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Nomenclature

F = state transition matrix
H = matrix giving the ideal/noiseless connection between

measurements and states
I = identity matrix
k = time index
L = noise sensitivity matrix in nonlinear systems
N = lag time constant integer
P = estimation-error covariance matrix
s = arbitrary time step used in inductive proof
xk = state at time index k
x̂ = state estimate
x̂−k = a priori state estimate
x̂�k = a posteriori state estimate
yk = measurement at time index k

I. Introduction

T HEKalman filter has been one of the most powerful tools in the
field of estimation and tracking since it was published in 1960

[1]. Besides its optimality, its recursive formulation is another key
benefit, especially for real-time applications. When considering
applications to real-time systems, one must be aware of the timing
differences that naturally occur between a sensor measurement, the
state of interest, and the assumptions made by the selected Kalman
filter or smoother. For real-time systems, many choose the state of
interest to be the system state at the current time, though the estimator
is very likely to have access to prior sensor data that were used in
determining the current state estimate. The delay between
measurement and estimate times may be larger if the sensor is part
of another system that has digital processing to generate more
accurate outputs as compared to simple analog sensors. For example,
a star sensor, which is currently one of the most accurate attitude
sensors for spacecraft, needs time to integrate starlight and process

the image, to calculate the attitude, and to transfer the output to the
computer that runs the Kalman filter. These effects are compounded
by the need to compensate for time synchronization errors between
commercial-off–the-shelf technologies (COTS). As COTS systems
have become more commonly used in aerospace vehicles, such as
CubeSats [2] or quadcopter drones [3], the time synchronization
typically becomes less precise. For example, some COTS controllers
are not typically sufficient for use in higher-performance systems
because of their drift and lower speeds or their lack of compensation
for thermal or pressure effects. The PIC16F627A/628A/648A, for
example, is a COTS microprocessor used in small satellites and has
an internal oscillator that, while typically 4 MHz, can range between
3.80 and 4.20 MHz under certain conditions [4]. This scenario leads
to a configuration where it becomes more difficult to force or
anticipate the exact measurement time.
To update the Kalman filter with the time-delayed sensor output,

both the state and covariance estimate at the measurement time are
needed. If the time delay can be synchronizedwith the Kalman filter
update history, a smoothing algorithm can be used with only small
changes to the measurement update equation, since the state
estimate at the measurement time is available immediately. If not, to
ensure optimality, the system must generate the estimates that are
conditioned with all of the measurements. There have been several
approaches to managing this problem. A suboptimal filtering
method was described in [5,6], where Blackman and Popoli [5]
described a process for simplified covariances associated with state
retrodiction, and Hilton et al. [6] described a constrained minimum
mean square error negative time update technique for highly
varying states with limited data rates. They are suboptimal because
they only partially take into account the process noise within the
arbitrary delayed time. Bar-Shalom derived an exact solution when
out-of-sequence measurements (OOSMs) were within the last
sampling interval [7]. Though Bar-Shalom briefly mentioned the
generalization of his method at the end of [7], it was not derived in
the paper. Beyond the suboptimal solutions and Bar-Shalom’s
optimal solution for special cases, several general solutions that
guaranteed optimality have been proposed. Zhang et al. proposed a
method to save the innovation history for the state estimate and the
covariance, and applied them to generate the state estimate and the
covariance node at the time when OOSMs arrived [8]. For
convenience, we will use the term “node” to represent the paired
state estimate and covariance at a given time. Zhang and Bar-
Shalom summarized the existing algorithms and proposed three
methods for optimal update with OOSMs based on the complete in-
sequence information (CISI) approach [9]. The concept of CISI is
basically similar to [8], as it needs sequential updates from the
OOSM time to the current time to obtain the OOSM node.
In this study, we propose a novel method to handle OOSMs in

Kalman filtering. The proposed method, called the augmented fixed-
lag smoother (AFLS), is based on the fixed-lag smoother (FLS)
formulation, which has been shown to be optimal [10]. We generate
the OOSM node from the two adjacent nodes, plug the generated
estimations into the state vector and the covariance matrix, and
update the filter with OOSMs using the FLS update equation. This
approach gives a generalized solution that can handle any number of
OOSMs. We also extend the AFLS algorithm to nonlinear system,
called the extendedAFLS (EAFLS), and give an application example
on a satellite-tracking problem.

