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ABSTRACT

An aggregate feasibility set for large electric power systems is
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Abstract. An aggregate feasibility set for large electric power systems is derived. The
feasibility set oconsists of the set of substation loads that caa be served in steady-
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INTRODUCTION

An integrated methodology that takes iato
scoount generation, transmission, and distributiom
systems simultaneously would be a useful planning
and evaluation tool for electric utilities. Such a
methodology, based on the evaluatioa of a hierarchy
of attributes that describe the supply of and the
demand for electricity independeatly from sach
other, has been presented in a series of documents,
Dersin (1980),Dersin and Levis (1982a), asnd Dersin
and Levis (1982b). A key issue ia this work has
been the characterization of electric energy
service through the introductiom of the feasibility
set. This was defined as the set of steady state
_substation loads that ocamn be served with the
available generation resources without overlosding
the transmission 1lines. or traasformers. The
foasibility set can also be viewed as 3 projection
of a general seocurity regioa in the space of loads
and gemeratiom output levels (Hnyilicza et al,
19753 Fischl et al, 197635 Galiana, 1977; Banskar,
1980) om the space of loads.

An explicit description of the feasibility
set, based on the DC 1load flow model, has been
presented in Dersin and Levis (1982a) ia which the
requirements of load feasibility rxeduced to the
requiremsnt that s system of linear inequalities
have a solutioa. &nn:; the total aumber of
conditions is 2(n+N)!/(al)”, where N and n are the
number of nodes and branches, respectively. The
number of comditioms can be redused substantially,
but not enough, by takiag into accouant that at many
nodes there is neither generatiom nor load.
Therefore, am aggregate description of the
feasibility set was sought whioh womid be a good
approximation vwhen the systems coasidered are
large. To that effect, a coatinuum model that
corresponds to the DC 1load flow model s
introduced, While the use of continuum models for
desocribiang large scale systems is =ot new —there
is a loag history, —this particular formulatioa
has been developed for the explicit purpose of
deriving aa aggregate, approximate description of
the feasibility set.

*This work was supported by the Electric Energy
Systems Division of the U, S. Dept. of Energy under
Contrsect No. ACO1-77-EI29033,

AGGREGATE DC MODEL OF THE POWER SYSTEM

On the Comtinuum Viewpoiat

The aggregation method iavolves substitutiag a
geographical description of the power system for
the topologisal (i.e., network-based) one. Let the
geographical domaia, D, over which the power
system extends, be coversd by a square grid. The
spacings of the grid are of lemgth A , and the
eslementary meshes of the grid are referred to as A~
cells, On each A-cell, cell variables are defined
in terms of the network variables that refer to
branches and nodes ocontained ia the cell. The

_network description is thereby replaced by aa

aggregate desoription ia terms of cells variables.
The more nodes and braanches each A~cell coatains,
the less detailed the description. Therefore, the

-aggregation level is defined as the average number

nodes ia a A~cell. The scale, defined as the ratio
of B, the greatest distance betweenm any two points
in D, to the oell side A, is an indicator of the
aumber of A-cells needed to cover the power system
and, thersfore, of the number of aggregate
variables. The proposed approach is applicable to
very large systoms where, simultaneocusly, ths scale .
is large and the aggregation is reasonably high;
the ratio A/h will be small and linear expansions
will be allowed.

To simplify the notatioa, it will be coavenieat
from now on to take the length h as the unit of
distance. This is equivalent to represeating the
power system om & map in such s way that a physical
length h corresponds to a umit leagth on the map.
Then for a large system, modeled with a large
soale, the map represeatation of the side of a A-
cell is much smaller tham 1. Consequently, from
fov om, A will be used instead of A/h. '

The cell variables, obtained by sggregating the
network variables over the respective cells, can be
viewed as resulting from the discretization of
continuous poiat funotions. Namely, instead of
dealing with a tableau of numbers — one number for
each A-cell - one can desl with a ocontinuous
tmu? of the locatiom (x.y) whose average over

A-cell is the kt entry of the tableaun,
Duun; with oontinuous functioms zrather than
network data makes it possible to ocircumvent
combinatorial steps.

