This copy may not be further
reproduced or distributed in any way
without specific authorization in each

instance, procured through the
Director of Libraries, Massachusetts
Institute of Technology.

L ) E fzs
t |_

||||| g I |||||§
m
llLzs s e

41




Multiresolution Statistical Modeling with Application to
Modeling Groundwater Flow

by
Michael M. Daniel

B.S. Electrical Engineering and Computer Science
University of California at Berkeley, 1990

S.M. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 1993

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

February 1997

© 1997 Massachusetts Institute of Technology
All Rights Reserved.

Signature of Author:

Dept. of Electrical Engineering and Computer Science
January 29, 1997

Certified by:

Alaf’S. Willsky
Profegsor of EECS

‘THesis Sypervisor

Accepted by: —

Artqmr C. Smith
Professor of EECS

|nlal ¥ 1) fum . .
ARCH - s Chair, Committee for Graduate Students

MAR 06 1397

LefAsIiES






Multiresolution Statistical Modeling with Application to
Modeling Groundwater Flow
by
Michael M. Daniel

Submitted to the Department of Electrical Engineering
and Computer Science
on January 31, 1997 in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
in Electrical Engineering and Computer Science

Abstract

The development of accurate mathematical models describing the flow of groundwater
is an important problem due to the prevalence of contaminants in or near groundwater
supplies. An important parameter of these models is hydraulic conductivity, which de-
scribes the ability of the subsurface geology to conduct water flow. Because hydraulic
conductivity is a function of the earth’s subsurface, direct measurements can be made
only at a relatively small number of locations. Instead, one must rely on indirect mea-
surement sources, which supply observations of conductivity at different locations and
resolutions. An important problem is to estimate the hydraulic conductivity function
from all available data, and to characterize the remaining uncertainty. The class of
multiscale processes introduced in [Chou et al., 1994] appears to be well-suited to this
problem, since these processes can be estimated efficiently at every scale at which they
are modeled; the multiscale estimator also provides an uncertainty measure for the esti-
mates. However, this multiscale framework has some limitations that must be overcome
before it can be applied to general data fusion problems. First, because all of the pre-
vious applications have focused on the measurement and estimation of the finest-scale
process, arbitrary nonlocal properties of interest (e.g., coarse-resolution measurements
of hydraulic conductivity) have not been represented within the multiscale framework.
Second, the class of stochastic processes that is well modeled by low-order tree models
has not been fully characterized. To address the first limitation, this thesis (1) extends
multiscale realization theory so that coarse-scale variables can represent particular non-
local properties to be measured or estimated and (2) applies these realization algorithms
to the estimation of hydraulic conductivity from sparse measurements made at differ-
ent resolutions. To partially address the second limitation, the multiscale processes
are shown to provide natural approximations of fractional Brownian motion. These
approximations are based on the observation that the multiscale realization problem
can be considerably simplified when modeling random processes that are statistically
self-similar and/or have stationary increments.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering and Computer Science
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Notational Conventions

Symbol Definition

General Notation

a:b the row vector [a,a+1,...,b—1,b]

uT the transpose of the matrix U

U(,3) the element in the i-th row and j-th column of U

Ua:b,c:d) the (b—a+ 1)-by-(d - ¢+ 1) submatrix of U composed
of rows a through b and columns ¢ through dofU

U(a:b.:) the (b—a + 1)-Tow submatrix of U composed of rows a
through b and all columns of U

U(:,c:d) the (d — ¢+ 1)-column submatrix of U composed of all
rows and columns ¢ through d of U

£l a vector (function) obtained by taking the absolute
value of the vector (function) f

AN the 2-norm of the function or vector f

(9, ) the inner-product of vectors (functions) g and f

bg an infinitessimal perturbation of the function g

af(ag(a:)) the Fréchét derivative of the functional operator F with

9 respect to the funtion g(z)

v the gradient or J acobian operator

V- the divergence operator

fly f and y are uncorrelated, i.e., E[(f—mf)(y—my)T] =0

f L2 f and g have identical probability distributions

f ~N(my, Py) the vector f is normally distributed with mean my and
covariance Py

f ~ (mg,Ps) the vector f is has mean mg and covariance Py

e(f, f) the error of the estimate fie,e=f- f

E[f) the expected value of f

E[f| y] the expected value of f conditioned upon ¥y

E’[ £y the LLSE estimate of f from ¥

f the estimate of f, which in most contexts is the LLSE
estimate

my the expected value (mean) of f, E[f]
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Symbol

NOTATIONAL CONVENTIONS

Definition

General Notation (cont ... )

M
N
O(mP)

O(mPni)

ps(F)
Pry(FY)

pf,y(F1 Y)

Py
Pfly

Pfy
R

v
y

the dimension of the measurement vector

the dimension of the vector to be estimated

denotes that a performance measure is asymptotically
bounded by a polynomial of order p

denotes that a performance measure is asymptotically
bounded by a bivariate polynomial of order p in m and ¢
inn

the probability density function for the random vector f
the probability density function for the random vector f con-
ditioned upon y

the joint probability density function for the random vector
fandy

the covariance of f, i.e., E[(f -myg)(f - mf)T]

the covariance of f conditioned upon y, i.e.,

E[(f - mp)(f - mp)T|3]

the cross-covariance of f and y, i.e., E[(f — ms)(y — my)T}
the covariance of the measurement noise

the measurement noise

the measurement vector

Groundwater Hydrology

TNHOR® 3 ™

log hydraulic conductivity: In(K)

hydraulic head (m)

hydraulic conductivity (m/s)

effective porosity

specific dischage vector (m/s)

rate of volumetric water inputs per unit volume (s7?!)
transmissivity (m?/s)

time in seconds, travel time in seconds

travel time to a control plane

the velocity field (m/s)

the spatial coordinate

the spatial coordinates in for two dimensional flow



NOTATIONAL CONVENTIONS

Symbol

Definition

Multiscale Models

Ay, Qs

d(s)
fs
fs

fla.,+1

FJ)Q.J

m(s)
Pys)
qs

s
SO
&y
SAt
S,
Sy
Ti
z(0)
z(s)
z(s)

the auto-regression parameter and process noise covariance
for the transition from node s¥ to node s

the dimension of the state at node s

the set of finest-scale elements descending from node s

the set of fintest-scale elements which does not descend from
node s

fs

the auto-regression parameter and process noise covariance
for the backwards model

scale, i.e., the distance from the root node to node s

the covariance of z(s)

the number of children descending from node s

the node index for a tree process

the i-th child of node s,i=1,... ,q,

the parent of node s

the common ancestor of s and ¢ that is at the finest scale
the set of nodes descendent from and including nede s

the complement of S,

node at which the nonlocal function g} f is represented

the state at the root node of the tree

the state at node s

the LLSE estimate of z(s)
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Chapter 1

Introduction

This thesis focuses on the application of the multiscale statistical framework introduced
in [19, 20] to the estimation of random processes measured by different instruments.
In particular, the framework is applied to problems in which the measurement data
may be of very different types and, in particular, convey information about the random
phenomenon at very different scales. One such problem is determining the parameters
of partial differential equations (PDEs) that describe the flow of groundwater in the
earth’s subsurface. Perhaps the parameter that most significantly influences the flow
of groundwater is hydraulic conductivity, which relates pressure differentials to flow
rates. Because hydraulic conductivity is a property of the earth’s subsurface, it can be
measured directly only in a small number of locations. Instead, one must rely on indirect
measurement sources, each supplying observations of conductivity at different locations
and resolutions. The application of the multiscale framework to such a data fusion
problem, however, is not straightforward. The class of multiscale random processes
defined in [19] have been successfully applied to a problems in remote sensing [34],
image processing and analysis {33, 60, 63], and parameter estimation {35]. But for all
of these problems, both the measurements and the variables to be estimated are at
the finest scale of the multiresolution process. The coarser scale variables ouly ensure
that the multiresolution process has the statistical structure that allows for efficient
processing algorithms. If the multiscale framework is to be applied to data fusion
problems that involve the measurement and/or estimation of nonlocal functions of the
phenomenon of interest, the existing tools for the realization of multiscale stochastic
processes will have to be extended. Two of the main contributions of this thesis are

e extending multiscale realization theory so that the contents of coarse-scale vari-
~ ables can be specified, and

e applying these realization algorithms to the estimation of hydraulic conductivity
and travel times associated with advective flow.

The extensions to multiscale realization theory are in many significant ways derived
from and motivated by results and realization algorithms in [51]. The application of
the multiresolution framework to hydraulic conductivity estimation is a direct extension
of the methods in [69)].

19
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A third contribution, somewhat disjoint from the first two, is approximating frac-
tional Brownian motion (fBm) with multiresolution stochastic processes. Two of these
approximations are based on the random midpoint displacement and wavelet methods
for synthesizing fBm (36], and the resulting multiscale models are direct extensions of
the models provided in [62] and [35]. A more general approach is also provided, which
allows for approximating fBimn to arbitrary fidelity. These approximations are derived
from the statistical self-similarity and stationary increments of fBm.

In the following section, the three major problems motivating this thesis are covered
in more detail. In Section 1.2, the contents and contributions of each chapter are
summarized.

B 1.1 Problems Addressed
@ 1.1.1 Data Fusion using Multiscale Models

The primary subject of this thesis is to develop methods for the assimilation of data
from different measurement sources that supply information about the phenomenon
of interest at different resolutions and locations. Problems requiring the estimation
of random processes or random fields from measurement data of very different types
arise in a variety of contexts. Two notable areas are remote sensing and geophysical
applications, for which spatially distributed random fields are to be estimated for a
variety of purposes ranging from the simple production of maps of quantities like rainfall
distributions to the estimation of spatial quantities to be used in the analysis of complex
geophysical processes like ocean currents and subsurface fluid flow.

Geophysical phenomena such as these are typically not accessible to dense, uni-
form measurement, and one generally must rely on a variety of measurement sources
of very different types in order to obtain enough spatial coverage to produce reliable
estimates. Furthermore, while some of these measurements may be taken at individual
points in the field—e.g., rain gauges, ocean measurements from ships, measurements of
subsurface properties in boreholes—these measurements are typically sparse, irregularly
sampled, and inadequate by themselves. Consequently, they must he fused with mea-
surements that are indirect and provide nonlocal measurements of the phenomenon of
interest over areas that are not adequately covered by the localized point measurements.
These indirect observations are usually of varying resolution. An example sensor fusion
problem with multiresolution measurements is the estimation of precipitation, which is
used for numerical weather prediction (NWP). Precipitation can be measured with rain
gauges, radar sensors, and microwave and infrared satellites. The rain gauges provide
point samples of precipitation at select locations, while the infrared satellites provide
broad but coarse resolution coverage. Climatologists have long recognized that no sin-
gle measurement source is sufficient for reliable precipitation estimates, and instead
all measurements must be incorporated [46, 81]. Another geophysical system requir-
ing the assimilation of heterogeneous measurements is the analysis of ocean currents.
Ocean currents are measured with a variety of sensors, including floating buoys, acous-
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tic travel times, satellite altimetry, and direct and indirect observations of temperature
and salinity. While the floating buoys can observe fine-scale fluctuations in the ocean
currents, their coverage is limited. More comprehensive coverage, albeit at a coarser
resolution and limited to the ocean surface, is given by the satellite data. How to fuse
the many different measurements in order to produce the most reliable descriptions of
ocean currents is a very active research topic [41].

The application considered in this thesis is the estimation of hydraulic conductiv-
ity for characterizing groundwater flow. Accurately describing the flow of fluids in the
earth’s subsurface is important due to the prevalence of contaminated soils in or near
groundwater supplies. An accurate description of groundwater flow requires an accu-
rate description of hydraulic conductivity, which is a property of the subsurface geology
known to be an important determinant of groundwater flow. Geologic properties like
hydraulic conductivity can be measured directly only at select well locations. Indirect
observations are supplied by tracer travel times [47], pump tests [9, 29, 53, 66, 75, 76]
acoustic wave propagation (seismics) [24, 47, 86], and measurements of fluid properties
like hydraulic head [1, 23, 74]. These observations differ in spatial resolution and sup-
port, and each is related to hydraulic conductivity by a physical equation, i.e., a PDE.
As illustrated in Chapter 3, point samples of hydraulic head are essentially observations
of a coarse-scale derivative of hydraulic conductivity and are nonlocal in the sense that
each head sample is sensitive to the entire conductivity field to be estimated. Again,
no single measurement source can provide a reliable estimate of hydraulic conductivity,
and all available measurements should be used [23, 47, 68].

A fundamental problem is to develop methods for the fusion of such disparate mea-
surement sources, a difficult problem given the nonlocal nature of at least some of
the measurement data. Moreover, there are several other features of such geophysical
problems that add to the challenge. First, and most importantly, the functions to be
estimated are multidimensional, requiring either computationally efficient algorithms
or descriptions in terms of a manageable number of parameters. Secondly, there are
often very strong reasons to think about describing phenomena at multiple scales, both
because the underlying phenomena in these applications exhibit variability over wide
ranges of scales and because the available data may support statistically meaningful
estimation at different resolutions in different regions, depending on the coverage and
nature of the available measurements. Thirdly, there is generally a strong need for the
computation not only of estimates of phenomena but also of error variances for these
estimates so that their significance can be assessed.

A variety of methods for fusing measurements in such contexts have been used over
the years (see [69] for a review of many of these), but it is fair to say that computational
complexity, especially if error variances are desired, remains a significant and limiting
challenge. Several other researchers have attempted to make use of the multiscale nature
of the problem by using wavelet decompositions in order to overcome computational
limitations, for example |7, 18, 58, 72]. However these efforts do not address all of the
issues of interest here as ihey either focus on using wavelets to obtain estimates but
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Figure 1.1. A binary tree used to index a random process at multiple resolutions.

not error statistics [7, 18, 58], require regular measurements so that wavelet transforms
can be applied [72], or admit only very special nonlocal measurements, namely those
that correspond to the explicit direct measurements of wavelet coefficients at particular
scales (7). In contrast, the approach that we develop here computes estimates and error
statistics, is directly applicable to arbitrary measurement sets, and allows us to use
a wide variety of prior statistical models to describe the statistical variability of the
phenomenon.

The approach of the multiscale framework is to develop models for random pro-
cesses and fields within the class introduced in [19]. These models describe random
phenomena using tree structures for which each level of the tree represents a different
resolution of the phenomenon of interest. An example of a binary tree used to index
a multiresolution process is illustrated in Figure 1.1. Analogous to 1D autoregressive
models which evolve recursively in time, these multiscale models evolve recursively in
scale. The utility of this class of models is twofold. First, the class has been shown to
provide useful models for a handful of random processes and fields, such as 1D Markov
processes and 2D Markov random fields (MRFs) [62] and self-similar processes that
can be used to model natural phenomena arising in geophysics [34, 35). Second, and
most importantly, just as the Markov property associated with 1D autoregressive mod-
els leads to a highly efficient estimation algorithm (the Kalman filter), the multiscale
models satisfy a Markov property in scale and space which leads to an efficient estima-
tion algorithm. Also, the multiscale estimator automatically, i.e., with no additional
computations, produces estimation error covariances. Moreover, the efficiency of this
algorithm does not require regular data and in particular can accommodate arbitrarily
spaced measurements.

As noted, the multiscale framework has been successfully applied to a number of
problems, but all of this work has been focused on the finest scale of the multiscale rep-
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Figure 1.2, An example of the set of variables that can be measured and incorporated by the multiscale
estimator. The nodes at which variables are measured are indicated by the shaded squares.

resentation. That i3, in modeling a random phenomenon in this framework the objective
has been to ensure that the finest scale of the model has a desired statistical structure.
Also, in estimation applications, all of the measurements considered have been at the
finest level of representation, i.e., they have corresponded to point measurements of the
phenomenon. In that context, the variables captured at higher (coarser) levels in the
multiscale representation are simply abstract variables that admit efficient algorithms
by satisfying the Markov property of multiscale tree processes. Nevertheless, these al-
gorithms actually allow measurements and produce estimates at these coarser scales.
In fact, the measurements incorporated by the estimator can be noisy linear functions
of any variable on the tree. An example measurement set is illustrated in Figure 1.2.
The measured variables, denoted by the shaded nodes, can be arbitrarily distributed
on the tree, but each measurement must be in the form

y(s) = Cs 2(s) + v(s), (1.1)

where z(s) is the variable at tree node s and v(s) is uncorrelated measurement noise.
The multiresolution estimator produces the LLSE estimate of each variable 2(-) on the
tree from any set of measurements in the form of Eq. (1.1).

For data fusion problems, the coarser-scale variables of the multiscale models must
be able to represent the nonlocal weighted averages of the phenomenon of interest.
These nonlocal averages correspond either to variables that are measured through in-
direct measurements or to variables that must be estimated. Once a multiscale model
is found with the proper coarse-scale variables and the desired statistics for the finest-
scale process, the multiscale estimator can be applied to the fusion of measurements at
different resolutions. One of the contributions of this thesis is to show exactly how such
multiscale models can be realized.
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The second contribution of this thesis is to apply the multiscale framework to prob-
lems in groundwater hydrology. We first consider the estimation of hydraulic conductiv-
ity from head and conductivity measurements. Because head samples provide nonlocal
measurements of hydraulic conductivity through the PDE describing groundwater flow,
head samples can be represented as the coarse-scale variables in a multiscale process
for hydraulic conductivity. Given that the finest-scale process represents samples of
hydraulic conductivity, the multiscale estimator can then be used to estimate hydraulic
conductivity (at multiple scales) from measurements of both head and conductivity.

