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RNA-binding proteins (RBPs) acting at various steps in the post-transcriptional regulation of gene expression play crucial roles in
neuronal development and synaptic plasticity. Genetic mutations affecting several RBPs and associated factors lead to diverse neurolog-
ical symptoms, as characterized by neurodevelopmental and neuropsychiatric disorders, neuromuscular and neurodegenerative dis-
eases, and can often be multisystemic diseases. We will highlight the physiological roles of a few specific proteins in molecular
mechanisms of cytoplasmic mRNA regulation, and how these processes are dysregulated in genetic disease. Recent advances in compu-
tational biology and genomewide analysis, integrated with diverse experimental approaches and model systems, have provided new
insights into conserved mechanisms and the shared pathobiology of mRNA dysregulation in disease. Progress has been made to under-
stand the pathobiology of disease mechanisms for myotonic dystrophy, spinal muscular atrophy, and fragile X syndrome, with broader
implications for other RBP-associated genetic neurological diseases. This gained knowledge of underlying basic mechanisms has paved
the way to the development of therapeutic strategies targeting disease mechanisms.

Key words: Fragile X Mental Retardation Protein (FMRP); Fragile X Syndrome (FXS); Muscleblind-like Splicing Regulator (MBNL);
Myotonic Dystrophy (DM); RNA Binding Protein Fox-1 Homolog 1 (RBFOX1); Spinal Muscular Atrophy (SMA); Survival of Motor
Neuron (SMN)

Dysregulation of mRNP assembly and localization in spinal
muscular atrophy (SMA)
The assembly of mRNA-binding proteins (mRBPs) and mRNAs
into messenger ribonucleoproteins (mRNPs) determines the fate
of the transcripts during all steps of post-transcriptional regula-
tion, including its localization and translation. Recent studies
have shown that both hyperassembly or hypoassembly of various
RNPs can lead to human neurodegenerative diseases, including
spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis
(ALS) (Shukla and Parker, 2016). Although there has been a lot of
progress to understand basic principles of RNP hyperassembly
and formation of persistent stress granules, it is still not clear how
the proper assembly of specific transport mRNPs is regulated (Li
et al., 2013). The molecular machinery that brings together tran-
scripts with a specific set of proteins that regulate their transloca-
tion and local translation remains unknown.

In the case of spliceosomal small nuclear ribonucleoproteins
(snRNPs), it has been shown that the faithful assembly of Sm
proteins into a hepatameric complex on the uridine-rich snRNAs
depends on the activity of a multiprotein assemblysome consist-
ing of SMN and associated gemin proteins (Meister et al., 2001;
Pellizzoni et al., 2002). Reduced SMN protein levels cause SMA,
which is characterized by axonal dying back of spinal motor neu-
rons leading to muscular atrophy and typically death in early
childhood. While widespread splicing defects occur in all SMA
models characterized thus far (Gabanella et al., 2007; Zhang et al.,
2008, 2013; Lotti et al., 2012), the role of these defects in the
disease process may very well represent a secondary nonspecific
effect of neurodegeneration, and their significance for SMA
pathogenesis remains to be fully elucidated (Bäumer et al., 2009).

The interaction of SMN with diverse mRBPs and its localiza-
tion to mobile RNA transport granules in axons in vitro and in
vivo (Dombert et al., 2014; Hao le et al., 2015) has led to the
hypothesis that SMN may have a noncanonical role in axonal
mRNA metabolism that may explain the vulnerability of motor
neurons to reduced SMN protein levels (Briese et al., 2005; Ros-
soll and Bassell, 2009; Fallini et al., 2012). Work from several
laboratories has demonstrated SMN-dependent defects in the
localization and local translation of axonal mRNAs and mRBPs.
Since the discovery of defective axonal localization of �-actin
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mRNA and protein in SMA motor neurons (Rossoll et al., 2003),
SMN has been found to regulate the axonal localization of tran-
scripts encoding growth-associated protein 43 (GAP43) and neu-
ritin/cpg15 (Akten et al., 2011; Fallini et al., 2011, 2014, 2016;
Hubers et al., 2011; Sanchez et al., 2013) (Fig. 1). This mislocal-
ization is accompanied by reduced local translation in axonal
growth cones and can be rescued by overexpression of the SMN-
interacting mRBPs HuD and IMP1/ZBP1 (Fallini et al., 2016).
Based on these findings, a more general role for SMN in RNP
complex assembly that goes beyond its well-characterized func-
tion in snRNP assembly and splicing, including a critical role in
the assembly of mRNP transport granules, appears likely (Li et al.,
2014; Donlin-Asp et al., 2016; So et al., 2016).