II. Conventional Kalman Filter Formulations

This section reviews two conventional Kalman filtering
approaches (the discrete Kalman filter and the fixed-lag smoother
FLS) to introduce the notation used in this study. The basic discrete
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filter assumes that all of the input data arrive to the filter at the precise

time step of the filter itself. The FLS for synchronized time delay
measurement, however, relaxes this constraint to allow for input data

arriving to the filter with a fixed time delay. In the next section, we
describe the AFLS approach, which also relaxes the constraint on

having a fixed time delay.

A. Discrete Kalman Filter

TheKalman filter can take many forms but, for implementation on

a digital computer, discrete versions are used in order to take
advantage of real time processing with inherently time-sequenced

measurement updates. A discrete system can be written with the
vectors wk and vk representing white, zero-mean, and uncorrelated

random variables. Further details may be found in [11]:

xk � Fk−1xk−1 �Gk−1uk−1 � wk−1

yk � Hkxk � vk

E�wkw
T
j � � Qkδk−j; E�vkvTj � � Rkδk−j; E�wkv

T
j � � 0 (1)

The discrete-time Kalman filter can be implemented as a loop
using the following steps:
1) Initialize the Kalman Filter with

x̂�0 � E�x0�
P�
0 � E��x0 − x̂�0 ��x0 − x̂�0 �T � (2)

2) Iterate the time-step counter k as integers starting with k � 1:
Priori estimate:

x̂−k � Fk−1x̂
�
k−1 �Gk−1uk−1

P−
k � Fk−1P

�
k−1F

T
k−1 �Qk−1 (3)

Posteriori estimate:

Kk �P−
k H

T
k �HkP

−
k H

T
k �Rk�−1 �P�

k H
T
kR

−1
k

x̂�k � x̂−k �Kk�yk−Hx̂−k �
P�
k ��I−KkHk�P−

k �I−KkHk�T �KkRkK
T
k ��I−KkHk�P−

k (4)

We are going to drop the input term Gk−1uk−1 in the following
sections for convenience.

B. Fixed-Lag Smoother

This section briefly describes the concept of the FLS, which was
also described inmore detail in [11], to introduce the base structure of

the AFLS that will be derived in the following sections. The FLS is
based on obtaining a new state estimate at time k-N, where the time

index k iterates forward in time but the delay time for measurement
inclusionN is a constant. Let us consider an augmented system as the

following:

2
6664

xk
xk−1
..
.

xk−N−1

3
7775 �

2
6664
Fk−1 0 · · · 0

I 0 · · · 0

..

. . .
. . .

. ..
.

0 · · · I 0

3
7775

2
6664

xk−1
xk−2
..
.

xk−N−2

3
7775�

2
6664
I
0

..

.

0

3
7775wk

(5)

yk � �Hk 0 · · · 0 �

2
66664

xk
xk−1
..
.

xk−N−1

3
77775� vk (6)

For convenience, we define xk;m as the state xk-m propagated with
an identity transition matrix and zero process noise to time k. With
this definition, the augmented system can be reformulated as follows:

Xk � Ak−1Xk−1 �Wk−1

yk � CkXk � vk (7)

where

Xk � �xk xk;1 · · · xk;N�1 �T; Ak−1 �

2
666664

Fk−1 0 · · · 0

I 0 · · · 0

..

. . .
. . .

. ..
.

0 · · · I 0

3
777775
;

Ck � �Hk 0 · · · 0 � (8)

E�WkW
T
j � � diag�Qkδk−j; 0; : : : ; 0�; E�vkvTj � � Rkδk−j;

E�Wkv
T
j � � 0 (9)

Then, it is possible to apply the discrete Kalman filter [Eqs. (3) and
(4)] to this augmented system to obtain an optimal estimate for
(xk; : : : ; xk−N−1) conditionedwith all themeasurements up to yk. The
FLS is designed for estimating the past states within fixed lag time
steps with all the available measurements but not for estimating the
current state. However, we can take advantage of the optimal
estimates of the past states and the covariances to update the current
state, which is described in the following section.

III. Update with Out-of-Sequence Measurement

Figure 1 shows a time-delayed measurement in the Kalman
filtering described in Sec. II.A. The Kalman filter estimates the
states at ta, tb, and tc with the measurements ya, yb, and yc. Then, a
time-delayed measurement, yr measured at tr, is delivered at tc.
This section deals with the time-delayed measurement yr to obtain
the optimal current state estimate x̂�c conditioned by all the
measurements available: ya, yb, yc, and yr.

