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ABSTRACT

An aggregate feasibility set for large electric power systems is
derived. The feasibility set consists of the set of substation loads that
can be served in steady-state with the available generation without
overloading the transmission lines or transformers. The derivation is based
on an aggregate continuum model of large power systems that is obtained from
the DC load flow model.
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Abstraot. An · ggreate feasibility set for large eleotrio power systems is derived. The
feasibility set oosists of the sot of substation loads that oan be served in stoedy-
state with the atvailble goneration without overloading tkh transmission lines or
transformers. The derivation is based on an aggregate continum nodoel of large power
systems that is obtaind' from the DC load flow model.
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Il'MODUCIO0N AGGB GATE DC NODEL OF E18 POWER SYtS]

An integrated methodology that takes into On the Continum VieLpoint
aooount generation, transmission. and distribution
systeo simultaneously would be a useful planning The aggregation metohd inolves substituting a
and evalution tool for eleoottrio tilitie. Such a geographical description of the power system for

etheodology. based on the evalution of a hierarchy the topologisal (i.e.. network-based) one. Lot the
of attributes that deosribe the supply of and the goographioal domain. D. over hioch the power
demand for 1oeletricity independently from each systm extend, be covered by a square grid. The
other, has been presented in a series of documents, spaings of the grid are of length A , and the
Dersin (1980).Dersin and Levis (1982a). and Dersin elemoentary shes of the grid are roferred to as A-
and Levis (1982b). A key issuo in this work has oolls. On each A-ell, ooll variables are defined
been the oharaoteriionti of eleotrio energy in te.ms of the network variables that refer to
service through the introduction of the feasibility branches and nodes contained in the ooll. The
set. This was defined as the set of steady state network description is thereby replaced by u
substation loads that can be served with the aggregate description in terns of eoolls variables.
available generation resources without overloading The more nodes and branches each A-ooll oontains.
the transmission lines or transformers. The the los detailed the description. Therefore, tho
feasibility sot ·an also be viewed as a projection aggregation level is defined a the average amber
of a general security reglio in the paeoo of loads nodes in a A-otll. The soaleo defined as the ratio
and generation output levels (ytilosst· et al, of h. the greatest distance between any two points
1975s Fisohl et al, 1976s Gallons, 1977! BuanaLa, in D, to the oell side A, is an indicator of the
1980) on the pasoo of loads. number of A-oolls needed to cover the power system

and, therefore, of the . mber of aggregate
An ezplioit description of -the feasibility variables. The proposed approaoh is applioable to

set, based on the DC load flow model, has been very largo systems where, simultaneously, the scale
presented in Derain and Levis (1982a) in which the is largo and the aggregation is reasonably highs
requirements of load feasibility reduced to the the ratio A/h will be small and linear expansions
requiremnt that a system of linear inequalitieos wi1 be allowed.
have a solution. Eoweve r the total number of
conditions is 2(w+N)I/(nl) , where N and a are the To simplify the. notatio, it will be oonveniAet
numbor of nodes and branches, respectively. The from now on to take the length h as the unit of
number of osditioss can be reduced substantially, distance. This is equivalent to representing the
but not enough, by taking into *ooount that at many power system os · map in *sh a way that a physical
nodes there is neither generation nor load. loegth h oorresponds to a unit length on the map.
Therefore, an aggregate desoription of the Then for a largo system, modeled with a large
feaseibilty sot was sought which would be a good scaleo the mp representation of the side of a A-
approzination when the ystems oonsidered are oll i much smaoller than 1. Consequently, from
large. To that effeot, a· ontinuu model that now on, A will be ued instead of A/h.
corresponds to the DC load flow model is
introduooed. Whil the use of oontilsm models for The cell variables, obtained by aggregating the
deseribing larg scale systems is not now -there network variables over the respeotive cells, can be
is a long history. -this particular formulation viewed as resulting from the discrotistion of
has· been developed for the explioit purpose of continuous point functions. Namely, instead of
detriving an aggregate, *rotxiut description of dealing with a tableau of numbers - one number for
the feasibility set. each A-cell - one can deal with a oontinuous

fumtiql of the looation (z,y) whose average over
the ktA A-cell is the kt' entry of the tableau.
Dealing with oontinuous fuctions rather than
network data makes it possible to circumvent
omrbiratorial stops.

