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A Coded Shared Atomic Memory Algorithm for Message Passing
Architectures

Viveck R. Cadambe · Nancy Lynch · Muriel M èdard · Peter Musial

Abstract This paper considers the communication and
storage costs of emulating atomic (linearizable) multi-
writer multi-reader shared memory in distributed message-
passing systems. The paper contains three main contribu-
tions:
(1) We present an atomic shared-memory emulation al-
gorithm that we callCoded Atomic Storage(CAS). This
algorithm useserasure codingmethods. In a storage sys-
tem withN servers that is resilient tof server failures,
we show that the communication cost of CAS isNN−2f .
The storage cost of CAS is unbounded.
(2)We present a modification of the CAS algorithm known
as CAS with Garbage Collection (CASGC). The CASGC
algorithm is parametrized by an integerδ and has a bounded
storage cost. We show that the CASGC algorithm satis-
fies atomicity. In every execution of CASGC where the
number of server failures is no bigger thanf , we show
that every write operation invoked at a non-failing client
terminates. We also show that in an execution of CASGC
with parameterδ where the number of server failures is
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no bigger thanf, a read operation terminates provided
that the number of write operations that are concurrent
with the read is no bigger thanδ. We explicitly charac-
terize the storage cost of CASGC, and show that it has
the same communication cost as CAS.
(3) We describe an algorithm known as the Communica-
tion Cost Optimal Atomic Storage (CCOAS) algorithm
that achieves a smaller communication cost than CAS
and CASGC. In particular, CCOAS incurs read and write
communication costs ofNN−f measured in terms of num-
ber of object values. We also discuss drawbacks of CCOAS
as compared with CAS and CASGC.

Keywords Shared Memory Emulation· Erasure
Coding· Multi-Writer Multi-Reader Atomic Register·
Concurrent Read and Write Operations· Storage
Efficiency

The results of this work have partially appeared in a confer-
ence paper [11]. The paper [11] does not contain proofs of atom-
icity, liveness, and the costs incurred by the published algorithms.
[11] does not include the CCOAS algorithm of Section 6 as well.
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1 Introduction

Since the late 1970s, emulation of shared-memory sys-
tems in distributed message-passing environments has
been an active area of research [2–8,10,14–21,28,33,34].
The traditional approach to building redundancy for dis-
tributed systems in the context of shared memory emu-
lation is replication. In their seminal paper [8], Attiya,
Bar-Noy, and Dolev presented a replication based algo-
rithm for emulating shared memory that achieves atomic
consistency [22, 23]. In this paper we consider a simple
multi-writer generalization of their algorithm which we
call theABD algorithmii . This algorithm uses a quorum-
based replication scheme [35], combined with read and
write protocols to ensure that the emulated object is atomic
[23] (linearizable [22]), and to ensure liveness, specif-
ically, that each operation terminates provided that at
most⌈N−1

2 ⌉ server nodes fail. A critical step in ensuring
atomicity in ABD is thepropagatephase of the read pro-
tocol, where the readers write back the value they read to
a subset of the server nodes. Since the read and write
protocols require multiple communication phases where
entire replicas are sent, this algorithm has a high com-
munication cost. In [16], Fan and Lynch introduced a
directory-based replication algorithm known as the LDR
algorithm that, like [8], emulates atomic shared mem-
ory in the message-passing model; however, unlike [8],
its read protocol is required to write only some metadata
information to the directory, rather than the value read.
In applications where the data being replicated is much
larger than the metadata, LDR is less costly than ABD in
terms of communication costs.

The main goal of our paper is to develop shared mem-
ory emulation algorithms, based on the idea oferasure
coding, that are efficient in terms of communication and
storage costs. Erasure coding is a generalization of repli-
cation that is well known in the context of classical stor-
age systems [12,13,24,32]. Specifically, in erasure cod-
ing, each server does not store the value in its entirety,
but only a part of the value called acoded element. In the
classical coding theory framework which studies storage
of a single version of a data object, this approach is well
known to lead to smaller storage costs as compared to
replication (see Section 3). Algorithms for shared mem-
ory emulation that use the idea of erasure coding to store
multiple versions of a data object consistently have been
developed in [2–4, 6, 7, 10, 14, 15, 20, 21, 33]. In this pa-
per, we develop algorithms that improve on previous al-
gorithms in terms of communication and storage costs.
We summarize our main contributions and compare them
with previous related work next.

ii The algorithm of Attiya, Bar-Noy and Dolev [8] allows only a
single node to act as a writer. Also, it did not distinguish between
client and server nodes as we do in our paper.

1.1 Contributions

We consider a static distributed message-passing setting
where the universe of nodes is fixed and known, and
nodes communicate using a reliable message-passing net-
work. We assume that client and server nodes can fail.
We define our system model, and communication and
storage cost measures in Section 2.

The CAS algorithm:We develop theCoded Atomic
Storage(CAS) algorithm presented in Section 4, which
is an erasure coding based shared memory emulation al-
gorithm. We present a brief introduction of the technique
of erasure coding in Section 3. For a storage system with
N nodes, we show in Theorem 3 that CAS ensures the
following liveness property: all operations that are in-
voked by a non-failed client terminate provided that the
number ofserverfailures is bounded by a parameterf,

wheref < ⌈N
2 ⌉ and regardless of the number of client

failures. We also show in Theorem 3 that CAS ensures
atomicity regardless of the number of (client or server)
failures. In Theorem 4 in Section 4, we also analyze the
communication cost of CAS. Specifically, in a storage
system withN servers that is resilient tof server node
failures, we show that the communication costs of using
CAS to implement a shared memory object whose values
come from a finite setV are equal to N

N−2f , measured in
terms of the number of object values. We note that these
communication costs of CAS are smaller than replica-
tion based schemes, which incur a communication cost
of N (see Appendix B for an analysis of communication
costs of ABD and LDR algorithms.). The storage cost of
CAS, however, is unbounded because each server stores
the value associated with the latest version of the data
object it receives. Note that in comparison, in the ABD
algorithm which is based on replication, the storage cost
is bounded because each node stores only the latest ver-
sion of the data object (see Appendix B for an explicit
characterization of the storage cost incurred by ABD).

The CASGC algorithm:In Section 5, we present a
variant of CAS called the CAS with Garbage Collection
(CASGC) algorithm, which achieves a bounded storage
cost bygarbage collection, i.e., discarding values associ-
ated with sufficiently old versions. CASGC is parametrized
by an integerδ which, informally speaking, controls the
number of tuples that each server stores. We show that
CASGC satisfies atomicity in Theorem 5 by establish-
ing a simulation relation between CAS and CASGC. Be-
cause of the garbage collection at the servers, the liveness
conditions for CASGC are weaker than CAS. The live-
ness property satisfied by CASGC is described in The-
orem 6 in Section 5. In Theorem 6, we show that ev-
ery write operation invoked at a non-failing client ter-
minates provided that the number of server failures is
no bigger thanf . We also prove that in an execution of
CASGC with parameterδ, if the number of server fail-
ures is no bigger thanf, a read operation invoked at a
non-failing client terminates provided that the number
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of write operations concurrent with the read is no big-
ger thanδ. The main technical challenge lies in careful
design of the CASGC algorithm in order to ensure that
an unbounded number of writes that fail before propa-
gating enough coded elements do not prevent a future
read from returning a value of the data object. In par-
ticular, failed writes that end before a read is invoked
are not treated as operations that are concurrent with the
read, and therefore do not contribute to the concurrency
limit of δ. While CASGC incurs the same communica-
tion costs as CAS, it incurs a bounded storage cost. A
larger value ofδ results in an algorithm that requires
servers to store a larger number of coded elements, and
therefore results in a larger storage cost. A formal, non-
trivial bound on the storage cost incurred by an execution
of CASGC is described in Theorem 7.

Communication Cost Optimal Atomic Storage Algo-
rithm: In Section 6 we describe a new algorithm called
the Communication Cost Optimal Atomic Storage (CCOAS)
algorithm that satisfies the same correctness conditions
as CAS, but incurs smaller communication costs. How-
ever, CCOAS would not be easily generalizable to set-
tings where channels could incur losses because, unlike
CAS and CASGC, it requires that messages from clients
to servers are delivered reliably even after operations as-
sociated with the message terminates. Therefore, it may
not be possible to design a protocol based on CCOAS
in a setting where the channel has losses. We describe
CCOAS, analyse its communication costs, and discuss
its drawbacks in Section 6.

1.2 Comparison with Related Work

Erasure coding has been used to develop shared memory
emulation techniques for systems with crash failures in
[3,4,15,33] and Byzantine failures in [2,7,10,14,20,21].
In erasure coding, note that each server stores a coded
element, so a reader has to obtain enough coded ele-
ments to decode and return the value. The main chal-
lenge in extending replication based algorithms such as
ABD to erasure coding lies in handling partially com-
pleted or failed writes. In replication, when a read occurs
during a partially completed write, servers simply send
the stored value and the reader returns the latest value
obtained from the servers. However, in erasure coding,
the challenge is to ensure that a read that observes the
trace of a partially completed or failed write obtains a
enough coded elements corresponding to the same ver-
sion to return a value. Different algorithms have different
approaches in handling this challenge of ensuring that
the reader decodes a value of the data object. As a con-
sequence, the algorithms differ in the liveness properties
satisfied, and the communication and storage costs in-
curred. We discuss the differences here briefly.

Among the previous works, [7,10,14,15,20,21] have
similar correctness requirements as our paper; these ref-
erences aim to emulate an atomic shared memory that

supports concurrent operations in asynchronous networks.
We compare our algorithms with theORCAS-AandORCAS-
B algorithms of [15], the algorithm of [20], which we
call theGWGRalgorithm, the algorithm of [21], which
we call theHGRalgorithm, theM-PoWerStorealgorithm
of [14], the algorithm of [10], which we call theCT al-
gorithm,and theAWEalgorithm of [7]. We note that [15]
assumes lossy channels and [10, 14, 21] assume Byzan-
tine failures. Here, we interpret the algorithms of [10,14,
15,21] in our model that has lossless channels and crash
failures.

We measure the storage cost at a point of an execu-
tion as the total number of bits stored by all the non-
failed servers at the point. The storage cost of an execu-
tion is measured as the supremum of the storage costs
over all points of the execution. The worst-case storage
cost of a class of executions is the supremum of the stor-
age costs over all possible executions in the class. The
communication cost of an operation is the total number
of bits sent on the channels on behalf of the operation.
The worst-case communication cost of an algorithm over
a class of executions is defined as the supremum of the
communication costs, over every operation in every ex-
ecution of the class. For our comparison here, we study
three scenarios:

– worst-case communication and storage costs over all
possible executions of the algorithm,

– worst-case communication and storage costs among
a restricted class of executions, specifically, commu-
nication and storage costs for executions where the
number of ongoing write operationsiii at any point,
the message delays and the rate of client failures are
all bounded, and

– the storage costs at a point of an execution when
there is no ongoing write operation.

The storage and communication costs and the liveness
properties satisfied by the various algorithms are tabu-
lated in Table 1.2. As noted in the table, a distinguish-
ing feature of CASGC is that it simultaneously has small
worst-case communication cost, a bounded storage cost
and desirable liveness properties when we consider the
class of executions where the number of ongoing write
operations, message delays and the rate of client fail-
ures are bounded. Here, we make some remarks com-
paring the storage costs, liveness properties and com-
munication costs of our algorithms with the algorithms
of [7,10,14,15,20,21].

Comparisons in terms of storage cost:The GWGR
algorithm of [20] develops an erasure coding based al-
gorithm which does not perform garbage collection, and

iii Informally, an operationπ is ongoingat a pointP in an exe-
cutionβ if the pointP is after the invocation of the operationπ,
and there are steps taken on behalf of the operationπ after pointP
in β.

iv In the storage costs shown in this column of the table, we as-
sume that any failed operations have been garbage collectedprevi-
ously in the execution.
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Algorithm Worst-case among all executions.

Worst case among executions with
bounded number of ongoing write oper-
ations, message delays, and rate of client
failures.

Storage cost when
there is no ongoing
write operationiv .

Liveness Comm.
cost

Storage
cost

Liveness Comm.
cost

Storage
cost

CASGC
Operations
may not
terminate

N
N−2f Infinite

Operations
terminate if
parameter δ
is sufficiently
large

N
N−2f

Bounded (δ + 1) N
N−2f

AWE Always N
N−2f

Infinite Always N
N−2f Infinite

Proportional
to the number
of readers and
writers

HGR

Operations
may not
terminate,
(obstruction
freedom)

Infinite Infinite

Operations
may not
terminate
(obstruction
freedom)

Bounded Bounded N
N−2f

CT Always Infinite N Always Bounded N N
N−f

ORCAS-B Always Infinite Infinite Always Infinite Bounded N
N−2f

ORCAS-A Always N N Always N N N
N−2f

ABD Always N N Always N N N

Table 1 Comparison of various algorithms over (i) worst case executions, and (ii) over the worst case execution in the class of executions
where the number of ongoing write operations, message delays and rate of client failures are all bounded, and (iii) at points of the
execution where there are no ongoing write operations. The costs are expressed in terms of the number of object values. Weonly consider
algorithms that perform garbage collection in the above table, and so we omit comparisons with CAS (Section 4), MPowerStore, and
GWGR algorithms.

therefore incurs an infinite storage cost, like our CAS al-
gorithm. CAS is essentially a restricted version of theM-
PoWerStorealgorithm of [14] for the crash failure model.
The main difference between CAS and M-PoWerStore
is that in CAS, servers perform gossipv. M-PoWerStore
and CAS do not perform garbage collection and there-
fore incur infinite storage costs.