For most field experiments, one has access to more than just head and conductivity
measurements. Another common source of measurements are the times that particles
take to flow between two locations in the reservoir. Travel times directly measure the
velocity function over the path between the two points. Because advective velocity is
also a function of hydraulic conductivity, travel time measurements serve as another
nonlocal measurement of hydraulic conductivity. Furthermore, because the multiscale
estimator produces estimates of the multiscale process at each node on the tree, the
multiscale framework can also be used to compute estimates of travel times between
points in the aquifer. Estimates of travel times are necessary for many EPA studies
[98, 99].

@ 1.1.2 Statistically Self-Similar Processes and Fractional Brownian
Motion

Another contribution of this thesis is the development of multiscale models for statisti-
cally self-similar processes. Self-similar processes occur frequently in nature [4, 57] and
are often well modeled by random processes with power spectral densities that behave as
1/f<. For example, 1/f processes can be used to describe average temperature distribu-
tions [45, 57|, annual flow rates in rivers [45], the noise in vacuum tubes and electrical
components [57], biological time series like heartbeats [96], economic time series like
the Dow Jones Industrial Average [96], and traffic in communications networks [94].
Processes with 1/ f-like power spectra are also used to generate images that model real
world objects like clouds and mountain ranges [4, 89]. These processes possess two com-
mon characteristics, statistical self-similarity and long-range dependence. Also, many
of the processes are nonstationary. A popular model that possesses these two charac-
teristics is the class of fractional Brownian motions [64], which are a generalization of
Brownian motion.

Fractional Brownian motions are defined as the zero-mean Gaussian random pro-
cesses with statistically stationary and self-similar increments. The first models for
fBm [64] were fractional integrals of white Gaussian noise, but such nonlinear integrals
are not useful for synthesizing or processing (estimating, smoothing, and the like) fBm.
Developing useful models for fBm and other 1/f processes has been a very active area of
research, as noted in [56, 96]. Most practical approaches approximate fBm with models
that lead to eflicient synthesis or processing algorithms. Two such approximations are
random midpoint displacement and wavelet-based representations. The random mid-
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point displacement algorithm is a popular tool for approximately synthesizing fBm [4].
Another useful tool is the wavelet synthesis equation, since the wavelet transform has
been shown to approximately whiten fBm [36] and 1/f processes in general [96]. In
addition, Wornell [96] also used the wavelet-based framework for accomplishing signal
processing tasks like the estimation of fBm from uniformly sampled and noisy measure-
ments.

Both the midpoint displacement and the wavelet-based approximations lead to syn-
thesis algorithms consisting of a progression from coarse to fine scales, adding succes-
sively finer details at each step. The details for the midpoint displacement algorithm are
perturbations about interpolated values, while the details for the wavelet-based model
are the detail coefficients of the wavelet transform. Because both synthesis algorithms
are analogous to the multiscale autoregression, the random midpoint displacement and
wavelet-based approximations are naturally represented by multiscale processes [35, 62].
A major advantage of representing these algorithms within the multiscale framework
is the ability to take advantage of the efficient processing and synthesis algorithms.
However, the approximations to fBm given by directly mapping the midpoint displace-
ment and wavelet-synthesis algorithms to tree models have some undesirable properties.
First, both of these approaches do not account for the inherent nonstationarity of {Bm.
Specifically, for both the displacement and the wavelet-based models developed in the
literature, the process noise is assumed to have constant variance at any scale of the
tree. For the wavelet-based approximation proposed in [35], this assumption leads to
a finest-scale process with stationary variance, unlike the variance of fBm which grows
polynomially in time. More importantly, because the process noise of these two models
represents either the displacements or the wavelet detail coefficients, assuming that the
displacements (detail coefficients) are completely uncorrelated leads to large approxima-
tion errors in the covariance of the finest-scale process. For instance, the wavelet-based
multiscale model (using Haar wavelets) produces sample paths with noticeable discon-
tinuities. These artifacts can be distracting if used for synthesis and misleading if used
for estimation. Fortunately, as we will develop, much of the correlation among the dis-
placements (detail coefficients) can be captured in multiscale models without increasing
the state dimensions of the models.

While the multiscale models based on random midpoint displacement and wavelet
synthesis can be enhanced, there might also be models more tailored to the particu-
lars of multiscale tree processes. In fact, multiscale tree models appear to be a natural
framework for representing statistically self-similar processes, since trees themselves are
geometrically self-similar. We show in this thesis how statistical self-similarity, in con-
junction with stationary increments, leads to a fundamental approach for approximating
fBm with multiscale trees. This analysis will also apply to the multiscale modeling of
other self-similar processes.
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B 1.2 Contributions and Organization

In what follows, the contents of each chapter are briefly summarized and tied to the
overall contributions of this thesis.

Chapter 2, Background: Estimation Theory and Muitiscale Processes

This chapter first reviews the properties of optimal Bayesian estimators and linear least-
squared error (LLSE) estimators. This review includes the computational complexity
of standard implementations of LLSE estimators, as well as how to handle singular
measurement covariances and nonlinear measurement equations. The second half of the
chapter is devoted to the class of multiscale models first described in [19, 20]. A number
of example processes are provided, including internal models for Markov Random Fields
and external models for process with approximately 1/f power spectra. The chapter
concludes with a discussion of the realization theory developed in [51], which is used
throughout this thesis.

Chapter 3, Groundwater Flow and Hydraulic Conductivity Estimation
This chapter summarizes the partial differential equations (PDEs) commonly used to
describe the flow of water within the earth’s subsurface, and then discusses the problem
of calibrating these equations. The focus is on estimating hydraulic conductivity, an
important parameter of the flow equations, from samples of conductivity and hydraulic
head. In particular, we show how the head measurement equation can be linearized,
leading to a nonlocal observations of the hydraulic conductivity function. This lineariza-
tion can be used to develop an approximate LLSE estimator of hydraulic conductivity,
and is the linearization required by the Gauss-Newton solution to the maximum a pos-
teriori estimator. This approach to conductivity estimation is quite general, and has
been used to incorporate measurements of contaminant concentrations [84].

Chapter 4, Extensions of Multiscale Realization Theory

This chapter focuses on extensions of the class of processes that can be realized within
the framework of [19, 20]. The major contribution is to show how nonlocal functions of
the phenomenon of interest can be represented by the coarser-scale variables of a mul-
tiscale tree process. The first approach presented is to extend the realization algorithm
presented in [51], which specifies only the statistics of the finest-scale process, so that
desired nonlocal functions of the finest-scale process can be represented at the coarser-
scale nodes on the tree. While instructive, this approach is computationally infeasible
for large problems. As an alternative, a method is presented for augmenting the states
of multiscale models with the desired linear functions of the finest-scale process. The
augmentation must preserve the statistical integrity of the original multiscale model,
i.e., it must preserve the Markov property and the finest-scale statistical structure of the
process. This algorithm is applied to an example estimation problem—the estimation
of hydraulic conductivity from head and conductivity for one-dimensional flow—that
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illustrates how one might choose the nodes at which the nonlocal functions are to be
represented. The choice of nodes affects the state dimensions of the augmented multi-
scale model. Finally, an approximate state augmentation algorithm is presented that
allows one to control the increases in state dimensions in return for sacrificing statistical
accuracy.

Chapter 5, Multiscale Modeling and Estimation of Hydraulic Conductivity
This chapter applies the multis.ale framework to the estimation of hydraulic conduc-
tivity in 2D from measurements of head and conductivity. First, the effect of head
measurements on conductivity estimates is discussed in some detail. Then the state
augmentation algorithm of Chapter 4 is used to represent linearized head measure-
ments at the coarser scales of multiscale models for 2D hydraulic conductivity. The
multiscale estimator in thcse examples implements an approximation to the optimal
LLSE estimator. Next, the head measurements are relinearized about current esti-
mates of hydraulic conductivity, leading to an iterative algorithm for which the state
augmentation algorithm of Chapter 4 must be applied at each iteration. The resulting
estimate is the Gauss-Newton implementation of the maximum a posteriori estimator,
and it provides a significant improvement over the approximate LLSE estimator only
when the variations in the head function due to variations in hydraulic conductivity are
significant when compared to the head measurement noise.

Chapter 6, Travel Time Measurements and Estimation

The chapter extends the work in Chapter 5 to include travel-time measurements. First,
a linearization of travel time with respect to hydraulic conductivity is developed which
allows travel times to be represented at the coarser scales of multiscale tree models. The
multiscale framework can then be used estimate hydraulic conductivity from conduc-
tivity, head, and travel-time measurements. Next, the multiscale framework is used to
estimate conditional distributions for travel times. These densities are then compared
to the conditional distributions generated by Monte-Carlo Simulations.

Chapter 7, Modeling and Estimation of Fractional Brownian Motion

A number of multiscale models that approximate fractional Brownian motion are pre-
sented. First, the random midpoint displacement and wavelet synthesis algorithms for
synthesizing fBm are discussed and then represented within the multiscale framework.
The multiscale framework not only allows one to take advantage of efficient processing
and synthesis algorithms, but also allows one to develop more accurate representations
of fBm by accounting for local correlations among displacements or detail coefficients.
The second part of the chapter develops more general results for the multiscale model-
ing of statistically self-similar processes and for processes with stationary increments.
These results are then applied to approximating fBm, and are shown to provide very
accurate representations even when the dimensions of the state variables are small.



28 CHAPTER 1. INTRODUCTION

Chapter 8, Contributions, Limitations, and Potent’:! Solutions

A brief summary of the major contributions of the thesis iz provided. We then point
out the limitations of the contributions, the problems that should be addressed, and
some possible solutions. Finally, alternative approaches to multiscale realization are

suggested.



Chapter 2

Background: Estimation Theory and
Multiscale Processes

This chapter provides an introduction to the multiscale stochastic framework, which is
one of the primary subjects of this thesis. To motivate the framework and to justify its
application, a brief review of standard estimation theory is provided, focusing particu-
larly on linear least-square error (LLSE) estimators. The shortcomings associated with
standard implementations of estimators are noted, along with the problems encoun-
tered when the measurements are nonlinear functions of the variables to be estimated.
The multiscale framework can be seen as a method for extending LLSE estimators to
problems of very large dimension, as is common for the estimation of two-dimensional
random processes, or problems which are naturally decomposed into multiple resolu-
tions. The multiscale framework consists of the following: a class of stochastic processes
which are indexed on a tree and which evolve recursively from coarse to fine scale, a
collection of tools for realizing such processes to have a desired statistical structure, an
efficient estimation algorithm analogous to the Kalman filter, a probabilistic model for
the estimation errors, and a likelihood calculator.

A 2.1 Estimation Theory

The generic estimation problem is to estimate a vector! f from a vector of observations
y. This problem is covered in detail in [79, 87, 95] and is briefly reviewed here. The
difficulty is that the observations usually contain incomplete information about f. For
instance, the dimension of f may be larger than the dimension of y, the observations
may be noisy or degraded, and the relationship between y and f may be ill-conditioned?,
i.e., very large variations in f lead only to small variations in y. If the dimension of f
is much larger than that of y, additional information or assumptions about f must be
supplied to the estimator. Ill-conditioning requires that the estimator of f be chosen

1For this section, we assume that both f and y are members of finite-dimensional vector spaces. For
some of the applications encountered in this thesis, the unknown variable is a function, e.g., f(z) for
z € IR, and thus lives in an infinite-dimensional vector space. How to extend the results of this chapter
to such problems is described in Chapter 3.

2A thorough discussion of ill-conditioned (ill-posed) problems is given by Tikhonov in [91].
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such that small perturbations in y, either from numerical or measurement errors, do
not lead to large changes in the estimate. One method for dealing with these problems
is the Bayesian framework.

Bayesian estimators require the specification of two probability densities, ps(F)
and pys(Y | F). The former density is known as the prior, since it represents knowl-
edge about f prior to the acquisition of any measurements. The latter density is the
probability density of the measurements conditioned on perfect knowledge of f. In
practice this density is usually specified implicitly by a measurement equation, e.g.,

y=H(f)+v, (2.1)

where v is the measurement noise. If the joint density of v and f is known, then
Py7(Y | F) can in theory be derived from the measurement equation.
In the Bayesian framework, the solution to the estimation problem is

Py (Y | F)ps(F)
py(Y) ‘

The conditional probability density ps,(F'|Y’) contains all the information (and uncer-
tainty) about f after conditioning on the observations y. The problem is that specifying
such a density is usually impractical for very large dimensional problems. Instead, es-
timators like the mean, mode, or median of the conditional density are computed.

The mean, mode, and median of the conditional density py,(F | V') are part of a class
of estimators known as optimal Bayesian estimators. Optimal Bayesian estimators are
given by specifying a cost function that quantifies preferences for different estimation
errors. The optimal estimate is the one which minimizes the expected cost of the
estimation error. If f(y) is the estimate of f as a function of the measurement vector
y, then the estimation error is given by

pru(F|Y) = (2:2)

e(f, fW) & f - fw). (2.3)
Given a cost function C(e), the optimal Bayesian estimate is given by
f(y) = arg I&l? //C(e(F,g(Y))) Pry(F,Y)dFdY (2.4)
This leads to the much simpler condition [95)
f(w) = argmin [ C(e(f.0)) pyy(F 1) dF (25)
Note that the optimal Bayesian estimator only depends on the cost function and the

conditional density for f, which should not be surprising given that this conditional
density contains all the information about f after conditioning on the measurements.
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B 2.1.1 Least-Squares Estimation

If the error covariance is a suitable metric for measuring the performance of an estima-
tor, then a natural cost function is C(e) = ||e||?. Substituting this cost function into
Eq. (2.5) and differentiating with respect to a yields

feLse(y) = E[f1y] (2.6)

which is the mean of the conditional density ps,(F|Y). The covariance of this condi-
tional density, which is also the covariance of the estimation error conditioned on y, is
given by 3

Py = E[(f - E[f 1)) (f - E[f18)7 |4], (27)

where we have made use of the zero bias of the Bayes’ least-squares error {BLSE)
estimator. Note that the covariance of the estimation error will in general be a function
of the observation vector y. The unconditional error covariance is given by taking the
expectation over all values of y to yield

Paise = Ele(f, faise) e(f, foLse)T| = E[Pyy(v)] (2.8)

and is therefore not a function of y.
The BLSE estimator has a number of interesting properties.

o fBLSE is unbiased.
e The error e(f, fBLSE(y)) is orthogonal to all functions of the data.
e E[C(e)] = trace[ParsEl

o Ppisg — P < 0, where P is the error covariance of any other estimiator and the
inequality means that the matrix difference is negative semidefinite.

The vroblem with general Bayesian estimators is that the estimator fBLSE(y) can be a
very complicated nonlinear operator which is difficult to compute. This estimator also
requires complete knowledge of the conditional density, which is impractical to compute
for many problems. In such cases one usually settles for suboptimal estimators which
are easier to implement and analyze.

Linear Least-Squares Estimation

Keeping the least-squares cost function, one means for obtaining a suboptimal estimator
is to limit the estimator to be a linear (affine) function of the data, i.e.,

fy) = Ay +b.

3In this thesis, the mean and covariance of a random vector = will be denoted by m. and P:,
respectively. Likewise, the cross-covariance of z and y will be denoted by P:, and the covariance of =
after conditioning on y is Pyy.
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Substituting this representation into Eq. (2.5) and differentiating with respect to A and
b yields the following:

fuise(y) = my + Pry Py (y — my) (2.9a)
Psg = Pe (2.9b)
= Pf - PfyPy_lP};,

where my is the mean of f, Py, is the cross-covariance of f and y, and P, is the co-
variance of y. The estimator in Eq. (2.9a) is known as the linear least-squares error
(LLSE) estimator. Note that both the LLSE estimator and the estimation error co-
variance depend only on first- and second-order statistics of f and y for any
joint probability density of f and y. This property is crucial, since it can simplify
considerably the estimation problem. Some other properties of LLSE estimators are
the following:

¢ fLLse(y) is unbiased.
e The estimation error is orthogonal to all linear (affine) functions of the data.

e Pisg — P, <0, where P, is the error covariance of any linear estimator and
P 1sE is the LLSE estimation error defined in Eq. (2.9b). However, remember that
the linear estimator is in general sub-optimal with respect the optimal Bayesian
estimator.

e P,y = ALLsE-

The last property simply states that the conditional estimation error covariance does
not depend on the value of y.

LLSE Estimation for Linear Measurements

In order to implement the LLSE estimator, the covariance matrices Py, and Py, as well
as the mean my, must be computed. Closed-form expressions for these moments are
difficult to compute in general, yet there exist simple expressions when the measurement
equation is linear. Specifically, consider the measurement equation

y=Hf +v, (2.10)

where H is an M-by-N dimensional matrix. Assume for simplicity that v is zero mean,
has covariance R, and is uncorrelated with f. The mean and cross-covariances can then
be computed in closed form, which leads to the following LLSE estimator equations:

fy)=ms;+ P, HT(HP;HT + R)™}(y — Hmy), (2.11a)
P.=P; - P,HT(HP;HT + R)"'HP,. (2.11b)
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These equations can be expressed alternatively as
f(y) =my+(P;' + HTRT' H) ' HTR™'(y - Hmy), (2.12a)
P7'=pP7'+H'R'H. (2.12b)

The relative merits of Egs. (2.11) and (2.12) depend on M and N, the dimensions of
the measurement vector and the vector to be estimated.

