mobile tool), 

the mobile application (on their phones) writes messages with the image content and other metadata to a 

message-broker, which may be cloud-based message queuing (MQ359) protocol (open source software). 

The message broker allows devices to quickly offload data and confirm “sent” to a user (if cloud based), 

thereby decoupling the user experience from the data store (even if it uses a temporary tinyDB on the 

device, if the network is unavailable to access the cloud in real-time at the point of use). Messages can be 

queued in topics and the system may enable autoscaling (as usage of the application increases, more 

users can be provisioned, process user uploads and get them stored). The uploads (data) are also sent by 

the message broker to the feature extractor and long-term storage database (may use the batch upload 

option when device is proximal to a high bandwidth gateway which can offer access to cloud services).  

Operational Data Store 

The message broker transfers uploads to ODS (Operational Data Store360), which may be a cloud-based 

managed service or part of the tinyDB on the device, if cloud is inaccessible at the point of use. ODS 

must be able to store image data (supports binary blog column type) alongside time-index numerical 

and character data. It is intended to only serve “hot” (nascent) data to the application. Older data may be 

evicted (batch uploaded to cloud managed facilities) to optimize on-device service and prevent data 

amplification. ODS is tuned for fast random reads and serves requests made by mobile app when users 

view recent uploads and additional metadata about those uploads, including “risk scores”. ODS is  

optimized for fast writes and high efficiency time-series queries.  
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Feature Extractor 

Extracts additional metadata from images/data uploaded from the mobile app (uploads it to the long-

term system of record361 which includes raw data uploaded from the application, similar to “master 

data” in ERP362). Feature Extractor may convert the uploaded image into a numeric matrix363 or create 

hash table or representation of a region364 and correct for differences in resolution (for example, 

variation due to pixel density of cameras on different smartphones). Feature365 vectors366 may be 

maintained in the long-term system of record. It may be written to the operational data store to enable 

extraction/selection367 of incoming data (uploads from message broker) relevant to these feature vectors.  

Long-term System of Record 

Mobile applications may never access data directly from this data store368. Interactive-speed queries to 

this data store may not be supported. When necessary, objects stored in this “record” may be extracted 

and the data is loaded into an analytical data store. For object stores, this operation may be accomplished 

using query-over-files engines369. The thorniest problem that ferments within long-term data record is 

the inaccuracy of “accurate” data and the diabolical mayhem from “big data” if it is sourced and stored.  

Analytical Data Store 

Scientists and data experts will need historical data (from uploaded samples) to train task-specific370 

machine learning (ML) models to assign risk scores to samples. Analytical data store (ADS database371) 

may be populated with data from the long-term system of record using scheduled batch data uploads. 

Model Training  

In model training372, a statistical model is built from historical data. Models should be serializable373 

representations of the program generated by ML training. Serialization is essential for interoperability on 

different platforms. It is key to create composable models where models from different groups can be 

deconstructed to sub-elements which can be reconstructed to compose a new model (which may be 

greater than the sum of parts). Serialization enables the process of translating a data structure or object 

state into a format that can be stored or transmitted and reconstructed. Proprietary software vendors 

obfuscate or encrypt serialized data to prevent access. Standard architectures such as CORBA374 define 

the serialization formats in detail to enable open access. 

Model Scoring 

In model scoring, a model is called on input data, the model processes the input data and generates a 

prediction. The structure of this code depends on the design choices made during model training. For 

reliability of deployment, model scoring may run in a container375 (an unit of software) which contains 

code (and all its dependencies) that uses a model to produce predictions on new input data. If model 

scoring runs in a container then the model can be arbitrary code in the developer’s language376 of choice. 

Model scoring requires features created previously by the feature extractor (feature selection is critical). 
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ADD DECISION SYSTEM IS FAR BEYOND OPTICAL SIGNAL DETECTION & IMAGE ANALYSIS  
 

There is nothing new in proposing that we apply a patent-free 30 year old idea (aptamers) to a 
nascent problem (SARS-CoV-2). The expectation is that a credible scientific investigation may reveal if 
aptamers may indeed serve as an alternate to conventional wisdom (immune response). The scientific 
strength of this idea is based on a rigorous tenet of molecular biology which has repeatedly demonstrated 
that proteins bind to nucleic acids, as a fundamental mechanism of action in biological regulation. If this 
approach succeeds, it may help and save lives in the less affluent nations (80% of the global population), 
not only for detection but also in prevention and therapy (APPENDIX II).  

 

The thrust of ADD decision system is far beyond the cartoon in Figure 1 suggesting optical data 
acquisition and image analysis to visualize outcome on a smartphone. Using optical signal is probably 
more user friendly for mass deployments due to familiarity of end users with smartphone cameras. But it 
is not the only tool for global diffusion and ADD decision system is a multipartite combination of many 
different sources of data, a few of which is discussed in this section. 

 

The core of this section aims to explain the central significance of two issues, the importance of 
which cannot be overemphasized: [a] binding and [b] detection. Without binding the target (in this case 
SARS-CoV-2) there is no detection. Unless detected, the individual cannot be isolated (undetected but 
infected individuals are a threat by spreading CoVID-19). A different modus operandi for binding and 
detection is discussed in APPENDIX X. 

Binding data in any scientific pursuit or research publication will require titration data from 
precision tools (for example, biolayer interferometry and surface plasmon resonance) to show that A and 
B are binding with measurable specificity. Scientific analysis of the kinetics of interaction between the 
aptamer and protein (target analyte) is essential for science. But, this data may NOT predict binding 
kinetics in a pragmatic use case, for example, binding clinically relevant target protein in saliva (sputum 
sample from humans and animals). Lower cost tools amenable to mass implementations must be tested 
with target analyte in a mix that uses non-invasive samples, for example, saliva (using blood or serum is 
ineffective, see Figure 23b). 

If the sensitivity of the optical system (discussed earlier) fails to be sufficient (Fig 1), the next 
option is to test signal transduction using electrochemical impedance spectroscopy (EIS). Therefore, 
titration of binding must be performed with low cost Laser Inscribed graphene (Turbostrat) Sensors 
(LITS) using EIS for signal acquisition. Optimizing signal over nose and acquiring the EIS data in a 
smartphone-based system for analysis and visualization holds the key to potential for large-scale 
deployment in environments devoid of access to labs and hospitals (underserved communities, home 
use, schools, small-medium businesses, farm laborers, logistics personnel, waste collectors, the elderly).  

Aptamers or antibodies or ACE2 attached to LITS (APLITS, ABLITS, ACLITS, respectively, see 
section 6, Figure 3, page 12) in conjunction with EIS emphasizes one low-cost approach for large scale 
deployment of tools for detection and lead to isolation, preferably early (TETRIS – test, treat, isolate). 
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True efficiency of mass testing may emerge if “testing” is an “IoT” lifestyle. The test, hidden in 
plain sight, will make users oblivious of its existence. For example, building access and security is now 
woven seamlessly into our lives through the ease of carrying near field communications (NFC377) devices 
in our clothing, wallets, key cards or embedded in mobile devices / smartphones.  

But, the practice of mass testing will be impotent if limited to affluent nations because of 
antigenic drift (see APPENDIX III and APPENDIX IV). Any organism, including the SARS-CoV-2 
virus, must replicate in order to mutate. Antigenic drift enables actively replicating viruses to make 
mistakes in its replication process and generate mutants378. We are observing global spread of SARS-
CoV-2 mutants from geographically distant nations to far corners of the world. We must reduce the 
opportunity for the virus to replicate if we hope to restrict new mutants/variants of SARS-CoV-2.  

The lack of drugs379 makes it even more imperative that we find multiple ways to reduce new 
infections. If we can stop the virus from infecting the uninfected then the virus will not have access to 
new hosts and progeny viruses will not be produced in yet another host. Thus, by controlling the spread 
of transmission of the virus we will reduce its ability to mutate. We can only contain the spread if we 
know who is infected and then isolate the person. To accomplish this quintessential task, globally, we 
need low-cost tools because deployment must be global. It is toothless to pursue detection in affluent 
nations only because the more populous developing and under-developed nations will continue to serve 
as fertile grounds for the virus to create mutants which will spread due to travel involving humans, 
animals, goods, and global supply chain related essential services dependent on less affluent nations.   

The herculean task of detection and isolation to reduce transmission, globally, cannot begin in 
the field without rigorous R&D. A few key processes for aptamers (APLITS) are outlined as follows: 

 

[1] (Pharmaco)Dynamics of DNA aptamers that bind with efficiency (target access?), specificity and 
reproducible (quantitative) affinity. Which SARS-CoV-2 proteins are targets? (Pharmaco)Kinetics of 
binding, in terms of equilibrium dissociation constant [(KD), where a smaller KD (the ratio kOFF / kON) 
indicates greater binding affinity of the ligand for its target (SARS-CoV-2 target protein)], between 
aptamers and preferred target vs “nearest neighbor” protein competitor, based on shape and amino acid 
sequence (larger KD value indicate weaker binding), must show reproducible and statistically significant 
difference of at least one order of magnitude. The design of the binding assay remains to be determined 
but must include kinetic data using different principles (surface plasmon resonance380, biolayer 
interferometry381 and electrochemical impedance spectroscopy382) to enable incisive data analysis. 
 

 
Rigorous determination of dissociation constant and association constant (reciprocal of 

dissociation constant) is the bedrock of biochemistry (quantitative, reproducible) at the heart of 
chemical equilibrium383 which is the essential pharmacokinetic pillar to determine which aptamers and 
protein targets may be potentially useful for which purpose.  
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It remains to be explored if lectins384 and glycan specificity (Figure 20) must inform our outcome (data). 
Will including lectin sensors385 (LELITS as parallel positive controls, see APPENDIX VIII) enhance data 
accuracy (reduce false negatives)? Will Spike glycan shield influence the interaction which may lead o 
data uncertainty by (occasionally) perturbing epitope specific binding with the aptamers? 

 

[2] Test DNA aptamer binding to sensor material (laser inscribed graphene, Au/Pt nano-materials, etc). 
Establish metrics for stability of binding, using linkers to attach aptamers (covalent), using lectins and/or 
chemical tails, eg, poly(N-isopropylacrylamide).  
 

[3] Test stability of conjugation of nano-dots with aptamers (cadmium, carbon). Is the optical signal 
(with/without protein) vs noise reliable and reproducible under different conditions? Explore other 
signal transduction techniques (electrochemical impedance spectroscopy, surface plasmon resonance).  
 