An open question remains what is the scope of snRNP and
mRNP assembly defects in SMA in vivo, and how these defects con-
tribute to the specific motor neuron degeneration observed in SMA.
In a disease of general RNP hypoassembly, one can expect wide-
spread downstream effects on various post-transcriptional regula-
tion mechanisms (Donlin-Asp et al., 2016; Shukla and Parker, 2016).
It will be interesting to find out whether rescuing mRNP assembly
and localization defects can mitigate the SMA disease phenotype.
Future work will need to show which defects are most relevant for
the SMA pathogenesis and will provide insight into potential thera-
peutic strategies that target RNP assembly.

Global approaches for studying RNA dysregulation in
myotonic dystrophy
The dominantly inherited neuromuscular disease myotonic dys-
trophy (DM) is caused by an expanded CTG (DM1) or CCTG
(DM2) microsatellite repeat in the 3�-UTR of the dystrophia
myotonica protein kinase gene, or the first intron of the CCHC-
type zinc finger nucleic acid binding protein, respectively (Coo-
per, 2009; Lee and Cooper, 2009). These repeats are transcribed
into RNA and sequester members of the Muscleblind-like
(MBNL) family of RNA-binding proteins into nuclear foci (Fig.
1) (Miller et al., 2000; Cooper, 2009). MBNL proteins are deeply
evolutionarily conserved and are required for the terminal differ-
entiation of a number of cell types, including neurons, skeletal
muscle, and cardiac muscle (Begemann et al., 1997; Artero et al.,
1998). They have been most extensively studied in the context of
alternative splicing regulation, as they are required for the tran-
sition from fetal-to-adult isoform expression throughout devel-
opment (Pascual et al., 2006). Loss of MBNL function in DM
leads to numerous missplicing events (Kanadia et al., 2003a, b),
some of which have been linked to specific phenotypes in DM,
such as Chloride Channel 1 (myotonia) (Charlet et al., 2002),
Insulin receptor (insulin resistance) (Savkur et al., 2001), Bridging
integrator 1 (muscle weakness) (Fugier et al., 2011), CaV1.1 cal-
cium channel (muscle weakness) (Tang et al., 2012), sodium chan-

Figure 1. Spatiotemporal regulation of RNA processing and local translation in neurons by RNA-binding proteins. In the nucleus, MBNL and RBFOX proteins regulate splicing and bind 3�-UTR
sequences. Both proteins coregulate many transcripts. In the cytoplasm, MBNL binds to the rough endoplasmic reticulum (RER) where it facilitates the synthesis of membrane proteins, and also
associates with the cytoskeleton to regulate mRNA localization. The cytoplasmic isoform of RBFOX1 regulates mRNA stability. Several RNA-binding proteins (e.g., FMRP, Ataxin, TDP-43, and Smn)
are associated with stress granules. FMRP and Imp1 regulate mRNA granule transport by kinesin and local translation in dendritic spines. Imp1 also regulates mRNA localization in axons, and Smn
plays a role in the assembly of Imp1 RNA transport granules. RNA localization and translation in spines may involve myosin motor and anchoring to F-actin. Locally synthesized proteins include
glutamate receptor subunits, components of the postsynaptic density, and signaling proteins.
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nel 5a (cardiac arrhythmia) (Wahbi et al., 2013; Freyermuth et al.,
2016), and cardiac troponin T (cardiac arrhythmia) (Philips et al.,
1998). These changes all essentially reflect shifts in expression of
adult-to-fetal isoforms. Recent studies in human DM1 and
mouse models reveal missplicing of numerous mRNAs encoding
proteins that play important cytoskeletal and synaptic functions
(Charizanis et al., 2012; Goodwin et al., 2015). A key open ques-
tion is whether specific missplicing events are linked to specific
CNS symptoms, which include profound hypersomnia and intel-
lectual disability (Thornton, 2014).