The ORCAS-A algorithm of [15] stores, during a
write operation, the entire value being written in each
server. Therefore ORCAS-A incurs a worst-case storage
cost that is as large as the cost of a replication based al-
gorithm such as ABD. The CT algorithm of [10] uses the
message dispersal primitive of [9] and a reliable broad-
cast primitive using server gossip to ensure that servers
store only one coded element when there is no ongo-
ing write operation. During the write operation, the stor-
age cost of implementing the message dispersal primitive
during an operation can be as large as the storage cost of
replication. The storage and garbage collection strategies

v As we shall see later, the server gossip is not essential to cor-
rectness of CAS. It is however useful as a theoretical tool toprove
correctness of CASGC.

of HGR [21] and ORCAS-B of [15] are similar to that of
CASGC with the parameterδ set to0. In fact, the garbage
collection strategy of CASGC may be viewed as a gener-
alization of the garbage collection strategies of HGR and
ORCAS-B. It is instructive to note that the storage costs
of CASGC, HGR and ORCAS-B are all bounded if the
number of ongoing write operations, the message delays
and the rate of client failures are bounded. The storage
costs of these algorithms can be much smaller than the
cost of replication based algorithms depending on the pa-
rameters that bound the number of ongoing write opera-
tions, the message delays and the rate of client failures.

For the ORCAS-A, ORCAS-B, HGR, CT algorithms
and the CASGC algorithm whenδ = 0, every server
stores one coded element at a point of the execution when
there is no ongoing write operation, assuming that all the
coded elements corresponding to failed writes have been
garbage collected. In fact, as noted in Table 1.2, the stor-
age cost of the CT algorithm can be slightly smaller than
the storage cost of other algorithms when there is no on-
going write operation.
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The AWE algorithm of [7] presents a novel approach
to garbage collection. In the AWE algorithm, the servers
keep track of read operations in progress, and preserve
the coded elements corresponding to these read opera-
tions until completion of the read operation. The worst
case storage cost is analyzed in [7] to be proportional to
the product of the number of read clients and the num-
ber of write clients. In the case where there are an un-
bounded number of read or write clients, however, the
storage cost of [7] is infinite. In fact, in AWE, the coded
element of a failed write or read operation may never be
removed (garbage collected) from the system; therefore,
a large number of failed read or write operations could
result in a correspondingly large storage cost even if the
rate of client failures is small. Unlike AWE, the coded el-
ements of failed operations are garbage collected in the
CASGC algorithm so long as a future read or write op-
erations terminate. Therefore, CASGC can store a finite
number of coded elements, even if the number of failed
clients is infinite, so long as failed write operations are
interspersed with a sufficient number of terminating op-
erations. We anticipate that the approach of [7] is desir-
able when the number of read and write clients is small,
since it provides strong guarantees on operation termina-
tion even in the presence of unbounded number of con-
current read/write operations. The CASGC algorithm is
desirable in the presence of a large number of read/write
clients, since the storage cost is bounded and operations
terminate so long as the number of write operations that
are concurrent with a read operation is limited.

Comparisons in terms of communication cost:In the
HGR, CT, GWGR and ORCAS-B algorithms, the coded
elements from ongoing write operations are not hidden
from read operations. As a consequence, servers may
send several coded elements per read operation to a reader.
In fact, in these algorithms, the number of coded ele-
ments sent to the readers grows with the number of write
operations that are concurrent with the read operation.
The message dispersal algorithm of [9] involves the trans-
mission of coded elements via server gossip, and there-
fore, the CT algorithm incurs a significantly higher com-
munication cost as compared to even the HGR and CT
algorithms. In contrast to HGR, CT, GWGR and ORCAS-
B algorithms, in CAS and CASGC, the communication
cost an operation is exactly one coded element per server.
The MPowerStore and AWE algorithms incur the same
communication cost as CAS and CASGC.

In the ORCAS-A algorithm, the writers send the en-
tire value to the servers, and, in certain scenarios, the
servers may send entire values to the readers. Therefore,
the communication cost of ORCAS-A is much larger
than the cost of CASGC, even if the number of writes
that are concurrent with a read operation are bounded.
In the ORCAS-B algorithm, a server, on receiving a re-

quest from a reader, registers the clientvi and sends all
the incoming coded elements to the reader until the read
receives a second message from a client. Therefore, the
read communication cost of ORCAS-B grows with the
number of writes that are concurrent with a read. In fact,
in ORCAS-B, if a read client fails in the middle of a
read operation, servers may send all the coded elements
it receives from future writes to the reader. Therefore,
the communication cost of a read operation in ORCAS-
B can be infinite even in executions where the number
of ongoing write operations, the message delays, and the
rates of client failure are bounded.

Comparisons in terms of liveness properties:It is
worth noting that HGR, CT, GWGR, ORCAS-A, ORCAS-
B and AWE all satisfy the same liveness properties as
ABD and CAS, which are stronger than the liveness prop-
erties of CASGC. CASGC with parameterδ can sat-
isfy desirable liveness properties for executions where
the number of write operations that are concurrent with
every read operation is bounded byδ. In HGR, read oper-
ations satisfyobstruction freedom, that is, a read returns
if there is a period during the read where no other opera-
tion takes steps for sufficiently long. Therefore, in HGR,
operations may terminate even if the number of writes
concurrent with a read is arbitrarily large, but it requires
a sufficiently long period where concurrent operations
do not take steps. On the contrary, in CASGC, by set-
ting δ to be bigger than1, we ensure that read operations
terminate even if concurrent operations take steps, albeit
at a larger storage cost, so long as the number of writes
concurrent with a read is bounded byδ.

From a technical standpoint, our liveness guarantee
uses a new notion of concurrency that is carefully crafted
to ensure that failed operations are not treated as con-
current with every future operation.Our contributions
also include the CCOAS algorithm, complete correct-
ness proofs of all our algorithms through the develop-
ment of invariants and simulation relations, and careful
characterizations of communication and storage costs,
which may be of independent interest. Generalizations
of CAS and CASGC algorithms to the models of [10,
14, 15, 21], which consider Byzantine failures and lossy
channel models, is an interesting direction for future re-
search.

2 System Model

2.1 Deployment setting.

We assume astatic asynchronous deployment settingwhere
all the nodes and the network connections are known
a priori and the only sources of dynamic behavior are
node stop-failures (or simply, failures) and processing

vi The idea of registering a client’s identity was introduced orig-
inally in [29] and plays an important role in our CCOAS algorithm
as well.
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and communication delays. We consider a message-passing
setting where nodes communicate via point-to-point reli-
able channels. We assume a universe of nodes that is the
union ofserverandclient nodes, where the client nodes
arereaderor writer nodes.N represents the set of server
nodes;N denotes the cardinality ofN . We assume that
server and client nodes can fail (stop execution) at any
point. We assume that the number of server node failures
is at mostf . There is no bound on the number of client
failures.

2.2 Shared memory emulation.

We consider algorithms that emulate multi-writer, multi-
reader (MWMR) read/write atomic shared memory us-
ing our deployment platform. We assume that read clients
receive read requests (invocations) from some local ex-
ternal source, and respond with object values. Write clients
receive write requests and respond with acknowledgments.
The requests follow a “handshake” discipline, where a
new invocation at a client waits for a response to the pre-
ceding invocation at the same client. We require that the
overall external behavior of the algorithm corresponds to
atomic (linearizable) memory. For simplicity, in this pa-
per we consider a shared-memory system that consists of
just a single object.

We represent each version of the data object as a
(tag, value) pair. When a write client processes a write
request, it assigns atag to the request. We assume that
the tag is an element of a totally ordered setT that has
a minimum elementt0. The tag of a write request serves
as a unique identifier for that request, and the tags asso-
ciated with successive write requests at a particular write
client increase monotonically. We assume thatvalue is a
member of a finite setV that represents the set of values
that the data object can take on; note thatvalue can be
represented bylog2 |V| bitsvii . We assume that all servers
are initialized with a default initial state.

2.3 Requirements

The key correctness requirement on the targeted shared
memory service isatomicity.Briefly, an atomic shared
memory object is one where the invocations and response
look like the object is and where the observed global ex-
ternal behaviors “look like” the object is being accessed
sequentially.

Informally, an atomic shared memory object is one
that supports concurrent write and read operations where,
in every execution it is possible to do all of the following:

1. for each completed operationπ, to insert a serializa-
tion point∗π somewhere between the invocation and
response ofπ,

vii Strictly speaking, we need⌈log2 |V|⌉ bits since the number of
bits has to be an integer. We ignore this rounding error.

2. to select a subsetΦ of incomplete operations,
3. for each operation inΦ, to select a response,
4. and for each operationπ in Φ, to insert a serialization

point∗π somewhere after the invocation ofπ.

The operations and responses must be selected, and
the serialization points must be inserted so that, if we
move the invocation and response of each completed op-
eration and each operation inΦ to its serialization point,
and remove all the incomplete operations that are not in
Φ, then the trace corresponds to the trace of a read-write
variable type. We refer the reader to Chapter13 in [26]
for a formal definition of atomicity.

We require our algorithms to satisfy liveness prop-
erties related to termination of operations. To describe
the liveness properties of our algorithms, we define the
tasksfor each component of the system [26, 27]. A fair
execution is defined in the standard manner (See refer-
ence [26], p. 212). In that definition, a fair execution is
one where every automaton in the composition gets in-
finitely many turns to perform each of its tasks.

In this case, a fair execution is one where every mes-
sage on every channel is eventually delivered, and every
message that non-failing server or client prepares to send
is eventually sent, and every response that a non-failing
client prepares to send is eventually sent to the environ-
ment. Formally, every client, server and channel is an
I/O automaton, and the system is a composition of all
the client, server and channels. The tasks are as follows:

(i) Client automaton:Each individual channel input
action corresponding to a message send to a chan-
nel, and each individual invocation is a singleton
task.

(ii) Server automaton:Each channel input action is a
singleton task

(iii) Channel automaton:For every message in the chan-
nel, the corresponding channel output action is a
singleton task.

A client or server failure is modeled as afail input action
that disables every non-input action at the node.

The liveness properties of our algorithms are related
to termination of operations invoked at a non-failing client
in a fair execution where the number of server failures is
no larger thanf viii . The precise statements of the liveness
properties of our algorithms are provided in Theorems 3,
6, and 10.

Remark 1In a fair execution, a channel gets infinitely
many turns to deliver a message, even if the node that
sent the message fails. As a consequence, in a fair execu-
tion, the channels eventually deliver all their messages,
even if a node that sent some of the messages fails before
the points of their delivery. Although the reliable chan-
nel assumption is an implicit consequence of the usual
shared memory emulation model, we expose some of its
drawbacks later in Section 6.
viii We assume thatN > 2f, since correctness cannot be guaran-
teed ifN ≤ 2f [26].
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2.4 Communication cost

Informally speaking, the communication cost is the num-
ber of bits transferred over the point-to-point links in the
message-passing system. For a message that can take any
value in some finite setM, we measure its communica-
tion cost aslog2 |M| bits. We separate the cost of com-
municating a value of the data object from the cost of
communicating the tags and other metadata. Specifically,
we assume that each message is a triple(t, w, d) where
t ∈ T is a tag,w ∈ W is a component of the triple that
depends on the value associated with tagt, andd ∈ D is
any additional metadata that is independent of the value.
Here,W is a finite set of values that the second compo-
nent of the message can take on, depending on the value
of the data object.D is a finite set that contains all the
possible metadata elements for the message. These sets
are assumed to be known a priori to the sender and re-
cipient of the message. In this paper, we make the ap-
proximation:log2 |M| ≈ log2 |W|, that is, the costs of
communicating the tags and the metadata are negligible
as compared to the cost of communicating the data object
values. We assume that every message is sent on behalf
of some read or write operation. We next define the read
and write communication costs of an algorithm.

For a given shared memory algorithm, consider an
executionα. The communication cost of a write opera-
tion in α is the sum of the communication costs of all the
messages sent over the point-to-point links on behalf of
the operation. The write communication cost of the ex-
ecutionα is the supremum of the costs of all the write
operations inα. The write communication cost of the
algorithm is the supremum of the write communication
costs taken over all executions. The read communication
cost of an algorithm is defined similarly.

2.5 Storage cost

Informally speaking, at any point of an execution of an
algorithm, thestorage costis the total number of bits
stored by the servers. Specifically, we assume that a server
node stores a set of triples with each triple of the form
(t, w, d), wheret ∈ T , w depends on the value of the
data object associated with tagt, andd represents addi-
tional metadata that is independent of the values stored.
We neglect the cost of storing the tags and the metadata;
so the cost of storing the triple(t, w, d) is measured as
log2 |W| bits. The storage cost of a server is the sum of
the storage costs of all the triples stored at the server. For
a given shared memory algorithm, consider an execution
α. The storage cost at a particular point ofα is the sum
of the storage costs of all the non-failed servers at that
point. The storage cost of the executionα is the supre-
mum of the storage costs over all points ofα. The storage
cost of an algorithm is the supremum of the storage costs
over all executions of the algorithm.

3 Erasure Coding - Background

Erasure coding is a generalization of replication that has
been widely studied for purposes of failure-tolerance in
storage systems (see [12, 13, 24, 30, 32]). The key idea
of erasure coding involves splitting the data into several
coded elements, each of which is stored at a different
server node. As long as a sufficient number of coded ele-
ments can be accessed, the original data can be recov-
ered. Informally speaking, given two positive integers
m, k, k < m, an (m, k) Maximum Distance Separa-
ble (MDS) code maps ak-length vector to anm-length
vector, where the inputk-length vector can be recovered
from anyk coordinates of the outputm-length vector.
This implies that an(m, k) code, when used to store ak-
length vector onm server nodes - each server node stor-
ing one of them coordinates of the output - can tolerate
(m − k) node failures in the absence of any consistency
requirements (for example, see [1]). We proceed to de-
fine the notion of an MDS code formally.

