
February 1984 LIDS-P-1364

IMPLEMENTATION OF AN OPTIMAL MULTICOMMODITY NETWORK FLOW

ALGORITHM BASED ON GRADIENT PROJECTION AND A PATH FLOW FORMULATIONt

by

Dimitri P. Bertsekas, Bob Gendron and Wei K. Tsai*

ABSTRACT

The implementation of a multicommodity flow algorithm into a FORTRAN

code is discussed. The algorithm is based on a gradient projection method

[1] with diagonal scaling based on Hessian or Jacobian information. The

flows carried by the active paths of each origin-destination (OD) pair

are iterated upon one OD pair at a time. Active paths are generated using

a shortest path algorithm--one path per OD pair, per iteration. The data

structures and memory requirements of the algorithm are discussed and are

compared with those of other formulations based on link flows associated

with each origin, and aggregate link flows.

tThis research was supported by the National Science Foundation under

grant NSF-ECS-8217668 and the Defense Advanced Research Projects Agency

under grant ONR/N00014-75-C-1183.

*D. P. Bertsekas and W. K. Tsai are with the Laboratory for Information.and Decision

Systems, Massachusetts Institute of Technology, Cambridge, MA 02139. B.

Gendron is with Alphatech, Inc., Burlington, MA.

1. Optimal Multicommodity Flow Problem Formulation

We have a directed network with set of nodes N and set of links 'L.

Let W be a collection of ordered node pairs referred to as origin-destination

(OD) pairs. For each OD pair wsW we are given a positive number rw represent-

ing input flow into the network from origin to destination. Let Pw be a

given set of directed paths joining the origin node and destination node

of OD pair w. (Pw could be the set of all simple directed paths joining

origin and destination, or it could be a restricted set of paths determined

a priori on the basis of some unspecified considerations). Note that we

do not exclude the possibility that two distinct OD pairs have the same

origin and destination and possibly a different set of paths, but are as-

sociated with different classes or types of traffic.

Let x be the flow carried by a generic path p. The optimization
P

variables of the problem are xp, pePw, w£W and must satisfy the constraints

X: x =r , wMW, (1)

>pPw

xp > 0 t h PePw, wEW. (2)

Let x be the vector of all path flows

x = {x IPEP , w6WI (3)

For each link (i,j) and OD pair w we are given a continuously dif-

ferentiable function Tij (x,w), which is to be interpreted as the length

of link (i,j) when the path flow vector is x. In data communication rout-

ing and traffic assignment problems Tij(x,w) usually has the interpretation of

-2-

marginal delay and travel time respectively (see [1]-[19]). We assume

that for all feasible x and all wcW

Tij(x,w) > 0 , ((4)

The length of a path pcPw when the path flow vector is x is defined by

L (x,w) = T. (x,w) (5)
(i,j)Ep 1

i.e. it is the sum of lengths of its links.

The problem we are considering is the following:

Find a path flow vector x* satisfying the constraints (1), (2) and such

that for every wsW and pcP

x* > 0 - Lp(x*,w) < Lp,(x*,w), V p'sP . (6)
pp -p w

In other words we are looking for a path flow pattern x* whereby the

only paths that carry positive flow are shortest paths with respect to the

link lengths Tij(x*,w).

The problem described above includes, among others, problems of

optimal routing in data networks [1]-[8] and (possibly asymmetric) traffic

assignment problems in transportation networks [9]-[19]. We refer to the

references just cited for extensive discussions. The survey paper [1]

describes in detail the data communication context. A typical formulation

there is to find a feasible path flow vector x that minimizes

.ij (Fij) (7)
(i,j) 1

-3-

where D.. is a monotonically increasing, twice differentiable function of

the total flow Fij of the link (i,j) given by

F.. = I I x 6(p,i,j) (8)
WEW peP P

where

(1 if link (i,j) belong to path p

6(p,i,j) = (9)

0 otherwise.

It can be shown (see e.g. [1]) that if we make the identification

T.. = D'. : The first derivative of D.. (10)
13 1] 1J

the routing optimization problem falls within the framework of the general

multicommodity flow problem described earlier.

-4-

2. A Projection Method for Solving the Multicommodity Flow Problem

The MULTIFLO and MULTIFLO1 codes given in Appendices I and II of this

report implement an algorithm that solves the problem of the previous

section for the case where for all OD pairs wcW

Pw = Set of all simple paths joining the origin and destination of w.

The set of OD pairs is divided into C groups called commodities. All OD

pairs of a commodity have the same origin node. Furthermore the data structures

of the codes can handle only the case where the lengths Tij (x,w) depend on

w through the corresponding commodity c. That is

T.ij(xw) = T. (x,w), V (ij)cL, and OD pairs w, w of the same

commodity c.

It is also assumed that for all feasible F

aT..
a-J > 0 V (i,j) belonging to the path p

P

MULTIFLO and MULTIFLO1 operate as follows:

At the beginning of the kth iteration we have for the generic OD

pair wsW a set of active paths Pk consisting of at most (k-l) paths.

(These paths were generated in earlier iterations and it is implicitly

assumed that all other paths carry zero flow). The following calculation

is executed sequentially for each commodity--first for commodity 1, then

for commodity 2, and so on up to the last commodity C:

Step 1: A shortest path that joins the origin node for the commodity

with all other nodes is calculated. The length for each link (i,j) used

for this calculation is T ij(x,w) where x is the current path flow vector.

These shortest paths are added to the corresponding list of active paths

of each OD pair of the commodity if they are not already there, so now

the list of active paths for each OD pair of the commodity contains at

most k paths.

Step 2: Each OD pair w of the commodity is taken up sequentially. For each

active path p of w the length Lp [cf. (5)] is calculated together with an

additional number ap called the stepsize (more on the choice of this

later). Both L and ap are calculated on the basis of the current total

link flow vector. Let p be the shortest path calculated in Step 1 for

the OD pair. The path flows of all paths p f p are updated according to

max f0, x {0 x (L -L-)} if L > L-
P p P P P

xp + i (11)

| x otherwise.

The path flow of the shortest path p is then adjusted so that the sum

of flows of all active paths equals rw as required by the constraint (1),

i.e.

xp w I p (12)
active pop

In other words an amount x or a (Lp-L-) is shifted from each nonshortest
P Pp

path to the shortest path p--whichever is smaller. The total link flows F..
iJ

are adjusted to reflect the changes in x and x-.
p p

The rationale for iteration (11) is explained in [1], [6], [8], [9].

-6-

It is based on a gradient projection method [9], [21]. Note that it is

possible that L < L- for some p # p even though p was calculated earlier
P P

as a shortest path. The reason is that by the time L and L- are computed
p P

the total link flow vector may have changed since the time the shortest

path has been calculated due to iterations on the path flows of other OD

pairs of the same commodity.

Regarding the choice of the stepsize ap, the MULTIFLO and MULTIFLOl

codes use the following formula for all p $ p

S 1 (13)
p = p

where

S = ij (14)
P ak(i,j) Lp p

and L is the set of links

Lp = {(i,j)l (i,j) belongs to either p or p,
p

but not to both p and p}.

The rationale for this is as follows:

If we interpret the algorithm as one that tries to satisfy the equation

(16)
L L- = 0, V p with x > 0,
P P

a natural choice for a is
p

Ax
a = P (17)
P A(Lp-L--)

where A(Lp-L-) is the variation of (Lp-L--) resulting from a small variation
p p p p

-7-

AXp in the path flow xp (and an attendant variation -Axp in the path flow

x-). This corresponds to an approximate form of Newton's method whereby

only the diagonal elements of the Jacobian matrix (corresponding to the

current OD pair) are taken into account while the off-diagonal terms are

set to zero (see also [1] for further discussion). For Axp - 0 it is

easily seen that (17) yields

3T ij DT ij(i~j)Ep ax ax~- -D- ~ . (18)
= (ij)cp: (apS ~ a~p (i,j)P

In most cases of interest we have

aT.. DT.
J ij13 if (i,j)cp and (i,j)cp

ax
p ax

aT..
D J °0 if (i,j)tp
p

......... _ if (i,j)cp

axp

so (18) becomes approximately [c.f. (18), (14)]

DT..
"-1 X ij

(i,j)EL ax p

thereby justifying the use of the stepsize (13), (14).

If one wishes to employ the formula (18) for the stepsize it is

necessary to modify the codes. These modifications should not be too

-8-

difficult for an experienced user. Another possibility is to use a smaller

value of stepsize ap than the one given by (13)--for example p = pSp

pc(O,1) is a fixed relaxation parameter. (A smaller stepsize enhances the

convergence properties of the algorithm but may deteriorate its rate of

convergence). This can be accomplished without any changes in the code

by simply introducing the relaxation parameter p in the subroutine that
UT..

calculates 1 [cf. (14)].
axp

In the MULTIFLO code a shortest path tree is generated and stored

at each iteration for each commodity. As a result the memory storage for

shortest paths is proportional to the number of iterations so for large

problems one cannot execute a large number of iterations without incurring

a heavy penalty for disk I/O. MULTIFLO will usually find in five to ten

iterations what is for most practical problems an adequate approximation

to an optimal solution. This is particularly true of lightly loaded net-

works (e.g. with utilization of all links less than 60% at the optimum).

For heavily loaded networks the number of required iterations usually

tends to be larger (say 10-30). It should be a rare occasion when a user

will require more than thirty iterations for his practical problem.

MULTIFLO1 differs from MULTIFLO only in the method used for storing

the active paths. MULTIFLO1 stores explicitly all active paths in a

single array rather than storing them implicitly through the generated

shortest path trees. As a result the memory storage of MULTIFL01 depends

on the number of active paths generated and is largely independent of

the number of iterations executed. For certain problems including

situations where a large number of iterations is desired MULTIFL01 may

hold astorage advantage over MULTIFLO. Both codes generate identical

numerical results although MULTIFLO1 appears to be somewhat faster on

sample test problems.

-9-

3. Data Structures for Representing the Problem

The data structures of MULTIFLO and MULTIFLO1 are described in the

code documentation. The problem input structure will be illustrated here

by means of the 5 node-6 link network shown in Figure 1:

C}2.

Node Length Arrays (FRSTOU, LASTOU):

These arrays specify the network topology.

FRSTOU(NODE): The first link out of NODE

LASTOU(NODE): The last link out of NODE

-10-

NODE FRSTOU LASTOU

1 1 2

2 4 5

3 3 3

4 6 6

5 0 O

Note that all arcs with the same head node must be grouped together in

the arc list. A node with no outgoing links is recognized via FRSTOU 0 O

Arc Length Arrays (STARTNODE, ENDNODE)

These arrays also specify the network topology:

STARTNODE (ARC): The head node of ARC

ENDNODE (ARC): The tail node of ARC

ARC STARTNODE ENDNODE

1 1 3

2 1 4

3 3 5

4 2 3

5 2 4

6 4 5

Commodity Length Arrays (ORGID, STARTOD)

ORGID (COMMODITY): The origin node of COMMODITY

STARTOD (COMMODITY): A pointer to the first OD pair of COMMODITY on

the OD pair list

-11-

For the example of Figure 1 we will assume three commodities

COMMODITY ORGID STARTOD

1 2 1

2 1 3

3 1 4

Note that it is required that OD pairs are listed sequentially by com-

modity, i.e. the OD pairs of commodity 1 are listed first, followed by

the OD pairs of commodity 2, etc. Therefore the STARTOD array together

with the total number of OD pairs specify all OD pairs associated with

each commodity.

OD Pair Length Arrays (DEST, INPUTFLOW)

DEST(OD): The destination node of OD

INPUT FLOW(OD): The input traffic of OD

OD DEST INPUT_FLOW

1 3 problem dependent

2 5

3 3

4 4

5 5 II

From the arrays ORGID, STARTOD and DEST together with the total number

of OD pairs the set of OD pairs corresponding to each commodity is com-

pletely specified. For our example these are:

-12-

COMMODITY OD PAIRS

1 (2,3), (2,5)

2 (1,3)

Additin3 a(1,4), (1,5)

Additional input information is required to calculate the link
aT..

lengths T..ij and their first derivatives 13 in the subroutine DERIVS
i~~~J a~~p

and DERIV1. This is of course problem dependent. The listing of Appendix I

gives an example which is typical of routing problems in data networks [cf.

equations (7)-(10)].