Consider the number of computations required to implement each of the LLSE es-
timators. Assuming all the matrices in Eqs. (2.11) and (2.12) are full—except the mea-
surement noise covariance, which is assumed to be diagonal throughout this thesis—and
that direct methods are used to compute the matrix inverses, then Eq. (2.11a) requires
O(M3+N2M) computations while Eq. (2.12a) requires O(N3) computations. Note that
the cubic terms in the asymptotic complexities are due the LU factorizations required
for the matrix inversions. Equation (2.11a) will be much more efficient to implement
for large problems when M <« N. This scenario is likely when one desires estimates of
f at a finer resolution than can be supported by the data. For N <« M, Eq. (2.12a) is
much more efficient to implement. In any case, the number of computations required
to implement the estimator and compute the estimator covariance becomes prohibitive
as both M and N grow large.

Iterative methods can be used to speed up the computation of the estimates. For
instance, Eq. (2.11a) requires only O(M? + N2M) computations when the matrix
(HP;HT + R) is symmetric positive definite, since the conjugate gradient algorithm
[5] can be employed. However, these computational savings will not apply to the com-
putation of the error covariances, since the savings provided by the iterative method
only apply to the computation of a single vector (HP;HT + R)~!(y — m,), not to the
computation of the entire matrix (HP;H T+R)™L

Now consider the storage requirements of the LLSE estimators, which are the same
for either set of equations. The estimate f requires only N storage elements. However,
a covariance matrix requires N2 storage elements, unless the random vector is station-
ary. By a stationary random vector we mean that f contains samples of a stationary,
discrete-index random process or field, in which case the covariance of a single sample
with all other samples completely describes the entire covariance matrix. For storing
the estimator covariance, even if Py is stationary, P will generally be nonstationary and
thus require N? storage elements. These storage requirements are impractical for large
problems—N = 10% implies that approximately 1 Gigabyte of storage are required for
double-precision arithmetic. Therefore, if LLSE estimators are to be used for solving
large-dimensional estimation problems while also calculating estimator covariances, al-
ternative frameworks must be employed which account for both the growth in estimator
complexity and the storage requirements for the estimator covariance.

An alternative implementation of Eq. (2.12a) is given for specific priors P; and
measurement matrices H. Consider implementing

(P! + HTR™'H)(f(y) - ms) = H'R™'(y — Hmy), (2.13)
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which is just a reformulation of Eq. (2.12a). If f is a wide-sense Markov random field
(MRF), it can be modeled implicitly as 25]

Af=w,

where A is a symmetric local operator in the form of a discretization of an elliptic
PDE and w has covariance A; thus, Pf' ! = A. Remember that R is diagonal, so that
HTR-!H will also be diagonal if the measurements are point observations of individual
elements in f. In this case, the matrix operator on the left-hand side of Eq. (2.13) has
the same sparsity (locations of the nonzero elements) as does A. Therefore, a direct
solver like nested dissection [39, 40} can be used to implement the estimator in O(N3/2)
computations. Furthermore, the elements of P, that lie in the nonzero locations required
to store the LU factorization of A can be computed with little extra computation [28, 30).
Note that these elements include the diagonal of P., which contains the variances of
the individual elements of the estimator. However,

o the entire matrix P, is still infeasible to compute for large-dimensional problems,
so that the variance of particular linear functions of f cannot be computed withcut
significant additional computations;

e the efficiency of the MRF implementation diminishes when a significant number
of nonlocal measurements are incorporated in the estimate, since the factorization
of the matrix (Pf_ 1+ HTR~'H) will no longer be sparse.

The need to incorporate measurements of such nonlocal functions, or to estimate and
characterize the uncertainty of such nonlocal functions, will be demonstrated in the
application chapters. The multiscale framework described in Section 2.2 will be the
tool used in this thesis to overcome these problems.

LLSE Estimation and Gaussian Random Variables

For Gaussian random variables, which are characterized completely by their mean and
covariance, the LLSE estimator is optimal in a Bayes’ least-squares sense. In this thesis
we will use the notation

f ~ N(my, Pr)

to denote that a random vector f is a Gaussian (normal) random variable with mean
my and covariance Py, while f ~ (my, Py) will simply denote that f has the same mean
and covariance but is not necessarily Gaussian.

If the measurement vector y and the unknown vector f are jointly Gaussian, then
the LLSE estimate of f from y is equal to the Bayes' least-squares estimate of f.
Therefore, we have that fpise(y) = fuise(y) and P,), is independent of the value of y.
Furthermore, the conditional density py,(F |Y) is Gaussian, with mean f and covari-
ance P,, so that the LLSE estimator covariance completely summarizes the uncertainty
in f after conditioning on y.
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Due to the equality of the BLSE estimator with the LLSE in the jointly Gaussian
case, it is tempting to approximate the sub-optimality of the LLSE estimator using the
deviation of f and y from jointly Gaussian random variables. However, because there
exist non-Gaussian estimators tor which the BLSE and LLSE estimators coincide [95],
this reasoning can lead to faulty conclusions. An example of non-Gaussian y is given
in Section 2.1.2.

Singular Estimation

For many problems, the measurements are highly correlated and have covariances which
are extremely ill-conditioned or even singular. In this case, implementing the LLSE
estimator in Eq. (2.9) requires some care, since numerical round-off errors in the matrix
inversion can lead to large errors in the estimator. A solution is to replace y with a
linear function » = Ly that has a well-conditioned covariance, where u retains most of
the information in y used to estimate f.

The condition number of a matrix is given by computing its singular value decom-
position (SVD) [43]. Because covariance matrices are symmetric, their singular value
decompositions have the form

P,=USUT,

where U is orthogonal and S is diagonal and positive semidefinite. The diagonal el-
ements of S are the singular values, which are in descending order, i.e., S(k,k) >
S(k+1,k+1). For symmetric matrices, the singular value decomposition is equivalent
to the eigenvalue decomposition, i.e., S contains the eigenvalues of P,. However, the
SVD is often preferred for numerical reasons, e.g., the diagonal elements of S returned
by a SVD are always non-negative when P, is positive semidefinite, whereas the values
returned by an eigenvalue decomposition may be slightly negative.

For the covariance matrix of y, the singular values correspond to the variances of
particular linear combinations of y. Namely,

var[U(:, k)Ty] = S(k,k).

The precision of finite precision arithmetic is limited by the ratio of S(M, M) to S(1,1),
so that values of S(k, k) which fall below a certain threshold should be treated as zero.
These linear combinations of y can be discarded in forming u. A standard threshold is
given by [48]

o2, =exS(1,1)*x M,

min
where € is the numerical precision of the computer, S(1,1) is the largest singular value,
and M is the dimension of y. If the matrix S has m singular values greater than or
equal to o2, , then setting L = U(1: m, 97T yields
P,=LUSUTLT,
=%,



36 CHAPTER 2. BACKGROUND: ESTIMATION THEORY AND MULTISCALE PROCESSES

where T = diag(S(1,1), 5(2,2),... ,S(m,m)). The estimation problem is now one of
estimating f from an observation vector u with dimension m. This estimator follows
as

fy) =ms+ Pp, LT(LP,LT) (u - Lm,), (2.14a)
P. = P; - Py, LT(LP,LT)'LP},. (2.14b)

This modified estimator is used in implementing many of the algorithms described
in this thesis. Note that the matrix inversions in Eq. (2.14) will not encounter any
numerical conditioning problems. The estimator in Eq. (2.14a) will be approximately
equal to the exact (using infinite precision arithmetic) LLSE estimator as long as the
linear functions of y which are discarded do not contain significant information® about

f.

B 2.1.2 Nonlinear Measurements

Optimal estimates, including LLSE estimates, are more difficult to compute when the
relationship between f and y is nonlinear, i.e., when the observation function H(-)
is nonlinear. In this section, we describe how to compute an approximation to the
LLSE estimator, and how this approximation is equivalent to a single iteration of the
Gauss-Newton implementation of the maximum a posteriori (MAF) estimate when f is
Gaussian. The need to consider nonlinear measurements will be evident in Chapter 3.

Consider measurements generated by Eq. (2.1) when H(-) is nonlinear. In order to
compute the LLSE estimate of f from y, the covariances Py and Py, must be computed.
However, these matrices are in general very difficult to compute when H is nonlinear.
One possible solution is to linearize H(f) about some vector fg, and then apply the
LLSE estimator to the linearized problem to obtain an approximation of the true LLSE
estimate. A Taylor series expansion of H(f) about fp yields

H(f) = H(fo) + VH(fo) (f - fo) + O(lf - fol?), (2.15)

where VH(fo) is the Jacobian of H(f) evaluated at fo. Substituting Eq. (2.15) into
Eq. (2.1), the measurement equation becomes

y— H(fo) + VH(fo) fo = VH(fo) f + v+ O(f = fol*) - (2.16)
Y(fo) v

The problem now is to estimate f from the measurement vector Y(fp). Assuming
v~ (0,R) and v L f, the covariances Py and Pyy can be approximated as

Ppy =~ P VH(fo)T and Py ~VH(fo) PVH(fo)T + R (2.17)

“The elements of y which contain significant information about f are not necessarily those with large
variances. The real problem is to determine the subspace of y which most significantly effects the LLSE
estimate of f. The complementary subspace can be discarded when forming the projection Ly. In other
words, both Py, and Py need to be considered simultaneously when P, is numerically ill-conditioned.
Such a complete solution to the singular estimation problem is beyond the scope of this discussion.
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by ignoring the higher-order terms of (f — fo). (The effect of these higher-order terms
can be approximated by increasing the measurement error covariance to account for the
linearization error in V.)

Using the linearized measurement equation and the approximate cross-covariances,
an approximation to the LLSE estimate can then be derived using either Eq. (2.11) or
Eq. (2.12). For instance, Eq. (2.12a) yields

f=ms+ (P7' + VH(fo)T R™ VH(fo)) "VH(fo)T R™ (Y(fo) - VH(fo) my).
(2.18)

However, remember that the estimator covariances given by Egs. (2.11b) and (2.12b)
are only appreximations to the true covariance of the estimate, since they assume that
Py, Psy, and my are computed exactly.

Now consider the case when f and v are jointly Gaussian. We already noted that
for f and y jointly Gaussian, the LLSE estimator is equal to the BLSE estimator. Also,
because the conditional probability density for pj,(F|Y) is Gaussian, the BLSE and
LLSE estimates are also equal to the MAP estimate, which is the mode (or location
of maximum value) of the conditional density. However, when H( ) is nonlinear, a
Gaussian distribution for f and v does not guarantee that y is Gaussian, or that the
distribution of f conditioned on y is Gaussian. The conditional distribution of f is
given by

priu(Fly) = ¢ exp(~ 5 J(F)) (2.19)
J(f) = (y - HN) R (y = H))+(f —mg)TP7N(f —my)

where c is a constant independent of f. Note that this density is generally not Gaussian
when H(-) is nonlinear.
The maximization of Eq. (2.19) is equivalent to the following minimization

fumap(y) = arg mfin J(f)

There are many ways to minimize J(f); one method is to solve for the extremal points
of J(f), which are given by those f for which VJ(f) = 0. Equivalently, these f satisfy

Pyl (f —my) = VH(f)T R™ (y - H(f)). (2.20)

A solution to Eq. (2.20) can be found using an iterative algorithm which successively
linearizes the function H(f) about the present value of the MAP estimate. This algo-
rithm is known as the Gauss-Newton iteration [69]). Assuming that fj is the present
value of the MAP estimate, the linearization gives

P7A(f - myg) = VH(f)T RNy - H(j) + VH(f) fu~VH(f) £).
Y(fr)
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Setting f to fk+1 and rearranging gives

fern=my +
(P! + VH(fo)" R VH(fu) ' VH(fo)T R (V(fi) - VH(fi)my) . (2.21)

The value to which this sequence converges is taken as the MAP estimator. Note
that Eq. (2.21) reduces to the LLSE estimator when H is linear. Also, the linearized
approximation to the LLSE estimator can be seen to be equivalent to a single iteration
of the Gauss-Newton minimization. In the remaining section we return our focus to
LLSE estimators based on linear measurement equations. We will return to nonlinear
measurements in Chapter 3.

W 2.2 Muitiscale Stochastic Models and Estimation

This section is broken into two parts. First, the class of tree-indexed multiscale processes
is defined using an autoregression in scale. Second, an estimator based on the Markov
property of multiscale trees is summarized.

H 2.2.1 Multiscale Models on Trees

The class of multiscale random processes introduced in [17, 19, 20] is indexed by the
nodes of trees organized into scales. The coarsest scale is indexed by the root node,
while the finest scale is indexed by the set of leaf nodes. The root node and leaf nodes
are illustrated for a binary tree in Figure 2.1a. The multiscale process defined on a tree
consists of a set of random vectors z(s), one for each node s on the tree. The scale of
node s, which we denote by m(s), is the distance between node s and the root node of
the tree. To describe the relationship between the process at neighboring scales, first
define 7 to be the upward (in scale) shift operator, so that sy denotes the parent of
any node s. The relationship between s and s7 is illustrated in Figure 2.1b. The class
of multiscale processes considered in this paper satisfies the following autoregression in
scale

z(s) = A, z(s7) + w(s), (2.22a)
w(s) ~(0,Qs), (2.22b)

where z(s) is the process value at node s, z(s7) is the process value at node s%, and
w(s) is the process noise. Equation (2.22) defines an autoregression from coarse to fine
scale, where the term A,z(s7) can be viewed as an interpolation from the coarser scale
and w(s) is the finer-scale detail. The autoregression is initialized at the root node
s =0 by
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Figure 2.1. (a) A binary tree used to index a random process at multiple resolutions. (b) The local
labeling of the ¢ + 1 nodes connected to node s.

Since z(0) and w(s) are zero-mean, every process value z(s) will be a zero-mean® random
vector.

The process noise w(s) is assumed to be a white-noise process uncorrelated across
scale and space and also uncorrelated with the root node state, i.e., E[w(s) z(0)T] = 0.
The whiteness of the process noise implies that the second-order moments of a multiscale
tree model are characterized completely by Py—the root node covariance—and the
autoregression parameters A, and Q, for all nodes s # 0. (A, and Q, are not defined for
s = 0.) Remember, for optimal linear estimators, that only the first-order and second-
order moments of a random variable are required. More importantly, the whiteness of
the process noise leads to a Markov property similar to the Markov property for 1D
autoregressive processes driven by white noise. Specifically, note that any node s, with
g, defined to be the number of children of node s, partitions the tree into g, + 1 subsets
of nodes (see Figure 2.1b): S,a,, ..., Ssa,,, and S¢, where®

S, 2 set of nodes descendent from and including node s
S, 4 complement of S,
sa; 2 child of node s, it=1,...,qs.

We will also find it useful to write S,q,, ., 4 S¢. The Markov property of multiscale
tree processes is that, conditioned on the state z(s), the g, + 1 sets of states partitioned

5The zero-mean assumption is made for simplicity and is easily relaxed by adding a deterministic
term to Eq. (2.22a) or Eq. (2.23).

SThe only exceptions are the finest resolution leaf nodes which have no children and the coarsest
resolution root node which has no parent.
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by node s are conditionally uncorrelated. More formally,

E[z(r) 2(t)7 | 2(s)] = E[2(r)| 2(s)] E[2(t)| 2(s)] T,

for all r € Syq;, t € Ssa;, ¢ # J, and (4,5) € [1,¢5 + 1] x (1,4, + 1]. Because this
Markov property is a function only of the second-order moments of the process, it is
often called a wide-sense property. The Markov property is strict-sense if the process is
Gaussian [25], in which case the g, + 1 sets of states partitioned by s are conditionally
independent. A proof of the Markov property is provided in Appendix A.

Because of the Markov property of multiscale trees, the process value z(s) is will
be referred to as the state at node s. This terminology is an extension of that for 1D
Markov processes. For ¢ = 1, the Markov property reduces to the standard notion
of Markovianity for discrete-time Markov processes. The state for these 1D processes
contains all the information about past values of the process such that the past and
present are conditionally uncorrelated.

As noted, the second-order statistics can be determined directly from the root node
covariance and the model AR parameters A, and Q,. The state covariances satisfy a
Lyapunov equation which evolves in scale,

P,y = APy AT + Q, . (2.24)
The cross-covariance P,(y) () is given by first defining the state transition matrix

I, s=t,
P(s,t) =4 AsB(s7,t), m(s) >mt), (2.25)
O(s, AT, m(t) > m(s),
in direct analogy to the state transition matrix used for standard time-series models.
Using the whiteness of the process noise, we obtain

Pz(,)z(t) = ®(s,8 A t)Pz(,M)‘b(s Att), (2.26)

where sAt is defined to be the common ancestor of s and t for which m(s At) is largest.
(Remember that m(s) increases as the scale becomes finer.)