Given an arbitrary finite setA and any setS ⊆ {1, 2, . . . , m},

let πS denote thenatural projection mappingfrom Am

onto the coordinates corresponding toS, i.e., denoting
S = {s1, s2, . . . , s|S|}, wheres1 < s2 . . . < s|S|, the
functionπS : Am → A|S| is defined asπS (x1, x2, . . . , xm) =

(xs1 , xs2 , . . . , xs|S|
).

Definition 31 (Maximum Distance Separable (MDS) code)
Let A denote any finite set. For positive integersk, m

such thatk < m, an (m, k) code overA is a mapΦ :

Ak → Am. An (m, k) codeΦ over A is said to be
Maximum Distance Separable(MDS) if, for everyS ⊆
{1, 2, . . . , m} where |S| = k, there exists a function
Φ−1

S : Ak → Ak such that:Φ−1
S (πS(Φ(x)) = x for

everyx ∈ Ak, whereπS is the natural projection map-
ping.

We refer to each of them coordinates of the output of
an (m, k) codeΦ as acoded element. Classicalm-way
replication, where the input value is repeatedm times,
is in fact an(m, 1) MDS code. Another example is the
single parity code: an(m, m − 1) MDS code overA =

{0, 1} which maps the(m−1)-bit vectorx1, x2, . . . , xm−1

to them-bit vectorx1, x2, . . . , xm−1, x1 ⊕ x2 ⊕ . . . ⊕
xm−1.

We now review the use of an MDS code in the clas-
sical coding-theoretic model, where a single version of
a data object with valuev ∈ V is stored overN servers
using an(N, k) MDS code. We assume thatV = Wk

for some finite setW and that an(N, k) MDS codeΦ :

Wk → WN exists overW (see Appendix A for a dis-
cussion). The valuev of the data object can be used as
an input toΦ to get N coded elements overW ; each
of theN servers, respectively, stores one of these coded
elements. Since each coded element belongs to the set

W , whose cardinality satisfies|W| = |V|1/k = 2
log2 |V|

k ,

each coded element can be represented as alog2 |V|
k bit-

vector, i.e., the number of bits in each coded element is
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a fraction 1
k of the number of bits in the original data

object. When we employ an(N, k) code in the context
of storing multiple versions, the size of a coded element
is closely related to communication and storage costs in-
curred by our algorithms (see Theorems 4 and 7).

4 Coded Atomic Storage

We now present theCoded Atomic Storage(CAS) al-
gorithm, which takes advantage of erasure coding tech-
niques to reduce the communication cost for emulating
atomic shared memory. CAS is parameterized by an in-
tegerk, 1 ≤ k ≤ N − 2f ; we denote the algorithm
with parameter valuek by CAS(k). CAS, like ABD and
LDR, is a quorum-based algorithm. Later, in Section 5,
we present a variant of CAS that has efficient storage
costs as well (in addition to having the same communi-
cation costs as CAS).

Handling of incomplete writes is not as simple when
erasure coding is used because, unlike in replication based
techniques, no single server has a complete replica of the
value being written. In CAS, we solve this problem by
hidingongoing write operations from reads until enough
information has been stored at servers. Our approach es-
sentially mimics [14], projected to the setting of crash
failures. We describe CAS in detail next.
Quorum specification. We define our quorum system,
Q, to be the set of all subsets ofN that have at least
⌈N+k

2 ⌉ elements (server nodes). We refer to the members
of Q, as quorum sets. We show in Apppendix C thatQ
satisfies the following property:

Lemma 1 Suppose that1 ≤ k ≤ N−2f. (i) If Q1, Q2 ∈
Q, then|Q1∩Q2| ≥ k. (ii ) If the number of failed servers
is at mostf , thenQ contains at least one quorum setQ

of non-failed servers.

The CAS algorithm can, in fact, use any quorum sys-
tem that satisfies properties (i) and (ii ) of Lemma 1.

4.1 Algorithm description

In CAS, we assume that tags are tuples of the form(z, ‘ id’),
wherez is an integer and ‘id’ is an identifier of a client
node. The ordering on the set of tagsT is defined lexico-
graphically, using the usual ordering on the integers and
a predefined ordering on the client identifiers. We add
a ‘gossip’ protocol to CAS, whereby each server sends
eachitemfromT ×{‘fin’} that it ever receives once (im-
mediately) to every other server. As a consequence, in
any fair execution, if a non-failed server initiates ‘gossip’
or receives ‘gossip’ message with item(t, ‘fin’), then,
every non-failed server receives a ‘gossip’ message with
this item at some point of the execution. Figures 1, 2 and
3 respectively contain descriptions of the read, write and
server protocols of CAS. Here, we provide an overview
of the algorithm.

Each server node maintains a set of (tag, coded-element,
label)ix triples, where we specialize the metadata tolabel ∈
{‘pre’ , ‘fin’}. The different phases of the write and read
protocols are executed sequentially. In each phase, a client
sends messages to servers to which the non-failed servers
respond. Termination of each phase depends on getting
responses from at least one quorum.

The query phase is identical in both protocols and
it allows clients to discover a recentfinalized object ver-
sion, i.e., a recent version with a ‘fin’ tag. The goal of the
pre-write phase of a write is to ensure that each server
gets a tag and a coded element with label ‘pre’. Tags
associated with label ‘pre’ are not visible to the read-
ers, since the servers respond toquery messages only
with finalized tags. Once a quorum, sayQpw, has ac-
knowledged receipt of the coded elements to the pre-
write phase, the writer proceeds to itsfinalizephase. In
this phase, it propagates a finalize (‘fin’) label with the
tag and waits for a response from a quorum of servers,
sayQfw. The purpose of propagating the ‘fin’ label is
to record that the coded elements associated with the tag
have been propagated to a quorumx. In fact, when a tag
appears anywhere in the system associated with a ‘fin’
label, it means that the corresponding coded elements
reached a quorumQpw with a ‘pre’ label at some pre-
vious point. The operation of a writer in the two phases
following its query phasehelps overcome the challenge
of handling writer failures. In particular, notice that only
tags with the ‘fin’ label are visible to the reader. This
ensures that the reader gets at leastk unique coded ele-
ments from any quorum of non-failed nodes in response
to its finalize messages, because such a quorum has an
intersection of at leastk nodes withQpw. Finally, the
reader helps propagate the tag to a quorum, and this helps
complete possibly failed writes as well.

We note that the server gossip is not necessary for
correctness of CAS. We use ‘gossip’ in CAS mainly be-
cause it simplifies the proof of atomicity of theCASGC
algorithm, where server gossip plays a critical role. The
CASGC algorithm is presented in Section 5.

4.2 Statements and proofs of correctness

We next state the main result of this section.

Theorem 1 CAS emulates shared atomic read/write mem-
ory.

To prove Theorem 1, we show atomicity, Theorem 2,
and liveness, Theorem 3.

4.2.1 Atomicity

Theorem 2 CAS(k) is atomic.

ix The ‘null’ entry indicates that no coded element is stored; the
storage cost associated storing anull coded element is negligible.

x It is worth noting thatQfw andQpw need not be the same
quorum.
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write(value)
query:Send query messages to all servers asking for the highest tagwith label ‘fin’; await responses from a quorum.

pre-write: Select the largest tag from thequeryphase; let its integer component bez. Form a new tagt as(z + 1, ‘ id’), where ‘id’
is the identifier of the client performing the operation. Apply the (N, k) MDS codeΦ (see Section 3) to the value to obtain coded
elementsw1, w2, . . . , wN . Send(t, ws, ‘pre’) to servers for everys ∈ N . Await responses from a quorum.

finalize: Send afinalizemessage(t, ‘null’ , ‘fin’) to all servers. Terminate after receiving responses from a quorum.

Fig. 1 Write protocol of the CAS algorithm.

read
query:As in the writer protocol.

finalize: Send afinalizemessage with tagt to all the servers requesting the associated coded elements. Await responses from a
quorum. If at leastk servers include their locally stored coded elements in their responses, then obtain thevalue from these coded
elements by invertingΦ (see Definition 31) and terminate by returningvalue.

Fig. 2 Read protocol of the CAS algorithm.

server
statevariable: A variable that is a subset ofT × (W ∪ {‘null’}) × {‘pre’ , ‘fin’}.

initial state:Store(t0, w0,s, ‘fin’) wheres denotes the server andw0,s is the coded element corresponding to servers obtained by
applyΦ to the initial valuev0.

On receipt of querymessage: Respond with the highest locally known tag that has a label ‘fin’, i.e., the highesttag such that the
triple (tag, ∗, ‘fin’) is at the server, where∗ can be a coded element or ‘null’.

On receiptof pre-write message: If there is no record of the tag of the message in the listof triples stored at the server, then add the
triple in the message to the list of stored triples; otherwise ignore. Send acknowledgment.

On receipt of finalize from a writer: Let t be the tag of the message. If a triple of the form(t, ws, ‘pre’) exists in the list of
stored triples, then update it to(t, ws, ‘fin’). Otherwise add(t, ‘null’ , ‘fin’) to list of stored triplesxvi . Send acknowledgment. Send
‘gossip’ message with item(t, ‘fin’) to all other servers.

Onreceiptof finalizefrom areader: Lett be the tag of the message. If a triple of the form(t, ws, ∗) exists in the list of stored triples
where∗ can be ‘pre’ or ‘ fin’, then update it to(t, ws, ‘fin’) and send(t, ws) to the reader. Otherwise add(t, ‘null’ , ‘fin’) to the
list of triples at the server and send an acknowledgment. Send ‘gossip’ message with item(t, ‘fin’) to all other servers.

On receipt of ‘gossip’ message: Lett be the tag of the message. If a triple of the form(t, x, ∗) exists in the list of stored triples
where∗ is ‘pre’ or ‘ fin’ andx is a coded element of ‘null’, then update it to(t, x, ‘fin’). Otherwise add(t, ‘null’ , ‘fin’) to the list
of triples at the server.

Fig. 3 Server protocol of the CAS algorithm.

The main idea of our proof of atomicity involves defin-
ing, on the operations of any executionβ of CAS, a par-
tial order ≺ that satisfies the sufficient conditions for
atomicity described by Lemma 13.16 of [26]. We state
these sufficient conditions in Lemma 2 next.

Lemma 2 (Paraphrased Lemma 13.16 [26].)Suppose
that the environment is well-behaved, meaning that an
operation is invoked at a client only if no other opera-
tion was performed by the client, or the client received a
response to the last operation it initiated. Letβ be a (fi-
nite or infinite) execution of a read/write object, whereβ

consists of invocations and responses of read and write
operations and where all operations terminate. LetΠ be
the set of all operations inβ.

Suppose that≺ is an irreflexive partial ordering of
all the operations inΠ , satisfying the following proper-
ties: (1) If the response forπ1 precedes the invocation
for π2 in β, then it cannot be the case thatπ2 ≺ π1. (2)
If π1 is a write operation inΠ andπ2 is any operation
in Π , then eitherπ1 ≺ π2 or π2 ≺ π1. (3) The value
returned by each read operation is the value written by

the last preceding write operation according to≺ (or v0,
if there is no such write).

The following definition will be useful in defining a
partial order on operations in an execution of CAS that
satisfies the conditions of Lemma 2.

Definition 41 Consider an executionβ of CAS and con-
sider an operationπ that terminates inβ. Thetagof op-
erationπ, denoted asT (π), is defined as follows: Ifπ is
a read, then,T (π) is the highest tag received in itsquery
phase. Ifπ is a write, then,T (π) is the new tag formed
in its pre-writephase.

We define our partial order≺ as follows: In any exe-
cutionβ of CAS, we order operationsπ1, π2 asπ1 ≺ π2

if (i) T (π1) < T (π2), or (ii) T (π1) = T (π2), π1 is a
write andπ2 is a read. We next argue that the partial or-
dering≺ satisfies the conditions of 2. We first show in
Lemma 3 that, in any executionβ of CAS, at any point
after an operationπ terminates, the tagT (π) has been
propagated with the ‘fin’ label to at least one quorum
of servers. Intuitively speaking, Lemma 3 means that if
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an operationπ terminates, the tagT (π) is visible to any
operation that is invoked afterπ terminates. We crys-
tallize this intuition in Lemma 4, where we show that
any operation that is invoked after an operationπ termi-
nates acquires a tag that is at least as large asT (π). Us-
ing Lemma 4 we show Lemma 5, which states that the
tag acquired by each write operation is unique. Then we
show that Lemma 4 and Lemma 5 imply conditions(1)
and(2) of Lemma 2. By examination of the algorithm,
we show that CAS also satisfies condition(3) of Lemma
2.

Lemma 3 In any executionβ of CAS, for an operation
π that terminates inβ, there exists a quorumQfw(π)
such that the following is true at every point of the exe-
cutionβ afterπ terminates: Every server ofQfw(π) has
(t, ∗, ‘fin’) in its set of stored triples, where∗ is either a
coded element or ‘null’, and t = T (π).

Proof The proof is the same whetherπ is a read or a
write operation. The operationπ terminates after com-
pleting its finalize phase, during which it receives re-
sponses from a quorum, sayQfw(π), to itsfinalizemes-
sage. This means that every servers in Qfw(π) responded
to thefinalizemessage fromπ at some point before the
point of termination ofπ. From the server protocol, we
can observe that every servers in Qfw(π) stores the
triple (t, ∗, ‘fin’) at the point of responding to thefinalize
message ofπ, where∗ is either a coded element or ‘null’.
Furthermore, the servers stores the triple at every point
after the point of responding to thefinalizemessage ofπ
and hence at every point after the point of termination of
π.