A. In-Sequence Processing

The easiest and simplest method to incorporate an OOSM is
through the in-sequence processing (ISP) of all measurements. First,
all the state estimate, covariance, andmeasurement histories from the
ordinary Kalman filter described in Sec. II.A up to the current time
can be stored in memory. When an OOSM arrives, the algorithm can
go back to the time just before the OOSM, discard all the state
estimates and covariance histories after the time of the OOSM, and
process the Kalman filter through to the current state. Though this
method guarantees the optimal estimation of the current state and
covariance conditioned with all the measurements received, this
approach is a computationally inefficient process because these
OOSM measurements can occur frequently and result in excessive
delays in providing updated state estimates.

B. FLS with Synchronized Time-Delayed Measurement

The FLS described in Sec. II.B and in [11] assumes the
measurement without time delay yk. However, the FLS can be easily
modified to process a synchronized time-delayedmeasurement or in-
sequence measurement (ISM), where the time delay is known and

Fig. 1 Time-delayed measurement in Kalman filtering.

J. GUIDANCE, VOL. 39, NO. 11: ENGINEERING NOTES 2545

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

A
ug

us
t 1

5,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

18
00

 



matches with the filter updates [10]. If a measurement is delivered at

time k but is measured at time k − l where l < N, then the output

[Eqs. (7) and (8)] may be modified as the following:

yk;l � Ck;lXk � vk;l

Ck;l � � 0 · · · 0 Hk−l 0 · · · 0 � (10)

where E�vk;lvTk;l� � Rk−l. Then, the same filtering equation of the

Kalman filter can be applied. The update equation is derived as

x̂�k � x̂−k � P−
k−l;kH

T
k−l�Hk−lP

−
k−l;k−lH

T
k−l � Rk−l�−1

× �yk;l −Hk−lx̂
−
k−l� (11)

where Pi;j � E��xi − x̂i��xj − x̂j�T �, which is the covariance

between the two state estimates at time i and j. This filtering method

gives the optimal estimate, regardless of whether xk−l has been

updated before the time-delayed measurement or not.

C. Augmented Fixed-Lag Smoother

Unlike the ISM, themeasurement time of anOOSMis assumed not

to be synchronized with the previous filter updates, so the update

method in Sec. III.B cannot be used directly. However, if it is possible

to generate the state and covariance of the node at theOOSM time,we

can apply Eq. (11) to update the state and covariance. The following

steps summarize how the augmented fixed-lag smoother may be

updated with any OOSM with a newly generated OOSM node. The

OOSM node generation of the AFLS is derived in the following

(Sec. III.D):
1) Run the general FLS Kalman filter.
2) If a time-delayed measurement is delivered, then proceed with

one of the following:
a) If the measurement time is one of the FLS nodes, update the

FLS using Eq. (11).
b) If the measurement time is not in the FLS nodes, i) generate

a node using Eqs. (27–29); ii) plug the generated
state estimate and the covariance into the FLS state vector
and covariance matrix (Fig. 2); and iii) update the FLS using
Eq. (11).
Figure 2 describes the “plug-in” process of the generated node into

the FLS nodes where the subscript rmeans the OOSM time between

a and b. Since the number of the state of estimates increases, the

dimension of Ak−1 in Eq. (8) should be increased with the dimension

of the new covariance.
Because of the AFLS’s structure, the filtering process remains

exactly the same, whether there are single or multiple OOSMs and

regardless of whether the measurements arrive in sequential order.

For implementation with real systems, onemust consider the number

of nodes that should be kept. The basic rule is to keep all nodes up to

the expected maximum delay time, and not to keep the measurement

histories. Keeping up-to-date estimates for all nodes is beneficial in

reducing the response time of the estimator. This will be discussed in

Sec. III.E in detail.

D. OOSM Node Generation

The OOSM node generation of the AFLS expands upon the FLS.

The basic idea is the following: the time of theOOSMoccurs between

two adjacent nodes where the filter update is performed so that the

state of the OOSM can be regarded as an additional node between the

two adjacent nodes. This new OOSM node is created without a

corresponding filter update. This process may be shown by an

inductive proof, with the base case being simply the FLS algorithm,

since the new method expands upon the initialization provided by

the FLS.
The following represents the inductive step for a particular initial

measurement step s with subsequent measurement steps s� 2 and

s� 3, and a step s� 1 for which the state is to be estimated with

time delayed information. For this analysis, the letters a, b, c, and d
represent s, (s� 1), (s� 2), and (s� 3), respectively. Also, x̂�i;k
represents the conditioned state estimate of node i as x̂−i;k �
E�xijy1; : : : ; yk−1� and x̂�i;k � E�xijy1; : : : ; yk�, where yk is a