-13-

4. Memory Requirements - Comparisons with Other Methods

The memory storage requirements of both MULTIFLO and MULTIFLO1 are

substantial, but this is true for all methods that provide as output

not only the optimal total link flows but also detailed information

about the optimal routing from origins to -destinations (i.e. optimal

path flows).

Assuming that 1 byte is allocated for a logical variable, 2 bytes

are allocated for storing a node or link identification number and an

iteration number, 4 bytes are allocated for storing a commodity, OD pair

or path identification number, and 4 bytes are allocated for storing a

real number (e.g. a path or link flow) the total array storage in bytes

of MULTIFLO during execution is

6n N + 9n L + 6nC + 6nOD + 10np + 2nI nN nC (19)

where:

nN: Number of nodes

nL: Number of links

nC: Number of commodities

nOD: Number of OD pairs

np: Number of active paths generated

nI: Number of iterations.

Additional storage is required for information necessary to calculate

link lengths and their derivatives but this is typically of order O(nL)

and is not significant.

The dominant array as far as storage of MULTIFLO is concerned is the

-14-

triple indexed PRED array which stores the shortest path trees generated

for each commodity at each iteration. This array accounts for the last

term 2nInNnC in (19). The term lOnp is also substantial since the

number of active paths np can be as large as nInOD. However, because

the algorithm stores a path only once at the iteration it is first gen-

erated and does not duplicate it if it is generated again later, the

actual number np is typically much smaller than nInOD. This was con-

firmed by extensive computational experimentation, that showed that except

for very heavily loaded networks the actual number of active paths np was

typically no more than 2nOD(!) and often considerably less. We conclude

therefore that the dominant bottleneck for storage is the shortest path

description array PRED requiring 2nInNnC bytes.

In the MULTIFLO1 code the array PRED is not used. In its place the

array PDESCR is used which requires storage of 2npnN at most. This

calculation assumes conservatively that a path has nN links. However

in practice the actual storage for PDESCR is several times less than

2npnN. If we adopt the rough estimate np n 2nOD then we conclude that

the storage requirements of MULTIFLO and MULTIFLO1 are roughly comparable

nOD
if the number of iterations nI is comparable to something between

nOD n0DnC
and C with MULTIFLO1 becoming definitely preferable if n nc

MULTIFLO1 is also preferable for problems that are solved repetitively with

minor variations in their data since then the knowledge of the path

description array PDESCR can be fruitfully exploited. This is not pos-

sible with MULTIFLO.

In large problems where only the total link flows are of interest

(e.g. traffic assignment problems) a different algorithm [e.g. the flow

Deviation (or the Frank-Wolfe) method [3], [8] or the Cantor-Gerla (or

simplicial approximation) method [4], [15], may be preferable over

MULTIFLO or MULTIFLO1, since then storage of order O(nL) or perhaps

O(nInL) is required. However when detailed routing information is of

interest the memory storage requirements of MULTIFLO are competitive

with those of other methods based on shortest paths including the Flow

Deviation and Cantor-Gerla methods. The reason is that detailed rout-

ing information can be provided by these methods only if the shortest

paths generated at each iteration are stored explicitly in an array

such as PRED, and as mentioned earlier this is the main memory storage

bottleneck.

There are algorithms that can solve multicommodity flow problems

and provide detailed routing information without requiring the generation

and storage of shortest paths. These algorithms are based on a link flow

formulation [20], or the link flow fraction formulation due to Gallager

[2], [5], [7] whereby the optimization variables are the flows or fractions

of flow respectively for each commodity that are routed along each link.

The storage requirement for these algorithms is of order O(nCnL) and is

independent of the number of iterations. When we compare this storage

with the O(nInCnL) storage of algorithms based on shortest paths we see

that link flow formulations hold an advantage in terms of storage for

problems where a large number of iterations is desirable. The reverse

is true if the number of iterations required for adequate solution of

the problem is small, or if the number of links is much larger than the

number of nodes.

-16-

We finally note a final advantage of the path flow formulation over link

flow formulations. When the set of paths for each OD pair is restricted to

be a given strict subset of the set of all possible simple paths it is extremely

cumbersome to use a link flow formulation. By contrast it is straightforward

to modify the MULTIFLO1 code to handle this situation.

-17-

References

[1] Bertsekas, D.P., "Optimal Routing and Flow Control Methods for Com-
munication Networks", in Analysis and Optimization of Systems (Proc.
of 5th International Conference on Analysis and Optimization of Sys-

tems, A. Bensoussan and J. L. Lions, eds., Versailles, France), Spring-
er-Verlag, Berlin and N.Y., 1982, pp. 615-643.

[2] Gallager, R.G., "A Minimum Delay Routing Algorithm Using Distributed
Computation", IEEE Trans. on Communications, Vol. COM-25, 1978, pp. 73-
85.

[3] Fratta, L., M. Gerla, and L. Kleinrock, "The Flow Deviation Method:
An Approach to Store-and-Forward Communication Network Design", Net-
works, Vol. 3, 1973, pp. 97-133.

[4] Cantor, D.G., and M. Gerla, "Optimal Routing in a Packet Switched
Computer Network", IEEE Trans. on Computers, Vol. C-23, 1974, pp. 1062-
1069.

[5] Bertsekas, "Algorithms fr-i Nonlinear Multidommodity Network Flow
Problems", International Symposium on Systems Optimization and Analysis,
A. Bensoussan and J. L. Lions (eds.), Springer-Verlag, 1979, pp. 210-224.

[6] Bertsekas, D.P., "A Class of Optimal Routing Algorithms for Communication

Networks", Proc. of 5th International Conference on Computer Communication
(ICCC-80), Atlanta, Ga., Oct. 1980, pp. 71-76.

[7] Bertsekas, D.P., E.M. Gafni, and R.G. Gallager, "Second Derivative Algo-
rithms for Minimum Delay Distributed Routing in Networks", LIDS Report
LIDS-P-1082, M.I.T., March 1981.

[8] Bertsekas, D.P. and E.M. Gafni, "Projected Newton Methods and Optimization
of Multicommodity Flows", IEEE Trans. on Aut. Control, Dec. 1983.

[9] Bertsekas, D.P. and E.M. Gafni, "Projection Methods for Variational In-

Equalities with Application to the Traffic Assignment Problem", Math.
Prog. Study, 17, D. C. Sorensen and.R. J.-B. Wets (eds.), North-Holland
Amsterdam, 1982, pp. 139-159

[10] Aashtiani and T.L. Magnanti, "Equilibria on a Conjested Transportation
Network", SIAM J. of Algebraic and Discrete Math., Vol. 2, 1981, pp.
213-226.

[11] Florian, M., "An Improved Linear Approximation Algorithm for the Network

Equilibrium (Packet Switching) Problem", Proc. of 1977 IEEE Conf. on
Dec. and Control, New Orleans, La., 1977, pp. 812-818.

-18-

[12] Florian, M. and S. Nguyen, "A Method for Computing Network Equilibrium
with Elastic Demand", Trans. Sci., Vol. 8, 1974, pp. 321-332.

[13] Florian, M., "The Convergence of Diagonalization Algorithms for Fixed
Demand Asymmetric Network Equilibrium Problems", Centre de Recherche
sur les Transports Publ. #198, Jan. 1981.

[14] Nguyen, S., "An Algorithm for' the, TraffiCtAssignment Problem", Trans-
portation Science, Vol. 8, 1974, pp. 203-216.

[15] Lawphongpanich, S., and D.W. Hearn, "Simplicial Decomposition of the
Asymmetric Traffic Assignment Problem", Univ. of Florida Report, Oct.
1982.

[16] Dafermos, "An Extended Traffic Assignment Model with Applications to
Two-Way Traffic", Transportation Science, Vol. 5, 1971, pp. 366-389.

[17] Dafermos, S.C., "Traffic Equilibrium and Variational Inequalities",
Transportation Science, Vol. 14, 1980, pp. 42-54.

[18] Aashtiani, H.Z., "The Multi-Model Traffic Assignment Problem", Ph.D.
Thesis, Sloan School of Management, M.I.T., Cambridge, Mass. May, 1979.

[19] Pang, J.S. and D. Chan, "Iterative Methods for Variational and Com-
plementarity Problems", siatn. Programming, Vol. 24, pp. 284-313.

[20] Dembo, R.S. and J. G. Klincewicz, "A Scaled Reduced Gradient Algo-
rithm for Network Flow Problems with Convex Separable Costs", Math.
Programming Study 15, 1981, pp. 125-147.

[21] Bertsekas, D.P., "Projected Newton Methods for Optimization Problems
with Simple Constraints", SIAM J. Control and Optimization, Vol. 20,
1982, pp. 221-246.

[22] Gafni, E.M. and D. P. Bertsekas, "Two-Metric Projection Methods for
Constrained Optimization", Lab. for Information and Decision Systems
Report LIDS-R-1235, M.I.T., Cambridge, Mass., Sept. 1982, SIAM J.
on Control & Optimization, to appear.

[23] Pape, U., "Implementation and Efficiency of Moore Algorithms for the
Shortest Route Problem", Math. Programming, Vol. 7, 1974, pp. 212-222.

APPENDIX I: MULTIFLO Code

The following FORTRAN code works on the VAX family of computers. It

consists of a DRIVER program and several subroutines:

LOAD: Reads network topology and link length data from disk.

MULTIFLO: This is the main algorithm.

SP: Calculates a shortest path tree from an origin node to all other

nodes.

PRFLOW: Prints out to disk problem data and algorithmic results.

DERIVS: This user supplied routine calculates for a given link (i,j) its
aT..

length Tij (DICAL) and the length derivative axT- (D2CAL).

DERIV1: This routine is the same as DERIVS except that it calculates
XT..

the length Tij (DlCAL) but not the length derivative 1X '
p

DELAY: This user supplied routine is useful only if the multicommodity

flow problem is a routing optimization problem of the form (7)-(10)

as described in Section 1. For asymmetric traffic assignment problems

it has no purpose. It calculates the total delay

D. .(F..)

(ij) i i

where D!. = T . [cf. (7)-(10)]. The value of D. (Fij) is calculatedij iJ ij ij

using the function DCAL.

Two versions of the shortest path routine SP are provided (SHORTPAPE

and SHORTHEAP) which can be used interchangeably. SHORTHEAP is recommended

for problems where there are only few destinations for each commodity.

Otherwise SHORTPAPE based on [23] should be preferable.

A program (SETUP) is also provided for the purpose of creating the data

describing the problem in a format that is compatible with the LOAD routine.

-20-

The routines LOAD, DERIV1, DERIVS, DELAY, and DCAL supplied in this

appendix correspond to the most commonly solved optimal routing problem in

data communication network applications whereby a capacity C.. is given for

each link (i,j) (this is the array BITRATE in the code) and

F..
Dij(Fi.) C 3F (M/M/1 Queueing Delay) (A.1)

3ij ij = C..-F ij

C..

ljT (Fij 13
~j ~j (Cij-Fij)2

aTij (Fij) 2C..ij

DF..)3
13 1313 (Cij-Fij

Because D. i(Fij) +o as Fij + Cij these formulas have been modified so that

if Fij >. Cij, where pc(0,1) is a parameter set by the user, then D.

aT..
T .. i- are calculated using a quadratic function which has the same

value, first and second derivatives as F at the breakpoint p..
value, first and second derivatives as 1 -at the breakpoint pC

In the program 1the parameter p is given by the variable MAXTI set in
In the program the parameter p is given by the variable MAXJTI set in

the subroutine LOAD to 0.99. The user may wish to change this value.

The guideline is that p should be set at a value exceeding the maximum

link utilization

F..
1J

max
(i,j)CL ij

at the optimal solution. This trick gets around situations whereby the

input flows are so large that exceeding some of the link capacities dur-

ing some phase of the algorithm is inevitable.

-21-

The MULTIFLO code will stop computing when one of two conditions is

met: Either the maximum number of iterations (MAXITER) is exceeded or a

normalized measure of deviation from the optimal solution falls below a

certain tolerance (TOL). This measure is roughly equal to the percentage

of input traffic of an OD pair that does not lie on a shortest path (maxi-

mized over all OD pairs), and its magnitude is not substantially affected

by the size of the problem. Both convergence parameters MAXITER and TOL

are set by the user in the subroutine LOAD.