Lemma 4 Consider any executionβ of CAS, and letπ1, π2

be two operations that terminate inβ. Suppose thatπ1

returns beforeπ2 is invoked. ThenT (π2) ≥ T (π1). Fur-
thermore, ifπ2 is a write, thenT (π2) > T (π1).

Proof To establish the lemma, it suffices to show that the
tag acquired in thequeryphase ofπ2, denoted aŝT (π2),

is at least as big asT (π1), that is, it suffices to show
thatT̂ (π2) ≥ T (π1). This is because, by examination of
the client protocols, we can observe that ifπ2 is a read,
T (π2) = T̂ (π2), and ifπ2 is a write,T (π2) > T̂ (π2).

To show thatT̂ (π2) ≥ T (π1) we use Lemma 3. We
denote the quorum of servers that respond to thequery
phase ofπ2 asQ̂(π2). We now argue that every servers

in Q̂(π2) ∩ Qfw(π1) responds to thequeryphase ofπ2

with a tag that is at least as large asT (π1). To see this,
sinces is in Qfw(π1), Lemma 3 implies thats has a tag
T (π1) with label ‘fin’ at the point of termination ofπ1.
Sinces is in Q̂(π), it also responds to thequerymessage
of π2, and this happens at some point after the termina-
tion of π1 becauseπ2 is invoked afterπ1 responds. From
the server protocol, we infer that servers responds to the
querymessage ofπ2 with a tag that is no smaller than
T (π1). Because of Lemma 1, there is at least one servers

in Q̂(π2)∩Qfw(π1) implying that operationπ2 receives

at least one response in itsqueryphase with a tag that is
no smaller thanT (π1). ThereforeT̂ (π2) ≥ T (π1).

Lemma 5 Letπ1, π2 be write operations that terminate
in an executionβ of CAS. ThenT (π1) 6= T (π2).

Proof Let π1, π2 be two write operations that terminate
in executionβ. LetC1, C2 respectively indicate the iden-
tifiers of the client nodes at which operationsπ1, π2 are
invoked. We consider two cases.
Case 1,C1 6= C2: From the write protocol, we note that
T (πi) = (zi, Ci). SinceC1 6= C2, we haveT (π1) 6=
T (π2).
Case 2,C1 = C2 : Recall that operations at the same
client follow a “handshake” discipline, where a new in-
vocation awaits the response of a preceding invocation.
This means that one of the two operationsπ1, π2 should
complete before the other starts. Suppose that, without
loss of generality, the write operationπ1 completes be-
fore the write operationπ2 starts. Then, Lemma 4 im-
plies thatT (π2) > T (π1). This implies thatT (π2) 6=
T (π1).

Proof of Theorem 2.Recall that we define our ordering
≺ as follows: In any executionβ of CAS, we order op-
erationsπ1, π2 asπ1 ≺ π2 if (i) T (π1) < T (π2), or (ii)
T (π1) = T (π2), π1 is a write andπ2 is a read.

We first verify that the above ordering is a partial or-
der, that is, ifπ1 ≺ π2, then it cannot be thatπ2 ≺ π1.
We prove this by contradiction. Suppose thatπ1 ≺ π1

andπ2 ≺ π1. Then, by definition of the ordering, we
have thatT (π1) ≤ T (π2) and vice-versa, implying that
T (π1) = T (π2). Sinceπ1 ≺ π2 andT (π1) = T (π2), we
have thatπ1 is a write andπ2 is a read. But a symmet-
ric argument implies thatπ2 is a write andπ1 is a read,
which is a contradiction. Therefore≺ is a partial order.

With the ordering≺ defined as above, we now show
that the three properties of Lemma 2 are satisfied. For
property(1), consider an executionβ and two distinct
operationsπ1, π2 in β such thatπ1 returns beforeπ2

is invoked. If π2 is a read, then Lemma 4 implies that
T (π2) ≥ T (π1). By definition of the ordering, it cannot
be the case thatπ2 ≺ π1. If π1 is a write, then Lemma 4
implies thatT (π2) > T (π1) and so,π1 ≺ π2. Since≺ is
a partial order, it cannot be the case thatπ2 ≺ π1.

Property(2) follows from the definition of the≺ in
conjunction with Lemma 5.

Now we show property(3): The value returned by
each read operation is the value written by the last pre-
ceding write operation according to≺, or v0 if there is
no such write. Note that every version of the data ob-
ject written in executionβ is uniquelyassociated with a
write operation inβ. Lemma 5 implies that every version
of the data object being written can be uniquely associ-
ated withtag.Therefore, to show that a readπ returns the
last preceding write, we only need to argue that the read
returns the value associated withT (π). From the write,
read, and server protocols, it is clear that a value and/or
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its coded elements are always paired together with the
corresponding tags at every state of every component of
the system. In particular, the read returns the value from
k coded elements by inverting the MDS codeΦ; thesek
coded elements were obtained at some previous point by
applyingΦ to the value associated withT (π). Therefore
Definition 31 implies that the read returns the value as-
sociated withT (π). ⊓⊔

4.2.2 Liveness

We now state the liveness condition satisfied by CAS.

Theorem 3 (Liveness)CAS(k) satisfies the followinglive-
nesscondition: If 1 ≤ k ≤ N − 2f , then every non-
failingxi operation terminates in every fair execution of
CAS(k) where the number of server failures is no bigger
thanf .

Proof By examination of the algorithm we observe that
termination of any operation depends on termination of
its phases. So, to show liveness, we need to show that
each phase of each operation terminates. Let us first ex-
amine thequery phase of a read/write operation; note
that termination of thequeryphase of a client is contin-
gent on receiving responses from a quorum. Every non-
failed server responds to aquerymessage with the high-
est locally available tag marked ‘fin’. Since every server
is initialized with (t0, v0, ‘fin’), every non-failed server
has at least one tag associated with the label ‘fin’ and
hence responds to the client’squerymessage. Since the
client receives responses from every non-failed server,
property (ii ) of Lemma 1 ensures that thequeryphase re-
ceives responses from at least one quorum, and hence ter-
minates. We can similarly show that thepre-writephase
and finalize phase of a writer terminate. In particular,
termination of each of these phases is contingent on re-
ceiving responses from a quorum. Their termination is
guaranteed from property (ii ) of Lemma 1 in conjunc-
tion with the fact that every non-failed server responds,
at some point, to apre-writemessage and afinalizemes-
sage from a write with an acknowledgment.

It remains to show the termination of a reader’sfi-
nalize phase. By using property (ii ) of Lemma 1, we
can show that a quorum, sayQfw of servers responds
to a reader’sfinalizemessage. For thefinalizephase of
a read to terminate, there is an additional requirement
that at leastk servers include coded elements in their re-
sponses. To show that this requirement is satisfied, sup-
pose that the read acquired a tagt in its query phase.
From examination of CAS, we infer that, at some point
before the point of termination of the read’squeryphase,
a writer propagated afinalizemessage with tagt. Let us
denote byQpw(t), the set of servers that responded to
this write’spre-writephase. We argue that all servers in

xi An operation is said to have failed if the client performing the
operation fails after its invocation but before its termination.

Qpw(t) ∩ Qfw respond to the reader’sfinalizemessage
with a coded element. To see this, lets be any server in
Qpw(t)∩Qfw . Sinces is in Qpw(t), the server protocol
for responding to apre-writemessage implies thats has
a coded element,ws, at the point where it responds to
that message. Sinces is in Qfw, it also responds to the
reader’sfinalizemessage, and this happens at some point
after it responds to thepre-writemessage. So it responds
with its coded elementws. From Lemma 1, it is clear that
|Qpw(t) ∩ Qfw| ≥ k implying that the reader receives
at leastk coded elements in itsfinalizephase and hence
terminates.

4.3 Cost Analysis

We analyze the communication costs of CAS in Theorem
4. The theorem implies that the read and write communi-
cation costs can be made as small asNN−2f log2 |V| bits
by choosingk = N − 2f.

Theorem 4 The write and read communication costs of
the CAS(k) are at mostN/k log2 |V| bits.

Proof For either protocol, observe that messages carry
coded elements which have sizelog2 |V|

k bits. More for-
mally, each message is an element fromT ×W×{‘pre’ , ‘fin’},
where,W is a coded element corresponding to one of the
N outputs of the MDS codeΦ. As described in Section 3,
log2 |W| = log2 |V|

k . The only messages that incur com-
munication costs are the messages sent from the client to
the servers in thepre-writephase of a write and the mes-
sages sent from the servers to a client in thefinalizephase
of a read. It can be seen that the total communication cost
of read and write operations of the CAS algorithm are at
most N

k log2 |V| bits.

Remark 2It can be noted that the bound of Theorem 4 is
tight because a cost ofN/k is incurred in certain worst-
case executions of CAS(k).

5 Storage-Optimized Variant of CAS

Although CAS is efficient in terms of communica-
tion costs, it incurs an infinite storage cost because servers
can store coded elements corresponding to an arbitrar-
ily large number of versions. We here present a variant
of the CAS algorithm calledCAS with Garbage Collec-
tion (CASGC), which has the same communication costs
as CAS and incurs a bounded storage cost under certain
reasonable conditions. CASGC achieves a bounded stor-
age cost by usinggarbage collection, i.e., by discarding
coded elements with sufficiently small tags at the servers.
CASGC is parametrized by two positive integers denoted
ask andδ, where1 ≤ k ≤ N − 2f ; we denote the algo-
rithm with parameter valuesk, δ by CASGC(k, δ). Like
CAS(k), we use an(N, k) MDS code in CASGC(k, δ).
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servers
statevariable: A variable that is a subset ofT × (W ∪ {‘null’}) × {‘pre’ , ‘fin’ , (‘pre’ , ‘gc’), (‘fin’ , ‘gc’)}

initial state: Same as in Fig. 3.

On receipt of querymessage: Similar to Fig. 3, respond with the highest locally available tag labeled ‘fin’, i.e., respond with the
highesttag such that the triple(tag, x, ‘fin’) or (tag, ‘null’ , (‘fin’ , ‘gc’)) is at the server, wherex can be a coded element or
‘null’.

On receiptof a pre-write message: Perform the actions as described in Fig. 3 except the sending of an acknowledgement. Perform
garbage collection. Then send an acknowledgement.

Onreceiptof afinalizefrom awriter: Let t be the tag of the message. If a triple of the form(t, x, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’)) is
stored in the set of locally stored triples wherex can be a coded element or ‘null’, then ignore the incoming message. Otherwise, if
a triple of the form(t, ws, ‘pre’) or (t, ‘null’ , (‘pre’ , ‘gc’)) is stored, then upgrade it to(t, ws, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’)).
Otherwise, add a triple of the form(t, ‘null’ , ‘fin’) to the set of locally stored triples. Perform garbage collection and send an
acknowledgement. Send ‘gossip’ message with item(t, ‘fin’) to all other servers.

On receipt of a finalize messagefrom a reader: Lett be the tag of the message. If a triple of the form(t, ws, ∗) exists in the list
of stored triples where∗ can be ‘pre’ or ‘ fin’, then update it to(t, ws, ‘fin’), perform garbage collection, and send(t, ws) to the
reader. If(t, ‘null’ , (∗, ‘gc’)) exists in the list of locally available triples where∗ can be either ‘fin’ or ‘ pre’, then update it to
(t, ‘null’ , (‘fin’ , ‘gc’)) and perform garbage collection, but donot send a response. Otherwise add(t, ‘null’ , ‘fin’) to the list of
triples at the server, perform garbage collection, and sendan acknowledgment. Send ‘gossip’ message with item(t, ‘fin’) to all
other servers.

On receiptof a ‘gossip’ message: Lett denote the tag of the message. If a triple of the form(t, x, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’))
is stored in the set of locally stored triples wherex can be a coded element or ‘null’, then ignore the incoming message. Otherwise,
if a triple of the form(t, ws, ‘pre’) or (t, ‘null’ , (‘pre’ , ‘gc’)) is stored, then upgrade it to(t, ws, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’)).
Otherwise, add a triple of the form(t, ‘null’ , ‘fin’) to the set of locally stored triples. Perform garbage collection.

garbagecollection: If the total number of tags of the set{t : (t, x, ∗) is stored at the server, wherex ∈ W ∪ {‘null’} and∗ ∈
{‘fin’ , (‘fin’ , ‘gc’)}} is no bigger thanδ + 1, then return. Otherwise, lett1, t2, . . . tδ+1 denote the highestδ + 1 tags from the
set, sorted in descending order. Replace every element of the form(t′, x, ∗) wheret′ is smaller thantδ+1 by (t′, ‘null’ , (∗, ‘gc’))
where∗ can be either ‘pre’ or ‘ fin’ andx ∈ W ∪ {‘null’}.

Fig. 4 Server protocol for CASGC(k, δ).

The parameterδ is related to the number of coded ele-
ments stored at each server under “normal conditions”,
that is, at a point where there are no ongoing write oper-
ations, and every message corresponding to every write
operation has been delivered. A smaller value ofδ leads
to a smaller storage cost, although it results in weaker
guarantee on the termination of a read operation. We first
provide an algorithm description. We describe the safety
and liveness properties of CASGC in Section 5.2 and an-
alyze the storage cost in Section 5.3.