Although a role for MBNLs in regulating alternative splicing is
well established, previous studies have also indicated a role for
MBNLs in regulating mRNA localization and local translation.
MBNL2 was shown to interact with the 3�-UTR of Integrin �3 and
carry it to the plasma membrane, where it is locally translated
(Adereth et al., 2005). MBNL2 has also been suggested to enhance
the stability of mRNAs encoding extracellular matrix compo-
nents (Du et al., 2010), and MBNL1 has been implicated in the
regulation of message stability (Wang et al., 2015; Masuda et al.,
2012). Using a combination of genomics and biochemical ap-
proaches, MBNL1 was shown to be a global regulator of RNA
localization and membrane-associated translation. RNAseq of
subcellular compartments from mouse myoblasts showed that
3�-UTR CLIP targets of MBNL1 relocalize toward the insoluble
and away from the membrane compartments, following deple-
tion of MBNL1 and 2 (E. T. Wang et al., 2012). Many of the
dysregulated mRNAs were found to encode secreted proteins,
extracellular matrix components, and proteins involved in cell–
cell communication and synapse function, with potential impli-
cations for neuromuscular junctions in muscle. Ribosome
footprinting of myoblasts depleted of MBNL1/2 also indicated
decreased translation of those mRNAs whose normal localization
to the membrane compartment was relocalized toward the insol-
uble compartment. MBNL1 and MBNL2 CLIPseq in mouse and
human brain corroborate many MBNL binding sites in the 3�-
UTRs of numerous mRNAs encoding synapse and cytoskeletal
proteins (E. T. Wang et al., 2012).

These observations raise a number of outstanding questions
that require further investigation to answer. Whether regulation
of RNA localization by MBNLs is achieved through diffusion/
anchoring and/or active transport along cytoskeletal filaments is
unknown. The specific membrane and insoluble compartments
from which MBNL targets are relocalized are also unclear, al-
though the rough endoplasmic reticulum likely comprises a large
fraction of the membrane compartment. The role of MBNLs in
regulating mRNA localization and translation in fully differenti-
ated tissues, such as muscle and neurons, has also not been fully
explored; it is likely that localization patterns are more complex
in tissues than in cell culture, and possible that mislocalization of
mRNAs in MBNL-depleted tissues has significant physiological
consequences. The mRNAs whose splicing patterns are regulated
by MBNLs also tend to exhibit 3�-UTR binding and regulation of
localization by MBNLs; whether this coordination exists for
functional or biophysical reasons has not been addressed. Similar
questions could be asked of additional RNA-binding proteins
implicated in neurological disease, and further investigation may
yield general principles that apply to regulation of RNA localiza-
tion and local translation across other RBPs and other diseases.

Gene-distal 3�-UTR sequences often regulate
mRNA localization
Although several hundred transcripts are preferentially localized
to neuronal projections (Taylor et al., 2009; Zivraj et al., 2010;

Gumy et al., 2011; Cajigas et al., 2012; Minis et al., 2013), for the
overwhelming majority of these transcripts, the RNA sequences
within them that drive their localization are unknown. In cases
where the localizing sequence is known, it is often located in the
3�-UTR of the transcript (Andreassi and Riccio, 2009). Still, 3�-
UTRs are often �1 kb in length, making identification of local-
ization elements difficult.

If multiple transcript isoforms are expressed from a single gene
locus, however, then this problem becomes more manageable, espe-
cially if the isoforms display differing localization patterns. By com-
paring sequence elements present in localization-competent
isoforms with those in localization-incompetent isoforms, the
search space for relevant features can be considerably narrowed
(Taliaferro et al., 2016). Given that many known RNA localization
elements lie in 3�-UTRs, this effect is, perhaps not surprisingly, often
most apparent in genes that express isoforms that differ in 3�-UTR
composition.