Defining aggregate 1load and generation
variables is rather straightforwards am aggregate




deseription of the transmission is more subtle.
The load aggregate variable A(A) associated with
given A~cell is defined as the ratio of the total
losd contributed by the nodes in that cell over the
cell area: .

aa) = (3 "1”" : : (1)
i

Likewise, the cell variabie g(A), which refers to
the gonerated output, is defined as

s(a) = (3 Gi)IA‘ (2)
¢ %

The continuum viewpoint implies that A(A) aad g(A)
should de regarded as discretizations of density
fusctions A(x,y) and g(x,y).

Transmission Modeling from the Continuum Viewpoiat

By relying on the anslogy between the DC load
flow equations and the relations betweea cureats
and voltages in a purely resistive cirowit (Blgerd,
1971) it is possible to define quantities which are
. continuum equivaleats of the flows f and the
voltage sngles ai.

In each A-cell, & value for the curreat density
1(A) is defined in terms of the bramch power flows
f, correspoading to that cell, as follows: If a
branch m is totally or partially contained in a A~
cell (Fig. 1), its comtribution to the i(A) vector

for that cell i3 defined by:

RS
i - l—;s-sc-(x) Z./A (3)

RS
i’ - §:§:l'(y) !‘IA (4)
vi.tc is the power (in megawatts) flowing

through bramch =3 R, S, R,, 8, are defined in
1'!.;“0 1, and s (x) is equal to +1 or ~1, depending
“on whether m arbitzary orientation of branch =
(used to define f) coincides with the directionm of
increasing x o: decressing x3 ¢ (y) has the
corresponding meaning with rnpnt to the Yy
direction.

The total density vestor i(A) for a A-cell is
obtained by adding up the veotors produced by all
branches m in the cell,

NG

Figure 1, Aggregation Procedure within a
A~cell

The nods voltage angles 3 are now approximated by
assuming that they vary linearly within the A-cell
as funotions of the position coordianates, or,
equivalently, by setting the electrical field B

BE=-grad 8 s

and considering E to be oconstant within each A~
cell. Demoting by (r,,r,) and (s,,s,) the
coordinates of R aad S, respectively, and by
(By,B,) the compoments of B, it follows:

8p= 8g=(B (8= z,) + B (s .= 7 )]A +0d) (6

The ocoastitutive relation of the DC model, which
relates the real power flow ! in a branch = and
the voltuo angles Gj Gk at 1:: oxt:ui.ty nodes
Jok, iss ‘ _

f- = b- “j- Sk) (7)
where b, is ‘the susceptance (Sullivaas,1977) of
branch m (in megawatts). The above definitions of i
and E, aand eq. (7) imply a linear relatioa between
i and B, to within o(A) terms. This relation is
formally anslogous to Obm’s law at a point (Kraus
and Carver, 1975), and involves a matrix g, defined
on esch A-cell, as the following theorem indicates.

Theozem 1: The comstitutive relationm (7) of the DC
flow model, which relates bramch power flows aad
node voltags angles, caa be expressed in a fomm
analogous to Ohm’s law at s point, in terms of cell
aggregate variables: .

i=gcE ) (8)

where terms that vaaish with A are neglected. The
conductance matrix g takes a value om esch A-cell,
which is defined im terms of the discrete
transmission parameters ia that cell by:

3 3 s
b .p‘ gos 0- b-ﬂ‘ sin @ cos O -

c -
- 2 3 3 Y
a |b .B- ainle-cos 0- b -B. sin O.

9

where b. is the susceptance of the portion of
branch = in the cell; ﬂ.‘ is the length of bLranch .
a relative to A (thus, a dimensionless number)
By ™ R8/A; and O, is the angle that defimes the
ozrientation of branch m, i.e.,

[ PR

9 = gu. -—’-——-:
»n s, -z,

if bransh m connects nodes R and S,

The proof is given in Dersin, (1980) ch. §.