measurement at tk, and P�
ij;k represents the conditioned covariance

between xi and xj asP
−
ij;k � E��xi − x̂i��xj − x̂j�T jy1; : : : ; yk−1� and

P�
ij;k � E��xi − x̂i��xj − x̂j�T jy1; : : : ; yk�, whichmeans x̂−i;k−1 � x̂�i;k

and P−
ij;k−1 � P�

ij;k, essentially. The inductive step follows the initial

base case of the initial Kalman smoother step, which has already been

shown to generate state estimates optimally [12]. We assume no

measurement at step b, which means x̂�b;k is a nonupdated node, and
verify that the nonupdated node (x̂�b;k, P

�
bb;k, P

�
bk;k) can be generated

by a linear combination of the two adjacent nodes. In the following

equations,Fk,Qk,Rk, andwk follow the same definition as in Eq. (1).
For time step a → b,

�
x̂−b;b
x̂−a;b

�
�

�
Fa 0

I 0

��
x̂�a;a
x̂�a−1;a

�
�

�
Fax̂

�
a;a

x̂�a;a

�
(12)

�
P−
bb;b P−

ba;b

P−
ab;b P−

aa;b

�
�

�
FaP

�
aa;aF

T
a �Qa FaP

�
aa;a

P�
aa;aF

T
a P�

aa;a

�
(13)

Since there is no update at b, we can move on to the next time step.
For time step b → c, similar to Eqs. (12) and (13), we can derive

the posteriori estimates at c using Eq. (4) as

x̂�c;c � FbFax̂
�
a;a � FbFaP

�
aa;aF

T
aF

T
bmc � FbQaF

T
bmc �Qbmc

(14)

x̂�b;c � Fax̂
�
a;a � FaP

�
aa;aF

T
aF

T
bmc �QaF

T
bmc (15)

x̂�a;c � x̂�a;a � P�
aa;aF

T
aF

T
bmc (16)

where

mc ≜ HT
c �HcP

−
cc;cH

T
c � Rc�−1�yc −Hcx̂

−
c;c� (17)

Combining Eqs. (14) and (16),

mc � Q−1
ca �x̂�c;c − FbFax̂a;c� (18)

where Qca ≜ FbQaF
T
b �Qb from xc � FbFaxa � wca, wca∼

N�0; Qca�. From Eqs. (15), (16), and (18),

x̂�b;c � Ax̂�a;c � Bx̂�c;c (19)

where

A ≜ �I − BFb�Fa; B ≜ QaF
T
bQ

−1
ca (20)

The covariance matrix can be calculated as follows (see Sec. A):

P�
bb;c � AP�

aa;cA
T � BP�

cc;cB
T � AP�

ac;cB
T � BP�

ca;cA
T

� �I − BFb�Qa (21)Fig. 2 Plug in the generated node.
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P�
bj;c � AP�

aj;c � BP�
cj;c (22)

for all j, j ≠ b.
Time Step c → d: Similar to Step b → c, we can derive the

following:

x̂�c;d � x̂�c;c � P�
cc;cnd

x̂�b;d � x̂�b;c � FaP
�
ac;cnd �QaF

T
bQ

−1
ca �P�

cc;c − FbFaP
�
ac;c�nd

x̂�a;d � x̂�a;c � P�
ac;cnd (23)

where

nd ≜ FT
dH

T
d �HdP

−
dd;dH

T � Rd�−1�yd −Hdx̂
−
d;d� (24)

Try the same form of (19) with (23) as follows:

Fax̂
�
a;d �QaF

T
bQ

−1
ca �x̂�c;d − FbFax̂

�
a;d�

� Fax̂
�
a;c �QaF

T
bQ

−1
ca �x̂�c;c − FbFax̂

�
a;c� � FaPac;cnd

�QaF
T
bQ

−1
ca �P�

cc;c − FbFaP
�
ac;c�nd

� x̂�b;c � FaPac;cnd �QaF
T
bQ

−1
ca �P�

cc;c − FbFaP
�
ac;c�nd

� x̂�b;d (25)

Similar to (21–22), the covariance is given as the following (see

Appendix A3):

P�
bb;d�AP�

aa;dA
T�BP�

cc;dB
T�AP�

ac;dB
T�BP�

ca;dA
T��I−BFb�Qa

P�
bj;d�AP�

aj;d�BP�
cj;d (26)

for all j, j ≠ b, where A and B are given by Eq. (20).
Since d � c� 1, it is shown by mathematical induction that we

can generate the nonupdated node pointbwith the linear combination

of two adjacent nodes,a and c, for the state estimation and covariance

as follows:

x̂�b;k � Ax̂�a;k � Bx̂�c;k (27)