For example, during Drosophila oocyte development, two iso-
forms of the cyclin B gene are expressed: one containing a longer
3�-UTR and another containing a shorter 3�-UTR that is a subset
of the long one. Transcripts containing the longer 3�-UTR be-
come localized to the posterior pole of the oocyte, whereas those
with the shorter 3�-UTR do not, implying the existence of a lo-
calization element in the sequence specific to the long 3�-UTR
(Dalby and Glover, 1992). Similarly, two Bdnf transcript isoforms
that differ in polyadenylation site, and thus 3�-UTR length, are
expressed in mouse brain cortex. Transcripts that contain the
long 3�-UTR are efficiently trafficked to dendrites, whereas those
that contain the short UTR remain in the soma (An et al., 2008).

Recently, the linkage of gene-distal polyadenylation and RNA
localization to neuronal processes was shown to extend beyond
these isolated examples as a more general phenomenon affecting
hundreds of genes (Taliaferro et al., 2016). The analysis of splice
isoform abundances in soma and neurite cell fractions revealed a
strong preference for gene-distal UTR sequences in neurites. A
similar profile of in vivo ribosome-associated transcripts in
mouse neurons also demonstrated many examples of alternative
3�-UTR isoform use associated with differential isoform localiza-
tion in axons (Shigeoka et al., 2016). Thus, the composition of a
transcript’s 3�-UTR and its RNA localization fate seem to be
tightly linked.

The mechanisms and consequences of 3�-UTR regulation and
localization are becoming better understood. The regulation of
3�-UTR composition through alternative cleavage and polyade-
nylation (APA) has been well correlated to broader cellular states.
In general, gene-proximal polyadenylation sites are preferentially
used following oncogenic transformation and cellular repro-
gramming (Sandberg et al., 2008; Mayr and Bartel, 2009). Con-
versely, gene-distal polyadenylation sites are more often used as
cells progress along developmental pathways (Ji et al., 2009;
Miura et al., 2013), with neurons in particular expressing long
3�-UTRs that have generally unknown function (Miura et al.,
2013). The localization competency of many genes may therefore
be a function of the developmental or oncogenic state of the cell.

Similarly, perturbations to factors that regulate alternative
cleavage and polyadenylation or 3�-UTR-mediated transcript
stability may disrupt the post-transcriptional regulation of tran-
scripts containing particular 3�-UTRs, indirectly resulting in the
mislocalization of many transcripts, thus contributing to disease
phenotypes. Muscleblind-like proteins, as described above, are
known RNA localization factors in their own right (Adereth et al.,
2005; E. T. Wang et al., 2012; Taliaferro et al., 2016), and regula-
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tors of transcript stability through 3�-UTR binding (Wang et al.,
2015). RNA-binding proteins from the CELF family also bind
3�-UTRs and regulate transcript levels (Wang et al., 2015). Func-
tional impairments for both of these factors are associated with
neurological diseases (Gallo and Spickett, 2010; Goodwin et al.,
2015).

Regulation of synaptic and autism-related genes by Rbfox1 in
the cytoplasm of neurons
Post-transcriptional mechanisms, including mRNA localization,
stability, and regulated translation provide a means of building
and controlling neural circuits with exquisite temporal and spa-
tial specificity (D. O. Wang et al., 2010; Jung et al., 2014). RBPs
play critical roles during these processes by regulating RNA me-
tabolism to modify gene expression in neurons (Zhou et al.,
2014). This idea gains further support from human genetic stud-
ies that show that mutations in the genes of several RBPs are
associated with neurological diseases (Liu-Yesucevitz et al., 2011;
Gao and Taylor, 2014).