5.1 Algorithm description

The CASGC(k, δ) algorithm is essentially the same as
CAS(k) with an additional garbage collection step at the
servers. In particular, the only differences between the
two algorithms lie in the server actions on receiving afi-
nalizemessage from a writer or a reader or ‘gossip’. The
server actions in the CASGC algorithm are described in
Fig. 4. In CASGC(k, δ), each server stores the latestδ+1
triples with the ‘fin’ label plus the triples corresponding
to later and intervening operations with the ‘pre’ label.
For the tags that are older (smaller) than the latestδ + 1

finalized tags received by the server, it stores only the
metadata, not the data itself. On receiving afinalizemes-
sage either from a writer or a reader, the server performs
a garbage collection step before responding to the client.
The garbage collection step checks whether the server

has more thanδ + 1 triples with the ‘fin’ label. If so,
it replaces the triple(t′, x, ∗) by (t′, ‘null’ , (∗, ‘gc’)) for
every tagt′ that is smaller than all theδ + 1 highest tags
labeled ‘fin’, where∗ is ‘pre’ or ‘ fin’, and x can be a
coded element or ‘null’. If a reader requests, through a
finalizemessage, a coded element that is already garbage
collected, the server simply ignores this request.

5.2 Statements and proofs of correctness

We next describe the correctness conditions satisfied by
CASGC. We begin with a formal statement and proof of
atomicity of CASGC in Section 5.2.1. In Section 5.2.2,
we show that CASGC(k, δ) satisfies the following live-
ness condition: in an execution where the number of servers
is at mostf , every write operation invoked at a non-
failing client terminates, and a read operation invoked
at a non-failing client terminates provided that the num-
ber of write operations that areconcurrentwith the read
is at mostδ. Our notion of concurrency in Section 5.2.2
is based on a new definition of end-points, which applies
for even failed operations. While server gossip is not nec-
essary in CAS, it plays an important role in proving ter-
mination of read operations in CASGC.

5.2.1 Atomicity

Theorem 5 (Atomicity) CASGC is atomic.
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To show the above theorem, we observe that, from the
perspective of the clients, the only difference between
CAS and CASGC is in the server response to a read’s
finalizemessage. In CASGC, when a coded element has
been garbage collected, a server ignores a read’sfinalize
message. Atomicity follows similarly to CAS, since, in
any execution of CASGC, operations acquire essentially
the same tags as they would in an execution of CAS. We
show this formally next.

Proof (Proof) Note that, formally, CAS is an I/O au-
tomaton formed by composing the automata of all the
nodes and communication channels in the system. We
show atomicity in two steps. In the first step, we con-
struct a I/O automaton CAS′ which differs from CAS
in that some of the actions of the servers in CAS′ are
non-deterministic. We show that CAS′ simulates CAS,
that is, we show that from the perspective of its exter-
nal behavior (i.e., its invocations, responses and failure
events), the trace of an arbitrary executionα′ of CAS′ is
the trace of an executionα of CAS. Since CAS satisfies
atomicity, α′ has atomic behavior implying that CAS′

satisfies atomicity. In the second step, we will show that
CASGC simulates CAS′. These two steps suffice to show
that CASGC satisfies atomicity.

We now describe CAS′. The CAS′ automaton is iden-
tical to CAS with respect to the read and write protocols,
and to the server actions on receipt ofquery and pre-
write messages andfinalize messages from writers. A
server’s response to afinalizemessage from a read op-
eration can be different in CAS′ as compared to CAS. In
CAS′, at the point of the receipt of thefinalizemessage at
the server, the server could respond either with the coded
element, or not respond at all (even if it has the coded el-
ement). More precisely, the server action on receipt of a
finalize message is as follows.

On receiptof finalize from a reader: Lett be the tag
of the message. If a triple of the form(t, ws, ∗) appears
in the list of stored triples where∗ can be ‘pre’ or ‘ fin’,
then update it to(t, ws, ‘fin’); nondeterminstically either
send(t, ws) to the reader or do not send any message. If
no such triple appears, add(t, ‘null’ , ‘fin’) to the list of
triples at the server and send an acknowledgment. Send
‘gossip’ message with item(t, ‘fin’) to all other servers.

We show that CAS′ “simulates” CASxii , that is, we
show that for every executionα′ of CAS′, there is an
executionα of CAS with the same external trace. We de-
scribe executionα, step by step, as follows. In particular,
for every step ofα′, we describe the corresponding step
atα. The executionα that we construct has the following
properties:

(i) At a particular point ofα, every client and server is
at the same state as the corresponding client/server
at the corresponding point ofα′.

xii It is instructive to note that CAS′ does not satisfy the same
liveness properties as CAS since servers may never respond to fi-
nalize messages from a reader in CAS′, even in a fair execution.

(ii) At any point ofα, the set of messages in a channel
contains the messages in the corresponding chan-
nel at the corresponding point ofα′. A channel inα
may contain extra messages that are not contained
in the corresponding channel at the corresponding
point inα′.

We construct executionα next. Every component in
executionα has the same initial state inα andα′. For ev-
ery step ofα′, if a client or channel takes an action, or if
a server takes an action in response to a query, pre-write,
gossip or write’s finalize message, or if a server sends a
gossip message, then, at the corresponding step inα, the
corresponding client, channel or server takes the same
action. If, in a step ofα′, a server responds to a read’s
finalize message with a coded element or an acknowl-
edgement inα′, the server takes the same action inα. If,
in a step ofα′, a server does not respond to a read’s final-
ize message with a coded element even though it stores
it, we assume that inα, the server responds to the read
with the stored coded element as per its protocol spefica-
tion in CAS; the message containing the coded element
is delayed indefinitely inα.

Thus, inα, at every step, the client actions and states,
and the server states are the same as inα′. The only dif-
ference is that inα, at a particular step, a server may
send some message that will be indefinitely delayed in
the channels. Since at every step, every client performs
the same action inα as inα′, the external trace ofα is
the same asα′. Sinceα is an execution of CAS, for any
executionα′ of CAS′, we have shown that there is an
executionα of CAS with the same set of external ac-
tions. Since CAS satisfies atomicity,α has atomic be-
havior. Thereforeα′ is atomic, and implying that CAS′

satisfies atomicity.
Now, we show that CASGC simulates CAS′. That is,

for every executionαgc of CASGC, we construct a corre-
sponding executionα′ of CAS′ such thatα′ has the same
external behavior (i.e., the same invocations, responses
and failure events) as that ofαgc. We first describe the
executionα′ step-by-step, that is, we consider a step of
αgc and describe the corresponding step ofα′. We then
show that the executionα′ that we have constructed is
consistent with the CAS′ automaton.

We constructα′ as follows. We first set the initial
states of all the components ofα′ to be the same as they
are inαgc. At every step, the states of the client nodes
and the message passing system inα′ are the same as
the states of the corresponding components in the corre-
sponding step ofαgc. A server’s responses on receipt of
a message is the same inα′ as that of the correspond-
ing server’s response inαgc. In particular, we note that
a server’s external responses are the same inαgc andα′

even on receipt of a reader’sfinalize message, that is,
if a server ignores a reader’s finalize message inαgc, it
ignores the reader’s finalize message inα′ as well. Sim-
ilarly, if a server sends a message as a part of ‘gossip’ in
αgc, it sends a message inα′ as well. The only difference
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betweenαgc andα′ is in the change to the server’s inter-
nal state at a point of receipt of afinalizemessage from
a reader or a writer. At such a point, the server may per-
form garbage collection inαgc, whereas it does not per-
form garbage collection inα′. Note that the initial state,
the server’s response, and the client states at every step
of α′ are the same as the corresponding step ofαgc. Also
note that a server that fails at a step ofαgc fails at the
corresponding step ofα′ (even though the server states
could be different in general because of the garbage col-
lection). Hence, at every step, the external behavior of
α′ andαgc are the same. This implies that the external
behavior of the entire executionα′ is the same as the ex-
ternal behavior ofαgc.

We complete the proof by noting that executionα′

consistent with the CAS′ automaton. In particular, since
the initial states of all the components are the same in the
CAS′ and CASGC algorithms, the initial state ofα′ is
consistent with the CAS′ automaton. Also, every step of
α′ is consistent with CAS′. Therefore, CASGC simulates
CAS′. Since CAS′ is atomic,αgc has atomic behavior. So
CASGC is atomic.

5.2.2 Liveness

Showing operation termination in CASGC is more com-
plicated than CAS. This is because, in CASGC, when
a reader requests a coded element, the server may have
garbage collected it. The conditions for termination of
a write operation in CASGC is similar to CAS, and are
stated formally in Theorem 6. We carefully describe con-
ditions for termination of read operation here. Informally
speaking, we show that in an execution of CASGC(k, δ)
where1 ≤ k ≤ N − 2f , a read operation invoked at a
non-failing client terminates in an execution where the
number of failing servers is no bigger thanf, provided
that the number of writesconcurrentwith the read is no
bigger byδxiii . Before we proceed to formally state our
liveness conditions in Theorem 6, we give a formal def-
inition of the notion of concurrent operations in an ex-
ecution of CASGC. For any operationπ that completes
its query phase, the tag of the operationT (π) is defined
as in Definition 41. We begin with defining theend-point
of an operation.

Definition 51 (End-point of a write operation) In an ex-
ecutionβ of CASGC, the end point of a write operation
π in β is defined to be

(a) the first point ofβ at which a quorum of servers that
do not fail in β has tagT (π) with the ‘fin’ label,
whereT (π) is the tag of the operationπ, if such a
point exists,

(b) the point of failure of operationπ, if operation π
fails and (a) is not satisfied.

xiii If the number of writes that are concurrent with a read opera-
tion is larger thanδ, then the read simply may not terminate.

For a write operation that terminates, there is a point in
the execution where (a) is satisfied. If a write operation
fails, then either (a) or (b) is satisfied. Therefore, a write
operation that either terminates or fails has an end-point.
If neither condition (a) nor (b) is satisfied, then the write
operation has no end-point.

Definition 52 (End-point of a read operation) The end
point of a read operation inβ is defined to be the point
of termination if the read returns inβ. The end-point of a
failed read operation is defined to be the point of failure.

Note that a read operation that either terminates or fails
has an end-point. A read operation invoked at non-failing
client has no end-point if it does not terminate.

Definition 53 (Concurrent Operations) One operation
is defined to be concurrent with another operation if it is
not the case that the end point of either of the two oper-
ations is before the point of invocation of the other oper-
ation.

We next describe the liveness property satisfied by
CASGC.

Theorem 6 (Liveness)Let 1 ≤ k ≤ N − 2f . Consider
a fair executionβ of CASGC(k, δ) where the number of
server failures is at mostf . Then, every write opera-
tion invoked at a non-failing client terminates inβ. If
the number of write operations that are concurrent to
a read operation is at mostδ and the read operation is
invoked at a non-failing client, then the read operation
terminates inβ.

The main challenge in proving Theorem 6 lies in
showing termination of read operations. In Lemma 6, we
show that if aread operation does not terminatein an
execution of CASGC(k, δ), then the number of write op-
erations that are concurrent with the read is larger thanδ.
We then use the lemma to show Theorem 6 later in this
section. We begin by stating and proving Lemma 6.

Lemma 6 Let 1 ≤ k ≤ N − 2f . Consider any fair ex-
ecutionβ of CASGC(k, δ) where the number of server
failures is upper bounded byf . Let π be a read oper-
ation invoked at a non-failing client inβ that does not
terminate. Then, the number of writes that are concur-
rent withπ is at leastδ + 1.

To prove Lemma 6, we prove Lemmas 7 and 8. Lemma
7 implies that if a non-failing server receives a final-
ize message corresponding to a tag at some point, then,
eventually every non-failing server receives a finalize mes-
sage with that tag. We note that the server gossip plays
a crucial role in showing Lemma 7. Using Lemma 7, we
then show Lemma 8 which states that if the finalize mes-
sage of an operationπ reaches any non-failing server in
a fair execution, then any operation invoked at a non-
failing client that begins after the endpoint ofπ acquires
a tag at least as large as the tag ofπ. Then, using Lemma
8, we show Lemma 6.
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Lemma 7 Let 1 ≤ k ≤ N − 2f . Consider any fair ex-
ecutionβ of CASGC(k, δ) where the number of server
failures is no bigger thanf . Consider a write opera-
tion π that acquires tagt. Suppose that at some point
of β, at least one non-failing server has a triple of the
form (t, x, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’)) where x ∈
W ∪ {‘null’}. Then operationπ has an end-point inβ
and at the end-point, there is a quorum of non-failing
servers each with an element of the form(t, x, ‘fin’) or
(t, ‘null’ , (‘fin’ , ‘gc’)) wherex ∈ W ∪ {‘null’}.

Proof Notice that every server that receives afinalize
message with tagt invokes the ‘gossip’ protocol. If a
non-failing servers stores tagt with the ‘fin’ label at
some point ofβ, then from the server protocol we in-
fer that it received afinalize message with tagt from
a client or another server at some previous point. Since
servers receives thefinalizemessage with tagt, every
non-failingserver also receives afinalizemessage with
tagt at some point of the execution because of ‘gossip’.
Since a server that receives afinalizemessage with tagt
stores the ‘fin’ label after receiving the message, and the
server does not delete the label associated with the tag at
any point, eventually, everynon-failing serverstores the
‘fin’ label with the tagt. Since the number of server fail-
ures is no bigger thanf , there is a quorum of non-failing
servers that stores tagt with the ‘fin’ label at some point
of β. Therefore, operationπ has an end-point inβ, with
the end-point being the first point ofβ where a quorum
of non-failing servers have the tagt with the ‘fin’ label.