[4] Repeat [3] with aptamers linked/adsorbed on sensor material surface to choose the best outcome 
from materials and transduction. Is the signal vs noise quantitative or qualitative? Prefer quantitative 
because qualitative offers only “yes/no” (with reservations) and influenced by limit of detection (LoD). 
 

[5] Combine outcomes. If signal over noise is statistically significant (P < 0.001) after data acquisition by 
a mobile platform, then we have accomplished the scientific rigor to fuel the engineering basis for 
creating tools and applications for detection/diagnostics/screening/surveillance. The latter may involve 
innovation in engineering design to determine form factors, product development (breathalyzer) and 
imagination to transform the idea of USB connected modular, mobile, adaptable, sensor-on-a-chip to 
link to smartphones (any USB port) to create the (hypothetical) surveillance tool: molecularphone.  
 
 

EXPERIMENTAL TEMPLATES: BIOCHEMISTRY AND BIOSENSORS (APLITS, ABLITS, ACLITS) 
 

 The most informative data for application purposes will be the reproducible data from the assay 
(see EXPERIMENTAL TEMPLATE 1 – bottom row, last column) where a pre-titrated concentration of 
saliva-mimicking substitute (indicated as Buffer Saliva [Z]) will generate consistent EIS signals under 
conditions which includes an aptamer at a titrated concentration (indicated as +APTAMER [A1]) 
binding to sensor surface (LITS) at time T=tn. Each experimental panel must include different types of 
data plots and EIS measurements: [a] cyclic voltammetry (C) [b] Nyquist plot (N) [c] Bode plot (B)      
[d] phase shift (P). Variables include titrating for time of incubation (ti through tn) and different 
aptamers (different DNA sequences) in concentrations (A1 through An). Specificity of aptamer binding 
to LITS (APLITS) must be rigorous with each data set in triplicate analyzed critically for consistency. 
 

 It is imperative to understand and convey precisely the meaning of the data which is acquired in 
these plot and graphs. Cyclic voltammetry (C, CV) and Nyquist plot (N, NP) both rely on instruments 
which use software treatment of data including filtering options and chemometric processing prior to 
generating the plots. This “manufactured” data (x-axis) introduces potential for error-prone answers.  
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Bode Plot (B, BP) and Phase Shift (P, PS) data are actual measurements of frequency, resistance 
and impedance values which are presented without data processing by embedded software in devices. 

  

 
 

EXPERIMENTAL TEMPLATE 1 – Expected EIS data to demonstrate without any reasonable doubt that 
the aptamer used in the assay binds (adsorption) to LITS (sensor surface) with specificity. Titration of 
aptamer concentration (A1 through An) is implied but not explicitly shown in the template cartoon. 
 

Armed with bonafide APLITS, the most useful non-IRB data (internal review board, IRB, 
permission is necessary for using human saliva samples) for clinical application purposes will be the 
reproducible data from the last panel (right) in EXPERIMENTAL TEMPLATE 2 where a pre-titrated 
concentration of saliva-mimicking substitute generates consistent EIS signals under conditions which 
includes test aptamer sensor (APLITS) and SARS-CoV-2 Spike protein (or variations of the viral Spike 
protein, such as Spike S1 only, Spike S2 only, combined Spike subunits S1+S2, select peptides based on 
Spike protein) at a pre-titrated concentration incubated for optimized time (T, t). 

 
 

EXPERIMENTAL TEMPLATE 2 – Expected EIS data to demonstrate without reasonable doubt that the 
aptamer (APLITS) binds specifically to the target SARS-CoV-2 Spike protein. All panels except the last 
panel are controls. The value of the data in the last panel is null and void (unscientific) without data from 
controls. All experiments (panels) shown in the templates are performed as a set. Each panel indicates 
expected EIS data: [a] cyclic voltammetry (C)  [b] Nyquist plot (N) [c] Bode plot (B) [d] phase shift (P). 
Variables include titration for time of incubation (ti through tn), different APLITS (aptamer sensors 
with different sequences of single stranded DNA) in concentrations (X1 through Xn) and relevant 
proteins (concentrations Y1 through Yn). If successful, data from the last panel (right) may serve as the 
starting point for testing human saliva, obtained with permission from the internal review board (IRB). 
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EXPERIMENTAL TEMPLATE 3 – Titration to optimize antibody binding to LITS (ABLITS). Template 
also applicable to titrating ACE2 receptor with LITS to create ACLITS. Only panels with pre-IRB saliva 
substitute and antibody (concentrations A1 through An) are true experimental panels. All other panels 
are controls. Without controls, each time, data from true experiments are unacceptable. Each rectangle 
(blue) represents expected data from: [a] cyclic voltammetry (CV) [b] Nyquist plot (NY) [c] Bode plot 
(BO) [d] phase shift (PS). Positive Control with pre-tested and pre-calibrated known antibody-antigen is 
included. EIS data must demonstrate without any reasonable doubt that the antibody (or ACE2 protein) 
used in the assay, binds (adsorps) to LITS surface with specificity (ABLITS, ACLITS). Titration of 
antibody (or ACE2) concentration (A1 through An) and time of incubation (T = ti through tn) is shown. 
 

 
 

EXPERIMENTAL TEMPLATE 4 – EIS data template applicable to test ABLITS and ACLITS. First four 
panels are controls. Last panel (right) is the outcome of interest (irrelevant without data from all four 
controls). N0 refers to zero concentration. Different monoclonal antibodies (mAb) may be tested (mAb 
preferred over polyclonal antibodies, pAbs). Different versions of SARS-CoV-2 Spike protein (S, S1, S2, 
mutants) as well as Spike-derived synthetic peptides may be tested. Combinations of Spike mAb and 
Spike proteins/peptides may be tested to probe epitope specificity or overlapping epitopes in view of 
Spike protein mutants and Spike protein antibodies from previous SARS-CoV infections (SARS, MERS).   
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EXPERIMENTAL TEMPLATE 5 – Characterization of proteins (left panel) and DNA (middle) using gel 
electrophoresis (or other techniques) to show molecular weight distribution and concentration gradient. 
Right – EIS (unrelated examples): [a] cyclic voltammetry [b] Nyquist plot [c] Bode plot [d] phase shift. 
 
APPENDIX II – APTAMER-AS-A-DRUG (AAAD) FOR THE LESS AFFLUENT UNDERSERVED WORLD?  
 

Can aptamers serve as alternates or supplements to traditional vaccines? Small molecule-like 
"inhibition" by aptamers (in vivo) may offer low-cost (?) therapeutic paths386 for less affluent nations. 
However, the general mechanism of action of small molecules versus aptamers may be quite different. 
Aptamer binding to a specific region of a target protein may induce some changes, perhaps a change in 
conformation, but it may not disable the ‘active site’ of the target protein (if it has enzymatic functions) 
or dissuade the protein from its usual activities even if it suffices to reduce its efficiency and/or efficacy.  
 

 
 
 

 

 
 

 
 

Figure 24: Natural and synthetic organic small molecules are important pharmaceuticals (top panel). 
SARS-CoV-2 Nsp1 (Thoms et al, see Fig 7) acts as a small molecule to “fit” in the “groove” of the 40S 
ribosome (bottom, left) to arrest host translational systems, as shown in the models387 (bottom, right).  
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Figure 25: RdRp (left panel) 
may be the primary target for 
aptamer-as-a-drug (AAAD). 
Remdesivir (middle panel) is 
ineffective for SARS-CoV-2 
RdRp (other small molecules 
are being tested). Additional 
targets (bottom panel) may 
include proteases and the 
individual proteins of the 
RdRp (RNA-dependent RNA 
polymerase) complex. Source: 
Bradner, James (2020). 
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Uncompromising rigor of (pharmaco)dynamics and (pharmaco)kinetics [step 1] tested under a 
spectrum of conditions (pH, salinity, salivary enzymes, blood, plasma) will determine if AAAD is even a 
possibility. A positive outcome (small number of aptamers binding select viral proteins with stability, 
epitope specificity and selectivity in a variety of body fluids, pH range) may be the first indication that it 
may be worthwhile to test AAAD candidates for in vivo activity (assay to test strength of inhibition?).  

Initial interactions in buffer and laboratory conditions are good indicators but it cannot predict 
what will happen in vivo because aptamer-protein binding is determined by the 3D shape (secondary 
structure) the aptamer (single stranded DNA string) will assume (under a set of conditions) and protein 
(epitope) binding, as a consequence of that structure (shape). To partially mimic in vivo conditions,  
testing aptamers in cell culture may be the ‘quick and dirty’ first choice. The dynamic conformation of 
aptamers under various conditions influences the binding to target proteins. It is a source of uncertainty. 

Extrapolating results from in vitro tissue culture and in vivo animal models (next mandatory 
step) to humans is neither prudent nor a bona fide scientific process. But step-wise success may help to 
justify the path forward. Any one of many factors could be the nail on the coffin of the AAAD idea. These 
factors include but may not be limited to stability, bio-availability, delivery, absorption, permeability, 
distribution, metabolism, elimination, cross-reactivity, general cytotoxicity, organ specific toxicity (for 
example, cardio toxicity, renal toxicity, neurotoxicity, blood-brain barrier). Finally, only unequivocal 
success in most stringent human clinical trials may help to transform the idea of AAAD into reality. 
 

 
 

Figure 26: AAAD could use lipid nanoparticle delivery as in the Moderna mRNA-1273 (1273 amino acid 
SARS-CoV-2 Spike protein) vaccine protocol388 (LNP formulation by Langer et al). Delivery of AAAD 
using LNP may improve absorption, for example, if used as a topical nasal spray to prevent spread of 
infection. All mRNAs in human cells are encoded by 2% of the entire genome. 98% of the genome is 
transcribed into cellular RNAs whose activities still remain to be discovered (new RNA therapies?). 
Thus, most of the human genome does not code for proteins, most of the disease-causing genetic 
variants are located in non-coding regions, most transcripts produced by genes are non-coding and non-
coding genes may not have a functional annotation (their biological role is unknown). But, clues about 
the biological role of long non-coding RNAs in the human genome are beginning to emerge389. 
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APPENDIX III – THE MOLECULAR BASIS OF DISEASE 

Variability in Immune Response to SARS-CoV-2 Infection: Conundrum, Conjecture, Common Themes 

  

 The spectrum of immunological diversity390 presented by CoVID-19 reinforces the value of 
thinking broadly391 and thinking differently. It may not be unwise to forward hypothesis or conjectures 
which may or may not provide clues to understand or unravel the biological basis of this conundrum. 
On the other hand, based on common themes in molecular biology and genetics, perhaps what we are 
observing is not a conundrum at all. This discussion brings together what we think we may know. 