CCC
C
C DRIVER
C
C 'DRIVER' IS A SIMPLE EXECUTIVE TO INVOKE THE 'MULTIFLO' COMMODITY
C ROUTING PROGRAM. 'DRIVER' INVOKES SUBPROGRAM 'LOAD' TO READ
C DATA INTO 'MULTIFLO' INPUT COMMON BLOCKS. FILES READ BY
C 'LOAD' ARE CREATED BY A TERMINAL SESSION WITH THE USER FOR
C NETWORK DEFINITION THROUGH THE USE OF PROGRAM 'SETUP'.
C
C EXECUTION STEPS FOR PROGRAM 'DRIVER'
C
C 1) ASSIGN FORTRAN UNIT 01 AS CREATED BY PROGRAM 'LOAD'
C 2) ASSIGN FORTRAN UNIT 02 AS CREATED BY PROGRAM 'LOAD'
C 3) ASSIGN FORTRAN UNIT 06 AS A DESIGNATED OUTPUT FILE
C
C E.G.:
C $ ASSIGN NETWORK.DAT FOR001
C $ ASSIGN TRAFFIC.DAT FOR002
C $ ASSIGN OUTPUT.DAT FOR006
C
CCC
C

PROGRAM DRIVER
C
C LOAD FORTRAN UNIT 01 AND FORTRAN UNIT 02 FROM DISK AS CREATED
C FROM PROGRAM 'SETUP'
C

INCLUDE 'PARAM.DIM'
INCLUDE 'PATHS.BLK'
INCLUDE 'NETWRK.PRM'
INCLUDE 'CONVRG.PRM'
INTEGER COMMODITY, ORIGIN,DESTOD,OD,PATH
CALL LOAD

C
C EXECUTE THE 'MULTIFLO' NETWORK ALGORITHM. 'MULTIFLO' SCHEDULES
C ITS OWN OUTPUTS TO FORTRAN UNIT 06 ON EACH ITERATION
C
C INITIALIZE THE TIMER

CALL LIB$INIT_TIMER
CALL MULTIFLO

C RECORD THE COMPUTATION TIME
CALL LIB$SHOWTIMER

C
C PRINT MAX LINK UTILIZATION (RELEVANT FOR M/M/1 QUEUEING DELAY
C OPTIMIZATION)
C

UMAX=O. 0
DO 100 I=1,NA

UMAX=MAX (UMAX, FA(I)/BITRATE (I))
100 CONTINUE

WRITE (6,*) 'MAXIMUM LINK UTILIZATION'
WRITE (6,*)UMAX

C
C PRINT FINAL PATH FLOW INFO
C

WRITE(6,*)'ORIGIN / DESTINATION / PATH # / PATELFLOW'
DO 1000 COMMODITY=1,NUMCOMMOD
ORIGIN=ORGID (COMMODITY)
DO 500 OD=STARTOD (COMMODITY),STARTOD (COMMODITY+1) -1

2.

DESTOD=DEST(OD)
PATH=OD
DO WHILE (PATH.GT.O)

WRITE (6, *) ORIGIN,DESTOD,PATH,FP (PATH)
PATH=NEXTPATH (PATH)

END DO
500 CONTINUE
1000 CONTINUE

STOP
END

CC
C
C LOAD
C
C 'LOAD' READS IN DATA FROM DISK CREATED WITH PROGRAM 'SETUP' FOR
C USE BY PROGRAM 'MULTIFLO'. NETWORK SPECIFICATION DATA RESIDES
C ON FORTRAN UNIT 01 AND NETWORK TRAFFIC SPECIFICATION DATA
C RESIDES ON FORTRAN UNIT 02.
C
CC
C

SUBROUTINE LOAD
IMPLICIT NONE

C
C ********************* INCLUDE COMMON BLOCKS *********************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'
INCLUDE 'CONVRG.PRM'

C
C ******************** LOCAL VARIABLE DEFINITIONS ******************
C

INTEGER I
C DO LOOP INDEX
C
C ********************* EXECUTABLE CODE ***************************
C TERMINATION PARAMETERS. MAXITER GIVES THE MAX # OF ITERATIONS
C TOL IS A SOLUTION ACCURACY TOLERANCE. RECOMMENDED VALUES
C ARE 0.01 TO 0.0001. THE PROPER VALUE OF TOL IS LARGELY
C INDEPENDENT OF THE PROBLEM SIZE.

MAXITER=20
TOL=0.01

C THE FOLLOWING PARAMETER MAKES SENSE ONLY FOR ROUTING PROBLEMS
C WHERE AN M/M/1 QUEUING FORMULA IS USED FOR DELAY.
C IT GIVES THE THRESHOLD FRACTION OF CAPACITY BEYOND WHICH
C THE DELAY FORMULA IS TAKEN TO BE QUADRATIC.

MAXUTI=0.99
C
C LOAD THE NETWORK CONFIGURATION FROM FORTRAN UNIT 01
C
C NODE SPECIFICATIONS
C

READ(1,*)NN
DO I=1,NN

READ(1,*)FRSTOU(I),LASTOU(I)
END DO

C
C LINK SPECIFICATIONS
C

READ(1,*)NA
C
C BITRATE(I) IS A PARAMETER ASSOCIATED WITH LINK I. IN THE
C DATA NETWORK ROUTING CONTEXT IT HAS THE MEANING OF
C TRANSMISSION CAPACITY OF LINK I.
C

DO I=1,NA
READ(1,*)STARTNODE (I), ENDNODE (I) ,BITRATE(I)

END DO
C
C INPUT COMMODITY DATA FROM FORTRAN UNIT 02

READ (2, *) NUIMCOMMOD
DO I=1,NUMCOIMMOD

READ (2, *) ORGID (I) , STARTOD (I)
END DO
READ(2, *) NUMODPAIR
DO I=1, NUMODPAIR

READ(2, *) DEST(I),INPUT_FLOW (I)
END DO
RETURN
END

CCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C MULTIFLO
C
C MULTICOMMODITY FLOW ALGORITHM BASED ON A PATH FLOW FORMULATION
C UPDATES THE PATH FLOWS OF OD PAIRS ONE AT A TIME ACCORDING TO
C AN ITERATION OF THE PROJECTION TYPE.
C
C DEVELOPED BY DIMITRI BERTSEKAS, BOB GENDRON, AND WEI K TSAI
C
C BASED ON THE PAPERS:
C
C 1) BERTSEKAS,D.P., "A CLASS OF OPTIMAL ROUTING ALGORITHMS
C FOR COMMUNICATION NETWORKS", PROC. OF 5TH ITERNATIONAL
C CONFERENCE ON COMPUTER COMMUNICATION (ICCC-80),
C ATLANTA, GA., OCT. 1980, PP.71-76.
C
C 2) BERTSEKAS,D.P. AND GAFNI,E.M., "PROJECTION METHODS
C FOR VARIATIONAL INEQUALITIES WITH APPLICATION TO
C THE TRAFFIC ASSIGNMENT PROBLEM", MATH. PROGR. STUDY,17,
C D.C.SORENSEN AND J.-B. WETS (EDS), NORTH-HOLLAND,
C AMSTERDAM,1982, PP. 139-159.
C
C 3) BERTSEKAS,D.P., "OPTIMAL ROUTING AND FLOW CONTROL
C METHODS FOR COMMUNICATION NETWORKS", IN ANALYSIS AND
C OPTIMIZATION OF SYSTEMS, (PROC. OF 5TH INTERNATIONAL
C CONFERENCE ON ANALYSIS AND OPTIMIZATION, VERSAILLES,
C FRANCE), A. BENSOUSSAN AND J.L. LIONS (EDS),
C SPRINGER-VERLAG, BERLIN & NY,1982, PP. 615-643.
C
C 4) BERTSEKAS,D.P. AND GAFNI, E.M., "PROJECTED NEWTON
C METHODS AND OPTIMIZATION OF MULTICOMMODITY FLOWS",
C IEEE TRANSACTIONS ON AUTOMATIC CONTROL, DEC. 1983.
C
CCC
C

SUBROUTINE MULTIFLO
C

IMPLICIT NONE
C
C *************** INCLUDE COMMON BLOCKS ****************************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'
INCLUDE 'CONVRG.PRM'
INCLUDE 'PATHS.BLK'

C
C NODE ARRAYS (LENGTH NN):
C
C FRSTOU(NODE) - FIRST ARC OUT OF NODE
C LASTOU(NODE) - LAST ARC OUT OF NODE
C NOTE: THE ARC LIST MUST BE ORDERED IN SEQUENCE SO
C THAT ALL ARCS OUT OF ANY NODE ARE GROUPED TOGETHER
C
C ARC ARRAYS (LENGTH NA):
C
C FA(ARC) - THE TOTAL FLOW OF ARC
C STARTNODE(ARC) - THE HEAD NODE OF ARC
C ENDNODE(ARC) - THE TAIL NODE OF ARC
C

C COMMODITY LENGTH ARRAYS (LENGTH NUMCOMMOD):
C
C ORGID(COMMODITY) - THE NODE ID OF THE ORIGIN OF COMMODITY
C STARTOD(COMMODITY) - THE STARTING OD PAIR IN THE ODPAIR LIST
C CORRESPONDING TO THE ORIGIN IN POSITION RANK
C NOTE: THIS SCHEME ASSUMES THAT OD PAIRS ARE LISTED IN SEQUENCE
C I.E. THE OD PAIRS CORRESPONDING TO THE COMMODITY ONE
C ARE LISTED FIRST. THEY ARE
C FOLLOWED BY THE OD PAIRS OF THE COMMODITY TWO
C AND SO ON.
C
C ODPAIR ARRAYS (LENGTH NUMOD):
C DEST(OD) - GIVES THE DESTINATION OF ODPAIR OD
C INPUTFLOW(OD) - GIVES THE INPUT TRAFFIC OF ODPAIR OD
C
C PATH ARRAYS (LENGTH DYNAMICALLY UPDATED):
C PATHID(PATH) - THE ITERATION # AT WHICH PATH WAS GENERATED
C NEXTPATH(PATH) - THE NEXT PATH FOR THE SAME OD PAIR FOLLOWING
C PATH. IT EQUALS 0 IF PATH IS THE LAST FOR THAT OD PAIR
C FP(PATH) - THE FLOW CARRIED BY PATH
C
C PATH DESCRIPTION LIST ARRAY (LENGTH MAXITER*NUMCOMD*NN)
C PRED(NODE,ITER,COMMODITY) - THIS TRIPLE INDEXED ARRAY SPECIFIES THE
C SHORTEST PATH TREE GENERATED AT ITERATION ITER
C & CORRESPONDING TO THE ORIGIN ASSOCIATED W/ COMMODITY
C IT GIVES THE LAST ARC ON THE SHORTEST PATH FROM ORIGIN TO NODE.
C
C *************** LOCAL VARIABLE DEFINITIONS ************************
C

INTEGER*2 PRED (NNN,NMAXITER,NNORIG)
C PATH DESCRIPTION ARRAY - CONTAINS SHORTEST
C PATH TREES FOR ALL ITERATIONS

LOGICAL SPNEW
C LOGICAL INDICATING A NEW PATH FOUND

LOGICAL SAME
C LOGICAL INDICATING A NEW SHORTEST PATH ALREADY EXISTING

INTEGER NODE
C NODE IDENTIFIER

INTEGER DESTOD
C THE DESTINATION NODE OF AN OD PAIR

INTEGER ARC
C DO LOOP INDEX FOR ARCS

INTEGER PATH
C A PATH INDEX

INTEGER NUMLIST
C TOTAL NUMBER OF ACTIVE PATHS FOR OD PAIR UNDER CONSIDERATION

INTEGER ITER
C SPECIFIC ITERATION

INTEGER N1,N2
C TEMPORARY VARIABLES

REAL MINFDER
C THE LENGTH FOR A SHORTEST PATH

REAL MINSDER
C THE SECOND DERIVATIVE LENGTH FOR THE SHORTEST PATH

REAL TMINSDER
C TEMPORARY VALUE FOR SECOND DERIVATIVE LENGTH OF SHORTEST PATH

REAL INCR
C TOTAL SHIFT OF FLOW TO THE MINIMUM FIRST DERIVATIVE LENGTH PATH

REAL PATHINCR
SHIFT OF FLOW FOR A GIVEN PATH

REAL FLOW
C FLOW FOR A PATH

REAL FDER
C THE ACCRUED LENGTH ALONG A PATH

REAL SDER
C THE ACCRUED SECOND DERIVATIVE LENGTH ALONG A PATH

REAL TEMPERROR
C TEMPORARY STORAGE FOR CONVERGENCE ERROR

REAL FDLENGTH(NMAXITER)
C ARRAY OF LENGTHS OF PATHS FOR AN OD PAIR

REAL SDLENGTH(NMAXITER)
C ARRAY OF SECOND DERIVATIVE LENGTHS OF PATHS FOR AN OD PAIR

INTEGER PATHLIST(NMAXITER)
C ARRAY OF ACTIVE PATHS FOR AN OD PAIR

INTEGER COMMODITY
C DO LOOP INDEX FOR THE OD PAIR ORIGINS

INTEGER ORIGIN
C SPECIFIC ORIGIN

INTEGER I
C DO LOOP INDEX

INTEGER OD
C OD DO LOOP INDEX

INTEGER K
C DO LOOP INDEX

INTEGER SHORTEST
C THE SHORTEST PATH

LOGICAL MEMBER(NNA)
C LOGICAL FOR AN ARC INCLUDED IN THE SHORTEST PATH

REAL DLENGTH
C DIFFERENCE IN PATH LENGTHS FOR THE TRAFFIC

REAL D1CAL
C ARC LENGTH

REAL D2CAL
C DERIVATIVE OF ARC LENGTH
C
C ********************** EXECUTABLE CODE ****************************
C
C ***
C * INITIALIZATION
C ***

