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Abstract

The properties of a representation, such as smoothness, adaptability, generality, equivari-
ance/invariance, depend on restrictions imposed during learning. In this paper, we propose
using data symmetries, in the sense of equivalences under transformations, as a means
for learning symmetry-adapted representations, i.e., representations that are equivariant
to transformations in the original space. We provide a sufficient condition to enforce the
representation, for example the weights of a neural network layer or the atoms of a dictionary,
to have a group structure and specifically the group structure in an unlabeled training set.
By reducing the analysis of generic group symmetries to permutation symmetries, we devise
an analytic expression for a regularization scheme and a permutation invariant metric on
the representation space. Our work provides a proof of concept on why and how to learn
equivariant representations, without explicit knowledge of the underlying symmetries in the
data.

1. Introduction

Symmetry is ubiquitous from subatomic particles to natural patterns, human design and
artistic production. The core idea of this work is that data symmetries can be learned and
used in the context of machine learning to derive data representations [5] that are equivariant
and invariant [46, 3, 30] to unknown, symmetry-generating transformations. Such properties
are important for learning efficient and statistically relevant weight sharing schemes and
reducing the complexity of supervised learning, with respect to transformations that preserve
the data distribution and prediction function [46, 18].

Data representation is a classic concept in harmonic analysis and signal processing where
representations are typically designed on the basis of prior, available information. In machine
learning, methods for learning the data representation in a supervised or unsupervised
way, are conceptually an attempt to learn such priors or features, directly from the data.
Examples of unsupervised representation learning methods include dictionary learning [54],
autoencoders [4] and metric learning techniques [58]. In the supervised learning regime, the
representation is learned jointly with the classifier, for example, by parameterizing functions
form a hypothesis space through the lower layers of deep neural networks [28].

A fundamental structure in the input space is imposed by the symmetries of data
points with respect to transformations that, for a task of learning from labeled instances,
are irrelevant or even nuisance factors [46]. In visual object recognition, for example, the
identity of the object is preserved under geometric transformations. In speech recognition, the
phonetic or lexical category is preserved through different speakers or speaking conditions.
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Symmetries are relevant for representation learning from the perspective of a) learning
symmetries and b) employing them for symmetry-adapted representations for transformation
equivariance or invariance. In this paper we focus on the former, building on existing
theoretical frameworks for constructing equivariant and invariant representations.

Transformation symmetries define equivalence classes that capture part of the intraclass
variability of the categorization task. They also imply a quotient space where points are
equivalent up to transformations and a representation that is invariant, in the sense that
it preserves the output (labeling) distribution. Restriction of the hypothesis space to this
quotient representation space is crucial for learning from high-dimensional data [2, 6, 46, 31].
by reducing the sample complexity of learning (the size of the labeled training set) [1, 3, 16].

Representations that are symmetry-adapted can also be seen as an effort to a) generalize
Convolutional Neural Networks (CNNs) [28] to weight sharing schemes and invariances
beyond translations by explicitly learning the symmetry or convolution group from data and
b) derive algorithms for learning optimal network architectures and feature map properties,
such as sparsity, locality and weight-sharing topologies, instead of designing them.

Deep CNNs have an explicit parameterization for translation equivariance and robustness
using convolutions and pooling. These computations, sharing principles from neuroscience
[2, 37], involve filtering with localized kernels, weight re-sharing and pooling over local regions.
However, data symmetries will extend to other transformations that can be described, in
the simplest scenario, by geometric changes such as scaling, rotation or affine maps. A
representation that does not account for more generic, arbitrary and unknown symmetries,
will have to compensate using a larger number of parameters, which in turn will result in an
increased size of the labeled training set for learning. This is in fact the case for many of the
impressive results of deep learning, for example in vision, speech and natural language, which
rely on massive amounts of labeled training data [28], for training convolutional models with
a number of parameters of the same order [25, 44, 51], data augmentation and adaptation
to known transformation models [20, 24].

The contributions of this work are the following: a) We outline the principles of a family
of methods for learning the symmetries in the data, and learning equivariant representations,
without explicit knowledge of the symmetry group. As opposed to learning with known
symmetries, like many of the existing methods, we propose to learn the symmetries; b) We
reduce the analysis of generic group symmetries to permutation symmetries; c) We devise an
analytic expression for a regularization term acting on the matrix of weights (dictionary or
neural network parametrization) that enforces a group structure and specifically the group
structure in an unlabeled training set. d) We derive a permutation invariant metric on
the representation space for evaluating permutation relationships and symmetry-adapted
representations under our framework.

The paper is organized as follows. We summarize related work in Sec. 2 and provide
background on on equivariant representations and group orbits in Sec. 3. Then in Sec. 4
we state the problem of symmetry-adapted representation learning and provide a general
principle in Sec. 5 for designing orbit regularization. The main theoretical contributions of
the paper are stated in Sec. 6 along with algorithmic implementations, through the concept
of permutation maximal invariants (6.1), and a computable, analytic form for an orbit
regularization term and a term sensitive to exact data symmetries (6.2). A summary of
the results and their use for learning and evaluating symmetry-adapted representations
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are provided in Sec. 7. As a proof of concept, we formulate an unsupervised dictionary
learning problem in Sec. 8 and provide results on learning from data with exact, analytic,
group-transformations and show that minima can correspond to dictionaries that result in
equivariant maps. We conclude in Sec. 9 by discussing open theoretical and algorithmic
challenges. Most of the mathematical derivations can be found in the Appendix.

2. Related work

Understanding and using data symmetries has In an early work, using symmetries for learning
was framed as categorizing symmetry groups (mirror, roto-translation) in random patterns
[41]. In the direction of learning symmetries, various methods have been proposed for
learning infinitesimal generators of Lie groups [38, 35, 48, 57, 9]. Encoding symmetries has
also been implicitly approached as learning transformations between images [33]. Symmetries
in dictionary design and learning have been almost exclusively considered through shifts
of localized atoms [22], equivalent to imposing banded and circular (Toeplitz) dictionary
structures. Convolutional or shift-invariant sparse coding schemes [17] were proposed for
translation-invariant representations, trained on larger input supports.

In unsupervised representation learning, convolutional deep belief networks [29] and
convolutional autoencoder [32] variants were proposed to enforce shift-invariance in the
feature maps. Equivariant Boltzmann machines were explored for global (rotation) [24]
and local (rotation, translation scale) [49] filter transformations, using given transformation
matrices. Specifically, in [49] linear transformations of the weights are incorporated in
learning and encoding to achieve invariance, through explicit max pooling over the set.
Extensions to autoencoder and sparse coding objectives were also discussed. Transforming
autoencoder [19] learn features with parameters, such as pose or position, that are equivariant
w.r.t. to global input transformations. The result is a composition of capsules that transform
parts, trained with transformation supervision.

Invariance to transformations has been used as a key property in representation learning,
for example: studying the properties of convolutional networks [31, 7]; deriving analytical
expressions based on minimal sufficient statistics [47]; formalizing hierarchical, compositional
maps for learning with small complexity [3]; forming similarity-based loss functions [52].

Extensions of invariance in CNNs beyond translations were explored with scale-space
pooling [42], convolutional maxout networks for pooling over translations and feature channels
[55], pooling over neighboring values and similar filters [23] and tiled CNNs [27]. Also wavelet
scattering networks compute a translation invariant, deformation stable representation [6],
extended to scale and rotation in[43]. Spatial transformer networks [20] are modules that
manipulate the data, instead of pooling for invariance, by applying a transformation, whose
parameters are conditioned on the input. The modules are purely discriminatively trained,
requiring however an explicit, parametric transformation model.

Symmetry networks [16] are discriminatively trained architectures that employ feature
maps generated from groups other than translations. However the symmetries, i.e., the
transformation group, is known and parameterized in order to define symmetry spaces,
neighborhoods, pooling, with parameters efficiently sampled for tractable representations.
Single and double-layer affine symnets were used to demonstrate the decrease in sam-
ple complexity w.r.t. standard (translational) convolution layers for image classification.
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Group-convolutional networks [60] proposed generalized group convolutions and invariance
to transformations [3] that model perceptual changes such as speaker variability in speech.
The representation relies on pooling jointly over translations and transformations for sets of
transformed inputs; for unitary transformations this is equivalent to pooling over transforma-
tions of the weights. Analogously, additional operations to the inputs were proposed in [12],
for partial equivariance and invariance to a small group of four rotations, isomorphic to cyclic
group C4. Group equivariant networks [10, 11] in turn, employ explicit filter transformations
using small groups (four rotations, reflection), for equivariance through group convolutions.
The equivariance properties of tied-weight neural network layers for a discrete, known group
are theoretically treated also in [39].

The relations between group-based regularization, i.e. constraints on orbit equivalence
relationships, for known, simple groups and well known regularization schemes (e.g., l1, l2, l∞,
nuclear, spectral) have been explored in [36]. In [40] the notion of maximal invariants has been
employed in analytic functions for shape classification up to permutation transformations.

3. Background: Data representations with symmetries

3.1 Representation learning

Definition 1. A representation learning algorithm A is a map from a training set SN to a
finite set of weights or dictionary elements (atoms)

W = {wi}mi=1 = A(SN ), SN ⊂ X , wi ∈ X , N ∈ N. (1)

Definition 2. A representation Φ(x) ∈ F of x ∈ X , given W is given by the set of
measurements or coefficients φi(x) = {σ(〈wi, x〉)}mi=1, where σ : R→ R a linear or non-linear
function, for example Φ : X → F , with Φ(x) = (φ1(x), . . . , φm(x)) and X = Rd,F = Rm.