 Let us commence with the observation that bacteria belonging to even one strain, for example, 
Escherichia coli (O104:H4, O157:H7, O121) if sequenced (DNA genome), will reveal that their genomes, 
in terms of DNA sequence are not exactly identical. One explanation based on the molecular biology of 
CRISPR (clustered regularly interspaced short palindromic repeats) indicates acquisition of new spacer 
sequences392 from foreign DNA necessary to adapt CRISPR-Cas393 system to confer adaptive immunity. 
The human genome394 revealed our genomes395 are similar but not identical (even between twins), due to 
unequally distributed single nucleotide polymorphisms (SNPs) in coding and non-coding sequences. 

 

Figure 27: Acquired spacer sequences in bacteria is one reason why genomic sequences differ even 
within the same strain. What is the impact of the integration and the heterogeneity of the type and 
number of spacers on bacterial gene expression, protein expression, physiology and metabolism? 
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 The conundrum about the variation in human immune response to CoVID-19 may be natural if 
we consider that each human is genetically unique. We have known for 2 decades that approx. 3 million 
nucleotides (including about 2 million SNPs) are different between our genomes (why we are genetically 
unique) which contain ~6.4 billion base pairs396 (6.4 billion nucleotides - A, T, G, C – in diploid human 
genome or 3.2 billion base pairs, monoploid). These differences are significant when evaluating drugs. 
Hence, genetic397 stratification of humans in clinical trials is now routine. The efficacy, effectiveness or 
resistance398 of the same drug may be quite different between individuals. The latter partially explains the 
observed variation399 in immune400 responses401 to CoVID-19. SARS-CoV-2 induces a multi-factorial402 
physiological403 cascade of events404 involving systems405 and network of factors406 linked to genetic 
predispositions and co-morbidities which may influence phenotypic expression, to different degrees, 
directly or indirectly, in each human. The 823 epitopes407 mapped in the SARS-CoV-2 proteome, were 
not all equally recognized by antibodies in all individuals, indicating the complexity of stratification. 

It is not only genomics but regulation of gene408 expression409 (transcriptomics), proteomics and 
metabolism (rates of anabolism and catabolism, metabolomics). Omics may be affected by epigenetic 
factors (food, air, water, environment410) and immune cell dynamics are modulated by microbiomes411 
(viromes). Taken together, these factors are likely to affect detectable symptoms and clinical outcomes. 

In humans, multiple processes and DNA sequences flanking the immunoglobulin genes (V, D, J) 
influences the genetic rearrangement of the gene segments followed by somatic hypermutation412 which 
contributes to the great diversity of our immunoglobulin repertoire. It is one of the key tools available to 
the immune system to design antibodies and respond appropriately upon presentation of an antigen. 
Somatic mutations vastly differentiate and enhances the scope of response which may be otherwise 
restricted if the system were to depend only on the inherited genetic components (germ line theory413).  

The machinery available to antibody-producing cells for executing somatic changes in genes and 
gene expression is an evolutionary process. Creative application of this machinery may generate quite a 
variation in phenotypic response in CoVID-19. Somatic reshuffling in combination with differences 
between SNPs may result in an inordinate number of different permutations and combinations. Hence, 
the spectrum of CoVID-19 symptoms. SARS-CoV-2 proteins414 may induce somatic hypermutation in 
cells and tissues to result in perturbation of homeostasis. Epigenetic modifications triggered by sequence 
cassettes415 may affect basic processes (transcription, translation, post-translational modifications, etc.). 

 

Figure 28: Discovery416 of transposons in maize417 revealed that segments of 
genes “jump” from one genome to another (see left, kernel colors418). 
Variations of this “dynamic” concept are found in influenza419, 
Trypanosomes420, Plasmodium421 and other organisms. SARS-CoV-2 may 
hijack this mechanism, create ad hoc changes and alter therapeutic targets.  
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Figure 29: Variations in antibodies and binding affinities422 are due to VDJ (upper, left) recombination 
(combinatorial diversity ~2.5 x 106 & junctional diversity >1014) and somatic mutations (Tonegawa et al, 
1974) mainly in B cells (~1011 in humans). Understanding recurrent features of antibodies423 binding to 
SARS-CoV-2 Spike protein (lower, left) helps to identify antibodies with therapeutic424 potential. Four 
classes of human neutralizing monoclonal antibodies are shown (lower, right). The virus will mutate to 

evade mAbs, e.g., E406W [Glu406→Trp] escapes425 binding to known antibodies. On the other hand, 
antibodies from pre-SARS-CoV-2 (2003) neutralized426 SARS-CoV-2 due to overlapping epitopes.  
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BACK TO BASIC SCIENCES 

 Molecular dissection of the SARS-CoV-2 genome427 to delineate the functional role of each viral 
protein is fundamental. Testing infectivity of single gene knockouts (and multi-gene combinations) may 
be one essential step. Physiological exploration of the >332 human proteins (Gordon et al, 2020) which 
may interact with SARS-CoV-2 proteins is crucial. A global collaboration may be necessary to analyze 
the value of each nucleotide in the ~30KB single stranded RNA genome428 of SARS-CoV-2 because even 
a single amino acid structural change can have profound impact429 on function. Precedence for this rigor 
may have started with in the incisive minutiae of mutagenesis430 applied to beta lactamase. Thoughtful 
design and detailed execution of this megaproject may provide clues to what constitutes virulence431. 
Metrics of virulence is pivotal to deconstructing its cryptic complexity and reconstructing the role of 
molecular medicine in healthcare for humans and animals infected with virulent agents.  

 In the interim, undergraduates in molecular biology may undertake the theoretical analysis of 
SARS-CoV-2 proteins. For each known viral protein, it may be useful to list expected modifications in 
primary amino acid sequence (if any) due to changes in the 3rd position of the RNA codon (Fig 26, L). 
For example, if AGU mutates to AGC, the amino acid Serine is still the same (silent mutation) due to the 
degeneracy of the triplet432 genetic code. If AGU/AGC mutates to AGA/AGG then Serine is replaced by 

Arginine. Using the Ramachandra Plot (Fig 26, R) students may explore which values of the ψ and φ 
angles are possible for that amino acid residue which changed in the viral protein. Can the change in the 
codon create an amino acid substitution which can influence the conformation of the viral protein? 
Structure and function are inextricably integrated in biological activity. This exercise may uncover 
targets for experimental analysis and predict which changes in the codon and primary sequence, may be 
of consequence with respect to interaction between viral proteins and their putative human targets.  

 
 

Figure 30: RNA Codon433 table434 (L). Ramachandran Plot435 of allowed values of the ψ and φ angles (R). 
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The diversity and acuity of symptoms suggests SARS-CoV-2 proteins may have access to genetic 
circuitry436 of developmental437 clocks438 and may be “playing” with master439 switches440 or re-wiring441 
circuits or “time442 spoofing” the expression in some form443 to modulate444 differentiation. It is possible 
that developmentally re-programmed genetic circuits or regressively differentiated cells may express 
proteins and/or other molecules which are not in our ‘data dictionary’ because it is not a part of our 
differentiated physiology. Therapeutic targets and approved drugs445 may not be effective446 because the 
virus may be creating their own decoy 447molecules to wreak havoc. The virus appears to be changing our 
targets to escape host defense (immune system) and offense (drugs) as well as perturbing cellular signals 

for biomarkers associated with CoVID-19 mortality (IFN-α448 , IL-18449, IL-10450). 

 

 

Figure 31: Immune evasion strategies451 by coronaviruses include antagonization/disruption of various 
pathogen recognition receptors, TLRs452 (TLR3, TLR4, TLR7, TLR8; blue) and RLRs453 (RIG-I, MDA5; 
purple), transcription factors nuclear factor kappaB (NF-kB 454) and interferon regulatory factors 3 and 7 
(IRF3, IRF7) which are (normally) supposed to stimulate the production of pro-inflammatory cytokines 
and type I and III interferons (IFNs), respectively. IFNs (autocrine and paracrine secretion) induce 
expression of interferon-stimulated genes (ISGs) via the JAKSTAT signaling pathway.  
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Figure 32: Promise of interferon455 and its role456 as a potential therapeutic agent. A reason to believe457? 
Hypothetical Interferon Therapy illustration458 provided by Kizzmekia Corbett, NIH. 
 

 

Figure 33: With >50 million infected by SARS-CoV-2 (actual number may be >500 million) the clinical 
deluge to deal with CoVID-19 patients may leave little time to pursue molecular stratification. Access to 
vaccines, neutralizing459 monoclonal antibodies and promise of interferon therapy (Figure 32) could 
make this discussion moot. But, currently the best we can expect is cluster treatment (top, right). If 
optimism begins to fade, then research must go beyond the hierarchical model (bottom, right) to 
understand the molecular basis of disease.  
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Investing in basic science to probe the molecular basis of virulence may be complex and tedious. 
The answers may not inform us sufficiently. It may leave room for doubt but it may also create room for 
consilience and build extensions for imagination and innovation. Science, engineering and economics460 
may instruct us to “build back better”461 the predictive compass we may need for our tryst with destiny. 
Whether we can reach that fateful destination or not may be shaped, in part, by the plight of our ability 
or inability to reduce the incredible inequity which surrounds access to health462 science and healthcare. 

To improve our (global one463 health) preparation for future epidemics and pandemics we need 
metrics (quantitative comparisons) to better grasp the variations in molecular structure and function 
associated with physiological dysfunctions, degree of virulence with respect to infections, rate of 
replication of infectious agents and factors affecting mortality. Genetic perturbation screens and GWAS 
(genome-wide association studies464) are already generating molecules of interest for further analysis.  

These are tasks for dedicated bench scientists who may toil for long hours to contribute even an 
infinitesimal iota of data to inform our understanding. Science in the service of society is a purveyor for 
the progress of civilization. Credible advances in science may not be achieved by flaky465, fluffy466 and 
fuzzy467 flash of publicity, chicanery and malarkey468.    