hs work was *u orted by the Elootric Energy
SyStem Division of the . S. Dept. of Energy under DefiniSg aggregate load and generation
Contract No. ACOi-77-129033. variables is rather straightfowardt an aggregate



desription of the transmission is more subtle. I - grad 6 (5)
The load aggregate variable .(A) assooia·td with a
given A-soll it defined as the ratio of the total
load contributed by the nodes in that ooll over the and oonsiderinlg to be constant within seah A-
cell area: oell. Denoting by (r 2 ,r,) and (so s) the

ooordinates of R and S. respectively, and by
,(A) - (I Li)/A' (1 (IzJ) the components of ,. it follows:

MA() - ( L A)/ S

i6R- 6s = x(I(· - r) + 9 y(sa- rs)]A + o(A) (h)

LAkewis· o the oell variable g(A)o whioh refers to
the generated output, is defined as The constitutive relation of the DC model, whieh

relates the real power flow f_ in a branch a and
the voltage angles &J, 6 at its entremity nodes

g(A) - (I G} iA (2) j.h. is:

The oontinum viewpoint implies that M(A) d gA) () k
should be regarded as disorotinatiton of density
fusotions (x.y) and g(Zy). whoro bm is the sueseptanos (Sullivan.1977) of

branoh (la megawatts). The above definitions of i
Transmission Modeling from the Continuum Viewpoint and . and eq.. (7) imply a linear relation between

tand ., to within o(A) terms. This relation is
By rlying on the analogy between the DC load formally analogous to Ohn's law at a point (Kras

flow equations and the relations between oureats and Carveor 1975), and involves a matrir ,. defined
and voltages in a purely resistive oircuit (Blgerd, on each A-oell, as the followiAg theorem indioat*s.
1971) it is possible to define quantities whioh are
oontinuum equivalents of the flows f and the Theorem 1: The constaituti-v relation (7) of the DC
voltago angles 6i. flow model, which relates branoh power flows and

node voltage angl·es, ca be eopresoad in a form
In each A-ooll, a valuw for the ourrnt density analogous to Ohb's law at a point, in terms of Coll

i(A) is defined in torms of the branch power flows gllroeate variables:
f_ oorresposdins to that oell, as follows: If a
branch a is totally or partially contained in a A-
ooll (Fig. 1). its costribution to the 1(A) veotor i - 1 (8)
for that coll is defined by:

here ternms that vanish with A are ngleoted. The
fi * s (a) f /A (3) ooaduotanoo matriA a takes a value on acoh A-sell,

s · l 1S~m m whioh is defined in torms of the disorete
transmission parameters in that ooll by:

iL Rs- (y) f /A &4y Ii'mS on m as 003 css e b~ SiA 0i nsOoa

where is the power (in messwatts) flowings I- 
tou.r1oo *t n . S. ItR S, are defined in 
Figure 1, (s) is equal to +1 or -1. dep o sds n la am
"on whether the arbitrary orientation of branch a

(used to define i) coioides with the direction of (9)
inLrossing or decreasing xi e3(y) has the
oorresponding moaning with respeot to the y where b· is the suseoptaneo of the portion of
direotion. branch o in the cellt i . is the length of braneh

a relative to A (thus, a diansioless number)
The total density veotor 1(A) for a A-sell is Pm - SI/A and is the atngle that defines the

obtained by addiag up the vectors produed by all orientation of branch a. i.e..
branohos a in the oell.

. .tan- 1 · s -r5- $, t2

if branch coonnects nodes R and S.

The proof is given in Der·in, (1980) oh. 5.

The DC model includes the flow conservation law.
.... cao · otinum eapression of whioh oan be given by

div(li) - (y) - .) -(y) (10)

It can be shown (Dersin 1980) that in the limit
Filgur 1. Agregation Procedure within a of an nfinitely large system (A-),. both

formulations, the discrete and the- continuous.
soinsidoe. A complte continur formlatios of theThe node voltago angles 6 are now appronimateadbyo cn o b gelno:

assuming that they vary linearly within the A-cell
as functions of the position coordinatest or. Theorem 2: In the limit of an infAinitly large
equivalently, by setting the electrical field system (a-M 0), the DC load flow problem approaohes

the following boundary value problem in the



funotion &(z.y): Comparisos etoween Disorate and Continuous Solution

The aggregate variables bhve bees defined so
div.(r gad 6) - X(xy) - g(x.y) as to be oloso to the. network variables they

