MIT
Libraries | D>pace@MIT

MIT Open Access Articles

A coded shared atomic memory algorithm
for message passing architectures

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Cadambe, Viveck R., Nancy Lynch, Muriel Médard, and Peter Musial. “A Coded Shared
Atomic Memory Algorithm for Message Passing Architectures.” Distributed Computing 30, no. 1
(June 13, 2016): 49-73. doi:10.1007/s00446-016-0275-x.

As Published: http://dx.doi.org/10.1007/s00446-016-0275-x
Publisher: Springer Berlin Heidelberg
Persistent URL: http://hdl.handle.net/1721.1/107661

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’'s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/107661
http://creativecommons.org/licenses/by-nc-sa/4.0/

A Coded Shared Atomic Memory Algorithm for Message Passing
Architectures

Viveck R. Cadambe - Nancy Lynch - Muriel M edard - Peter Musial

Abstract This paper considers the communication andno bigger thanf, a read operation terminates provided
storage costs of emulating atomic (linearizable) multi-that the number of write operations that are concurrent
writer multi-reader shared memory in distributed messageith the read is no bigger thah We explicitly charac-
passing systems. The paper contains three main contribterize the storage cost of CASGC, and show that it has
tions: the same communication cost as CAS.

(1) We present an atomic shared-memory emulation al(3) We describe an algorithm known as the Communica-
gorithm that we calCoded Atomic StoragéCAS). This tion Cost Optimal Atomic Storage (CCOAS) algorithm
algorithm usegrasure codingnethods. In a storage sys- that achieves a smaller communication cost than CAS
tem with N servers that is resilient t server failures, and CASGC. In particular, CCOAS incurs read and write
we show that the communication cost of CASJ—\}é_VQ—f. communication costs q% measured in terms of num-
The storage cost of CAS is unbounded. ber of object values. We also discuss drawbacks of CCOAS
(2) We present a modification of the CAS algorithm know@s compared with CAS and CASGC.

as CAS wi.th Garbage.CoIIection. (CASGC). The CASGCKeywords Shared Memory Emulation Erasure
algorithm is parametrized by an integeand has a bounded g Multi-writer Multi-Reader Atomic Register
gtorage c_o.f,t. We show that thg CASGC algorithm satisconcurrent Read and Write OperationStorage

fies atomicity. In every execution of CASGC where theEfficiency

number of server failures is no bigger thanwe show

that every write operation invoked at a non-failing client

terminates. We also show that in an execution of CASGC

with parameter where the number of server failures is

This work was supported in part by AFOSR contract num-
bers FA9550-13-1-0023, FA9550-14-1-0043, NSF award nusnbe

CCF-1217506, CCF-0939370, CCF-1553248, and by BAE Sys-
tems National Security Solutions, Inc., award 739532-S0004.

Viveck R. Cadambe

Department of Electrical Engineering,

Pennsylvania State University

vi veck@ngr . psu. edu

- Nancy Lynch

Computer Science and Artificial Intelligence LaboratonB@dL)
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology (MIT)

Cambridge, MA, USA

lynch@heory.lcs.nmt.edu

- Muriel Médard

Research Laboratory of Electronics (RLE)

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology (MIT)

Cambridge, MA, USA

medard@ri t . edu

- Peter Musial

Advanced Storage Division, EMC

Cambridge, MA, USA

pet er. musi al @nt. com

The results of this work have partially appeared in a confer-
ence paper [11]. The paper [11] does not contain proofs ohato
icity, liveness, and the costs incurred by the publishedrilyms.
[11] does not include the CCOAS algorithm of Section 6 as.well

1 Introduction 1.1 Contributions

Since the late 1970s, emulation of shared-memory sysWe consider a static distributed message-passing setting

tems in distributed message-passing environments hé(\éhere the universe of.nodes s fixed and known,. and
been an active area of research [2-8, 10, 14_21'28,33,35‘]9(165 communicate usinga reliable message-passing r_1et—
The traditional approach to building redundancy for dis-Work' We assume that client and server nod.es can fail.
tributed systems in the context of shared memory emu\—Ne define our system .model,' and communication and
lation is replication In their seminal paper [8], Attiya, storage cost measures in Section 2.

Bar-Noy, and Dolev presented a replication based algo- The CAS algorithmWe develop theCoded Atomic
rithm for emulating shared memory that achieves atomictorage(CAS) algorithm presented in Section 4, which
consistency [22, 23]. In this paper we consider a simpldS an erasure coding based shared memory emulation al-
multi-writer generalization of their algorithm which we 9orithm. We present a brief introduction of the technique
call theABD algorithni. This algorithm uses a quorum- of erasure coding in Section 3. For a storage system with
based replication scheme [35], combined with read and’ nodes, we show in Theorem 3 that CAS ensures the
write protocols to ensure that the emulated object is atoni@lowing liveness property: all operations that are in-
[23] (linearizable [22]), and to ensure liveness, Specif_voked by a non-failed client terminate provided that the
ically, that each operation terminates provided that apumber ofserverfailures is bounded by a paramegfgr
most[2=1] server nodes fail. A critical step in ensuring Wheref < [] and regardless of the number of client
atomicity in ABD is thepropagatephase of the read pro- failures. We also show in Theorem 3 that CAS ensures
tocol, where the readers write back the value they read t8tomicity regardless of the number of (client or server)
a subset of the server nodes. Since the read and wrifgilures. In Theorem 4 in Section 4, we also analyze the
protocols require multiple communication phases wher&éommunication cost of CAS. Specifically, in a storage
entire replicas are sent, this algorithm has a high comsystem with)V servers that is resilient t¢ server node
munication cost. In [16], Fan and Lynch introduced afailures, we show that the communication costs of using
directory-based replication algorithm known as the LDRCAS to implement a shared memory object whose values
algorithm that, like [8], emulates atomic shared mem-come from afinite se¥ are equal tog -, measured in

ory in the message-passing model; however, unlike [8]terms of the number of object values. We note that these

its read protocol is required to write only some metadat&0mmunication costs of CAS are smaller than replica-
information to the directory, rather than the value readion based schemes, which incur a communication cost
In applications where the data being replicated is mucl®f V' (see Appendix B for an analysis of communication

larger than the metadata, LDR is less costly than ABD ir¢0sts of ABD and LDR algorithms.). The storage cost of
terms of communication costs. CAS, however, is unbounded because each server stores

the value associated with the latest version of the data
The main goal of our paper is to develop shared memgppject it receives. Note that in comparison, in the ABD
ory emulation algorithms, based on the ideaetdsure zigorithm which is based on replication, the storage cost
coding that are efficient in terms of communication andis pounded because each node stores only the latest ver-
storage costs. Erasure coding is a generalization of replijon of the data object (see Appendix B for an explicit
cation that is well known in the context of classical stor-characterization of the storage cost incurred by ABD).
age systems [12,13, 24, 32]. Specifically, in erasure cod- The CASGC algorithmin Section 5, we present a

ing, each server does not store the value in its entiret3(Iariant of CAS called the CAS with Garbage Collection
but oply a part of the value calleobadegl elemeptn the (CASGC) algorithm, which achieves a bounded storage
classical coding theory framework which studies storage)¢ bygarbage collectioni.e., discarding values associ-

of a single version of a data object, this approach is wello 4 \yith sufficiently old versions. CASGC is parametrized
known to lead to smaller storage costs as compared 0

-) - y an integep which, informally speaking, controls the
replication (see Section 3). Algorithms for shared MeMHumber of tuples that each server stores. We show that

ory emulation that use the idea of erasure coding to storg g5 satisfies atomicity in Theorem 5 by establish-

multiple versions of a data object consistently haveT beeﬂ19 a simulation relation between CAS and CASGC. Be-
developed in [2—-4,6, 7,10, 14, 15, 20, 21, 33]. In this pa-

:) X cause of the garbage collection at the servers, the liveness
per, we develop algorithms that improve on previous al'Conditions for CASGC are weaker than CAS. The live-
gorithms in terms of communication and storage costs, ¢ property satisfied by CASGC is described in The-
We summarize our main contributions and comparethem .. ‘=i section 5. In Theorem 6, we show that ev-
with previous related work next. ery write operation invoked at a non-failing client ter-
minates provided that the number of server failures is
no bigger thanf. We also prove that in an execution of
i The algorithm of Attiya, Bar-Noy and Dolev [8] allows only a CAS(_';C Wlth parametef, if the numbe,r Of_server fail-
single node to act as a writer. Also, it did not distinguishaeen ~ Ures is no bigger thayf, a read operation invoked at a
client and server nodes as we do in our paper. non-failing client terminates provided that the number

of write operations concurrent with the read is no big-supports concurrent operations in asynchronous networks.
ger thand. The main technical challenge lies in careful We compare our algorithms with ti@RCAS-ANndORCAS-
design of the CASGC algorithm in order to ensure thatB algorithms of [15], the algorithm of [20], which we
an unbounded number of writes that fail before propa<call the GWGRalgorithm, the algorithm of [21], which
gating enough coded elements do not prevent a futurere call theHGRalgorithm, theM-PoWerStoralgorithm
read from returning a value of the data object. In par-of [14], the algorithm of [10], which we call th€T al-
ticular, failed writes that end before a read is invokedgorithm,and theAwWEalgorithm of [7]. We note that [15]
are not treated as operations that are concurrent with tresssumes lossy channels and [10, 14, 21] assume Byzan-
read, and therefore do not contribute to the concurrenciine failures. Here, we interpret the algorithms of [10, 14,
limit of 6. While CASGC incurs the same communica- 15, 21] in our model that has lossless channels and crash
tion costs as CAS, it incurs a bounded storage cost. Aailures.
larger value ofé results in an algorithm that requires We measure the storage cost at a point of an execu-
servers to store a larger number of coded elements, aribn as the total number of bits stored by all the non-
therefore results in a larger storage cost. A formal, nonfailed servers at the point. The storage cost of an execu-
trivial bound on the storage cost incurred by an executiotion is measured as the supremum of the storage costs
of CASGC is described in Theorem 7. over all points of the execution. The worst-case storage
Communication Cost Optimal Atomic Storage Algo-cost of a class of executions is the supremum of the stor-
rithm: In Section 6 we describe a new algorithm calledage costs over all possible executions in the class. The
the Communication Cost Optimal Atomic Storage (CCOA&Binmunication cost of an operation is the total number
algorithm that satisfies the same correctness conditiors bits sent on the channels on behalf of the operation.
as CAS, but incurs smaller communication costs. How-The worst-case communication cost of an algorithm over
ever, CCOAS would not be easily generalizable to seta class of executions is defined as the supremum of the
tings where channels could incur losses because, unlikeommunication costs, over every operation in every ex-
CAS and CASGC, it requires that messages from clientecution of the class. For our comparison here, we study
to servers are delivered reliably even after operations ashree scenarios:
sociated with the message terminates. Therefore, it may o
. . — worst-case communication and storage costs over all
not be possible to design a protocol based on CCOAS . . ;
in a setting where the channel has losses. We describe possible executions F)f the algorithm,
CCOAS, analyse its communication costs, and discuss worst-case communication and storage costs among
its drawbacks in Section 6. a_res.tncted class of executions, spemﬂcally, commu-
nication and storage costs for executions where the
number of ongoing write operatidhsat any point,
1.2 Comparison with Related Work the message delays and the rate of client failures are
all bounded, and
Erasure coding has been used to develop shared memory the storage costs at a point of an execution when
emulation techniques for systems with crash failures in there is no ongoing write operation.

[3,4,15,33]and Byzantine failures in [2,7,10,14,20,21].T ¢ q icati ‘ d the li
In erasure coding, note that each server stores a codeéle storage and communication costs and the liveness

element, so a reader has to obtain enough coded eIF_roperties satisfied by the various algorithms are tabu-
ments to decode and return the value. The main chaf@®d in Table 1.2. As noted in the table, a distinguish-

lenge in extending replication based algorithms such a$'9 feature of CASGC.: |s-that it simultaneously has smal
ABD to erasure coding lies in handling partially com- worst-case communication cost, a bounded storage cost

pleted or failed writes. In replication, when a read occursand desirable Ilyeness properties when we cor_15|der _the
lass of executions where the number of ongoing write

during a partially completed write, servers simply send®

the stored value and the reader returns the latest vaILPeDerat'onE’ mzss;gﬁ delays andkthe rate of cheknt fail-
obtained from the servers. However, in erasure Codingl,Jres areé bounded. Here, we maxe Some remarks com-

the challenge is to ensure that a read that observes th&Mng the storage costs, Ilvgness p'.“’pe”'es anq com-
trace of a partially completed or failed write obtains amunlcatlon costs of our algorithms with the algorithms
enough coded elements corresponding to the same ve(?t [76 10, 14’.15'2(.)'2t1]' f st Fhe GWGR
sion to return a value. Different algorithms have different | %rlnparflsc;rg)s éln e:ms ot storage co de based al
approaches in handling this challenge of ensuring that Jorthm o [20] develops an erasure coding ased a-
the reader decodes a value of the data object. As a corgf—orlthm which does not perform garbage collection, and
sequence, the algorithms differ in the liveness propertiesii |nformally, an operationr is ongoingat a pointP in an exe-
satisfied, and the communication and storage costs irution 3 if the point P is after the invocation of the operation
curred. We discuss the differences here briefly. and there are steps taken on behalf of the operatiafter pointP

. in 5.
Among the previous works, [7,10,14,15,20,21] have , In the storage costs shown in this column of the table, we as-

similar correctness requirements as our paper; these refgme that any failed operations have been garbage collprtet!
erences aim to emulate an atomic shared memory thatisly in the execution.