 

 

Figure 34: Let’s do the numbers469: can we explain this incredible difference? True, false or artifact? 
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APPENDIX IV – APTAMERS as ADJUVANTS and/or PARALLEL ALTERNATIVE to ANTIBODIES  
 

Global public health and healthcare needs immune-agnostic and temperature-agnostic low-cost therapy 
 
 Dedicated bench scientists from diverse fields in molecular biology and biochemical genetics 
worked for years before the successful in vitro transfection470 of nucleic acids (DNA, RNA) into human 
cells in tissue culture. It was an even greater ordeal to establish that in vivo only those messenger RNAs 
(synthetic mRNAs) with a modified nucleoside471 may avoid immune recognition. Free RNA in higher 
animals rapidly activate host immune response. SARS-CoV-2 replicates its RNA inside coated vesicles472 
in infected cells to evade immune surveillance. The promise of synthetic mRNA immunotherapies473 and 
its success as a CoVID-19 vaccine displays excellence in intellectual pursuit, plight and perseverance.  

 

Figure 35: Synthetic messenger RNA encodes the target antigen which is packaged in a lipid nanoparticle 
and injected into individuals. Following uptake by cells, the mRNA474 is translated in the cytosol475. The 
foreign protein may be released (induces B cell immune responses) and/or the antigen-derived epitopes 
are presented on the cell surface by major histocompatibility complex proteins (MHC) class I and II.   
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The title of this sub-section springs from the chasm between invention and implementation. The 
latter is a combination of resources and logistics. Implementation depends on cost of goods, production, 
facilities, distribution, personnel to facilitate access and administration. mRNA vaccine is a milestone for 
science but is it accessible, globally? Are aptamers affordable as a global alternative or wishful thinking? 

 One could have left this discussion at the doorstep of social disequilibrium if not for recent 
developments476. Emerging reports477 suggests that the virus seems quite eager to take a bite out of the 
vaccine strategy. The usual suspect is antigenic drift478, which has hindered the creation of a successful 
vaccine against the influenza virus479, despite the devastation due to the 1918 global flu pandemic480.    

 This usual (antigenic drift) occurrence may be unusual in case of SARS-CoV-2 (and coronavirus 
family) because error correction in coronaviruses (during viral RNA replication) should, bio-logically, 
reduce the frequency of mutations which contributes to antigenic drift (see Figure 10). However, 
antigenic and epitope evolution481 is not solely due to antigenic drift (mutations). Assuming the latter 
still holds true for recent SARS-CoV-2 mutants, then, once again, we may have stepped into yet another 
unknown abyss in our effort to understand the molecular evolution of antigenic drift in SARS-CoV-2 
and implications for future vaccines482.  

If this paradox (antigenic drift despite error correction) is a sign of what may eventually become 
a paradigm for SARS-CoV-n then the mRNA vaccine strategy may be forced to continually invent and 
reinvent itself to keep up with the antigen/epitope evolution if it chooses to serve as an effective vaccine. 
It is a mimicry of “flu vaccines” which are of questionable efficacy. 

 SARS-CoV-n may evolve as the aetiologic agent of future CoVID-yyyy and start trending in the 
annals of the 21st century medical anthropology, with usual public health and wellness concerns. But, if 
the mortality and morbidity from SARS-CoV-n/CoVID-yyyy approaches SARS-CoV-2/CoVID-2019, 
then the economics of re-inventing mRNA vaccine cycles (for antigenic drift) and vaccination, may be 
prohibitive even for the general population in most affluent nations. Pursuing multiple483 targets484 for 
vaccines is prudent. Including aptamers as an alternate may be even wiser.  

 Despite its existence for about thirty years, patent-free classic aptamers are still uninfluential in 
molecular medicine except for one FDA-approved drug. Aptamers in molecular diagnostics including 
proteomic profiling (patented485 modified aptamers) may not have reached beyond R&D domains, yet. 
This discussion about classic aptamers for non-invasive rapid detection and prevention (as an “agile” 
drug which may be configured and re-configured/re-composed with relative ease compared to syn-
mRNA vaccines) builds on one success, the RNA aptamer based FDA-approved drug Pegaptanib 
(Macugen) as a treatment for choroidal neovascularization associated with age-related macular 
degeneration486. However, progress487 in the use of aptamers are not in short supply. But, it should be no 
surprise if critics choose to label the advocacy of aptamers as a case of chacun voit midi à sa porte. 
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 The short-term rebuttal to immune-agnostic suggestions (including the current advocacy for 
aptamers) is the fact that epitope evolution due to antigenic drift in SARS-CoV-2 variants may not affect 
the molecular strategy adopted by the synthetic mRNA vaccine directed toward the SARS-CoV-2 Spike 
protein (including the receptor binding domain, RBD). Epidemiology of S protein variants supports488 
this short-term view. The long term risk mitigating strategy calls for alternative therapies. 

 Why are we observing an increasing number of variants in a virus family supposedly equipped 
with error correction489 system? Is the replication coupled error correction490 erroneous? Inaccuracies 
during replication by the RNA-dependent RNA polymerases (RdRp, nsp12, Fig 8) are error-corrected by 

nsp14, a bifunctional enzyme possessing RNA cap guanine N7-methyltransferase (MTase) and 3′-5′ 
exoribonuclease (ExoN) activities (proofreading function). Mutated491 or inactivated nsp14 may be 
lethal for viral replication492. Error correction is the reason for RNA genome size expansion (Figure 16). 
Nsp14 mediated excision of erroneous mutagenic nucleotides inserted by nsp12 is also the molecular 
basis493 for potential nucleoside drug resistance exhibited by SARS-CoV-2 family of pathogens494.  

With accumulating genome wide errors495 in coding and non-coding sequences of emerging496 
variants, the impact of errors on SARS-CoV-2 proteins may influence the mortality and morbidity due 
to SARS-CoV-2 infection. Spike protein RBD is an element in this set and may remain as the prominent 
antigen of choice for mRNA vaccines, albeit in the short-term. The nsp14 protein works with the non-
enzymatic497 nsp10498 in an error correction complex to restore replication fidelity. Both are susceptible 
to mutations. Reduced efficacy of either protein may deliver deleterious outcome for humans if the new 
mutations introduce changes in the progeny virus which may be harmful to humans. 

 Structure and function (genomic/proteomic) comparison of nsp14 and nsp10 (independently 
and in complex) between sister clades of SARS-CoV-2 variants (D614G499, 500 , N501Y501, etc.502) may 
offer clues, if we can identify specific mutations in the parent genome which affected nsp14 
(exoribonuclease for proofreading) and/or nsp10, resulting in progeny which causes more harm. 

 The generality of evolution503 and its punctuated equilibrium504 introduces uncertainty in the 
sudden/dynamic appearance of variants which manifests505 differently depending on the host. The latter 
warrants development of a portfolio of therapies. Creating a portfolio of synthetic mRNA vaccines is 
perhaps a better and/or efficient immune-dependent pharmacological strategy compared to the classical 
approach of using attenuated virus in a viral vector506. But, high energy507 consuming products (vaccines) 
are incompatible with distribution to energy-deprived regions, nations and continents.  

Appendix II outlines the rigor of kinetics necessary to establish the criteria for DNA aptamers. 
The foundation of the science in terms of molecular biophysics is without question. The silent success of 
SomaLogic508 may be a “radio silence” because it was not intended for publicity (for example, the media-
cultivated baseless drum beat of “Smart Cities” that is about to bite the dust509).  
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 Trials and tribulations510 involved in the mRNA vaccine strategy may have a parallel story511 in 
the innumerable512 failures (200+ experiments) that preceded one successful protocol for creating LNP 
(lipid nanoparticles, see Figure 26) to deliver charged macromolecules to cells, in vivo. Use of aptamers 
as an alternate path for 80% of the global population may have to endure pain, shame and ignominy on 
the fatiguing climb, hopefully, to claim success, albeit partial. This “dismissed tool” (DNA aptamers) may 
lead to alternative diagnostics and therapeutics to serve the globally underserved but it will not be easy. 

Unique and degradation-resistant aptamers with enhanced binding affinities may unleash new 
approaches. But attempts to expand our genetic vocabulary has met with limited success. Modified513 
nucleotides “artificial” to nature are available. Will the inclusion of modified bases in aptamers result in 
favourable changes in terms of kinetics and dynamics? 

 

 
 

Table II: This table (Biondi and Benner, 2018) shows DNA aptamers containing artificial nucleotides in 
“red” letters (P and Z). Aptamers with the lowest Kd (highest affinity, slow turnover) contained Z and/or 
P residues (LZH1 Kd 14 nM) while natural AGCT-only aptamers had Kd ranging from 326 nM (LZH13) 
to >1 μM (LZH16, LZH17). Percentage in the pool indicates relative amounts of a particular sequence to 
the total sequences analyzed from cycle 13. Six514 nucleotide DNA alphabet containing AGCT (Adenine, 
Guanine, Cytosine, Thymine), Z {6-amino-5-nitro-3-(1′-β-D-2′-deoxyribo-furanosyl)-2(1H)- pyridine} 
and P {2-amino-8-(1′-β-D-2′-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one)} was guided 
by Watson-Crick base pairing ability. Perhaps a larger number of “artificial” DNA and RNA alphabets 
may be available for use in single stranded aptamers to improve specificity and sensitivity. 
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APPENDIX V – ENGINEERING RNASE RESISTANT RNA APTAMERS: A PARALLEL APPROACH? 
 

DNA aptamers may be easier to work with compared to RNA aptamers. Which one is better? 
There is no single answer. Unless created and evaluated, we do not know which synthetic aptamers may 
be lower cost alternatives for diagnostics and therapeutics for 80% of the less affluent global population. 
One shoe does not fit all. We need portfolio of tools from an epidemiologic515 perspective because bias516 
is omnipresent in science and variations in human physiology are far beyond the grasp of medicine. 

Ubiquitous presence of copious amounts of mammalian (extracellular) ribonucleases (RNase 
A517, RNase P518) and to a lesser degree the intracellular RNase L519, if present in cell-free520 extracts, 
induces fear in scientists. It makes it harder to work with RNA tools for diagnostics and therapeutics. On 
the other hand, the configurational versatility of RNA makes it an efficient “lasso” to bind proteins. We 
focused on ssDNA aptamers because the deoxyribonuclease families may be less of a problem521. 
  