C
DO 5 ARC=1,NA

FA(ARC)=0.0
5 CONTINUE
C

DO I=1,NUMODPAIR
FP (I)=INPUT_FLOW(I)

ENDDO
STARTOD(NUMCOMMOD+1)=NUMODPAIR+1
NUMPATH=O0
NUMI TER=1
DO 100 COMMODITY=1 ,NUMCOMMOD

ORIGIN=ORGID (COMMODITY)
CALL SP(ORIGIN,COMMODITY)
DO 10 I=1,NN

PRED(I,1,COMMODITY) =PA(I)
10 CONTINUE
C
C LOOP OVER OD PAIRS OF COMMODITY
C

N1=STARTOD (COMMODITY)
N2=STARTOD(COMMODITY+1)-1
DO 50 OD=N1,N2

NUMPATH=NUMPATH+ 1
PATHID (NUMPATH) =1
NEXTPATH (NUMPATH) =0
FLOW=FP (NUMPATH)
NODE=DEST(OD)
DO WHILE (NODE.NE.ORIGIN)

ARC=PA (NODE)
FA (ARC) =FA (ARC) +FLOW
NODE=STARTNODE (ARC)

END DO
50 CONTINUE
100 CONTINUE
C
C INITIALIZE THE MEMBER ARRAY
C

DO 70 ARC=1,NA
MEMBER (ARC) =. FALSE.

70 CONTINUE
C
C INITIALIZE THE TOTAL DELAY
C

CALL DELAY(DTOT(NUMITER))
C
C OUTPUT THE CURRENT INFORMATION TO DISK
C

CALL PRFLOW
C
C ***
C * END OF INITIALIZATION
C ***
C
C ***** START NEW ITERATION *****
C
110 NUMITER=NUMITER+1

CURERROR=0
C
C **** LOOP OVER ALL COMMODITIES ****
C

DO 1000 COMMODITY=1 ,NUMCOMMOD
ORIGIN=ORGID (COMMODITY)
CALL SP(ORIGIN,COMMODITY)
DO 150 I=1,NN

PRED(I,NUMITER,COMMODITY) =PA(I)
150 CONTINUE
C
C **** LOOP OVER OD PAIRS OF COMMODITY
C

N1=STARTOD (COMMODI TY)
N2=STARTOD(COMMODITY+1)-1
DO 500 OD=N1,N2

C
C CHECK IF THERE IS ONLY ONE ACTIVE PATH AND IF SO SKIP
C THE ITERATION
C

IF (NEXTPATH(OD).EQ.0) THEN
NODE=DEST (OD)
DO WHILE (NODE.NE.ORIGIN)

ARC=PA (NODE)
IF (ARC.NE.PRED(NODE,1,COMMODITY)) GO TO 180
NODE=STARTNODE (ARC)

END DO
GO TO 500

END IF
C
180 CONTINUE
C
C MARK THE ARCS OF THE SHORTEST PATH
C

DESTOD=DEST(OD)
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
MEMBER(ARC)=.TRUE.
NODE=STARTNODE (ARC)

END DO
C
C GENERATE LIST OF ACTIVE PATHS FOR OD PAIR
C

NUMLIST=1
PATHLIST(1)--OD
PATH=NEXTPATH (OD)
DO WHILE (PATH.GT.0)

NUMLI ST=NUMLI ST+1
PATHLIST(NUMLIST)=PATH
PATH=NEXTPATH (PATH)

END DO
C
C DETERMINE 1ST & 2ND DERIVATIVE LENGTH OF ACTIVE PATHS
C ALSO DETERMINE WHETHER THE CALCULATED SHORTEST PATH
C IS ALREADY IN THE LIST
C

SPNEW=. TRUE.
DO 200 K=1,NUMLIST

SAME=.TRUE.
FDER=0
SDER=0
TMINSDER=0
PATH=PATHLIST (K)
ITER=PATHID (PATH)
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)

ARC=PRED (NODE, ITER, COMMODITY)
CALL DERIVS (COMMODITY,FA (ARC) ,ARC,D1CAL,D2CAL)
FDER=FDER+D1CAL
IF (.NOT.MEMBER(ARC)) THEN

SDER=SDER+D2CAL
SAME=.FALSE.

ELSE
SDER=SDER-D2CAL
TMINSDER=TMINSDER+D2CAL

END IF
NODE=STARTNODE (ARC)

END DO
IF (SAME) THEN

SPNEW=.FALSE.
SHORTEST--PATH
FDLENGTH(K)=FDER

MINFDER=FDER
MINSDER=TMINSDER

ELSE
FDLENGTH(K)=FDER
SDLENGTH (K) =SDER

END IF
200 CONTINUE
C
C *** INSERT SHORTEST PATH IN PATH LIST IF IT IS NEW ***
C

IF (SPNEW) THEN
NUMPATH=NUMPATH+ 1
SHORTEST=NUMPATH
PATHID (NUMPATH) =NUMITER
NEXTPATH(PATHLIST(NUMLIST))=NUMPATH
NEXTPATH (NUMPATH) =0
MINFDER=O
MINSDER=0
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
CALL DERIVS(COMMODITY,FA(ARC) ,ARC,D1CAL,D2CAL)
MINFDER=MINFDER+D1CAL
MINSDER=MINSDER+D2CAL
NODE=STARTNODE (ARC)

END DO
END IF

C
C **** UPDATE PATH & LINK FLOWS ****
C

INCR=0
TEMPERROR=0
DO 250 K=1,NUMLIST

DLENGTH=FDLENGTH(K)-MINFDER
IF (DLENGTH.GT.0) THEN

PATH=PATHLI ST (K)
FLOW=FP (PATH)

IF ((FLOW.EQ.0.0).AND.(K.GT.1)) THEN
NEXTPATH(PATHLIST (K-l)) =NEXTPATH (PATH)
GO TO 250

END IF
PATHINCR=DLENGTH/(SDLENGTH(K)+MINSDER)
IF (FLOW.LE.PATHINCR) THEN

FP (PATH) =0.0
PATHINCR=FLOW

ELSE
FP (PATH)=FLOW-PATHINCR

END IF
INCR=INCR+PATHINCR
TEMPERROR=TEMPERROR+FLOW*DLENGTH/FDLENGTH(K)

I TER=PATHID (PATH)
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)

ARC=PRED (NODE, I TER, COMMODITY)
FA (ARC) =FA (ARC) -PATHINCR
NODE=STARTNODE (ARC)

END DO
END IF

250 CONTINUE

C *** UPDATE THE ERROR CRITERION ***
C

CURERROR=AMAX1 (CURERROR, TEMPERROR/INPUT_FLOW (OD))
C
C * ** UPDATE FLOWS FOR SHORTEST PATH * * * *
C

FP (SHORTEST)=FP (SHORTEST) +INCR
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)

ARC=PA (NODE)
FA(ARC) =FA (ARC) +INCR
MEMBER (ARC) =. FALSE.
NODE=STARTNODE (ARC)

END DO
C
500 CONTINUE
C
C ***** END OF LOOP FOR OD PAIRS CORRESPONDING TO COMMODITY
C ***** UPDATE TOTAL DELAY
C

CALL DELAY(DTOT(NUMITER))
C
1000 CONTINUE
C
C CHECK IF THE # OF ACTIVE PATHS EXCEED THE ALLOCATED NUMBER
C

IF (NUMPATH.GT .NNUMPATH) THEN
WRITE(6,*) 'MAX # OF ALLOCATED PATHS EXCEEDED'
STOP

END IF
C
C OUTPUT THE CURRENT SOLUTION TO DISK
C

CALL PRFLOW
C
C ***** END OF ITERATION *****
C
C *** IF THE ERROR IS SMALLER THAN TOL, OR THE LIMIT ON
C THE NUMBER OF ITERATIONS IS REACHED RETURN
C ELSE GO FOR ANOTHER ITERATION
C

IF ((CURERROR.LT.TOL) .OR. (NUMITER.EQ.MAXITER)) THEN
RETURN

ELSE
GO TO 110

END IF
C

END
C ************** END OF MULTIFLO ****************

t2

CC
C
C SHORTHEAP
C 'SHORTHEAP' SOLVES THE SHORTEST PATH PROBLEM BY
C DIJKSTRA'S ALGORITHM AND A HEAP DATA STRUCTURE.
C THIS ALGORITHM SHOULD BE USED WHEN THE NUMBER OF
C DESTINATIONS FOR EACH COMMODITY IS SMALL RELATIVE
C TO THE TOTAL NUMBER OF NODES.
C
C INPUT:
C S - THE STARTING NODE
C COMMODITY - THE CORRESPONDING COMMODITY
C
C OUTPUT:
C PA(I) - THE LAST ARC ON THE SHORTEST PATH ENDING AT NODE I
C DIST(I) - THE SHORTEST DISTANCE TO NODE I
C
CCC
C

SUBROUTINE SP(S,COMMODITY)
C

IMPLICIT NONE
C
C ****************** INCLUDE COMMON BLOCKS ***********************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'
INCLUDE 'PATHS.BLK'

C

C ***************** LOCAL VARIABLE DEFINITIONS ********************
C

REAL MIN
C TEMPORARY MINIMUM VALUE

REAL D1,D2,DP
C NODE DISTANCE

REAL XLARGE
C BIG X BY DEFAULT

INTEGER S
C INPUT NODE

INTEGER COMMODITY
C INPUT COMMODITY

INTEGER P
C NODE ALONG THE PATH OF S TO DESTINATIONS

INTEGER I
C DO LOOP INDEX

INTEGER J
C DO LOOP INDEX

INTEGER ARC
C DO LOOP INDEX

INTEGER ND
C A NODE INDEX

INTEGER DNUMBER
C # OF DESTINATIONS FOR COMMODITY

INTEGER N1
C TEMPORARY VARIABLE

INTEGER N2
C TEMPORARY VARIABLE

INTEGER UPNODE, DOWNNODE, DOWNNODE1, LASTNODE
C VARIABLES USED IN UPDATING THE HEAP ARRAY

INTEGER CURRANK, NEWRANK

C VARIABLES USED IN UPDATING THE HEAP ARRAY
INTEGER ENDREDAP

C MARKS THE LAST ELEMENT OF THE HEAP ARRAY
INTEGER RANK (NNN)

C RANK(NODE) GIVES THE RANK OF NODE IN THE HEAP
INTEGER NRANK (NNN)

C NRANK(I) GIVES THE NODE OF RANK I IN THE HEAP
REAL D1CAL

C FIRST DERIVATIVE OF DELAY WITH RESPECT TO LOAD
LOGICAL FIRSTITER

C TRUE IF THIS IS THE FIRST ITERATION
LOGICAL SCAN(NNN)

C LOGICAL INDICATING THAT A NODE HAS BEEN SCANNED
LOGICAL DSTATUS(NNN)

C LOGICAL SPECIFYING IF A NODE IS A DESTINATION
C
C ****************** EXECUTABLE CODE ************************
C

XLARGE=lE15
D1CAL=1.0
P=S
DO 10 I=1,NN

DIST(I)=XLARGE
SCAN (I) =.FALSE.
DSTATUS(I)=.FALSE.