A way to mathematically define the question of learning W with specific structure is
to pose learning as a variational problem. Suppose that by the learning algorithm, we are
trying to minimize some objective function L : X → R that specifies the representation
criterion, for example reconstruction or classification accuracy. We can include a priori
information on the target by adding a regularization term to restrict the set of possible
solutions to those that have a particular structure, i.e to choose a hypothesis space. More
general, we can formulate the learning problem as that of minimizing a sum of two functions:

min
W

(L(W,SN ) + βJ (W )) , β ∈ R+ (2)

where L is a data dependent loss function that assigns, for example, an empirical classification
or reconstruction error using W and J : Rd×m → R is a regularization term, controlled by β,
incorporating expectations, assumptions or prior knowledge, e.g. imposing that the solutions
are in the class of smooth functions or that the resulting reconstruction is parsimonious
(sparsity constraints).

3.2 Equivariant and invariant representations from group symmetries

We briefly recall elements from the theoretical and computational framework of group orbits
[3, 2, 60, 52] towards representations that are equivariant [30, 10] or invariant [31, 47] with
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respect to transformations described by group symmetries. Such properties are useful for
predicting the response to transformed inputs, efficient weight sharing schemes and reducing
the sample complexity of a supervised learning task.

Let the input space be a vector space endowed with dot product 〈·, ·〉, e.g. X = Rd.
We denote the transformations of a point (signal) x ∈ X through a finite group G, of
order |G| < ∞ in d dimensions, by gx where g ∈ G is a d × d matrix. Examples include
the set of cyclic symmetries of a polygon, the matrices for planar image rotations, or the
rotation-reflection symmetries of images or shapes (dihedral symmetry). The group orbit of
x ∈ X is the set of transformed signals

Ox = {gx ∈ X | g ∈ G}. (3)

In this way, the action of the group, and the associated orbit definition, induces a partition
of X into orbit sets. More precisely, it defines an equivalence relation

x ∼ x′⇔∃g ∈ G: x′ = gx (4)

that separates points in X on the basis of x being a transformation of x′.
Orbits can be used to derive a representation Φ : X → F selected from some hypothesis

space of maps with a specific parametrization. A parametrization that can result in
equivariant (or invariant as a special case), and selective, representations is based on
nonlinear measurements of the projections of a signal on orbits [2, 3]. More specifically given
a set of orbits

W = {Wj = (g1tj , . . . , g|G|tj)}, tj ∈ X (5)

we consider the nonlinear projections, using a set of nonlinear functions {σα : R→ R} with
a scalar parameter α, of x onto the orbit elements

φj,α(x) = σα(W T
j x) = (σα(〈g1tj , x〉 , . . . , σα(

〈
g|G|tj , x

〉
)), (6)

with j = 1, . . . , |W| and α = 1, . . . , |{σα}|. Each φj,α : X → R|G|, corresponding to a single
orbit, is a permutation-equivariant representation w.r.t. the transformations in G i.e.:

φj,α(gx) = Pgφj,α(x), g ∈ G, ∀j, α (7)

where Pg is a permutation matrix that depends on the transformation g. The representation
of a transformed gx is simply a permuted version of the untransformed x. In Sec. (7.1), we
provide a way to quantify equivalence using such permutation-equivariance representations.

By summing the components of φj,α(x), we obtain an invariant representation φ̄j,α :
X → R over transformation in G:

φ̄j,α(x) =

|G|∑
i=1

σα(〈gitj , x〉) = φ̄j,α(gx), g ∈ G, ∀j, α (8)

as transforming x amounts to simply re-ordering the terms in the sum, i.e. φ̄j,α(gx) =
1T|G|φj,α(gx) = 1T|G|Pgφj,α(x) = 1T|G|φj,α(x) = φ̄j,α(x). Equivalently, for unitary groups
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this can be seen as forming the group-average of σα(〈t, gx〉) over G. Moreover a map
Φ : X → R|W|×|{σα}|, such that

Φ(x) =
(
φ̄j,α(x)

)
, (9)

i.e. the concatenation of a finite number of invariant maps, corresponding to a finite number
of orbit, can be proven to also be approximately selective w.r.t. the partition of X induced
by G, i.e. sufficient for separating the equivalence classes in Eq. (4) (see [2, 3] for details).

4. Symmetry-adapted representation learning

4.1 Motivation

A requirement for the construction of an equivariant (or invariant) signature as in Eq. (9) is
having an orbit set, of an an unknown transformation group, as the set of representation
weights. An orbit is a set of instances that have a transformation relationship, and is
symmetric under a group transformation. We describe a number of principles that can
be used for designing symmetry-adapted representation learning algorithms, where the
learned weights reflect the symmetries in the training set. This can also be seen as obtaining
orbits, directly from data, through a learning process. Learning is unsupervised, as no
orbit membership is used, although it is not a clustering approach, as the learned orbits are
not extracted from the training set instances. Note that for orbit selective representations,
multiple orbits would be required [3], which can be the result of different initializations or
local minima, or multiple orbit learning schemes.

4.2 Problem formulation

Before proceeding, we make a simplifying assumption on the training set distribution which
we will maintain for the rest of the paper:

Assumption 1. The input data set SN = {xi}Ni=1 ⊂ X is a finite collection of Q orbits
w.r.t. a finite group G

SN = {xi}Ni=1 = {gxj , ∀g ∈ G}Qj=1, xi, xj ∈ X , N = |G|Q (10)

where |G| is the group cardinality and we assume X = Rd.

For symmetry-adapted representation learning, under this assumption for the training
set, we will formulate the learning problem as

min
W

(
L(W,SN ) + L′(W,SN ) + βJ (W )

)
, β ∈ R+ (11)

where L(W,SN ) is a loss for representation learning1, that can be dictated by a down-
stream task, e.g. reconstruction, discriminability or empirical error; J : Rd×|G| → R is a
regularization term that enforces the representation to be symmetry-adapted, meaning the
weights W to form an orbit of a finite group; L′(W,SN ) an additional loss or data-dependent
regularization term that will further restrict the group in W to be the same as the latent
group in the training set distribution.

1. Typically, an average over points of a loss l(W,x), l : Rd×|G| × Rd → R+, i.e. L(W,SN ) = 1
N

∑
i l(W,xi).
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The contribution of this paper is an analytic formulation for L′ and J based on a general
framework for learning W with symmetries from a finite, unknown group. Our roadmap for
Sections 5 and 6 is the following:

• In Sec. 5 we describe a simple principle for constructing of regularization terms J , by
looking at the structure of the Gramian matrix W TW induced by an orbit structure
in W (Observation 1).

• In Sec. 6.1 we show how to use a maximal invariant for the permutation group to derive
an analytical expression for J that enforces the desired Gramian matrix structure
described in Obs 1.

• In Sec. 6.2 we propose a loss term L′ that penalizes symmetries in W different from
the ones in SN , to further guide the orbit structure enforced by J , using the symmetry
in the data and weight covariances (Lemma 1).

5. Structure of the Gram matrix of orbits

In this Section we describe a simple principle for constructing a regularization term J (W )
for representation learning that drives the weights to form an orbit of a template vector
t ∈ Rd w.r.t. a finite group G. More formally, we want the representation to have the
following property:

{wi}|G|i=1 = {gt,∀g ∈ G}, wi, t ∈ Rd. (12)

For the time being, we pose no further requirements on the type of group or the correspon-
dence to observations from a training set.

If the weight vectors form an orbit of some t w.r.t. to some G, then the matrix of weights
is, up to permutations by {gi}:

W = (g1t, . . . , g|G|t) ∈ Rd×|G|, gi ∈ G, t ∈ Rd, (13)

and the associated Gramian matrix G = W TW ∈ R|G|×|G| has entries of the form:

(G)ij = 〈git, gjt〉 = 〈t, g∗i gjt〉 , (14)

where g∗i the conjugate transpose of gi. A matrix is called permuted if its columns are
permutations of a single vector (Appendix, Sec. A and [14]); assuming a unitary group, i.e.
g∗ = g−1 (a hypothesis that can be relaxed), and using the closure property of the group
composition we can formulate the simple key observation of this work:

Observation 1. If a set of vectors is an orbit w.r.t. a finite group then their Gramian is a
permuted matrix.

The property follows from the fact that the Gramian matrix is a function of the multiplication
table of the finite group G. More precisely, by Cayley’s theorem [8] the permutations
associated to a finite group multiplication table (often called a Cayley table) form a group, a
subgroup of the symmetric group of |G| objects S|G|, that is isomorphic to G (see Appendix,
Sec. C).
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(a) Cyclic group C6 (order |G| = 6) (b) Dihedral group D6 (order |G| = 12)

(c) Pyritohedral group Th (order |G| = 24)

Figure 1: Examples of group action transformations, for groups of orders |G| = {6, 12, 24},
on a unit-norm vector in Rd, d = 6. Each subfigure shows the d × |G| matrix W of orbit
elements arranged columnwise (left), and the |G| × |G| Gramian matrix W TW (right).

Example 1. [Cyclic group (order 3)] Let Z3 = {0, 1, 2} with law i ◦ j = (i + j (mod 3)).
Each column in the multiplication table associated to the elements of Z3 is a permutation of
the others:

◦ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Therefore any injective function of the multiplication table entries will give a permuted matrix.
In our case this function, νt : G×G → R, is given by the scalar product νt(gi, gj) =

〈
t, g−1i gjt

〉
.