Worst case among executions Wwi hStorage cost whell
Algorithm Worst-case among all executions. bqunded number of ongoing write OPethere is no ongoing
ations, message delays, and rate of cli et e operatioff
failures. '
Liveness Comm. Storage Liveness Comm. Storage
cost cost cost cost
Operations
Operations terminate if
CASGC may not| w57 Infinite | parameter § | o= | Bounded|| (§+1)x25F
terminate is sufficiently
large
Proportional
AWE Always N _ Infinite Always N ini to the number
y N-2f y N-—2f Infinite of readers and
writers
Operations Operations
may not may not
HGR terminate, Infinite | Infinite || terminate Bounded| Bounded 57
(obstruction (obstruction
freedom) freedom)

CT Always Infinite N Always Bounded N NL,f
ORCAS-B Always Infinite Infinite Always Infinite | Bounded Ni\’Qf
ORCAS-A Always N N Always N N %ﬂ

ABD Always N N Always N N N

Table 1 Comparison of various algorithms over (i) worst case exenst and (ii) over the worst case execution in the class e€@ons
where the number of ongoing write operations, message slelag rate of client failures are all bounded, and (jii) anpiof the
execution where there are no ongoing write operations. des@re expressed in terms of the number of object valuesneonsider
algorithms that perform garbage collection in the abovéetadnd so we omit comparisons with CAS (Section 4), MPowrEeStand
GWGR algorithms.

therefore incurs an infinite storage cost, like our CAS al-of HGR [21] and ORCAS-B of [15] are similar to that of
gorithm. CAS is essentially a restricted version ofiikre = CASGC with the parametérset to0. In fact, the garbage
PoWerStoralgorithm of [14] for the crash failure model. collection strategy of CASGC may be viewed as a gener-
The main difference between CAS and M-PoWerStoralization of the garbage collection strategies of HGR and
is that in CAS, servers perform gossiM-PoWerStore ORCAS-B. It is instructive to note that the storage costs
and CAS do not perform garbage collection and thereef CASGC, HGR and ORCAS-B are all bounded if the
fore incur infinite storage costs. number of ongoing write operations, the message delays
The ORCAS-A algorithm of [15] stores, during a and the rate of client failures are bounded. The storage
write operation, the entire value being written in eachcosts of these algorithms can be much smaller than the
server. Therefore ORCAS-A incurs a worst-case storageost of replication based algorithms depending on the pa-
cost that is as large as the cost of a replication based alameters that bound the number of ongoing write opera-
gorithm such as ABD. The CT algorithm of [10] uses thetions, the message delays and the rate of client failures.
message dispersal primitive of [9] and a reliable broad-
cast primitive using server gossip to ensure 'that SeIVers . ihe ORCAS-A, ORCAS-B, HGR, CT algorithms
§tore pnly one _coded glement V\{hen therg IS N0 ONG% g the CASGC algorithm wheh = 0, every server
Ing write operatlon. Dgnng the write ope.ratlon, the.su.).r'stores one coded element at a point of the execution when
age cost of implementing the message dispersal pnmmvg1 . : . .
during an operation can be as large as the storage cost&g

L2) ~coded elements corresponding to failed writes have been
replication. The storage and garbage collection stragegi

egarbage collected. In fact, as noted in Table 1.2, the stor-

V' As we shall see later, the server gossip is not essentialrto co age cost of the CT algorithm C‘Tm be slightly Smal_ler than
rectness of CAS. It is however useful as a theoretical toprtewe the storage cost of other algorithms when there is no on-
correctness of CASGC. going write operation.

The AWE algorithm of [7] presents a novel approachquest from a reader, registers the cltemind sends all
to garbage collection. In the AWE algorithm, the serverghe incoming coded elements to the reader until the read
keep track of read operations in progress, and preserveceives a second message from a client. Therefore, the
the coded elements corresponding to these read openagad communication cost of ORCAS-B grows with the
tions until completion of the read operation. The worstnumber of writes that are concurrent with a read. In fact,
case storage cost is analyzed in [7] to be proportional tin ORCAS-B, if a read client fails in the middle of a
the product of the number of read clients and the numread operation, servers may send all the coded elements
ber of write clients. In the case where there are an unit receives from future writes to the reader. Therefore,
bounded number of read or write clients, however, thehe communication cost of a read operation in ORCAS-
storage cost of [7] is infinite. In fact, in AWE, the coded B can be infinite even in executions where the number
element of a failed write or read operation may never bef ongoing write operations, the message delays, and the
removed (garbage collected) from the system; therefore@ates of client failure are bounded.
a large number of failed read or write operations could Comparisons in terms of liveness propertidsis
result in a correspondingly large storage cost even if thgvorth noting that HGR, CT, GWGR, ORCAS-A, ORCAS-
rate of client failures is small. Unlike AWE, the coded el- B and AWE all satisfy the same liveness properties as
ements of failed operations are garbage collected in thaBD and CAS, which are stronger than the liveness prop-
CASGC algorithm so long as a future read or write op-erties of CASGC. CASGC with parametércan sat-
erations terminate. Therefore, CASGC can store a finitésfy desirable liveness properties for executions where
number of coded elements, even if the number of failedhe number of write operations that are concurrent with
clients is infinite, so long as failed write operations areevery read operation is boundeddyn HGR, read oper-
interspersed with a sufficient number of terminating op-ations satisfyobstruction freedonthat is, a read returns
erations. We anticipate that the approach of [7] is desirif there is a period during the read where no other opera-
able when the number of read and write clients is smalltion takes steps for sufficiently long. Therefore, in HGR,
since it provides strong guarantees on operation terminaperations may terminate even if the number of writes
tion even in the presence of unbounded number of conconcurrent with a read is arbitrarily large, but it requires
current read/write operations. The CASGC algorithm isa sufficiently long period where concurrent operations
desirable in the presence of a large number of read/writdo not take steps. On the contrary, in CASGC, by set-
clients, since the storage cost is bounded and operatiotisig ¢ to be bigger thain, we ensure that read operations
terminate so long as the number of write operations thaterminate even if concurrent operations take steps, albeit
are concurrent with a read operation is limited. at a larger storage cost, so long as the number of writes

concurrent with a read is bounded by
)) o From a technical standpoint, our liveness guarantee

Comparisons in terms of communication cdstthe ;o5 4 new notion of concurrency that is carefully crafted

HGR, CT, GWGR and OR(,;AS'B algorithms, the COdedto ensure that failed operations are not treated as con-

elements from ongoing write operations are not hIOIder?:urrent with every future operatio@ur contributions
, complete correct-

send several coded elements per read operationto a reager proofs of all our algorithms through the develop-

In fact, in these algorithms, the number of coded ele'ment of invariants and simulation relations, and careful

ments .sent to the readers grows W'th the number of W_m%haracterizations of communication and storage costs,
operations that_ are concurrgnt with thg read operation, -, may be of independent interest. Generalizations
The message dispersal algorithm of [9] involves the transss cAs and CASGC algorithms to the models of [10,

mission of coded .eIem.ents via Server gossip, and there1'4, 15, 21], which consider Byzantine failures and lossy
fore, the CT algorithm incurs a significantly higher com- o, » o) models, is an interesting direction for future re-
munication cost as compared to even the HGR and C-gearch

algorithms. In contrastto HGR, CT, GWGR and ORCAS-

B algorithms, in CAS and CASGC, the communication

cost an operation is exactly one coded element per servey.

The MPowerStore and AWE algorithms incur the samg System Model

communication cost as CAS and CASGC. 2.1 Deployment setting.

In the ORCAS-A algorithm, the writers send the en- e assume static asynchronous deployment settivigere
tire value to the servers, and, in certain scenarios, théll the nodes and the network connections are known

servers may send entire values to the readers. Thereforg,Priori and the only sources of dynamic behavior are
the communication cost of ORCAS-A is much Iarger”Ode stop-failures (or simply, failures) and processing
than the cost of CASGC, even if the number of writes , The idea of registering a client’s identity was introduceid-o

that are concurrent with a read operation are boundeghajly in [29] and plays an important role in our CCOAS algom
In the ORCAS-B algorithm, a server, on receiving a re-as well.

and communication delays. We consider a message-pasgintp select a subsét of incomplete operations,
setting where nodes communicate via point-to-pointreli-3. for each operation i, to select a response,
able channels. We assume a universe of nodes that is th& and for each operatienin @, to insert a serialization
union ofserverandclientnodes, where the client nodes pointx, somewhere after the invocationof
arereaderor writer nodes\ represents the set of server 0 operations and responses must be selected, and
nodes;N denotes the cardinality of/. We assume that he serialization points must be inserted so that, if we
server and client nodes can fail (stop execution) at any,ove the invocation and response of each completed op-
point. We assume that the number of server node failuregyation and each operationdnto its serialization point,
is at mostf. There is no bound on the number of client 54 remove all the incomplete operations that are not in
failures. &, then the trace corresponds to the trace of a read-write
variable type. We refer the reader to Chaptgiin [26]
for a formal definition of atomicity.

We require our algorithms to satisfy liveness prop-
erties related to termination of operations. To describe

We consider algorithms that emulate multi-writer, multi-) : :)
reader (MWMR) readwrite atomic shared memory us- the liveness properties of our algorithms, we define the
tasksfor each component of the system [26, 27]. A fair

ing our deployment platform. We assume that read clients . . .
9 pioy P execution is defined in the standard manner (See refer

receive read requests (invocations) from some local ex- L . L
q () nce [26], p. 212). In that definition, a fair execution is

ternal source, and respond with object values. Write aient . " .
. . . gne where every automaton in the composition gets in-
receive write requests and respond with acknowledgments. .
} . g initely many turns to perform each of its tasks.
The requests follow a “handshake” discipline, where a .) L
. . . . In this case, a fair execution is one where every mes-
new invocation at a client waits for a response to the preéa e on every channel is eventually delivered. and ever
ceding invocation at the same client. We require that thé 9 y y ' Y

overall external behavior of the algorithm corresponds tgoosage that non-failing server or client prepares to send

atomic (linearizable) memory. For simplicity, in this pa- Is eventually sent, and every response that a non-failing

i . . client prepares to send is eventually sent to the environ-
per we consider a shared-memory system that consists 0 . .

: . . ment. Formally, every client, server and channel is an
just a single object.

We represent each version of the data object as I/O automaton, and the system is a composition of all

: . . . e client, server and channels. The tasks are as follows:
(tag,value) pair. When a write client processes a write
request, it assigns tag to the request. We assume that (i) Client automatonEach individual channel input
the tag is an element of a totally ordered ethat has action corresponding to a message send to a chan-
a minimum element,. The tag of a write request serves nel, and each individual invocation is a singleton
as a unique identifier for that request, and the tags asso- task.
ciated with successive write requests at a particular write (i) Server automatonEach channel input action is a
client increase monotonically. We assume thdt:e is a singleton task
member of a finite se¥ that represents the set of values (i) Channelautomatorior every message in the chan-
that the data object can take on; note thalue can be nel, the corresponding channel output action is a
represented bipg, | V| bits''. We assume that all servers singleton task.
are initialized with a default initial state. A client or server failure is modeled agail input action
that disables every non-input action at the node.
. The liveness properties of our algorithms are related
2.3 Requirements to termination of operations invoked at a non-failing ctien
) in a fair execution where the number of server failures is
The key correctness requirement on the targeted shareg larger tharf“i! . The precise statements of the liveness

memory service istomicity. Briefly, an atomic shared onerties of our algorithms are provided in Theorems 3,
memory objectis one where the invocations and responsg anq 10.

look like the object is and where the observed global ex-

ternal behaviors “look like” the object is being accessedRemark 1in a fair execution, a channel gets infinitely

sequentially. many turns to deliver a message, even if the node that
Informally, an atomic shared memory object is oneSent the message fails. As a consequence, in a fair execu-

that supports concurrentwrite and read operations wheron, the channels eventually deliver all their messages,
in every execution it is possible to do all of the following: €ven if a node that sent some of the messages fails before

)) o the points of their delivery. Although the reliable chan-
1. for each completed operatianto insert a serializa- el assumption is an implicit consequence of the usual
tion point«, somewhere between the invocation andghared memory emulation model, we expose some of its
response of, drawbacks later in Section 6.

Vil Strictly speaking, we neefdog,, |V|] bits since the number of Vil We assume thaV > 2, since correctness cannot be guaran-
bits has to be an integer. We ignore this rounding error. teed if N < 2f [26].

2.2 Shared memory emulation.

2.4 Communication cost 3 Erasure Coding - Background

Informally speaking, the communication cost is the num-Erasure coding is a generalization of replication that has
ber of bits transferred over the point-to-point links in the been widely studied for purposes of failure-tolerance in
message-passing system. For a message that can take atgrage systems (see [12, 13, 24, 30, 32]). The key idea
value in some finite sett, we measure its communica- of erasure coding involves splitting the data into several
tion cost adog, | M| bits. We separate the cost of com- coded elementseach of which is stored at a different
municating a value of the data object from the cost ofserver node. As long as a sufficient number of coded ele-
communicating the tags and other metadata. Specificallynents can be accessed, the original data can be recov-
we assume that each message is a tiiple, d) where ered. Informally speaking, given two positive integers
t € T is atagw € W is a component of the triple that m, k, k < m, an (m, k) Maximum Distance Separa-
depends on the value associated with#teandd € Dis ble (MDS) code maps &-length vector to ann-length

any additional metadata that is independent of the valuevector, where the input-length vector can be recovered
Here,W is a finite set of values that the second compofrom anyk coordinates of the outpui-length vector.
nent of the message can take on, depending on the valddiis implies that arim, k) code, when used to storéa

of the data objectD is a finite set that contains all the length vector onn server nodes - each server node stor-
possible metadata elements for the message. These sitg one of them coordinates of the output - can tolerate
are assumed to be known a priori to the sender and rém — k) node failures in the absence of any consistency
cipient of the message. In this paper, we make the apequirements (for example, see [1]). We proceed to de-
proximation:log, | M| = log, |W)|, that is, the costs of fine the notion of an MDS code formally.

communicating the tags and the metadata are negligible Given an arbitrary finite sed and any set C {1,2,...,m},
as compared to the cost of communicating the data objed¢t 7¢ denote thenatural projection mappingrom .A™
values. We assume that every message is sent on behalfto the coordinates correspondingdpi.e., denoting

of some read or write operation. We next define the read’ = {s1,s2,..., 55/}, wheres; < sp... < s/g|, the
and write communication costs of an algorithm. functionrs : A™ — Al°lis defined agg (1,22, ..., Tm) =
For a given shared memory algorithm, consider ans, , Ts,, - - -, Ts s,)-

execution. The communication cost of a write opera- - . .
tion in « is the sum of the communication costs of all theDeflnltlon 31 (Maximum Distance Separable (MDS) code)

messages sent over the point-to-point links on behalf oH’et A denote any finite set. For positive integarsm

the operation. The write communication cost of the ex-SUCh thatk < m, an (m, k) code overA is a mapg :

k m i i
ecutiona is the supremum of the costs of all the write “'\L/I‘a ;] A DAtn (m’g) codziloDvSer.;A;s said t;) ge
operations inc. The write communication cost of the ximum Distance Separabf) If, for everys' C

algorithm is the supremum of the write communicationgjlz’ i 'A’km} wjfr:JSJ] ,; fg’;qere e;StS a fun(f:non
. . . . — . =

costs taken over all executions. The read communlcatlog\fer A% wher ¢ i ?h ﬁ 'EWrS(I (X?) . x or

cost of an algorithm is defined similarly. yx € A7, Whererms IS the hatural projection map-

ping.