The DC model includes the flow comservation law,
a continuum expressiom of which cam be givenm by

div(i) = s(z.y) = Alz.y) (10)

It can be shown (Dersin 1980) that in the 1limit
of an infinitely 1large system (A-D), both
formulations, the discrete and the: continuous,
coincide. A complets continuum formulation of the
DC load flow problem canm now be given:

Theorem 2: In the limit of an infinitely 1large
system (3->0), the DC load flow problem approaches
the following boundary value problem ia - the
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fanotion 8(x,y):

‘div (g grad 8) = A(x,y) ~ gx.y)

(z,y) s D° (11)

gs2d 8T ga =0 (x,3) ¢ D (12)

The following ocompatibility oconditiom, which
expresses the equality of load and generation, must
bhold:

Il M2y = g(z.p)lazdy = 0 as)

The matrix ¢ is the location-dependent
conductance, as defined by (9) from the discrete
datas the quantities A(x,y) and g(x,y) are the load
and genmeration densities, respectivelys the
geoogzrsphical domsin which contains ths power system
is denoted by D (with interior D° aad boundary 3D);
the outward normsl to the boundary 3D is denoted by
Be

Proof: Dersin (1980),0h. 5.

Isotropy and Homogeneity

If the o(x,y) matrix correpomds to am isotropic
medium, i.0., if

olz,y) = o(z,y) I

where I is the ideantity matrix, thes (11) reduces
to:

+

a’s a’s 3 3 _dc 3%
(.3 ——’ e | cm—
iz dy

= AMx,y) - s(x.y) (14)

If furthermors, homogemeity prevails, i.e., in
(14), o(x,y) is iadependeat. of the location, the
partial differential equation becomes Poisson’s:

3 3
3. . e My - szl a9
oy

x
with the boundary condition

%% -0 for (x,y) ¢ 3D

s0 that the classical Neumans problem is obtained.
A straightforward example of a network that leads
to an isotropic medium is provided by a square
grid, »

Mors gemeral networks caaz also give rise to
isotropic — aand sometimes homogeneous—— continua,
whea ocertaia statistical properties osccur which
refer to the density of the transmission (in miles
per square mile) asnd the  orieantatioa of
transmission 1limes. These propertiss iavolve (1)
vaziation of the transmission density (in miles per
square mile) around s comstant ss the aggregation
level incressesy (2) uniform distribution of bramch
orientatioas, The homogenecus—isotropic ocase is
important becamse it leads to explicit results om
the feasibility set.

Comparison Between Discrete and Continuous Solution

The aggregate variables bhave been defined so
as to be close to the. network varisbles they
spproximate whea the level of aggregation is at its
lowest (ome node per cell) and the scale is large
(small A). This means that i, and are close to
A AMz,y)A* close to Li, and 8(x,7)A® close to
G;. The anslogous property for the voltage angles
§; and their contiamous approximation 8(x,y) can be
proved directly, by <comparing the partial
differentisl equation (11) with the discrete load
flow equations in the ocase of the lowest
aggregation level aad for a special class of
networks that comsists of rectangular grids. The
physical network cam then be used to discretizs the
partial differential equation, i.e., to replace it
by a system of finite—difference equations, which
is found to be precisely the system of the DC lioad
flow equations.

The low aggregation level is considered first
with each A-cell conmtaining omly ome node, (Fig.
2). VUsing the notation N,¥, 8, E (North, Vest,
South, East) to refer to the nodes neighboring a
given node 0, the result for the bhomogeneous
isotropic case caa be stated as follows.

Theorem 3: For the network of Fig, 2, where all

branches have the same susceptance b, the equations
satisfied by the mode variables 61 are:

&'—Zboﬂx . su-zao»s
AQ . A’
= } o) - g0 (16)

where [3(0) — A(0)]A® is the iajection st node O.
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Figure 2, Lowest Aggregatioan Level

Equation (16) is the finite—difference
approzimation, with step A, of the Poissox equation
(15). Accordingly, the following bound holds:

[8(z0.7) = 8,] < € A%|10g A| an
where C is a conmstant izdepeadent of A,

Proof: See Dersin (1980). The bouad (17) is
specific of the Poissoa equation (Wedland, 1979).

Consider now a higher aggregation level, when each
A-cell would coatainm k* nodes instead of ome. The
result of theorem 3 is thea weaksned, as indicated
in the following corrollary.

Corzrollary 3: For a rectangular grid network where
the aggregation level is chosem such that each A~




cell contains x® nodes, the following bound holds
for the error betweea the value of the continuous
point fumotion 8 at any poimt (x,y) of the A-cell
and the a:itmuo average of the node variables in
the cell.

