
May, 1984 LIDS-P- 1372

INDIVIDUALLY OPTIMAL ROUTING IN PARALLEL SYSTEMS***

P.R. KUMAR* AND J. WALRAND**

ABSTRACT

Jobs arrive at a buffer from which there are several parallel routes

to a destination. A socially optimal policy is one which minimizes the

average delay of all jobs, whereas an individually optimal policy is one,

which for each job, minimizes its own delay, with route preference given

to jobs at the head of the buffer. If there is a socially optimal policy

for a system with no arrivals, which can be inmplemented by each job following

a policy y in such a way that no job ever utilizes a previously declined

route, then we show that such a y is an individually optimal policy for

each job. Moreover y continues to be individually optimal even if the

system has an arbitrary arrival process, subject only to the restriction

that past arrivals are independent of future route traversal times. Thus,

y is an individually optimal policy which is insensitive to the nature of

the arrival process. In the particular case where the times to traverse

the routes are exponentially distributed with a possibly different mean

time for each of the parallel routes, then such an insensitive individually

optimal policy does in fact exist and is moreover trivially determined

by certain threshold numbers. A conjecture is also made about more general

situations where such individually optimal policies exist.
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I. INTRODUCTION

We consider the system of Figure 1. Jobs arrive into

Route 1

Buffer Route 2 Destination
Arrivals

FIGURE 1

a buffer from which there are s parallel routes to a destination. Each

job wishes to minimizes its own delay, which is the expected duration

of time from the arrival of the job to the time at which it reaches its

destination. Every route can accomodate only one job at a time, and a

route is idle if no job is currently on that route.

At every time instant, all the currently idle routes are offered to

the job occupying the first position, and it can either choose to

traverse one of them or decline all the currently idle routes and

continue to wait. Then, all the (remaining) idle routes are offered to

the job in the second position, then the third position and so on till

the end of the buffer.
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A policy for a job which specifies when it should choose or decline

an offered idle route, and which minimizes the delay for that job, will be

called an individually optimal policy. We seek to determine such in-

dividually optimal policies.

Instead of considering such individually optimal policies, one can

also seek to obtain a policy which minimizes the average delay of

all jobs. Such a policy will be called a socially optimal policy.

In general, the notions of social and individual optimality do not

coincide, because a socially optimal policy may "sacrifice" one job if

by doing so it can lessen the overall delays of all jobs. In contrast,

a job implementing an individually optimal policy will never make such

sacrifices.

Our main results are the following.

Theorem 1

Assume that

(l.i) The system has no arrivals.

(l.ii) There is a socially optimal policy E which can be implemented

by each job individually implementing a policy y.

(l.iii) Under y, if a job ever declines an offered idle route, then

it will never thereafter utilize that route.

Then, Y is an individually optimal policy for this system.

Theorem 2

The policy Y of Theorem 1 is not only optimal for a system with no

arrivals, but is also optimal for all arrival processes which satisfy:
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Past arrivals are independent of future route traversal (2)

times.

Theorem 3

Suppose that

(3.i) For i=1,2,...,s the time to traverse route i is

-1exponentially distributed with mean pi (3)

(3.ii) (Without loss of generality) P1 >P22 >.. ->' .

and the arrival process satisfies (2). Define

>1+ ~2 + "....+j-l
T. :- - (j-l) (4)

Then, an individually optimal policy Y is given by the following rule:

Let j be the fastest idle route offered to a job which

is in position c in the buffer. Then the job should

utilize route j if and only if c>T.
3

It can be noted that by identifying each route i of Figure 1 with

a server, Theorems 1 and 2 are really studying the optimal utilization,

individually by each customer or socially, of GI/G/S queues where

each of the servers is allowed to be different. By the same analogy,

Theorem 3 gives the optimal policy for utilization by individual

customers of GI/M/S queues with heterogenous servers.

Recently, Agrawala, Coffman, Garey and Tripathi [1] considered the

problem of obtaining a socially optimal policy when there are no

arrivals to the buffer, and the times to traverse the routes satisfy
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(3.i,ii). They have shown that the socially optimal policy r which

minimizes the total delay of all existing jobs is given by the following

rule:

Let j be the fastest idle route available when c customers

are waiting in the buffer. Then assign one customer from (6)

the buffer to route j if and only if c>T..
J

It can be seen that the socially optimal policy (6) when there are no

arrivals, and the individually optimal policy (5)' when arrivals according

to an arbitrary process satisfying (2) are allowed, are closely linked

by Theorems 1 and 2.