10 CONTINUE
DIST(S)=O
IF (NUMITER.EQ.1) THEN

FIRSTITER=.TRUE.
ELSE
FIRSTITER=.FALSE.

END IF
C
C MARK THE DESTINATION NODES
C

N1=STARTOD(COMMODITY)
N2=STARTOD(COMMODITY+1)-1
DNUMBER=N2-Nl+ 1l
DO 15 I=N1,N2

DSTATUS (DEST(I))=.TRUE.
15 CONTINUE
C
C INITIALIZE THE HEAP FLOOR
C

ENDHEAP=0
C
C ***** SCAN NODE P *****
C
1000 CONTINUE

SCAN (P) =.TRUE.
IF (DSTATUS(P)) THEN

IF (DNUMBER.EQ.1) RETURN
DNUMBER=DNUMBER-1

END IF
IF (FRSTOU(P).NE.0) THEN

DP=DIST (P)
DO 20 ARC=FRSTOU(P), LASTOU(P)

ND=ENDNODE (ARC)
IF (.NOT.SCAN(ND)) THEN

IF (.NOT.FIRSTITER) THEN

CALL DERIV1 (COMMODITY,FA (ARC) ,ARCD1CAL)
END IF
D2=DIST(ND)

C IF ND HAS NOT BEEN LABELLED INSERT IT IN THE HEAP
IF (D2.EQ.XLARGE) THEN
ENDHEAP=ENDHEAP+1
RANK (ND) =ENDHEAP
NRANK (ENDHEAP) =ND

END IF
D1=DP+D1CAL
IF (D1.LT.D2) THEN

PA (ND) =ARC
DIST(ND)=D1
CURRANK=RANK (ND)

50 NEWRANK=INT(CURRANK/2)
IF (NEWRANK.GE.1) THEN
UPNODE=NRANK (NEWRANK)
IF (D1.LT.DIST(UPNODE)) THEN
NRANK (CURRANK) =UPNODE
RANK (UPNODE) =CURRANK
CURRANK=NEWRANK
GO TO 50

END IF
END IF
NRANK (CURRANK) =ND
RANK (ND) =CURRANK

END IF
END IF

20 CONTINUE
END IF

C
C ******* FIND NEXT NODE TO SCAN *******
C
C TEST FOR ERROR

IF (ENDHEAP.EQ.0) THEN
WRITE(6,*) 'ERROR IN THE SHORTEST PATH ROUTINE'
STOP

END IF
P=NRANK (1)

C
C RESTRUCTURE HEAP ARRAYS
C

LASTNODE=NRANK (ENDHEAP)
ENDHEAP=ENDHEAP-1
D1=DIST (LASTNODE)
CURRANK=1

100 NEWRANK=CURRANK+CURRANK
IF (NEWRANK.LE.ENDHEAP) THEN
DOWNNODE=NRANK (NEWRANK)
IF (NEWRANK.EQ.ENDHEAP) THEN
DOWNNODE 1=DOWNNODE

ELSE
DOWNNODE I=NRANK (NEWRANK+ 1)

END IF
IF (DIST(DOWNNODE) .LE.DIST(DOWNNODE1)) THEN

IF (D1.GT.DIST(DOWNNODE)) THEN
NRANK (CURRANK) =DOWNNODE
RANK (DOWNNODE)=CURRANK
CURRANK=NEWRANK
GO TO 100

END IF
ELSE

IF (D1.GT.DIST(DOWNNODE1)) THEN
NRANK (CURRANK) =DOWNNODE1
RANK (DOWNNODE 1) =CURRANK
CURRANK=NEWRANK+ 1
GO TO 100

END IF
END IF-

END IF
NRANK (CURRANK) =LASTNODE
RANK (LASTNODE) =CURRANK
GO TO 1000

END

CCCCCCCCCCCC CCCOCC
C
C SHORTPAPE
C 'SHORTPAPE' SOLVES THE SHORTEST PATH PROBLEM BY
C PAPE'S MODIFICATION OF BELLMAN'S ALGORITHM.
C
C INPUT:
C S - THE STARTING NODE
C COMMODITY - THE CORRESPONDING COMMODITY
C
C OUTPUT:
C PA(I) - THE LAST ARC ON THE SHORTEST PATH ENDING AT NODE I
C DIST(I) - THE SHORTEST DISTANCE TO NODE I
C
CCC
C

SUBROUTINE SP(S,COMMODITY)
C

IMPLICIT NONE
C
C ****************** INCLUDE COMMON BLOCKS ***********************

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'
INCLUDE 'PATHS.BLK'

C
C ***************** LOCAL VARIABLE DEFINITIONS ********************
C

REAL D1,DP
C NODE DISTANCE

REAL XLARGE
C BIG X BY DEFAULT

INTEGER ILARGE
C INTEGER LARGER THAN THE NUMBER OF NODES

INTEGER S
C INPUT NODE

INTEGER COMMODITY
C INPUT COMMODITY

INTEGER P
C NODE PRESENTLY SCANNED

INTEGER I
C DO LOOP INDEX

INTEGER ARC
C DO LOOP INDEX

INTEGER ND
C A NODE INDEX

INTEGER N1
C TEMPORARY VARIABLE

INTEGER N2
C TEMPORARY VARIABLE

INTEGER ENDQUEUE
C MARKS THE LAST ELEMENT OF THE QUEUE ARRAY

REAL DICAL
C FIRST DERIVATIVE OF DELAY WITH RESPECT TO FLOW

LOGICAL FIRSTITER
C TRUE IF THIS IS THE FIRST ITERATION

INTEGER Q(NNN)
C QUEUE OF NODES TO BE SCANNED
C
C ****************** EXECUTABLE CODE *****************************

C
XLARGE=lE15
I LARGE=NNN+1
D1CAL=1. 0
DO 10 I=1,NN

DIST (I)=XLARGE
Q (I) =o

10 CONTINUE
IF (NUMITER.EQ.1) THEN
FIRSTITER=. TRUE.

ELSE
FIRSTITER=. FALSE.

END IF
DIST(S)=0
Q (S) =ILARGE
ENDQUEUE=S
P=S

C
C ********* START OF MAIN ALGORITHM *********
C
100 CONTINUE
C
C ***** SCAN NODE P *****
C

N1=FRSTOU (P)
IF (N1.EQ.O0) GO TO 201
N2=LASTOU (P)
DP=DIST (P)
DO 200 ARC=N1,N2

ND=ENDNODE (ARC)
IF (.NOT.FIRSTITER) THEN

CALL DERIV1 (COMMODITY,FA (ARC) ,ARC,D1CAL)
END IF
Dl=DP+D1CAL

C ** * IF NO IMPROVEMENT TAKE ANOTHER ARC ***
IF (D1.GE.DIST(ND)) GO TO 200

C *** CHANGE DISTANCE AND LABEL OF NODE ND ***
PA (ND) =ARC
DIST(ND) =D1
IF (Q(ND)) 160,140,200

C *** IF ND HAS NEVER BEEN SCANNED INSERT IT AT THE END
C OF THE QUEUE ***
140 Q(ENDQUEUE)=ND

ENDQUEUE=ND
Q (ND) =ILARGE
GO TO 200

C *** IF ND HAS ALREADY BEEN SCANNED ADD IT AT THE
C BEGINNING OF THE QUEUE AFTER NODE P ***
160 Q(ND)=Q(P)

Q(P)=ND
IF (ENDQUEUE.EQ.P) ENDQUEUE=ND

200 CONTINUE
C
C *** GET NEXT NODE FROM THE TOP OF THE QUEUE ***
C
201 N1=Q(P)
C
C *** FLAG P AS HAVING BEEN SCANNED ***
C

O (P) =-1

P=Nl
C
--C * * * IF THE QUEUE IS NOT EMPTY GO BACK TO SCAN NEXT NODE ***
C

IF (P.LT.ILARGE) GO TO 100
C

RETURN
END

Q9.

CGCC
C
C DELAY
C
C DELAY COMPUTES THE TOTAL M/M/1 DELAY IN ROUTING COMMODITIES FROM
C SOURCES TO SINKS.
C
CCC
C

SUBROUTINE DELAY(DT)
IMPLICIT NONE

C
C ***************** INCLUDE COMMON BLOCKS **************************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'PATHS.BLK'
INCLUDE 'NETWRK.PRM'
INCLUDE 'CONVRG.PRM'

C
C ******************** ARGUMENT DEFINITIONS *************************
C
C ON OUTPUT:
C

REAL DT
C TOTAL SYSTEM DELAY
C
C **************** EXTERNAL FUNCTIONS REFERENCED **** *********
C

REAL DCAL
C DELAY AS A FUNCTION OF FLOW
C
C ****************** LOCAL VARIABLE DEFINITIONS **********************
C

INTEGER K
C DO LOOP INDEX
C
C *********************** EXECUTABLE CODE ****************************
C
C LOOP OVER ALL LINKS AND ACCRUE TOTAL DELAY
C

DT=O.
DO 50 K=1,NA

DT=DT+DCAL (FA (K), K)
50 CONTINUE
C

RETURN
END

co.

": CC

C DCAL
C
C 'DCAL' COMPUTES THE DELAY ACROSS A SPECIFIED ARC GIVEN THE FLOW.
C THE DELAY IS ASSUMED TO BE CONSISTENT WITH M/M/1 QUEUEING FOR
C FLOWS BELOW A MAXIMUM UTILIZATION AND QUADRATIC BEYOND WITH
C CONTINUITY IN THE DERIVATIVES AT THE MAXIMUM UTILIZATION.
C
CCC
C

REAL FUNCTION DCAL(X,ARC)
IMPLICIT NONE

C
C INCLUDE COMMON BLOCKS ************************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'
INCLUDE 'CONVRG.PRM'
INCLUDE 'PATHS.BLK'

C
C ***************** ARGUMENT DEFINITIONS **************************
C

REAL X
C INPUT FLOW FOR THE ARC

INTEGER ARC
C INPUT ARC
C
C **************** LOCAL VARIABLE DEFINITIONS *********************
C

REAL RATE
.C MAXIMUM LINK CAPACITY

REAL Y
C TEMPORARY VARIABLE

REAL Z
C TEMPORARY VARIABLE

REAL QO
C ZEROTH ORDER TERM IN THE QUADRATIC APPROXIMATION FOR
C OVERLOADED LINKS

REAL Q1
C FIRST ORDER TERM IN THE QUADRATIC APPROXIMATION

REAL Q2
C SECOND ORDER TERM IN THE QUADRATIC APPROXIMATION

REAL EXCESS
C FLOW BEYOND THE MAXIMUM ALLOWABLE UTILIZATION
C
C ********************** EXECUTABLE CODE *****************************
C

RATE=BITRATE (ARC)
Y=MAXUTI *RATE

C
C M/M/1 DELAY
C

IF(X.LT.Y) THEN
DCAL=X/ (RATE-X)

ELSE
C
C QUADRATIC APPROXIMATION TO AVOID OVERFLOWS
C

EXCESS=X-Y

Z=RATE-Y
QO=Y/Z
Q1=QO/(MAXUTI *Z)
Q2=Q1/Z
DCAL=QO+Q1 * EXCESS+Q2 * EXCESS * * 2

ENDIF
RETURN
END

CC
C
C DERIVS
C
C 'DERIVS' COMPUTES THE DERIVATIVES OF DELAY WITH RESPECT TO FLOW FOR
C LINKS. BELOW A MAXIMUM UTILIZATION, M/M/1 DELAY IS ASSUMED TO APPLY
C WHEREAS A QUADRATIC APPROXIMATION IS ASSUMED FOR UTILIZATIONS BEYOND
C THE MAXIMUM. THE DERIVATIVES ARE CONTINUOUS AT THE MAXIMUM
C UTILIZATION.
C
CCC
C

SUBROUTINE DERIVS(COMMODITY,X,ARC,D1CAL,D2CAL)
IMPLICIT NONE

C
C ******************** INCLUDE COMMON BLOCKS ************************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK. PRM'
INCLUDE 'CONVRG.PRM'
INCLUDE 'PATHS.BLK'

C
C ****************** ARGUMENT DEFINITIONS **************************
C
C ON INPUT:

INTEGER COMMODITY
C THE CORRESPONDING COMMODITY
C

REAL X
C FLOW IN THE SPECIFIED LINK

INTEGER ARC
C THE SPECIFIED LINK
C
C ON OUTPUT:
C

REAL D1CAL
C ARC LENGTH (1ST DERIVATIVE OF DELAY)

REAL D2CAL
C FIRST DERIVATIVE OF ARC LENGTH
C
C **************** LOCAL VARIABLE DEFINITIONS ************************
C

REAL MAXI
C MAXIMUM ALLOWABLE FLOW FOR LINK FOR M/M/1 QUEUEING DELAY

REAL RATE
C THE MAXIMUM FLOW CAPACITY FOR THE LINK

REAL EXCESS
C FLOW BEYOND THE MAXIMUM ALLOWABLE FLOW

REAL D1
C TEMPORARY VARIABLE

REAL T
C TEMPORARY VARIABLE

22

C
C ******************** EXECUTABLE CODE �*******************************
C

RATE=BITRATE (ARC)
MAXI=MAXUTI *RATE
EXCESS=X-MAXI

C
IF(EXCESS.LE.O.O) THEN

C
C DERIVATIVES OF M/M/1 QUEUEING DELAY
C

T=RATE-X
D1CAL=RATE/T* * 2
D2CAL=2.0 *D1CAL/T

ELSE
C
C DERIVATIVES OF THE QUADRATIC APPROXIMATION
C

T=-RATE-MAXI
D1=RATE/T* *2
D2CAL=2.0 *D1/T
Dl1CAL=D1+D2CAL* EXCESS

END IF
RETURN
END

CC
C
C DERIV1
C
C 'DERIVi' COMPUTES THE FIRST DERIVATIVE OF DELAY WITH RESPECT
C TO FLOW FOR LINKS. BELOW A MAXIMUM UTILIZATION, M/M/1 DELAY IS
C ASSUMED TO APPLY WHEREAS A QUADRATIC APPROXIMATION IS ASSUMED FOR
C UTILIZATIONS BEYOND THE MAXIMUM. THE DERIVATIVES ARE CONTINUOUS
C AT THE MAXIMUM UTILIZATION.

CCC
C

SUBROUTINE DERIV1(COMMODITY,X,ARC,D1CAL)
IMPLICIT NONE

C
C ******************** INCLUDE COMMON BLOCKS ************************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK. PRM'
INCLUDE 'CONVRG.PRM'
INCLUDE 'PATHS.BLK'

C
C ******************* ARGUMENT DEFINITIONS **************************
C
C ON INPUT:
C

INTEGER COMMODITY
C THE CORRESPONDING COMMODITY
C

REAL X
C FLOW IN THE SPECIFIED LINK

INTEGER ARC
C THE SPECIFIED ARC
C
C ON OUTPUT:

CCCCCCccCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccCCCCCCCCCCCCCCCCCCCCCC
C
C PRFLOW
C
C 'PRFLOW' OUTPUTS INTERMEDIATE RESULTS IN THE MULTIFLO ALGORITHM.
C ITERATION #, DELAY, NUMBER OF ACTIVE PATHS GENERATED AND
C CONVERGENCE ARE THE PRIMARY OUTPUTS.
C
CC
C

SUBROUTINE PRFLOW
IMPLICIT NONE

C
C **************** INCLUDE COMMON BLOCKS ******--******************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK. PRM'
INCLUDE 'CONVRG.PRM'
INCLUDE 'PATHS.BLK'

C
C ************** LOCAL VARIABLE DEFINITIONS ***********************
C

LOGICAL FIRFLG
C FIRST PASS FLAG FOR OUTPUT CONTROL

INTEGER I
C DO LOOP INDEX
C
C ***************** LOCAL DATA INITIALIZATION *******************
C

DATA FIRFLG/.TRUE./
C
C ON THE VERY FIRST PASS, OUTPUT THE CONTENTS OF INPUT BLOCKS TO FILE
C

IF(FIRFLG) THEN
WRITE (6,*) '**'
WRITE(6,*)'* MULTIFLO SUMMARY *'
WRITE (6, *)'**'
WRITE(6,*) '
WRITE (6, *) ' **'
WRITE(6,*) '* INITIALIZATION DATA *'
WRITE (6,*) '**'
WRITE (6,*) '
WRITE(6,*) 'NETWORK SPECIFICATION DATA:'
WRITE (6,*) '
WRITE (6,*) 'NODE SPECIFICATIONS'
WRITE(6,*)'NUMBER OF NODES:',NN
WRITE(6,*)'NODE # FRSTOU LASTOU'
DO I=1,NN

WRITE (6,*) I, FRSTOU (I), LASTOU (I)
END DO
WRITE(6,*) '
WRITE(6,*) 'LINK SPECIFICATIONS:'
WRITE(6,*)'NUMBER OF LINKS:',NA
WRITE (6,*) 'LINK # STARTNODE ENDNODE BITRATE'
DO I=1,NA

WRITE(6,*)I,STARTNODE(I),ENDNODE(I), .BITRATE(I)
END DO
WRITE(6,*) '
WRITE(6,*) 'COMMODITY SPECIFICATIONS'
WRITE(6,*) 'NUMBER OF COMMODITIES:',NUMCOMMOD

25

WRITE (6,*) 'COMMOD # ORGID STARTOD'
DO I=1,NUMCOMMOD

WRITE (6, *)I, ORGID(I) ,STARTOD(I)
END DO
WRITE(6,*) '
WRITE (6,*) 'OD PAIR SPECIFICATIONS'
WRITE(6,*) 'NUMBER OF OD PAIRS: ',NUMODPAIR
WRITE (6,*) 'OD PAIR # DEST INPUT FLOW'
DO I=1,NUMODPAIR

WRITE (6,*)I,DEST(I),INPUT_FLOW(I)
END DO
WRITE(6,*) '
WRITE (6, *) '**'
WRITE (6,*)' * MULTIFLO DATA BY ITERATION *'
WRITE (6, *) '**'
WRITE (6,*) 'ITERATION # TOTAL DELAY CONVERGENCE NUMBER OF'
WRITE(6,*)' ERROR ACTIVE'
WRITE(6,*)' PATHS'
FIRFLG= .FALSE.

END IF
IF(NUMITER.GT.O) THEN

WRITE (6, *) NUMITER, DTOT (NUMITER), CURERROR, NUMPATH
END IF
RETURN
END

C ' INCLUDE': FILE PARAM.DIM
C
C -'PARAM.DIM' CONTAINS THE ARRAY DIMENSIONS
C
C ******************* NETWORK PARAMETERS ***********************
C

PARAMETER NNN=100
C MAXIMUM NUMBER OF NODES

PARAMETER NNA=500
C MAXIMUM NUMBER OF ARCS

PARAMETER NNUMOD=1000
C MAXIMUM NUMBER OF OD PAIRS

PARAMETER NNUMPATH=10000
C MAXIMUM NUMBER OF PATHS FOR CONSIDERATION

PARAMETER NMAXITER=50
C MAXIMUM NUMBER OF ITERATIONS ALLOWED

PARAMETER NNORIG=100
C MAXIMUM NUMBER OF COMMODITIES

PARAMETER NINDEX=100000
C MAXIMUM NUMBER OF ELEMENTS OF PATH
C DESCRIPTION ARRAY (USED IN MULTIFLO1)
C

C 'INCLUDE' FILE NETWRK.PRM
C
C 'NETWRK.PRM' CONTAINS THE NETWORK SPECIFICATION PARAMETERS
C

COMMON /NETWORK/
& NN,FRSTOU, LASTOU,
& NA, STARTNODE, ENDNODE, BITRATE,
& NUMCOMMOD, ORGID, STARTOD,
& NUMODPAIR,DEST, INPUT_FLOW

C
INTEGER*2 NN

C NUMBER OF NODES IN THE NETWORK
INTEGER*2 FRSTOU(NNN)

C THE FIRST ARC EMANATING FROM A NODE
INTEGER*2 LASTOU(NNN)

C THE FINAL ARC EMANATING FROM A NODE
C

INTEGER*2 NA
C NUMBER OF LINKS (ARCS) IN THE NETWORK

INTEGER*2 STARTNODE (NNA)
C THE START NODE FOR AN ARC

INTEGER*2 ENDNODE (NNA)
C THE END NODE FOR AN ARC

REAL BITRATE (NNA)
C THE LINK CAPACITY IN BITS/SECOND
C

INTEGER*2 NUMCOMMOD
C THE NUMBER OF COMMODITIES IN THE NETWORK

INTEGER*2 ORGID (NNORIG)
C THE NODE NUMBER OF THE ORIGIN

INTEGER*2 STARTOD(NNORIG)
C THE POINTER TO THE STARTING NODE IN AN OD PAIR
C

INTEGER*2 NUMODPAIR
C THE NUMBER OF OD PAIRS

INTEGER*2 DEST (NNUMOD)
C THE DESTINATION NODE OF TRAFFIC IN AN OD PAIR

REAL INPUT_FLOW(NNUMOD)
C THE INPUT TRAFFIC TO THE NODE IN BITS/SECOND
C

C 'INCLUDE' FILE-CONVRG.PRM
C
C 'CONVRG.PRM' CONTAINS THE CONVERGENCE PARAMETERS FOR THE
C NETWORK FLOW PROBLEM
C

COMMON /CONVRG/
& MAXITER,TOL,MAXUTI,OUTPFL

C
INTEGER MAXITER

C MAXIMUM NUMBER OF ITERATIONS IN THE SOLUTION
REAL TOL

C TOLERANCE ON SOLUTION ACCURACY
REAL MAXUTI

C MAXIMUM UTILIZATION FOR M/M/1 QUEUE DELAY
LOGICAL OUTPFL

C OUTPUT CONTROL VARIABLE

C 'INCLUDE' FILE PATHS.BLK
C
C -'PATHS.BLK' DEFINES THE ARRAYS NECESSARY TO MAINTAIN
C PATH FLOWS AND DESCRIPTION.
C

COMMON /PATHS/
& PA,FA,PATHID,NEXTPATH,FP,DIST,DTOT,CURERROR,
& NUMPATH,NUMITER

C
INTEGER*2 PA(NNN)

C THE LAST ARC ON A SHORTEST PATH TO A NODE
REAL FA (NNA)

C THE FLOW IN ANY GIVEN LINK (ARC)
INTEGER PATHID (NNUMPATH)

C THE PATH IDENTIFIER FOR ANY GIVEN PATH
INTEGER NEXTPATH (NNUMPATH)

C THE NEXT PATH FOR THE SAME OD PAIR
REAL FP (NNUMPATH)

C THE FLOW OF A PATH
REAL DIST(NNN)

C SHORTEST DISTANCE TO A NODE FROM THE ORIGIN
REAL DTOT(NMAXITER)

C THE TOTAL DELAY BY ITERATION
INTEGER NUMITER

C CURRENT ITERATION NUMBER
REAL CURERROR

C CONVERGENCE ERROR (NORMALISED % OF FLOW NOT ON
C A SHORTEST PATH)

INTEGER NUMPATH
C NUMBER OF GENERATED PATHS

CCCCCcccCCCCCCCCCcCCCc
C
C SETUP
C
C 'SETUP' ACCEPTS INPUTS FROM THE TERMINAL AND CREATES DATA SETS
C THAT REPRESENTS NETWORKS AND LOADS IN A FORM SUITABLE FOR
C PROGRAM 'MULTIFLO'
C
CCC
C

PROGRAM SETUP
IMPLICIT NONE

C
C ******************** INCLUDE COMMON BLOCKS ************************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK.PRM'

C
C *************** LOCAL VARIABLE DEFINITIONS ***********************
C

INTEGER TERMINAL_NODE
C THE END NODE OF A LINK

INTEGER DESTOD
C THE DESTINATION NODE OF AN OD PAIR

REAL BPS
C MAXIMUM LINK CAPACITY

INTEGER NUMARC
C NUMBER OF OUTGOING ARCS FOR A NODE IN THE NETWORK

REAL TRAFFIC
C SPECIFIED INPUT TO AN OD PAIR

INTEGER I
C DO LOOP INDEX

INTEGER J
C DO LOOP INDEX

INTEGER NOD
C NUMBER OF OD PAIRS ASSOCIATED WITH A COMMODITY
C
C ****************** EXECUTABLE CODE **************
C
C GET THE NODE SPECIFICATIONS
C