 Thirty years ago this conundrum was visited by none other than Paul Zamecnik522. More than a 
decade ago the seminal paper by Katalin Karikó (Karikó et al 2005) was the key which later523 enabled 
Moderna and Pfizer/BioNTech’s mRNA vaccine. Advances524 in therapeutics525 over the past few years 
provide optimism. Use of modified pyrimidines526 and purines527 to create synthetic RNase-resistant 
single stranded RNA aptamers may not be an insurmountable challenge528 for nucleic acid chemists.  

 

As outlined in Appendix I, establishing rigorous pharmacokinetics and pharmacodynamics of 
synthetic RNase-resistant single stranded RNA aptamers for specific protein targets (communicable 
diseases and non-communicable529 diseases) may be similar but with at least one additional qualification. 
The pre-requisite is a two part pre-phase where the range of resistance must be determined (profile of 
RNase attack on naked RNA aptamers in cell-free extracts in vitro) to serve as a qualitative indicator. 
Verification of the stability of the RNA aptamer to remain intact (structure, function) in cell-free extracts 
in vitro compared with saliva samples (from uninfected/normal human and animal) may be critical as a 
metric or index of comparative stability to serve as a quantitative guide. These tasks are not easy. 
 
 

APPENDIX VI – SCIENCE, SOCIETY VS SENSITIVITY, FREQUENCY OF TESTING AND COST 
  

 Discussion with global experts (see “acknowledgements”) points to the relative naïveté (?) of 
this proposal with respect to aptamers as potential diagnostic (ADD) and therapeutic (AAAD) tools in 
detection and prevention of SARS-CoV-2. Thirty years of advances in aptamers may appear to suggest 
that this proposal is inadequate to approach, meet or exceed the existing excellent body of science which 
has been accomplished with respect to specificity and sensitivity of aptamer-protein interactions. 
  

Sub-attomolar detection limits530 are unlikely to be attained by ADD tools. Do we need such 
sensitivity for ADD as a global public health tool? Is detection at 10-18 moles per liter (concentration) 
necessary to detect SARS-CoV-2 in (asymptomatic) individuals to reduce transmission? What is more 
important: frequent, low-cost, low sensitivity tests or infrequent, high-cost, highly sensitive qRT-PCR?  
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How many viable SARS-CoV-2 must invade a human in order for the individual to be infected? 
The answer is unknown. In ferrets and cats the infectious dose is 105 colony forming units (cfu)531 which 
suggests that attomolar, femtomolar or nanomolar levels may be unnecessary for detection of viral RNA 
or proteins. Can micromolar sensitivity (twelve orders of magnitude lower than attomolar) suffice to 
detect infection by viruses, such as SARS-CoV-2? Just because high performance Koenigsegg Agera is 
the vehicle of choice for a few in Chicago or Cologne or Cannes, does not mean that it a global standard 
for automobiles or must be the adopted make and model for driving in Calcutta or Cairo or Cartagena532.  

 

 
 

 
 

Figure 36: Sensitivity is not the Holy Grail. The evidence to maximize sensitivity may not be the golden 
rule533. Sensitivity is a shoe where one size does not fit all. The difference in virus concentration (limit of 
detection, LOD) between high and low sensitivity tests may be two orders of magnitude (TOP panel, 
note red zone, horizontal bar). The time for the viral load to leap from 10 or 100 (101 or 102) to 1,000 or 
10,000 (103 or 104) is a matter of hours (viral lifecycle). What is detectable by gold standard qRT-PCR 
(101 or 102) is ALSO detectable with a lower sensitivity test (103 or 104 virus concentration), a few hours 
later. For control of transmission, degree of sensitivity is neither critical nor rate limiting with respect to 
LOD (BOTTOM panel). The frequency534 of testing is key to controlling the pandemic. Low-cost, rapid, 
lower-sensitivity tests are essential to establish the epidemiology535 of the population already536 infected.  
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Therefore, the notion that attomolar or femtomolar is the “best” or the “standard” of sensitivity 
for enabling access to public health is a misguided bias in the Western world. For a different purpose, a 
different level of sensitivity may work for a community if the tool delivers  value by reducing mortality 
and morbidity, perhaps not for all, but may be for 80% of the population. ADD tool will deliver value. 

 

The criteria of good and best is subject to modification by socio-economic yardsticks when the 
“best” is out of reach of the people and government healthcare budgets. The value of the service must 
not be compromised just because it is used by people who are less litigious and less affluent. ADD is also 
expected to serve the underserved nations where 80% of the global population resides. This is not only 
about science in pursuit of the truth but also the role of science as a service to society to lift many boats, 
not just a few yachts. 

 

 
       

Quote [A]: Three decades of grand scientific accomplishments in the field of aptamers may induce a 
novice to hear the echo of the quote “who am I that I should do better” attributed to Alfred North 
Whitehead537. Similar presuppositions may have fueled attempts by Harvard (established 1636) to 
“absorb” MIT (established 1861) in six failed merger attempts538 (1862 through 1905). Unquestionable 
excellence in the domain of aptamers may also serve the underserved in the post-pandemic world but it 
may not happen if we are trying to gild the lily or without the guidance and support from the experts.   

 
Comparing sensitivity of detection between tools may lead to imprecision sensitivity (the 

conventional wisdom surrounding “apples versus oranges” problem). The elements that may be 
measured in an ADD-type detection tools shares few common features with tests using quantitative   
RT-PCR (reverse transcriptase – polymerase chain reaction). Perhaps comparing the outcome of the 
tests may offer a common feature as another dimension of sensitivity. If two tools were used to test the 
same group of individuals and the tests were scored, with respect to the ratio of positive over false 
positive versus negative over false negative, then this ratio (or an appropriate combination of positive, 
negative, false positive, false negative) may serve as an indicator of meaningful sensitivity (compared to 
the gold standard).  
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The caveat in this framework is that the notion of  false negative as a function of the true viral 
load is a difficult metric. Nevertheless, the distribution of the outcome data (several tools compared to 
the gold standard) may reflect the range or the spectrum which is useful for diagnostic purposes. The 
latter is the key to determining the efficiency of each tool, for example, if the score falls within a certain 
range then they are useful. For ADD, if optical signal transduction from quantum nano dots (to 
smartphone539) is inefficient in terms of signal versus noise, then other options540 are available 
(electrochemical impedance spectroscopy541, surface plasmon resonance542, etc.) to obtain the data. 

 
 

 
 

 
Figure 37: “Frameworks” (Eric Lander543). False positives and false negatives as a function of true viral 
load are mired in numerical controversy due to LOD and inherent errors in biological measurements544.  
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 Specificity may turn out to be equally critical in the context of testing individuals who may be 
affected by multiple viruses545 at the same time. Patients with persistent546 infections may be exposed to 
yet another virus. Context-aware diagnostic specificity must differentiate between viruses in the event 
that the recognition element shares homology or something related. However, “re-purposing” motifs 
may offer advantages through molecular mimicry (see APPENDIX – IX on page 64 of this document). 

 

Epidemiologic indicators (for example, R0) are statistical tools which are entirely dependent on 
correct data. The quagmire of data sharing, fake data, suppressed data and data-driven misinformation 
makes a mockery of such KPIs (key performance indicators). Using qRT-PCR as the ultra-sensitive gold 
standard tool to provide data for R naught estimation of transmission in local communities may be 
limited to a few cities in the world while the pandemic continues its march of unreason, globally.  

 

CoVID-19 pandemic may morph into a globally endemic infectious disease (EID). The resulting 
situation may be akin to a social IED (improvised explosive device) which could transform geo-political 
economy. Demand for alternatives to vaccines may be served by small molecules, including aptamers, 
for diagnostics and therapeutics. The grave disequilibrium facing 80% of the global population calls for 
tools to deliver value rather than pursue six sigma547 R&D to reach the luminous summit where “best, 
highest or lowest” resides within the hall of fame for metrics of excellence with respect to characteristics, 
attributes and features.  
  

Contrary to what one might conclude, this proposal neither promotes nor includes that which is 
shoddy and second grade masquerading as good enough. Re-visiting aptamers for ADD and AAAD with 
“new” eyes is a structured exploration and convergence of tools and protocols to deliver value optimized 
to help billons of users. But, it may fail to be useful. Yet, the pursuit must continue “not because the work 
is easy but because the work may be hard” 548. The plight of ADD and AAAD may be a tryst with destiny. 
 
 

APPENDIX VII – ROOM FOR IN SILICO CREATIVITY IN PREDICTING APTAMER DESIGN? 
  

 Nucleic acid polymers binding to a protein or peptide with specificity in body fluids is at the 
scientific heart of the principle salient both for detection (ADD, binds in an external environment) and 
therapy (AAAD, in vivo anti-viral activity). To create a set of these highly specific aptamers, the usual 
approach may start with a library of aptamers (say 1019 or 1020) and through sequential enrichment 
(principle of column chromatography, one molecule is immobilized) the aptamer pool may be reduced 
(101 < x < 102) using a range of Kd values as a metric (see Table II in Appendix IV).  
 

Molecular design in silico may be worth exploring to predict aptamer design and consequently 
focus on testing a smaller pool of synthetic aptamers. The caveat in this modus operandi is the departure 
from pristine principles of chemistry (the assumptions in the design process). The criteria for binding is 
determined by shape and may be similar in principle to some variation of “induced fit” which is the 
underlying mechanism for enzyme-substrate interactions prior to catalysis549. 
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The shape or configuration of a single stranded DNA aptamer is guided by base-pairing between 
distant stretches which could generate “hairpin” structures. The inter-hairpin hydrogen bonding550 
between base pairs and/or other electrostatic interactions551 may generate tertiary structures. Can a pool 
of ssDNA give rise to tessellated, concatenated or catenated DNA? Are the structures/hairpins stable 
enough to interact with specificity with the protein target and generate a signal upon binding? Can the 
in silico approach predict the structure, a measure of its stability and the probability of binding? 

 
As mentioned in the previous paragraph, the attributes associated with these in silico models 

assumes that nucleotides are interacting in a standard state. The in silico approach largely depends who 
programmed the principles of physics and chemistry associated with each molecule. One assumes the 
interaction is occurring in some form of optimized buffer with known hydrophobic and hydrophilic 
profiles, specified van der Waals radii, hydration values, pH, ionic content and a mixture of salts.  

