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parameters to drift from their "desired" values.
Abstract Consequently then, the zero tracking error

requirement must be suitably relaxed. The ration-
It has been found that fixed error dead-zones ale is that no parameter adjustment should take

as defined in the existing literature result in place when the output error(s) are due to disturb-
serious degradation of performance, due to the con- ances and/or unmodeled dynamics. This can be
servativeness which characterizes the determination achieved on an existing algorithm by a dead-zone
of their width. In the present paper, variable nonlinearity, in the parameter adjustment law,
width dead-zones are derived for the adaptive con- whose width depends on the contribution of the
trol of plants with unmodeled dynamics. The der- disturbances and/or unmodeled dynamics to the out-
ivation makes use of information available about put error.

the unmodeled dynamics both a priori as well as The idea of a dead-zone nonlinearity in the
during the adaptation process, so as to stabilize parameter update law to avoid the effect of disturb-
the adaptive loop and at the same time overcome the ances on adaptation was first introduced for in-
conservativeness and performance limitations of direct adaptive algorithms by Egardt in 1980 [2)
fixed-dead zone adaptive or fixed gain controllers. and was later amplified by Samson [3]. Also, in

1982 Peterson and Narendra used a dead-zone non-
1. INTRODUCTION linearity to prove stability for a class of direct

algorithms in the presence of bounded disturbances
Research in recent years has shown that adap- with no unmodeled dynamics [4]. However, the width

tive control algorithms which, under ideal assump- of the dead zone was chosen to be constant and had
tions, have been proven globally asymptotically to be based on a very conservative bound so that it
stable, indeed exhibit unstable behavior in cir- yielded only marginally stable systems with ex-
cumstances under which those assumptions are even tremely poor model tracking as the examples in [4)
slightly violated. Of the two instability mech- seem to suggest.
anisms identified for these algorithms, -commonly Consequently, obtaining non-fixed accurate
referred to as "gain" and "phase" instability mech- bounds for the disturbance and high-frequency
anisms [1],- the former is more unavoidable and is dynamics contributions to the output error is cru-.
triggered by the controller parameter cial to overcoming the conservativeness of the

drift which occurs as a result of nonzero output dead-zone width which they define. This depends on
errors. These are a consequence of the fact that, the ability to translate frequency domain
in the presence of unmodeled dynamics and/or magnitude bounds, most naturally expressed by
(persistent) disturbances there can be no perfect 2

(transfer function) matching between the compensated L norms into time-domain magnitude bounds

plant and the reference model over all frequencies, of instantaneously measured quantities, most nat-

even if "sufficiency of excitation" for the "nom- urally expressed by L - or, for our purposes, L
inal" model order is guaranteed. norms which are much less conservative than L 

Perfect matching, on the other hand, translates norms.

into zero output (tracking) error, under ideal as- This paper discusses the use of a deadzone,
sumptions, and has been the basis for the parameter whose width is adjustable on line, to adaptively
adjustment laws; only when the output error is zero control a plant with unmodeled dynamics, with the
does adaptation stop. Clearly, then, by design, objective of maintaining its stability and minimi-
any nonzero output error is instantaneously attrib- zing the adverse effects of a conservative dead-
uted to parameter errors. Furthermore, there is zone width to its performance. Due to space consid-

nothing in the mathematics of the adjustment mech- erations we do not treat the case of output distntob-

anisms, as they currently stand, to prevent gain ances here; also, the topic of disturbances addi-

drift due to error sources other than parameters, tionallv includes a fixed disturbances rejection

as for example happens even in cases of "exact mechanism that introduces a modification in the bas-

modeling", with "sufficiency of excitation", where ic structure of the MRAC system so is to merit

convergence to the "desired" parameter values has separate attention.

been achieved momentarily; extraneous Section 2 of this paper contains a generic norm

disturbances entering at that point can cause the translation problem and develops a set of tools
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required for its solution. Section 3 applies the the actual transfer function of a plant with feed-

results of the previous section to the familiar NLV back, designed to follow a reference model which is

algorithm of the Model Reference type. Other algo- prescribed by the transfer function M(s). In the
rithms can be treated similarly. Section 4 discus- absence of unmodeled dynamics, i(s), perfect match-

ses the stability of the variable width dead-zone ing is possible.
adaptive system and, finally, Section 5 contains When k(s)#O, the stability of G(e,s) can be
the concluding remarks. ensured by (requiring) enforcing the condition

