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1. A DELAY-AWARE CONTROL DESIGN

1.1 Main Equations

The physical network follows the ordinary continuous-time
LTI model,

ẋ = Acx(t) +Bcu(t), (1)
where Bc = [B1

c , . . . , B
n
c ]. However, if there is no delay

present in the network, the following sampled-data model
is applied for the purpose of control designs.

x[k + 1] = Ax[k] +Bu[k], (2)
where

A = eAch and B =

∫ h

0

eAcsBcds. (3)

The delay-aware ANCS co-design model leads to (4),
x[k + 1] = Ax[k] +B1U [k] +B2U [k − 1], (4)

where

Bij1 =



∫ h−τ ′
ij

0

eAcsdsBic if j = g(i), (5a)∫ h−τ ′
ij

h−τ ′
i(j+1)

eAcsdsBic, if j 6= g(i), (5b)

Bii2 =

∫ h

h−τ ′
i1

eAcsdsBic, (6)

and Bij1 ∈ RN×1 is the coefficient of uij [k] and Bii2 ∈ RN×1

is the coefficient of uig(i)[k − 1] in (7).

? This work was supported in part by NSF grant ECS 1054394.

Ui(t) =


uij [k] if t− kh ∈ [τ ′ij , τ

′
i(j+1)), j < g(i),

uig(i)[k] if t− kh ∈ [τ ′ig(i), h), j = g(i),

uig(i)[k − 1] if t− kh ∈ [0, τ ′i1),

(7)
The extended form of (4) is given by

W4h[k + 1] = A4hW4h[k] +B4hU [k], (8)
where

W4h[k] =



x[k]
U [k − 1]
x[k − 1]
U [k − 2]

...
x[k − 5]
U [k − 6]


, B4h =



B1

IG
0
0
...
0
0


,

and A4h ∈ R6(N+G)×6(N+G) is

A4h =



A B2 0 · · · 0 0 0
0 0 0 · · · 0 0 0
IN 0 0 · · · 0 0 0
0 IG 0 · · · 0 0 0

...
0 0 0 · · · IG 0 0

 . (9)

1.2 Stability Analysis

Lemma 1. (Yuz and Goodwin, 2014) The matrix A in (3)
is non-singular and all of its eigenvalues, provided that Ac
in (1) is Hurwitz, are inside the unit circle.

Proof. Denoting µi as the i-th eigenvalue of A, it follows
that µi = ehλi , where λi is the i-th eigenvalue of Ac. If αi =



Re(λi) and βi = Im(λi), it follows that µi = ehαiejhβi . If
Ac is Hurwitz, αi is negative which in turn implies that
0 < |µi| = ehαi < 1.
Proposition 2. If the system (1) is stable, A4h is Schur-
stable with N eigenvalues coinciding with all eigenvalues
of A and the remaining ones at zero.

Proof. The structure of A4h in (9) implies that A4h can

be written in a block diagonal form as A4h =

[
∆1,1 ∆2,1

∆3,1 ∆4,1

]
,

where ∆4,1 ∈ RG×G is a zero matrix in the right lowest
corner. It can also be shown that ∆2,1 = 0. Hence, the
eigenvalues of A4h include G zeros (Demmel, 1997). We

now further partition ∆1,1 =

[
∆1,2 ∆2,2

∆3,2 ∆4,2

]
, where ∆4,2 ∈

RN×N is also a zero matrix. Therefore it follows that
A4h has an additional N zero eigenvalues. By repeating
the same process, we obtain the sub-partition ∆1,9 =[
Ah 0

[IN 0] 0

]
. Consequently, ∆1,10 = Ah whose eigenvalues

include the N eigenvalues of A and additional G zeros. The
complete process yields a total of N eigenvalues which
correspond to those of A and all remaining 5N + 6G
eigenvalues at zero.

1.3 Controllability Analysis

Lemma 3. (Liu and Fong, 2012) The time-delay system

x[k + 1] =

dx∑
i=0

Aix[k − i] +

du∑
i=0

Biu[k − i],

is completely controllable if and only if

Y =
[ dx∑
i=0

λdx−iAi − λdx+1I

du∑
i=0

λdu−iBi
]

has full rank at all roots of

|
dx∑
i=0

λdx−iAi − λdx+1I| = 0.

Proposition 4. If (Ah, Bh) is controllable, (A4h, B4h) is
stabilizable.

Proof. First, we restate the sufficient condition in terms
of the criterion given in Lemma 3. For (4), du = 1 and
dx = 0. Hence Y1 =

[
A − λI λB1 + B2

]
, where λ is the

solution to the equation |A− λI| = 0. This means that λ
is an eigenvalue of A. But from Lemma 1, we know that
λ 6= 0. Then, in (8), we have dx = 5 and du = 6. So
Y2 =

[
ν5A − ν6I ν6B1 + ν5B2

]
, where ν is the solution

to the equation |ν5A − ν6I| = ν5|A − νI| = 0. This
means that either ν = 0 or ν is an eigenvalue of A which
is non-zero. If ν is zero, Y2 has not full rank. From the
sufficient condition, we know that for all ν as eigenvalues
of A,

[
A − νI νB1 + B2

]
has full rank. Hence, rank of

Y2 = ν5
[
A − νI νB1 + B2

]
for eigenvalues of A is equal

to the rank of
[
A − νI νB1 + B2

]
which is full. Thus,

the extended system (8) is not completely controllable;
however, its non-zero eigenvalues, corresponding to Ah,
can be altered using a proper control signal U [k] and this
makes (A4h, B4h) stabilizable.