The RBP, RBFOX1, is the vertebrate homolog of the Caeno-
rhabditis elegans Feminizing Gene 1 on X gene product (also
known as A2BP1). Each of RBFOX1’s paralogs, RBFOX2
(RBM9) and RBFOX3 (NeuN), has distinct but overlapping ex-
pression patterns (Kuroyanagi, 2009). Chromosomal transloca-
tions and copy number variations in Rbfox1 have been associated
with intellectual disability, epilepsy, and autism (Martin et al.,
2007; Sebat et al., 2007). Furthermore, transcriptome analysis of
autistic and normal brain tissue identified RBFOX1 as a master
regulator of autism-related genes (Voineagu et al., 2011). The
CNS-specific conditional Rbfox1 knock-out mice exhibit sponta-
neous seizures, indicating that RBFOX1 regulates neuronal excit-
ability (Gehman et al., 2011). All three RBFOX paralogs bind the
RNA motif (U)GCAUG and have a well-characterized function
in regulating alternative splicing in the nucleus of cells. Rbfox1
itself is alternatively spliced into nuclear and cytoplasmic iso-
forms, and the function of the cytoplasmic RBFOX1 has only
recently been investigated (Hamada et al., 2015; Carreira-Rosario
et al., 2016; Lee et al., 2016). In neurons, RBFOX1 binds to the
3�-UTR of its target mRNAs in the cytoplasm and promotes the
stability of these transcripts. These cytoplasmic targets are en-
riched for synaptic and autism-related genes, supporting the hy-
pothesis that RBFOX1 promotes mRNA stability of autism-
related genes in the brain (Ray et al., 2013). One potential
mechanism for this regulation is to antagonize microRNA-
binding and the repression activity of microRNA machinery. Fu-
ture work is needed to know whether Rbfox proteins may play a
role in mRNA localization.

Several hundreds of transcripts have now been identified as
targets of RBFOX proteins by different mechanisms. For exam-
ple, the cytoplasmic targets of RBFOX1 are enriched in genes
involved in calcium signaling pathway. In neurons, the splicing of
Camk2d and Camk2 g is regulated by RBFOX1 in the nucleus, and
the mRNA concentration of Camk2a, Camk2b, Camk4, and
Ppp3r1 is affected by RBFOX1 in the cytoplasm (Lee et al., 2016),
making it challenging to understand the contributions of individ-
ual RBFOX1 targets to any neural circuit phenotype. In C. elegans
nervous system, RBFOX, CELF, and PTB family proteins regulate
the splicing of insulin receptor daf-2 in a single neuron, and
misregulation of this splicing leads to behavioral changes (To-
mioka et al., 2016), underscoring the need for cell-type-specific
approaches in charactering the physiological function of RBPs in
neurons.

A growing literature has revealed the multifunctionality of
RBPs (Heraud-Farlow and Kiebler, 2014; Vanharanta et al.,
2014), and this is the case for RBFOX family proteins as well.
Drosophila cytoplasmic RBFOX1 represses translation of one of
its target mRNAs, the translational regulator pumilio, to regulate
germ cell differentiation (Carreira-Rosario et al., 2016), indicat-
ing that RBFOX1 may either enhance or repress gene expression
in the cytoplasm of cells. Recent studies showed that RBFOX2
and RBFOX3 can regulate the biogenesis of microRNAs, and
RBFOX2 can bind nascent RNAs to regulate polycomb complex 2
targeting (Kim et al., 2014; Chen et al., 2016; Wei et al., 2016).
These data suggest that RBPs might have diverse functions in
neurons and an increased understanding of RNA regulation will
lead to novel therapies for a range of brain disorders.

Role of FMRP and Ataxin-2 in RNA granules, synapse
function, and behavior
Individual mRNPs formed by interaction of mRNAs with cis-
element-interacting RNA-binding proteins as well as other regu-
latory factors assemble into larger and heterogeneous RNA
granules through trans-mRNP interactions. In such RNA granule
assemblies, sequestered and translationally repressed mRNAs are
transported on cytoskeletal filaments to specific intracellular lo-
cations (Kiebler and Bassell, 2006; Zeitelhofer et al., 2008). In
neurons, activity-induced disassembly of RNP granules plays an
important physiological role to enable local translation of den-
dritically localized mRNAs (Krichevsky and Kosik, 2001; H.
Wang and Tiedge, 2004; Zeitelhofer et al., 2008). Prion-like do-
mains with low amino acid complexity (LC domain) found pre-
dominantly on RNA-binding proteins are considered to mediate
the assembly and disassembly of mRNP granules (Malinovska et
al., 2013). Aberrant translation arising from abnormal mRNP
assembly is causally related to developmental and degenerative
disorders of the nervous system (Liu-Yesucevitz et al., 2011; To-
lino et al., 2012). Consistently, mutations in the LC domains of
these proteins are predominantly linked to heritable forms of
these disorders (Ramaswami et al., 2013; Toretsky and Wright,
2014). Genetic mutations affecting LC domains of RBPs affect
stress granule dynamics and biophysical properties, which have
been linked to neurodegenerative diseases (Kim et al., 2013; Mol-
liex et al., 2015; Protter and Parker, 2016).