P�
bb;k � AP�

aa;kA
T � BP�

cc;kB
T � AP�

ac;kB
T

� BP�
ca;kA

T � �I − BFb�Qa (28)

P�
bj;k � AP�

aj;k � BP�
cj;k (29)

for all j, j ≠ b, and for k � c; c� 1; c� 2; : : : , where A and B are

given by Eq. (20). Note that there are no assumptions made about b,
except that b occurs after the first filter update that generates updated
node a. Therefore, this induction shows that the proposed method is

the general solution.

E. Comparison to Existing Algorithms

The existing methods for optimal updating with OOSMwere well

summarized by Zhang and Bar-Shalom [9]. Among the several

algorithms introduced in [9], the complete in-sequence information-

based fixed-interval smoothing (CISI-fixed-point smoother (FPS))

was claimed as the most efficient one among the algorithms that

guaranteed the optimal estimation result and was verified

quantitatively by numerical simulations. The concept of CISI-FPS

was that, if an OOSMarrived, the CISI-FPSwent back to the last step

before the OOSM and updated the state estimation and covariance all

the way to the current step. Another comparable algorithm was

proposed as ALG-I in [8]. In this reference, ALG-I was compared to

ALG-S, whichwas proposed in [10] and capable of handling the ISM

only. Zhang et al. [8] noted that the FLS approach was conceptually

clearer, simpler, andmore elegant, but criticized the requiredmemory

and the computation because the FLS algorithm needed to increase
the sampling rate to generate and save the possible nodes for expected

OOSMs. However, with Eqs. (27) and (28), the AFLS was able to
generate the node for OOSMs when it arrived, so the sampling rate
could remain the same as the others. It was true that the FLS or the
AFLS required more throughput to update all the nodes in the FLS

compared to the sequential-update-based algorithms, but the AFLS
could be more efficient in terms of response time because it did not
need to renew all the stored nodes to update the current state with it.

Once the OOSM node was generated, the AFLS could give the real-
time estimation at the current time first and update the other nodes
later when the other time-critical processes were complete. Since
most of real-time estimationwas a part of a control loop, this could be

effective tominimize the response delay in the overall control system.
The required memory is another issue for applications. The

AFLS needs more memory than ALG-I or CISI-FPS because the
AFLS requires sp� s2�p × p�, whereas ALG-I needs �s − 1�p�
2s�p × p�, where p is the dimension of the state xk and s is the

number of the maximum delay [8]. This is a typical tradeoff problem
between processing speed and memory usage, so it is hard to
conclude which one is globally the most efficient.
Though Bar-Shalom did not explicitly derive his approach with

FLS in [7], it could be directly used with the FLS in the same manner
as the AFLS. Combined with the FLS, Bar-Shalom’s algorithm

(BSA) guaranteed optimal state estimation, as did the AFLS.
The difference between BSA and the AFLS is how to generate the

OOSM node. BSA explicitly estimates the process noise and applies
it when calculating the OOSM node, whereas the AFLS interpolates
the two adjacent nodes. Despite the conceptual difference, either
BSA with the FLS or the AFLS will require similar throughput for

updates. In terms of the required memory, the AFLS is slightly more
efficient than BSA because BSA needs to store the previous
measurements to calculate the process noise, whereas the AFLS

does not.

F. Extension to Nonlinear Systems

Since most dynamic systems in the aerospace field are nonlinear,
the AFLS needs to be extended to nonlinear systems for actual

applications. Consider a discrete-time nonlinear system forwhich the
system and measurement equations are given as follows:

xk�1 � fk�xk; wk�
yk � hk�xk; vk�
wk ∼ N�0; Qk�
vk ∼ N�0; Rk� (30)

By taking the same approach as the extended Kalman filter, the

covariance of a node can begenerated usingEqs. (28) and (29) for this
system with slight modification:

P�
bb;k � AP�

aa;kA
T � BP�

cc;kB
T � AP�

ac;kB
T

� BP�
ca;kA

T � �I − BFb�Qa (31)

P�
bj;k � AP�

aj;k � BP�
cj;k (32)

where

A � �I − BFb�Fa; B � QlaF
T
bQ

−1
lca (33)

Fk �
∂fk
∂x

����
x̂�
k

; Lk �
∂fk
∂w

����
x̂�
k

(34)