We refer to each of the: coordinates of the output of
2.5 Storage cost an (m, k) code® as acoded elemenClassicalm-way
replication, where the input value is repeatedimes,

Informally speaking, at any point of an execution of aniS in fact an(m, 1) MDS code. Another example is the
algorithm, thestorage cosis the total number of bits Single parity codean (m,m — 1) MDS code overd =
stored by the servers. Specifically, we assume that a serdés 1} Which maps thé¢m—1)-bitvectorzy, za, . .., 21
node stores a set of triples with each triple of the form{© them-bit vectoray, s, ..., zm 1,21 G 22 G ... &
(t,w,d), wheret € T, w depends on the value of the ¥m-1-

data object associated with tagandd represents addi- Ve now review the use of an MDS code in the clas-
tional metadata that is independent of the values store@ical coding-theoretic model, where a single version of
We neglect the cost of storing the tags and the metadat8; data object with value <) is stored overV servers

so the cost of storing the triplé, w, d) is measured as USing an(V, k) MDS code. We assume that = W*

log, |W| bits. The storage cost of a server is the sum ofOr some finite se¥V and that ai{ N, k) MDS code :

the storage costs of all the triples stored at the server. Fa" — W exists ovenV (see Appendix A for a dis-

a given shared memory algorithm, consider an executiofUssion). The value of the data object can be used as
o The storage cost at a particular pointcofs the sum ~ an input tod to get N coded elements ovew; each

of the storage costs of all the non-failed servers at tha@f the IV servers, respectively, stores one of these coded
point. The storage cost of the executiaris the supre- €lements. Since each coded element belongs to the set
mum of the storage costs over all pointsofThe storage W, whose cardinality satisfig¥V| = [V|V/* = 9 ER L

cost of an algorithm is the supremum of the storage costsach coded element can be represented &%&1‘ bit-

over all executions of the algorithm. vector, i.e., the number of bits in each coded element is

a fraction % of the number of bits in the original data Each server node maintains a settafy coded-element,

object When we employ ariNV, k) code in the context label)™ triples, where we specialize the metadatate! €

of storing multiple versions, the size of a coded elemen{‘pre’, ‘fin’ }. The different phases of the write and read

is closely related to communication and storage costs inprotocols are executed sequentially. In each phase, d clien

curred by our algorithms (see Theorems 4 and 7). sends messages to servers to which the non-failed servers
respond. Termination of each phase depends on getting

) responses from at least one quorum.
4 Coded Atomic Storage The query phase is identical in both protocols and

Wi h€oded Atomic S AS) al it allows clients to discover a recefimalized object ver-
e now present th€oded Atomic StoragfCAS) al- sion, i.e., arecent version with &h’ tag. The goal of the

gpnthm, Wh'gh takﬁs advantage O_f erasuref codmgl te.c ore-write phase of a write is to ensure that each server
niques t% re (;Jcet € cogzgmcaﬂon cost _ordebmu atu.q ets a tag and a coded element with lahek’. Tags
atomic shared memory. IS parameterized by an N3ssociated with labelpte’ are not visible to the read-

te,?ﬁrk’ 1 Stk Slji g %’CA;VZ dce:'rg\(gel';[(heA??l)%onthdm ers, since the servers respondguery messages only
WIth parameter vajue by). , iK€ an with finalized tags. Once a quorum, sy, has ac-

LDR, is & quorum-based algorithm. Later,'lr? Section 5’knowledged receipt of the coded elements to the pre-
we present a yarlanF _Of CAS that has efficient Storag_‘\a’/vrite phase, the writer proceeds to fiisalize phase. In
costs as well (in addition to having the same communiy i phase, it propagates a finalizéx() label with the

catlan cgﬁts an ,CAS)' | . imole wh tag and waits for a response from a quorum of servers,
andling of incomplete writes is not as simple when Q.. The purpose of propagating théx! label is

erasure coding is used because, unlike in replication bast% ecord that the coded elements associated with the tag
techniques, no single server has a complete replica of t ave been propagated to a quokutn fact, when a tag

vglge belng' wrlttgn. In CAS, we solve this prqblem by appears anywhere in the system associated wifina *
hidingongoing write operations from reads until enoughlabel, it means that the corresponding coded elements
information has been stored at servers. Our approach €%ached a quorur®,,, with a ‘pre’ label at some pre-

. Lo . . pw
fsgrtlallyvrcm;ms [.1;1],Cp:ge.0t§d tql the setting of crashy ;¢ hoint. The operation of a writer in the two phases
aiiures. vve ?C”. € Wi (|jn f-etal next. following its query phaséielps overcome the challenge
Quorutr)‘n sEem |cat|fon|.| eb € 'ni\?ur: qur?rum sylstem, of handling writer failures. In particular, notice that gnl
Q]{,EZ e the set of all subsets af that have at least tags with the fin’ label are visible to the reader. This
5] elements (server nodes). We referto the member@nsures that the reader gets at Idasnique coded ele-
of Q, as quorum sets. We show in Apppendix C tt ments from any quorum of non-failed nodes in response

satisfies the following property: to its finalize messages, because such a quorum has an

Lemma 1 Supposethat < k < N—2f.(i))If Q1,Q; € intersection of at least nodes with@,.,. Finally, the
0, then|Q1NQ-| > k. (i) Ifthe number of failed servers reader helps propagate the tag to a quorum, and this helps

is at mostf, thenQ contains at least one quorum ggt ~ complete possibly failed writes as well.
of non-failed servers. We note that the server gossip is not necessary for

correctness of CAS. We usgossip’ in CAS mainly be-
The CAS algorithm can, in fact, use any quorum sys—cause it simplifies the proof of atomicity of tt@ASGC
tem that satisfies propertieiy &nd (i) of Lemma 1. algorithm, where server gossip plays a critical role. The
CASGC algorithm is presented in Section 5.

4.1 Algorithm description

4.2 Statements and proofs of correctness
In CAS, we assume that tags are tuples of the formid’),
wherez is an integer andid’ is an identifier of a client e next state the main result of this section.
node. The ordering on the set of tafss defined lexico-
graphically, using the usual ordering on the integers an
a predefined ordering on the client identifiers. We add®"Y-
a ‘gossip’ protocol to CAS, whereby each server sends g prove Theorem 1, we show atomicity, Theorem 2,
eachitemfrom 7 x {*fin’ } that it ever receives once (im- and liveness, Theorem 3.
mediately) to every other server. As a consequence, in
any fair execution, if a non-failed server initiatgsssip’ 4.2.1 Atomicity
or receives gossip’ message with iten{¢, ‘fin’), then,
every non-failed server receivesgn$sip’ message with Theorem 2 CAS{) is atomic.
this item at some point of the execution. Figures 1, 2 and - —))
3 respectively contain descriptions of the read, write an@ The ‘null entry_lndlcates_ that no coded element is st(_Jr_ed, the

torage cost associated storingudl coded element is negligible.

server protocols of CAS. Here, we provide an overview x |t js worth noting thatq) ., and@,., need not be the same
of the algorithm. quorum.

a’ heorem 1 CAS emulates shared atomic read/write mem-

write (value)
query: Send query messages to all servers asking for the highesfttatabel ‘fin’; await responses from a quorum.

pre-write: Select the largest tag from tiggieryphase; let its integer component beForm a new tag as(z + 1, ‘id’), where id’
is the identifier of the client performing the operation. Apthe (IV, k) MDS code® (see Section 3) to the value to obtain coded
elementsvy, wa, ..., wn. Send(t, ws, ‘pre’) to servers for everys € A/. Await responses from a quorum.

finalize: Send dinalizemessagét, ‘null’, ‘fin’) to all servers. Terminate after receiving responses frommoa.

Fig. 1 Write protocol of the CAS algorithm.

read
query:As in the writer protocol.

finalize: Send afinalize message with tag to all the servers requesting the associated coded elemfemist responses from a
quorum. If at leask servers include their locally stored coded elements i tlesponses, then obtain thelue from these coded
elements by inverting (see Definition 31) and terminate by returninglue.

Fig. 2 Read protocol of the CAS algorithm.

server
statevariable: A variable that is a subset @ x (W U {'null'}) x {'pre’, ‘fin’}.

initial state:Store(to, wo, s, ‘fin') wheres denotes the server andgh ; is the coded element corresponding to sesvebtained by
apply® to the initial valuevg.

On receipt of querymesage: Respond with the highest locally known tag that habel lin’, i.e., the highestag such that the
triple (tag, *, ‘fin’) is at the server, wherecan be a coded element onill'.

Onreceiptof pre-write mesage: If there is no record of the tag of the message in theflisiples stored at the server, then add the
triple in the message to the list of stored triples; othesviggore. Send acknowledgment.

On receipt of finalize from a writer: Let ¢ be the tag of the message. If a triple of the foftws, ‘pre’) exists in the list of
stored triples, then update it {0, w,, ‘fin’). Otherwise addt, ‘null’, ‘fin’) to list of stored triple¥". Send acknowledgment. Seng
‘gossip’ message with itenf¢, ‘fin’) to all other servers.

Onreceiptof finalizefrom areader: Let be the tag of the message. If a triple of the fqmw, *) exists in the list of stored triples
wherex can be pre’ or ‘fin’, then update it tq¢, ws, ‘fin') and sendt, w,) to the reader. Otherwise add ‘null’, ‘fin’) to the
list of triples at the server and send an acknowledgmentd Sgrsip’ message with itent, ‘fin") to all other servers.

On receiptof ‘gossip’ mesage: Lett be the tag of the message. If a triple of the foftnz,) exists in the list of stored triples
wherex is ‘pre’ or ‘fin’ and z is a coded element ofiull’, then update it td¢, z, ‘fin’). Otherwise addt, ‘null’, ‘fin’) to the list
of triples at the server.

Fig. 3 Server protocol of the CAS algorithm.

The mainidea of our proof of atomicity involves definthe last preceding write operation according-+to(or vy,
ing, on the operations of any executi@rof CAS, a par- if there is no such write).
tial order < that satisfies the sufficient conditions for

atomicity described by Lemma 13.16 of [26]. We state The following definition will be useful in defining a
these sufficient conditions in Lemma 2 next. partial order on operations in an execution of CAS that

satisfies the conditions of Lemma 2.

Lemma 2 (Paraphrased Lemma 13.16 [26].5uppose Definition 41 Consider an executiofi of CAS and con-

that the environment is well-behaved, meaning that an. : . .
S . . sider an operationr that terminates ins. Thetagof op-
operation is invoked at a client only if no other opera-

tion was performed by the client, or the client received aeratlomr, denoted a'(m), is defined as follows: I is

response to the last operation it initiated. L@be a (fi- aread, thenT(w) 'S the highest t'ag received in igiery

: N :) . phase. Ifr is a write, thenT'(r) is the new tag formed
nite or infinite) execution of a read/write object, whete ™ . .

. . ; . in its pre-writephase.
consists of invocations and responses of read and write
operations and where all operations terminate. [Ebe We define our partial ordex as follows: In any exe-
the set of all operations ip. cution of CAS, we order operations,, mo asm; < mo
Suppose thak is an irreflexive partial ordering of if (i) 7'(m1) < T'(mw2), or (ii) T'(m) = T'(m2), m is a

all the operations inlZ, satisfying the following proper- write andr is a read. We next argue that the partial or-
ties: (1) If the response forr; precedes the invocation dering< satisfies the conditions of 2. We first show in
for w5 in 3, then it cannot be the case that < 7;. (2) Lemma 3 that, in any executignof CAS, at any point
If 1 is a write operation in/l and s is any operation after an operatiom terminates, the ta@'(w) has been
in 11, then eitherr; < w3 or my < mp. (3) The value propagated with thefin’ label to at least one quorum
returned by each read operation is the value written byof servers. Intuitively speaking, Lemma 3 means that if

an operatiorr terminates, the ta@'(r) is visible to any
operation that is invoked after terminates. We crys-
tallize this intuition in Lemma 4, where we show that
any operation that is invoked after an operatiotermi-
nates acquires a tag that is at least as lardgé(as. Us-

ing Lemma 4 we show Lemma 5, which states that theP
e

tag acquired by each write operation is unique. Then wi
show that Lemma 4 and Lemma 5 imply conditidt$
and(2) of Lemma 2. By examination of the algorithm,
we show that CAS also satisfies conditi@) of Lemma

2.

Lemma 3 In any executiord of CAS, for an operation
w that terminates ing, there exists a quoru® ¢, ()

at least one response in qaeryphase with a tag that is
no smaller tharf'(m). Thereforel'(m2) > T'(m1).

Lemma5 Letw, ™o be write operations that terminate
in an executiorns of CAS. Thefl'(m) # T'(m2).

roof Let 7, my be two write operations that terminate
in executions. LetCy, C5 respectively indicate the iden-
tifiers of the client nodes at which operationg m are
invoked. We consider two cases.

Case 1 # Cs: From the write protocol, we note that
T(’]Tl) = (zl,CZ) SinceCl 75 Csy, we haveT(m) 75
T(’]TQ).

Case 2,C; = (5 : Recall that operations at the same

such that the following is true at every point of the exe-client follow a “handshake” discipline, where a new in-
cution after = terminates: Every server @} s,,(7) has ~ vocation awaits the response of a preceding invocation.
(t,*,'fin") in its set of stored triples, whereis eithera This means that one of the two operationsm, should
coded element omull’, and ¢t = T'(). complete before the other starts. Suppose that, without

Proof The proof is the same whetheris a read or a
write operation. The operation terminates after com-
pleting its finalize phase, during which it receives re-
sponses from a quorum, sy, (), to itsfinalizemes-
sage. This means that every server Q) 7., () responded
to thefinalizemessage fromr at some point before the
point of termination ofr. From the server protocol, we

loss of generality, the write operationn completes be-
fore the write operationr, starts. Then, Lemma 4 im-
plies thatT'(m2) > T'(m1). This implies thatl'(m) #
T(’]Tl).