8 L
la(:.y)-} -:-‘Sounc‘—,lm%l 18)
" x

'fh constant C is independent of A and 0(A) denotes
a quantity which vanishes with A,

The.proof relies on theorem 3 and the triangle
inequality. These approximation results can be
extended to the gonezal (inhomogeneous,
anisotropic) ocase (Dersia, 1980).

THE AGGREGATE FEASIBILITY SET

The Aggregate Coefficients

The feasibility set was introduced ia Dersin
and Levis (1982a) to demote the set of substationm
loads than camn be served ia steady state with the
available generatiom resowrces without overloading
the traansmissios lines or transformers. Vhea the
distribution of power flow through the network is
represented by the DC load flow (Sullivasm, 1977)
then the feasibility set can be described by a
system of inequalities which are linear in the real
bus loads. Thersfore, the set is a oconvex
polyhedron in the space of substation load vectors.
The defining inequalities are:

L]
Y rpL,
1eA

Y (2D’s,

2 r.l*l I, - 2D » n'(;r>-c"(zh)|

for t >0 amd t <O . (19)

where (1) L; is the real bus load at bus i (in
negawatts), ’! is the maximum generatiag ocapacity
at bus 1 (!.n megawatts), aad g, is the maximumm
phase angle bouad across branch ms (2) A is a
subset of the set of node indices and B is a subset
of the set of branch iadicess (3) For eac
compatible choice of A and B, the coefficieats Py
and a (z.) are determined as the solutiom of 3
1linesr ul;obuic systems furthermore, the P

coefficients comstitute the solntiom of a DC load
flow in the network with the branches of B removed;
(4) The factor t is arbitrary and can be positive
or negatives (5) the notatiom ( )” refers to the
positive pazt of that quantity.

The aggregate description of 1large power
systems will be used to derive am aggregate
feasidility set., First, ome obtains cell variable
P which are approximations of the coefficients P
i.n (19). A ocontinuous fuastiom P(x,y), tﬁo
solution of the  <coatinuum DC load flow
co;rupo:dhg to the discrete DC load flow of which

is the solution, sstisfies the following
cquatioa. .

[ 4
div (g grad P) -2 F.[Nx-xj.y-yj)
. a=l

with boundary comditions as stated ia Theorem 2,
Ia (20), 3 refers to the Dirac impulse functions

(zy,y;) are respectively the

itd nates ot j and k, the extremities of branmch
m. Thus, the P function satisfies the homogeneous
squation

div (o grad P) .= 0 (21)

An explicit assumption is now made about the scale
and the aggregation level: the scale is larzge, so
that A is small as compared to the exteat of the
domain D and the aggregation level is high emough
so that the length § of a bramch is smaller tham A,

To translate those sssumptioas iato
simplifications in the analytical expression fozr
thc solution P(x,y), the two branch extremities

»Y;) and (xy,y,) are mideled as though they were
hi tely clon tc sach other. Them the distance
B is made to go to zerc while the intensity F of
the sowrce goes to infinity in such a way that the
produst FB remains constant, say M. Then, the
function P(x.y) :nchn 'Y lhtt. which is the
potential created by a dipole (Webster, 1957) of
moment M located ar the lhit location (&,n) and

. directed along the straight linme from source to

sink. As the process just described is oarried
out, r, and r, tead to s common value r (Fig. 3),
and P reaches a limit. For am arbitrary number y of
singularities,

2 (l;cosellt-) +C, (22)

P(z,y) = 2‘:'0

The parameters N,, M,,....Mp, and C, in the
dipole approximation are determined to within an
arbitrary multiplier by requiring P(x,y) to vanish
on the y nodes of the subset A.

Figure 3. Dipole model of a branch

In the homogeneous—isotropic case, P(x,y) is a
harmomic fumstiom. Therefore, there exists an
analytic function of the complex variable z=x+iy of
which the imagimary paszt is oP(x,y) and a(xz,y)
its real part. Let the branch set B consist of
one single bramch, modeled as s dipole and let the
boundary 9D of the domsin be far enough from the
dipole loscatiom r. If the dipole has moment N and
orientation y, the corresponding functions P and a
are obtained as follows:

irv
a(x,y) + io P(x,y) = :—‘- 2‘:{ +C

1 =
.i;--;r"'c (23)

where C is an arbitrary complex constant. For the
derivation, see Dersin (1980),0h 6.