 
The situation is exponentially complicated when we move from ssDNA aptamers in “ideal” 

solutions to aptamers co-existing with large/small proteins/peptides in a colloidal solution of variable pH 
with different factors (for example, mucus in saliva). The amino acid sidechains play a defining role in 
binding. Factors that perturb secondary and tertiary structure of protein/peptide will influence binding 
(specificity, Kd). Protein structures are dynamic (think resonance structures of organic molecules) and 
the zwitterionic status of amino acid sidechains may be sensitive to presence of other charged molecules 
(aptamers), pH, salinity and viscosity.  

 
Viscosity is not so subtle an influencer because the state of fluidity (fluid dynamics, kinetics) 

influences Brownian motion of molecules in solution and the frequency of collision between molecules. 
The effect of temperature on kinetics is an equally important parameter we are avoiding, at present, 
because the environment of external interaction (ambient temperature at the point of use) and in vivo 
applications (body temperature in humans/animals) are unlikely to fluctuate beyond a few degrees. 

 
Taken together, predictions from the in silico model under “ideal” conditions may immediately 

fall apart when aptamers (which were predicted to be “good” candidates in silico) are evaluated for 
binding strength (aspirational low Kd) and specificity in body fluids, for example, saliva and blood, 
which may diverge from the computational “ideal” state (fluids may also vary between individuals).  

 
But, this is not a fact. This is a pessimistic hypothesis that the in silico prediction may not even 

come close to mimicking the experimental milieu when evaluating aptamer binding to target proteins in 
saliva, blood or other fluids (in vivo). Nevertheless, in silico modeling and prediction is a scientific design 
tool worth evaluating before we conclude that the “ideal” state predictions are at complete odds when 
testing aptamer binding in body fluids. 
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For SARS-CoV-2, there is a “baseline” interaction which could serve as a template for in silico 
design and prediction tool. ssDNA aptamers were identified to bind to the Spike (S) protein RBD (Song, 
Yanling, et al., 2020) and nucleocapsid (N) protein (Chen, Z. et al, 2020) with affinity below 5 nM (one 
Kd 0.49 nM in Zhang, Liyun, et al, 2020). The in silico approach may model the parameters of the N 
protein using data/attributes relevant to the aptamers identified. The model must include primary 
sequence of the binding region on the N protein followed by the putative secondary structure of the 
region (both as a peptide and as a region in the intact protein). Linking in silico models with protein 
structure data is necessary to understand how the secondary structure may change due to mutations in 
the primary structure. This connectivity is required to test if variants of SARS-CoV-2 may be defective in 
binding certain aptamers. The ADD “sensible” system will encounter individuals harboring variants 
other than the “model” virus on which the in silico approach may be trained. 

 

The in silico logic tools must connect with the knowledge base with attributes of the “alphabets” 
(DNA alphabets A, T, G, C) which are featured in the sequence of the ssDNA. Displaying the theoretical 
structure of that sequence in solution (hairpins) is a required step. Then proceed to predict which part of 
the ssDNA aptamer secondary structure interacts with the secondary structure of SARS-CoV-2 protein. 
The “glaçage sur le gateau” will be the ability of the in silico tool to display the tertiary structure of the 
specific region of the SARS-CoV-2 N-protein bound by the aptamer. Creating a numerical framework of 
values must accompany the predictions. The tool needs a knowledge base to import Kd values and other 
equilibrium constants associated with this interaction for quantitative predictive analytics.  

 

Can this “modelling” predict negative changes in Kd (higher Kd value) if we change the ssDNA 
aptamer sequence to unfavorably perturb the “model” secondary structure or change one or more of the 
amino acids at the “active” site of the aptamer-protein tertiary structure? If this in silico tool can provide 
the anticipated response (in this “known” scenario) then it suggests that the model is using a relatively 
reasonable set of attributes. The data store of attributes may be enriched by connecting or feeding the in 
silico system with feature-specific data to populate selected features in the model. These characteristics of 
feature engineering are not essential because data volume related to aptamer-protein binding is limited. 

 

However, what is much more important, for the tool to be immediately useful, is the ability of 
the model to predict the impact of changes in aptamers and aptamer-protein binding due to changes in 
protonation and deprotonation from fluctuations in pH. The pKa of amino acids are susceptible to pH 
changes and that could modify configuration which could affect binding, either positively (lower Kd) or 
negatively (higher Kd). Creating model dependencies between pKa, Kd and Ramachandran parameters 
(see Figure 30) may be an important part of the analytical engine in this in silico model/tool. Experts may 
point to many other factors we have omitted. But, if the issues in the above discussion are addressed with 
some degree of confidence, then the in silico model may be ready for a design challenge. The overarching 
question is the ability of the tool to predict the design of aptamers which could bind target proteins with 
high specificity.  
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Using the SARS-CoV-2 N protein and the ssDNA aptamers which binds to the N protein as the 
base model in the in silico tool, could we substitute the N protein with the SARS-CoV-2 Spike (S) protein 
RBD (receptor binding domain) and then ask the in silico tool to predict, based on its learning, which 
ssDNA aptamer shapes are appropriate candidates for binding to the S protein RBD (S1)? The next 
expectation is a list of ssDNA sequences that could generate the aptamer shapes (predicted a priori) with 
an accompanying list of predicted Kd for each sequence-shape combination.  

 

Comparing the outcome of this challenge with the data from the reported (Song, Yanling, et al., 
2020) binding of DNA aptamer with the S protein RBD, we can estimate the fit and reliability of the in 
silico model which used the data from the N protein as the template. What if the prediction of the in 
silico tool is incompatible with the reported aptamer that binds with the S protein? Perhaps there are at 
least three options: [i] abandon the in silico approach or [ii] start over with a different template which 
has rigorous data or [iii] use the untrustworthy, trial and error prone back propagation algorithm552, an 
error correction routine licensed to practice arbitrary numerical malfeasance.  

In the name of supervised learning the attempt is to “train” artificial neural networks (ANN) to 
deliver what the trainer wants the output to deliver. For example, if the “training” failed to recognize a 
hot dog, after training with millions of photographs of hot dogs (if the ANN output is a baseball bat), 
then the algorithm, goes back through each step to push and pull and adjust arbitrary “weights” 
associated with each step, in order to drive the ANN to output “hot dog” as the outcome of the 
supervised learning.  

To apply the algorithm in this case, the gulf between the predicted versus observed S protein 
binding aptamer needs to be narrowed down by pushing and pulling the in silico machine learning 
training tool to deliver the reported (Song, Yanling, et al., 2020)  S protein binding aptamer sequence 
(based on the initial training of the in silico model using the N protein binding aptamer). Die-hard 
believers observe that “force fitting” in back propagation algorithm (BPA) is sort of similar to curve 
fitting of data to models553 and mimics the induced fit mechanism of enzyme action (Koshland, 1958) 
representing biomimicry.  

If “made” useful, this machine learning554 embedded in silico analytical tool may be trained to be 
deployed in a retrosynthetic555 mode556. The key variables (aptamer and protein) leads to the Kd value. 
Using an oversimplified analogy, Ax (aptamer) + By (protein) = Cz (Kd) in some form or the other. If we 
“fix” the desired value of Kd (or a range or set of values) and pre-set the target protein, then, can we ask 
the tool to predict the best-fitting shapes and corresponding optimized ssDNA sequences? Can we 
simulate557 scenarios using a drag and drop menu (Kd, protein, etc.) and enter values in the in silico 
simulation558 tool in a manner559 similar to variant configuration in computer-assisted design? 
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Automation of small molecule discovery is the bread and butter of drug design560 in the pharma 
industry. Convergence of bio-physics, chemistry and computer science embedded as principles in logic 
tools are trained to predict and guide the synthesis of designer molecules. There is a healthy place and 
need for some forms of machine learning techniques which may be valuable. Not all routines are as ill-
conceived and over-hyped as back propagation algorithm and its recent561 attempt to re-invent itself.  

 

The learning that repurposed the antibiotic562 Halicin, is one good example. Training the MPNN 
(message passing neural networks563) was structured and deployed hyperparameter564 optimization, 
without any artificial intelligence565, as explained elsewhere566. Ensembling567 was applied to improve 
outcomes in silico but predictions were biologically tested. Even after steps to minimize errors, the 
authors were cognizant to note: “It is important to emphasize that machine learning is imperfect. 
Therefore, the success of deep neural network model-guided antibiotic discovery rests heavily on coupling 
these approaches to appropriate experimental designs.” (Stokes et al, page 698) 

 

Keeping in the mind these cautionary notes, can in silico tools568 reliably predict sequence of 
ssDNA aptamers which may bind with low Kd? Of course, the predicted aptamers must be rigorously 
tested in saliva samples to answer the question. But, if we can translate the prediction to reality in vitro 
(testing in saliva using an aptamer-based sensor), then we may accomplish an in silico milestone. Even if 
it is only partially effective, this tool may still predict, guide and design the synthesis of aptamers which 
may make it less arduous to explore the therapeutic application of aptamer-as-a-drug (AAAD). The 
demand for binding specificity for AAAD is not only more stringent but is intensely complicated 
because the binding must remain functional in vivo. Training the in silico tool to include P and Z (Table 
II) as “alphabets” in the prediction engine may enable the tool to predict ssDNA aptamers containing 
artificial nucleotides, which appear to improve binding (see aptamers with lowest Kd in Table II). 

 

Thus far we have discussed binding as if the specific viral proteins are available to bind. The 
latter may be true when using purified recombinant protein as test molecules. Figure 20 removes all 
doubt that bio-availability of the exposed protein for binding id far from what a deterministic model 
could predict. Therefore, a negative outcome does not necessarily indicate absence of the target protein 
(by extrapolation, absence of the virus). The inability of an aptamer to bind to the target protein in an 
actual test with body fluids (saliva sample with live virus) may be obstructed by the glycan shield which 
prevents the protein from being exposed or available to the aptamer for binding.  