Remark 1. For the case of permutation groups, taking any elementwise function of the
orbit, f((W )ij), f : R → R, the induced Gramian with entries (G)ij = 〈f(git), f(gjt)〉 is
also a permuted matrix. In fact the action of the function on the orbit W is equivalent
to a change of the template t since (f(git))q = (gif(t))q, ∀ i, q. This observation will be
useful for restricting the set of possible solutions W of a learning process (Sec. 8) driven by
imposing symmetry constraints (Theorem 2).
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6. Analytic expressions for regularization

In this section we provide closed-form expression for two conditions: a) the permuted matrix
codition from Observation 1 that enforces the group orbit structure on a representation
matrix, based on the notion of maximal invariants [46, 59] and b) the same-symmetry
condition for imposing such group to be the same as that generating the training set.

Definition 3. A maximal invariant h w.r.t. a group G is a function such that:

h(u) = h(v) ⇔ ∃g ∈ G : u = gv, u, v ∈ Rd (15)

In our context, a maximal invariant is the same on all elements of an orbit but different on
elements of different orbits, i.e. it separates classes of equivalence.

Since we are interested in enforcing the condition of permuted matrices we consider
maximal invariants of the permutation group for vectors u ∈ Rd. In particular maximal
invariants of the form:

h(u, λ) =

d∑
i=1

fλ(ui), λ ∈ R. (16)

where fλ : R→ R a function with a free scalar parameter λ ∈ R, applied elmentwise on u.
Thus u, v ∈ Rd are equivalent up to permutations if-and-only-if h(u, λ) = h(v, λ), ∀λ ∈ R.

6.1 Maximal invariant for a permuted Gramian

A special case of a maximal invariant is the probability distribution of the components of
the vector, or more precisely, since we consider a finite vector space, the histogram of the
components. A simple way of building the component histogram for v ∈ Rd is to use the
delta function fλ(·) = δ(· − λ) in Eq. (16)

h(v, λ) = hv(λ) =

d∑
i=1

δ(vi − λ) (17)

The value hv(λ) corresponds to the frequency of the value λ in the d components of vector
v. We can then use a distance, e.g. the Euclidean, between histograms to quantify if two
vectors are equivalent up to permutations: v ∼ u iff the distance of functions hv, hu is zero:

‖hu − hv‖22 = 0 =⇒
∫

dλ (hu(λ)− hv(λ))2 = 0. (18)

In the context of Observation 1, we consider the Gramian matrix G = W TW . A condition
to guarantee that each column of G is a permutation of a single vector can therefore be
written as

|G|∑
ij=1

(∫
dλ (hi(λ)− hj(λ))

)2
= 0, hi(λ) =

|G|∑
k=1

δ(Gki − λ), (19)

with Gki = (G)ki the element in row k and column i of G. In words, Eq. (19) calculates the
histogram of the column value distribution for different columns and imposes the distance to
be null. The corresponding maximal invariant hi(λ) = h(G:i, λ) is the distribution function
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of the Gramian columns (rows) G:i, i = 1 . . . |G|. This condition, which forces the distribution
functions to be the same, is a necessary and sufficient condition for the rows (columns) of
the Gramian to be permutations of a single vector.

Theorem 1 (Symmetry regularization). Let matrix W ∈ Rd×|G| and r : R|G|×|G| → R+ with

r(W TW ) = τT δ(Cvec(G)), G = W TW (20)

where G is the Gramian matrix, C is a constant matrix calculating all differences of the
components of vector vec(G) ∈ R|G|2, the function δ acts elementwise (δ(a) = 1 if a = 0,
otherwise 0), and τ is a constant weight vector. If r(W TW ) = 0, then G is a permuted
matrix and viceversa (details and proof in Appendix, Sec. B).

Other choices for the nonlinearity in Eq. (16), or the choice of the distance in Eq. (18),
will give rise to different ways to enforce orbit regularization (see Appendix, Sec. F). It is
worth noting that for the case of permutation groups, and using the property in Remark 1,
Theorem 1 can be generalized to derive a class of regularization terms. In particular the
following holds:

Corollary 1. In the hypothesis of Theorem 1 for any permutation group G and any f : R→ R
acting pointwise on the matrix W if W TW is a permuted matrix then r(f(W T )f(W )) = 0.

Remark 2 (On using the Gramian). Theorem 1 specifies a symmetry constrain for a matrix
W by using the Gramian matrix G = W TW . Imposing constrains on G instead of directly
on W is crucial for dealing with arbitrary groups. In effect, working with G implies dealing
with the permutation group only. We can then avoid the need to consider group-specific
regularization strategies, and deal with a variety of groups through permutations.

6.2 Same-symmetry condition

The condition in Observation 1 is clearly necessary but not sufficient for a set of weights to
be an orbit w.r.t. a finite group. Furthermore, it does not depend on the data structure i.e.
its generating group could be different from the one that generated the training data SN .

One possible way to constrain the set of solutions to have the same symmetries comes from
the analysis of the covariance matrix of a collection of orbits. If X = (x1, . . . , xN ) ∈ Rd×N
is the matrix storing the training set SN in (10), we have:

XXT =

|G|∑
i=1

giTT
T gTi (21)

where T = (x1, . . . , xQ) is the d×Q matrix of the representatives for each orbit in SN . The
matrix in 21 has a high degree of symmetry that can be used to prove the following (see
Appendix, Sec. C for details). Let [A,B] = AB −BA the commutator of matrices A,B:

Lemma 1. Let W be an orbit w.r.t. a finite group G̃ and X = (x1, . . . , xN ) ∈ Rd×N , xi ∈ SN
as in (10) with |G| = |G̃|. If [XXT ,WW T ] = 0 then G̃ = G (up to a constant unitary matrix
conjugation).
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7. Learning with symmetry regularization

The main theoretical result of the paper is then summarized by the following Theorem,
which puts together Observation 1, Theorem 1 and Lemma 1. The proof and details are
provided in the Appendix, Sec. C.

Theorem 2 (Symmetry adapted regularization). Let X ∈ Rd×Q|G| a matrix whose columns
are all elements from the union of orbits of Q vectors in Rd w.r.t. a finite group G = {gi, i =
1, . . . , |G|}, where gi ∈ Rd×d is a matrix representation of the group action and |G| indicates
the cardinality of the group. Let W ∈ Rd×|G| a matrix whose columns are the elements of an
orbit of a vector w ∈ Rd w.r.t. a finite group G̃ with |G| = |G̃|. Then W TW is permuted and
r(W TW ) = 0. Further if [XXT ,WW T ] = 0 then G̃ = G (up to a constant unitary matrix
conjugation).

Incorporating both conditions in Theorem 2, the general form for a symmetry-adapted
representation learning problem in Eq. (11) is of the form

min
W

(
L(W,SN ) + γ

∥∥[XXT ,WW T ]
∥∥2
F

+ βr(W TW )
)
, β, γ ∈ R+ (22)

where we used L′(W,SN ) =
∥∥[XXT ,WW T ]

∥∥2
F

, J (W ) = r(W TW ) and the loss term
L(W,SN ) depends on the problem. In the following, we use a smooth (differentiable) version
of Eq. (20) substituting the δ function with a Gaussian function gσ : R→ R of σ � 1 width.
The regularizer is then the form r(W TW ) = τT gσ(Cvec(G)). Details on C and τ , along
with the analytic form of the gradients for L(W )′ and J (W ), for use in gradient-based
updating rules for minimizing Eq. (22) are provided in Appendix, Sec. B.

Remark 3 (Loss and data-dependent terms). For the loss term, one could consider for
example reconstruction or distance-preservation (for unsupervised learning), similarity or
discriminability (for weakly supervised learning) or prediction accuracy (for supervised
learning). Note that the commutator term L(W,SN )′ is also data-dependent and can be
seen either as a data-dependent regularization or an additional loss function that penalizes
different-symmetry solutions. In the context of supervised or weakly supervised learning, the
pseudo-distance defined below in Eq. ( 23) can be a valid loss L(W,SN ).

7.1 Permutation invariant pseudometric for testing solutions

As outlined in Sec. 3.2, a representation of the form of Eq. (6) is permutation-equivariant.
To quantify equivalence under permutations, and in our context equivalence under general
symmetries and thus symmetry structure in the representation W , we can use a modified
version of the regularizer function in Eq. (20), where the input to r is a 2-column instead of a
symmetric matrix. The motivation comes from the fact that the representations Φ(x),Φ(x′)
of two elements x, x′ ∈ Rd of the same orbit Ox w.r.t. an orbit dictionary W (generated by
the same group) are permuted vectors. Given a representation matrix W ∈ Rd×m, and the
corresponding coefficients through linear projections Φ(x) = W Tx = (〈w1, x〉 , . . . 〈wm, x〉),
such that Φ : Rd → Rm, we define the following pseudometric

D(x, x′) = r((Φ(x),Φ(x′))) = r(W T (x, x′)) = τT δ(C(Φ(x),Φ(x′))), Φ(x) ∈ Rm (23)
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where the input to r is now the m× 2 matrix (Φ(x),Φ(x′)). The quantity r : Rm×2 → R+ is
a pseudometric2 and

Φ(x) = PgΦ(x′) ⇐⇒ r((Φ(x),Φ(x′))) = 0. (24)

Suppose now that W is learned by the minimization in Eq. (22), which implies r(W TW ) = 0

and
∥∥[XXT ,WW T ]

∥∥2
F

= 0 are satisfied, and still Φ(x) = W Tx with m = |G|. We then have:

Lemma 2 (Pseudometric). If W satisfies the constrains in Theorem 2 then:

r(W T (x, x′)) = 0 ⇐⇒ x = gx′ ∀ x, x′ ∈ Rd, g ∈ G.