2. MATHEMATICAL PRELIMINARIES i+A(8, jw) [l+ (jw)]O (3)

In this section we develop the necessary tools This condition is satisfied if, for all 8 in the
for the definition of the variable width dead zone. space of admissible parameters the following is
As was already pointed out in the introduction, the true:

objective is to find satisfactory bounds for the
contribution of the unmodeled dynamics to the out- II (jw) I_< I_ (w) < 1+IIA-l (,jw) I (4)
put of the adaptively controlled process, so that
an "accurate" error dead-zone can be defined. Assuming this condition is true, we proceed

The process, complete with unmodeled dynamics to derive an upper bound on I IG(, jw) I I, para-
is assumed to be of the Doyle-Stein type, with the metrized by IIM(jW)1I. From ecn. (2),
high frequency dynamics entering multiplicatively;
i.e. G (8, jw) =M (jw) { (j) (5)

-e D (D(6,jw)+Z(jw)A(8,jw)
g(s) = gp(s)(l+1(s))

where D(8,jw) l+A(e,jw)
where g(s) is the actual plant transfer function,

g (s)its modeled part and I(s) the unmodeled dynam- Next, representing I(jw), D(_,jw) and A(e,jw)

ics. Typically, a bound on the magnitude of 1(s) in polar form,
is assumed to be negligible for frequencies below
crossover, becoming only appreciable for higher e jG(8,jw) | <

1
M( I)(j)i e

frequencies; no phase information can be assumed. i(',jW i+II M (8)

The problem is then to find a bound for the output I JD(jw)Je D
of the adaptively controlled process due to L(s). j(A (e)+
This is achieved in two stages, as the following i(jw)A(e,jw)e
subsections indicate. We further remark here that,
due to feedback in the adaptive loop, the unmodeled
dynamics indirectly influence all the state var-
iables of the nominal adaptive loop, with the mag- An upper bound for G(6,jw) can be found by

maximizing and minimizing respectively the values
nitude of their contribution depending on the nature maximizing and minimiing respectively the values

of the numerator and denominator terms in (6). The
denominator achieves its smallest value if the
vectors Z(jw)A(e,jn) and D(O,jw) are oppositely

2.1 Transfer Function Magnitude Bounding aligned and, in- adition, ITi(jw)JI achieves its

maximum allowable value for the 9-interval of in-
In this subsection we will derive a bound ¢(w)

terest. The above two conditions are satisfied if
on the magnitude of the frequency response of a the phase angles are such that ( ()+

special class-of transfer functions, that typically Z A - D -
arise in MRAC systems. Consider an LTI transfer and j i(jw) j j= (w). Note that condition (4) for
function G(8,s) of the form

-function G(,s) of the form the stability of G(e,s) ensures that
P. (s) (2a) ( I (jw)A(6,jw)Il<i iD(e,jw) I and, indeed, the

G(e,s) = M(s) { 1+a(O,s)[l+5(s)]
G(-1s) N~s) { l+A(8,s)El+£(s)3 choice j l|(jw)ll = o(u) guarantees minimization of

where
the denominator of G(e,jw) with stability maintained.

M(s) is a completely known stable LTI transfer Unlike the denominator, the numerator magnitiud

function is independent of 0,, and is directly maximized by

l+A(_,s) = n (sPi() (2b) choosing jI(jw)|!=I (U) and p appropriately to
_ 0

i=l satisfy the denominator phase angle condition.
Consequently, from eqm;. (6) we can now write an up-

8 < 8 < 8
-Q - - - -u per bound for G(8,jw) as follows:

8 unknown constant parameter vector with _ (W)
specified bounds (2c) JIG(e,jW) I1=1M(jw) iI D

(8)< i=l .....n (2d) 

II(jw)<i[_ I o(w) for known £ (w)> 0 (2e) Finally, we may search the space of allowable values
of 8 to determine the desired transfer function
bound

Note that when L(s)=O, G(e,s)=M(s), and therefore

stable. In the context of MURAS, G(8,s) represents (w) max IG(ejW) (8)
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In the following subsection we will use O(M) in

order to bound the output of G(e,jw), in an ab-t)< d IG(,(j (14)
solute value sense, given an input x(t). - -

2.2 Absolute Value Output Bounding But from the previous subsection (w) was deter-

mined such that
Consider the system shown in figure 1 with

input x(t), output y(t) and G(e,s) as defined ¢(X)> HIG(e_,jw)H (15)
before

Hence, (14) becomes,

X(t) y(t) y(t)
<

d (W) I X(j~W) Ii y(t) (16)

G(8,s)= g(8, t) -"
which admittedly represents a looser bound on the
absolute value of y(t) than eqn. (14). However,
the bound y(t) can be calculated more readily. The

inequality (16) has the following interpretation.