2. EMPLOYING OUTPUT FEEDBACK

2.1 Main Equations

When the states are not accessible, the control input is
modified as

U [k] = K
(1)
0 xo[k] +K

(2)
0 x̂o[k] +G0U [k − 1], (10)

where the estimated observer state vector x̂o is calculated
using (11) as

x̂o[k] = Axo[k − 1] +B2U [k − 2] +B1U [k − 1]

+L(y[k − 1]− Cxo[k − 1]). (11)
By using an appropriate output matrix C ∈ Rs×N , we
determine the output vector y ∈ Rs as

y[k] = Cx[k]. (12)

The observer error dynamics is obtained as
x̃[k + 1] = (A− LC)x̃[k], (13)

where x̃ = x− xo is the observer error vector.

2.2 Stability Analysis

Theorem 5. The closed-loop output feedback control sys-
tem consisting of (4), (10) and (11) is stable.

Proof. To obtain the closed-loop dynamics of the overall
system, we first rewrite (4), and then by using (10) and
(11):

x[k + 1] = Ax[k] +B2U [k − 1]

+B1

(
K

(1)
0 xo[k] +K

(2)
0 x̂o[k] +G0U [k − 1]

)
= Ax[k] + (B2 +B1G0)U [k − 1]

+B1K
(1)
0 xo[k] +B1K

(2)
0 x̂o[k]

= Ax[k] + (B2 +B1G0)U [k − 1] +

B1K
(1)
0 xo[k] +B1K

(2)
0

(
Axo[k − 1] +B2U [k − 2]

+B1U [k − 1] + L(y[k − 1]− Cxo[k − 1])
)

= Ax[k] + (B2 +B1G0 +B1K
(2)
0 B1)U [k − 1]

+B1K
(1)
0 xo[k] +B1K

(2)
0

(
A− LC

)
x0[k − 1]

+B1K
(2)
0 B2U [k − 2] +B1K

(2)
0 Ly[k − 1]. (14)

Using (12) and the fact that x0 = x − x̃, (14) can be
rewritten as

x[k + 1] =Ax[k] + (B2 +B1G0 +B1K
(2)
0 B1)U [k − 1]

+B1K
(1)
0 (x[k]− x̃[k])

+B1K
(2)
0

(
A− LC

)
(x[k − 1]− x̃[k − 1])

+B1K
(2)
0 B2U [k − 2] +B1K

(2)
0 LCx[k − 1]

=
(
A+B1K

(1)
0

)
x[k] +B1K

(2)
0 Ax[k − 1]

+ (B2 +B1G0 +B1K
(2)
0 B1)U [k − 1]

+B1K
(2)
0 B2U [k − 2]−B1K

(1)
0 x̃[k]

−B1K
(1)
0 x̃[k − 1]. (15)

Similarly (10) can be rewritten as



U [k] =K
(1)
0

(
x[k]− x̃[k]

)
+K

(2)
0

(
Axo[k − 1] +B2U [k − 2] +B1U [k − 1]

+L(y[k − 1]− Cxo[k − 1])
)

+G0U [k − 1]

=K
(1)
0 x[k]−K(1)

0 x̃[k] +K
(2)
0 Ax[k − 1]

−K(2)
0 Ax̃[k − 1] +

(
K

(2)
0 B1 +G0

)
U [k − 1]

+K
(2)
0 B2U [k − 2] +K

(2)
0 LCx̃[k − 1]

=K
(1)
0 x[k]−K(1)

0 x̃[k] +K
(2)
0 Ax[k − 1]

−K(2)
0

(
A− LC

)
x̃[k − 1] +

(
K

(2)
0 B1 +G0

)
U [k − 1]

+K
(2)
0 B2U [k − 2]. (16)

Defining X[k] ≡
[
x[k]T U [k− 1]T x̃[k]T

]T and using (13),
(15) and (16), and by using the fact thatK(1)

0 +K
(1)
0 = K0,

we obtain the closed-loop dynamics as[
X[k + 1]
X[k]

]
= H

[
X[k]

X[k − 1]

]
, (17)

where

H =


A+B1K0 B2 +B1G0 −B1K0 0 0 0

K0 G0 −K0 0 0 0
0 0 A− LC 0 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0


The characteristic equation for the system (17) can be
calculated as

∣∣∣∣λI − (A+B1K0) B2 +B1G0

K0 λI −G0

∣∣∣∣× |λI − (A− LC)|

×

∣∣∣∣∣λI 0 0
0 λI 0
0 0 λI

∣∣∣∣∣ = 0 (18)

As seen from (18), the closed-loop system poles of the
delayed power network with output feedback are the same
as the state accessible case with the additional poles
coming from the observer dynamics and additional poles
at the origin. It was shown in Section 1 that the state
accessible case is stable. We also showed that observer
dynamics are stable. Therefore, the closed-loop system
with output feedback is stable.
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