For the direct implication note that the Gramian matrix W TW identifies W up to an
arbitrary (but fixed) unitary transformation U ; together with the regularization constrain
r(W TW ) = 0 we thus have that W can be written as W = UWo where Wo is an orbit matrix
(see Supp. Mat., Sec. E for the full proof). This result translates to r being zero for elements
of the same orbit (inter-orbit) and large for elements of different orbits (intra-orbit).

Thus values of r for pairs of vectors x, x′ can then be used to test the following: a) are
Φ(x) and Φ(x′) are permuted vectors (from Eq. (24))? and b) do x, x′ belong to the same
orbit, for Φ(x) = W Tx and W learned or satisfying the orbit regularization conditions (from
Lemma 2)? And as an extension, does W provide an equivariant map, i.e. is it an orbit of
the same group?

8. Experimental results on unsupervised learning

As a proof-of-concept, the proposed regularization conditions are evaluated for the unsu-
pervised learning of a symmetry-adapted representation from orbit data. The problem is
formulated as follows: given an unlabeled training set which is a union of orbits from an
unknown group G, i.e. SN = {gxj , ∀g ∈ G}Qj=1, xj ∈ Rd, N = |G|Q as in Eq. ( 10), find a

single orbit W (of an arbitrary vector t ∈ Rd) of the (latent) group G that generated the data,
i.e. the structure of the columns of learned W should follow Eq. ( 12).

In the absence of additional requirements for W , the term L(W,SN ) in Eq. (22) is not
used. Moreover, to strengthen the (necessary but not sufficient) orbit condition imposed
by minimizing r(W TW ) (Theorem 2), we use a sum of J regularizers; each term is derived
by applying a pointwise nonlinearity on W , fα((W )ij) = σ((W )ij − α), σ : R → R and
computing the regularizer on the generalized Gramian Gα : (Gα)ij = 〈fα(wi), fα(wj)〉. If W
is an orbit matrix, Gα should also be a permuted matrix (Remark 1). The minimization
problem for learning W takes the following form

min
W

∥∥[XXT ,WW T ]
∥∥2
F

+
β

J

J∑
j=1

r(σ(W T − αj)σ(W − αj))

 , β ∈ R+ (25)

where X is the d × N matrix storing the training set SN , σ(x − αj) = max(x − αj , 0) is
the rectifier nonlinearity with parameter αj , J is a hyper-parameter on the number of

2. It is easy to see that it fulfills the same properties as a metric but allows the distance between two
different points to be zero (when the two vectors are permuted).
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(a) 10 seeds, MDS (b) orbits, MDS (c) orbits, tSNE (d) orbits, MDS r(x, x′)

Figure 2: Visualization of seed vectors and generated orbits (encoded by different colors)
from the training data distribution (Dihedral group D6 (order 12)). (a) Seed vectors Q
uniformly sampled from the unit ball, shown via 2d metric Multidimensional Scaling (MDS).
Orbit samples (Q × 12) are shown as 2d MDS and 2d t-SNE projections in (b) and (c)
respectively. Applying MDS with the proposed r(x, x′) permutation test instead of the
Euclidean distance (d) collapses the permutation orbits back into single points.

rectifiers or αj values, and β is a constant controlling the trade-off between the two terms.
The regularization terms r, that aim for a symmetry structure in the columns of W , act
on the data-dependent, covariances commutator term which promotes W with the exact
G-symmetries in X. Note that the single r(W TW ) term in Eq. (22) is a special case of the
used regularization sum, derived by setting J = 1 and α1 << 0.

8.1 Synthetic group data

We use synthetic data generated from known, finite mathematical groups: cyclic group C6

of order |G| = 6 (an Abelian group), dihedral group D6 of order |G| = 12 and pyritohedral
group Th of order |G| = 24 (non Abelian groups). All groups are acting on R6. Figure 1
visualizes the action of the groups on a sample vector. Seed vectors, uniformly sampled at
random from the unit ball in R6, to generate train and validation sets, of size Q = 1000 and
Q = 200 orbits respectively, amounting to Q ∗ |G| points, where |G| the order of the group.
Examples of 2D projections from the training set distribution of the Dihedral group are
shown in Fig. 2. In (a) and (b) we plot in 2D the seeds (templates) and generated D6 orbits
using metric Multidimensional Scaling (MDS) on the matrix of cosine distances. We also
visualize the orbits using t-SNE in 2D (c) and MDS on the pseudometric r(x, x′) of Eq. (24)
in (d). Note how the latter collapses the permutation group orbits into single points.

8.2 Training

For the reported results, we tried schemes with the hyper-parameter J set to 100 and
300, by selecting αj uniformly spaced in [−1, 1]. In addition, we use an explicit r(W TW )
term. For the value of β, that controls the amount of regularization, we tried a range
of orders of magnitude, namely log10 β = {0, . . . ,−7}. Minimization of Eq. (25) was
performed by quasi-Newton iterative optimization with a cubic line search, using Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) for the Hessian matrix approximation. The training
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(a) W = I (b) orbit W (c) learned W (d) PCA W (e) K-SVD W

Figure 3: Cyclic group C6 (order 6): permutation pseudometric Eq. (23) r(Φ(x),Φ(x′)),
with Φ(x) = W Tx and W a 6× 6 dictionary. (a) input space, i.e. W = I, (b) true orbit from
validation set, (c) learned solution, (d) PCA on the training set, (e) k-SVD with minimal
sparsity. top: distance matrices for 3 orbits (arranged in 12 blocks of 6 orbit elements);
middle: inter-/intra-orbit distributions for 50 orbits of the validation set; bottom: 2D output
of metric multidimensional scaling on the matrix of distances r(Φ(x),Φ(x′))(shown as z-score
standardized coordinates).

data X are shuffled and the dictionary matrix W is initialized at random. Note that the
size of the target orbit |G|, and thus the column size of W (d× |G|) is assumed given. We
initialize and run the minimization process M times to produce M orbit solutions for each
value of β, corresponding possibly to different local minima of the loss function. Examples
of the output of the minimization, in terms of W and G = W TW and the dependency of
the solutions on the β and J values are shown in Appendix, Sec. H.

8.3 Quantitative comparisons

To test the validity of solutions, and thus the approximation of the underlying data symmetries
in the training set, we use the pseudometric on the permutation invariant quotient space
in Eq. (23). Given a representation matrix W and assuming Φ(x) = W Tx we compute
r(Φ(x),Φ(x′)) for pairs (x, x′) in X the validation set. We can then check if W induces an
equivariant representation and for the case of the learned matrices with the proposed method,
if the equivariance is induced by a matrix with the symmetries in the data. The latter is
also true for any representation W that satisfies the constraints in Theorem 2, according
to Lemma 2, which are necessary but not sufficient; examples are matrices that give an
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(a) W = I (b) orbit W (c) learned W (d) PCA W (e) K-SVD W

Figure 4: Dihedral group D6 (order 12): permutation pseudometric Eq. (23)
r(Φ(x),Φ(x′)), with Φ(x) = W Tx and W a 6×12 dictionary. (a) input space, i.e. W = I, (b)
true orbit from validation set, (c) learned solution, (d) PCA on the training set, (e) k-SVD
with minimal sparsity. top: distance matrices for 3 orbits (arranged in 6 blocks of 12 orbit
elements); middle: inter-/intra-orbit distributions for 50 orbits of the validation set; bottom:
2D output of metric multidimensional scaling on the matrix of distances r(Φ(x),Φ(x′))(shown
as z-score standardized coordinates).

15



-40 -35 -30 -25 -20 -15 -10 -5
0

0.1

0.2

0.3

0.4

0.5
Inter
Intra

-50 -40 -30 -20 -10 0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Inter
Intra

-25 -20 -15 -10 -5 0
0

0.02

0.04

0.06

0.08

0.1

Inter
Intra

-25 -20 -15 -10 -5 0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Inter
Intra

-25 -20 -15 -10 -5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Inter
Intra

(a) W = I (b) orbit W (c) learned W (d) PCA W (e) K-SVD W

Figure 5: Pyritohedral group Th (order 24): permutation pseudometric Eq. (23)
r(Φ(x),Φ(x′)), with Φ(x) = W Tx and W a 6×24 dictionary. (a) input space, i.e. W = I, (b)
true orbit from validation set, (c) learned solution, (d) PCA on the training set, (e) k-SVD
with minimal sparsity. top: distance matrices for 3 orbits (arranged in 3 blocks of 24 orbit
elements); middle: inter-/intra-orbit distributions for 50 orbits of the validation set; bottom:
2D output of metric multidimensional scaling on the matrix of distances r(Φ(x),Φ(x′))(shown
as z-score standardized coordinates).
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orthonormal Gramian, implying a trivial permutation orbit in W . For the analysis and
evaluation we assume that the validation set has labeled orbits, i.e. we know all inter- and
intra-orbit pairs.