Lemma 8 Consider any executionβ of CASGC(k, δ),

and consider a write operationπ with tagt in β. If there
is a point inβ such that at least one non-failing servers
stores an element of the form(t, x, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’))
wherex ∈ W ∪ {‘null’}, then the operationπ has an
end-point inβ and the tag of any operation that begins
after the end point ofπ is at least as large ast.

Proof By Lemma 7, we know thatπ has an end-point in
β and at the end-point ofπ, there exists at least one quo-
rum Q(π) of non-failing servers such that each server
has the tagt with the ‘fin’ label. Furthermore, from the
server protocol, we infer that each server in quorumQ(π)

has the tagt with the ‘fin’ label at every point after the
end point of the operationπ.

Now, suppose operationπ′ is invoked after the end
point ofπ. We show that the tag acquired by operationπ′

is at least as large ast. Denote the quorum of servers that
respond to thequeryphase ofπ′ asQ(π′). We now argue
that every servers in Q(π)∩Q(π′) responds to thequery
phase ofπ′ with a tag that is at least as large ast. To see
this, sinces is in Q(π), it has a tagt with label ‘fin’ at
the end-point ofπ. Sinces is inQ(π′), it also responds to
thequerymessage ofπ′, and this happens at some point
after the end-point ofπ becauseπ′ is invoked after the
end-point ofπ. Therefore servers responds with a tag
that is at least as large ast. This completes the proof.

Proof (Proof of Lemma 6)Note that the termination of
the query phase of the read is contingent on receiving a
quorum of responses. By noting that every non-failing
server responds to the read’s query message, we infer
from Lemma 1 that the query phase terminates.It re-
mains to consider termination of the read’s finalize phase.
Consider an operationπ whose finalize phase does not
terminate. We argue that there areat leastδ + 1 write
operations that are concurrent withπ.

Let t be the tag acquired by operationπ. By property
(ii ) of Lemma 1, we infer that a quorum, sayQfw of
non-failingservers receives the read’sfinalizemessage.
There are only two possibilities.

(i) There is no servers in Qfw such that, at the point
of receipt of the read’s finalize message at servers, a
triple of the form(t, ‘null’ , (∗, ‘gc’)) exists at the server.

(ii) There is at least one servers in Qfw such that,
at the point of receipt of the read’s finalize message at
servers, a triple of the form(t, ‘null’ , (∗, ‘gc’)) exists at
the server.

In case(i), we argue in a manner that is similar to
Theorem 3 that the read receives responses to its finalize
message from quorumQfw of which at leastk responses
include coded elements.We repeat the argument here
for completeness. From examination of CASGC, we in-
fer that, at some point before the point of termination
of the read’squery phase, a writer propagated afinal-
izemessage with tagt. Let us denote byQpw(t), the set
of servers that responded to this write’spre-writephase.
We argue that all servers inQpw(t) ∩ Qfw respond to
the reader’sfinalizemessage with a coded element. To
see this, lets′ be any server inQpw(t) ∩ Qfw. Sinces′

is in Qpw(t), the server protocol for responding to apre-
write message implies thats′ has a coded element,ws′ ,
at the point where it responds to that message. Sinces′

is in Qfw, it does not contain an element of the form
(t, ‘null’ , (∗, ‘gc’)) implying that it has not garbage col-
lected the coded element at the point of receipt of the
reader’s finalize message. Therefore, it responds to the
reader’sfinalizemessage, and this happens at some point
after it responds to thepre-writemessage. So it responds
with its coded elementws′ . From Lemma 1, it is clear
that |Qpw(t) ∩ Qfw| ≥ k implying that the reader re-
ceives at leastk coded elements in itsfinalizephase and
hence terminates. Therefore the finalize phase ofπ ter-
minates, contradicting our assumption that it does not.
Therefore(i) is impossible.

We next argue that in case(ii), there are at leastδ+1

write operations that are concurrent with the read opera-
tion π. In case(ii), from the server protocol of CASGC,
we infer that at the point of receipt of the reader’s finalize
message at servers, there exist tagst1, t2, . . . , tδ+1, each
bigger thant, such that a triple of the form(ti, x, ‘fin’)
or (ti, ‘null’ , (‘fin’ , ‘gc’)) exists at the server. We infer
from the write and server protocols that, for everyi in
{1, 2, . . . , δ + 1}, a write operation, sayπi, must have
committed to tagti in its pre-write phase before this
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point in β. Becauses is non-failing inβ, and because
t < ti, we infer from Lemma 8 that write operationπi

has an end point which is after the point of invocation of
operationπ. Therefore operationsπ1, π2, . . . , πδ+1 are
concurrent with read operationπ.

A proof of Theorem 6 follows from Lemma 6 in a
manner that is similar to Theorem 3. We give a formal
argument here.

Proof (Proof of Theorem 6)By examination of the algo-
rithm we observe that termination of any operation de-
pends on termination of its phases. So, to show liveness,
we need to show that each phase of each operation ter-
minates. We first consider a write operation. Note that
termination of thequery phase of a write operation is
contingent on receiving responses from a quorum. Ev-
ery non-failed server responds to aquerymessage with
the highest locally available tag marked ‘fin’. Since ev-
ery server is initialized with(t0, v0, ‘fin’), every non-
failed server has at least one tag associated with the label
‘fin’ and hence responds to the writer’squerymessage.
Since the writer receives responses from every non-failed
server, property (ii ) of Lemma 1 ensures that thequery
phase receives responses from at least one quorum, and
hence terminates. We similarly show that thepre-write
phase andfinalizephase of a writer terminate. In partic-
ular, termination of each of these phases is contingent on
receiving responses from a quorum. Their termination is
guaranteed from property (ii ) of Lemma 1 in conjunc-
tion with the fact that every non-failed server responds,
at some point, to apre-writemessage and afinalizemes-
sage from a write with an acknowledgment.

It remains to consider the termination of a read oper-
ation. Suppose that a read operationπr invoked at a non-
failing client does not terminate. Then, from Lemma 6,
we infer that there are at leastδ + 1 writes that are con-
current with the read. Therefore a read operation invoked
at a non-failing client terminates if the number write op-
erations that are concurrent with the read operation is no
larger thanδ.

5.3 Bound on storage cost

We bound the storage cost of an execution of CASGC
by providing a bound on the number of coded elements
stored at a server atany particular pointof the execution.
In particular, in Lemma 9, we describe conditions under
which coded elements corresponding to the value of a
write operation are garbage collected atall the servers.
Lemma 9 naturally leads toastorage cost bound in The-
orem 7. We begin with a definition of anω-superseded
write operationfor a point in an execution, for a positive
integerω.

Definition 54 (ω-superseded write operation)In an ex-
ecutionβ of CASGC, consider a write operationπ that
completes its query phase. LetT (π) denote the tag of the

write. Then, the write operation is said to beω-superseded
at a pointP of the execution ifthere are at leastω ter-
minating write operations, each with a tag that is bigger
thanT (π), such that every message on behalf of each of
these operations (including ‘gossip’ messages) has been
delivered by pointP .

We show in Lemma 9 that in an execution of CASGC(k, δ),
if a write operation is(δ+1)-supersededat a point, then,
no server stores a coded element corresponding to the
operation at that point because of garbage collection. We
state and prove Lemma 9 next. We then use Lemma 9 to
describe a bound on the storage cost of any execution of
CASGC(k, δ) in Theorem 7.

Lemma 9 Consider an executionβ of CASGC(k, δ) and
consider any pointP of β. If a write operationπ is (δ +

1)-supersededat pointP , then no non-failed server has
a coded element corresponding to the value of the write
operationπ at pointP .

Proof (Proof)Consider an executionβ of CASGC(k, δ)
and a pointP in β. Consider a write operationπ that
is (δ + 1)-supersededat pointP . Consider an arbitrary
servers that has not failed at pointP . We show that
servers does not have a coded element corresponding
to operationπ at pointP. Since operationπ is (δ + 1)-
supersededat pointP , there exist at leastδ+1 write oper-
ationsπ1, π2, . . . , πδ+1 such that, for everyi ∈ {1, 2, . . . , δ+

1},

– operationπi terminates inβ,
– the tagT (πi) acquired by operationπi is larger than

T (π), and
– every message on behalf of operationπi is delivered

by pointP .

Since operationπi terminates, it completes itsfinalize
phase where it sends a finalize message with tagT (πi)

to servers. Furthermore, thefinalizemessage with tag
T (πi) arrives at servers by pointP . Therefore, by point
P , servers has received at leastδ + 1 finalize messages,
one from each operation in{πi : i = 1, 2, . . . , δ + 1}.
The garbage collection executed by the server on the re-
ceipt of the last of these finalize messages ensures that
the coded element corresponding to tagt does not exist
at servers at pointP . This completes the proof.

Theorem 7 Consider an executionβ of CASGC(k, δ) such
that, at any point of the execution,the number of writes
that have completed their query phase by that point and
are not(δ+1)-superseded at that point is upper bounded
byw. The storage cost of the execution is at mostwN

k log2 |V|.

Proof Consider an executionβ where at any point of
the execution, the number of writes that have completed
their query phase by that point and are not(δ+1)-superseded
at that point is upper bounded byw. Consider an arbi-
trary pointP of the executionβ, and consider a server
s that is non-failed at pointP . We infer from the write
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and server protocols that, at pointP , servers does not
store a coded element corresponding to any write op-
eration that has not completed its query phase by point
P . We also infer from Lemma 9 that servers does not
store a coded element corresponding to an operation that
is (δ + 1)-superseded at pointP . Therefore, if servers
stores a coded element corresponding to a write oper-
ation at pointP , we infer that the write operation has
completed its query phase but is not(δ + 1)-superseded
by pointP . By assumption on the executionβ, the num-
ber of coded elements at point P ofβ at servers is upper
bounded byw. Since each coded element has a size of1

k

log2 |V| bits and we considered an arbitrary servers, the
storage cost at pointP, summed over all the non-failed
servers, is upper bounded bywN

k log2 |V| bits. Since we
considered an arbitrary pointP , the storage cost of the
execution is upper bounded bywN

k log2 |V| bits.

We note that Theorem 7 can be used to obtain a boundon
the storage cost of executions in terms of various param-
eters of the system components. For instance, the theo-
rem can be used to obtain a bound on the storage cost in
terms of an upper bound on the delay of every message,
the number of steps for the nodes to take actions, the rate
of write operations, and the rate of failure. In particular,
the above parameters can be used to bound the number
of writes that are not (δ + 1)-superseded, which can then
be used to bound the storage cost. In an executionβ of
CASGC(k, δ) where there are no write client failures, if
there exists a pointP where every write operation in-
voked before pointP has terminated, and every message
corresponding to every write operation has been deliv-
ered beforeP , then the number of(δ + 1)-superseded
write operations atP is δ + 1. Therefore, the storage
cost at pointP in executionβ is (δ+1)N

k log2 |V|.

6 Communication Cost Optimal Algorithm

A natural question is whether one might be able to prove
a lower bound to show that communication costs of CAS
and CASGC are optimal. Here, we describe a new“coun-
terexample algorithm”calledCommunication Cost Op-
timal Atomic Storage(CCOAS) algorithm, which shows
that such a lower bound cannot be proved. We show in
Theorem 11 that CCOAS has write and read communica-
tion costs of N

N−f log2 |V| bits, which is smaller than the
communication costs of CAS and CASGC. Because el-
ementary coding theoretic bounds imply that these costs
can be no smaller thanN

N−f log2 |V| bits, CCOAS is
optimal from the perspective of communication costs.
CCOAS, however, is infeasible in practice because of
certain drawbacks described later in this section.

6.1 Algorithm description

CCOAS resembles CAS in its structure. Like CAS(N −
2f ), its quorumQ consists of the set of all subsets of

N that have at leastN − f elements. We also use terms
“query”, “pre-write”, and “finalize” for the various phases
of operations. We provide a formal description of CCOAS
in Fig. 7. Here, we informally describe the differences
between CAS and CCOAS.

– In CCOAS, the writer uses an(N, N −f) MDS code
to generate coded elements. Note the contrast with
CAS(k) which uses an(N, k) code, where the pa-
rameterk is at mostN − 2f. Because we use an
(N, N − f) code in CCOAS, the size of each coded
element is equal tolog2 |V|

N−f bits, and as a consequence,
the read and write communication costs are equal to

N
N−f log2 |V| bits.

– In CCOAS, a reader requiresN − f responses with
coded elements for termination of its finalize phase.
In CAS, in general, at mostN − 2f responses with
coded elements are required.

– In CCOAS, the servers respond to finalize messages
from a read with coded elements only. This is un-
like CAS, where a server that does not have a coded
element corresponding to the tag of a reader’s final-
ize message at the point of reception responds sim-
ply with an acknowledgement. In CCOAS, if a server
does not have a coded element corresponding to the
tag t of a reader’s finalize message at the point of
reception, then, in addition to adding a triple of the
form (t, ‘null’ , ‘fin’) to its local storage, the server
registers this read along with tagt in its logs. When
the corresponding coded element with tagt arrives
at a later point, the server, in addition to storing the
coded element, sends it to every reader that is regis-
tered with tagt. We show in our proofs of correctness
that, in CCOAS, every non-failing server responds to
a finalize message from a read with a coded element
at some point.

6.2 Proof of correctness and communication cost

We next describe a formal proof of the correctness of
CCOAS.

6.2.1 Atomicity

Theorem 8 CCOAS emulates shared atomic read/write
memory.

The main challenge in showing Theorem 8 lies in
showing termination of read operations, specifically to
show that every non-failing server sends a coded element
in response to a reader’s finalize message. The theorem
follows from Theorems 10 and 9, which are stated next.