B 2.2.2 The Multiscale Estimator and Error Model

The Markov property of the multiscale processes leads to an efficient algorithm for
computing the LLSE estimate of z(-) at every node on the tree. Each measurement
incorporated by the estimator is a noise-corrupted observation of z(-) at an individual
node of the tree, i.e.,

y(s) = Csz(s) +v(s),  v(s) ~(0,R,) (2.27)

where E[v(s)v(t)T] = 0 for s # t and the measurement noise is uncorrelated with z(-)
at all nodes on the tree. Because the fine-scale nodes of the multiscale process will
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generally contain only local, fine scale information about the phenomenon inodeled on
the multiscale tree, fine-scale measurements of the phenomenon of interest will generally
be modeled as observations of fine-scale nodes. Likewise, measurements at coarse-scale
nodes will generally be equivalent to measurements of coarse-resolution or nonlocal
functions of the finest-scale process.

The multiscale estimator [19], which is detailed in Appendix B, is a generalization
of the Kalman filter and Rauch-Tung-Striebel smoother [82] for dynamic systems in
time, i.e., processes given by Eq. (2.22) for a tree with ¢ = 1. The first sweep of the
estimator is a recursion from fine to coarse scale, which is then followed by a recursion
from coarse to fine scale. The multiscale estimator returns (-), the LLSE estimate of
the state at each node on the tree. As a by-product, the multiresolution estimator also
produces the estimation error covariance P,(,) at every node, where the estimation error

is defined to be e(s) a 2(s) — 2(s).

While there are numerous variations on the estimator equations provided in Ap-
pendix B, the number of computations for any estimator is basically a cubic function
of the dimension of the state at each node. For example, if a tree has N nodes and the
state dimension is constant and equal to d for each node, then the estimator requires
O(Nd?) computations to compute 2(-) and P,y at each node’. For most processes of
interest, the state dimension at the coarser scale nodes is aot independent of the num-
ber of finest-scale nodes, and thus a crucial question for the efficiency of the multiscale
implementation is how rapidly the state dimensions of the coarser scale nodes grow with
N. For example, if d = N2/3, then the number of computations grews cubicly with N.
Another important question is for which stochastic processes and measurement equa-
tions do the state dimensions grow sufficiently slowly such that the multiscale estimator
can be employed to solve very large problems.

While the multiscale estimator described in Appendix B computes the error co-
variance P,(,) for the estimate at each node, the “off-diagonal” terms of the full error
covariance matrix—those terms Py(4)¢(¢) for t # s—are not computed. These terms can
be computed individually using the error model for e(s). As first derived in [61] and
summarized in Appendix B, the errors of the multiscale estimator satisfy a multiscale
autoregression in the form of Eq. (2.22), and the parameters of this autoregression fol-
low directly from the estimator equations. This model can be used in conjunction with
Eq. (2.26) to compute the cross-covariance between errors at different nodes.

The multiscale error model can also be used to compute sample paths of the multi-
scale process conditioned on the measurements. After estimation, the multiscale process
can be decomposed as

2(s) = 3(s) + e(s). (2.28)

The error e(s) represents the uncertainty in the LLSE estimate Z(s), and it can be
gererated independently of Z(s) thanks to the orthogonality of the LLSE estimation

"Note that a tree with N; nodes nodes at the finest scale has only O(Ny) nodes, and thus also
requires only O(N;d®) computations to be estimated.
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error. As demonstrated in Appendix B, the multiscale error model can be used to
efficiently generate sample paths of e(s) from a Gaussian distribution with the same
second-order moments (covariance) as the error process. In the case when z(s) and
y(s) are jointly Gaussian, e(s) is also Gaussian, and the higher-order moments also
are correctly represented. For each error process generated, a sample path of z(s) is
also generated. These samples are called conditional simulations, since the distribution
from which these samples are drawn is equal to the probability distribution of z(-)
conditioned on y(-) in the jointly Gaussian case. In Chapter 6, we show that the ability
to quickly generate many sample paths is a useful property of the multiscale framework.

B 2.3 Multiscale Realization Theory

If the multiscale framework is to be used as an alternative framework for performing
LLSE estimation and related statistical analysis, then one must be able to build or re-
alize multiscale models which have a particular probabilistic structure. The realization
problem is to select the parameters of the autoregression, Eq. (2.22), and the parameters
of the measurement equation, Eq. (2.27), such that the multiscale process z(-) and the
measurements y(s) have a desired joint probability distribution. (For LLSE estimators,
we are only concerned about second-order moments, i.e., cross-covariances.) A number
of multiscale models have been developed and successfully applied to applications in
remote sensing [34] and computer vision [60]. For these models the focus is on the finest
scale of the multiscale process, since only the finest-scale process is estimated and all
the measurements are point samples of the finest-scale process. Two of these models
are summarized in the following subsections. Also, the general realization algorithm
described in [49] for realizing a multiscale process with an arbitrary finest-scale covari-
ance structure is described. This subsection is also used to motivate the more general
realization problem in which both measurements are provided at multiple resolutions
and estimates are required at multiple resolutions. Extending the current methodology
to handle the general realization problem is the subject of Chapter 4.

B 2.3.1 Internal Multiscale Models

An important class of multiscale models are those for which every variable z2(:) is a
linear function of the finest-scale process, where the finest-scale process is given by
those variables z(t) for which ¢ is a leaf node. Namely, if f ~ (0, Py) is a random vector
containing all the finest-scale variables, then

2(s) = Vif (2.29)

for every node s. These models are called internal models [49], and each linear function
V, f will be referred to as an internal variable and each matrix V, as an internal matriz.
For example, consider the case in which f contains samples of a continuous-index ran-
dom process or field. These samples are generally the finest-scale at which the process is
to be estimated or analyzed, so that the elements of f can be mapped to the finest-scale
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nodes of the tree process. If the tree model is internal, then every variable will be a
linear function of f.

Consider the set of multiscale tree models which have a desired finest-scale covari-
ance Py. The element of this set which leads to the most efficient estimation algorithm
may not be an internal model. In other words, there may exist an external (not in-
ternal) multiscale tree model for which the finest-scale process has covariance Py and
the state dimensions are less than or equal to those of any internal model which has
the same finest scale covariance [49]. However, internal models are useful for a number
of reasons. For one, the difference in state dimension between the optimal multiscale
model (measured in terms of estimator computations) and the optimal internal model
will likely be negligible. Second, internal models are simple to analyze. For instance, the
parameters Py, A,, and @; of an internal multiscale model can be expressed completely
in terms of the internal matrices V; and the covariance of f. Specifically, substituting
Eq. (2.29) evaluated at s = 0 into Py = E[2(0) 2(0)T] yields

Py =VoPiVpT . (2.30)

The parameters A, and Q, can then be computed by noting that Eq. (2.22a) is just the
optimal prediction of z(s) based on z(s¥), plus the associated prediction error, i.e.,

z(s) = E[z(s)] z(s7)] + w(s). (2.31)

Using standard equations from LLSE estimation, the model parameters follow as

As = Pyo)(s7) Py » (2.32a)
Qs = Iz(s) — Pz(s)z(sﬁ) Pz(:;) Pz(g?)z(g) . (232b)

Finally, the covariances in Eq. (2.32) follow from Eq. (2.29) as

P, =V,PV,T, (2.33a)
Po(a)z(s7) = Pulimye(sy = VoPrVer - (2.33b)

The construction of an internal model generally consists of three steps: (i) mapping
the components of f to leaf nodes of the tree, which also determines V, for each of the
finest-scale nodes; (ii) specifying the internal matrices V, at the coarser-scale nodes; and
(iii) computing the model parameters using Egs. (2.30) and (2.32). Step (i) is generally
straightforward, although the mapping can be affected by the nonlocal measurements
to be represented (and the nonlocal functions of f to be estimated) at coarser-scale
nodes. Also, as we have seen, step (iii) is generally straightforward once the covariances
in Eq. (2.33) have been computed. Consequently, the core of constructing internal
realizations is determining the internal matrices V; and the resulting covariances in
Eq. (2.33). Remember that the internal matrices cannot be chosen arbitrarily, since
the resulting internal variables z(s) must satisfy the Markov property of multiscale
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trees. Also, the matrices V; should have minimal row dimension, since the dimension
of the resulting variables z(-) determines the efficiency of the multiscale estimator and
likelihood calculator.

As discussed in [49)], internal multiscale realizations can, in principle, be constructed
for a finest-scale random process f with any desired covariance P;. However, for an
arbitrary Py the ranks of the resulting internal matrices, which equal the dimensions of
the corresponding state vectors z(s), may be quite large and thus negate the computa-
tional advantage of the tree model. Fortunately, as developed in [35, 49, 62], there are
large classes of processes for which either exact or adequately approximate multiscale
realizations can be constructed that have sufficiently low dimension to make the mul-
tiscale formalism quite attractive. In the next subsection, such models for wide-sense
Markov processes and MRF's [62] are described and will later be used to illustrate our
methodology. Other examples of internal models are provided in Chapters 4 and 7. An
external model is provided in Section 2.3.3.

B 2.3.2 1D and 2D Wide-Sense Markov Processes

Because Markov processes and Markov random fields (Markov processes in 2D) are
used for illustrative purposes throughout this thesis, this subsection describes them in
detail. A discrete-time process f[k] is a bilateral Markov process [25] if, conditioned on
the values of f[k] at the boundaries of any interval I = [k;, k2], k2 > ki, the process
inside the interval is uncorrelated with f[k] outside the interval. The width of these
boundaries depends on the order, n, of the process. To be more precise, define the
following:

fo £ {FK|k € [ky —n,ky — 1] U [kg + 1, kz + 1]},
k1 2 flK) = E[fIk]1 o],
E[f|v] £ the LLSE estimate of f from y.

The vector f, contains f[k] at the boundaries of I for an n-th order process, while f]| (%]
is the uncertainty in f[k] after conditioning® on the boundary values. Then f(k] is said
to be n-th order bilateral Markov if

E'[f[l]f[m]]=0 forallleJTand m ¢ I.

Similar to the boundary values, define f, to contain n consecutive samples of f[k], i.e.,
fo={flk), flk+1],..., f[k +n —1]}. An n-th order unilateral Markov process is one
for which

E[fllfim)] =0 foralll<k<m,

81n this section, “conditioning f on y" refers to the effect of the reduction in uncertainty in f given
by LLSE estimation; the LLSE estimation error process f[k] has less variance than the prior variance
for f[k].
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Figure 2.2. Steps one (a) and two (b) of the midpoint displacement algorithms for synthesizing
Brownian motion. The dashed line provides the interpolation (LLSE estimate) of the process from the
present boundary values, the solid line is vhe displacement of the midpoint(s), and the dotted line is
the new interpolation.

where f[l] = f [l]—E‘[ fl1]] fo), i.e., conditioned on the n “present” values of f[k], the past
and future are uncorrelated. While not every bilateral Markov process is a unilateral
Markov process, every unilateral process is a bilateral [25], so that any method for
the multiscale modeling of bilateral Markov processes applies equally well to unilateral
Markov processes.

The multiscale models described in [62] are based on the midpoint displacement
algorithm for synthesizing Brownian motion [22]. The basic idea behind the midpoint
displacement algorithm is that, given the values of a Markov process at the boundaries
of any interval, the midpoint value of this interval can be synthesized independently of
any values outside the interval. As an example, consider a first-order Markov process
on the interval [0, N]. Given f[0] and f[N], then the midpoint value f[ko), where the
“midpoint” ko can in fact be anywhere in the interval [1, N — 1], can be written as

flko] = E[ko| £5] + flko], (2.34a)
= Pjiko).sy P fo + flko] (2.34b)

where f, = [f[0] f[N ]]T The second equality in Eq. (2.34) follows from standard LLSE

formulas. The covariance matrices in Eq. (2.34b), as well as the covariance of f| [ko), are
given by the statistics of the Markov process. Equation (2.34) can be interpreted as
an interpolation from the boundary values plus a displacement f|[ko|, as illustrated in
Figure 2.2a for a sample path of Brownian Motion on the interval {0, 32].

Once f[ko] is determined, we then have the boundary values of the two intervals
I, = [0, ko) and I = [ko, N]. The values of the process at the midpoints of these two
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intervals can again be generated by an interpolation and a displacement, i.e.,

flk1) = E[f[k1] | £[0), flkol] + Flka], (2.35a)
flka) = E[f[k2] | flkol, F[N]] + flka], (2.35b)

for any “midpoints” k; € [1, ko — 1] and k3 € [ko+ 1, N —1]. More importantly, the two
displacements f[k;] and f[ko] are uncorrelated due to Markovianity, and thus can be
generated independently when the process is Gaussian. An example of the interpolation
and displacement associated with these two samples is illustrated in Figure 2.2b.

After the first two steps of the midpoint displacement synthesis, f[k] has been com-
puted at the endpoints of four intervals. The synthesis process continues recursively by
generating the midpoint values of the four intervals, each of which can be generated in-
dependently. In what follows, we describe how this recursive process can be represented
by a multiscale autoregression. To simplify notation, assume that N = 2M. Choos‘ng
ko = N/2 as the first midpoint, the state at the root node is given by

/(0]
2(0) = | f[N/2]
f[N]

Modeling the process on a binary tree, the process values at the two descendents of the
root node can also be chosen to contain three samples of f[k]. Namely, choose

0] f[N/2]
2(0a;) = | fIN/4] and z(0az) = | fI3N/4]
fIN/2) f[N]

The process noise generated when transitioning from scale m = 0 to scale 1, w(0a;)
and w(0az), will contain f [N/4] and f [3N/4] respectively. rrom Markovianity, these
two vectors are uncorrelated with each other, and from the orthogonality of the LLSE
they are uncorrelated with 2(0). This process can be continued recursively until the
variables at a given level of the tree represent the entire interval of interest, as illustrated
in Figure 2.3a for N = 8.

The multiscale models for 1D Markov processes are internal multiscale models,
since each state z(-) simply contains samples of f[k]. Therefore, the parameters for the
scale recursive autoregression follow from Eq. (2.32). However, note that the covariance
matrices in Eq. (2.33) can be computed without explicitly compu.ing Py, the covariance
of the entire Markov process which is to be represented at the finest scale of the tree.
The ability to compute the model parameters without explicitly forming Py is especially
important for modeling 2D random fields [62].

There is considerable flexibility in modeling 1D Markov processes with the multi-
scale autoregression. The trees do not have to be binary, and the state dimension can
vary from node to node, as illustrated in Figure 2.3c. (See [62] for further discussion.)
However, the general procedure for developing an internal multiscale model of a Markov



Sec. 2.3. Multiscale Realization Theory 47

0 4 8 0 4
Scale | t —+

Figure 2.3. Multiscale models for first-order Markov processes, where each ellipse represents the
samples of the Markov process which comprise the state z(s) at a single node s. For each model, the
state z(s) is confined to sample values of the Markov process within the interval /,. (a) A binary tree
with a state dimension of three, (b) a binary tree with state dimension four, and (c) a tree where the
nodes have varying state dimension and varying numbers of children.

process remains the same, i.e., forming states as samples of subintervals of the Markov
process and then deducing the model parameters from Egs. (2.30) and (2.32). This flex-
ibility also holds in 2D, where the midpoint displacement algorithm can be generalized
to develop internal multiscale models for Markov random fields (62]. A MRF is the 2D
generalization of a 1D bilateral process. Namely, a wide-sense MRF is a 2D random
process f[i,j] for which the values of f in any connected set Q are uncorrelated with
the values of f outside this set when conditicned on the values of f on the boundary
of Q. Analogous to the multiscale models for 1D Markov processes, the states of the
multiscale models for MRFs contain the values of f on the boundaries of subregions of
the entire domain on which f is defined. In other words, if {f[t,j]|(3,7) € s} is the
finest-scale MRF descendent from node s, then z(s) contains the values of f[z,j] on the
boundaries of subregions which cover ©,. The width of the boundaries is proportional
to the order® of the MRF.

The root node variable z(0) for a first-order or second-order MRF is shown in Fig-
ure 2.4a. The root node variable partitions the domain of interest into four conditionally
uncorrelated subregions, {Ri}i<i<4. The root node will thus have four children, each
corresponding to one of the four sub-regions. These subregions can be further parti-
tioned to determine the state variables at finer scales of the tree. Once all of the state

®The order of a Markov random field is defined in [14] using a hierarchy of neighborhoods.
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Figure 2.4. (a) The elements of the MRF process contained in the root node variable of the tree are
illustrated with black circles (), while the white circles (o) contain the rest of the process. (b) The
root node variable for an approximate MRF tree model.

variables have been determined, the model parameters again follow from Egs. (2.30)
and (2.32).

The major difference between the multiscale models for 1D Markov processes and
those for MRFs is that the state dimensions for MRFs grow with the size of the domain
of the finest-scale process. The dimension of a state in a multiscale model of 1D Markov
processes depends only on the order of the process and the number of children, g,,
descending from node s. For 2D MRFs, the dimension of the state z(s) at a node s
corresponding to some 2D region is proportional to the linear dimension of the boundary
of that region. For example, if the finest-scale process is an N-by-N MRF, then the
root node state illustrated in Figure 2.4a will have dimension 6N — 9. Because the
computational complexity of the multiscale estimator increases cubicly with each state
dimension, an exact multiscale representation of an MRF will require at least O(N?3)
computations to estimate. If the state dimension becomes prohibitively large, one
possibility is to use the multiscale framework to approximate the statistics of the MRF.
One such approximation is illustrated in Figure 2.4b, where only every other sample of
the state from the exact model is represented at the root node of the approximate model.
Such approximations are useful when the samples of the MRF are highly correlated over
small spatial scales, so that the MRF process is effectively bandlimited. However, this
and similar heuristic approximations are by no means optimal in terms of minimizing
the state dimension required to match a desired level of fidelity in the covariance of
the finest scale process [62, 70]. Generating such optimal approximations is in fact an
open problem, and was the motivation for the Canonical Correlations based algorithms
provided in [49].
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@ 2.3.3 Self-Similar and 1/f-like Processes

Stochastic processes with self-similar distributions have been shown to be useful models
for a wide range of physical phenomena [96]. Because these processes appear self-similar
when analyzed at different scales, they seem to be a natural starting point for building
useful classes of multiscale models. An important class of self-similar processes are
those with power spectral densitie; with power law bebavior, i.e., P(j2nf) ~ f~7.
These processes are called 1/f processes.