 

Could we alleviate this problem by using ENGases (Section 2 and Fairbanks, Antony J., 2017)? 
Experiment alone can shed light whether ENGases can punctuate glycan shields sufficiently to enhance 
the ability of the aptamers to bind and elicit a signal (over noise) which can be transduced for acquisition 
of data, as proof of binding. Although the focus is on the SARS-CoV-2 Spike569 protein it behooves us to 
explore other external proteins of SARS-CoV-2 as well as the N protein (nucleocapsid570 [N], 
membrane571 [M] and envelope572 [E] proteins) as targets for detection. 
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APPENDIX VIII – FIELD TESTING THE APTAMER SENSOR, ALONE, MAY NOT BE PRUDENT 
 

The rubber meets the road in the outcome, that is, the data, which must indicate with confidence 
if an infectious agent (for example, SARS-CoV-2) is present or absent. For return on investment (ROI), 
this data is the Holy Grail. Ambiguity, uncertainty and false negatives will obliterate the value of this data 
and may annihilate the ROI. False positives may hurt the reproducibility and reliability of ADD. Selling 
for-profit tests lacking the foundation of robust kinetic data and scientific field testing without proper 
controls are criminal practices. University of Oxford considered forty devices but only nine met some of 
the performance criteria, and only one was advanced enough for assessment573.   

 

 Positive Control Negative Control Aptamer Test Confidence in Outcome (Data) 

A + - + Presence of Virus: Confirmed. 

B + - - Less Ambiguous. Repeat testing. 

C - - + Ambiguous. Repeat testing. 

D - + + More Ambiguous. Repeat testing. 

E + + + Likely Presence of Virus. Repeat. 

F - - - Failed to Detect Virus ( < LOD ) 
 

Table III: Design of field trial may start with independent scoring of each category before the combined 
scoring. Positive control is tested with 100 samples which are qRT-PCR positive for SARS-CoV-2. Let us 
assume that the score from the positive control is 90% (compared to qRT-PCR which has a lower LOD). 
The same 100 samples are tested with the negative control and scores 99% (1/100 samples “detected” 
what the negative control is supposed to detect, but generally the target is never found in human saliva). 
The same 100 samples are tested with aptamer test with a score of 75%. Therefore, is the “ambiguous” in 
row B [table] less ambiguous than the “ambiguous” in row C, if we take into account the positive control 
is correct 90% of the time versus the aptamer test which is correct 75% when compared to qRT-PCR? 
Are we comparing apples vs oranges? Can this test serve as a low-cost tool to control transmission? In 
the real world, tests574 must be performed daily to isolate individuals who test positive, early enough, at 
least to reduce transmission in the absence of treatment (TETRIS – TEst, TReat, ISolate). Criticism of 
the aptamer test may ask whether the aptamer is functional. Positive aptamer function test (AFT) may 
include an aptamer which binds to a known component of saliva (for example, salivary amylase). As a 
control for AFT, inclusion of an aptamer for the vasoactive peptide hormone BNP (Sudoh et al 1988,  
Sudoh et al 1990) and/or the human ACE2-short isoform (Blume et al 2021) may be of clinical interest. 
Inclusion of the former (BNP) may uncover physiological co-morbidities independent of SARS-CoV-2 
and/or it may be significant in view of cardiovascular (CVD) symptoms575 due to CoVID-19.  
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Proper implementation of field trials are crucial. Aptamer tests (ADD) must include positive and 
negative controls. A positive control must use a completely different medium to test the same sample for 
the presence of the infectious agent. A negative control should test the sample using the same medium as 
the positive control which serves as a control to confirm that the “medium” is not faulty and recognition 
is functional. The negative control tests for an agent that may not be found in saliva. Future testing may 
be able to create a 3-in-1 single test system with different modes of signal transduction576 generating 
different streams of data from optical signal, electrochemical impedance spectroscopy and surface 
plasmon resonance. The data can be analyzed and visualized on a smartphone. 

 

For resource unlimited scenarios, testing kits may include another set of positive and negative 
controls. The positive control (P2) medium remains identical to P1 but tests for an agent not uncommon 
in the oral microbiome577. The second negative control (N2) medium is identical (as in P1 and N1) but 
tests for a rare but not impossible agent, for example, HIV1. In a completely different approach, we can 
use immobilized hACE2 on the sensor surface as the medium (SARS-CoV-2 positive) and use hACE2-
short isoform578 as a control because hACE2-short isoform lacks the virus binding domains. 
 
 

THE CASE FOR LECTIN SENSORS AS CONTROLS 
 

 To change the medium of sensing we turn from nucleic acids (DNA aptamers) binding to target 
proteins (for example, Spike protein in SARS-CoV-2) to proteins (lectins) binding to target sugar groups 
(glycans) which may be on the same target protein (for example, glycan shield on the Spike protein of 
SARS-CoV-2). 
 

Lectins are carbohydrate-binding proteins that are specific for sugar groups on other molecules. 
Host-derived sugar moieties on viral proteins are tools for immune evasion579 whereas lectins (opsonin) 
trigger immune recognition580. The glycan shield on SARS-CoV-2 Spike protein (Casalino et al, 2020) is 
an excellent target for lectins, for example, mannose-binding lectin (MBL), which was reported a decade 
ago, to neutralize SARS-CoV mediated viral infection581. Macrophage galactose binding lectin (MGL) 
belonging to the Calcium-dependent C-type lectins582 and subsets of I-type lectins (sialic acid-binding 
immunoglobulin-type lectins), Siglec-9 and Siglec-10, specifically binds583 to SARS-CoV-2 Spike protein. 

 

The role of lectins and the science behind mammalian and non-mammalian lectins are well584 
studied. Lectin-based adjuvants to vaccines585, lectin antibodies586 (lectibodies587) and lectin-based588 
biosensors589 are well documented590. Creating SARS-CoV-2 specific lectin sensors may not be trivial but 
certainly not an insurmountable barrier. Use of a lectin sensor as the positive control (Table III) needs 
no further emphasis. The negative control may be a mannose-binding lectin (MBL) sensor or something 
even more specific for detecting Mycobacterium leprae591 which prefers to grow in cooler extremities of 
the human body (around ~30°C592) and unlikely to be present in human saliva samples. 
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Table IV: The choice of lectin sensors as controls to improve confidence in data from aptamer tests. 
Non-mammalian lectins with anti-viral activities593 (top). Use in biosensors (bottom). Man, mannose; 
GlcNAc, N-acetylglucosamine; Glu, glucose; Gal, Galactose; LAP, lectin affinity plasmapheresis.  
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Figure 38: The confluence of ideas in this discussion consists of 2 major threads, sensors and detection. 
The application of both in the context of the current pandemic is viewed as a tool to stem transmission 
by early detection (and in future, explore the potential of aptamers as small molecule drugs as parallels 
and alternates or adjuvants to vaccines and antibodies). The pandemic has made detection tools highly 
context-aware because the global population is immersed in this quagmire. What happens if and when 
complacency creeps in along with the potentially forthcoming endemic? What happens if individuals are 
weaned off the heightened context-awareness and detection (tools, process, data, reporting) transforms 
into a chore to be procrastinated rather than a necessity for personal and public health? The cartoon in 
this figure is a sense of the future that we ought to avidly pursue in order to build a portfolio of detection 
modes as a part of our lifestyle (APPENDIX I, page 39, 1st paragraph). Near-field communications594 
(NFC) is one tool which may successfully contribute to build connectivity and functionalize the digital 
by design metaphor of IoT (internet of things). What if a NFC-card sensor (see Figure 21, on page 29) in 
a smartphone (when close to the individual, ~5 cm) could “sense” an infectious agent or a dysfunctional 
physiological molecule or volatile fatty acids (VFA) from a fish that once was fresh? In addition to radio 
frequency (RFID) readers (interrogators) or ultra-wide band (UWB) beacons or SDR (software-defined 
radio) in shops, malls, homes, factories and airports what if low cost NFC sensors were placed to “sense” 
(continuously) in a crowd-sourcing mode to detect and transmit data (inform) about analytes in their 
micro-environments? If underserved communities can bear the cost of NFC tools, then the explosion of 
detection may be exponentially beneficial. However, technology readiness level (TRL) must approach or 
exceed TRL9 for the NFC tool/device to be deployable. Is TRL6 or TRL7 too far away from cloud nine? 
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APPENDIX IX – IS INNATE IMMUNITY TOO FAR FETCHED EVEN TO BE A RATIONAL IDEA? 
 

 It is well nigh impossible to ignore the significant difference in data from India and USA with 
respect to new cases and new deaths. It is especially remarkable when compared with the population of 
USA (~300 million) which is one-fifth of the population of India (~1.5 billion). It is also impossible not 
to speculate if India’s lower mortality and morbidity rate may be due to some form of innate immunity.    
 

 

Figure 39: As of Feb 16, 2021, 
seven-day rolling average of 
confirmed new cases (left, top) 
and new deaths (right, top) 
due to CoVID-19. If adjusted 
for population, the difference 
in morbidity (left, bottom) and 
mortality (right, bottom) is 
even more striking. Is the 
“hygiene hypothesis” real or is 
the data inadequate due to 
inefficient or lack of testing? 
FT595 cartoon based on data 
from CoVID-19 dashboard of 
the Johns Hopkins University, 
WHO, UK and Sweden. 

 

 Harrowing but it is still a fact of life in India that children are used to pick up garbage at a great 
risk596 to their health. Has this risk turned into a reward? Waste is often found to be contaminated with 
fecal material and leads to infection of the gastro-intestinal and respiratory system. Those who survive in 
India, may have developed immunity from exposure to vast number of pathogens. Open defecation and 
contamination of soil and water with human and animal feces is rampant in India. Clean and hygienic 
Western nations with managed sanitation services may have failed to challenge to our immune system.    
  

These squalid facts may partially explain the low numbers of CoVID-19 in India. At least one 
piece of scientific data suggests that this idea may not be entirely anecdotal if one considers that “Staph” 
infections are quite common. Molecular mimicry is blamed for diseases such as lupus erythematosus or 
Hashimoto’s thyroiditis or discomfort from rheumatoid arthritis, where prior infections may provoke 
auto-immunity. But, mimicry due to re-purposed motifs may have a silver lining, at least for individuals 
pre-infected with Staphylococcus sp. The superantigen-like motif of Staphylococcal enterotoxin B (SEB) 
generates anti-SEB monoclonal antibody, 6D3, which binds to SARS-CoV-2 Spike protein containing 
the same neurotoxin597 motif S680PRRAR685 and inhibits infection by blocking the access of the host cell 
proteases, TMPRSS2 or furin, to the cleavage site598. Is it possible that the SEB antibody may serve as an 
alternative low-cost global vaccine against SARS-CoV-2? Is this why India has fewer CoVID-19 cases? 
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Figure 40: Open defecation599 (top) & sanitation insecurity600 is inescapable in rural (middle section601) 
India. Children eating602 from rubbish dumps603 are common (bottom604) in the Indian-subcontinent605. 
When this discussion, typical of a smartphone606 linked system, using aptamers (ADD) for detection was 
presented to a VC (in the USA), her response was that there wasn’t a good enough business case (she 
didn’t think the focus of ADD on low-cost sensors for the underserved masses was good for her profit). 
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APPENDIX X – REFOCUS ON DETECTION: LOW-COST SENSORS FOR THE UNDERSERVED 
 

 Refocusing on the central thrust of detection needs no emphasis in view of the SARS-CoV-2 
mutants re-igniting the pandemic, a year later after the initial declaration of pandemic607 by WHO. 
 