Theorem 9 The CCOAS algorithm satisfies atomicity.

Proof Atomicity can be shown via a simulation relation
with CAS. We provide a brief informal sketch of the
relation here. We argue that for every executionβ of
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write (value)
query: Same as in CAS(N − 2f ).

pre-write: Select the largest tag from thequeryphase; form a new tagt by incrementing integer by 1 and adding its ‘id’. Apply an
(N, N − f) MDS codeΦ to valueand obtain coded elementsw1, . . . , wN . Send(t, ws, ‘pre’) to every servers. Await responses
from a quorum.

finalize: Same as in CAS(N − 2f ).

Fig. 5 The write protocol of the CCOAS algorithm.

read
query: Same as in CAS(N − 2f ).

finalize: Select largest tagt from the query phase. Sendfinalizemessage(t, ‘null’ , ‘fin’) to all servers requesting the associated
coded elements. Await responses with coded elements from a quorum. Obtain thevalueby invertingΦ, and terminate by returning
value.

Fig. 6 The read protocol of the CCOAS algorithm.

server
statevariables: State is a subset ofT × (W ∪ {‘null’}) × {‘pre’ , ‘fin’} × 2C .

initial state: (t0, w0,s, ‘fin’ , {}).

Responseto query: Send highest locally known tag that has label ‘fin’.

Responseto pre-write: If the tagt of the message is not available in the locally stored set of tuples, add the tuple(t, ws, ‘pre’ , {})
to the locally stored set. If(t, ‘null’ , ‘fin’ , C0) exists in the locally stored set of tuple for some set of clients C0, then send(t, ws)
to every client inC0 and modify the locally stored tuple to(t, ws, ‘fin’ , {}). Send acknowledgement to the writer.

Responseto finalizeof write: Let t denote the tag of the message. If(t, ws, ‘pre’ , {}) exists in the locally stored set of tuple where
∗ can be ‘pre’ or ‘ fin’, update to(t, ws, ‘fin’ , {}). If no tuple exists in the locally stored set with tagt, add(t, ‘null’ , ‘fin’ , {}) to
the locally stored set. Send acknowledgement.

Responseto finalizeof read: Lett denote the tag of the message andC ∈ C denote the identifier of the client sending the message. If
(t, ws, ∗, C0) exists in the locally stored set, update the tuple as(t, ws, ‘fin’ , C0) and send(t, ws) to reader. If(t, ‘null’ , ‘fin’ , C0)
exists at the server, update it as(t, ‘null’ , ‘fin’ , C0 ∪ {C}). Otherwise, add(t, ‘null’ , ‘fin’ , {C}) to the list of locally stored tags.

Fig. 7 The server protocol of the CCOAS algorithm. We denote the (possibly infinite) set of clients byC. The notation2C denotes the
power set of the set of clientsC.

CCOAS, there is an executionβ′ of CAS with the same
trace. To see this, we note that the write protocol of CCOAS
is essentially identical to the write protocol in CAS, with
the only difference between the two algorithms being the
erasure code used in the pre-write phase. Similarly, the
query phase of the read protocols of both algorithms are
the same. Also note that the server responses to messages
from a writer and query messages from a reader are iden-
tical in both CAS and CCOAS. The main differences be-
tween CCOAS and CAS in the server actions. The first
difference is that, in CCOAS, the servers do not perform
‘gossip’. The second difference is that in CCOAS, if the
server does not have a coded element corresponding to
the tag of the reader’s finalize message, then the server
does not respond at this point. Instead, the server sends
a coded element to the reader at the point of receipt of
the pre-write message with this tag. We essentially create
β′ from β by delaying all messages ‘gossip’ messages
indefinitely, and delaying reader’s finalize messages so
that they arrive at each server at the point of, or after the
receipt of the corresponding pre-write message by the
server. This delaying ensures that the server actions are
identical in bothβ andβ′.

Specifically, we createβ′ as follows. Inβ′ the points
of

– invocations of operations,
– sending and receipt of messages between writers and

servers,
– sending and receipt of query messages between read-

ers and servers,
– and sending of finalize messages from the readers

are identical toβ. The server ‘gossip’ messages inβ′

are delayed indefinitely. A crucial difference betweenβ
and β′ lies in the points of receipt of reader’s finalize
messages at the servers. Consider a read operation that
acquired tagt in β and letP denote the point of receipt
of a reader’s finalize message to servers. Let P ′ denote
the point of receipt of a pre-write message with tagt at
servers in β. Now, consider the corresponding read op-
eration that acquired tagt in β′. Now, if P precedesP ′

in β, then the reader’s finalize message with tagt ar-
rives at servers at P ′ in β′, else, it arrives at pointP in
β′. This implies that servers responds to reader’s final-
ize messages at the same points inβ andβ′. Finally, we
complete our specification ofβ′ by letting a server’s re-
sponse to the reader’s finalize message arrive at the client
at the same point inβ′ as inβ.

Note that if an operation acquires tagt in β, the cor-
responding operation inβ′ also acquires tagt. Also note
that the points of invocation, responses of operations and



A Coded Shared Atomic Memory Algorithm for Message Passing Architectures 19

the values returned by read operations are the same in
bothβ andβ′. Therefore, there exists an executionβ′ of
CAS with the same trace as an arbitrary executionβ of
CCOAS. Since CAS is atomic,β′ has atomic behavior,
and so doesβ. Therefore, CCOAS satisfies atomicity.

6.2.2 Liveness

We next state the liveness condition of CCOAS.

Theorem 10 CCOAS satisfies the liveness condition: in
every fair execution where the number of failing servers
is no bigger thanf , every non-failing operation termi-
nates.

To show Theorem 10, we first state and prove Lemma
10. Informally speaking, Lemma 10 implies that every
non-failing server responds to a reader’s finalize mes-
sage with a coded element. As a consequence, every read
operation getsN − f coded elements in response to its
finalize messages. Therefore its finalize phase implying
that the operation returns implying Theorem 10. We first
state and prove Lemma 10. Then we prove Theorem 10.

Lemma 10 Consider any fair executionα of CCOAS
and a servers that does not fail inα. Then, for any
read operation inα with tag t, the servers responds to
the read’s finalize message with the coded element cor-
responding to tagt at some point ofα.

Proof (Proof)Consider a servers that does not fail inα
and consider the pointP of α where servers receives
a finalize message with tagt from a reader. Since the
read operation at the reader acquired tagt, a servers
must have responded to the read’s query message with
tag t. Since servers responded to the read’s query mes-
sage with tagt, the server received a ‘fin’ label from ei-
ther a read or a write operation at some point. This im-
plies that a write operationπw with tag t completed its
pre-write phase before the server responded to the read’s
query message. From the write protocol, note that this
implies that the write operationπw sent a coded element
with tagt to every server in its pre-write phase. In partic-
ular, the writer sent coded elementws to servers. Since
the channels are reliable and sinces does not fail inα,
this means that at some pointP ′ of α, the servers re-
ceives the coded elementws. There are only two possible
scenarios. First,P ′ precedesP in α, and second,P pre-
cedesP ′. To complete the proof, we show that, in the first
scenario the server responds to the reader’s finalize mes-
sage withws at pointP , and in the second scenarioxiv,
the server responds to the reader’s finalize message with
ws at pointP ′.

xiv Note that in this second scenario, the server does not respond
with a coded element in CAS, where the server only sends an ac-
knowledgement. In contrast to the proof here, the liveness proof of
CAS involved showing that at leastk servers satisfy the condition
imposed by the first scenario.

In the first scenario, note that the server has a coded
elementws at the pointP . By examining the server pro-
tocol, we observe that servers responds to the reader’s
finalize message with a coded elementws.

In the second second scenario, pointP ′ comes af-
ter P in α. Because of the server protocol on receipt of
the reader’s finalize message, servers adds a tuple of
the form(t, ‘null’ , ‘fin’ , C0), whereC ∈ C0, to the local
state at pointP . Also, note that, at pointP ′, the server
stores a tuple of the form(t, ‘null’ , ‘fin’ , C1), whereC ∈
C1. Finally, based on the server protocol on receipt of a
pre-write message, we note that at pointP ′, the server
sendsws to all the clients inC1 including clientC. This
completes the proof.

We next prove Theorem 10.

Proof (Proof of Theorem 10)To prove liveness, it suf-
fices to show that in any fair executionα where at most
f servers fail, every phase of every operation terminates.
The proof of termination of a write operation, and the
query phase of a read operation is similar to CAS and
omitted here for brevity. Here, we present a proof of ter-
mination of the finalize phase of a read in any fair exe-
cutionα where at mostf servers fail.

To show the termination of a read, note from Lemma
10 that in executionα, every non-failed servers responds
to a reader’s finalize message with a coded element. Be-
cause the number of servers that fail inα is at mostf , this
implies that reader obtains at leastN − f messages with
coded elements in response to its finalize message. From
the read protocol, we observe that this suffices for termi-
nation of the finalize phase of a read. This completes the
proof.

6.2.3 Communication cost

We next state the communication cost of CCOAS.

Theorem 11 The write and read communication costs
of CCOAS are both equal toN

N−f log |V|.

The proof of Theorem 11 is similar to the proof of The-
orem 4 and is omitted here for brevity.

6.3 Drawbacks of CCOAS

CCOAS incurs a smaller communication cost than CAS
and CASGC mainly because the reader acquiresN − f

coded elements for a read operation, whereas in CAS and
CASGC, a reader acquires at mostN − 2f coded ele-
ments for an operation. In particular, because the reader
acquiresN −f coded elements, a writer uses an(N, N −
f) MDS code in CCOAS. Since a write operation returns
after getting responses from some quorum, there are ex-
ecutions of our algorithm where, at the point of termina-
tion of a write operation, only a quorumQpw containing
N−f servers have received its pre-write messages. Now,
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if one of the servers inQpw fails after the termination of
the write, then, since a reader that intends to acquire the
value written requiresN −f coded elements, it is impor-
tant that at least one of the pre-write messages sent by the
writer to a server outside ofQpw reaches the server. In
other words, it is crucial for liveness of read operations
that the pre-write messages sent by the write operation
are delivered to every non-failing server, even if some of
these messages have not been delivered at the point of
termination of the write. We use this assumption implic-
itly in the proof of correctness of CCOAS.

In the standard message passing model, in a fair ex-
ecution, every channel eventually delivers the messages
that are input in the channel. In particular, under the stan-
dard definition of fairness, the channel eventually deliv-
ers all its messages even if the any of the nodes that in-
put the messages fails before the message is delivered.
The fact that operation termination in CCOAS depends
critically on a reliable message delivery assumption is a
significant drawback of CCOAS. The modeling assump-
tion of reliable channels is often an implicit abstraction
of a lossy channel and an underlying primitive that re-
transmits lost messages until they are delivered. From a
practical point of view, however, it is not well-motivated
to assume that this underlying primitive retransmits lost
messages corresponding to operations that have termi-
nated, especially if the client performing the operation
fails. The limited practicality of CCOAS exposes a subtle
drawback of the standard message passing model for the
study shared memory emulation algorithms, especially
when we aspire to have a smaller communication costs
than CASGC. CAS and CASGC do not share the draw-
back of CCOAS, because in these algorithms, a write op-
eration ensures that its coded elements reach a quorum
before the point of termination. An interesting future ex-
ercise is to generalize CAS and CASGC to lossy channel
models (see, for example, the model used in [15]).

7 Conclusions

We have proposed low-cost algorithms for atomic shared
memory emulation in asynchronous message-passing sys-
tems. We have also contributed to this body of work through
rigorous definitions and analysis of (worst-case) commu-
nication and storage costs. We have shown that our algo-
rithms have desirable properties in terms of the amount
of communication and storage costs.

There are several relevant follow up research direc-
tions in this topic. We list some of them below.

– In our CASGC algorithm, although we garbage col-
lect the coded elements, we do not garbage collect
the metadata. In particular, in an execution with an
infinite number of write operations, each server may
store the tag and a label for every write operation and
therefore, may store infinitely large amount of meta-
data. The question of whether the metadata can be re-

moved in the garbage collection step without violat-
ing atomicity and liveness of CASGC remains open.

– Our CAS and CASGC algorithms are developed in a
model with reliable channels. Our discussion in Sec-
tion 6 reveals the importance of understanding the
properties of shared memory emulation algorithms
in a model with lossy channels. Extending CAS and
CASGC to a model with lossy channels is an impor-
tant direction of future work.

– Recently, a coding theoretic formulation inspired by
the need to ensure atomicity in storage systems has
been presented in [36]. An interesting question is whether
the storage cost can be reduced through using the
ideas of [36], or through other sophisticated coding
techniques.

– When erasure coding is used for shared memory em-
ulation, the communication and storage costs of var-
ious algorithms in literature depend on the number
of concurrent operations or the number of clients.
In particular, in algorithms in literature, an infinite
number of incomplete/failed operations can lead to
either violations of operation termination or an infi-
nite communication or storage cost; for instance, in
CASGC, an unbounded number of failed write oper-
ations can lead to an unbounded storage cost if they
are not interspersed with a sufficient number of oper-
ations that terminate. A natural question is whether
there exist fundamental lower bounds that capture
this behavior, or whether there exist algorithms that
can achieve low communication and storage costs
which do not growwith the degree of concurrency
in the system.

– The AWE algorithm of [7] presents an algorithm with
desirable liveness properties and storage cost even if
the number of write operations that are concurrent
with a read operation is large, provided that the num-
ber of clients is limited. The CASGC algorithm, in
contrast, provides reasonable conditions on operation
termination and storage cost even if there are an un-
bounded number of clients, provided that the number
of write operations that are concurrent with a read
operation is limited. Our work motivates that search
for an algorithm that combines the desirable proper-
ties of the AWE and CASGC algorithms.