A multiscale model proposed in [18] with 1/f-like behavior is given by a tree with
autoregression parameters

A, =1, Q,=oc2277), (2.36)

where Py = Qg. The dimension of the tree variables is equal to one, while the number
of children per node and the number of scales can be chosen to suit the individual
application. The process noise variance decays geometrically with scale, which results
in a finest-scale process whose power spectrum can be shown to decay approximately as
1/f7. While this model has been successfully applied as a prior model for both optical
flow fields [60] and ocean-surface height interpolation [34], a few comments are in order.

e Like many 1/f processes, the finest-scale process is nonstationary, so that tradi-
tional notions of power spectral density do not apply.

e Realizations of the finest-scale process have visible discontinuities.
e The model is external, i.e., not internal.

The discontinuities can lead to troubling artifacts which do not represent the behavior of
the corresponding physical phenomenon. However, if the density of the measurements
at the finest scale is relatively large, the artifacts may not appear in the estimates.
Also, as shown in Chapter 6, there are other applications for which the discontinuous
behavior of the estimates is not necessarily an issue. While the model being external
is by no means a drawback, note that no multiscale model with scalar state variables
and nontrivial noise variances is internal; the reason is that no linear combination of
the finest-scale states will exactly recover a coarser-scale state on the tree. Therefore,
no internal multiscale model with scalar variables can be realized to have the same
covariance as that for the finest-scale process defined by Eq. (2.36).

To overcome the limitations of the scalar model, higher-order processes can be devel-
oped. A class of multiscale models based upon self-similar 1/f processes, in particular,
fractional Brownian motion, is the subject of Chapter 7.

@ 2.3.4 Canonical Correlations

The methods used to realize the multiscale models for Markov processes and fBm are
tailored to the particular characteristics of those processes and will not apply to more
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general distributions. For a more general problem, assume that one is given the covari-
ance of the vector f which is to be modeled at the finest scale of a multiscale process. In
other words, the variables at the finest scale of the tree must have covariance Ps. The
question whether or not it is possible to realize such a multiscale process is not the right
one, for the single scale process z(0) ~ (0, Ps) is a multiscale model with the correct
finest-scale covariance. (Also, the multiple-scale process consisting of z(s) = f at every
node and the proper elements of f at the leaf nodes is also such a multiscale process,
albeit with zero process noise.) However, the trivial model 2(0) ~ (0, P;) amounts to
a standard implementation of the normal equations, which is exactly what we were
trying to avoid with the multiscale framework. A more useful problem is to design an
optimal multiscale model, say the one which minimizes the sum of the cubes of the
state dimensions

c(d) =Y d(s)?, (2.37a)
€S
d(s) 2 dimension of 2(s), (2.37b)

which is a meaningful measure of the efficiency of the multiscale framework. In gen-
eral, for an exact multiscale representation of a process f with arbitrary covariance,
the dimension of z(0) will be proportional to the number of elements in the finest-scale
process. If the number of elements is large, then again the solution of this realization
problem does not allow one to circumvent the problems posed by a standard implemen-
tation of the normal equations.

‘This growth in the dimension of the coarser-scale variables with the number elements
at the finest scale also holds for fBm. However, we have already pointed out that useful,
low-dimensional approximations can be developed. For large problems, approximations
not only make sense but they are absolutely necessary if one is interested in quantifying
the uncertainty of the estimates. One general approximate realization problem is then
to minimize c(d) subject to || Py — P{|| < ¢, where Pf is the covariance of the finest-scale
process, ||-|| is a suitable norm quantifying the difference between two covariances, and
€ is the maximum error tolerance. An alternative realization problem is to minimize
|P; — P#|| subject to c(d) less than some specified value. The solution to either of
these problems has proved elusive. However, a very solid foundation was laid [49]. This
realization algorithm has the following properties:

o the first step is to design the tree graph and map f to the finest-scale nodes; this
step is done somewhat arbitrarily;

e for each node, a maximum state dimension ), is specified, i.e., d(s) < A, V s € Sp;

e the error in the covariance of the finest-scale process is minimized in a myopic,
local sense.

The algorithm makes use of Canonical Correlations {2]. In the following, we show how
Canonical Correlations is used, describe the nature of the myopic error minimization,
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and finally target specific areas for improvement. The following tools are used through-
out this thesis.

Because the variables of multiscale trees conditionally decorrelate subsets of random
vectors, a useful realization tool is the ability to find the minimal set of information
which decorrelates multiple random vectors. We first analyze the problem of decorre-
lating two random vectors. A fundamental question is what minimal set of information
is required to decorrelate two random vectors &, and £. We will assume, as in [49],
that this information must be a linear combination of (T = [¢] £7]. The first step is
to develop a measure of the correlation between two random vectors. The generalized
correlation coefficient used in [49] is

E[(s] (& - BléW) (9] 62 - Bla)) ]

: , 2.38
plenta) 2 s var(g{ &1)/?var(g] €)'/ (2.352)
= max _ gl Pygge- (2.38b)
9i Peyg1=1
97 Pe,92=1

Also define the conditional correlation as

n(n.€21y) £ p(61,6),
G4 - E[&y] -

To find the vector W¢ of minimal state dimension such that 5(£;,£, | W¢) = 0, Canon-
ical Correlations can be used. The Canonical Correlations decomposition is given by
the following theorem [49):

Theorem 1 There exist matrices Ty and Ty such that

T
[ )05 BT (5 2] e
0 T, Pee, P, 0 T, D" I,
where T; € IR™*™ and D € IR™*™2 has the form
[D o
D= [ ; 0] .

The matriz D a positive-definite diagonal matriz D= diag(dy,d2,... ,dm,,) with d; €
(0,1] and elements ordered in descending order, i.e., 1 >d; > dy > ... > dm;, > 0.

The proof of this theorem is rather straightforward [49, 50]. The following theorem,
called Proposition 6 in [49], allows one to determine the linear function of £ with di-
mension less than or equal to A that maximally decorrelates the two vectors £; and

£2.
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Theorem 2 Define A to be the mazimal number of elements used for decorrelation,
and define M, to be the set of matrices with A or fewer rows (and with a number of
columns given by the contert). Fori =1,2 and 0 < A < mya,

wnelfleu plen&IWe) = wl.-léiﬂu P& W)

= 5(51,62 | 7:(1 : min(A, my»), ))

_J dn, A<mp
01 /\Zml‘l

This theorem has a number of implications. First, note that instead of conditioning
upon linear functions of £, one can condition upon linear functions of either £, or &,
alone without adding to the dimension of the conditioning information. Second, the
linear combination of §; (§2) required for the decorrelation is given by the first m;2 rows
of Ty (T2) from Eq. (2.39). Third, the theorem provides a method for optimally decorre-
lating a pair of random vectors when the dimension constraint, ), is less than m,,, the
dimension required for complete decorrelation. Finally, since Canonical Correlations—
the computation of either T; or T, in Eq. {2.39)—is the method used for decorrelating
two random vectors, it is worthwhile to speak about the number of computations re-
quired to compute these matrices. As shown in [49], the computation of 7 in Eq. (2.39)
requires the SVD of the three matrices P, P,, and P ¢,. Thus computing T} or T
requires O(n®) computations if £ has n elements.

The multiscale realization algorithm given in [49] uses Canonical Correlations to
produce internal multiscale models that have a desired covariance at the finest scale.
When no constraints are made upon coarser-scale variables, the internal variables can
be chosen such that

z(s) = Wsfs, (2.40)

where f, is defined to be the components of f represented at the finest-scale nodes
descending from node s. In other words, the state at node s is a function only of its
descendents at the finest scale. Under this assumption the Markov property reduces to
the following: the g, + 1 vectors

fooi 2 fooi = E[foas |Wefs],  i=1,...,q+1, (2.41)

are mutually uncorrelated. The vector fso,,, is defined to be the vector of finest-scale
elements that do not descend from node s. For this reason we sometimes find it useful
to denote this vector as fjc 2 fsags1» Since fsc contains the finest-scale variables S,e.
Thus the realization problem boils down to solving for the linear combinations W, f,
that conditionally decorrelate the ¢+ 1 sets of finest-scale variables partitioned by node
s. The approach taken in [49] is to compute these matrices independently, which is why
the algorithm is called myopic.
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In order to derive W,, we must first define the correlation between multiple random
vectors &, &2, ... , & From [49] we have

Plér,- - &) 2 maxB(i &) (2.42)

This function is a natural extension of the correlation between two random vectors,
and a similar extension holds for the conditional correlation. To determine the linear
combination of £7 = [(],... ,£T) that conditionally decorrelates the g sub-vectors &,
consider the following theorem which is stated as Propesition 5 in [49):

Theorem 3 Fori=1,2 and for all matrices W;,

P(£1, &2 | Wi€) < (&1, €2) . (2.43)

In other words, conditioning on linear combinations of either £; or &2 cannot increase
the correlation between them. The state W, f; can thus be formed by first finding for
each i = 1,... ¢, the linear combination W, fso, Which decorrelates fsq; from fyq;c.
These linear combinations can be stacked columnwise into a single linear function of
fs. Using Eq. (2.43), this linear function can be shown to conditionally decorrelate the
gs + 1 vectors fso,. The model parameters then follow from Egs. (2.30) and (2.32),
making the proper substitution of W, f, for V,f.

While the algorithm of [49] provides a solid foundation for building multiscale re-
alizations to have arbitrary covariances for the finest-scale process, there are still some
significant obstacles to overcome.

e The myopic algorithm, which computes each matrix W, independently, requires g
Canonical Correlations factorizations of the finest-scale covariance for each node.
With N elements at the finest scale, this implies @(¢N*) computations to compute
the matrices W,. This computational complexity applies even to approximate
realizations.

e When the matrices W, are computed independently, there is no way to enforce
that approximations are done consistently, i.e., so that each variable z(s) has
discarded roughly the same set of information as its parent, z(s%).

e The repeated, sequential application of Canonical Correlation used to compute
each W, can lead to sub-optimal state dimensions, i.e., there may exist linear
combinations of f, with fewer elements but which also accomplish the desired
decorrelation.

e The sub-optimality of such myopic approximations is often manifested by the
design of an external model. (The parameters chosen by Egs. (2.30) and (2.32)
do not guarantee an internal model.)

e The approximations yielded by Canonical Correlations decompositions and the
generalized correlation function 5(-) often lead to discontinuous artifacts near the
boundaries of the vectors decorrelated.
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o The generalized correlation function is not sensitive to the variances of £; and &5,
so that elements of these vectors which are highly correlated but which have little
energy may be placed in the state variable of an approximate realization in favor
of more significant components.

e The algorithm is focused entirely upon the finest scale process. For example,
nonlocal measurements cannot be modeled at coarse-scale nodes.

Some of these items are addressed in this thesis. For example, the last item is the focus
of Chapter 4. There is also the question of how broad a class random phenomena can be
effectively modeled as a white-noise driven autoregression in scale. While this question
is not the explicit focus of this thesis, it is addressed indirectly in both the multiscale
modeling of Chapters 4-7 and the applications of Chapters 5-6



Chapter 3

Background and Preliminaries:
Groundwater Flow and Hydraulic
Conductivity Estimation

The development of accurate mathematical models describing the flow of groundwater
is an important problem due to the prevalence of contaminants in or near groundwater
supplies. Groundwater, which is stored in and travels through porous regions of the
earth’s subsurface, is a major source of fresh water. The potability of groundwater is
often threatened by industrial and organic contaminants like pesticides and hydrocar-
bons. The presence of these impurities necessitates accurate predictions of how and
when drinking supplies will be affected. A number of mathematical models, usually
in the form of partial differential equations (PDEs), have been developed to describe
the flow of groundwater and its place in the hydrogeologic cycle [6, 27, 38, 65]. The
parameters of these equations are spatially distributed functions that describe the effect
of the subsurface geology on the flow of groundwater. Because the earth’s subsurface
cannot be measured directly, except in select locations, knowledge of these parameters
is limited either in spatial resolution or in spatial coverage. A problem, then, is to com-
pute estimates of the parameters based on limited information and to characterize the
uncertainty in these estimates. Uncertainty measures are necessary if any reasonable
conclusions are to be drawn from the resulting groundwater models.

The goal of this chapter is to summarize the problem of estimating parameters of
groundwaier flow models and to motivate the application of the multiscale framework
in Chapters 5 and 6. We begin by summarizing some of the equations commonly used
to describe groundwater flow and transport. Hydraulic conductivity is an important
parameter of these equations, and can be estimated from a number of measurement
sources. We show how the Bayesian framework of Chapter 2 can be used to estimate
hydraulic conductivity from measurements of head and conductivity. The problem
with such estimators, however, is that standard parameterizations of the conductivity
function lead either to poor representations of the finer scale measurements or to a
prohibitively large number of parameters. We conclude with a discussion of the utility
of parameterizations with multiple resolutions.

55
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H 3.1 Equations of Groundwater Flow

Most equations of groundwater flow are based on conservation of mass and empirical
laws. One such law is Darcy’s Law [27], which relates the geology and changes in fluid
potential to the volumetric flow of water. Specifically, Darcy’s Law is

g(z) = —K(2)Vh(z), (3.1)

where ¢ is the specific discharge (m/s), K is the hydraulic conductivity (m/s), and h
is the hydraulic head (m). The specific discharge is the volumetric water flux per unit
area. Hydraulic head is a measure of the gravitational and pressure potential of the
groundwater. Darcy’s law essentially states that water flows downhill, hence the minus
sign in Eq. (3.1), at a rate proportional to the gradient of hydraulic head. The rate
of proportionality is defined as the hydraulic conductivity, which must be nonnegative.
Hydraulic conductivity typically ranges from 10~2 to 1078 m/s for sedimentary rocks,
but can range as low as 1079 to 1073 m/s for clays [27]. Because hydraulic conductivity
has such a large dynamic range, and because a limited number of studies have shown
K to be log-normally distributed [69], it is often more convenient to work with log-
conductivity in lieu of conductivity. In this case Darcy’s Law becomes

q(z) = —e/DVh(z), (3.2)

where f = In K is log-conductivity.
Combining Darcy’s Law with conservation of mass and assuming that the aquifer?
is in steady-state yields

-V - (/®Vh(2)) = Q(), (3.3)

where @ represents the water source rate per unit volume, and hence has units s~!.
For steady-state flow, the source function Q typically represents recharge from rainfall
or runoff. Note that steady-state does not imply no flow in the aquifer, but only means
that the hydraulic head function does not vary over time. Equation (3.3) can be modi-
fied to account for transient flow, which can be induced by pumping or injecting fluids
in wellbores. Pump tests are in fact an important tool for measuring local values of hy-
draulic conductivity, especially for petroleum engineering applications which naturally
yield such measurements [9, 29, 66, 75, 76, 77].

Note that Eq. (3.3) is exactly analogous to the equation for electrostatic potential,
where @ would be replaced by electric charges, K would be replaced by electric permit-
tivity, and h would be replaced by electrostatic potential. Equation (3.3) is also used
to model steady-state temperature distributions [11].

While Eq. (3.3) describes the flow of fluids in three dimensions, the same equa-
tion is used to describe fluid flow in fewer dimensions, such as one- or two-dimensional
flow. In this case, either the variables of Eq. (3.3) are assumed to be constant over

! An aquifer is a permeable and contiguous geologic unit which contains water in its pore space.
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one or two of the spatial dimensions, or the function f(r) is some aggregate measure
of log-conductivity given by averaging cver one of the spatial distinctions. For 2D flow
averaged vertically, the aggregate hydraulic conductivity function is called transmissiv-
ity [27]. In this thesis, i.e., in Chapters 5 and 6, only 1D and 2D flow are considered,
but we will still refer to f(z) as log-conductivity without explicitly defining whether it
is an average value or just constant over the other spatial dimensions.

The steady-state flow equation does not have a unique solution, i.e., a unique map-
ping from Q to h, unless boundary conditions are specified. Two commonly used
boundary conditions are Dirichlet and Neumann conditions. Define Q to be the domain
of interest and 952 to be its boundary. Dirichlet conditions are in the form

h(z) = ho(z) 2 € 9N (3.4)

where hy is a known function of the boundary. Given these boundary conditions, then
h(z) can be determined uniquely everywhere in Q [54]. Neumann conditions are in the
form

— (e!®)Vh(z)) - A(z) = gn(z) (3.5)

and can be specified in lieu of Dirichlet conditions on parts? of Q. The function 7(x)
is the unit normal vector to the boundary of  at z, and thus gy(z) is the net water flux
across the boundary at z. Dirichlet and Neumann conditions also serve a practical role
in groundwater modeling. When streams or lakes form the boundaries of aquifers, then
Dirichlet conditions can represent these boundaries. Furthermore, highly impermeable
(K = 0) geologic barriers can be modeled by Neumann conditions with g, = 0; these
boundaries are called no flux boundaries.