·pproximate whea thbo level of aggregation is at its
(xUy) D° (11) lowest (oes node per Cell) and the scale is large

(small A). This m*o·a that i x and t aro closo to
-a ) X(z.Y)A oloseo to Li and g(xzy) celose to

The anasslogos property for the voltage angleos
srad a a_ O (X J) a OD (12) & and their oostinuous approximation &(z) can be

proved directly, by comparing the partial
difforeotial equation (11) with the discrete load

The following oompatibility oondition. whioh flow equations in the oass of the lowest
expresses the equality of load and generation, must aggregation level und for a· peoial olass of
hold: oetworks that consists of rectanguplar grids. The

physical network oso thlo be used to discretise the
PfD .A(x.y)- - O(x.y)ldxdy - o (13) partial difforontial equation* i.e.. to replace it

by a system of finite-difforonoo equations, whioh
is found to be precisely the system of the DC load

The matrix u is the looatiot-dpend t flow eqtion
Conduoctane, as defined by (9) from the discrete
datas the quantities (x,y) and g(x.y) str the load Th low aggregation level is oonsidered first
and generation densities. respectivelyl the with esac A-Coll ootaininS only oe nod, (Fi..
geographical domain which contains the power systm 2). UsAing the notation N.,. S. 1 (North, West,
is denoted by D (with interior D° ad bound·ry D)s Soth. East) to refor to the nodes aoighboring a
the outward normal to the boundary D is denoted by given nod 0, the result for the homogeneous
n. isotropic aso oan be stated as follows.

Proof: Dersin (1980).oh. 5. Theorem 3: For the network of Fig. 2, where all
branches hove the *sae susoept·nee b. the equtions
satisfied by the node variables &i are:

Isotropy and Hoosenetoty

If tu oe(z.y) matrix oorrponds to an isotropic a 2o0+6sz N-20+6s
modiu, i.e., if A A

i(zy) - 4r(zy) I
- CO) - g(O)] (16)

wheoroe I s the identity matrix, then (11) reduoes
to: where [g(O) - )(O)]A' is the injoetion at node O.

a'+ ! o6+ a a r+- afft-
\a., SYS ax ax a ay 

(14). (s.y) is Independent, of the location, the I I I( I
partial differential equation becomes PoissonIs: I I I

+) i nd t(1) helXs.y) - y)l (1) I 

partiat differyeonti tio o.q gut 2 owest Aggregation evelPoon': 

, o for (x.y) sa D quatio (16) Is the finite-difference

approximation, with stp A, of the Poisson equation
so that the classical Neuman problem is obtained. (15). Accordingly, the following bound holds:
A straligtforward example of a notwork that leads
to an isotropic tedilu is provided by a square j6(xy 0 ) 6 01J ( C AsIlog Al (17)
grid. )]

whe C is a constant independent of A.
eore general networks can also give ris to

Isotropic ad sometimes homogeneous- continua. Proof: See Dersin (1980).* Thq bound (17) is
when certain statistical properties occur which specific of the Poisson equation (Wedlasd, 1979).
rfr t t the d ity of to trnsmisson (oin miles
por square milo) sad the orientation of Consider now a higher aggregation loevel when esac
tranission lines. These properties involve (1) A-ll wold contain s nodes instead of one. The
variation of the transmission density (in mle·s per roezlt of th rit 3 · sp t, of the Pase ie s idqutedo
squareo ilth )t aroa ouonsta t as the aggrotegation i ord in, the foiwoin od olds:w oorrollary.
level ineress (2) uifoo distribultio of branchd·
orientatrions. e og osiotro cse is Corrollum 3: For a ret ler grid n eork wh r
impertant boease it leads to explicit results on th aggrega tiFon laevenog s os su chlos that e A-
the feasibility ost.



sell oonetaan t · node·. the fo ing bound holds ( ) and. ( are rspootivly the
for the rror between the value of the oontinuous oordnates of j , t extremities of branoh
point function & at any point (z.y) of the A-cell n. Thus, the P function satisfies the homogseneou

and the arithmetio average of the node variables in equation
the tell.

div (E grad P).- O (21)
k·

Uxy)- s < ) C log C (18) An explicit assumption is now made about the scale
-k k I and the ·agregation level: the soale is large, · o

that A i small* as compared to the estent of the
Te ostant C is idepdt of A a () deots domain D and the aggregation level is high enoughUho ousteat C is independent of A and 0(A) denotes

so that the length A of a branch is smaller than A.quntity vhioh vanishes vith a.