Progress has also recently been made on the problem of obtaining

socially optimal policies for exponential routes when the arrivals form

a Poisson process. Larsen [2] conjectured that if the arrivals are

Poisson and (3) is satisfied, then the socially optimal policy would be

of threshold type. For the case s=2 where there are two exponential

-1 -1
routes with means 11 < 1 2 ' this conjecture has been proved by Lin and- Kumar

[3], i.e. there is a number T such that the second route should be utilized

if and only if the number of jobs in the buffer exceeds T. It has been

conjectured that as the rate X of the Poisson arrival process decreases,

T increases and converges to T2 as +0O, see [3], but this result has still

not been rigorously proved. Recently, Walrand [4] has obtained another

proof of the threshold result of [3] using stochastic coupling arguments

instead of the policy iteration argument used in [3]. For the case of

s>2 routes, the problem is still open. In Lin and Kumar [3] it is

conjectured that the socially optimal policy is given by threshold functions

T2( )' T3() ' ',3s (-) such that route j should be utilized if and only
2' s
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if the number c of customers in the buffer satisfies c>T. (b) where b is

the vector describing which routes are idle and which are busy. This also

is unproved to date. Lastly, it again appears that T. (b) increases as
J

XNO and converges to T..

II. A FALLACIOUS ARGUMENT

Before presenting the proof, we present a tempting argument just for

Theorem 3, which suggests itself, but which is fallacious.

Suppose that a job is in position c and route j is the fastest idle

-1route offered to it. If this job chooses route j, then its delay is jl

Suppose however that the job declines route j and decides instead to wait

for a faster route to become available. Since there are c-l jobs ahead

of the job being considered, it is tempting to analyze what is the delay

of the job if it "chooses" to wait till (c-l) completions have occured

from routes 1,2,...,j-1 and then utilize the next subsequent route which

becomes available. The expected time to wait till c=(c-l)+l completions

have occured from routes 1,2,... ,j-1 is

c

1i+ 12+- - '+Pjl

Now, the probability that route i is the one which becomes available at

the c-th completion is

I'pi

i1+P2+' ' +pj-1

and if it chooses this route, its expected route traversal time is

1

.
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Hence, if the job can indeed follow this policy, then its delay is

C ~ j-l 11.
c + i . 1 c+j-l

'l+''+j-1 i=l Pl+''+j-1 pi P1 + ...' + j-l

Thus, comparing the two alternatives of choosing route j now, or waiting

till c completions have occurred from routes 1,2,...,j-1 and choosing

whichever route is the c-th completion, we obtain

if c+j-l > 1 then choose route j
P1+T2 + +Nj-1 Pj

< l , then decline route j

which turns out to be the same comparison as

if c > T. then choose route j

< Tj then decline route j
3

suggested in Theorem 3.

Unfortunately, the above reasoning is fallacious. Firstly, the job

may not even be allowed to use the route which becomes available at the

c-th completion from routes 1,2,...,j-1. The reason is that there may be

other jobs which -are ahead of it in the buffer at the time of the

c-th completion, which occurs if other jobs ahead of it have declined

to choose some of the routes which have become available in the interim,

and one of these jobs ahead of it may decide to use this route. Secondly,

if the c-th completion corresponds to a "slow route", then the job by

this time may have advanced so far to the front of the buffer, that it

may prefer to decline the c-th completion.
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It is therefore somewhat surprising that the policy of Theorem 3

is indeed individually optimal.

III. PROOFS

We shall first prove Theorems 1 and 2 simultaneously. The proof is

by induction. Suppose that there is only one job in the buffer and there

are no arrivals to the buffer. Then individual and social optimality

coincide, and so by (l.ii), the policy y is individually optimal in

this situation.

One property is important.

(P) Since there is no one in the buffer behind the job, and

no future arrivals, the job can always utilize a route

that it previously chose to decline. This is because an

idle route remains idle forever if this one job has

declined it.