The forward problem in groundwater flow is the determination of h given Q, K,
and appropriate boundary conditions. Only under very special circumstances can h be
determined analytically, meaning that numerical methods must be employed. The most
common numerical methods, finite-element and finite-difference, replace Eq. (3.3) and
the boundary conditions by a linear system of equations

Au =0,

where u is a discrete representation of h, b is a discrete representation of Q and the right-
hand side of the boundary conditions, and A represents the differential operator --V-K'V
and the left-hand side of the boundary conditions. Because this differential operator is
self-adjoint and positive-definite, A will generally be symmetric and positive definite.
Also, because the differential operator is local, A will be sparse. Sparse, positive-
definite systems of equations can be solved efficiently, even when the dimension of u is
very large, using iterative methods like conjugate gradients [5] or nested dissection [40].

21f ho(z) is a function which satisfies Eqs. (3.3) and (3.5), then ho(z) + ¢ for any constant ¢ will also
satisfy these equations.



58 CHAPTER 3. GROUNDWATER FLOW AND HYDRAULIC CONDUCTIVITY ESTIMATION

[ —
h 1 v v(z) - dx
Q— -V (e/Vh)=Q v=—— (e/Vh) / T
(vh) A na IV A
BCs —

T

Ne

Figure 3.1. The determination of travei time from hydraulic conductivicy.

The efficiency of the conjugate gradient method is limited by the condition number of
A, which is a function of the variability in K [80].

For most groundwater problems, the forward solution alone is not of particular
interest. One is usually more interested in variables like the velocity field or the time
for a particle to travel a particular distance in the aquifer, both of which can be derived
from the forward solution. The velocity of water in steady-state is given by [27]

v(z) = —

= (@) q(zx), (3.6)

where n. is the effective porosity. Groundwater typically travels on the order of a foot
per year; a typical value of effective porosity for sedimentary rocks is 0.05 [27], and
porosity typically has much less spatial variation than does conductivity. Assuming
the porosity function is well known or can be effectively estimated, then v(z) follows
directly from the forward solution. Ignoring diffusion, the velocity field can then be
used to determine how long is required for a contaminant to travel from one point to
another in the aquifer. If C is the path from point zp to point z; determined by v(x),
then the time to travel between these two points is given by

_ [ v(z)-dz
bep = /c . 3.7)

The process of calculating t., from @, K, and the boundary conditions is illustrated in
Figure 3.1. A procedure for estimating travel time in an aquifer is provided in Chapter 6.
B 3.2 Hydraulic Conductivity Estimation

The solution of the groundwater flow equation, i.e., the forward problem, requires a
complete specification of the hydraulic conductivity function K(z), the source input
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Q(z), and appropriate boundary conditions. The problem is that these functions can
never be known perfectly, since the earth’s subsurface can be observed directly only at
select locations. For the applications considered in this thesis, we will assume that the
source function and boundary conditions are known perfectly, so that only the hydraulic
conductivity function in unknown. This assumption is common (1, 23, 38, 86, 68, 97,
see Table 1] and can be justified on two accounts. One, and most important, all of the
estimators considered in this thesis can be readily extended to the case in which Q and
the boundary conditions are not known perfectly and must be estimated in conjunction
with hydraulic conductivity. Second, the source function and boundary conditions can
sometimes be estimated separately from hydraulic conductivity within a reasonable
degree of accuracy. For example, the source function @ can be determined from soil
moisture content, rain gauges, and satellite measurements [46, 81]. Also, the boundary
conditions can sometimes be inferred from geologic boundaries or known water tables
like streams and lakes [69)].

The estimation of hydraulic conductivity has been a subject of intense interest for
the last thirty years. The petroleum community proposed automated methods for hy-
draulic conductivity estimation® in the 1960’s [52, 53]). For petroleum reservoirs® in
which fluids had been extracted over an extended period of time, petroleum engineers
sought to infer the hydraulic conductivity function based upon changes in pressure
(head) over time. The process of choosing a conductivity function which reproduces
the pressure histories recorded at wells is sometimes referred to as history matching,
and much work has been devoted to this problem (9, 13, 16, 29, 66, 75, 76, 77, 78, 88].
As numerical models for simulations of petroleum reservoirs have become more sophis-
ticated [3], so has the problem of estimating their parameters become more difficult.
Reservoir modelers now must rely upon a variety of measurement sources, including
seismograms [24], electro-magnetic tomography [92], and nuclear magnetic resonance.
While groundwater hydrology has benefited greatly from this work, the estimation of
hydraulic conductivity in the context of groundwater flow is different for two major rea-
sons. First, forcing (pumping) the aquifer is usually not allowed, so as to minimize the
displacement of contaminants. Second, the groundwater problem is on a much smaller
spatial (and monetary®) scale. Groundwater studies can involve aquifers with vertical
extents of only a few meters [98], while typical petroleum reservoirs extend to depths
of thousands of meters. Hydraulic conductivity estimation in the groundwater com-
munity also differs in its heavy use of statistical methods [10, 23, 68, 74, 98]. The use
of statistical methods has also been summarized in a number of recent review papers
[42, 69, 97]. The utility of statistical methods for estimating hydraulic conductivity is

3In the context of petroleum engineering, permeability is usually used in lieu of hydraulic conduc-
tivity. The two parameters are related by a straightforward change of dimensions.

4The porous geologic body in which hydrocarbons are stored is often referred to as a reservoir rather
than an aquifer, although the geologic propertics of the two bodies are usually identical.

5While the petroleum business is much larger than the business of environmental cleanup, the
Superfund project administered by the EPA presently adds one billion dollars annually to its endowment.
and has identified 35,000 potential hazardous waste sites. (Source: EPA)
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widely recognized, since computing an estimate of hydraulic conductivity is not an end
in itself (98], but a means for using the resulting flow model to draw mor¢ high-level in-
ferences. For instance, one might need to estimate the time it takes the contaminant to
travel from point zg to point x;. The uncertainty in such an estimate is directly related
to the uncertainty in the estimated hydraulic conductivity function. (See Chapter 6 for
further discussion of the travel time problem.)

Estimating hydraulic conductivity is difficult for two primary reasons -— the natural
variability of hydraulic conductivity and the difficulty in measuring it. Eydraulic con-
ductivity is known to vary by orders of magnitude over spatial scales froin centimeters
to kilometers [38]. The only way to directly measure hydraulic conductivity is to extract
a small piece of the earth, apply a head differential, and then measure the resulting flow.
Such core sampling is rarely done at more than a few well locations; instead, a small
amount of water is usually injected into the earth at select locations in a wellbore, after
which local conductivity values can be inferred from changes in head. To infer values of
the hydraulic conductivity function away from the wells, indirect measurements must
be used. One indirect measurement is the seismogram, which determines stratigraphic
(structural) layers of the geologic environment by measuring the reflection of acoustic
waves off geologic boundaries. Because seismograms have a coarse resolution that is
typically larger than the vertical extent of an aquifer, they are usually only used to
determine stratigraphic layering and the natural boundaries of an aquifer. Also, seis-
mograms are difficult to correlate with values of hydraulic conductivity [47]. The two
indirect measurement sources considered in this thesis are measurements of hydraulic
head and tracer tests. Hydraulic head measurements are also taken at wellbores, but
they are not sensitive to point values of conductivity [38]. Instead, they supply coarse-
resolution information about conductivity and are related to the conductivity function
by Eq. (3.3). Tracer tests measure the time a “marked” particle takes to travel from
one wellbore to another, and thus measure the fluid velocity between wellbores — see
Equation (3.7).

If the hydraulic conductivity function is to be estimated from direct (fine scale)
measurements of hydraulic conductivity, measurements of head, and tracer tests, then
a number of problems must be addressed.

o The measurements are sparse, and therefore do not fully constrain the conductiv-
ity function.

The measurements are at multiple resolutions.

The measurements are typically corrupted by measurement noise.

The head measurements are ill-conditioned.

The head samples and tracer tests are nonlinearly related to the conductivity
function by a PDE.
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The sparsity of the measurements means that we cannot hope to estimate the conduc-
tivity function at all spatial scales. Instead, additional information must be supplied,
often in the form of a prior distribution for f(x). Another way to constrain the esti-
mate, which is necessary if computational methods are to be employed, is to restrict
the estimate to lie in a finite-dimensional subspace span{¢;(z)}i<j<n [69, 97]. In this
case, the estimator satisfies

N
fz)=3"a;¢;(x). (3.8)
j=1

The choice of functions ¢; is an important problem. These functions must be chosen
such that the measurements can be accurately represented; for example, if a slug test
measures the average value of conductivity over some small region, one of the functions
#; could be chosen to be constant over this region and zero elsewhere. In this case,
however, the function space cannot be chosen to have constant resolution, otherwise IV
will be prehibitively large. A discussion of how to choose the functions ¢; based upon
the measurement resolutions and locations is supplied in Section 3.6. The measurement
noise can also be accounted for using a statistical estimator. Explicitly accounting for
measurement noise is especially important when the measurements are ill-conditioned.
The ill-posedness of estimating conductivity from head measurements, as well as how
to use Eq. (3.3) to relate samples of head to the conductivity function, are discussed in
the following section. Bayesian estimators are then applied to conductivity estimation
in Section 3.5. A motivation for using the multiresolution estimator is discussed in
Section 3.6.

M 3.3 Relating Head Measurements to Hydraulic Conductivity

Because travel times are not considered until Chapter 6, we focus here on the estima-
tion of hydraulic conductivity from direct measurements conductivity and head mea-
surements. Assuming the direct measurements — core samples and slug tests — are
functions of point values of conductivity, the direct measurements can be represented
as

il =fah+d], i=1...M (3.9)

where the noise vector v,-f represents not only measurement error but scale mismatches
between the support of the measurement source and that of a point [69]. The superscript
f is used to distinguish the variables of the conductivity measurements from those of

the head measurements. The head measurements are in the form
yi = h(zi)+vi, t=1,..., M. (3.10)

To understand how head measurements constrain the conductivity function, first
note that the estimation of hydraulic conductivity from head measurements alone is an
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ill-posed problem. Even if the head function is known everywhere on 2, the conductivity
function f(x) cannot be determined uniquely without specifying a value of f(z) on each
streamline of the flow field [67]). If a pumping well is present and the flow rate of the
well is known, then f(z) is implicitly specified along each streamline emanating from
the well (using Darcy’s law and the knowledge of h(x)). Even more importantly in our
context, point values of head are relatively insensitive to local variations in hydraulic
conductivity. To illustrate this insensitivity, consider the following two-dimensional flow
scenario:

e Q is the unit square, (x;,z;) € [0,1] x [0, 1];
e Q=0o0nQ;

¢ the boundary conditions are h = 1 for z; =0, h = 0 for x; = 1, and dh/dz, =0
for z9 =0 and z5 = 1.

For f = 0 on 2, the corresponding head function is plotted in Figure 3.2. For f =0
the specific discharge vector ¢(r) has magnitude one and points in the positive z;
direction. Now consider the log-conductivity function plotted in Figure 3.3a, which is a
sample path of a zero-mean random field. The corresponding head function is plotted
in Figure 3.3b. Note that, despite the large variability of f(z), the head function is
still rather smooth and exhibits much less variation. This smoothing is due to the
integration of e/() implied by Eq. (3.3) in order to compute A(zx). In the context of
estimating f(x) from measurements of h(z), this smoothing means that the effects of
measurement noise must be accounted for, otherwise small perturbations in the head
samples will be confused with large variations in conductivity.

We now develop a more rigorous description of the relationship between samples
of h(x) and the function f(z), so that measurements of hydraulic head can be used to
estimate the hydraulic conductivity function. In Section 2.1.2, we showed how both
the LLSE estimator and the MAP estimate can be implemented by linearizing Equa-
tion (2.1). Recall that the LLSE estimate in this case is based upon an approximate
measurement model. To express Eq. (3.10) in a form analogous to Eq. (2.1), recall
that the mapping from f(z) to h(x) is unique when the source function and boundary
conditions are known. Thus we can write

h=-7:h(f)7

where F}, is the forward operator mapping f to h. The pointwise evaluation of this
mapping can be written

h(.l',) =}-h(fv1‘i)a (311)

which stresses that the sample i(z;) is a function of conductivity over the entire domain
Q2. Using this mapping, the measurement equation becomes

yi = Fu(foi) + v, (3.12)
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x1

Figure 3.2. The head function for 2D flow when log-conductivity is constant and equal to zero.

which looks much more like Eq. (2.1). One difference is that f in Eq. (2.1) is a vector,
whereas f in Eq. (3.12) is a function. We now show how to compute the linearization
of this measurement equation.

Much like the Taylor Series expansion given in Eq. (2.15), a Taylor series expansion
exists for the functional operator in Eq. (3.11). For an expansion about the function
fo(z), the Taylor series has the form (73]

OFn(fo, i)
of

where Fp(fo, ;) is the head value at z; when the conductivity function is equal to fo,
OFn(fo,xi)/0f is the Fréchét derivative of Fp(f,r) evaluated at (f,z) = (fo,x:), and
“h.o.t.” denotes terms of higher order in (f — fo). Note that the Fréchét derivative is
a function on Q and that (-,-) denotes the inner product

Fu(f,xi) = Fr(fo,z:) + ( ,f = fo) + ho.t. (3.13)

(1) = [ W) de. (3.14)
Substituting Eq. (3.13) into Eq. (3.12) yields the linearized measurement equation
OFn(fo, xi OFn(fo, zi
= Falozi) + (202, gy - BBOE) gy imor a19)

.V.“(}o )
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Figure 3.3. For two-dimensional flow, (a) a log-conductivity function with mean zero and (b) the

corresponding head function.
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where the higher-order terms can be ignored if the linearization is sufficiently accurate.
Note the similarity between this measurement equation and Eq. (2.16). Note also that
this linearization is completely general, and can be extended to measurements of other
indirect observations of f, like travel times. The only constraint is that one must be
able to compute the Fréchét derivative.

Ignoring questions of existence, methods for calculating the Fréchét derivative gen-
erally fall into two categories — perturbation and adjoint methods [26]. Perturba-
tion methods assume that the function f has already been projected onto the finite-
dimecsional subspace span{¢;(z)}<j<n, ie., f = 2_4‘,:1 a;j¢j. In this case, a finite-
difference approximation can be used to calculate the sensitivity of h(z;) to each variable
«;. This finite-difference is given by

O0Fh(fo, ;) ~ Fr(fo + Aaj 95, xi) — Frlfo,xi)
3&_1' Aaj !

i=1...,N. (3.16)

If there are M) head measurements and h is a vector containing the corresponding
head samples, then the finite-difference approximations together yield an approxima-
tion of the Jacobian® V,h. For our purposes, there are two significant drawbacks to
the perturbation approach. First and foremost, the Jacobian requires N + 1 forward
simulations of the flow equations, independent of the number of head measurements.
These forward simulations can be quite costly if N is large. Second, the derivatives
computed by the finite-difference approximation are sensitive to the magnitude of each
Aa;j. Adjoint methods overcome both of these drawbacks.

Adjoint methods derive a linearization directly from the underlying partial differen-
tial equations and then use Green’s functions to compute the Fréchét derivative. The
first step is to determine from the flow equations how a small perturbation in f, call
it &f, relates to the change in the head function 6h. Assume that Dirichlet condi-
tions are imposed upon 8Qp and Neumann conditions are imposed upon 92y, where
0N = 90p U AN y. Also define hg = Fr(fo). For a small perturbation in conductivity
about the conductivity function fo, the first variation in head can be shown to satisfy
(see Appendix C)

-V - efovéh =V - eo §f Vhy, €N (3.17a)
6h =0, x € d0p (3.17h)
~efovéh -7 = elo b6f (Vhe - 1), T € 00 (3.17¢)

which is a linear relationship between §f and 6h. The Fréchét derivative is the function
g(z;, ') for which 8h(z;) = (g, éf). This function can be derived using Green'’s function
theory [44]. The Green's function is defined as the response of the adjoint of Eq. (3.17)
to a unit impulse. Because the steady-state flow equation is self-adjoint, the Green’s

8We will use subscripts for the Jacobian/gradient operator V whenever the variables to which the
differentiation is made is unclear.
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function satisfies

—V,,r . ef°("')V,:G(a:.~,z’ l fo) = 6(1:,' - :r') y z €N (318&)
G(I;,I’Ifo) =0, '€ Np (3.18b)
-l .Gz, 2 | fo) -7 =0, z' € 0y (3.18¢)

where the notation G(r;,r’| fo) emphasizes that the Green’s function depends upon
the “point” of linearization fo. The Green’s function representation of 6h(z;) follows
as

h(z) = [ Gana'| fo) V- (1) 81 (2') Vurho(a))
+ / G(zi 7' | fo) ) (Vouho(z') - fi(z')) 6 (') da’ . (3.19)
Ny

To express 6h(z;) as an inner product of the Fréchét derivative and §f, we invoke Green’s
theorem and assume for notational simplicity that 6f = 0 on 8%; this leads to

5h(z;) = /ﬂ efo=) (VG (i, 2'| fo) - Varho(2')) &f (') da’ (3.20a)

0Fn(fo, xi)
of

The advantage of the adjoint approach is that only My + 1 forward simulations are
required for M}, head measurements.” Because the number of head measurements is
usually much smaller than the number of variables a; used to represent the conductivity
estimate, i.e., M) < N, the adjoint method leads to dramatic computational savings
for large values of N. Another advantage of the adjoint method is that it does not
depend upon the choice of basis functions ¢;. Examples of the Fréchét derivative for
1D and 2D flow are provided in the following section.