In neurons, mRNA localization and local translation ensure
spatiotemporal regulation of synaptic plasticity required for for-
mation of stable memories. Notable among memory-associated
RNA regulatory proteins are Staufen/Pumilio pathway compo-
nents, as well as Atx2 and FMRP, which are linked to trinucle-
otide expansion disorders (Dubnau et al., 2003; Orr and Zoghbi,
2007; Bolduc et al., 2008; McCann et al., 2011; Sudhakaran et al.,
2014). CGG repeats in the 5�UTR of the FMR1 gene and CAG
expansion in the reading frame of the Atx2 gene lead to genetic
disorders; fragile X syndrome (FXS), and spinocerebellar ataxia
type 2 (SCA2) and ALS, respectively (Verkerk et al., 1991;
O’Donnell and Warren, 2002; Al-Ramahi et al., 2007; Elden et al.,
2010). Recent studies demonstrate that the affected proteins are
required for mRNP assembly and/or translational regulation un-
derlying memory formation, in a manner that exhibits shared
and distinct mechanisms. The KH domain in FMRP and the Lsm
domain in Atx2, respectively, mediates their interaction with
RNA (Neuwald and Koonin, 1998; Lewis et al., 2000). FMRP and
Atx2 are both required in the same subset of central olfactory
neurons for formation of long-term but not short-term olfactory
habituation in Drosophila. Whereas loss-of-function mutations
in the genes have no dominant effects, dfmr1 and atx2 mutations
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show strong transdominant genetic interactions. Several lines of
evidence indicate that FMRP and Atx2 proteins interact bio-
chemically, and jointly bind and regulate the expression of den-
dritic CaMKII� mRNA that is required for long-term memory
(Sudhakaran et al., 2014). Excess protein synthesis is thought to
underlie Fmr1 loss-of-function phenotypes, including defective
long-term memory formation (Bolduc et al., 2008). Although
both dFMR1 and Atx2 possess prion-like LC domains and are
mRNA granule components, in vivo, FMRP is dispensable and
Atx2 is crucial for assembly of the majority of RNA granules
visible in neurons that encode habituation associated memory
(Sudhakaran et al., 2014). One potential explanation for this ob-
servation is that dFMR1 is only required for assembly of a subset
of mRNP granules. Alternatively, the Q/N domain of FMRP,
which does not exhibit typical prion-like behavior in yeast assays,
may facilitate protein–protein interactions involved in its func-
tion as a translational repressor (Banerjee et al., 2010).

Although the loss-of-function effects of dfmr1 and atx2 mu-
tations are similar, FXS-related pathologies are generally not as-
sociated with inclusion bodies, whereas ALS or SCA2 patients
show formation of inclusion bodies in affected neurons (Orr,
2012). This is consistent with the observation that fragile X is an
X-linked disorder (caused by loss of FMRP function) and SCA2 is
autosomal dominant, caused by a polyglutamine expansion that
confers enhanced aggregation efficiency to Atx2.

The work in Drosophila argues that LC-domain containing RNA
regulatory proteins may be generally involved in the activity-
dependent translational regulation of memory-associated mRNAs,
such as CaMKII. Consistent with this, Q/N domains of FMRP are
required for the formation of long-term memory (Banerjee et al.,
2010). A prediction of this model is that similar domains of Atx2 will
also be required for long-term memory and that loss of function
mutations in human Atx2 or its closely related paralog Atx2L could
cause symptoms that overlap with FXS.