NA=0
WRITE(6,*)'INPUT THE # OF NODES'
READ(5,*)NN
DO I=1,NN

200 WRITE(6,*)'FOR NODE',I,' ENTER # OF ARCS EXITING THE NODE'
READ(5,*,ERR=200)NUMARC
IF(NUMARC.GE.0) THEN

DO J=1, NUMARC
100 WRITE(6,*)'FOR ARC',J,' AT NODE',I,' ENTER TERMINAL NODE',

& ' AND MAXIMUM BITS/S'
C
C ASK THE SAME QUESTION ON ERRORS
C

READ(5, *,ERR=100) TERMINAL_NODE,BPS
IF (TERMINAL_NODE.GT.NN) THEN

WRITE(6,*) 'TERMINAL NODE OUT OF BOUNDS'
GO TO 100

ELSE
C

C -ENTER LINK BEGIN AND END NODES
C

NA=NA+ 1
ENDNODE (NA)=TERMINAL_NODE
BITRATE (NA)=BPS

END IF
STARTNODE (NA) =I

END DO
FRSTOU(I) =NA-NUMARC+1
LASTOU(I)=NA

ELSE
WRITE(6,*)'NEGATIVE ARCS ILLEGAL'
GO TO 200

END IF
END DO

C
C OD PAIRS SETUP
C
1000 WRITE(6,*)'ENTER THE NUMBER OF COMMODITIES IN THE NETWORK'

READ(5,*,ERR=1000)NUMCOMMOD
NUMODPAIR=0O
DO I=1,NUMCOMMOD

300 WRITE(6,*)'ENTER THE ORIGIN ID AND NUMBER OF DESTINATIONS FOR '
& 'COMMODITY',I

READ (5,*,ERR=300)ORGID(I) ,NOD
IF(ORGID(I) .LE.NN) THEN
DO J=1,NOD

400 WRITE(6,*)'ENTER THE DESTINATION',J,' AND TRAFFIC FOR ',
& ' COMMODITY'

C
C ASK THE SAME QUESTION ON ERRORS
C

READ(5, *,ERR=400)DESTOD,TRAFFIC
IF(DESTOD.GT.NN) THEN

WRITE(6,*)'DESTINATION OD OUT OF BOUNDS, MAXIMUM=',NN
GO TO 400

ELSE
NUMODPAIR=NUMODPAIR+ 1
DEST (NUMODPAIR)=DESTOD
INPUT_FLOW(NUMODPAIR) =TRAFFIC

END IF
END DO

ELSE
WRITE(6,*)'ORIGIN IS OUT OF BOUNDS, MAX ORIGIN=',NN
GO TO 300

END IF
STARTOD(I)=NUMODPAIR-NOD+1

END DO
C
C OUTPUT OF CONNECTIVITY DATA FOR DIRECT INPUT INTO 'MULTIFLO'
C COMMON BLOCKS
C

WRITE(1, *)NN
DO I=1,NN

WRITE (1, *) FRSTOU (I), LASTOU (I)
END DO
WRITE(1, *)NA
DO I=1,NA

WRITE (1, *)STARTNODE (I), ENDNODE (I) .BITRATE (I)
END DO

32

C
C OUTPUT OF OD TRAFFIC DATA FOR DIRECT INPUT INTO 'MULTIFLO'
C COMMON BLOCKS
C

WRITE(2,*)NUMCOMMOD
DO I=1,NUMCOMMOD

WRITE (2, *) ORGID (I) ,STARTOD (I)
END DO
WRITE(2, *)NUMODPAIR
DO I=1,NUMODPAIR

WRITE(2,*)DEST(I),INPUTFLOW(I)
END DO
STOP
END

APPENDIX II: MJLTIFLO1 Code

The only differences between MULTIFLO and MULTIFLO1 are in the

DRIVER program and in the main algorithm subroutine MULTIFLO. These two

routines called DRIVERI and MULTIFLO1, are listed below.

'~CCC
C
C DRIVERZ
C
C 'DRIVERI' IS A SIMPLE EXECUTIVE TO INVOKE THE 'MULTIFLO1' COMMODITY
C ROUTING PROGRAM. 'DRIVER1' INVOKES SUBPROGRAM 'LOAD' TO READ
C DATA INTO 'MULTIFLOl' INPUT COMMON BLOCKS. FILES READ BY
C 'LOAD' ARE CREATED BY A TERMINAL SESSION WITH THE USER FOR
C NETWORK DEFINITION THROUGH THE USE OF PROGRAM 'SETUP'.
C
C EXECUTION STEPS FOR PROGRAM 'DRIVERI'
C
C 1) ASSIGN FORTRAN UNIT 01 AS CREATED BY PROGRAM 'LOAD'
C 2) ASSIGN FORTRAN UNIT 02 AS CREATED BY PROGRAM 'LOAD'
C 3) ASSIGN FORTRAN UNIT 06 AS A DESIGNATED OUTPUT FILE
C
C E.G.:
C $ ASSIGN NETWORK.DAT FOR001
C $ ASSIGN TRAFFIC.DAT FOR002
C $ ASSIGN OUTPUT.DAT FOR006
C
CCC
C

PROGRAM DRIVER1
C
C LOAD FORTRAN UNIT 01 AND FORTRAN UNIT 02 FROM DISK AS CREATED
C FROM PROGRAM 'SETUP'
C

INCLUDE 'PARAM.DIM'
INCLUDE 'PATHS.BLK'
INCLUDE 'NETWRK.PRM'
INCLUDE 'CONVRG.PRM'
INTEGER COMMODITY, ORIGIN,DESTOD, OD,PATH
CALL LOAD

C EXECUTE THE 'MULTIFLO1' NETWORK ALGORITHM. 'MULTIFLO1' SCHEDULES
C ITS OWN OUTPUTS TO FORTRAN UNIT 06 ON EACH ITERATION
C
C INITIALIZE THE TIMER

CALL LIB$INIT_TIMER
CALL MULTIFLO1

C RECORD THE COMPUTATION TIME
CALL LIB$SHOW_TIMER

C
C PRINT MAX LINK UTILIZATION (RELEVANT FOR M/M/1 QUEUEING DELAY
C OPTIMIZATION)
C

UMAX=0 . 0
DO 100 I=1,NA
UMAX=MAX(UMAX,FA(I)/BITRATE(I))

100 CONTINUE
WRITE (6,*) 'MAXIMUM LINK UTILIZATION'
WRITE (6, *)UMAX

C
C PRINT FINAL PATH FLOW INFO
C

WRITE(6,*) 'ORIGIN / DESTINATION / PATH # / PATH FLOW'
DO 1000 COMMODITY=1 ,NUMCOMMOD

ORIGIN=ORGID (COMMODITY)
DO 500 OD=STARTOD (COMMODITY), STARTOD (COMMODITY+1) -1

2.

DESTOD=DEST(OD)
PATH=--OD
DO WHILE (PATH.GT.O)

WRITE (6, *)ORIGIN,DESTOD,PATH,FP (PATH)
PATH=NEXTPATH (PATH)

END DO
500 CONTINUE
1000 CONTINUE

STOP
END

3.

CC
C
C MULTIFLO1
C
C MULTICOMMODITY FLOW ALGORITHM BASED ON A PATH FLOW FORMULATION
C UPDATES THE PATH FLOWS OF OD PAIRS ONE AT A TIME ACCORDING TO
C AN ITERATION OF THE PROJECTION TYPE.
C
C DEVELOPED BY DIMITRI BERTSEKAS, BOB GENDRON, AND WEI K TSAI
C
C BASED ON THE PAPERS:
C
C 1) BERTSEKAS,D.P., "A CLASS OF OPTIMAL ROUTING ALGORITHMS
C FOR COMMUNICATION NETWORKS", PROC. OF 5TH ITERNATIONAL
C CONFERENCE ON COMPUTER COMMUNICATION (ICCC-80),
C ATLANTA, GA., OCT. 1980, PP.71-76.
C
C 2) BERTSEKAS,D.P. AND GAFNI,E.M., "PROJECTION METHODS
C FOR VARIATIONAL INEQUALITIES WITH APPLICATION TO
C THE TRAFFIC ASSIGNMENT PROBLEM", MATH. PROGR. STUDY,17,
C D.C.SORENSEN AND J.-B. WETS (EDS), NORTH-HOLLAND,
C AMSTERDAM,1982, PP. 139-159.
C
C 3) BERTSEKAS,D.P., "OPTIMAL ROUTING AND FLOW CONTROL
C METHODS FOR COMMUNICATION NETWORKS", IN ANALYSIS AND
C OPTIMIZATION OF SYSTEMS, (PROC. OF 5TH INTERNATIONAL
C CONFERENCE ON ANALYSIS AND OPTIMIZATION, VERSAILLES,
C FRANCE), A. BENSOUSSAN AND J.L. LIONS (EDS),
C SPRINGER-VERLAG, BERLIN & NY,1982, PP. 615-643.
C
C 4) BERTSEKAS,D.P. AND GAFNI, E.M., "PROJECTED NEWTON
C METHODS AND OPTIMIZATION OF MULTICOMMODITY FLOWS",
C IEEE TRANSACTIONS ON AUTOMATIC CONTROL, DEC. 1983.
C
CCC
C

SUBROUTINE MULTIFLO1
C

IMPLICIT NONE
C
C *************** INCLUDE COMMON BLOCKS * ***************************
C

INCLUDE 'PARAM.DIM'
INCLUDE 'NETWRK. PRM'
INCLUDE 'CONVRG.PRM'
INCLUDE 'PATHS.BLK'

C
C NODE ARRAYS (LENGTH NN):

C FRSTOU(NODE) - FIRST ARC OUT OF NODE
C LASTOU(NODE) - LAST ARC OUT OF NODE
C NOTE: THE ARC LIST MUST BE ORDERED IN SEQUENCE SO
C THAT ALL ARCS OUT OF ANY NODE ARE GROUPED TOGETHER
C
C ARC ARRAYS (LENGTH NA):
C
C FA(ARC) - THE TOTAL FLOW OF ARC
C STARTNODE(ARC) - THE HEAD NODE OF ARC
C ENDNODE(ARC) - THE TAIL NODE OF ARC
C

C -- COMMODITY LENGTH ARRAYS (LENGTH NUMCOMMOD):
C
C ORGID(COMMODITY) - THE NODE ID OF THE ORIGIN OF COMMODITY
C STARTOD(COMMODITY) - THE STARTING OD PAIR IN THE ODPAIR LIST
C CORRESPONDING TO THE ORIGIN IN POSITION RANK
C NOTE: THIS SCHEME ASSUMES THAT OD PAIRS ARE LISTED IN SEQUENCE
C I.E. THE OD PAIRS CORRESPONDING TO THE COMMODITY ONE
C ARE LISTED FIRST. THEY ARE
C FOLLOWED BY THE OD PAIRS OF THE COMMODITY TWO
C AND SO ON.
C
C ODPAIR ARRAYS (LENGTH NUMOD):
C DEST(OD) - GIVES THE DESTINATION OF ODPAIR OD
C INPUTFLOW(OD) - GIVES THE INPUT TRAFFIC OF ODPAIR OD
C
C PATH ARRAYS (LENGTH DYNAMICALLY UPDATED):
C PATHID(PATH) - POINTER TO THE BLOCK DESCRIBING PATH
C IN THE PATH DESCRIPTION ARRAY
C NEXTPATH(PATH) - THE NEXT PATH FOR THE SAME OD PAIR FOLLOWING
C PATH. IT EQUALS 0 IF PATH IS THE LAST FOR THAT OD PAIR
C FP(PATH) - THE FLOW CARRIED BY PATH
C
C PATH DESCRIPTION LIST ARRAY (LENGTH DYNAMICALLY UPDATED)
C PDESCR(INDEX) - THIS LONG ARRAY EXPLICITLY DESCRIBES ALL
C ACTIVE PATHS. FOR ANY PATH, PATHID(PATH) IS A POINTER
C TO PDESCR. IT GIVES THE ELEMENT
C OF THE PDESCR ARRAY CONTAINING THE # OF ARCS IN THE PATH
C (CALL IT NUMARC). THE ELEMENTS PATHID(PATH)-NUMARC TO
C PATHID(PATH) -1 OF THE ARRAY PDESCR CONTAIN THE ARCS THAT
C MAKE UP PATH STARTING FROM THE DESTINATION AND GOING TOWARDS
C THE ORIGIN OF PATH.
C
C *************** LOCAL VARIABLE DEFINITIONS ************************

INTEGER*2 PDESCR(NINDEX)
C PATH DESCRIPTION ARRAY - CONTAINS EXPLICIT
C DESCRIPTION OF ALL ACTIVE PATHS.