We present the same analysis using different types of W : a) W = Id×|G|, i.e. the I

matrix in Rd×|G| such that Φ(x) = x. This serves as a sanity check for the pseudodistance
as, for the case of permutation groups, each orbit is composed from permuted vectors. b)
W is an orbit selected from the same distribution as the training set, i.e. a ground truth
W ; this serves as a sanity check that the same symmetry will indeed induce equivariance in
Φ(x). c) W is a learned representation via minimization of Eq. (25), using a single β and
the min-loss in convergence out of M initializations. d) W are the eigenvectors of the data
covariance (PCA). e) W is the result of a sparse dictionary learning algorithm (K-SVD [54]).
The last two are included as baseline comparisons in case symmetries can be discovered
through high-variance directions and sparsity/reconstruction constraints.

Figures 3, 4 and 5 show a part of the distance matrices for the three groups corresponding
to 12, 6 and 3 orbits respectively, and the probability distributions of pairwise distances
for the validation set (50 orbits and in total 300, 600 and 1200 points resp.), estimated
for inter- and intra-orbit pairs separately. All representations, except K-SVD (d), satisfy
the requirements of Lemma 2 and thus can be used to test if the symmetries in W are the
symmetries in the data X. The block diagonal structure of the distance matrices in (a), (b),
(c) are in favor of the main claims of the paper (as stated by Eq. (23) and Theorem 2), i.e.,
only permuted matrices give small distances. In addition exact symmetry, as in trivial orbit
in (a), true orbit in (b) and learned solution in (c), induces permutations that approximate
an equivariant map. Similar, the separability of the inter- and intra- distributions in (c),
suggests that the learned W implies a quotient representation w.r.t. the unknown group of
transformations. The figures also show 2D MDS projections. Note how (a) and (b) collapse
orbits to single points (perfect permutations) and how (c) contracts and separates orbits,
visible as small y-distance of intra-orbit points and densities in vertical lines respectively.

From these examples is is obvious that, for permutation groups, a distance such as
Eq. (23) would be sufficient for separability, i.e. the representation space coincides with the
input space; however this would only be meaningful for low-dimensional, permutation groups.
A symmetry-adapted representation would be crucial for dealing with real, high-dimensional,
generic group-transformed data.

9. Discussion and future work

We studied the problem of learning data symmetries as good prior on data structure,
motivated by the need to reduce the sample complexity of a learning problem. In particular we
explored mathematical conditions that can enforce a representation for the data, learned in an
unsupervised way, to reflect the symmetries in the training set by being equivariant/invariant
to transformations. The work is particularly relevant for data in high-dimensional perceptual
spaces that have a low-dimensional intrinsic structure (e.g. transforming objects or sounds).
Further the approach can be applied to any finite group since it reduces the analysis of
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them to permutation groups.3. The preliminary work outlined in this paper focused for
simplicity on low-dimensional permutation symmetries. It also opens many additional,
natural extensions to be explored.

One intriguing direction is that of sparsity. Interestingly group codes (first studied by
Slepian in his seminal paper [45]) or dictionaries ([53]) tend to have low self-coherence. This
is related to the exact recovery condition [13] which states that exact recovery of a signal x
is guaranteed if ‖x‖0 < 0.5(1 + 1/µ(W )), where µ is the self-coherence of the weights. In
other words, reversing the inequality we have that, forcing a very sparse representation of
the signals, if possible, induces the learned dictionaries to have a low self-coherence, which
is a necessary condition for group dictionaries. A related research direction comes from the
observation that group dictionaries are also good candidates to be equiangular tight frames
[56]; in fact, interestingly, the smallest self-coherence is achieved for equiangular frames
(Welsh bound [50]; see also [21]).

Another important direction is that of how and if the proposed algorithm can be extended
to learn non-group transformations, which constitutes by far the majority of real signal
transformations. A preliminary attempt to tackle this question is given in the Appendix,
Sec. G. If we assume that the signal transformations define a smooth manifold, locally,
a Lie group is defined by the generators on the tangent space. This allows the complex
global transformation to be decomposed into a collection of local transformations that obey
a group structure which can be learned by the proposed regularization scheme. This is
also the concept of hierarchical-compositional networks (like CNNs) where complex global
transformations are decomposed into a hierarchy of simple, local ones [34].

Further important topics that have not been discussed and are left for future work
include the dependence of the method on noise in the orbits and uncertainty from missing
elements (e.g. partial orbits), selecting the number of elements in the dictionary (assumed
known here) and learning multiple orbits, not via initialization like in this work but through
multi-orbit versions of the regularizer. The use of supervision, e.g. a discriminative loss for
the learning objective, and the generalization of CNNs to convolutional groups learned from
data and network topologies is the far-fetching goal of this work.
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The Appendix is organized as follows:

• In Sec. A, we define the concept of multiplication tables of finite groups.

• In Sec. B we formulate an analytic regularization term for (a) in Sec. C and provide
the analytic gradient for use in gradient descent algorithms.

• In Sec. C we give a proof of the conditions that enforce orbit structure in the represen-
tation weights, i.e. a) the covariance matrix of the weights should commute with the
covariance of the data, and b) the Gramian matrix should be a permuted matrix.

• In Sec. E we prove a result showing how the permutation invariant metric can be used
to test the validity of the learned solutions.

• In Sec. F we provide additional possible forms of the orbit regularizer, showing their
link to maximal invariants. We also highlight a different approach than that of the
main text, namely finding the nearest Latin Square to the Gramian matrix.

• In Sec. G we discuss the conditions under which the proposed approach could be
extended to non-group transformations.

• In Sec. H we provide additional visual results on the solutions and the dependency on
parameters.

Appendix A. Multiplication tables of finite groups

Definition A.1. For any finite group G with composition ◦, a group (or Cayley) multi-
plication table is a table collecting the group composition of each element with all group
elements.

In the example of the cyclic group of order three (Example 1), each column is a permutation
of the others. In particular the set of permutations form a group, a subgroup of the symmetric
group of cardinality three. This is a general property of multiplication tables of finite groups:

Theorem A.1 (Cayley,[8]). Every finite group G is isomorphic to a subgroup of the sym-
metric group of cardinality |G| acting on G.

Appendix B. Explicit form of orbit regularizer

B.1 Proof of Theorem 1

In the following, we give a proof of Theorem 1, restated here for the case of any matrix G.
In addition, we provide the exact forms for the constant matrix C and vector t required for
computing r(W ). We start with a definition:

Definition B.1 (Permuted matrix). A matrix is permuted iff all its columns are permutations
of a single vector.
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Theorem 1 (Symmetry regularization). ]Let matrix W ∈ Rd×|G| and r : R|G|×|G| → R+ with

r(W TW ) = τT δ(Cvec(G)), G = W TW

where G is the Gramian matrix, C is a constant matrix calculating all differences of the
components of vector vec(G) ∈ R|G|2, the function δ acts elementwise (δ(a) = 1 if a = 0,
otherwise 0), and τ is a constant weight vector. If r(W TW ) = 0, then G is a permuted
matrix and viceversa.

Proof. Let G be a permuted matrix. Since column i of is a permutation of column j then:∫
dλ (hi(λ)− hj(λ))2 = 0 (26)

where

hi(λ;σ) =

|G|∑
k=1

f(Gki, λ;σ).

We use the Parzen window approximation of the delta function

f(Gki, λ;σ) = e−
(Gki−λ)

2

σ2 , σ � 1,

with δ(Gki − λ) = limσ→0 f(Gki, λ;σ) ≈ f(Gki, λ;σ). By extension, limσ→0 hi(λ;σ) counts
the frequency of Gki = λ.

We can therefore write the condition in Eq. (26) as

lim
σ→0

∫
dλ
( |G|∑
k=1

e−
(Gki−λ)

2

σ2 −
|G|∑
k=1

e−
(Gkj−λ)

2

σ2

)2
= 0. (27)

An explicit calculation for all the columns, in the limit for σ → 0, leads to the condition

|G|∑
i,j,p,q=1

(|G|δij − 1)δ(Gpi −Gqj) = 0 (28)

or its smooth approximation

|G|∑
i,j,p,q=1

(|G|δij − 1)e−
(Gpi−Gqj)

2

2σ2 = 0, σ � 1.

The condition can be rewritten in a compact way by vectorizing G:

τT gσ(Cvec(G)) = 0 (29)

where gσ(x) = exp(−x2/σ2), τ is the |G|2(|G|2− 1)/2× 1 vector of weights (|G|δij − 1), i, j =
1, . . . , |G| and C is a (|G|2− 1)|G|2/2× |G|2 sparse, constant matrix that encodes all pairwise
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differences in a right multiplied vector of size |G|2 × 1, namely:

C =



1 −1 0 . . . 0 0 0
1 0 −1 . . . 0 0 0
1 0 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 −1 0
0 0 0 . . . 1 0 −1
0 0 0 . . . 0 1 −1


Since h is a maximal invariant, the converse is also true.

Appendix C. Proof of Theorem 2 (Orbit condition)

Theorem 2 (Symmetry adapted regularization). Let X ∈ Rd×Q|G| a matrix whose columns
are all elements from the union of orbits of Q vectors in Rd w.r.t. a finite group G = {gi, i =
1, . . . , |G|}, where gi ∈ Rd×d is a matrix representation of the group action and |G| indicates
the cardinality of the group. Let W ∈ Rd×|G| a matrix whose columns are the elements
of an orbit of a vector w ∈ Rd w.r.t. a finite group G̃ with |G| = |G̃|. Then W TW is a
permuted matrix. Further if [XXT ,WW T ] = 0 then G̃ = G (up to a constant unitary matrix
conjugation).

Let X = (x1, . . . , xN ) ∈ Rd×N the matrix storing the training set SN , which follows
Assumption 1, i.e. that the columns of X are a (randomly permuted) union of Q orbits
generated by a finite group G, with cardinality |G| and N = Q|G|. In the following, we will
denote by gi ∈ G ⊂ Rd×d, i = 1, . . . , |G| a matrix representation of the group action.