To translate those assumptions intoThe proof relies on theorem 3 and the triangle simplifiostions i th analytioal expression for
inequality. hes approximation results can be the soltion P(.ys ) the two branch extremities
extended to the general (ihomog ous, x.) a (x y) rde thouger h the rtee
a aiottopio) ease (Dertin, 1980). (z ,y) and (xk y ) are mdeled as thouh they yore

iXnltoely close to *ehk other. Then the distaneoo
p is mode to go to ero while the intensity F of
the souroce goes to infinity in Sch a way .that the
produot Fp remains oonstante say X. Then, th
function P(x.y) reaches limit wkhioh is the
potential oreated by a dipole (Webster, 1957) of
moment N located ar the limit loeation (.q) and

Thb feasibility set was introduoed in Derin dirctd along the straight line from source t
and Levis (1982a) to denote the set of substation sir.otod A os te rtrcsl t lsio eros oarro to
load than on be seroved'in st·ready tat with the s . t ss jt ds 
available generation resourooes withot overloading oat. r ad r, tod to a ooo value r (Fig. 3).
the transmission lines or transformers. Then the and P roeache a limit. For an arbitrary number v of
distribution of power flow through the network is singulaities
represonted by the DC load flow (lSllivan. 1977)
thns the feasibility set oan be desoribed by a 1 / (22)
system of inequalities whioh are linear in the real P(3x) 2XV (m m/rm) + C (22)
bus loads. Therefore, the set is a soowvo
polyhedron in the space of substation load vectors.
Tho defining inequalities are: The parameters Nz , s ,....NX and Cs in the

dipole approximation are determined to within a
· (tP)L, - tP )+ arbitrary multiplier by requiring P(x,y) to vanish

on the nodes of the subost A.
isA ieA

< .Iltl lbPP ) + * )*('
_ :- ·.. . (r)eC )

for t > 0 aid t < 0 (19)

where (1) L is the real bus load at bu i (in 
megaatts). is the maximum generating oapaioty 
at bus i (in megawatts). and u is the maximum
phase angle bound across branoh as (2) A is a
subsot of the set of nod indiooes and B is a subset
of the sot of branch indiooes (3) For seao
compatble ohoieoo of A and B. the ooefficients P
and (z) are determined as the solution of · Figure 3. Dipole model of a branch
linear algebraie systemt furthermore, th P
ooefficients constttute the solution of a DC load In the homogeneous-isotropio oase. P(z.y) is a
flow in the network with the branches of B removedt harmoni function. Therefore, thero exists an
(4) The factor t is arbitrary and can be positive analTtic function of the oomplex variable z-z+iy of
or negative (S) the notation ( ) refers to the hich the imaginary part is vP(zy) and (zxy)
positive part of that quntity. its real part. Lt the braneh sot B oonsist of

one single branoh, modeled as a dipole and let the
The · ggregate desoription of large power boundary aD of the domin be far enough from tho

systems will be used to derive an aggregate dipole looation t. If the dipole has moment N and
feasibility set. First oneo obtains ooll variable orientation y, the oorresponding funotions P and a
Pk which aro approxmations of the ooeffioints P are obtained as follows:
in (19). A continuous function P(z.y), tie
solution of the continuum DC load flow
oorespond nlg to the disorete DC load floa of whioh N eiT

Pi is the solution, satisfies the follo g ( ) + fl P(loy) w i + C
equation:

1 - C (23)

ho re C is an arbitrary omplex constant. Por the

-&x(-s2y-yk)l (20) derivation, soo Dersin (1980),oh 6.

Once the P(z.y) function is knowa. the a(sy)
with boundary oonditions as stated in Theoren 2. function oan be obtained from it by integration.
In (20), & refers to the Dire impulse functions using the Cauohy-Riomaun equations. From this



property, it an be shown that the a(xy) function oonditionas theos oan be written as follows·:
approximates the 4(sL) ooeffioients in (19) in th:
same way as P(,y) approximate· the P K

(oef .t P1 kA)- t 1+ Sk(A)) A
hea the assumptions of homogeneity and k-l

isotropy are removed, a functiosn (x.y) oan still
be defined, whioh is related to P(x,y) by a system 
of two linear first-order partial difforential
equations. In the oase of ·seeral dipoles (V>l),. - I ) j
the analytis funotion is obtained as a summation
over all the dipoles, analogouly to (22). (28)