LOGICAL SPNEW
C LOGICAL INDICATING A NEW PATH FOUND

LOGICAL SAME
C LOGICAL INDICATING A NEW SHORTEST PATH ALREADY EXISTING

INTEGER NODE
C NODE IDENTIFIER

INTEGER DESTOD
C THE DESTINATION NODE OF AN OD PAIR

INTEGER ARC
C DO LOOP INDEX FOR ARCS --

INTEGER PATH
C A PATH INDEX

INTEGER NUMLIST
C TOTAL NUMBER OF ACTIVE PATHS FOR OD PAIR UNDER CONSIDERATION

INTEGER ITER
C SPECIFIC ITERATION

INTEGER N1,N2
C TEMPORARY VARIABLES

REAL MINFDER
C THE LENGTH FOR A SHORTEST PATH

REAL MINSDER
C THE SECOND DERIVATIVE LENGTH FOR THE SHORTEST PATH

REAL TMINSDER
TEMPORARY VALUE FOR SECOND DERIVATIVE LENGTH OF SHORTEST PATH

REAL INCR
C TOTAL SHIFT OF FLOW TO THE MINIMUM FIRST DERIVATIVE LENGTH PATH

REAL PATHINCR
C SHIFT OF FLOW FOR A GIVEN PATH

REAL FLOW
C FLOW FOR A PATH

REAL FDER
C THE ACCRUED LENGTH ALONG A PATH

REAL SDER
C THE ACCRUED SECOND DERIVATIVE LENGTH ALONG A PATH

REAL TEMPERROR
C TEMPORARY STORAGE FOR CONVERGENCE ERROR

REAL FDLENGTH(NMAXITER)
C ARRAY OF LENGTHS OF PATHS FOR AN OD PAIR

REAL SDLENGTH(NMAXITER)
C ARRAY OF SECOND DERIVATIVE LENGTHS OF PATHS FOR AN OD PAIR

INTEGER PATHLIST(NMAXITER)
C ARRAY OF ACTIVE PATHS FOR AN OD PAIR

INTEGER COMMODITY
C DO LOOP INDEX FOR THE OD PAIR ORIGINS

INTEGER ORIGIN
C SPECIFIC ORIGIN

INTEGER I
C DO LOOP INDEX

INTEGER OD
C OD DO LOOP INDEX

INTEGER K
C DO LOOP INDEX

INTEGER SHORTEST
C THE SHORTEST PATH

INTEGER INDEX
C THE CURRENT LAST ELEMENT OF THE ARRAY PDESCR

INTEGER POINT
C POINTER TO PDESCR

INTEGER NUMARC
C # OF ARCS IN A PATH

LOGICAL MEMBER(NNA)
C LOGICAL FOR AN ARC INCLUDED IN THE SHORTEST PATH

REAL DLENGTH
C DIFFERENCE IN PATH LENGTHS FOR THE TRAFFIC

REAL D1CAL
C ARC LENGTH

REAL D2CAL
C DERIVATIVE OF ARC LENGTH
C
C ********************** EXECUTABLE CODE *****************************
C
C ***
C * INITIALIZATION
C * ***************************************

C
DO 5 ARC=1,NA

FA(ARC)=0.0
5 CONTINUE
C

DO I=1,NUMODPAIR
FP(I)=INPUTFLOW(I)

ENDDO
STARTOD(NUMCOMMOD+1) =NUMODPAIR+1
NUMPATH=O

6.

INDEX=0
NUMITER=1
DO 100 COMMODITY=1 ,NUMCOMMOD

ORIGIN=ORGID (COMMODITY)
CALL SP(ORIGIN,COMMODITY)

C
C LOOP OVER OD PAIRS OF COMMODITY
C

N1=STARTOD (COMMODITY)
N2=STARTOD(COMMODITY+1) -1
DO 50 OD=N1,N2

NUMPATH=NUMPATH+ 1
NEXTPATH (NUMPATH) =0
FLOW=FP (NUMPATH)
INDEX=INDEX+1
NUMARC=0
NODE=DEST(OD)
DO WHILE (NODE.NE.ORIGIN)

ARC=PA (NODE)
FA (ARC) =FA (ARC) +FLOW
PDESCR (INDEX) =ARC
NUMARC=NUMARC+ 1
INDEX=INDEX+1
NODE=STARTNODE (ARC)

END DO
PATHID (NUMPATH) =INDEX
PDESCR(INDEX)=NUMARC

50 CONTINUE
100 CONTINUE
C
C INITIALIZE MEMBER ARRAY
C

DO 70 ARC=1,NA
MEMBER (ARC) =. FALSE.

70 CONTINUE
C
C INITIALIZE THE TOTAL DELAY
C

CALL DELAY(DTOT(NUMITER))
C
C OUTPUT THE CURRENT INFORMATION TO DISK
C

CALL PRFLOW
C
C ***
C * END OF INITIALIZATION
C ***
C
C ***** START NEW ITERATION *****
C
110 NUMITER=NUMITER+1

CURERROR=0
C
C **** LOOP OVER ALL COMMODITIES ****
C

DO 1000 COMMODITY=1 ,NUMCOMMOD
ORIGIN=ORGID (COMMODITY)
CALL SP(ORIGIN,COMMODITY)

C
rC ~**** LOOP OVER OD PAIRS OF COMMODITY

7.

N1=STARTOD(COMMODITY)
N2=STARTOD (COMMODITY+l) -1
DO 500 OD=N1,N2

C
C CHECK IF THERE IS ONLY ONE ACTIVE PATH AND IF SO SKIP
C THE ITERATION
C

IF (NEXTPATH(OD) .EQ.0) THEN
NODE=DEST (OD)
POINT=PATHID (OD)
NUMARC=PDESCR (POINT)
DO 150 I=POINT-NUMARC,POINT-1
ARC=PDESCR(I)
IF (ARC.NE.PA(NODE)) GO TO 180
NODE=STARTNODE(ARC)

150 CONTINUE
GO TO 500

END IF
C
180 CONTINUE
C
C MARK THE ARCS OF THE SHORTEST PATH
C

DESTOD-DEST(OD)
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
MEMBER (ARC)=. TRUE.
NODE=STARTNODE (ARC)

END DO
C
C
C GENERATE LIST OF ACTIVE PATHS FOR OD PAIR
C

NUMLIST=1
PATHLIST(1)=OD
PATH=NEXTPATH (OD)
DO WHILE (PATH.GT.0)

NUMLI ST=NUMLIST+ 1
PATHLIST (NUMLI ST) =PATH
PATH=NEXTPATH (PATH)

END DO
C
C DETERMINE 1ST & 2ND DERIVATIVE LENGTH OF ACTIVE PATHS
C ALSO DETERMINE WHETHER THE CALCULATED SHORTEST PATH
C IS ALREADY IN THE LIST
C

SPNEW=. TRUE.
DO 200 K=1,NUMLIST

SAME=.TRUE.
FDER=0O
SDER=O
TMINSDER=0O
PATH=PATHLIST (K)
POINT--PATHID (PATH)
NUMARC=PDESCR (POINT)
DO 210 I=POINT-NUMARC,POINT-1

ARC=PDESCR (I)
CALL DERIVS (COMMODITY,FA (ARC) ,ARC,D1CAL,D2CAL)

FDER=FDER+D1CAL
IF (.NOT.MEMBER(ARC)) THEN

SDER=SDER+D2CAL
SAME=.FALSE.

ELSE
SDER=SDER-D2CAL
TMINSDER=TMINSDER+D2CAL

END IF
210 CONTINUE

IF (SAME) THEN
SPNEW=. FALSE.
SHORTEST=--PATH
FDLENGTH (K) =FDER
MINFDER=FDER
MINSDER=TMINSDER

ELSE
FDLENGTH(K)=FDER
SDLENGTH (K)=SDER

END IF
200 CONTINUE
C
C *** INSERT SHORTEST PATH IN PATH LIST IF IT IS NEW ***
C

IF (SPNEW) THEN
NUMPATH=NUMPATH+ 1
SHORTEST=NUMPATH
NEXTPATH(PATHLIST(NUMLIST))=NUMPATH
NEXTPATH (NUMPATH) =0
MINFDER=0O
MINSDER=0O
INDEX=INDEX+1
NUMARC=O
NODE=DESTOD
DO WHILE (NODE.NE.ORIGIN)
ARC=PA (NODE)
PDESCR(INDEX)=ARC
NUMARC=NUMARC+1
INDEX=INDEX+1
CALL DERIVS (COMMODITY,FA (ARC) ,ARC,D1CAL,D2CAL)
MI NFDER=MINFDER+D1 CAL
MI NSDER=MI NSDER+D2 CAL
NODE=STARTNODE (ARC)

END DO
PATHID (NUMPATH) =INDEX
PDESCR(INDEX)=NUMARC

END IF
C
C **** UPDATE PATH & LINK FLOWS ****
C

INCR=0
TEMPERROR=0
DO 250 K=1,NUMLIST

DLENGTH=FDLENGTH (K) -MINFDER
IF (DLENGTH.GT.0) THEN

PATH=PATHLIST (K)
FLOW=FP (PATH)

IF ((FLOW.EQ.0.0).AND.(K.GT.1)) THEN
NEXTPATH (PATHLI ST (K-I)) =NEXTPATH (PATH)
GO TO 250

END IF

cl

PATHINCR=DLENGTH/.(SDLENGTH (K) +MINSDER)
IF (FLOW.LE.PATHINCR) THEN
FP (PATH) =0.0
PATHINCR=FLOW

ELSE
FP (PATH)=FLOW-PATHINCR

END IF
INCR=INCR+PATHINCR
TEMPERROR=TEMPERROR+FLOW*DLENGTH/FDLENGTH(K)

POINT=PATHID (PATH)
NUMARC=PDESCR (POINT)
DO 220 I=POINT-NUMARC,POINT-1
ARC=PDESCR (I)
FA (ARC) =FA (ARC) -PATHINCR

220 CONTINUE
END IF

250 CONTINUE
C
C
C *** UPDATE THE ERROR CRITERION ***
C

CURERROR=AMAX1 (CURERROR, TEMPERROR/INPUTFLOW (OD))
C
C *** UPDATE FLOWS FOR SHORTEST PATH ****
C

FP (SHORTEST) =FP (SHORTEST) +INCR
POINT=PATHID (SHORTEST)
NUMARC=PDESCR (POINT)
DO 300 I=POINT-NUMARC,POINT-1

ARC=PDESCR(I)
FA (ARC) =FA (ARC) +INCR
MEMBER (ARC) =. FALSE.

300 CONTINUE
C
500 CONTINUE
C
C ***** END OF LOOP FOR OD PAIRS CORRESPONDING TO COMMODITY
C ***** UPDATE TOTAL DELAY
C

CALL DELAY(DTOT (NUMITER))
C
1000 CONTINUE
C
C CHECK IF THE # OF ACTIVE PATHS EXCEED THE ALLOCATED NUMBER
C

IF (NUMPATH.GT.NNUMPATH) THEN
WRITE(6,*) 'MAX # OF ALLOCATED PATHS EXCEEDED'
STOP

END IF
IF (INDEX.GT.NINDEX) THEN
WRITE(6,*)'DIMENSION OF PDESCR ARRAY EXCEEDED'
STOP

END IF
C
C OUTPUT THE CURRENT SOLUTION TO DISK
C

CALL PRFLOW
C
C ***** END OF ITERATION *****
r

C : .. .*** IF THE ERROR IS SMALLER THAN TOL, OR THE LIMIT ON
C THE NUMBER OF ITERATIONS IS REACHED RETURN
C ELSE GO FOR ANOTHER ITERATION
C

IF ((CURERROR.LT.TOL) .OR. (NUMITER.EQ.MAXITER)) THEN
WRITE (6,*) 'FINAL STORAGE OF PATH DESCRIPTION LIST'
WRITE (6, *) INDEX
RETURN

ELSE
GO TO 110

END IF
C

END
C ************** END OF MULTIFLO1 ****************