(z') = =) (VouG(zi, 2’| fo) - Varho(z')) . (3.20b)

B 3.4 Examples of Fréchét Derivatives for Head Measurements

To understand how head measurements impact estimates of hydraulic conductivity, it is
worthwhile to consider some example Fréchét derivatives. While the Fréchét derivative
in Eq. (3.20b) appears fairly innocuous, it varies with

e the spatial dimension of the flow (only 1D and 2D flow are considered in this
thesis),

7 Actually, one forward simulation of the flow equation is required for ko, and My simulations of the
adjoint of the flow equation are required for the M), functions G(z:,z'| fo). However, the flow equation
is self-adjoint, meaning that it is equal to its adjoint [44].
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the boundary conditions,

the point of linearization f,

the source function @, and

the location of the head measurements with respect to the boundaries of 2 and
any pumping or injection wells.

1D Flow

First consider the case of 1D flow with fo = 0, @ = 0, and Q2 equal to the unit interval
[0,1). For the boundary Dirichlet conditions 2(0) = 1 and k(1) = 0, the Fréchét
derivatives for z; = /8, i = 1,4,7, are plotted in Figure 3.4. Note that the Fréchét
kernels are nonzero over the entire unit interval, indicating that each head measurement
is sensitive to the entire conductivity fuanction f(z). In other words, head samples are
non-local, coarse-scale functions of conductivity. Also note that the Fréchét derivatives
are positive upstream from the point of measurement and are negative downstream
from the point of measurement. The reason is that if conductivity is increased (relative
to fo) upstream from z;, then the difference h(0) — h(z;) will be less than the difference
ho(0) — ho(z;). Since the value of h at £ = 0 is fixed, this implies and increase in 6h(z;).
The reason for the negative downstream values is similar. Another interesting feature
is that each of the Fréchét kernels integrates to zero, meaning that head measurements
in this flow scenario cannot be used to determine DC values of conductivity.

1
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Figure 3.4. The Fréchét derivatives at z; = i/8, i = 1,4, 7, for the 1D flow equation when linearized
about the log-conductivity function fo = 0. The boundary conditions are k(0) = 1 and k(1) = 0.

To see the effect of the choice of boundary conditions upon the Fréchét derivative,
consider the same flow conditions but with 2(0) = 1 replaced by the Neumann condition
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Figure 3.5. The Fréchét derivative at z; = 1/2 for the 1D flow equation when linearized about the
log-conductivity function fo = 0. The boundary conditions are dh/dz = —1 at z = 0 and h(1) = 0.

dh/dz = —1 at £ = 0. For a head measurement at x; = 1/2, this flux condition leads to
the Fréchét derivative plotted in Figure 3.5. The Fréchét derivative is now nonzero only
for downstream locations, because the head value at = 0 is no longer constrained. The
head values in the scenario are insensitive to upstream values of conductivity. However,
unlike the previous scenario, the Fréchét kernel does not integrate to zero and the head
measurements can be used to estimate the average value of f.

To illustrate the effect of the point of linearization on the Fréchét derivative, consider
the original 1D flow scenario (h(0) = 1) but with fo(z) = 0.5sin(2wz). The Fréchét
derivative, as well as the original Fréchét derivative for fo = 0 are plotted in Figure 3.6.
The shape of the function fo affects the shape of the Fréchét derivative, which would
be expected from inspecting Eq. (3.20b).

2D Flow

The Fréchét derivatives for 2D flow appear quite different from those for 1D flow,
in part because flow is less constrained in 2D. Consider 2D flow on the unit square
Q =1[0,1] x [0,1} with fo =0, Q = 0, and the following boundary conditions8: A = 1
for x =1, h = 0 for x = 0, and dh/dx; = 0 for x; = 0 and x; = 1. This flow scenario
is illustrated in Figure 3.7, which notes that dh/dx; = 0 is equivalent to specifying
no flow across the boundaries x; = 0 and x; = 1. The Fréchét derivatives evaluated
at z; = (0.5,0.5) and (0.5,0.08) are plotted in Figures 3.8a and 3.8b, respectively. A
number of similarities between these functinns and the Fréchét derivatives for 1D flow
should be noted. First, the 2D Fréchét derivative is essentially positive for upstream

8For two-dimensional flow, the two spatial dimensions will be denoted in boldface as x1 and x3 in
order to distinguish them from the measurement locations z;.
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Figure 3.6. The Fréchét derivative at z; = 0.5 for the 1D flow equation when linearized about the
log-conductivity function fo = 0.5sin(27z). The boundary conditions are h(0) =1 and A(1) = 0. The
Fréchét derivative for fo = 0 is provided by the dashed line.

locations and negative for downstream locations. Secoadly, the Fréchét kernel integrates
to zero over 2, meaning that (under this scenario) head measurements alone cannot
be used to determine the DC values of conductivity. In fact, the inner product of
the Fréchét derivative in Figure 3.8 and f is a coarse-scale derivative of f. However,
a major difference between the 1D and 2D functions is that, while the 2D Fréchét
derivative is nonlocal, it is more localized than that for the 1D flow equation. Another
notable difference is that the 2D Frechet derivative is relatively shift-invariant, even
when evaluated near the boundaries of (2.

To illustrate the effect of a nonzero source function on the Fréchét derivative, con-
sider 2D flow on the unit square with a pumping well at z, = (0.5,0.5) and h = 0
on the boundary of Q. The well is idealized as the point source Q(z) = —6(z — ).
Again use fo = 0. Figure 3.9a illustrates the Fréchét derivative for a head measurement
located just outside the wellbore. This function is entirely different from the functions
displayed in Figure 3.8. The reason® is that, whenever an aquifer is pumped at a known
rate, the conductivity value at the well can be inferred directly from the slope of h at
the wellbore (using Darcy’s Law). Measuring a single value of h does not provide the
slope at the wellbore, but this slope can be estimated from knowledge that head is
equal to zero on the boundary of 2. Thus, the head samples near the wellbore measure
conductivity near the wellbore; the region of support of the head measurement is not
a point, however, as evidenced by the plot in Figure 3.9a, again due to the inability to
exactly determine the gradient of head from a single head measurement. (There are

9The difference between the Fréchét derivative in Figure 3.9a and that in Figure 3.8a cannot be
explained by the change in boundary conditions, since the Fréchét derivative would have similar form
even if the boundary conditions were not changed.
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Figure 3.7. An illustration of the boundary conditions used to calculate the Fréchét derivatives in
Figure 3.8.

also numerical errors due to the finite-difference implementation of the flow equation.)

While the Fréchét derivative does not vary significantly with respect to its distance
from the boundary of €2, it does vary significantly with respect to its distance from
pumping and injection wells. This variation is illustrated in Figure 3.9b, which displays
the Fréchét derivative for a head measurement located at z; = (0.25,0.25), which is
well outside the wellbore. The Fréchét derivative is dramatically different from that
in Figure 3.9a. The reason is that the gradient of head at significant distances from
the wellbore can no longer be used to infer local values of conductivity. In fact, the
Fréchét derivative in Figure 3.9b is similar in shape to a superposition of two (rotated)
Fréchét derivatives from Figure 3.8. As the measurement location moves farther from
the well, the effect of the forcing reduces and the Fréchét derivative becomes similar to
that when there is no source term.

To summarize, the information supplied by head measurements about the conduc-
tivity function depends heavily upon the flow scenario, e.g., whether or not the aquifer is
forced (@ # 0), what boundary conditions are assumed. Furthermore, the information
supplied by the Fréchét derivative also depends upon the location of the measurement,
the accuracy of the linearization, and the point of linearization fy. All of these factors
should be kept in mind when interpreting the conductivity function estimates computed
in Chapters 5 and 6.
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Figure 3.8. The Fréchét derivative for the 2D flow equation at z; = (0.5,0.5) and (0.5,0.08) when
linearized about the log-conductivity function fo = 0. The boundary conditions are illustrated in
Figure 3.7.
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Figure 3.9. The Fréchét derivative for the 2D flow equation when forced with a pumping well in the
middle of Q. The measurement is placed (a) near the pumping well at (0.5,0.5) and (b) away from the
pumping well at (0.25,0.25).
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W 3.5 Estimating Hydraulic Conductivity from Measurements of Conductiv-
ity and Head

When introducing the Bayesian estimation framework in Chapter 2, the unknown to
be estimated was assumed to be a finite-dimensional vector. The conductivity func-
tion, however, lies in an infinite-dimensional vector space. Bayesian estimators of f(z),
based upon Gaussian prior distributions, can be developed [69]. These estimators are
conceptually important, since they are independent of any finite parameterization’® of
f(x). However, in order to (numerically) compute an estimate, the conductivity func-
tion can only be represented by a finite number of elements. We show that, when f(x)
is restricted to a finite-dimensional vector space, the estimators described in Chapter 2
can be directly applied to conductivity estimation.

Assume that the conductivity function (or more importantly the estimate) is re-
stricted to be a member of the function space span{@;(z)}1<j<ny. This membership
implies that

N
fl@) =Y ajéi(x), (3.21)
j=1
=®(z)a, (3.22)
for some vector T = [ay,... ,an], where @(z) = [¢1(z),... ,¢n(z)]. The unknown

function f is thus replaced by an unknown vector a. To use Bayesian estimators, a
prior model must be specified for a.

To estimate a, the head and conductivity measurements must be expressed as func-
tions of a. Consider first how to represent the conductivity measurements of Eq. (3.9).
Recall that these measurement equations are somewhat of an idealization, since point
values of conductivity can never be measured; instead, conductivity is measured over
some local area. If conductivity is relatively constant over this area and we choose ¢;(x)
to have the same support as the i-th conductivity measurement, then we obtain

y =i +of, i=1,...,M; (3.23)
for each of the My conductivity measurements. Note that the measurement noise v{
may also model scale errors due to the mismatch between ¢; and true support of the
i-th conductivity measurement (69].

The head measurements can be expressed in terms of a by substituting f = ®a into
Eq. (3.12). The linearization follows directly from Eq. (3.15). First note that the point
of linearization is no longer a function, but a vector gy for which fo = ®ay. Plugging
f = ®a and f = $a into Eq. (3.15) and ignoring the higher-order terms yields

Vi(®ag) = gi(ag) a+vi, i=1,...,Ms (3.24)

19By finite paramelerization of a function we are simply referring to the finite number of variables
chosen to represent the function.
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where

e = | (PB4, (PB000T) 4y 1 (g0

Equations (3.23) and (3.24) are in exactly the same form as required by the approx-
imate implementation of the LLSE estimator for nonlinear measurements at described
in Section 2.1.2. This linear estimator is also equivalent to a single iteration of the
Gauss-Newton optimization of the MAP density p(a|y). Both of these estimators are
implemented in Chapter 5. Once the estimate & has been computed, the conductivity
estimate follows as f = ®&. The error covariance is similarly derived.

B 3.6 Choice of the Conductivity Parameterization

Given that the functions ¢;(x) must be chosen before the conductivity estimate can be
computed, it is important to consider how these functions should be chosen. Usually
these basis functions are chosen at a fixed scale and each function is a translation of
a single generating function [98]. For instance, the parameterization used by a zeroth-
order finite-element method (FEM) approximation in 1D is

— A
#5() = $(~5),  where ¢($>={ o e

Each function is a pulse of width Az. The scale of the basis functions is chosen such
that the finest-scale measurements, direct measurements of conductivity in this case,
can be accurately represented. If the scale of the finest-scale measurement is small
relative to the size of the domain, then the number of variables (N) can be very large,
especially for multidimensional flow. In terms of computing the estimate, the large
number of variables means that the M, + 1 forward simulations required to compute
the Fréchét derivatives can be prohibitively large. The same also becomes true of the
estimator and estimation error cquations.

With a choice of basis functions that have uniform and fine resolution, the estimate is
generally “over-parameterized” in regions where there are no fine-scale measurements.
In the context of conductivity estimation, these regions correspond to the areas in
between wellbores. One solution, known in some contexts as upscaling, is to choose a
coarser resolution than that of the direct measurements and to somehow account for
the scale errors inherent in representing the finer-scale measurements. A more natural
approach would be to choose a parameterization with space-varying resolution, where
the resolution is allocated according to that which can be resolved by the measurements.
Such an allocation of resolution is a difficult problem, especially when the measurements
are nonlinear and there is no clear method for choosing the parameterization a priori.
We will return to this problem in Chapters 5 and 6 when using multiscale models to
estimate properties of groundwater aquifers.



Chapter 4

Extensions of Multiscale Realization
Theory

This and the following chapters discuss extensions to the multiscale realization theory
summarized in Section 2.3. The utility of the multiscale framework hinges upon the
ability tc realize low-order multiscale stochastic processes ir the form of Eq. (2.22) that
capture the correct joint second-order statistics between the process to be estimated and
the measurements. In principle, Canonical Correlations theory can be used to realize
multiscale models that have desired second-order statistics at the finest scale. While it
provides a solid foundation for multiscale realization, the algorithm presented in [49, 51)
has a number of drawbacks. (See Section 2.3.4 for a more thorough discussion.) Of
these, the following are addressed in this chapter.

e Arbitrary nonlocal measurements cannot be incorporated.

e The estimation error variances are only computed for the variables z(s). The
error variances for other nonlocal functions of the finest-scale process will require
significant additional computations.

e Canonical Correlations realizations are generally quite inefficient, requiring a num-
ber of SVD decompositions of the desired covariance for the finest-scale process.

e The approximate realizations based on Canonical Correlations have undesirable
properties, e.g., the approximate realization algorithm requires roughly the same
number of computations as does the exact realization algorithm and the resulting
models are inconsistent.

We focus upon the first two problems, i.e., incorporating and estimating arbitrary
nonlocal properties within the multiscale framework, and touch upon the latter two
within this context.

Most of the multiscale applications thus far have focused on measuring and estimat-
ing the finest-scale process [33, 34, 35, 51, 60, 62, 61, 70}, which makes perfect sense
for applications like image processing that are characterized by dense measurements
at the finest-scale of interest. For these applications, the coarser-scale tree variables
only need to satisfy the Markov property of multiscale trees, which in turn leads to the
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efficiency of the multiscale estimator described in Appendix B. Estimates of coarse-
scale variables have been used in [60, 81], but without a careful explanation of what is
represented by the coarse scales. To measure or estimate specific nonlocal functions of
the random phenomenon of interest will require placing additional constraints upon the
coarser scale variables of the tree process. In other words, the coarser-scale variables of
the realized multiscale model will have to contain specific nonlocal functions in addition
to satisfying the Markov property.

This chapter begins by describing the multiscale realization problem in the context of
measuring or estimating nonlocal parameters. We then extend the realization algorithm
of [49] to allow the modeling of particular nonlocal functions at coarse scales of tree
processes. Because this algorithm is inefficient, it is of little practical interest. However,
it suggests an efficient algorithm for building nonlocal functions into existing multiscale
trees. For instance, assuming that a multiscale model already exists that has the desired
second-order statistics at the finest scale, the variables of this tree can be augmented so
that coarser-scale variables contain desired nonlocal functions of the finest-scale process.
We then discuss the realization of multiscale models with approximate statistics, which
are necessary for implementing large-dimensional estimation problems. Extensions of
the multiscale framework for 1/f processes are the subject of Chapter 7.

B 4.1 Measuring and Estimating Nonlocal Properties

As shown in Eq. (2.27), any measurement to be incorporated by the multiscale estimator
must be in the form

y(s) = Csz(s) +v(s).  v(s) ~ (0, R,) (4.1)

The implications of this measurement model are most clearly illustrated for internal
models. Define f to be a vector containing the finest-scale variables of an internal
multiscale model. The measurement equations in this case are restricted to the form

y(s) = CsVef +u(s),  w(s) ~ (0, Ry) (4.2)
meaning that only measurements
y(s) = Hof +v(s) (4.3)

for which H, is in the row space of an individual internal matrix V; can be incorporated
by the multiscale estimator. If the internal matrices at coarser scales are chosen only to
satisfy the multiscale Markov property, then the multiscale estimator will be unable to
incorporate a large class of nonlocal measurements. For instance, given one of the mul-
tiscale models for 1D Markov processes described in Chapter 2, the multiscale estimator
cannot incorporate a measurement of the average value of the finest-scale process, since
no single state contains the average value of f.

Another reason for reassessing the role of the coarse-scale variables in muitiscale
models is the need to estimate particular coarse-resolution functions of the phenomenon
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of interest. As a motivating example, consider the estimation of hydraulic conductivity,
where f is a vector representing the hydraulic conductivity at the finest resolution of
interest. This resolution might correspond to the resolution of the finest-scale measure-
ment. However, because these fine resolution samples are sparsely distributed over the
region of interest, a more coarse-resolution estimate is justified, at least in regions far
from any fine-scale measurements. In this case the multiscale model, along with the
estimation error variances, could in theory be used to select the optimal distribution of
resolution in the estimate. (In selecting an cptimal resolution, we are obviously making
a trade-off between resolution and estimation error variance [71].) The only problem is
that the coarser-scale variables of the multiscale process must contain specific coarse-
resolution representations of the conductivity function.