Qla � LaQaL
T
a

Qlca � FbLaQaL
T
aF

T
b � LbQbL

T
b (35)
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For generating the state estimate, Eq. (27) is also useful for solving
a nonlinear system. Equation (27) can be rewritten as

x̂�b;k � Fax̂
�
a;k �QlaF

T
bQ

−1
lcaFb�F−1

b x̂�c;k − Fax̂
�
a;k�

� x̂bjx̂�
a;k
�QlaF

T
bQ

−1
lcaFb�x̂bjx̂�

c;k
− x̂bjx̂�

a;k
� (36)

In a nonlinear system given as Eq. (30), x̂bjx̂�
c;k

and x̂bjx̂�
a;k

can be
calculated:

x̂bjx̂�
a;k

� fa�x̂�a;k; 0�
x̂bjx̂�

c;k
� f−1b �x̂�c;k; 0� (37)

where f−1k � · · · � denotes the backward propagation from k� 1
to k:

xk�1 � fk�xk; wk� ⇔ xk � f−1k �xk�1; wk� (38)

To summarize, the state estimate and covariance of a node can be
generated using the two adjacent nodes:

x̂�b;k�fa�x̂�a;k;0��BFb�f−1b �x̂�c;k;0�−fa�x̂�a;k;0��
P�
bb;k�AP�

aa;kA
T�BP�

cc;kB
T�AP�

ac;kB
T�BP�

ca;kA
T��I−BFb�Qa

P�
bj;k�AP�

aj;k�BP�
cj;k forj≠b (39)

where A and B are given by Eqs. (33–35). We will call this the
extended AFLS for the rest of this study.

IV. Numerical Example for the EAFLS Application

Real-time satellite tracking for optical communication is a good
example of the utility of the EAFLS. Optical communication has
been highlighted as a key next-generation technology with
advantages in power efficiency compared with radio frequency
(RF) communication systems [13]. The higher gain from having a
narrow optical communication beam width is a key enabling factor,
which correspondingly demands a lower pointing error. For modern
low-Earth-orbit satellites, there are three measurements that are
generally available: range between the satellite and ground station
(GS), range rate from the Doppler shift, and Global Navigation
Satellite System (GNSS) data from an onboard GNSS receiver. Since
the first two are measured at the ground station, we assume for this
example that the time delay for the ground-based measurements is
small compared to the GNSS data that measured on the satellite and

must be downlinked through an RF link. So, the GNSS data have

some time delay, and the delay can be arbitrary, depending on the RF

link status. Our example uses one of the simplest formulations for

orbit estimation with the intention of showing the application of the

EAFLS to an aerospace system.
From two-body orbital dynamics, the differential equation of

position r � �x; y; z�T and velocity v � �u; v;w�T are given as

_r � v; _v � −
μ

r3
r� η (40)

where r � jrj and η are random accelerations (process noise)

assumed to be white noise as E�ηηT � � diag�q1; q2; q3�. The

measurement models for range ρ, range rate _ρ, and satellite position
from the GNSS output rG are given as the following:

ρ �
��������������������������������������������������������������������������
�x − xgs�2 � �y − ygs�2 � �z − zgs�2

q
� nρ

_ρ � 1

ρ
f�x − xgs��u − ugs� � �y − ygs��v − vgs�

� �z − zgs��w −wgs�g � n_ρ

rG � r� nG (41)

where (xgs, ygs, zgs) and (ugs, vgs, wgs) are the position and velocity

of the GS in an inertial frame such as J2000, which is assumed to be

known; and nρ, n_ρ, and nG are measurement noise for each

measurement. Also, nρ and n_ρ are usually assumed to be

exponentially correlated in time, and nG is modeled as a more

complicated noise process [14]. However, here, we assume they are

white noise processes for which the covariance is given as

E�n2ρ� � rρ, E�n2_ρ� � r_ρ, and E�nGn
T
G� � diag�rx; ry; rz�, respec-

tively, to simplify the problem.
For this system, we can define the state vector to be estimated as

x � �x; y; z; u; v; w�T . Then, the partial derivative of the differential
equation of the state is given as [15]

∂ _x
∂x

� F �
�
0 I
F 0 0

�
(42)

where

F 0 � −
μ

r3
I � 3

μ

r5

2
4 x2 xy xz
xy y2 yz
xz yz z2

3
5 (43)