Given a bound on the frequency response of a sys-
tem, a bound on the magnitude of its output due to
an input x(t) can be calculated at any instant of

Figure 1: time by using the time history of the system input

up to and including that instant of time. We note
By taking the inverse Laplace transfer of G(8,s), here again the time dependence of X(jw) according
we obtain to eqn. (12).

-l{G(8,s)} = g(8,t) (9) 3. MRAC WITH RELAXED TRACKING ERROR CRITERION

Furthermore, since g (,t) represents a linear-time-
invariant system, by definition of G(6,s), the In this section we employ the results of section

output y(t) is given by 2 to derive a variable dead-zone width for the
parameter update of the N-L-V algorithm, which

y(t) = g(8,t)* x(t) = overcomes the conservativeness of the fixed width
Peterson-Narendra scheme [4]. Before we proceed,

t we briefly review the concept of parameter update

=- dT g(6,t-T)x(T) (10) using a dead-zone nonlinearity.
?_~ -- In [4] the authors have shown stability of the

system depicted in figure 2 below.

Substituting now in (10) for g(8,t-T) the

expression for the inverse Laplace transform of

G(8,s) and recalling, further, that G(6,s) is a
stable transfer function, we can write -r

y(t) = dT 2-- ds G(e,s)e x(T) =

t

=d ( j)Jt I dT X(T)e-jWTJ dw G(e,jw)e J dT x(T)e Figure 2:

*m -m (11)
In fig. 2 the standard notation is used, with k

Next, with U(t) representing the unit step representing parameter errors, , filtered (auxil-

function we have iary) state variables v(t) output deter-mir-stic

disturbances of bounded magnitude, differentiable
t and uniformly continuous, e the output error with

F {x(t) .'(-t= dT x(T)U(-T)e d e disturbances; n represents thne (part of the) error

actually used in the parameter adaptive law and is
(12) obtained by 6 passed through the dead-zone of width

Define F{x(t)U(-T)} with the symbol X(jw) and subs- E.
titute in (11). Then It is not our purpose here to present the

details of how the above error system as shown in
fig. 2, is arrived at. The reader is instead

t) - ( j )Wt (13) referred to [41 for those as well as the stability
y 2,t -_, proof of that modified algorithm. We simply present

here the parameter adaptive laws, with the dead-

By the Cauchy-Schwartz inequality it follows from zone nonlinearity in their simplest form, for the
(13) that sake of completing the probiam descript on which

forms the basis for the develozrents in the present
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paper. The parameter adjustment is as described for P(e,s). That is, the designer knows
by eqns. (17) below. (i) an upper bound on the relative degree n* of

P (e_,s)
(ii) an upper bound on the degree n of P(8,s)

k(t) = -(t) = >O (iii) that P(e,s) is minimum phase
1+a T(t)4(t) (17a) (iv) the sign of the high frequency gain of P(e,s)

with n(t) = t
e( t)

Ie(t) 
I
>E The 2(s) part of the plant represents the (multi-

plicative) uncertainty associated with the nominal
0 ° e(t) I<E (17b) plant P(e,s). This uncertainty is due to high fre-

quency dynamics, which are assumed of unspecified

where E represents the width of the dead-zero. structure but satisfy a magnitude constraint
wII(jw)ll< z (w), as already mentioned. Further,

Although in [4] the discussion is not particularly a
enlightening as to how exactly the magnitude E is we note that the "actual" plant representation
decided upon, it is the present authors' P(6,s) [l+i(s)] will not in general satisfy any of
conclusion that most likely, in [4] the four standard assumptions listed above. This

fact becomes pivotal in the inability of the adap-

E > [jv(t)II = malXV(t)l (18) tive controller to achieve transfer function match-
ing between the compensated plant and the reference
model. As a result, it becomes impossible for

and, therefore, is very conservative as the same general inputs to drive the tracking (output) er-
authors have pointed out in [5]. We next proceed ror to zero. However, one may expect the tracking
to analyze the original NLV Model'Reference algo- error to be small, if the plant is excited by sig-
rithm, as represented in Fig. 3, with the plant nals with dominant low frequency content over the
dynamics now replaced by the actual plant range where P(e,s) is a good approximation to the
P(8,s) [l+z(s)]. actual plant transfer function.