Proof of Theorem 2Recall that we define our ordering
< as follows: In any executiofi of CAS, we order op-
erationsry, o asmy < mo if (i) T'(m1) < T'(mwa), or (ii)

can observe that every serverin @y, (m) stores the
triple (¢, x, ‘fin") at the point of responding to thimalize
message of, wherex is either a coded element ardll’.

T(m) = T(m2), m Is a write andr, is a read.

We first verify that the above ordering is a partial or-
der, that is, ifry < w9, then it cannot be that, < 7.
Furthermore, the serverstores the triple at every point \We prove this by contradiction. Suppose that < 7
after the point of responding to tffi@alizemessage of andr, < ;. Then, by definition of the ordering, we
and hence at every point after the point of termination ohave thatr’(r,) < T'(r,) and vice-versa, implying that
. T(m1) = T'(m2). Sincer; < mp andT'(my) = T'(m2), we
have thatr; is a write andr, is a read. But a symmet-
ric argument implies that, is a write andr; is a read,
which is a contradiction. Therefore is a partial order.

With the ordering< defined as above, we now show
that the three properties of Lemma 2 are satisfied. For
Proof To establish the lemma, it suffices to show that theproperty (1), consider an executiofi and two distinct
tag acquired in thgueryphase ofr,, denoted aé’(wQ), operationsry, o in 8 such thatr; returns beforer,
is at least as big a%'(m), that is, it suffices to show is invoked. If ry is a read, then Lemma 4 implies that
thatT'(my) > T(m). This is because, by examination of T'(2) > T'(r;). By definition of the ordering, it cannot
the client protocols, we can observe thatifis a read, be the case that, < ;. If m; is a write, then Lemma 4
T(mq) = T(ma), and if my is a write,T'(ma) > T'(m2). implies that?'(m2) > T'(m;) and sosr; < 9. Since< is

To show thatl'(m,) > T'(m;) we use Lemma 3. We a partial order, it cannot be the case that< ;.
denote the quorum of servers that respond tocfinery Property(2) follows from the definition of the< in
phase ofr, asQ (). We now argue that every server conjunction with Lemma 5.
in Q(m2) N Qfw(m1) responds to thgueryphase ofr, Now we show property3): The value returned by
with a tag that is at least as large’Bér;). To see this, each read operation is the value written by the last pre-
sinces is in Q. (m1), Lemma 3 implies that has atag ceding write operation according te, or v, if there is
T'(m) with label ‘fin’ at the point of termination ofr;. no such write. Note that every version of the data ob-
Sincesisin Q(w), it also responds to thguerymessage ject written in executiorB is uniquelyassociated with a
of 75, and this happens at some point after the terminawrite operation in3. Lemma 5 implies that every version
tion of m; becausers is invoked afterr; responds. From of the data object being written can be uniquely associ-
the server protocol, we infer that servaresponds to the ated withtag. Therefore, to show that a readeturns the
guerymessage ofry with a tag that is no smaller than last preceding write, we only need to argue that the read
T(m). Because of Lemma 1, there is at least one serverreturns the value associated wifl{7). From the write,
in Q(m2) N Q. (1) implying that operationr; receives read, and server protocols, it is clear that a value and/or

Lemma 4 Consider any executighof CAS, and let;, w2
be two operations that terminate ji Suppose that;
returns beforer, is invoked. Thef'(w2) > T'(71). Fur-
thermore, ifry is a write, therll'(m3) > T'(7y).

its coded elements are always paired together with th€,,,(t) N Q. respond to the readerfBalizemessage
corresponding tags at every state of every component ofith a coded element. To see this, lebe any server in
the system. In particular, the read returns the value frond) ., (t) N Q .. Sinces isin Q. (t), the server protocol
k coded elements by inverting the MDS coflethesek: for responding to @re-write message implies thathas
coded elements were obtained at some previous point by coded elementyy, at the point where it responds to
applying® to the value associated wiifi(7). Therefore that message. Singeis in Q) s,,, it also responds to the
Definition 31 implies that the read returns the value asteader’sinalizemessage, and this happens at some point
sociated withl'(r). O afteritresponds to there-writemessage. So it responds
with its coded element,. From Lemma 1, it is clear that
|Qpuw(t) N Qrw| > k implying that the reader receives
at leastk coded elements in iinalizephase and hence

We now state the liveness condition satisfied by CAS. terminates.

4.2.2 Liveness

Theorem 3 (Liveness)CASE) satisfies the followingive-
nesscondition: If 1 < k < N — 2f, then every non- 4.3 Cost Analysis
failing® operation terminates in every fair execution of

CAS() where the number of server failures is no bigger We analyze the communication costs of CAS in Theorem
thanf . 4. The theorem implies that the read and write communi-

cation costs can be made as smaII]—\,s%—f log, |V| bits
Proof By examination of the algorithm we observe thatby choosings = N — 2f.
termination of any operation depends on termination of
its phages_ So' to show |ivene35' we need to show thgtheorem 4 The write and read communication costs of
each phase of each operation terminates. Let us first exae CASK) are at mostV/k log, |V| bits.

amine thequery phase of a read/write operation; note .
that termination of thejueryphase of a client is contin- Proof For either protocol, obs'eryelwat' messages carry
gent on receiving responses from a quorum. Every nonc0ded elements which have si#831"| bits. More for-

failed server responds tocquerymessage with the high- Mally, éach message is an element flomV < {*pre’, “fin’ },
est locally available tag markel’. Since every server WhereVis acoded element corresponding to one of the
is initialized with (t, vo, ‘fin’), every non-failed server 1V outputs of the MDS codé. As described in Section 3,

1 % f
has at least one tag associated with the lafiel and 1082 W] = 221Vl The only messages that incur com-
hence responds to the cliengserymessage. Since the munication costs are the messages sent from the client to

client receives responses from every non-failed servef€ Servers in thpre-write phase of a write and the mes-

property {i) of Lemma 1 ensures that teeryphase re- S29€S sent from the servers to a client infthalizephase

ceives responses from at least one quorum, and hence tgf aread. It can be seen that the total communication cost
minates. We can similarly show that thee-write phase of read and write operations of the CAS algorithm are at

N .
and finalize phase of a writer terminate. In particular, MOSt% logz [V| bits.

termination of h of th h i ntingent on re- .
ermination ot each ot Inese pnases Is contingent o ﬁ%emark 2lt can be noted that the bound of Theorem 4 is
ceiving responses from a quorum. Their termination is.

N . . tight because a cost @¥/k is incurred in certain worst-
guaranteed from propertyi) of Lemma 1 in conjunc-

tion with the fact that every non-failed server respondsf:ase executions of CAB).

at some point, to are-writemessage andfamalizemes-
sage from a write with an acknowledgment.

It remains to show the termination of a readdi's
nalize phase. By using propertyi) of Lemma 1, we

can show that a quorum, s of servers responds
0 a reader’sfinalifemessa ?fléuor thfinalize haEe of tion costs, itincurs an infinite storage cost because server
ge. P can store coded elements corresponding to an arbitrar-

a read to terminate, there is an additional requiremer"y large number of versions. We here present a variant

that at least: servers include coded elements in their e~y " Ag algorithm calle€AS with Garbage Collec-
sponses. To show that th.|s reqwrgmgnt is satisfied, SURon (CASGC), which has the same communication costs
pose that the rgad acquired a.ﬂag1 Its query phase.' as CAS and incurs a bounded storage cost under certain
From examination of CAS, we infer that, at some point

. L reasonable conditions. CASGC achieves a bounded stor-
before the point of termination of the readseryphase,

it ted fnali ith tad Let age cost by usingarbage collectioni.e., by discarding
awriter propagated Bnalizemessage with tag Let us coded elements with sufficiently small tags at the servers.
denote byQ),., (), the set of servers that responded to

thi e e oh Wi that all . CASGC is parametrized by two positive integers denoted
is write’s pre-write phase. We argue that all serversin ;045\ herel < k < N — 2f; we denote the algo-

X An operation is said to have failed if the client performihgt ithm with parameter valuels, 5 by CASGCg;, ¢). Like
operation fails after its invocation but before its terntioa. CAS(k), we use an(N, k) MDS code in CASGC, 9).

5 Storage-Optimized Variant of CAS

Although CAS is efficient in terms of communica-

servers
statevariable A variable that is a subset @f x OV U {‘null'}) x {‘pre’, ‘fin’, (‘pre’, ‘gc’), (‘fin’, ‘gc’)}

initial state Same as in Fig. 3.

On receipt of querymesage: Similar to Fig. 3, respond with the highest locallyilatée tag labeledfin’, i.e., respond with the
highesttag such that the tripl€tag, z, ‘fin’) or (tag, ‘null’, (‘fin’,‘gc’)) is at the server, wherg can be a coded element o
‘null’.

On receiptof a pre-write mesage: Perform the actions as described in Fig. 3 except titingeof an acknowledgement. Perform
garbage collectionThen send an acknowledgement.

Onreceiptof afinalizefrom awriter: Lett be the tag of the message. If a triple of the foftnz, ‘fin’) or (¢, ‘null’, (‘fin’, ‘gc’)) is
stored in the set of locally stored triples wharean be a coded element anill’, then ignore the incoming message. Otherwise, |if
a triple of the form(¢, ws, ‘pre’) or (¢, ‘null’, (‘pre’, ‘gc’)) is stored, then upgrade it {0, ws, ‘fin') or (¢, ‘null’, (‘fin’, ‘gc’)).
Otherwise, add a triple of the forrft, ‘null’, ‘fin’) to the set of locally stored triples. Perform garbage ctibecand send an
acknowledgement. Sengdssip’ message with itenft, ‘fin’) to all other servers.

On receipt of afinalize mesagefrom areader: Lett be the tag of the message. If a triple of the fofimw,, *) exists in the list
of stored triples where can be pre’ or ‘fin’, then update it tdt, ws, ‘fin'), perform garbage collection, and seftdw) to the
reader. If (¢, ‘null’, (%, ‘gc’)) exists in the list of locally available triples whesecan be eitherfin’ or ‘pre’, then update it to
(t,'null’, (‘fin’, ‘gc’)) and perform garbage collection, but dot send a response. Otherwise gdd null’, ‘fin’) to the list of
triples at the server, perform garbage collection, and sendcknowledgment. Sendossip’ message with itenft, ‘fin') to all

other servers.

Onreceiptof a‘gossip’ mesage: Let denote the tag of the message. If a triple of the f¢tmx, ‘fin’) or (¢, ‘null’, (‘fin’, ‘gc’))
is stored in the set of locally stored triples wherean be a coded element andll’, then ignore the incoming message. Otherwisg
if a triple of the form(¢, ws, ‘pre’) or (¢, ‘null’, (‘pre’, ‘gc’)) is stored, then upgrade it {0, ws, ‘fin’) or (¢, ‘null’, (‘fin’, ‘gc’)).
Otherwise, add a triple of the forift, ‘null’, ‘fin’) to the set of locally stored triples. Perform garbage ctbec

garbagecollection: If the total number of tags of the s¢t : (¢, z, *) is stored at the server, wheree W U {'null’'} andx €
{'fin’, (‘fin’, ‘gc’)}} is no bigger thad + 1, then return. Otherwise, l&t, ¢o, ... ¢s51 denote the highest + 1 tags from the
set, sorted in descending order. Replace every elemenedbtim (¢/, ;,) wheret’ is smaller tharts_1 by (¢/, ‘null’, (x, ‘gc’))
wherex can be eitherpre’ or ‘fin’ andz € WU {'null’ }.

Fig. 4 Server protocol for CASGG{ 6).

The parameted is related to the number of coded ele- has more tha + 1 triples with the fin’ label. If so,
ments stored at each server under “normal conditions'it replaces the triplét’, =, %) by (¢, ‘null’, (, ‘gc’)) for

that is, at a point where there are no ongoing write operevery tagt’ that is smaller than all th& + 1 highest tags
ations, and every message corresponding to every writebeled fin’, where % is ‘pre’ or ‘fin’, and = can be a
operation has been delivered. A smaller valué tfads coded element omull’. If a reader requests, through a

to a smaller storage cost, although it results in weakefinalizemessage, a coded element that is already garbage
guarantee on the termination of a read operation. We firstollected, the server simply ignores this request.

provide an algorithm description. We describe the safety

and liveness properties of CASGC in Section 5.2 and an-

alyze the storage cost in Section 5.3. 5.2 Statements and proofs of correctness

We next describe the correctness conditions satisfied by
5.1 Algorithm description CASGC. We begin with a formal statement and proof of
atomicity of CASGC in Section 5.2.1. In Section 5.2.2,

The CASGQk, §) algorithm is essentially the same as We show that CASG(, §) satisfies the following live-
CAS(k) with an additional garbage collection step at theN€ss condition: in an execution where the number of servers
servers. In particular, the only differences between thds at mostf, every write operation invoked at a non-
two algorithms lie in the server actions on receivinjFa failing client terminates, and a read operation invoked
nalizemessage from a writer or a reader gossip’. The ~ at a non-failing client terminates provided that the num-
server actions in the CASGC algorithm are described ifer of write operations that amencurrentwith the read
Fig. 4. In CASGCE, 6), each server stores the latést1 IS at mosty. Our notion of concurrency in Section 5.2.2
triples with the fin’ label plus the triples corresponding is based on a new definition of end-points, which applies
to later and intervening operations with the¢' label. ~ foreven failed operations. While server gossip is not nec-
For the tags that are older (smaller) than the lafestt ~ €ssary in CAS, it plays an important role in proving ter-
finalized tags received by the server, it stores only thénination of read operations in CASGC.

metadata, not the data itself. On receivirfgnalizemes-

sage either from a writer or a reader, the server performs.2.1 Atomicity

a garbage collection step before responding to the client.

The garbage collection step checks whether the serv@theorem 5 (Atomicity) CASGC is atomic.