Fig. 3 Satellite-tracking error and 1σ boundary, which shows the estimates of two methods are very similar.
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Given the state vector, it is straightforward to derive the partial
derivatives of themeasurements. Further detailsmay be found in [14,15].
In this example, the International Space Station orbit is used

(400 km altitude and 51.65 deg inclination), and the ground station
location is assumed to be at �Lat;Lon� � �42.3584488;
−71.0912204�°, which is the geographical location of the
Massachusetts Institute of Technology. The simulation period is set
as a contact opportunity of 630 s at 8 November 2015
10:22:14.876 hrs. For orbit propagation, two-body dynamics as
given in Eq. (40) are numerically integrated by the leapfrog
integration method. For the noise parameters, q1 � q2 �
q3 � �0.01 m∕

���������
sec3

p
�2, rρ � �1 m�2, r_ρ � �0.1 m∕ sec�2, and

rx � ry � rz � �30 m�2 are used. The process noise is given in
the continuous domain, so it is converted to a discrete random
variable by multiplying with the square root of the step time and
added into the numerical integrator. As mentioned before, the range
and range rate measurement are assumed to be measured and
available instantly, but the GNSS measurements are assumed to be
out of sequence, each with a time delay that is assumed to be
randomly distributed between 2 and 3 s. The filter is updated at 1 Hz.
The initial guess of the covariance is set to be

P0 � diag��10 km�2; �10 km�2; �10 km�2; �100 m∕ sec�2;
�100 m∕ sec�2; �100 m∕ sec�2�

Filtering results from the EAFLS and the ISP using the extended
Kalman filter (EKF), described in Sec. III.A, are compared. Figure 3
shows the estimation error and the covariance of each method. The
results are similar, but they show certain differences. Figure 4 shows
the state estimate difference percentage between those twomethod to
the estimated 1σ. Unlike a linear system case, the EKF and the
EAFLS calculate the partial derivativematrix [Eq. (34)] for each step,
which means the matrix will be different for each unique state
estimate. This process creates the difference between the two results
shown in Fig. 4. This kind of difference is inevitable for the extended
approaches to nonlinear systems because the partial derivatives are
just an approximation of nonlinear system. Regardless, the difference
percentage converges to less than 10%within 30 s, which is generally
sufficient for practical applications.

V. Conclusions

In this study, a new approach is presented to update the Kalman
filter with out-of-sequence measurements for real-time estimation in
general form. By generating the estimate at the out-of-sequence
measurement time through the creation of a new node and using the

information from the two adjacent nodes, the Kalman filter can be
updated with the existing fixed-lag smoother formulation. The
mathematical formulation of the proposed method, the augmented
fixed-lag smoother, is derived from the fixed-lag smoother with an
induction proof. The augmented fixed-lag smoother (AFLS) is
extended to a nonlinear system as the extended AFLS. To
demonstrate the extended AFLS (EAFLS) numerically, a satellite-
tracking problem is described with simplified noise models. The
simulation results show that the difference between the estimates of
the EAFLS and the conventional extended Kalman filter is small.
This is because the extended approaches approximate the nonlinear
system as a linear system for a given state. The results also show that
the small difference between the EAFLS and the extended Kalman
filter converges less than 10%within 30 s and goes to zero as the filter
converges to a steady state.

Appendix A: Derivations

A1. P�
bb;c Derivation

From Eqs. (1) and (19), the covariance matrix P�
bb;c can be

expanded as

P�
bb;c � E��xb − x̂�b;c��xb − x̂�b;c�T �

� AP�
aa;cA

T � BP�
cc;cB

T � AP�
ac;cB

T � BP�
ca;cA

T

� �I − BFb�Qa�I − BFb�T � BQbB
T

� E�A�xa − x̂�a;c���I − BFb�wa − Bwb�T
� B�xc − x̂�c;c���I − BFb�wa − Bwb�T �
� E�A�xa − x̂�a;c���I − BFb�wa − Bwb�T
� B�xc − x̂�c;c���I − BFb�wa − Bwb�T �T (A1)

where A andB are are given by Eq. (20). It is straightforward to show
that the fifth and sixth terms of Eq. (A1) can be expanded as

�I − BFb�Qa�I − BFb�T � BQbB
T � �I − BFb�Qa (A2)

Considering the third line of Eq. (A1), it is clear that

E��xa − x̂�a;c�wT
a � ≠ 0; E��xa − x̂�a;c�wT

b � ≠ 0

E��xc − x̂�c;c�wT
a � ≠ 0; E��xc − x̂�c;c�wT

b � ≠ 0 (A3)