In what follows we will next show that the

error system underlying the structure in figure 3
differs from that of the same structure, as shown

M M in fig. 2, where Z(s)=0, only by an additive per-
turbation term in the output. This term can be

r -' e uf bounded using the results of Section 2 and a var-
u'rk-w iable width dead-zone can be defined for the adap-

rF---- YP-tation mechanism. Stability of the scheme is
I~~ ~ + P(,S)[l subsequently discussed in Section 5.

+ , l We start by considering first the case where
| (s)=O in Figure 3*. in this case the standard
MRAC assumptions about the plant are true. There

Ar - .. .___ exists a vector k*(e) of fixed gains which, when

[ ~km ', t- -__+| Is 7-- ~ :applied to the system, results in matching of the
L_ _ S ......... :l~ xf ~ ] compensated plant transfer function with that of

I, *l ltk Xthe model. We adoot the shorthand notation C (8)
: 2 1

and C.(8) to indicate the LTI transfer functions

Cziz(e).k$l()31 ffs :,k C (k (e)) and C2(k*(9),k*(e)) respectively. Now
L----1 ---- 2 -- 3

assuming Z(s)#O but maintaining the same defini-

tions of Cl(k*(e) = C (e) and C (k*(e),k3 (e)),

kT --- ] , C2 (8) based on thne reduced model, we may derive

-IW Hr Man expression for the error system as follows,

-- where for convenience, the argument's' has been

suppressed throughout.

Y C1 (6)P(e) [l+Z]

R 1i+C1 () C2 (6)P(6) [1+k]

Figure 3:
C1 ()P(6) c (e)P(e)

+C1 (e) (8)P () l+C () (e) P ()

1+Ci (9)c (_)P(e) [l+l] (1°)

The component P(e,s) incorporates the designer's
knowledge of the dominant, low frequency response By definition of C1 (e) and C2 (e) we have

of the plant, including a vector e of uncertain

parameters, known only within precomputable bounds. C,(S)P(_)

The standard MPAC assumptions about the plant hold +C ()c M (20)
2 '- -



Using this fact and introducing the notation X

A(e) _ C1 (e)C 2 (8)P(6) we can write eqn. (19) in a(t) f + 2n-l } (24)

more compact form as _}- i Il

where eqn. (12) has been used for calculation of

YP = M+M - (21) the transforms U(jw) and W. (jw) for the input u(t)
R 1+A(_) [1+2)]

and signals wi (t) respectively. An adaptation law

Next, defining k(t) = k(t)-k*, referring to fig. 3 of the form described in eqn. (17) can then be
and interchanging time domain and transformed employed with the width of the dead zone defined

quantities, we derive an expression for e as given by eqn. (24). The resulting scheme is stable and

in eqn. (22). an outline of its stability proof is given in the
following section.