– Generalizing CAS and CASGC to dynamic settings
possibly through modifications of RAMBO [19] is
an unexplored research direction.
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A Discussion on Erasure Codes

For an(N, k) code, the ratioN
k

- also known as theredundancy
factor of the code - represents the storage cost overhead in the
classical erasure coding model. Much literature in coding theory
involves the design of(N, k) codes for which the redundancy fac-
torxv can be made as small as possible. In the classical erasure
coding model, the extent to which the redundancy factor can be
reduced depends onf - the maximum number of server failures
that are to be tolerated. In particular, an(N, k) MDS code, when
employed to store the value of the data object, toleratesN − k
server node failures; this is because the definition of an MDScode
implies that the data can be recovered from anyk surviving nodes.
Thus, for anN -server system that uses an MDS code, we must
havek ≤ N − f , meaning that the redundancy factor is at least

N

N−f
. It is well known [32] that, givenN andf , the parameterk

cannot be made larger thanN − f so that the redundancy factor
is lower bounded by N

N−f
for anycode even if it is not an MDS

code; In fact, an MDS code can equivalently be defined as one
which attains this lower bound on the redundancy factor. In cod-
ing theory, this lower bound is known as the Singleton bound [32].
Given parametersN, k, the question of whether an(N, k) MDS
code exists depends on the alphabet of codeW. We next discuss
some of the relevant assumptions that we (implicitly) make in this
paper to enable the use of an(N, k) MDS code in our algorithms.

A.1 Assumption on|V| due to Erasure Coding

Recall that, in our model, each valuev of a data object belongs to
a finite setV. In our system, for the use of coding, we assume that
V = Wk for some finite setW and thatΦ : Wk → WN is an
MDS code. Here we refine these assumptions using classical re-
sults from erasure coding theory. In particular, the following result
is useful.

Theorem 12 Consider a finite setW such that|W| ≥ N. Then,
for any integerk < N , there exists an(N, k) MDS codeΦ :
Wk → WN .

One proof for the above in coding theory literature is constructive.
Specifically, it is well known that when|W| ≥ N , thenΦ can be
constructed using the Reed-Solomon code construction [24,31,32].
The above theorem implies that, to employ a Reed-Solomon code
over our system, we shall need the following two assumptions:

– k divideslog2 |V|, and
– log2 |V|/k ≥ log2 N .

Thus all our results are applicable under the above assumptions.
In fact, the first assumption above can be replaced by a differ-

ent assumption with only a negligible effect on the communication
and storage costs. Specifically, iflog2 |V| were not a multiple of

k then, one could pad the value with
(

⌈ log2 |V|

k
⌉k − log2 |V|

)

“dummy” bits, all set to 0, to ensure that the (padded) objecthas
a size that is multiple ofk; note that this padding is an overhead.
The size of the padded object would be⌈ log2 |V|

k
⌉k bits and the

size of each coded element would be⌈ log2 |V|

k
⌉ bits. If we as-

sume thatlog2 |V| ≫ k then,⌈ log2 |V|

k
⌉ ≈ log2 |V|

k
meaning

that the padding overhead can be neglected. Consequently, the first
assumption can be replaced by the assumption thatlog2 |V| ≫ k
with only a negligible effect on the communication and storage
costs.

xv Literature in coding theory literature often studies therate N
k

of a code, which is the reciprocal of the redundancy factor, i.e., the
rate of an(N, k) code is k

N
. In this paper, we use the redundancy

factor in our discussions since it enables a somewhat more intuitive
connection with the costs of our algorithms in Theorems 13, 14, 4,
7.

B Descriptions of the ABD and LDR Algorithms

As baselines for our work we use the MWMR versions of the
ABD and LDR algorithms [8,16]. Here, we describe the ABD and
LDR algorithms, and evaluate their communication and storage
costs. We present the ABD algorithm in Figures 8, 9 and 10. We
present the LDR algorithm in Figures 11, 12 and 13. The costs of
these algorithms are stated in Theorems 13 and 14.

Theorem 13 The write and read communication costs of ABD are
respectively equal toN log |V| and2N log |V| bits. The storage
cost is equal toN log2 |V| bits.

The LDR algorithm divides its servers intodirectory serversthat
store metadata, andreplica serversthat store object values. The
write protocol of LDR involves the sending of object values to
2f + 1 replica servers. The read protocol is less taxing since in
the worst-case, it involves retrieving the data object values from
f + 1 replica servers. We state the communication costs of LDR
next (for formal proof, see Appendix B.)

Theorem 14 In LDR, the write communication cost is(2f + 1)
log2 |V| bits, and the read communication cost is(f +1) log2 |V|
bits.

In the LDR algorithm, each replica server stores every version of
the data object it receivesxvi . Therefore, the (worst-case) storage
cost of the LDR algorithm is unbounded.
Proof of Theorem 13.We first present arguments that upper bound
the communication and storage cost for every execution of the
ABD algorithm. The ABD algorithm presented here is fitted to our
model. Specifically in [8, 25] there is no clear cut separation be-
tween clients and servers. However, this separation does not change
the costs of the algorithm. Then we present worst-case executions
that incur the costs as stated in the theorem.
Upper bounds:First consider the write protocol. It has two phases,
get and put. The get phase of a write involves transfer of a tag,
but not of actual data, and therefore has negligible communica-
tion cost. In theput phase of a write, the client sends a value from
the setT × V to every server node; the total communication cost
of this phase is at mostN log2 |V| bits. Therefore the total write
communication cost is at mostN log2 |V| bits. In thegetphase of
the read protocol, the message from the client to the serverscon-
tains only metadata, and therefore has negligible communication
cost. However, in this phase, each of theN servers could respond
to the client with a message fromT × V; therefore the total com-
munication cost of the messages involved in thegetphase is upper
bounded byN log2 |V| bits. In theput phase of the read protocol,
the read sends an element ofT × V to N servers. Therefore, this
phase incurs a communication cost of at mostN log2 |V| bits. The
total communication cost of a read is therefore upper bounded by
2N log2 |V| bits.

The storage cost of ABD is no bigger thanN log2 |V| bits
because each server stores at most one value - the latest value it
receives.
Worst-case executions:Informally speaking, due to asynchrony and
the possibility of failures, clients always send requests to all servers
and in the worst case, all servers respond. Therefore the upper
bounds described above are tight.

For the write protocol, the client sends the value to allN nodes
in its put phase. So the write communication cost in an execution
where at least one write terminates isN log2 |V| bits. For the read
protocol, consider the following execution, where there isone read
operation, and one write operation that is concurrent with this read.
We will assume that none of theN servers fail in this execution.
Suppose that the writer completes its get phase, and commitsto
a tagt. Note thatt is the highest tag in the system at this point.
Suppose that among theN messages that the writer sends in its
put phase with the value and tagt, Now the writer begins its put

xvi This is unlike ABD where the servers store only the latest ver-
sion of the data object received.
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write(value)
get: Send query request to all servers, await(tag) responses from a majority of server nodes. Select the largest tag; let its integer
component bez. Form a new tagt as(z + 1, ‘ id’), where ‘id’ is the identifier of the client performing the operation.

put: Send the pair(t, value) to all servers, await acknowledgment from a majority of server nodes, and then terminate.

Fig. 8 Write protocol of the ABD algorithm.

read
get:Send query request to all servers, await(tag, value) responses from a majority. Select a tuple with the largest tag, say(t, v).

put: Send(t, v) to all servers, await acknowledgment from a majority, and then terminate by returning the valuev.

Fig. 9 Read protocol of the ABD algorithm.

server
statevariable: A variable which contains an element ofT × V

initial state:Store the default(tag, value) pair (t0, v0).

On receiptof getmessagefrom aread: Respond with the locally available(tag, value) pair.

On receiptof getmessagefrom awrite: Respond with the locally availabletag.

On receipt of put message: If the tag of the message is higher than the locally available tag, store the(tag, value) pair of the
message at the server. In any case, send an acknowledgment.

Fig. 10 Server protocol of the ABD algorithm.

write(value)
get-metadata: Send query request to directory servers, and await(tag, location) responses from a majority of directory servers.
Select the largest tag; let its integer component bez. Form a new tagt as(z + 1, ‘ id’), where ‘id’ represents the identifier of the
client performing the operation.

put: Send(t, value) to 2f + 1 replica servers, await acknowledgment fromf + 1. Record identifiers of the firstf + 1 replica
servers that respond, call this set of identifiersS.

put-metadata: Send(t, S) to all directory servers, await acknowledgment from a majority, and then terminate.

Fig. 11 Write protocol of the LDR algorithm

read
get-metadata: Send query request to directory servers, and await (tag, location) responses from a majority of directory servers.
Choose a (tag, location) pair with the largest tag, let this pair be(t, S).

put-metadata: Send(t, S) to all directory servers, await acknowledgment from a majority.

get:Sendget objectrequest to anyf + 1 replica servers recorded inS for tagt. Await a single response and terminate by returning
a value.

Fig. 12 Read protocol of the LDR algorithm

replica server
statevariable: A variable that is subset ofT × V

initial state:Store the default(tag, value) pair (t0, v0).

On receiptof put message: Add the(tag, value) pair in the message to the set of locally available pairs. Send an acknowledgment.

On receiptof getmessage: If the value associated with the requested tag is in theset of pairs stored locally, respond with the value.
Otherwise ignore.

directory server
statevariable: A variable that is an element ofT × 2R where2R is the set of all subsets ofR.

initial state:Store(t0, R), whereR is the set of all replica servers.

On receiptof get-metadatamessage: Send the(tag, S) be the pair stored locally.

Onreceiptof put-metadatamessage: Let(t, S) be the incoming message. At the point of reception of the message, let(tag, S1) be
the pair stored locally at the server. Ift is equal to thetag stored locally, then store(t, S ∪ S1) locally. If t is bigger thantag and if
|S| ≥ f + 1, then store(t, S) locally. Send an acknowledgment.

Fig. 13 Replica and directory server protocols of the LDR algorithm
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phase where it sendsN messages with the value and tagt. At least
one of these messages, say the message to server1, arrives.the re-
maining messages are delayed, i.e., they are assumed to reach after
the portion of the execution segment described here. At thispoint,
the read operation begins and receives(tag, value) pairs from all
theN server nodes in its get phase. Of theseN messages, at least
one message contains the tagt and the corresponding value. Note
thatt is the highest tag it receives. Therefore, the put phase of the
read has to sendsN messages with the tagt and the corresponding
value - one message to each of theN servers that which responded
to the read in the get phase with an older tag.

The read protocol has two phases. The cost of a read opera-
tion in an execution is the sum of the communication costs of the
messages sent in itsgetphase and those sent in itsput phase. The
get phase involves communication ofN messages fromT × V,
one message from each server to the client, and therefore incurs a
communication cost ofN log2 |V| bits provided that every server
is active. Theput phase involves the communication of a message
in T × V from the client to every server thereby incurring a com-
munication cost ofN log2 |V| bits as well. Therefore, in any exe-
cution where allN servers are active, the communication cost of a
read operation is2N log2 |V| bits and therefore the upper bound
is tight.

The storage cost is equal toN log2 |V| bits since each of the
N servers store exactly one value fromV. ⊓⊔
Proof of Theorem 14.
Upper bounds:In LDR servers are divided into two groups:di-
rectory servers used to manage object metadata, andreplication
servers used for object replication. Read and write protocols have
three sequentially executed phases. Theget-metadataandput-metadata
phases incur negligible communication cost since only metadata is
sent over the message-passing system. In theput phase, the writer
sends its messages, each of which is an element fromT × V, to
2f + 1 replica servers and awaitsf + 1 responses; since the re-
sponses have negligible communication cost, this phase incurs a
total communication cost of at most(2f + 1) log2 |V| bits. The
read protocol is less taxing, where the reader during thegetphase
queriesf +1 replica servers and in the worst case, all respond with
a message containing an element fromT × V thereby incurring a
total communication cost of at most(f + 1) log2 |V| bits.
Worst-case executions:It is clear that in every execution where at
least one writer terminates, the writer sends out(2f +1) messages
to replica servers that contain the value, thus incurring a write com-
munication cost of(2f + 1) log2 |V| bits. Similarly, for a read, in
certain executions, all(f + 1) replica servers that are selected in
theput phaseof the read respond to thegetrequest from the client.
So the upper bounds derived above are tight. ⊓⊔

C Proof of Lemma 1

Proof of property (i): By the definition, eachQ ∈ Q has cardinality
at least⌈N+k

2
⌉. Therefore, forQ1, Q2 ∈ Q, we have

|Q1 ∩ Q2| = |Q1| + |Q2| − |Q1 ∪ Q2|

≥ 2

⌈

N + k

2

⌉

− |Q1 ∪ Q2|

(a)

≥ 2

⌈

N + k

2

⌉

− N ≥ k,

where we have used the fact that|Q1 ∪ Q2| ≤ N in (a).
Proof of property (ii ): Let B be the set of all the server nodes that
fail in an execution, where|B| ≤ f . We need to show that there
exists at least one quorum setQ ∈ Q such thatQ ⊆ N − B,
that is, at least one quorum survives. To show this, because of the
definition of our quorum system, it suffices to show that|N −B| ≥
⌈N+k

2
⌉. We show this as follows:

|N − B| ≥ N − f
(b)

≥ N −

⌊

N − k

2

⌋

=

⌈

N + k

2

⌉

,

where,(b) follows becausek ≤ N−2f implies thatf ≤ ⌊N−k

2
⌋.