To show the above theorem, we observe that, from the(ii) At any point of o, the set of messages in a channel
perspective of the clients, the only difference between contains the messages in the corresponding chan-
CAS and CASGC is in the server response to a read’s nelat the corresponding pointaf. A channel inn
finalizemessage. In CASGC, when a coded elementhas may contain extra messages that are not contained
been garbage collected, a server ignores a rdimdkze in the corresponding channel at the corresponding
message. Atomicity follows similarly to CAS, since, in pointinca’.

any execution of CASGC, operations acquire essentially We construct execution next. Every component in

the same tags as they would in an execution of CAS. W%xecutiom has the same initial state inandc’. For ev-

show this formally next. ery step of/, if a client or channel takes an action, or if

Proof (Proof) Note that, formally, CAS is an I/O au- @ Server takes an action in response to a query, pre-write,
tomaton formed by composing the automata of all thedossip or write’s finalize message, or if a server sends a
nodes and communication channels in the system. W@0SSip message, then, at the corresponding steptire
show atomicity in two steps. In the first step, we con-corresponding client, channel or server takes the same
struct a I/O automaton CASwhich differs from CAS action. If, in a step ofY, a server responds to a read’s
in that some of the actions of the servers in Cag finalize message with a coded element or an acknowl-
non-deterministic. We show that CASimulates CAS, €dgementim/, the server takes the same actiomurf,

that is, we show that from the perspective of its exterdn @ step ob’, a server does not respond to a read's final-
nal behavior (i.e., its invocations, responses and failuréZ€ message with a coded element even though it stores
events), the trace of an arbitrary executigrof CAS is it, we assume that in, the server responds to the read
the trace of an executiam of CAS. Since CAS satisfies With the stored coded element as per its protocol spefica-
atomicity, o’ has atomic behavior implying that CAS tion in CAS; the message containing the coded element
satisfies atomicity. In the second step, we will show thafS delayed indefinitely ir.

CASGC simulates CASThese two steps suffice to show Thus, ina, at every step, the client actions and states,
that CASGC satisfies atomicity. and the server states are the same as.ihe only dif-

We now describe CASThe CA< automatonisiden- ference is that iny, at a particular step, a server may
tical to CAS with respect to the read and write protocols S€nd some message that will be indefinitely delayed in
and to the server actions on receiptapfery and pre- the channels. Since at every step, every client performs
write messages anfinalize messages from writers. A the same action im as ina/, the external trace of is
server's response tofaalize message from a read op- the same a&’. Sincex is an execution of CAS, for any
eration can be different in CA%is compared to CAS. In €xecutiona’ of CAS', we have shown that there is an
CAS, at the point of the receipt of tifmalizemessage at executiona of CAS with the same set of external ac-
the server, the server could respond either with the code#Pns. Since CAS satisfies atomicity, has atomic be-
element, or not respond at all (even if it has the coded elf@vior. Thereforey’ is atomic, and implying that CAS

ement). More precisely, the server action on receipt of atisfies atomicity. _ _
finalize message is as follows. Now, we show that CASGC simulates CAShat is,

On receipt of finalize from areader: Let be the tag fOr €very executiomgc of CASGC, we constructa corre-
of the message. If a triple of the forf, w,, x) appears SPonding execution’ of CAS' such that” has the same
in the list of stored triples wherecan be bre’ or ‘i, ~ €xternal behavior (i.e., the same invocations, responses
then update it t, w,, ‘fin’); nondeterminstically either and failure events) as that ofc. We first describe the
send(t, w,) to the reader or do not send any message. Ifxecutiona’ step-by-step, that is, we consider a step of
no such triple appears, addl ‘null’, ‘fin’) to the list of ~ gc and describe the corresponding stepxafWe then
triples at the server and send an acknowledgment. Serflow that the execution’ that we have constructed is
‘ gossip’ message with itent, ‘fin’) to all other servers, Cconsistent with the CASautomaton.

We show that CAS“simulates” CAS' | that is, we We constructo’ as follows. We first set the initial
show that for every execution’ of CAS, there is an States of all the components @f to be the same as they
execution of CAS with the same external trace. We de-2'€ iNage. At every step, the states of the client nodes
scribe execution, step by step, as follows. In particular, @1d the message passing systenafrare the same as
for every step of’, we describe the corresponding stepthe states of the corresponding components in the corre-

ata. The execution: that we construct has the following SPONding step Ofige. A server's responses on receipt of
properties: a message is the sameadn as that of the correspond-

ing server’s response ifgc. In particular, we note that
(i) Ata particular pointofy, every clientand serveris g server's external responses are the samgdanda’
at the same state as the corresponding client/serveken on receipt of a readeffnalize message, that is,
at the corresponding point of . if a server ignores a reader’s finalize messagedy it
Xt is instructive to note that CASdoes not satisfy the same ignores the reader's finalize messageiras well. Sim-

liveness properties as CAS since servers may never respdind t l1arly, if a server sends a message as a pargefsip’ in
nalize messages from a reader in CA&/en in a fair execution. agc, it Sends a messagedi as well. The only difference

betweemgc andc’ is in the change to the server’s inter- For a write operation that terminates, there is a point in
nal state at a point of receipt offenalizemessage from the execution where (a) is satisfied. If a write operation
a reader or a writer. At such a point, the server may perfails, then either (a) or (b) is satisfied. Therefore, a write
form garbage collection ingc, whereas it does not per- operation that either terminates or fails has an end-point.
form garbage collection in/. Note that the initial state, If neither condition (a) nor (b) is satisfied, then the write
the server’s response, and the client states at every steperation has no end-point.

of o are the same as the gorrespondmg stapgngAlso Definition 52 (End-point of a read operation) The end
note that a_server thaE fails at a stepcqf; fails at the point of a read operation irf is defined to be the point
correspondmg ste-p af’ (even though the server states f termination if the read returns id. The end-point of a
could be different in general because of the garbage co?

. : ailed read operation is defined to be the point of failure.
lection). Hence, at every step, the external behavior of

o' and agc are the same. This implies that the externalNote that a read operation that either terminates or fails
behavior of the entire executier is the same as the ex- has an end-point. A read operation invoked at non-failing
ternal behavior ofyg. client has no end-point if it does not terminate.

We complete the proof by noting that executieh
consistent with the CASautomaton. In particular, since
the initial states of all the components are the same in th
CAS' and CASGC algorithms, the initial state af is
consistent with the CASautomaton. Also, every step of
o is consistent with CAS Therefore, CASGC simulates
CAS'. Since CASis atomic,agc has atomic behavior. So We next describe the liveness property satisfied by
CASGC is atomic. CASGC.

Definition 53 (Concurrent Operations) One operation

is defined to be concurrent with another operation if it is

fiot the case that the end point of either of the two oper-
ations is before the point of invocation of the other oper-
ation.

Theorem 6 (Liveness)letl < k < N — 2f. Consider
5.2.2 Liveness a fair executions of CASGCE, 6) where the number of
server failures is at mosf. Then, every write opera-
Showing operation termination in CASGC is more com-tion invoked at a non-failing client terminates jh If
plicated than CAS. This is because, in CASGC, wherthe number of write operations that are concurrent to
a reader requests a coded element, the server may hayeead operation is at most and the read operation is
garbage collected it. The conditions for termination ofinvoked at a non-failing client, then the read operation
a write operation in CASGC is similar to CAS, and areterminates in3.
stated formally in Theorem 6. We carefully describe con-
ditions for termination of read operation here. Informally
speaking, we show that in an execution of CAS&J]

The main challenge in proving Theorem 6 lies in
showing termination of read operations. In Lemma 6, we
wherel < k < N — 2/, a read operation invoked at a show that if aread operation does not terminan.tean
non-failing client terminates in an execution where theexegutlon of CASGQK, 9), then' the numbe'rof write op-
number of failing servers is no bigger thanprovided erations that are concurrent with the read is larger ﬂ]an.
that the number of writesoncurrentwith the read is no We t.hen use thE’f lemma t.o show Thegrem 6 later in this
bigger bydii . Before we proceed to formally state our SEC1O"- We begin by stating and proving Lemma 6.
liveness conditions in Theorem 6, we give a formal def{ einma 6 Let 1 < k < N — 2f. Consider any fair ex-
inition of the notion of concurrent operations in an eX-gcution 3 of CASGCk, §) where the number of server
ecution of CASGC. For any operatianthat completes ¢5jjyres is upper bounded by. Let = be a read oper-
its query phase, the tag of the operatibfr) is defined atjon invoked at a non-failing client if# that does not
as in Definition 41. We begin with defining te@d-point terminate. Then, the number of writes that are concur-
of an operation. rent with is at leasty + 1.

Definition 51 (End-point of a write operation) In an ex- To prove Lemma 6, we prove Lemmas 7 and 8. Lemma
ecution of CASGC, the end point of a write operation 7 implies that if a non-failing server receives a final-
min 3 is defined to be ize message corresponding to a tag at some point, then,
eventually every non-failing server receives a finalizemes
sage with that tag. We note that the server gossip plays
a crucial role in showing Lemma 7. Using Lemma 7, we
then show Lemma 8 which states that if the finalize mes-
sage of an operation reaches any non-failing server in

a fair execution, then any operation invoked at a non-
failing client that begins after the endpointoficquires

i If the number of writes that are concurrent with a read opera-@ tag at least as large as the tagroThen, using Lemma
tion is larger thard, then the read simply may not terminate. 8, we show Lemma 6.

(a) the first point of3 at which a quorum of servers that
do not fail in 8 has tag7'(w) with the fin’ label,
whereT () is the tag of the operationm, if such a
point exists,

(b) the point of failure of operation, if operation
fails and (a) is not satisfied.

Lemma7 Letl < k < N — 2f. Consider any fair ex- Proof (Proof of Lemma 6Note that the termination of
ecution of CASGCk,) where the number of server the query phase of the read is contingent on receiving a
failures is no bigger thanf. Consider a write opera- quorum of responses. By noting that every non-failing
tion 7 that acquires tag. Suppose that at some point server responds to the read’s query message, we infer
of 3, at least one non-failing server has a triple of the from Lemma 1 that the query phase terminatese-
form (¢,z,'fin") or (¢, ‘null’, (‘fin’,‘gc’)) wherez € mainsto consider termination of the read’s finalize phase.
W U {‘null’}. Then operationr has an end-pointilf ~ Consider an operation whose finalize phase does not
and at the end-point, there is a quorum of non-failingterminate. We argue that there atleasts + 1 write
servers each with an element of the fofinz, ‘fin’) or ~ operations that are concurrent with
(¢, null’, (‘fin’, ‘gc’)) wherez € W U {'null’ }. Lett be the tag acquired by operationBy property
(if) of Lemma 1, we infer that a quorum, s&yy,, of
non-failing servers receives the readinalize message.
There are only two possibilities.

(i) There is no serverin @ #,, such that, at the point

Proof Notice that every server that receivedimalize
message with tag invokes the gossip’ protocol. If a
non-failing servers stores tag with the ‘fin’ label at

fSOI’T:ﬁ ;:c?t|nt Ofﬁ.’ tge; frcl).m the server p.:(r)]t?colfwe N~ of receipt of the read’s finalize message at sew/en
er that 1t received dinalize message wi ag rrom triple of the form(¢, ‘null’, (x, ‘gc’)) exists at the server.
a client or another server at some previous point. Since = ., . .

(ii) There is at least one servein @ f,, such that,

servers receives thdinalize message with tag, every .) e
" . o , at the point of receipt of the read’s finalize message at
non-failing server also receivesfmalize message with . .) ., .
servers, a triple of the form(¢, ‘null’, (x, ‘gc’)) exists at

tagt at some point of the execution becausegoksip'.
. L . the server.
Since a server that receivedimalizemessage with tag .) L
In case(i), we argue in a manner that is similar to

stores thefin’ label after receiving the message, and the 3 that th d . 10 its finali
server does not delete the label associated with the tag gpeorem atthe readreceves responses 1o Its inalize

any point, eventually, evenyon-failing servestores the MesSage fromquoru@,,, of which at leask responses

‘fin’ label with the tagt. Since the number of server fail- :(nclude clo?ed eIerpentWe repeatF thefzi;gAuSrr(;%\t her-e
ures is no bigger thafi, there is a quorum of non-failing or completeness. From examination o , We In-

servers that stores tagvith the ‘fin’ label at some point fefrt:]hat, atj’some porllnt before tt he point of tte(;fmlnla tion
of 3. Therefore, operation has an end-point if¥, with ot the readsqueryphase, a writer propagatediaal-

the end-point being the first point gfwhere a quorum izemessage with tag Let us de'note-b@pw(t.), the set

of non-failing servers have the tagvith the fin’ label. of servers that responded to this writpie-write phase.
We argue that all servers i},.,(t) N Q. respond to

Lemma 8 Consider any executiofi of CASGGE;, §), the reader'dinalize message with a coded element. To

and consider a write operation with tagt in 3. If there ~ See this, let’ be any server i), (1) N Q.. Sinces’

is a point in3 such that at least one non-failing server S in Q. (t), the server protocol for responding tgee-

stores an element of the forfh =, “fin’) or (¢, ‘null’, (‘fin’, * Wrife message implies that has a coded element,

wherez € W U {'null'}, then the operatiom has an ~ at the point where it responds to that message. Sihce

end-point ing and the tag of any operation that begins IS in Q ., it does not contain an element of the form

after the end point of is at least as large a& (t,'null’, (x, ‘gc’)) implying that it has not garbage col-
lected the coded element at the point of receipt of the