 
 

 
 

Figure 41: One year into the pandemic, the resurgence of new waves608 of CoVID-19 is grim news for 
many geographies except a temporary but uneasy609 exception in the USA. 
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Sensors are the frontline in this epic battle but despite millions of published papers on sensors 
there are very few commonly used commercial biosensors610 which are prominent in healthcare and 
even fewer that are used by the underserved. One example of success is the glucose biosensor611 for home 
tests in affluent nations. The principle of enzyme catalysis is the foundation of common glucose sensors.  

 

In section 6 of this discussion and in a previous article612 the use of ACE2 as a detector protein 
was suggested. The reliance on binding data using low cost sensors may be useful but discussion in 
Appendix I and Appendix II outlines the potential for errors in data and inference about detection. Thus 
far none of the suggestions involve enzymatic analysis yet the most successful biosensor (glucose sensor) 
is an excellent example of enzymatic assay for detection of analyte. Enzyme actions in vitro are not fool-
proof but the outcome (data) may be more reliable and reproducible due to use of assays which depend 
on a product different from and independent of the molecule we need to sense. 

 

In case of detection applicable to known members of the entire coronavirus family, including 
SARS-CoV-2 and its plethora of mutants, the target ACE2 is the common (denominator) receptor for 
coronaviruses to enter host cells. This suggestion for an enzymatic detection modus operandi uses the 
physiological function of ACE2 enzyme to cleave the octapeptide (N-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) 
Angiotensin II (between Pro-Phe) to release the C-term Phenylalanine and convert Angiotensin II to the 
septapeptide vasoactive Angiotensin (N-Asp-Arg-Val-Tyr-Ile-His-Pro). 
 

 
 
Figure 42: Can we use ACE2 in its native function as an enzyme613 to detect SARS-CoV-2 in saliva? 
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MECHANISM: ASSAY TO DETECT AN ENZYMATIC PRODUCT – PHENYLALANINE 
 
  Conversion of Angiotensin II to Angiotensin releases a free amino acid, Phenyalanine (F). The 
conversion can only happen if ACE2 is available to catalyze the reaction (enzymatic cleavage). Section 6 
illustrated tethered ACE2 on the surface of low-cost laser inscribed graphene electrodes (turbostrat 
sensors). The idea proposed in section 6 was the direct detection of SARS-CoV-2 virus if the viral Spike 
(S) protein (from the saliva sample) binds to the immobilized ACE2 on the low-cost sensor (ACLITS). 
 
 The idea proposed in the current discussion is to include Angiotensin II (free floating mix) with 
ACLITS and use a “third-analyte” colorimetric assay for Phenylalanine. In an ideal world, the absence of 
virus in the sample will trigger cleavage by ACE2 to generate Phenylalanine residue. The color change is 
visible to the naked eye. Smartphone camera may detect intensity and quantify the color in an app.  
 

If the sample contains the virus, the binding between the viral Spike protein and ACE2 
(ACLITS) prevents the enzymatic action (assumption). Thus, the conversion of Angiotensin II to 
Angiotensin cannot proceed. In the absence of Phenylalanine, the assay to detect the amino acid 
generates a negative result (no color change) which indicates presence of virus in the sample (if color 
change -ve, then presence of virus +ve).  

 

 
 
Figure 43: Phenylalanine (Phe) Assay. ACE2 cleaves (arrow) to release Phe (A). Assay614 measures rate of 
Ang II cleavage. (B) Exposed Phe amino group undergoes deamidation by yeast phenylalanine ammonia 
lyase (PAL, EC 4.3.1.24615), also known as phenylalanine deaminase. In a series of reactions, fluorogenic 
substrate (trans-cinnamate616) is converted. GDH, glutamate dehydrogenase617. (C) Quantifiable visible 
color change to pink in the presence of ACE2 illustrated in tube 2 and tube 4 (emission at 587 nm).  
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The theoretical lucidity of the in vitro Phenylalanine assay is reason for cautious optimism if the 
cascade can be optimized to perform in the context of SARS-CoV-2 virus detection with immobilized 
ACE2. Reproducible success in detecting viruses on-site with saliva samples may need optimization in 
terms of immobilization strategies (ACLITS, magnetic nanobeads, quantum dots). Perhaps free ACE2 in 
the detection mix may perform better if steric hindrance (if any) is reduced by not tethering ACE2 at all. 

 

Surface-free mobile ACE2 in a saliva sample without virus will generate enzymatic activity 
dependent color change when the substrate Angiotensin II is added if all other reagents are in the mix. 

 

Surface-free mobile ACE2 in a saliva sample with virus will NOT generate enzymatic activity 
dependent color change when the substrate Angiotensin II is added if all other reagents are in the mix. 

 

The most important source of contamination (background noise in data) is the release of Phe 
from other peptides [with C terminal Proline-Phenylalanine] in human or animal saliva. Many proteins, 
specifically salivary amylases618, contain Proline-Phenylalanine moieties (human alpha-amylase 1B619) 
but they are not known to release the Phenylalanine (required for the assay, Figure 43) which is not 
present in the terminal position in these instances (in these proteins, the human salivary amylases). 
 

Use of [a] mutant ACE2, [b] another similar sized protein [c] mutated Angiotensin II peptide 
[d] another short peptide (BNP620) without terminal Phenylalanine are a few of the essential controls to 
validate specificity of interaction, in each set of experiments. Rigorous baseline data from virus-free 
saliva must be tested to quantify background noise (due to Bradykinin, etc). Statistically significant 
comparative values will be necessary to quantify noise levels stratified by demographics (age, gender, 
ethnicity, cardiovascular co-morbidities, drug use for hypertension, kidney function, dialysis, etc).     
 

 
 

Figure 44: Bradykinin is a vasoactive peptide found in saliva621 and may contribute to background noise. 
Apelin622 was not reported in saliva. Label-free colorimetric analysis using untethered ACE2 may be 
another low-cost solution if the reagents are stable, easily available and do not require high energy 
consuming low temperature storage. Quantifying color change using a smartphone camera and an app 
embedded with analytical tools may be a low-cost milestone for citizen science and surveillance, globally. 
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AN INCONCLUSIVE CONCLUSION: YET WE CAN UNAMBIGUOUSLY STATE TWO THINGS 
 
 Concluding this article/essay (thought log) in the midst of a raging pandemic will only generate 
an inconclusive ending. Having said that, one may hasten to add that two things are clear and applicable 
to the 80% of the world population (not a part of US, EU and other affluent nations).  
 

1. massive deployment of low-cost at-home detection tools are quintessential for prevention.  
 
2. alternate vaccines or alternate to vaccines (for example, aptamer as a drug, AAAD) must be 

produced by the poor nations for the poor nations (80% of the world population) because the affluent 
nations will not share vaccines or the vaccine manufacturing protocols and may never allow the poor 
nations to manufacture vaccines which are successful and profitable (Pfizer, Moderna, Novavax, J&J). 

 
 

 
 
Figure 45: Countries shown in RED are the nations which OPPOSED623 and voted against the UN call 
for waiving patent law for life-saving CoVID-19 vaccines. Countries in RED blocked the proposal which 
called for the right to manufacture and import affordable CoVID-19 vaccines. The proposal624 was led by 
India and South Africa. Countries shown in yellow are “undecided” after >100 million CoVID-19 cases 
and nearly 3 million deaths due to CoVID-19, globally.  
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Cartoon for Reference #372 (A more complete discussion may be found in “HIP” – https://bit.ly/EXPLORE-HIP)  
Machine Learning Algorithms – ML makes better sense without the misnomer of AI since there is no canonical 
‘intelligence’ in ‘artificial intelligence’. AI was erroneously named due to historical accidents. At best AI may be 
referred to as artificial reasoning tools (ART) but there is nothing about reasoning that is “artificial” because the 
logic and rules in any analytics approach or analytical technique is programmed by humans in the loop. To be 
mathematically correct, analysis is a term applied to calculus and all higher mathematics that uses calculus. Logic, 
rules and reasoning tools (LRRT) devoid of calculus is likely to be hand-waving subjectivity of limited value, if at 
all. Similarly, machine “learning” also takes “artistic” license by creating the illusion that machines are learning, 
when in reality machines are applying stored logic and rules, programmed by humans, to data and information 
that is supplied by the structures created by humans in the loop. Neither ML nor AI creates anything new or novel 
but uses programmed logic and rules in all possible and “allowed” permutations and combinations to data. There 
aren’t any “magic inside the black box” but “machinery” which supplies correlations using correspondence rules 
(provided by equations) that govern the function. There is no “intelligence” or anything “artificial” because the 
machinery is the relation between variables determined by functions. Function is a relation between two variables 
which maps to values given by domain, range, Cartesian coordinates (x,y) or polar coordinates (r,θ). Values or 
sets of values and limits are deduced, derived, formulated and programmed by humans (algorithms) at the heart 
of the engine in any learning machinery. Much to the chagrin of buzz-word peddlers (consulting firms) and 
marketing teams (“sound bite” manufacturers), the purpose of percolating the term “AI” is to deliberately distract 
us from facts and truth in order to catalyze collusive strategies for snake-oil sales. ML is tolerable but presents 
illusions of grandeur when learning refers to a mathematically informed ensemble of logic, rules and reasoning 
tools (LRRT). Pedantically speaking “LRRT” are machinery applications of logic (LO), rules and reasoning (RE) 
tools (TO). LRRT or LORETO are not glib and smug acronyms or sound-bites but conveys the unvarnished 
concept. In a world where polishing the chrome is valued higher than tuning the engine, any effort to reduce bias 
and increase credibility (what is truly deliverable), is an exercise in futility by a scripturient fool (referring to SD). 
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