The point that W TW is a permuted matrix for a finite group G follows from Cayley’s
theorem: The Gramian matrix G = W TW is a function of the multiplication table of G, as
each column (G):j = W Twj ∈ R|G| entries form the set {〈t, g∗i gjt〉} , ∀i (or row (G)i: is the

set
{〈
g∗j git, t

〉}
, ∀j. By Theorem A.1, these sets are permutations corresponding to the

subgroup of the symmetric group of |G| symbols. Then each column vector is a permutation
of some vector, and G is a permuted matrix.

We now turn to proving the second part of Theorem 2, as stated in Lemma 1. We start
with two preparatory lemmas: the first proves that if a vector is an eigenvector of XXT then
the elements of its G−orbit are eigenvectors with the same eigenvalue; the second proves that
the linear span of an orbit of an eigenvector with eigenvalue λ coincides with the eigenspace
associated to λ.

Lemma C.1. If X is a matrix whose column set is the union of orbits from G (as above),
then [XXT , gi] = 0, ∀i = 1, . . . , |G|. Moreover, if v ∈ Rd is an eigenvector of XXT with
eigenvalue λ, the set {giv, i = 1, . . . , |G|} is a set of eigenvectors with the same eigenvalue.

Proof. Since the columns of X are the union of orbits of the same group G it is easy to
prove (21), i.e.:

XXT =

|G|∑
j=1

gjTT
T gTj
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where T is the d×Q matrix of representatives for each orbit, composed by a single, arbitrary
element from each orbit in X. Multiplying the right hand side by any element of G we have

XXT gi =

|G|∑
j=1

gjTT
T gTj gi = gi

|G|∑
s=1

gsTT
T gTs = giXX

T

where we used the change of variables gs = gTi gj and the closure property of the group. Thus

[XXT , gi] = 0, ∀i = 1, . . . , |G|

This also implies that for any v ∈ Rd such that XXT v = λv

XXT giv = giXX
T v = λgiv, ∀i = 1, . . . , |G|

i.e. all elements of the orbit of v, Ov = {giv,∀i = 1, . . . , |G|}, are eigenvectors of XXT with
eigenvalue λ.

Lemma C.2. Let Eλ the eigenspace of XXT associated to the eigenvalue λ and v an
arbitrary vector in Eλ. Then the linear span of the orbit of v coincides with the eigenspace,
i.e. span(Ov) = Eλ.

Proof. Let B = {bi, i = 1, . . . ,M} an orthogonal basis in Eλ with M = dim(Eλ). Thus
any eigenvector w ∈ Eλ can be expressed as a linear combination of the basis elements, i.e.

v =
M∑
i=1

αibi,

and an element of its G-orbit Ov as:

gjv =
M∑
i=1

αigjbi, ∀j = 1, . . . , |G|.

Thus gjw is a linear combination of eigenvectors since each gjbi is an eigenvector (by
Lemma C.1). Clearly this holds also for any linear combination of the orbit elements i.e. we
have span(Ov) ⊆ Eλ. Note that for any choice of u, v ∈ Eλ:

span(Ou) = span(Ov)

since both span(Ou) and span(Ov) consist of all linear combinations of the set {gjbi} and
thus coincide. This implies: ⋃

u∈Eλ
span(Ou) = span(Ov).

However:
Eλ ⊆

⋃
u∈Eλ

span(Ou) = span(Ov) ⊆ Eλ

which implies that span(Ov) = Eλ for any choice of v ∈ Eλ.
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We can now prove Lemma 1 in the main text, which we re-state here:

Lemma 1. Let W be an orbit w.r.t. a finite group G̃ and X = (x1, . . . , xN ) ∈ Rd×N , xi ∈ SN
as in (10) with |G| = |G̃|. If [XXT ,WW T ] = 0 then G̃ = G (up to a constant unitary matrix
conjugation).

Proof. Note that XXT ,WW T are Hermitian matrices. If two Hermitian matrices commute
they have the same eigenspaces [26]. Let Eλ be one such eigenspace. From Lemma C.1 we
have Eλ = G̃Eλ and Eλ = GEλ for the two groups. Further, since Eλ is the minimal invariant
subspace by Lemma C.2, it follows that the action representation of G and G̃ restricted to Eλ
is irreducible. From the fact that irreducible representations are equivalent up to a unitary
transformation, we can deduce that G = G̃, up to a fixed unitary transformation.

Appendix D. Analytic gradients for gradient-based learning

Regularizer gradient We calculate the derivative of r(W ) = τT gσ(Cvec(W TW )) with
respect to a vectorized form of W ; using the chain rule we have:

∂r(W )

∂vec(W )
=

(
∂ 〈τ, p〉
∂p

∂p

∂q

∂q

∂s

∂s

∂vec(W )

)T
(30)

with p = gσ(q), q = Cs and s = vec(W TW ). The first three factors are easy to calculate
and we are left with

∂r(W )

∂vec(W )
= − 2

σ2

(
τTdiag

(
(Cvec(W TW ))� gσ(Cvec(W TW ))

)
C
∂ vec(W TW )

∂vec(W )

)T
(31)

where � denotes the Hadamard product and diag(·) a (|G|2(|G|2 − 1)/2)× (|G|2(|G|2 − 1)/2)
diagonal matrix. For the last partial derivative we have ([15]):

∂vec(W TW )

∂vec(W )
= (I|G|2 + T )(I|G| ⊗W T ) = R(I|G| ⊗W T ) (32)

where the matrix T is defined as Tvec(v) = vec(vT ), I|G|2 , I|G| are the identity matrices of
dimensions |G|2 × |G|2, |G| × |G|, and R = I|G|2 + T . It can be proven that T can be written
explicitly as: {

Tij = 1 if j = 1 + |G|(i− 1)− (|G|2 − 1)floor
(
i−1
|G|
)

Tij = 0 otherwise.
(33)

Putting together all the pieces we finally have:

∂r(W )

∂vec(W )
= − 2

σ2
(I|G| ⊗W )P Tdiag

(
(Cvec(W TW ))� gσ(Cvec(W TW ))

)T
τ

= − 2

σ2
(I|G| ⊗W )P T (Cvec(W TW ))� gσ(Cvec(W TW ))� τ (34)

with P = CR a constant matrix, which can be pre-calculated given the (fixed) group
cardinality.
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Commutator gradient: It is easy to derive the analytic gradient of the commuta-
tor term, i.e. the norm ‖c(X,W )‖2F = trace(C(X,W )TC(X,W )) in (22), (25), where
C(X,W ) = [XXT ,WW T ] is the commutator of the data and weight covariance matrices.
The gradient with respect to W has the analytic form

∂ ‖C(X,W )‖2F
∂W

=
∂

∂W
(−2Tr(XXTWW TXXTWW T ) + 2Tr(XXTWW TWW TXXT ))

= −8XXTWW TXXT + 4XXTXXTWW TW + 4WW TXXTXXTW

= −4[XXT ,WW T ]XXTW + 4XXT [XXT ,WW T ]W

= −4[[XXT ,WW T ], XXT ]W = −4[C(X,W ), XXT ]W.

Appendix E. Pseudometric and solution testing

Lemma 2 (Pseudometric). If W is a solution of Eq. ( 22), i.e. it satisfies Theorem 2
conditions, then:

r(W T (x, x′)) = 0 ⇐⇒ x = gx′ ∀ x, x′ ∈ Rd, g ∈ G.

Proof. For the direct implication note that the Gramian matrix W TW identifies W up to an
arbitrary (but fixed) unitary transformation U ; together with the regularization constrain
r(W TW ) = 0 we thus have that W can be written as W = UWo where Wo is an orbit
matrix such that W T

o Wo = W TW . Now if r((Φ(x),Φ(x′))) = 0 then

W T
o U

Tx = PW T
o U

Tx′ = W T
o g

TUTx′

since the action of g on W is a permutation of its columns i.e. gW = WPg. Thus calling
x̃ = UTx and x̃′ = UTx′ we have:

W T
o x̃ = W T

o gx̃
′.

The last expression holds for any x = Ux̃, x′ = Ux̃′ such that r(W T (x, x′)) = 0. This implies
x̃ = gx̃′ or equivalently x = gx′ since the rotation U of the signal space maps the space into
itself X̃ = UTX = X (and is irrelevant from the learning point of view).

For the inverse implication we proceed by contradiction. Suppose x = gx′ but r((Φ(x),Φ(x′))) 6=
0. Thus for any permutation P

W Tx 6= PW Tx′.

Note now that the learned matrix W is an orbit of vector t̃ w.r.t. the conjugate representation
of G induced by U , i.e. W = W̃o. In fact we have

(W ):,i = (UWo):,i = Ugit = UgiU
TUt = g̃it̃

and thus
W̃ T
o x 6= PW̃ T

o x
′ = W̃ T

o g̃x
′ ∀ g ∈ G̃.

Since X = X̃ we also have that (it simply corresponds to a fixed change of the orbit seeds)

W̃ T
o x̃ 6= W̃ T

o g̃x̃
′ ∀ g̃ ∈ G̃.
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which implies x̃ 6= g̃x̃′ ∀ g̃ ∈ G̃ i.e.

Ux 6= UgUTUx′ ⇒ x 6= gx′ ∀ g ∈ G

a contradiction.