Suppose now that there are possibly other jobs in the buffer behind

the job in position 1, and arrivals satisfying (2) can occur. Then, due

to interference by other jobs, the option outlined in (P) ceases to be

available to the job initially in position 1. Since the set of options

available has decreased, the delay of the job in position 1 can only

increase over what it was in the situation where it was the only job

in the buffer and no arrivals could occur. However, by (l.iii), the

options eliminated are not really needed when Y is used, and so the delay

remains the same as what it was. Hence, the suggested policy Y is optimal

for the job in position 1, irrespective of the total number of jobs in the

buffer and irrespective of the arrival process, so long as it satisfies (2).



-8-

Suppose, for purposes of induction, that we have already shown that the

suggested policy is optimal for positions 1,2,...,k-1 regardless of the

total number of jobs in the buffer and the arrival process satisfying

(2).

Now consider a job in position k, and suppose that the total number

of jobs in the buffer is also k, and no arrivals are allowed. Jobs

1,2,... ,k-l behave according to their individually optimal policies and,

by property (l.iii), their behaviour is unaffected by what the job in

position k does. If k had a strictly better policy than the one suggested,

then its delay would strictly decrease, while the delays of the jobs in

positions 1,2,...,k-1 is unchanged. But this is impossible, because then

the total delay of all k jobs would be strictly less than what it would

be under the policy already known to be socially optimal in this situation.

Hence the suggested individual policy is optimal for the job in position

k, when there are no other jobs behind it in the buffer, and there are no

arrivals to the buffer.

Now suppose that there are possibly other jobs in the buffer behind

the job in position k and also arrivals are allowed as in (2). Since (P)

does not hold anymore for the job currently in position k, its delay can

only increase in comparison with what it was when it did not have any

other jobs behind it in the buffer and no arrivals were allowed. However,

by implementing the suggested policy y, (l.iii) ensures that the eliminated

options are unnecessary anyway, and so the job in position k can ensure

that its delay remains unchanged in comparison with the situation where

there were no other jobs behind it in the buffer, and no arrivals were
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allowed. Hence the suggested policy Y is optimal for the job in position

k, irrespective of the total number of jobs in the buffer, and irrespective

of the arrival process, so long as it satisfies (2).

The induction is now complete, and we have proved that the suggested

policy Y is individually optimal in the situations of Theorems 1 and 2.

Now we turn to the proof of Theorem 3. We use the result of Agrawala,

Coffman, Garey and Tripathi [1] that the policy iT of (6) is socially

optimal when (3.i,ii) are true and no arrivals are present. Now consider

the policy y suggested in (5). First, we show that when all jobs implement

y, then E will be implemented, which will show that (l.ii) is satisfied.

Suppose there are c jobs in the buffer and route j is the fastest idle

route available. If c<T. then all jobs in the buffer will, one by one,
- J

decline route j since they are following the rule (5) and their positions

are all less than or equal to c,and so (6) is implemented. If c>Tj, then

one job, namely the k-th one where k is the smallest integer greater than

T. will utilize route j, and so again (6) is implemented. Hence (l.ii)

is satisfied. Now we show (l.iii). Let k be the position of job which

declines route j, the fastest idle route offered to it. Since y is

implementing (5), k<T.. As time goes on, the job, if it has not already

utilized some route, can only improve its position, i.e. its position can

only decrease. Since T. remains fixed, its position will never thereafter

exceed T. and so route j will never be utilized by this job. Hence (l.iii)
3

is satisfied, and the proof Theorem 3 is complete.
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IV. CONCLUDING REMARKS

We do not expect that the condition (l.iii) will hold in all situations.

We have however seen one situation, namely the exponential routes case of

Theorem 3 where conditions (l.ii,iii) are satisfied.

Are there other situations of more general "service" times, where

conditions (l.ii,iii) hold? The problem here is that not much progress

has been made on the problem of social optimality when there are no arrivals,

other than in the exponential routes case of [1].

We conjecture that if

(7.i) the hazard rate of each server is an increasing function

'(7)
(7.ii) The range [hi,hi] of the hazard rate of each server

i is such that h+l< h.,

then, the socially optimal policy in the case of no arrivals will indeed

satisfy (l.ii,iii). Thus, we conjecture that the strong result of Theorem

2, namely the existence of an individually optimal policy insensitive to

the arrival process, will be true when (7.i,ii) are satisfied. It is also

reasonable to guess that it will be of threshold type, where the threshold

function depends on the server states.
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