Proof By Lemma 7, we know that has an end-pointin reader’s finalize message. Therefore, it responds to the
f# and at the end-point of, there exists at least one quo- readerdinalizemessage, and this happens at some point
rum Q() of non-failing servers such that each serveragter it responds to there-writemessage. So it responds
has the tag with the ‘fin’ label. Furthermore, from the with its coded elemeni,,. From Lemma 1, it is clear
server protocol, we infer that each serverin quom) that |Q,.,(t) N Q| > k implying that the reader re-
has the tag with the ‘fin’ label at every point after the ceives at least coded elements in ifénalizephase and
end point of the operation. hence terminates. Therefore the finalize phase tdr-
Now, suppose operatior’ is invoked after the end minates, contradicting our assumption that it does not.
pointofx. We show that the tag acquired by operation Therefore(i) is impossible.
is at least as large @asDenote the quorum of serversthat \we next argue that in cag#i), there are at leagt+ 1
respond to theueryphase ofr’ asQ(7’). We now argue rite operations that are concurrent with the read opera-
thatevery servesin Q(m)NQ(r’) respondstothauery tion . In case(ii), from the server protocol of CASGC,
phase ofr’ with a tag that is at least as largeta3o see e infer that at the point of receipt of the reader’s finalize
this, sinces is in Q(m), it has a tag with label fin" at message at serverthere existtags, ¢, . . . , ts+1, each
the end-point ofr. Sinces isinQ(’), it also respondsto - pigger thart, such that a triple of the forrf¥;, z, ‘fin’)
thequerymessage of’, and this happens at some pointor (¢, ‘null’, (‘fin’, ‘gc’)) exists at the server. We infer
after the end-point of- becauser’ is invoked after the = from the write and server protocols that, for evérin
end-point ofr. Therefore serves responds with a tag {1,2,...,0 + 1}, a write operation, say;, must have
that is at least as large asThis completes the proof. committed to tag; in its pre-write phase before this

point in 5. Becauses is non-failing in 3, and because write. Then, the write operation is said to besuperseded

t < t;, we infer from Lemma 8 that write operation at a point P of the execution ithere are at least ter-

has an end point which is after the point of invocation ofminating write operations, each with a tag that is bigger
operationr. Therefore operations;, ms,...,ms+1 are thanT'(x), such that every message on behalf of each of
concurrent with read operation these operations (includingéssip’ messages) has been

. delivered by point.
A proof of Theorem 6 follows from Lemma 6 in a

manner that is similar to Theorem 3. We give a formal\We show in Lemma 9 thatin an execution of CASG(),
argument here. if a write operation iS4 + 1)-supersededt a point, then,

o no server stores a coded element corresponding to the
Proof (Proof of Theorem &y examination of the algo- operation at that point because of garbage collection. We
rithm we observe that termination of any operation de'state and prove Lemma 9 next. We then use Lemma 9 to

pends on termination of its phases. So, to show livenesgescribe a bound on the storage cost of any execution of
we need to show that each phase of each operation tetASGC, §) in Theorem 7.

minates. We first consider a write operation. Note that

termination of thequery phase of a write operation is Lemma 9 Consider an executioi of CASGCY; §) and
contingent on receiving responses from a quorum. Eveonsider any poinP of 3. If a write operationr is (6 +

ery non-failed server responds tajaerymessage with 1)-supersededt point P, then no non-failed server has
the highest locally available tag markefth’. Since ev- a coded element corresponding to the value of the write
ery server is initialized with(to, vo, ‘fin’), every non- operationr at pointP.

failed server has at least one tag associated with the label .]

‘fin’ and hence responds to the writegaerymessage. F100f (Proof)Consider an executiofi of CASGC:, 9)
Since the writer receives responses from every non-faileind @ PoINt? in 3. Consider a write operation that
server, propertyi() of Lemma 1 ensures that thiery 'S (6 + 1)-supersededt poth. C9n3|der an arbitrary
phase receives responses from at least one quorum, angvers that has not failed at poinP. We show that
hence terminates. We similarly show that fre-write ~ S€Tvers does not have a coded element corresponding
phase andinalizephase of a writer terminate. In partic- 1© OPerationr at pointP. Since operatiom is (6 + 1)-
ular, termination of each of these phases is contingent Oﬁqpersededt pointP, there existat Ieaé&l write oper-
receiving responses from a quorum. Their termination i@tONST1, T2, - - To41 suchthat, forevery e {1,2,..., 0+
guaranteed from propertyi) of Lemma 1 in conjunc- 13,

tion with the fact that every non-failed server responds, — operationr; terminates in3,

at some point, to pre-writtemessage andfenalizemes- _ the tag?'(w;) acquired by operation; is larger than
sage from a write with an acknowledgment. T(r), and

It remains to consider the termination of a read oper- — every message on behalf of operatigris delivered
ation. Suppose that a read operatigrinvoked at a non- by point P.

failing client does not terminate. Then, from Lemma 6,
we infer that there are at lea$t- 1 writes that are con-

current with the read. Therefore a read operation invoke h hdinali ith
at a non-failing client terminates if the number write op-t0 servers. Furthermore, théinalize message with tag

erations that are concurrent with the read operation is ng(m) arrives at Serves by pointP. Therefore, by point
larger thar P, servers has received at least+ 1 finalize messages,

one from each operation ifwr; : i = 1,2,...,0 + 1}.
The garbage collection executed by the server on the re-
5.3 Bound on storage cost ceipt of the last of these finalize messages ensures that
the coded element corresponding to tadpes not exist
We bound the storage cost of an execution of CASGGit servers at pointP. This completes the proof.

by providing a bound on the number of coded elements) .
stored at a server ahy particular poinof the execution. 1 heorem 7 Consider an executiofi of CASGC, 9) such

In particular, in Lemma 9, we describe conditions undetNat atany point of the executiote number of writes
which coded elements corresponding to the value of &1at have completed their query phase by that point and
write operation are garbage collectedadltthe servers. @€ Not(d+1)-superseded at that pointis upper bounded
Lemma 9 naturally leads t@storage cost bound in The- DYw. The storage cost of the execution is at migktlog, |V].
orem 7. We begin with a definition of an-superseded
write operationfor a point in an executigrior a positive
integerw.

Since operatiorr; terminates, it completes it#nalize
phase where it sends a finalize message withrtag)

Proof Consider an executiof where at any point of
the execution, the number of writes that have completed
their query phase by that pointand are 6t 1)-superseded
Definition 54 (w-superseded write operation)Inanex- at that point is upper bounded hy. Consider an arbi-
ecutiong of CASGC, consider a write operationthat trary point P of the executions, and consider a server
completes its query phase. LB{r) denote the tag of the s that is non-failed at poinP. We infer from the write

and server protocols that, at poiRt servers does not A/ that have at leasV — f elements. We also use terms
store a coded element corresponding to any write op*query”, “pre-write”, and “finalize” for the various phases
eration that has not completed its query phase by poinif operations. We provide a formal description of CCOAS
P. We also infer from Lemma 9 that servedoes not in Fig. 7. Here, we informally describe the differences

store a coded element corresponding to an operation theetween CAS and CCOAS.

is (6 4+ 1)-superseded at poiri. Thergfore, if serves — InCCOAS, the writer uses &V, N — f) MDS code
stores a coded element corresponding to a write oper- .
to generate coded elements. Note the contrast with

ation at po!nLP, we infer that t.he write operation has CAS(k) which uses ar(N, k) code, where the pa-
completed its query phase but is r{ét+ 1)-superseded .
. . g rameterk is at mostN — 2f. Because we use an
by point P. By assumption on the executighthe num- : .
. . (N, N — f) code in CCOAS, the size of each coded
ber of coded elements at point P@®ht server is upper] g0 V| 1o
elementis equal t&’Ni—f bits, and as a consequence,

bounded byw. Since each coded element has a siz¢ of h d and writ . icati ; It
log, V| bits and we considered an arbitrary servghe]s readiand write communication costs are equatto

storage cost at poin?, summed over all the non-failed . .

servers, is upper bounded By log, |V| bits. Sincewe In CCOAS, a reader requirés — f responses with

considered an arbitrary poirit, the storage cost of the coded elgments for termination of its finalize phase.

execution is upper bounded Bﬁl log, | V| bits. In CAS, in general, at mO.SN ~ 2f responses with
coded elements are required.

We note that Theorem 7 can be used to obtainabound — |n CCOAS, the servers respond to finalize messages
the storage cost of executions in terms of various param- from a read with coded elements only. This is un-
eters of the system components. For instance, the theo- Jike CAS, where a server that does not have a coded
rem can be used to obtain a bound on the storage costin element corresponding to the tag of a reader’s final-
terms of an upper bound on the delay of every message, ize message at the point of reception responds sim-
the number of steps for the nodes to take actions, the rate ply with an acknowledgement. In CCOAS, if a server
of write operations, and the rate of failure. In particular, does not have a coded element corresponding to the
the above parameters can be used to bound the number tag ¢ of a reader’s finalize message at the point of
of writes that are notX+ 1)-superseded, which canthen reception, then, in addition to adding a triple of the

be used to bound the storage cost. In an execytioh form (¢,'null’, ‘fin’) to its local storage, the server
CASGC¢, ¢) where there are no write client failures, if registers this read along with tagn its logs. When
there exists a point> where every write operation in- the corresponding coded element with tagrrives

voked before poinf” has terminated, and every message at a later point, the server, in addition to storing the
corresponding to every write operation has been deliv- coded element, sends it to every reader that is regis-

ered beforeP, then the number ofé + 1)-superseded tered with tag. We show in our proofs of correctness
write operations at” is § + 1. l’hler]\?fore. the storage that, in CCOAS, every non-failing server responds to
cost at pointP in executiong is % log, [V]. a finalize message from a read with a coded element

at some point.

6 Communication Cost Optimal Algorithm

S . 6.2 Proof of correctness and communication cost
A natural question is whether one might be able to prove

a lower bound to show that communication costs of CASye next describe a formal proof of the correctness of
and CASGC are optimal. Here, we describe af@un- ~coas.
terexample algorithmtalled Communication Cost Op-
:L:‘nal Atomic Storag€CCOAS) algorithm, which shows 6.2.1 Atomicity

at such a lower bound cannot be proved. We show in
Theorem 11 that CCOAS has write and read communicaryeqrem 8 CCOAS emulates shared atomic read/write
tion costs ofNL# log, | V| bits, which is smaller than the memory.
communication costs of CAS and CASGC. Because el-
ementary coding theoretic bounds imply that these costs The main challenge in showing Theorem 8 lies in
can be no smaller thagﬂ—f log, |V| bits, CCOAS is showing termination of read operations, specifically to
optimal from the perspective of communication costs.show that every non-failing server sends a coded element
CCOAS, however, is infeasible in practice because ofn response to a reader’s finalize message. The theorem
certain drawbacks described later in this section. follows from Theorems 10 and 9, which are stated next.

Theorem 9 The CCOAS algorithm satisfies atomicity.
6.1 Algorithm description

Proof Atomicity can be shown via a simulation relation
CCOAS resembles CAS in its structure. Like CAS with CAS. We provide a brief informal sketch of the

2f), its quorumQ@ consists of the set of all subsets of relation here. We argue that for every executjdrof

write (value
query Same as in CASY{ — 2f).

pre-write: Select the largest tag from tloggieryphase; form a new tagby incrementing integer by 1 and adding its ‘id’. Apply a
(N, N — f) MDS coded to valueand obtain coded elemenis, ..., wx. Send(¢, ws, ‘pre’) to every serves. Await responses
from a quorum.

finalize Same as in CAS{ — 2f).

Fig. 5 The write protocol of the CCOAS algorithm.

read
query Same as in CASY{ — 2f).

finalize Select largest tag from the query phase. Seffithalize messagd, ‘null’, ‘fin’) to all servers requesting the associatdd
coded elements. Await responses with coded elements framoraiiop. Obtain thealueby inverting®, and terminate by returning
value.

Fig. 6 The read protocol of the CCOAS algorithm.

server
statevariables State is a subset & x (W U {‘null’'}) x {*pre’, 'fin'} x 2€.

initial state (¢o, wo,s, ‘fin’, {}).
Responsdo query Send highest locally known tag that has lakfiat™

Responsdo pre-write: If the tagt of the message is not available in the locally stored setpiéfy add the tuplét, ws, ‘pre’, {})
to the locally stored set. Ift, ‘null’, ‘fin’, Cy) exists in the locally stored set of tuple for some set of ¢ti€ly, then sendt, w)
to every client inCo and modify the locally stored tuple {8, ws, ‘fin’, {}). Send acknowledgement to the writer.

Responsdo finalize of write: Lett denote the tag of the message(dfws, ‘pre’, {}) exists in the locally stored set of tuple where
+ can be pre’ or ‘fin’, update to(¢, ws, ‘fin’, {}). If no tuple exists in the locally stored set with tggadd (¢, ‘null’, ‘fin’, {}) to
the locally stored set. Send acknowledgement.

Responsdo finalizeof read: Lett denote the tag of the message @hd C denote the identifier of the client sending the message| If
(t,ws, *,Co) exists in the locally stored set, update the tuplétas ,, ‘fin’, Co) and sendt, w,) to reader. If(¢, ‘null’, ‘fin’, Co)

exists at the server, update it@s‘null’, ‘fin’, Co U {C}). Otherwise, addt, ‘null’, ‘fin’, {C}) to the list of locally stored tags.

Fig. 7 The server protocol of the CCOAS algorithm. We denote thegjdy infinite) set of clients by. The notatior2€ denotes the
power set of the set of clienta

CCOAS, there is an executigt of CAS with the same - invocations of operations,

trace. To see this, we note that the write protocol of CCOAS sending and receipt of messages between writers and

is essentially identical to the write protocol in CAS, with servers,

the only difference between the two algorithms being the — sending and receipt of query messages between read-

erasure code used in the pre-write phase. Similarly, the ers and servers,

guery phase of the read protocols of both algorithms are— and sending of finalize messages from the readers

the same. Also note that the server responses to messaggg identical to3. The server gossip’ messages ins’

from a writer and query messages from a reader are ideRge delayed indefinitely. A crucial difference between

tical in both CAS and CCOAS. The main differences be-and 3’ lies in the points of receipt of reader's finalize

tween CCOAS and CAS in the server actions. The firsinessages at the servers. Consider a read operation that

difference is that, in CCOAS, the servers do not performycquired tag in 3 and letP denote the point of receipt

‘gossip’. The second difference is that in CCOAS, if the of 4 readers finalize message to serveket P’ denote

server does not have a coded element corresponding {Re point of receipt of a pre-write message with teat

the tag of the reader’s finalize message, then the servggrvers in 3. Now, consider the corresponding read op-

does not respond at this point. Instead, the server seng$ation that acquired tagin 3. Now, if P precedes”’

a coded element to the reader at the point of receipt of, 3. then the reader’s finalize message with tagr-

the pre-write message with this tag. We essentially creatgyes at serves at P’ in 3, else, it arrives at poinP in

(' from (3 by delaying all messagegdssip’ messages . This implies that serves responds to reader’s final-

indefinitely, and delaying reader’s finalize messages sge messages at the same pointgiand3’. Finally, we

that they arrive at each server at the point of, or after theomplete our specification @ by letting a server’s re-

receipt of the corresponding pre-write message by thgponse to the reader’s finalize message arrive at the client

server. This delaying ensures that the server actions ag the same point i’ as in3.

identical in both3 and3". Note that if an operation acquires ta@ 3, the cor-
Specifically, we creatg’ as follows. Ing’ the points responding operation ii also acquires tag Also note

of that the points of invocation, responses of operations and

the values returned by read operations are the same in In the first scenario, note that the server has a coded
both3 and’. Therefore, there exists an executi@of elementw, at the pointP. By examining the server pro-
CAS with the same trace as an arbitrary executiaaf ~ tocol, we observe that serveresponds to the reader’s
CCOAS. Since CAS is atomig¢i’ has atomic behavior, finalize message with a coded element

and so doeg. Therefore, CCOAS satisfies atomicity. In the second second scenario, paltitcomes af-
ter P in . Because of the server protocol on receipt of
the reader’s finalize message, servemdds a tuple of
the form(¢, ‘null’, ‘fin’, Cy), whereC' € Cy, to the local
state at point?. Also, note that, at poinP’, the server
stores a tuple of the forift, ‘null’, ‘fin’, C;), whereC €
Theorem 10 CCOAS satisfies the liveness condition: inC;. Finally, based on the server protocol on receipt of a
every fair execution where the number of failing servergpre-write message, we note that at paitif the server

is no bigger thanf, every non-failing operation termi- sendsw, to all the clients irC; including clientC'. This
nates. completes the proof.