The Feasibility Conditions (ho ·loneous-isotropic
cs· ) vhereo P is the average of the funCtion P(xy)

gives by eq. (25) over all k.
Theorem 4: In saeordane with the continuous-spate
modeling of load, generation and the node and Sineo aonh dipole distribution produes a pair
relio vatriables. the feasibility conditions are of oonditions (28) there are an infinity of linear
sodeled by the followinlg intgral inequalities. nequalities suc u (28) in the lumped loads

X(Jk). This implies that the feasibility sot is
now a ooaeth oonvex set instead of a convex

Ij ((x.y)[tt P(x,y)1-s(xy)tP(xy)]J)dxdy polyhedron. However, not all ooutraintE involve
all loads necessarily: it may occur tht P is zero
for some oells k. Therefore, there may be points
of the boundary where the tangent hyperplane is not

tk) MINj I t > 0 t CO (24) defineod the set boundary is then only pieoewis·
continuously differentiable.

k-1

Ome such pais of inequalities arises for eaoh CONCLUSIONS
oboice of an integer y where 0 < p <F qS a nod
subset AC(l...,q) with nsodetss distribution of The formulation of the DC load flow problem as
' dipoles located at r with given a boundary problem for a partial differential

orientations YI ... T and moments N,....N to boe ·equationa the coefficients of whiok are derived
determined. from the discrete transmission data. is used to

derive diretly ea aggregate feasibility set in the
Gives A and the dipole distribution. the space of lumped load ver·tors. This feasibility set

function P(x.y) is expressed by: is an aggregate in that no distinction can be made
between load patterns whioh differ only by the
internal distribution of the load among busos of

1eykr the same A-ell. The method is diet that all
P(y~) '2 Im * C, (25) the nooeessary oaloultions are performed at the

a ggregat level from aggregsat data: the method
oes not involve deriving the eoxat foasibility
onditions and the somehow aggregatingl them.

The p dipole moeunts NY and the ooastant C, are
determined to within an arbitrary multipler t by The rothod applies to lrgo power networks
roquirnlg that P vanish on the f points z - at of that extend over largo enough geographical domain
A. Accordingly. P(x.y) is deterisned to vithis an so that a square glad oan be superimposed on that
arbitrary multiplir t. domain with most A-oells not empty and with A mall

with rspoeot to the dimensions of the domain. These
Equation (25) is valid only if the dipoles are conditions permit the application of the oontinuum

far enough from the boundary OD so that boundary viwpoint, namely, the substitution of analytical
condition (Dp/n0 - 0) is automtiocally satisfied formulations for oombinatorial (i.e., graph-
if this is not the oass, a harmico function U(x,y) theoretic) ones.
must be added to fulfill the boundary condition.

The variable is a bound on the algnitude of _]_B]CES
a difference of voltage phase angles. If branch m-
oonneots nodes j and k, the oonstraint is: Banakar, I. M. (1980). Analysis and

oharacterization of saneral security resions in
<J- p2 ower networks. Ph.D. Thesis. McGill Unlivrsity,

Mon (26) Motreal. Canada.

The bound is modeled by a scalar positive Dersins P. (1980). 0n steady-state load feasibility
function ¥(xy), whioh sots as a bound on the in an eleotrio power network. Ph.D. Thesis. Report
magnitude of the eleotrical field: LIDS-TE-991. Lab. for Information and Deoision

Systemo. N.I.T. Cambridgl, MA.

ma Dersn. P.. *ad A. i. Levis (1982). Feasibility
over a s.t-.Iai|l - 1 seot for steady-state loads in eleotric power

networks. IBM Trans. on Power Apparatus and
9Systems PAS-lOl, "p. 60-73.

< max 9(.y,.) - p(xy) (27)
over a Derain. P., and A. B. Levis (1982).

Charaoterization of electricity demand in a power
As pointed out earlis, tnhe aggregate ~ system for service suffioiency evaluption. European

feasibility set is defined in X where K is the 1. of Operational Research. Vol. 1l, pp. 255-268.
anmber of oells that oontain loads. The expression
(24) for the feasibility ooaditios is a Theory: A Introduction. Graw-ill. New York.
oontimonus-spaeo approximation of the tiaggregate
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