eteR 'a. R+- R R 5. STABILITY

~~~~~~T Q _T ~ (22)
= k B + M **_(k _w+r) The stability proof of the proposed algorithm

--- k + A (8 ) [ 1 + ~] (k (Tw+r)-- -l+A(e)l[+9] - with variable dead-zone follows along very similar

lines for the most part with that in [4]. However,
For the case where d(s)=O, this result reduces to in the present case it is additionally conditioned

the standard augmented MRAC error system of on the reference model definition and the admissible
Narendra, Lin and Valavani with L- = M. The new parameter set, as eqn. (4) of section 2.1 implies.
error system is shown in Figure (4) with a variable More specifically, the space of admissible para-

dead zone non-linearity added to the output signal meters is implicitly defined through the reference

path. model by eqn. (4), in conjunction with condition

(2c) and is such that the desired (class of) ref-

erence model(s) remains stable in the presence of

the unmodeled dynamics L(s) of the plant. This is

a standard and reasonable assumption made in the

~'_T5 < design of all fixed parameter controllers as well.

++k - Due to space considerations we will not elaborate
'~t) xl , on this further but will instead refer the reader

to [6] for more details.

Consequently, given eqn. (4), which is fun-
r~k M. + -V damental even for a non-adaptive design, the effect

l+A(8)[[] _ of unmodeled dynamics can be represented as an out-

put perturbation v(t) as suggested in eqn. (22) and

depicted in fig. 4. v(t) is the output of a stable

linear system which is bounded for bounded inputs.
We next proceed to outline the steps for proving

boundedness of R,u,,,w and the output error e.
The boundedness of k follows directly from

Figure 4: the standard Lyapunov function definition

(V(k) = 1 (K.T) and the adaptation law (17a) in

conjunction with eqn. (22) where E(t) is defined.

Also, from the definition of the dead-zone, the
We observe that the system is of the form shown in T
fig. 2. In order to specify a stable adaptive term 1 k can be bounded above and below by bounds
law, we need to find a bounding signal E(t)>lv(t)Vlt. of the form

We may redraw the error system using the vt ,T 
f 

[E(t)]
+v(t)< < f[E(t)]' lj+v(t) 

fact that k=k*-k and the input to the plant in 2 -- . . . . .
- - - T (25)

Figure 5 is u=k w +r. The resulting represen- where f (-) and f (.) are continuous functions
tation is shown in Figure 5 below. 1 2

From precomputed bounds on 8, bounds on k* can be of E(t).

precomputed also. we now make the definition Next, by the definition of the Lyapunov func-
tion, its time derivative, in conjunction with the

* = ax km * (23) adaptation law given by eqn. (12a), can be written

8_ · as T

where the maximization over e is carried out in- T = (26)

dividually over every component of k*. Using (23) -T
in conjuction with the results of Section 2 it

readily follows that an upper bound E(t) for v(t) From the fact that

can be computed. More specifically, we can write

' %T)dT <t
0



and eqns. (25) and (26), it is straightforward to 3. C. Samson, "Stability Analysis of Adaptively

conclude that Controlled Systems Subject to Bounded Disturb-

ances," Automatica, Vol. 19, No.1, pp. 81-86,

k(t)e L (27) 1983.
From-this- pointon, te prof uss stadard4. B.B. Peterson and K.S. Narendra, "Bounded Error

From this point on, the proof uses standard Adaptive Control," IEEE Trans. on Aut. Control,
arguments, for the boundedness of u,w,5, as they Vol. AC-27 No. 6, Dec. 1982, pp. 1161-1168.

first appeared in [7] and outlined in [4]. We only 5. D. Orlicki, L. Valavani, and M. Athans," Comments

remark here that, in our case, Iv(t) I<IE(t) and, on Bounded Error Adaptive Control," to appear in

furthermore, v(t)=0[supI w(T) ,l, as follows from IEEE Trans. on Autom. Control, Oct. 1984.

t>t 6. D. Orlicki, Model Reference Adaptive Control
eqn. (22) and fig. 4. The reader is again referred Systems Using a Dead-Zone Nonlinearity, Ph.D.

to [6] for all the details of the stability Dissertation, Dept. of EECS, Laboratory for

arguments. Information and Decision Systems, M.I.T.,

Cambridge, MA, May 1984.
7. K.S. Narendra, Y.H. Lin, and L.S. Valavani,

"Stable Adaptive Controller Design, Part II:

Proof of Stability," IEEE Trans. Automat. Contr.,
~kT~+ 6 E Vol. AC-25, pp. 440-448, June 1980.

E(t) '7 8. P.A. Ioannou and P.V. Kokotovic, Adaptive
Systems with Reduced Models, Springer-Verlag

V(t) Series, Lecture Notes in Control and Informa-

ffi - i ) tion Sciences, 1983.

e { 1A(8)[1 +I e

Figure 5:

Figure 5-

6. CONCLUSIONS

A variable dead-zone nonlinearity was introduced

in a standard model reference adaptive control

algorithm to maintain its stability in the presence

of unmodeled dynamics. The variable width dead-

zone is determined on-line on the basis of prior

information about plant parameter bounds and un-

modeled dynamics as well as about information ob-

tained during adaptation. Besides maintaining

stability, the algorithm is able to overcome the

conservativeness of fixed dead-zone on exponential

forgetting factor adaptation mechanisms [4], [8], as

simulation results show. Due to space limitations,

those are deferred until the conference presenta-

tion of the paper.
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