Appendix F. Alternative expressions for the regularizer

In Sec. B.1 we calculated the expression for Eq. (18) when the maximal permutation invariant
is the distribution function, i.e. fλ = δ(· · · − λ). In the following we provide the expressions
for:

1. fλ(·) = (·)H(· − λ) or H(· − λ) , H is the Heaviside step function: the corresponding
maximal invariant corresponds to the calculation of the ordered statistics (see theorem
below) or, in the second case, to the cumulative distribution function of the gramian
rows (columns).

2. fλ(·) = (·)λ, λ ∈ N: the corresponding maximal invariant corresponds to the calculation
of the moment function of the gramian rows (columns).

Another maximal invariant, fλ(·) = e·λ, was explored in [40] and used for shape recognition.
Note that any bijective function of a maximal invariant would also work, being itself a
maximal invariant.

F.1 Maximal invariant: cumulative distribution function

We start with fλ(·) = (·)H(· − λ), using:

Theorem F.1 (Corollary of Hardy and Littlewood (1929)). Two vectors u, v are equal up
to a permutation iff

|G|∑
i=1

|ui − a|+ =

|G|∑
i=1

|vi − a|+, ∀ a ∈ R

where |x− a|+ = xH(x− a).

Thus the condition that all matrix columns (or rows) are permutations of a single vector
reads as:

|G|∑
k=1

|Gik − a|+ =

|G|∑
k=1

|Gjk − a|+, ∀ a ∈ R, fixed i,∀ j 6= i (35)

where G is the Gramian matrix associated to the frame.

Theorem F.2. Let G a finite group, W a set of |G| vectors in Rd and let G = W TW the
associated Gramian. If −1 ≤ Gij ≤ 1 i.e. if W is a set of unit-norm vectors and W is an
orbit of a single vector w.r.t. G then

|G|∑
ijkl=1

(|G|δi,j − 1)GikGjl(1 + min(Gik, Gjl)) = 0. (36)
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Proof. Starting from eq. (35) we can equivalently restate the condition as∫ 1

−1
da

|G|∑
ij=1

( |G|∑
k=1

|Gik − a|+ −
|G|∑
k=1

|Gjk − a|+
)2

= 0 (37)

We can write ∫ 1

−1
da

|G|∑
ij=1

( |G|∑
k=1

|Gik − a|+ −
|G|∑
k=1

|Gjk − a|+
)2

=

=

∫ 1

−1
da

|G|∑
ij=1

( |G|∑
k=1

GikH(Gik − a)
)2

+

|G|∑
ij=1

( |G|∑
k=1

GjkH(Gjk − a)
)2
−

|G|∑
ijkl=1,i 6=j

GikGjlH(Gik − a)H(Gjl − a)

The first and second term in the second line can both be rewritten as

|G|∑
ijkl=1

GikGil

∫ 1

−1
da H(Gik − a)H(Gil − a) =

|G|∑
ijkl=1

GikGil(1 + min(Gik, Gil))

The third term similarly

|G|∑
ijkl=1,j 6=i

∫ 1

−1
da GikGjlH(Gik − a)H(Gjl − a) =

|G|∑
ijkl=1,j 6=i

GikGjl(1 + min(Gik, Gjl)) (38)

The condition in Eq.(38) can be therefore compactly written as:

|G|∑
ijkl=1

(|G|δi,j − 1)GikGjl(1 + min(Gik, Gjl)) = 0. (39)

If we choose fλ(·) = H(· − λ) (cumulative function) the result of the calculations above will
be simply:

|G|∑
ijkl=1

(|G|δi,j − 1)(1 + min(Gik, Gjl)) = 0. (40)

Using min(x, y) = (1/2)(x+ y − |x− y|) we have

|G|∑
ijkl=1

|G|δi,j − 1

2
(2 +Gik +Gjl − |Gik −Gjl|) =

|G|∑
ijkl=1

1− |G|δi,j
2

|Gik −Gjl| = 0. (41)

or, in a compact form as
r(W ) = τT |Cvec(W TW )|.
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F.2 Maximal invariant: moments

Another way to calculate a maximal invariant w.r.t. the permutation group is to consider all
`p norms of the row vectors and impose their equality. For example if we have two vectors,
v, u (two rows of the gramian) the condition gives:

u1 + · · ·+ ud = v1 + · · ·+ vd

u21 + · · ·+ u2d = v21 + · · ·+ v2d
. . .

uk1 + · · ·+ ukd = vk1 + · · ·+ vkd

The set of equalities above implies that the polynomials p(t) = (t− u1)(t− u2) . . . (t− ud)
and r(t) = (t − v1)(t − v2) . . . (t − vd) are identical (see [26]). In particular, p(t) and q(t)
share the same system of roots (including their multiplicities) thus we conclude that the
vectors u and v are equal, up to a permutation. Note that this strategy correspond to the
choice fλ(·) = (·)λ, λ ∈ R+.
Therefore an alternative condition of that of eq (38) can be written as

∑
pij

( |G|∑
k=1

Gpik −
|G|∑
k=1

Gpjk

)2
= 0 (42)

Following the same steps of the previous section we have

|G|∑
pij=1

( |G|∑
k=1

Gpik −
|G|∑
k=1

Gpjk

)2
=

|G|∑
pijkl=1

(|G|δij − 1)GpikG
p
lj (43)

If we consider normalized dictionaries the sum above is not convergent since all terms of the
form GiiGjj = 1 will lead to infinities. The idea is, from an optimization point of view, to
fix a priory the gramian elements that lead to infinities (that we impose to be equal to one)
and optimize over the rest. In this case summing over the p powers gives:

|G|∑
ijkl=1,i 6=k∧j 6=l

|G|δi,j − 1

1−GikGjl
(44)

an expression that seems easier to minimize then that in eq. (36). It can be written in a
compact for as

r(W TW ) = jT (M � (J − vec(G)vec(G)T )−1)j (45)

where J is the all ones matrix, j is the all ones vector and M is a constant matrix encoding
the weights 1−GikGlj .

F.3 Common eigenspace interpretation of the condition

In the following we demonstrate that the condition in eq. (35) is equivalent to [|G|a+, J ] =
0, ∀ a ∈ R where J is the all ones matrix. In particular we prove
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Theorem F.3. Let W a set of vectors in Rd. If W is an orbit of some vector t ∈ Rd w.r.t.
a finite group G then

[|G|a+, J ] = 0 ∀ a ∈ R or equivalently

∫
da
∥∥[|G|a+, J ]

∥∥2
F

= 0,

where [·, ·] indicates the commutator and |G|a+ = |G− a|+. The condition above can be also
stated as |G|a+j = λaj, ∀ a ∈ R where j is the all ones vector and λa ∈ R.

Proof. Note that
|G|∑
k=1

|Gik − a|+ = 1T |G|a+ei

where ei is the ith canonical vector. We can rewrite the condition of eq. (35) as:∫
da

|G|∑
ij=1

(jT |G|a+(ei − ej))2 =

∫
da

|G|∑
ij=1

jT |G|a+(ei − ej)(ei − ej)T |G|a+j.

Being
|G|∑
ij=1

(ei − ej)(ei − ej)T = 2|G|I− 2J

(where I is the identity matrix and |G| the group cardinality) we can rewrite∫
da jT |G|a+(2|G|I− 2J)|G|+a j =

∫
da tr(|G|a+(2|G|I− 2J)|G|a+J). (46)

Using the identity JJ = J2 = |G|J we can rewrite eq. (46) as:

tr(|G|a+(2|G|I− 2J)|G|a+J) = 2tr((|G|a+)2J2)− 2tr((|G|a+J)2).

Note now that for any two matrices A,B:

2tr[(AB)2]− 2tr(A2B2) = tr(ABAB +BABA−ABBA−BAAB) = tr[(AB −BA)2].

Thus we can write

2tr((|G|a+)2J2)− 2tr((|G|a+J)2) = −tr((|G|a+J − J |G|a+)2).

Finally note that being |G|a+J − J |G|a+ = −(|G|a+J − J |G|a+)T , we have

tr(|G|a+(2|G|I− 2J)|G|a+J) = tr((|G|a+J − J |G|a+)(|G|a+J − J |G|a+)T ) =
∥∥[|G|a+, J ]

∥∥2
F
.

The condition for the Gramian rows to be the permutations of a single vector is therefore:∫
da
∥∥[|G|a+, J ]

∥∥2
F

= 0. (47)

Remark F.1. A similar condition can be found if we use the Hadamard powers nonlinearity
instead of the threshold function:

∞∑
p=1

‖[Gp, J ]‖2F = 0. (48)
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F.4 Nearest Latin square

In this section we propose an alternative approach to that of the paper that make use of
Latin Squares. We start with the definition of a Latin Square.

Definition F.1 (Latin square). Latin square of dimension k is an k × k array filled with k
different symbols, each occurring exactly once in each row and exactly once in each column.