Once the P(x,y) fuaction is kmown, the a(x,y)
function can be obtained from it by iategratiom,
using the Cauohy-Riemann equations. From this




property, it cam be shown that the a(x,y) functiom
spprozimates the a(zy) coefficieants ia (19) in the
same way as P(x,y) approximstes the Py
coefficients. :

When the assumptions of homogemeity and
isotropy are removed, a function a(x.,y) canm still
be defined, which is rslated to P(x,y) by a system
of - two .linear <first~order partial differential
equations. In the case of several dipoles (1),
the analytic funotiom is obtained as a summation
© over all the dipoles, anslogously to (22).

The Feasibili Conditions (homogeneous—isotropic
case)

Theores 4: In accordance with the continuocus-space
modeling of load, gemeration and the node aad
region variables, the feasibility oonditioas acre
modeled by the following integral inequalities.

: ﬂ (Mz.y) [t P(x,y)]=3(z.y) [tP(x.y) ] }dxdy

B
SYelog] s t>0,t<0 (24)
k=1

One such pair of inequalities arises for esch
choice of an imteger § wvhere 0 £ y £ qs s node
subset AC{1,..0,q} with § nodess s distribution of
y dipoles located at g0ee0s with given
orientations  FURYRTS ) and moments l‘....l' to be
determined. .

Given A and the dipole distribution, the
function P(x,y) is expressed by:

4 &
1 ol
Pxy) mie ) N In L_ x] e, @9
k=1

The p dipole moments and the constant C, are
determined to within an arbitrary multipler t by
goquiring that P vanish on the py points z = 8 of
A, Accordingly, P(x,y) is determined to within an
arbitrary multiplier t.

Equation (25) is valid omly if the dipoles are
far emough from the boundary 3D so that bouadary
condition (3p/da = 0) is automstioslly satisfied;
if this is not the ocase, a harmoaic functiom u(x,y)
must be added to fulfill the bosadary coadition.

The variable is a bound om the magaitude of
a difference of voltage phase angles. If branch m
connects nodes j and k, the constraiat is:

lbj - Skl s s (26)

The bouad is modeled by a scalar positive
function ¢(x,y), vwhich sots as a bownd oa the
magnitude of the electrical field:

max |E.a]
over n s.t.|[a]] =1

£ max g(z.y,0) = glz,y) (27
over n

As pointed out earlie the aggregate
feasibility set is defined in , where K is the
number of cells that ocomtain loads. The expression
(24) for the feasibility oonditions is
continwous~space approximatioa of the aggregate

conditions; these can be writtem as follows:

4
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k=1 ’

n
52!“'3) o1 el
£>0 amdt <0 . (28

where P is the aversge of the function P(x,y)
siven by eq. (25) over all k.,

Since esch dipole distribution produces a pair
of conditions (28) there are an infinity of linear
inequalities such as (28) in the lumped 1loads
A(Ay). This implies that the feasibility set is
now 8 smooth oconvex set instead of a ocomvex
polyhedron, However, not sll comstraiantg ianvolve
all loads necessarily: it may occur that is zero
for some cells k. Therefore, there may be points
of the boundary where the tangeat hyperplane is not
defined; the set bouandary is them only piecewise
continuously differeatiable.

CONCLUSIONS

The formulation of the DC load flow problem as
a boundary problem for a partial differeatial
equation, the coefficieants of which are derived .
from the discrete transmissiom data, is used to
derive directly am aggregate feasidbility set in the
space of lumped load vecstors. This feasibility set
is an sggregate in that no distinetion can be made
between load patterms which differ omly by the
internal distributioa of the load among bduses of
the same A-cell. The method is direet in that all
the =necessary oaloulations are performed at the
aggregate level from aggregate data: the method
does not ianvolve deriviag the exzaot fessibility
conditions and the somehow aggregating them.

The method applies to lazge power networks
that exteand over large emough geographical domain
30 that a square grid cam be superimposed om that
domsin with most A-cells not empty and with A small
with respect to the dimensions of the domain. These
conditions permit the application of the continuum
viewpoint, namely, the substitution of analytical
formulations for combinatorial (i.e., graph—-
theoretic) omes.
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