Fig. 4 Difference between the ISP and the EAFLS estimates ratio to the standard deviation.
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Before expanding the third line, let us consider the following.
From Eq. (17),

mc � HT
c �HcP

−
cc;cH

T
c � Rc�−1�yc −Hcx̂

−
c;c�

� HT
c � · · · �−1�HcFbFa�xa − x̂�a;a� �HcFbwa �Hcwb � vc�

(A4)

Since E��xa − x̂�a;a�wa� � 0 and E��xa − x̂�a;a�wb� � 0,

E�mcw
T
a � � McFbQa; E�mcw

T
b � � McQb (A5)

where Mc ≜ HT
c �HcP

−
cc;cH

T
c � Rc�−1Hc. Using Eq. (A5), it is

straightforward to prove that

E�mc��I − BFb�wa − Bwb�T � � 0 (A6)

More specifically,

E��yc −Hcx̂
−
c;c���I − BFb�wa − Bwb�T � � 0 (A7)

Equation (A7) is a powerful condition that means that the
innovation (yc −Hcx̂

−
c;c) is orthogonal to the residual process noise

(�I − BFb�wa − Bwb). From Eqs. (16) and (14) with Eq. (A6), we
can obtain

E�A�xa − x̂�a;c���I − BFb�wa − Bwb�T � � 0 (A8)

E�B�xc − x̂�c;c���I − BFb�wa − Bwb�T � � 0 (A9)

Finally, from Eqs. (A1), (A2), (A8), and (A9),

P�
bb;c � AP�

aa;cA
T � BP�

cc;cB
T � AP�

ac;cB
T

� BP�
ca;cA

T � �I − BFb�Qa (A10)

A2. P�
bj;c Derivation

Similar to Eq. (A1),

P�
bj;c�E��xb−x̂�b;c��xj−x̂�j;c�T �

�AP�
aj;c�BP�

cj;c�E��xj−x̂�j;c���I−BFb�wa−Bwb�T �T (A11)

The third term of Eq. (A11) will become zero for all j, j ≠ b. For
the case of j > b, which means j � c, it is shown in Eq. (A9). When
j < b, similar to Eqs. (14–17), it is straightforward to show that

x̂�j;c � x̂�j;a � P−
jc;cmc (A12)

From Eqs. (A6) and (A12),

E��xj − x̂�j;c���I − BFb�wa − Bwb�T � � 0 (A13)

Therefore, from Eqs. (A11) and (A13),

P�
bj;c � AP�

aj;c � BP�
cj;c (A14)

A3. P�
bb;d and P�

bj;d Derivation

Let us consider md similar to Eq. (A4) as

md � HT
d �HdP

−
dd;dH

T
d � Rd�−1�yd −Hdx̂

−
d;d�

� HT
d � · · · �−1�HdFc�xc − x̂�c;c� �Hdwc � vd� (A15)

By Eq. (A9),

E�md��I − BFb�wa − Bwb�T � � 0 (A16)

Similar to Eq. (A1),

P�
bb;d � AP�

aa;dA
T � BP�

cc;dB
T � AP�

ac;dB
T � BP�

ca;dA
T

� �I − BFb�Qa�I − BFb�T � BQbB
T

� E�A�xa − x̂�a;d���I − BFb�wa − Bwb�T
� B�xc − x̂�c;d���I − BFb�wa − Bwb�T �
� E�A�xa − x̂�a;d���I − BFb�wa − Bwb�T
� B�xc − x̂�c;d���I − BFb�wa − Bwb�T �T (A17)

Since x̂�a;d � x̂�a;c � � · · · �md and x̂�c;d � x̂�c;c � � · · · �md,

E��xa − x̂�a;d���I − BFb�wa − Bwb�T � � 0

E��xc − x̂�c;d���I − BFb�wa − Bwb�T � � 0 (A18)

By Eqs. (A2), (A17), and (A18),

P�
bb;d � AP�

aa;dA
T � BP�

cc;dB
T � AP�

ac;dB
T

� BP�
ca;dA

T � �I − BFb�Qa (A19)

Also, similar to Eq. (A11),

P�
bj;d � AP�

aj;d � BP�
cj;d � E��xj − x̂�j;d���I − BFb�wa − Bwb�T �T

(A20)

And, it is straightforward to show that E��xj − x̂�j;d�
��I − BFb�wa − Bwb�T � � 0 with the same approach from
Eq. (A9). Finally,

P�
bj;d � AP�

aj;d � BP�
cj;d (A21)
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