In particular we consider Latin squares which are real matrices. It is well known that Latin
Squares are multiplication tables of finite quasigroups and viceversa. Quasigroups, loosely
speaking, are groups without the associativity property. However, in the paper, we only
focus on groups and therefore we are interested on the subset of Latin Squares that are
multiplication tables of finite groups. Those are sometimes called Cayley tables.
In here we formulate a minimization problem to find the nearest Latin square to a given
matrix, which, in our setting, is a Gramian G = W TW of an unknown dictionary W .
Any Latin square L composed by |G| symbols s1, . . . , s|G| can be written as

L = s1P1 + · · ·+ s|G|P|G| (49)

with each Pk a permutation matrix, i.e., {Pk, k = 1, . . . , |G|} ∈ P is a set of permutation
matrices. The fact that each symbol is occurring exactly once in each row and exactly once
in each column is equivalent to imposing:

P1 + · · ·+ P|G| = J (50)

where J is the |G| × |G| all-ones matrix. For example the simplest Latin square composed
by two symbols {1, 2} can be decomposed as:[

1 2
2 1

]
= 1

[
1 0
0 1

]
+ 2

[
0 1
1 0

]
In our setting the list of symbols is given by, e.g., the first column (or any column for that
matter) of the Gramian, Gk,1, k = 1, . . . , |G|. Therefore finding the nearest Latin square to
a given G can be equivalently posed as the solution to the minimization problem:

arg min
{Pk,k=1,...,|G|}∈P

∥∥∥∥∥∥
|G|∑
k=1

Gk,1Pi −G

∥∥∥∥∥∥
2

F

(51)

subject to

|G|∑
k=1

Pk = J

where ‖·‖F is the Frobenius norm and P ∈ R|G|×|G| is the set of |G| × |G| permutation
matrices.
The combinatorial nature of minimizing over permutation matrices makes the problem (51)
NP-complete. We can relax it by working on the set of convex combinations of permutations
(called permutahedron or Birkhoff polytope). This convex set, whose vertices are the |G|×|G|
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permutation matrices, coincides (Birkhoff - von Neumann Theorem) with the set of doubly
stochastic matrices defined as:

Mk , {M ∈ R|G|×|G| |Mj = MT j = j, M ≥ 0} (52)

where j is a vector of all ones. A doubly stochastic matrix is a square matrix of nonnegative
real numbers, each of whose rows and columns sums to one.
In general the solution of Eq. (51) within the set of matrices defined in Eq. (52) will be in
Mk. However notice that a doubly stochastic matrix with maximal sparsity, i.e. a single
unit entry in each row and each column is a permutation. Thus, in order to find a strategy
to force the solution to be in P as prescribed by Eq. (49), we can add a penalty on the
sparsity of the individual permutation matrices to obtain:

arg min
{Mk,k=1,...,|G|}∈Mk

∥∥∥∥∥∥
|G|∑
k=1

Gk,1Mk −G

∥∥∥∥∥∥
2

F

+ λ

|G|∑
k=1

‖Mk‖0 (53)

subject to

|G|∑
k=1

Mk = J, Mk1 = MT
k 1 = 1, M ≥ 0

and use to the `0 pseudo-norm through the `1 norm. By letting λ grow we can drive solutions
with maximal sparsity for the corresponding matrices Mk.

Remark F.2. Alternatively we can exploit the fact that P = Mk ∩ O (where O is the
set of orthogonal matrices) and that a doubly stochastic matrix of Frobenius norm

√
|G| is

necessarily orthogonal. Thus we can add the penalty term λ
∑|G|

k=1(‖Mk‖F −
√
|G|)2 and

force the solution to be a set of permutations.

Empirically adding both penalty terms, orthogonality and sparsity, improves the convergence.

Appendix G. Approximate invariance for non-group transformations

In this section we briefly discuss extensions of this work for getting an approximately
invariant signature for transformations that do not have a group structure. In fact, most
realistic signal transformations will not have a group structure. However assuming that the
transformation defines a smooth manifold we have (by the theory of Lie manifolds) that
locally a Lie group is defined by the generators on the tangent space. We illustrate this in a
simple example.

Let x ∈ X ⊆ Rd and s : Rd × RP → Rd a C∞ transformation depending on Θ =
(θ1, . . . , θP ) parameters. For any fixed x ∈ X the set M = (s(x,Θ), Θ ∈ RP ) describe a
differentiable manifold. If we expand the transformation around e.g. ~0 we have:

s(x,Θ) = s(x,~0) +
P∑
i=1

∂s(x,Θ)

∂θi
θi + o(‖Θ‖2) = x+

P∑
i=1

θiLθi(x) + o(‖Θ‖2) (54)

where Lθi are the infinitesimal generators of the transformation in the ith direction.
Therefore locally (when the term o(‖Θ‖2) can be neglected) the associated group transfor-
mation can be expressed by exponentiation as:

g(Θ) = exp(θ1Lθ1 + θ2Lθ2 + · · ·+ θPLθP ).
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In other words instead of a global group structure of the transformation we will have a
collection of local transformations that obey a group structure. Thus in this light the local
learned weights will be orbits w.r.t. the local group approximating the non-group global
transformation.

Appendix H. Additional experimental results
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Figure 6: Cyclic group C6 (order 6): (a) cosine distance in the input space X and (b)
permutation test r(Φ(xi),Φ(xj)), where Φ(xi) = W Txi and W a 6× 6 dictionary obtained
from (b) uniformly at random sampled vectors in the unit ball. Data from Fig. 3.

H.1 Example solutions and Gramians

Minimization of Eq. (25) was initialized M times to produce M orbit solutions for each value
of β, corresponding possibly to different local minima of the loss function. A possible ordering
of the solutions can be achieved by pooling, in our case using L2 on the representation
coefficients and checking the variance of the inter-orbit distribution distance on an known
orbit set. Small variance denotes a better approximation of the underlying symmetry
in the data as the resulting representation gives inter-orbit distances that are very close
(approximating invariance due to the group averaging operation). Figures 7, 9 and 11 show
20, 10, and 6 generated solutions for C6, D6 and Th respectively, when using M = 50 and 8
values for β as above. Solutions are ordered based on their intra-orbit variance, using the
validation set intra-orbit membership, assumed known just for evaluation purposes. For
the cyclic group, the symmetries in many of the solutions might be easy to spot. Their
corresponding Gramian matrices (Figs. 8, 10 and 12), can be seen by close inspection to
have a permutation structure, again in some cases more obvious than in others.
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Figure 7: Cyclic group (order 6): Learned orbits (20 shown), arranged with increasing
variance of the intra-orbit signature distance. Each matrix W , corresponding to one value of β
and one initialization is a 6×6 array of column-wise arranged dictionary elements. The entries
(·, ·) denote β and solution index pairs, with log10(β) = {0, . . . ,−7} and s = {1, . . . , 50};
s = 1 corresponds to the solution with minimum objective function. Learning with J = 100
ReLU regularizers and r(W TW ).

Figure 8: Cyclic group (order 6): Gramian matrices G = W TW corresponding to the
ordered solutions.

Figure 9: Dihedral group (order 12): Solution orbits (10 shown), arranged with increasing
variance of the intra-orbit signature distance. Each matrix W , corresponding to one solution
and one value of β is a 6×12 array of column-wise arranged dictionary elements. The entries
(·, ·) denote β and solution index pairs, with log10(β) = {0, . . . ,−7} and s = {1, . . . , 50};
s = 1 corresponds to the solution with minimum objective function. Learning with J = 100
ReLU regularizers and r(W TW ).

Figure 10: Dihedral group (order 12): Gramian matrices G = W TW (size 12× 12) of
the solutions.
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Figure 11: Pyritohedral group (order 24): Solution orbits (6 shown), arranged with
increasing variance of the intra-orbit signature distance. Each W , corresponding to one
solution/initialization and one value of β is a 6×24 array of column-wise arranged dictionary
elements. The entries (·, ·) denote β and solution index pairs, with log10(β) = {0, . . . ,−7}
and s = {1, . . . , 50}; s = 1 corresponds to the solution with minimum objective function.
Learning with J = 100 ReLU regularizers and r(W TW ).

Figure 12: Pyritohedral group (order 24): Gramian matrices G = W TW (size 24× 24)
of the solutions.

H.2 Dependency on parameters

Figures 13, 14, and 13 show the dependency of the minimization of Eq. (25) (minimum
loss function out of 50 initializations) on the values of β, that controls the amount of
regularization, and the hyper-parameter J controlling the number of nonlinearities. We tried
log10 β = {0, . . . ,−7} and J = {100, 30}. Top row shows J = 100, bottom row J = 300
with smaller values for β left-to-right. Each matrix is the same part of the distance matrices
used in Figures 3, 4 and 5 for C6, D6 and Th corresponding to 12, 6 and 3 orbits. A block
diagonal structure of the matrices is an indication for equivariant maps (as expressed via
small intra-orbit permutation distances). Even though there is no clear pattern emerging,
one can note that the larger (no Abelian) groups improve by larger J and smaller β.
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(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5 (g) 6 (h) 7

Figure 13: Cyclic group C6 (order 6): Dependency of the solution of Eq. (22) on β,
i.e. the regularization constant and J , i.e. number of ReLU nonlinearities. Columns
show log10(1/β) in 0, . . . , 7 and rows correspond to J = 100 (top) and J = 300 (bottom)
nonlinearities, excluding r(W ). Matrices are showing the permutation test r value for 12
orbits (arranged in 12 blocks of 6 orbit elements).

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5 (g) 6 (h) 7

Figure 14: Dihedral group D6 (order 12): Dependency of the solution of Eq. (22) on
β, i.e. the regularization constant and J , i.e. number of ReLU nonlinearities. Matrices are
showing the permutation test r value for 6 orbits (arranged in 6 blocks of 12 orbit elements).

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5 (g) 6 (h) 7

Figure 15: Pyritohedral group Th (order 24): Dependency of the solution of Eq. (22) on
β, i.e. the regularization constant and J , i.e. number of ReLU nonlinearities. Matrices are
showing the permutation test r value for 3 orbits (arranged in 3 blocks of 24 orbit elements).
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