The PI3K/mammalian target of rapamycin (mTOR) pathway
is important for local protein synthesis and regulated by
FMRP: implications for FXS and other autism spectrum
disorders
A prerequisite for synaptic translation of localized mRNAs is that
components of the protein synthesis machinery are present and
active in dendrites. The PI3K/mTOR pathway is an essential reg-
ulator of mRNA translation in neurons and localized to dendrites
and synapses (Banko et al., 2006; Ohno et al., 2014). A few studies
show that activation of the PI3K/mTOR pathway is important for
stimulus-dependent local mRNA translation in dendrites. A
PI3K inhibitor prevents metabotropic glutamate receptor 1/5
(mGlu1/5)-mediated protein synthesis in synaptic fractions
(Gross et al., 2010), and mTOR inhibition by rapamycin or
siRNA-mediated silencing blocks BDNF-induced synaptic pro-
tein synthesis in isolated dendrites and axons (Takei et al., 2004).
Apart from the effect on general dendritic protein synthesis,
mTOR also regulates the local translation of specific mRNAs,
such as CaMKII� and Kv1.1 (Sosanya et al., 2013, 2015).

Recent studies suggest that the expression of the PI3K com-
plex is controlled through activity-dependent protein synthesis
and degradation (Gross et al., 2010; Briz et al., 2013). Large-scale
screens for mRNAs associated with FMRP, the protein lost in
FXS, have identified several PI3K/mTOR pathway components
(Brown et al., 2001; Darnell et al., 2011; Ascano et al., 2012). Two
of these, the PI3K catalytic subunit p110� and the regulatory
subunit PI3K enhancer (PIKE), have been confirmed indepen-
dently to bind to FMRP leading to upregulated p110� and PIKE

protein levels in cells from patients with FXS and/or in FXS
mouse models (Gross et al., 2010; Sharma et al., 2010; Gross and
Bassell, 2012; Kumari et al., 2014). FXS is characterized by
increased and stimulus-insensitive synaptic protein synthesis,
which may underlie defects in synaptic plasticity and neuronal
function (Darnell and Klann, 2013). The fact that FMRP di-
rectly controls central regulators of general and dendritic
mRNA translation makes them attractive candidates for ther-
apeutic intervention to correct dysregulated local protein syn-
thesis, which may restore synaptic plasticity in FXS. In line
with this hypothesis, genetic reduction of p110� or PIKE re-
stored stimulus-induced synaptic protein synthesis in Fmr1
knock-out mice and reversed deficits on the cellular, behav-
ioral, and cognitive level in both mouse and fly models of FXS
(Gross et al., 2015a, b; Monyak et al., 2016). As a next step, it
will be important to assess whether selective inhibitors of
p110�, which are available from cancer research, likewise res-
cue phenotypes in animal and human cell models. Inhibitors
of PI3K/mTOR signaling components could have a broader
applicability in neurodevelopmental disorders, as defects in
expression or activity of the PI3K/mTOR complex leading to
dysregulated protein synthesis have been associated with dif-
ferent forms of autism spectrum disorders (Kelleher and Bear,
2008; Cuscó et al., 2009; Gross, 2016).

FMRP is transported into dendrites and synapses (Antar et al.,
2004) and regulates the local translation of its targets at synapses
(Ifrim et al., 2015; Liu and Cline, 2016). An open question is
whether the components of the PI3K/mTOR pathway, which are
regulated by FMRP, are translated locally. There is evidence for
local translation of p110� as the mRNA is localized into dendrites
in vivo and associates with actively translating polysomes in syn-
aptic fractions (Gross et al., 2010), but so far, it is unknown
whether mRNAs for PIKE or any of the other potential FMRP
targets within the PI3K/mTOR pathway are present in dendrites
and may be locally translated. It will be interesting to investigate
whether the local synthesis of the PI3K/mTOR complex, an im-
portant regulator of protein synthesis (Kye et al., 2014), adds
another layer of complexity to the regulation of synaptic mRNA
translation.

In conclusion, here we have highlighted recent progress in
our understanding of some proteins that are linked to local
regulation of mRNA and neurogenetic diseases. The field of
RNA-based neurological disease has grown rapidly (Gao and
Taylor, 2014). We present a model that integrates the pro-
posed roles of several RBPs and associated factors in splicing,
RNA granule assembly (both stress granules and RNA trans-
port granules), cytoskeletal-based transport, association with
RER for synthesis and localization of membrane proteins, and
local regulation of mRNA translation in axonal and/or den-
dritic compartments.
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