6.2.2 Liveness

We next state the liveness condition of CCOAS.

To show Theorem 10, we first state and prove Lemma We next prove Theorem 10.

10. Informally speaking, Lemma 10 implies that every))
non-failing server responds to a reader’s finalize mesPr0of (Proof of Theorem 10)o prove liveness, it suf-
sage with a coded element. As a consequence, every refi§es 1o show that in any fair executionwhere at most
operation getsV — f coded elements in response to its f servers fail, every phase of every operation terminates.
finalize messages. Therefore its finalize phase implyind "€ Proof of termination of a write operation, and the
that the operation returns implying Theorem 10. We firstduery phase of a read operation is similar to CAS and
state and prove Lemma 10. Then we prove Theorem 1@mitted here for brevity. Here, we present a proof of ter-
mination of the finalize phase of a read in any fair exe-

Lemma 10 Consider any fair execution of CCOAS cutiona where at mosf servers fail.
and a servers that does not fail ino. Then, for any To show the termination of a read, note from Lemma
read Operation i with tagt, the servers responds to 10 that in execution, every non-failed serve.srresponds

the read’s finalize message with the coded element cof0 & reader’s finalize message with a coded element. Be-
responding to tag at some point of. cause the number of servers that faihirs at mostf, this

implies that reader obtains at ledét— f messages with
Proof (Proof)Consider a serverthat does not fail inv ~ coded elements in response to its finalize message. From
and consider the poinP of « where server receives the read protocol, we observe that this suffices for termi-
a finalize message with taigfrom a reader. Since the nation of the finalize phase of a read. This completes the
read operation at the reader acquired tag servers proof.
must have responded to the read’s query message with
tagt. Since serves responded to the read’s query mes-6.2.3 Communication cost
sage with tag, the server received &n'’ label from ei-
ther a read or a write operation at some point. This imWWe next state the communication cost of CCOAS.
plies that a write operation,, with tagt completed its . L
pre-write phase before the server responded to the readT{eorem 11 The write and read communication costs
query message. From the write protocol, note that thid! CCOAS are both equal tg™ log V.
implies that the write operation,, sent a coded element The proof of Theorem 11 is similar to the proof of The-

with tagt to every server in its pre-write phase. In partic- orem 4 and is omitted here for brevity.

ular, the writer sent coded elemanf to servers. Since

the channels are reliable and sincdoes not fail ina,

this means that at some poiftt of «, the servers re- 6.3 Drawbacks of CCOAS

ceives the coded elemeint. There are only two possible

scenarios. FirstP’ precedes” in «, and secondP pre- CCOAS incurs a smaller communication cost than CAS
cedes”’. To complete the proof, we show that, in the firstand CASGC mainly because the reader acquies f
scenario the server responds to the reader’s finalize megoded elements for a read operation, whereas in CAS and
sage withw, at pointP, and in the second scenaffp CASGC, a reader acquires at maét— 2f coded ele-

the server responds to the reader’s finalize message withents for an operation. In particular, because the reader
ws at pointP”’. acquires\ — f coded elements, a writer uses(@i, N —

: /) MDS code in CCOAS. Since a write operation returns
¥V Note that in this second scenario, the server does not rdsporgfter getting responses from some quorum, there are ex-

with a coded element in CAS, where the server only sends an acs ., +: . . .
knowledgement. In contrast to the proof here, the livenessfpf cutions of our algorithm where, at the point of termina

CAS involved showing that at leastservers satisfy the condition tion of a write operation, only a quoru@,,, containing
imposed by the first scenario. N — f servers have received its pre-write messages. Now,

if one of the servers i) ,,, fails after the termination of moved in the garbage collection step without violat-
the write, then, since a reader that intends to acquire the ing atomicity and liveness of CASGC remains open.
value written require®’ — f coded elements, itisimpor- — Our CAS and CASGC algorithms are developed in a
tant that at least one of the pre-write messages sent by the model with reliable channels. Our discussion in Sec-
writer to a server outside @,,,, reaches the server. In tion 6 reveals the importance of understanding the
other words, it is crucial for liveness of read operations properties of shared memory emulation algorithms
that the pre-write messages sent by the write operation in a model with lossy channels. Extending CAS and
are delivered to every non-failing server, even if some of CASGC to a model with lossy channels is an impor-
these messages have not been delivered at the point of tant direction of future work.
termination of the write. We use this assumption implic- — Recently, a coding theoretic formulation inspired by
itly in the proof of correctness of CCOAS. the need to ensure atomicity in storage systems has
In the standard message passing model, in a fair ex- been presented in [36]. An interesting question is whether
ecution, every channel eventually delivers the messages the storage cost can be reduced through using the
that are input in the channel. In particular, under the stan- ideas of [36], or through other sophisticated coding
dard definition of fairness, the channel eventually deliv- techniques.
ers all its messages even if the any of the nodes that in— When erasure coding is used for shared memory em-
put the messages fails before the message is delivered. ulation, the communication and storage costs of var-
The fact that operation termination in CCOAS depends ious algorithms in literature depend on the number
critically on a reliable message delivery assumptionis a of concurrent operations or the number of clients.
significant drawback of CCOAS. The modeling assump- In particular, in algorithms in literature, an infinite
tion of reliable channels is often an implicit abstraction number of incomplete/failed operations can lead to
of a lossy channel and an underlying primitive that re- either violations of operation termination or an infi-
transmits lost messages until they are delivered. From a nite communication or storage cost; for instance, in
practical point of view, however, it is not well-motivated CASGC, an unbounded number of failed write oper-
to assume that this underlying primitive retransmits lost ations can lead to an unbounded storage cost if they
messages corresponding to operations that have termi- are notinterspersed with a sufficient number of oper-
nated, especially if the client performing the operation ations that terminate. A natural question is whether
fails. The limited practicality of CCOAS exposes asubtle there exist fundamental lower bounds that capture
drawback of the standard message passing model for the this behavior, or whether there exist algorithms that
study shared memory emulation algorithms, especially can achieve low communication and storage costs
when we aspire to have a smaller communication costs which do not growwith the degree of concurrency
than CASGC. CAS and CASGC do not share the draw- in the system.
back of CCOAS, because in these algorithms, a write op-— The AWE algorithm of [7] presents an algorithm with
eration ensures that its coded elements reach a quorum desirable liveness properties and storage cost even if
before the point of termination. An interesting future ex- the number of write operations that are concurrent
ercise is to generalize CAS and CASGC to lossy channel with a read operation is large, provided that the num-
models (see, for example, the model used in [15]). ber of clients is limited. The CASGC algorithm, in
contrast, provides reasonable conditions on operation
termination and storage cost even if there are an un-
7 Conclusions bounded number of clients, provided that the number

)) of write operations that are concurrent with a read
We have proposed low-cost algorithms for atomic shared gperation is limited. Our work motivates that search

memory emulationin asynchronous message-passing sys-for an algorithm that combines the desirable proper-
tems. We have also contributed to this body of work through tjes of the AWE and CASGC algorithms.
rigorous definitions and analysis of (worst-case) commu- _ Generalizing CAS and CASGC to dynamic settings
nication and storage costs. We have shown that our algo- ossibly through modifications of RAMBO [19] is
rithms have desirable properties in terms of the amount 5 ynexplored research direction.
of communication and storage costs.

There are several relevant follow up research direc-
tions in this topic. We list some of them below.

— In our CASGC algorithm, although we garbage col-
lect the coded elements, we do not garbage collect
the metadata. In particular, in an execution with an
infinite number of write operations, each server may
store the tag and a label for every write operation and
therefore, may store infinitely large amount of meta-
data. The question of whether the metadata can be re-

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Anderson, E., Li, X., Merchant, A., Shah, M.A., Smathers,

. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robiyst

. Cachin, C., Tessaro, S.: Asynchronous verifiable inféiona

. Common RAID disk data format specification. SNIA, Ad-

vanced Storage and Information Technology Standard, ver-
sion 2 (2009)

. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter,

M.K., Wylie, J.J.: Fault-scalable byzantine fault-tolerser-
vices. In: ACM SIGOPS Operating Systems Review, vol. 39,
pp. 59-74 (2005)

. Agrawal, A., Jalote, P.: Coding-based replication sakefor

distributed systems. |EEE Transactions on Parallel and Dis
tributed System$(3), 240 —251 (1995). DOI 10.1109/71.
372774

. Aguilera, M.K., Janakiraman, R., Xu, L.: Using erasurde® o4
efficiently for storage in a distributed system. In: Proceed ™

ings of International Conference on Dependable Systems ang5
Networks (DSN), pp. 336-345. IEEE (2005)

. Aguilera, M.K., Keidar, |., Malkhi, D., Shraer, A.: Dy-

namic atomic storage without consensus. J. AG&17:1—
7:32 (2011). URLhttp://doi.acm org/ 10. 1145/
1944345. 1944348

K., Tucek, J., Uysal, M., Wylie, J.J.: Efficient eventual eon
sistency in pahoehoe, an erasure-coded key-blob archive. |
IEEE/IFIP International Conference on Dependable System§8
and Networks (DSN), pp. 181-190. IEEE (2010)

. Androulaki, E., Cachin, C., Dobre, D., Vukolic, M.: Etas-

coded byzantine storage with separate metadata. Prin@ple 5q
Distributed Systems, Springer pp. 76-90 (2014)

in message-passing systems. Journal of the ACM (JACM)
42(1), 124-142 (1995)

dispersal. Distributed Computing pp. 503-504 (2005)
Cachin, C., Tessaro, S.: Optimal resilience for erasaded
byzantine distributed storage. In: 2006 International f€éen
ence on Dependable Systems and Networks (DSN), pp. 115—
124. |IEEE (2006)

Cadambe, V.R., Lynch, N., Medard, M., Musial, P.: A coded
shared atomic memory algorithm for message passing archi-
tectures. In: 13th International Symposium on Network Com-
puting and Applications (NCA), pp. 253—-260. IEEE (2014)
Cassuto, Y.: What can coding theory do for storage sysem
ACM SIGACT News44(1), 80-88 (2013)

Datta, A., Oggier, F.: An overview of codes tailor-made f
better repairability in networked distributed storagetsyss.
ACM SIGACT News44(1), 89-105 (2013)

Dobre, D., Karame, G., Li, W., Majuntke, M., Suri, N.,
Vukoli€, M.: PoWerStore: proofs of writing for efficient én
robust storage. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & Communications security, pp.
285-298. ACM (2013)

Dutta, P., Guerraoui, R., Levy, R.R.: Optimistic erascoded
distributed storage. In: Distributed Computing, pp. 1826:1
Springer (2008)

Fan, R., Lynch, N.: Efficient replication of large datgeults.

In: Proceedings of the 17th International Symposium on Dis-
tributed Computing (DISC), pp. 75-91 (2003)

Fekete, A., Lynch, N., Shvartsman, A.: Specifying anidgis

a partitionable group communication service. ACM Trans.
Comput. Systl192), 171-216 (2001). DOI http://doi.acm.
0rg/10.1145/377769.377776

Gifford, D.K.: Weighted voting for replicated data. IRro-
ceedings of the seventh ACM symposium on Operating sys-
tems principles, SOSP '79, pp. 150-162. ACM, New York,
NY, USA (1979). URLhttp://doi.acm org/ 10.
1145/ 800215. 806583

Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO: A robust,
reconfigurable atomic memory service for dynamic networks.
Distributed Computin@3(4), 225-272 (2010)

20.

26. Lynch, N.A.: Distributed Algorithms.
27.

. Malkhi, D., Reiter, M.: Byzantine quorum systems.

31.

32.

33.

34.

35.

36.

Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, VEfi:

cient byzantine-tolerant erasure-coded storage. In: R@ied
national Conference on Dependable Systems and Networks,
pp. 135-144. |EEE (2004)

21. Hendricks, J., Ganger, G.R., Reiter, M.K.: Low-overhea

Byzantine fault-tolerant storage. Proceedings of thergéve
ACM symposium on Operating systems principles (SOSP)
41(6), 73-86 (2007)

22. Herlihy, M.P., Wing, J.M.: Linearizability: a corre@ss con-

dition for concurrent objects. ACM Trans. Program. Lang.
Syst.12, 463-492 (1990). URIht t p: // doi . acm or g/
10. 1145/ 78969. 78972

3. Lamport, L.: On interprocess communication. Part |:iBas

formalism. Distributed Computing(1), 77-85 (1986)
Lin, S., Costello, D.J.: Error Control Coding, Secondtigd.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (2004)

. Lynch, N., Shvartsman, A.: Robust emulation of sharethme

ory using dynamic quorum-acknowledged broadcasts. In:
Twenty-Seventh Annual International Symposium on Fault-
Tolerant Computing, FTCS-27. Digest of Papers, pp. 272—
281. IEEE (1997)

Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1996)

Lynch, N.A., Tuttle, M.R.: An introduction to input/quut au-
tomata. CWI Quarterly, 219-246 (1989)

Dis-
tributed Computingl1(4), 203-213 (1998). URLhtt p:

/1 dx. doi . org/ 10. 1007/ s004460050050

. Martin, J.P., Alvisi, L., Dahlin, M.: Minimal byzantinstor-

age. In: Distributed Computing, pp. 311-325. Springer 2200

30. Plank, J.S.: T1: erasure codes for storage applicatidns

Proc. of the 4th USENIX Conference on File and Storage
Technologies., pp. 1-74 (2005)

Reed, |.S., Solomon, G.: Polynomial codes over certaitefi
fields. Journal of the Society for Industrial & Applied Mathe
matics8(2), 300-304 (1960)

Roth, R.: Introduction to coding theory. Cambridge énsity
Press (2006)

Saito, Y., Frglund, S., Veitch, A., Merchant, A., Spenge
Fab: building distributed enterprise disk arrays from cardm

ity components. In: ACM SIGARCH Computer Architecture
News, vol. 32, pp. 48-58. ACM (2004)

Thomas, R.: A majority consensus approach to concwyrrenc
control for multiple copy databases. ACM Transactions on
Database Systendg2), 180—209 (1979)

Vukolie, M.: Quorum systems: With applications to sigpe
and consensus. Synthesis Lectures on Distributed Congputin
Theory3(1), 1-146 (2012). URIhtt p: // dx. doi . or g/

10. 2200/ S00402ED1V01Y201202DCT009

Wang, Z., Cadambe, V.R.: Multi-version coding in diztited
storage. In: 2014 IEEE International Symposium on Informa-
tion Theory (ISIT). (2014)

A Discussion on Erasure Codes B Descriptions of the ABD and LDR Algorithms

For an(NV, k) code, the ratio%’ - also known as theedundancy As baselines for our work we use the MWMR versions of the
factor of the code - represents the storage cost overhead in thABD and LDR algorithms [8, 16]. Here, we describe the ABD and
classical erasure coding model. Much literature in codivegpty ~ LDR algorithms, and evaluate their communication and gera

involves the design of NV, k) codes for which the redundancy fac- costs. We present the ABD algorithm in Figures 8, 9 and 10. We
tor can be made as small as possible. In the classical erasuggresent the LDR algorithm in Figures 11, 12 and 13. The cdsts o

coding model, the extent to which the redundancy factor @n b
reduced depends ofi - the maximum number of server failures
that are to be tolerated. In particular, @V, k) MDS code, when
employed to store the value of the data object, tolerafes k
server node failures; this is because the definition of an M@
implies that the data can be recovered from arsyrviving nodes.

these algorithms are stated in Theorems 13 and 14.

Theorem 13 The write and read communication costs of ABD are
respectively equal tdV log |V| and 2N log |V| bits. The storage
cost is equal taV log, |V| bits.

Thus, for anN-server system that uses an MDS code, we mustlhe LDR algorithm divides its servers intbrectory servershat
havek < N — f, meaning that the redundancy factor is at leastStore metadata, aneplica serversthat store object values. The

NL_J:. It is well known [32] that, givenV and f, the parametek

cannot be made larger thav — f so that the redundancy factor
is lower bounded byN%f for any code even if it is not an MDS
code; In fact, an MDS code can equivalently be defined as on
which attains this lower bound on the redundancy factor.dd-c
ing theory, this lower bound is known as the Singleton bo®a]. [
Given parametersyV, k, the question of whether afV, k) MDS
code exists depends on the alphabet of cdeWe next discuss
some of the relevant assumptions that we (implicitly) makéhis
paper to enable the use of &V, k) MDS code in our algorithms.

A.1 Assumption onj)| due to Erasure Coding

Recall that, in our model, each valueof a data object belongs to

write protocol of LDR involves the sending of object values t
2f + 1 replica servers. The read protocol is less taxing since in
the worst-case, it involves retrieving the data object ealfrom

é‘ + 1 replica servers. We state the communication costs of LDR

next (for formal proof, see Appendix B.)

Theorem 14 In LDR, the write communication cost (8f + 1)
log, |V| bits, and the read communication cost j5+ 1) log, |V
bits.

In the LDR algorithm, each replica server stores every varsif
the data object it receivé. Therefore, the (worst-case) storage
cost of the LDR algorithm is unbounded.

Proof of Theorem 13M\e first present arguments that upper bound
the communication and storage cost for every execution ef th
ABD algorithm. The ABD algorithm presented here is fitted tw o
model. Specifically in [8, 25] there is no clear cut separatie-

a finite sefV. In our system, for the use of coding, we assume thattween clients and servers. However, this separation daehiange

VY = WF for some finite se¥V and thatd : Wk — W™ is an

the costs of the algorithm. Then we present worst-case &resu

MDS code. Here we refine these assumptions using classical rehat incur the costs as stated in the theorem.

sults from erasure coding theory. In particular, the follogwesult
is useful.

Theorem 12 Consider a finite se¥V such thaf | > N. Then,
for any integerk < N, there exists ar{V, k) MDS coded :
Wk — W,

One proof for the above in coding theory literature is cantve.
Specifically, it is well known that whef\W| > N, then® can be
constructed using the Reed-Solomon code constructioB12242].

Upper boundsFirst consider the write protocol. It has two phases,
getand put Theget phase of a write involves transfer of a tag,
but not of actual data, and therefore has negligible comoauni
tion cost. In theput phase of a write, the client sends a value from
the setZ x V to every server node; the total communication cost
of this phase is at mosV log,, |V| bits. Therefore the total write
communication cost is at moaf log,, |V| bits. In thegetphase of
the read protocol, the message from the client to the secoers
tains only metadata, and therefore has negligible commatinit
cost. However, in this phase, each of tNeservers could respond

The above theorem implies that, to employ a Reed-Solomoa cody, ¢ ¢lient with a message frofi x V; therefore the total com-

over our system, we shall need the following two assumptions

— k divideslog, |V|, and
— log, |V|/k > logy N.

Thus all our results are applicable under the above assongpti

munication cost of the messages involved indgbephase is upper
bounded by log,, |V] bits. In theput phase of the read protocol,
the read sends an element®fx V to N servers. Therefore, this
phase incurs a communication cost of at m¥dbg,, |V| bits. The
total communication cost of a read is therefore upper boditye

In fact, the first assumption above can be replaced by adifferQ]\]]og2 [V| bits.

ent assumption with only a negligible effect on the commartian
and storage costs. Specifically,lifg, |V| were not a multiple of

k then, one could pad the value Wi(ﬁ%]k —log, |V|
“dummy” bits, all set to 0, to ensure that the (padded) objjret

a size that is multiple ok; note that this padding is an overhead.
The size of the padded object would b@%]k bits and the

size of each coded element would M} bits. If we as-

sume thafiog,, [V| > k then, [12821V]7 ~ 1082]V] meaning
that the padding overhead can be neglected. Consequéetfirst
assumption can be replaced by the assumptionldlggt| V| > &
with only a negligible effect on the communication and sgera
costs.

XV Literature in coding theory literature often studies tag %
of a code, which is the reciprocal of the redundancy facter, the
rate of an(NV, k) code is%. In this paper, we use the redundancy
factor in our discussions since it enables a somewhat mturitive
connection with the costs of our algorithms in Theorems 4341
7.

The storage cost of ABD is no bigger thavilog, |V| bits
because each server stores at most one value - the latestivvalu
receives.

Worst-case executionsiformally speaking, due to asynchrony and
the possibility of failures, clients always send requestdltservers
and in the worst case, all servers respond. Therefore therupp
bounds described above are tight.

For the write protocol, the client sends the value td\alhodes
in its put phase. So the write communication cost in an execution
where at least one write terminatesNslog,, |V| bits. For the read
protocol, consider the following execution, where thererie read
operation, and one write operation that is concurrent vhithread.
We will assume that none of th¥ servers fail in this execution.
Suppose that the writer completes its get phase, and contonits
a tagt. Note thatt is the highest tag in the system at this point.
Suppose that among th€ messages that the writer sends in its
put phase with the value and tagNow the writer begins its put

¥i This is unlike ABD where the servers store only the latest ver
sion of the data object received.

write (value)
get Send query request to all servers, awaiig) responses from a majority of server nodes. Select the laragslet its integer
component be. Form a new tag as(z + 1, ‘id’), where id’ is the identifier of the client performing the operation.

put Send the paift, value) to all servers, await acknowledgment from a majority of senodes, and then terminate.

Fig. 8 Write protocol of the ABD algorithm.

read
get: Send query request to all servers, awaitg, value) responses from a majority. Select a tuple with the largestsay(t, v).

put: Send(t, v) to all servers, await acknowledgment from a majority, arehtterminate by returning the value

Fig. 9 Read protocol of the ABD algorithm.

server
statevariable: A variable which contains an element®fx V

initial state:Store the defaulftag, value) pair (to, vo).
Onreceiptof getmesagefrom aread: Respond with the locally availalilerg, value) pair.

Onreceiptof getmesagefrom awrite: Respond with the locally availableg.

On receipt of put mesage: If the tag of the message is higher than the locallylablaitag, store thétag, value) pair of the
message at the server. In any case, send an acknowledgment.

Fig. 10 Server protocol of the ABD algorithm.

write (value)
getmetalata: Send query request to directory servers, and aiai, location) responses from a majority of directory servers.
Select the largest tag; let its integer component bEorm a new tag as(z + 1, ‘id"), where id’ represents the identifier of the
client performing the operation.

put: Send(t, value) to 2f 4 1 replica servers, await acknowledgment frgimi- 1. Record identifiers of the first + 1 replica
servers that respond, call this set of identifiSrs

putmetalata: Send(t, S) to all directory servers, await acknowledgment from a nmigjoand then terminate.

Fig. 11 Write protocol of the LDR algorithm

read
getmetalata: Send query request to directory servers, and awai,(ocation) responses from a majority of directory servers.
Choose atag, location) pair with the largest tag, let this pair fg S).

putmetalata: Send(t, S) to all directory servers, await acknowledgment from a nigjor

get: Sendget objectrequest to anyf + 1 replica servers recorded & for tagt. Await a single response and terminate by returnir
a value.

Fig. 12 Read protocol of the LDR algorithm

replica server
statevariable: A variable that is subset &f x V

initial state:Store the defaulftag, value) pair (to, vo).

Onreceiptof putmesage: Add th€tag, value) pair in the message to the set of locally available pairsd2enacknowledgment.

Onreceiptof getmesage: If the value associated with the requested tag is isathef pairs stored locally, respond with the value.
Otherwise ignore.

directory server
statevariable: A variable that is an element af x 27 where2™® is the set of all subsets & .

initial state:Store(to, R), whereR is the set of all replica servers.
Onreceiptof getmetalatamesage: Send théag, S) be the pair stored locally.

Onreceiptof putmetalatamesage: Le{t, S) be the incoming message. At the point of reception of the aggsdet(tag, S1) be
the pair stored locally at the servertlis equal to theag stored locally, then storg, S U S1) locally. If ¢ is bigger thartag and if
|S| > f + 1, then store(¢, S) locally. Send an acknowledgment.

Fig. 13 Replica and directory server protocols of the LDR algorithm

phase where it send$ messages with the value and tadt least
one of these messages, say the message to demmives.the re-
maining messages are delayed, i.e., they are assumed laafezrc
the portion of the execution segment described here. Apibiist,
the read operation begins and recei{esy, value) pairs from all
the N server nodes in its get phase. Of thééamessages, at least
one message contains the tagnd the corresponding value. Note
thatt is the highest tag it receives. Therefore, the put phaseeof th
read has to send¥ messages with the tagand the corresponding
value - one message to each of fiieservers that which responded
to the read in the get phase with an older tag.

The read protocol has two phases. The cost of a read opera-
tion in an execution is the sum of the communication costhef t
messages sent in iget phase and those sent in it phase. The
get phase involves communication &f messages frorT™ x V,
one message from each server to the client, and therefaresiac
communication cost olV log,, |V| bits provided that every server
is active. Theput phase involves the communication of a message
in 7 x V from the client to every server thereby incurring a com-
munication cost ofV log,, |V| bits as well. Therefore, in any exe-
cution where allV servers are active, the communication cost of a
read operation i2N log, |V| bits and therefore the upper bound
is tight.

The storage cost is equal 16 log, | V| bits since each of the
N servers store exactly one value fram a
Proof of Theorem 14.

Upper bounds:in LDR servers are divided into two groupsi-
rectory servers used to manage object metadata,replication
servers used for object replication. Read and write prdsdcave
three sequentially executed phases. gétemetadatandput-metadata
phases incur negligible communication cost since only dattais
sent over the message-passing system. Ipthiphase, the writer
sends its messages, each of which is an element fom V), to
2f + 1 replica servers and awaifs+ 1 responses; since the re-
sponses have negligible communication cost, this phasesra
total communication cost of at mo&f + 1) log, |V| bits. The
read protocol is less taxing, where the reader duringytfiphase
queriesf + 1 replica servers and in the worst case, all respond with
a message containing an element frémx)V thereby incurring a
total communication cost of at mosf + 1) log, |V| bits.
Worst-case executiondtis clear that in every execution where at
least one writer terminates, the writer sends(@yt+ 1) messages
to replica servers that contain the value, thus incurringigewom-
munication cost of2f + 1) log, | V| bits. Similarly, for a read, in
certain executions, allf + 1) replica servers that are selected in
theput phaseof the read respond to tlgetrequest from the client.
So the upper bounds derived above are tight. a

C Proof of Lemma 1

Proof of propertyi(): By the definition, eacl) € O has cardinality
at least] £ 7. Therefore, forQ1, Q2 € Q, we have

Q1N Q2| = Q1] +1]Q2| — Q1 U Q2]

Q[N;_k-‘ — Q1 UQ2|

(a)
> 2[%1—1\] >k,

where we have used the fact th@t; U Q2| < N in (a).

Proof of property if): Let B be the set of all the server nodes that
fail in an execution, wher¢3| < f. We need to show that there
exists at least one quorum @t € Q such thatQ) C N — B,
that is, at least one quorum survives. To show this, becaluse o
definition of our quorum system, it suffices to show thelt— 5| >
[£EE7. We show this as follows:

(b) N —k N+ k
|N—B|2N—sz—[J:[*],
2 2
where,(b) follows becausé < N —2f implies thatf < | X% |.

>