As another example of coarse-resolution estimation, consider the estimation of the
travel time in Eq. (3.7). In this case, estimating the conductivity function is only an
intermediate step in obtaining an estimate of travel time. If travel time t, is a linear
function of conductivity!, then we can write

tep = .‘ITf )

meaning that the travel time estimate can be derived from the finest-scale conductivity
estimate f as tcp =47 f However, we are also interested in the uncertainty of this
estimate. The travel time estimation error is equal to

var(tp] = 9" P g, Pe=E[(f—f)(f—f)T]'

which requires complete knowledge of the covariance of the hydraulic conductivity esti-
mation error. The multiscale estimator only provides the error variance for the estimates
of the each of the finest-scale variables, which corresponds to block-diagonal elements
of P.. The remaining entries can be derived from the multiscale error model [61], but
such a computation is prohibitively expensive for large-dimensional f.

@ 4.2 General Method for Realization of Internal Models

The multiscale realization algorithm based upon Canonical Correlations summarized in
Section 2.3.4 is part of the more general framework for multiscale realization described
in [49]. In this section, we will describe this more general framework and show how it
can be readily extended to allow for the modeling of particular nonlocal functions by
the coarse-scale variables.

Assume that we are only interested in internal multiscale models. The first step of
the realization algorithms described in [49] is to specify a tree structure and to map
the vector f ~ (0, Py) to the finest-scale of the tree. Since the statistics of only the
finest-scale process are specified, each tree variable can be restricted to a function of its

! As shown in Chapter 3, travel time is a nonlinear and nonlocal function of hydraulic conductivity,
but we will show in Chapter 6 how this relationship can be linearized.
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finest-scale descendents, i.e.,
z(s) = Wy f,. (4.4)

The intuitive reason is that the process indexed on the subtree descending from node
s serves only to realize the finest-scale process f,. In this case, the g, sets of variables
descending from node s, {z(t)|t € Ssq;} for i = 1,...,q,, are each linear functions
only of f,o;. Namely, for all nodes t € S,,,;, 2(t) is a linear function of fsa;- For the
other set of variables partitioned by node s, {2(t) |t € S, }, each element must be a
linear function only of f,c and z(s); otherwise, these variables would be correlated with
the process noise descending from node s. This implies that the Markov property to
be satisfied by multiscale tree models for which only the finest-scale covariance is fixed
reduces to the following: the ¢, + 1 vectors

foai 2 foos = E[foai|Wafs],  i=1,...,q+1, (4.5)

are mutually uncorrelated.
The realization algorithm for such internal multiscale models reduces to the following
sequential steps:

(a) map the process f ~ (0, Py) to the finest-scale variables of a tree;
(b) at each node, find a matrix W, that decorrelates the g, + 1 vectors in Eq. (4.5);
(c) compute the multiscale model parameters from Egs. (2.30) and (2.32).

A proof that this algorithm leads to multiscale models with the desired finest-scale
covariance is provided in Appendix D. Canonical correlations can be used to compute
the internal matrices W,, but Canonical Correlations is not specific to this approach.

Assume we now desire that the coarse-scale variables of the multiscale models con-
tain specific nonlocal functions of f. Namely, assume that each linear function g7 f,
t=1,...,L, is to be placed at the node 7;. If no restrictions are placed upon the
vectors g; and the nodes 7;, then we can no longer assume that the tree variables are
only functions of their finest-scale descendents. Instead, the internal variables will take
the more general form z(s) = V, f. In addition to satisfying the Markov property, these
internal variables must be chosen such that

C:TVT.' = giT (4.6)

for some vector ¢;, 1 <1 < L.

When the state variables are constrained as in Eq. (4.6), the variables at the nodes
7; can no longer be assumed to be linear functions of f,. For instance, if 7; # 0, and
g7 f is the average value of the finest-scale process, then z(7;) must be a function of the
entire finest-scale process. In this case, the multiscale Markov property is not equivalent
to the decorrelation of the variables in Eq. (4.5). The correspondence between Eq. (4.5)
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and the Markov property is only true when all the variables at nodes in S, are linear
functions of f,. To determine an analogous sufficient condition for the Markov property
when the constraints in Eq. (4.6) are imposed, first define

hy = G, f (4.7)

to be vector of the linear functionals g7 f for which 7; € Sy, i.e., all the linear functionals
placed at nodes descending from or equal to s. Also define the vector

by = [ ,{ ] . (4.8)

Note that the only requirements on the variables in the subtree S, are that f, be
generated at the finest scale and that h, be generated at designated nodes in &,. Thus
z(8) only needs to be a function of by, i.e.,

z(s) = W,b, . (4.9)

Equation (4.9) is a direct analogy of Eq. (4.4). Assuming the internal variables satisfy
Eq. (4.9), all of the variables at nodes in S, will be linear functions only of b,. The
Markov property of the multiscale tree in this case reduces to the following: the g, + 1
vectors

ooy = bsa; — Elbsa; [Wsbs], 1<i<qa+1 (4.10)

are mutually uncorrelated, where hg, 4 is a vector of all the linear functionals g7 f for
which 7; € {S¢ U s}. Equation (4.10) is analogous to Eq. (4.5).

One problem with the internal variables Wb, that conditionally decorrelate the
vectors in Eq. (4.10) is that they are not guaranteed to contain the linear functionals
placed at node s, ie., g7 f for ; = s. However, the reason that the vector by, 1
contains these linear functionals is that they can be added to the vectors W,b, without
introducing any correlation among the vectors in Eq. (4.10).

An algorithm for realizing a multiscale tree with covariance Py at the finest scale
and with states z(r;) for 1 < i < L satisfying E[(cT2(r)) f] = ¢ Py for some vector
cI —see Eq. (4.6)—follows as:

(a) map the process f ~ (0, Py) to the finest-scale variables of a tree; map the linear
functionals g7 f to the nodes T;;

(b) at each node s, find a matrix W, that decorrelates the g, +1 vectors in Eq. (4.10);
from this matrix, the internal variable z(s) is given by

W, b,
2(s) = [ h(s) ] , (4.11a)
=V.f, (4.11b)

where h(s) is a vector of all g7 f for which 7; = s; this internal variable satisfies
the Markov property and there exists a vector c! for each 7; = s such that

cTz(s) =gl f;
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(c) compute the multiscale model parameters from Egs. (2.30) and (2.32), where V,
is derived from W, b,, and h(s).

These three steps are directly analogous to the three steps given for the finest-scale
realization algorithm. Again, Canonical Correlations can be used to compute matrices
W; with near minimal row dimensions, but Canonical Correlations is not central to the
approach.

While this realization algorithm is quite general in its approach and the resulting
multiscale models can be used to incorporate arbitrary nonlocal measurements, there
are a number of drawbacks. Those drawbacks associated with the Canonical Corre-
lations implementation—in particular, computational inefficiency for both exact and
approximate realizations—also apply to the more general realization algorithm. The
more general algorithm also suffers from not being able to take advantage of the possi-
ble stationarity of P;. (As shown in [49], the FFT can be used to significantly reduce
the number of computations required for the Canonical Correlations implementation
when Py is stationary.) The more general drawback associated with Canonical Corre-
lations based realizations is that they are completely general and in no way account for
the particular features of the prior covariance P; and the measurement kernels g;. As
shown in Section 2.3.2 for 1D Markov processes and 2D Markov Random Fields and in
Chapter 7 for fractional Brownian motion, the internal variables W, f, can sometimes
be determined without significant computations. In this case, the only modeling to
be done is to “adjust” the internal variables W, f, so that they also account for the
nonlocal functions g,-T f. This procedure is the subject of Section 4.3.

Another aspect of the multiscale realization problem not addressed in this section
is the choice of nodes 7;. Remember that the overall goal of any multiscale realization
is to achieve some optimal trade-off between the state dimensions and the fidelity (in
terms of second-order statistics) of the multiscale model. As shown in the following
section, this trade-off is affected by the choice of nodes 7;, e.g., for exact multiscale
models the computational cost function in Eq. (2.37) will change depending upon the
choice of nodes 7;. The problem is to determine the set of nodes 7; which minimizes
the computational costs (of the associated multiscale estimator or likelihood calculator)
for any desired level of statistical accuracy. Note that if the placement of the nonlocal
linear functionals had no effect upon the state dimensions of the multiscale model, then
all the nonlocal functions could simply be mapped to the finest scale of the multiscale
tree, in which case the algorithm of [49] could be used. Namely, we would map the
vector ¢ = [fT, g7 f,g3f,... 977 to the finest scale of a multiscale tree; since the
covariance of q is determined by Py and the kernels g;, the algorithm for realizing the
statistics of the finest-scale process could be directly applied.

B 4.3 State Augmentation

For the multiscale models of 1D and 2D Markov processes described in Section 2.3.2 (and
for the multiscale model for fractional Brownian motion described in Chapter 7), the
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internal variables which exactly (or approximately) decorrelate the vectors in Eq. (4.5)
can be specified without computation. To expand the set of functions represented by
these tree models, so that specific nonlocal measurements can be incorporated by the
multiscale estimator, one can imagine augmenting the internal variables with additional
linear functions of f and then re-computing the model parameters. However, doing this
requires considerable care. In particular, the states must be augmented such that both
the Markovianity of the tree process is preserved and the resulting model is internal.
For example, suppose we have an internal multiscale model with variables 2(s) = W, f,
and we naively augment the state of our model at a single node 7 in order to include
the linear function Gf. That is, suppose ((s) = 2(s) for s # 7 and

¢(r) = [%)—] f. (4.12)
V.

In general, this augmentation will destroy the Markovianity of the tree. For example,
the states z(77), z(ta1), ..., z(Taq) generally are correlated with each other after
conditioning on (7). The consequences of this correlation are that, for the multiscale
model defined by Eqs. (2.30) and (2.32) with V; substituted for V;, the finest-scale
process will not have covariance Py; also, the model will not be internal, i.e., the state
at node 7 will not be equal to a linear function of the finest-scale process.

The issue here is that the augmentation at node 7 introduces some coupling among
variables due to the nonlocal nature of the linear function G f. If the correct statistics
are to be maintained, and the state at node 7 is to contain the desired function of the
finest-scale process, the effect of the coupling must also be propagated to other nodes
on the tree.

W 4.3.1 Maintaining the Markov Property of the Internal Variables

To illustrate how augmentation can destroy the Markovianity of internal variables,
consider the multiscale models for 1D Markov processes described in Section 2.3.2.
Recall that the finest-scale of these multiscale models represents a 1D Markov process
f[k] on some interval [0, N]. Conditioned on z(6), which contains f[0], f[N], and f([ko]
for some 0 < kg < N, the values of f[k] on [0, ko] are uncorrelated with the values on
the interval [ko, N]. However, if the average value of f[k] on k € [0, N] is added to z(0),
i.e., ¢(0) contains z(0) as well as the average value of the finest-scale process, then f[k]
on [0, ko} will not be uncorrelated with f[k] on [ko, N] after conditioning on ((0). This
means that the displacements f[k)] and f[k2], which are defined by Eq. (2.35) and are
to be represented by the process noise at the first scale of the tree, will be correlated.
This implies that some additional augmentation will be required to account for the
correlation.

Instead of directly augmenting z(7) in Eq. (4.12) with G f, another linear function
must be found for which (i) the augmented variable {(7) still decorrelates the g, + 1
sets of internal variables partitioned by node 7, and (ii) {(7) contains Gf. If all the
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internal variables have the form 2(s) = W,f,, recall that 2(s) satisfies the multiscale
Markov property if and cnly if it conditionally decorrelates the ¢, + 1 random vectors
{fsai }1<i<q,+1. Therefore, to augment z(s) with a linear function of f and not alter
the covariance of the finest-scale process, we need only ensure that the g, + 1 vectors
{fsa; h1<i<q, +1 remain conditionally uncorrelated. To do so we make use of the following
corollary of Proposition 5 in Chapter 3 of [49].

Corollary If the g5 + 1 vectors {fsq, }1<i<q,+1 are uncorrelated after conditioning
on some linear function V;f, they remain uncorrelated after conditioning on V,f and
individual linear functions of fsa,, i =1,... ,¢s + 1.

For example, the g, + 1 vectors {fsq, }1<i<q,+1 are uncorrelated after conditioning on
Vsf, L1fsa;, and L3 fyq,, but they will generally be correlated after conditioning upon

V,f and L[f};l, f};z]T. Therefore, to add the linear functional (g, f) 2 gT f to z(7),
we first define the following matrix

[ gralT 0 o 0 0 ]
0  Ggray) O 0
G, = : 0o . - : , (4.13a)
0 o Grag.l 0
| 0 o - 0 gTa'lr+1T }

where the vectors g, are defined by

<g’f) = (gfanf‘ral) + (g-ra2, fTaz) +-t <g"'°’qr ’f‘mqr) + (g"'aqf+l’f7'°) : (4'13b)

The variable at node 7 can now be augmented as

¢(r) = [WG—TO] [ ff; ] (4.13c)
Vr /

without altering the Markov property. Note that if g has full support, i.e., if each term
(9ra;» fra;) # 0, then this augmentation requires an additional g, + 1 elements in the
state at node 7. If some of these terms are zero, then a lower-dimensional augmentation
is possible. Furthermore, if any of the rows of G, are already in the row-space of [W; 0],
these elements are already available in z(7) and need not be added. Note also that since
the partitioning of f into f;,, is different for each node, one might imagine that there is
a best choice for node 7 in terms of minimizing the number of terms (grq,, fra,) Which
are nonzero and hence minimizing the dimension of the augmentation.

Define the augmented variable at each node by ((s) = V,f, where ((s) = z(s) if
the state at node s is not augmented. The model parameters of the augmented model
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follow as
P() = P((o) , (414&)
= VonVoT ,
As = P(axciom) Posmy s (4.14b)
Qs = P(s) = Pegay(sm) Pecsw)* Peamycs) - (4.14c)

where F(,) = V,P,V,T and Py ¢(s7) = V,P;V,;T. This augmented model will have a
finest-scale process with covariance identical to that of the original model.

@ 4.3.2 Maintaining an Internal Multiscale Model

The augmentation described in the preceding section, which augments the state at a
single node 7, does maintain Markovianity and hence yields a model whose finest-scale
process will have the desired covaricnce P;. However, this model will not generally
be consistent; that is, the clement of the state at node 7 that is intended to equal
(9ra;» fra;) may not be equal to (grq,, fra;). The reason for this is simple: at node 7
we are attempting to pin a linear combination of the values descending from node 7¢;.
In order to ensure that this value is pinned, information must be propagated from node
7 all the way to its descendents at the finest scale. To illustrate this problem and to
motivate its solution, consider the following example of augmenting the root node of a
multiscale model for a 1D Markov process with the sum of the finest-scale process.

Example: Multiscale Modeling the Sum of a 1D Markov Process

Consider a 1D first-order Markov process f[k] on the interval [0, 15]. A multiscale model
for this process was described in Section 2.3.2, and the samples of f[k] contained in
each variable of this model are illustrated in Figure 2.3b. Assume that the 1D Markov
process is to be estimated, using the multiscale estimator, from point measurements
of f[k] together with a measurement of the sum h = (32, f[k]) of the finest-scale
process. From Section 4.3.1, we know that z(0) can be augmented with the two linear
functions

7 15
hy=> flk] and hy=)_ f[K] (4.15)
k=0 k=8

without altering the Markov property of the tree. Thus, if the root node variable
is augmented as ((0) = [2(0)T, hj, h]T and no other variables are changed, then
the finest-scale process of the muitiscale model derived from Eq. (4.14) will have the
covariance of the 1D Markov process.

However, the element in the state at the root node which is intended to contain
h = hy + hs will not be equal to the sum of the finest-scale process unless this value is
propagated from tie root node to the finest-scale. This propagation is accomplished by
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constraining the scale-to-scale recursion of the multiscale model. For this 1D Markov
example, this means constraining the midpoint displacements by conditioning them
on the value of h generated at the root node. This conditioning is accomplished by
augmenting the descendents of the root node, except for the finest-scale states which are
never augmented, with h. Again, this augmentation must also preserve Markovianity.
For example, consider the two children of the root node, nodes 0a; and 0ap. The
augmentation of these nodes is

223(0a1? | 221(1002)

— k=0 JF ALLC _ k=8 f[K]

Ood= S | O =) S S | @19
hz hl

However, these states contain more information than is needed. For instance, f[k] on
the interval [0, 7] is uncorrelated with f[k] on the interval [8,15] when conditioned on
z(0cry). Thus the last element of ((0a;) in Eq. (4.16) contains no additional information
about the descendents of nodes 0a;. That is, in order to maintain consistency, and hence
an internal realization, the state at node 0a; must only be made consistent with h;, the
component of h corresponding to the finest-scale descendents of node 0a;. Similarly,
the state at node Oz must only be made consistent with hy. As a result, the states in
Eq. (4.16) can be reduced to

z(0ay) z(0cr)
C(0a1) = | 33 fIK] and  ((0ag) = | Tilg flK] | - (4.17)
Shea FIK] bz 1K)

For this simple example, the augmentation is now complete, and the parameters of
the augmented multiscale model can now be derived from Eq. (4.14). The resulting
model generates a finest-scale process with the desired covariance Py and is internally
consistent so that, for example, the value of 2 + h; at the root node does exactly equal
the sum of the finest-scale process.

Example: Modeling the Sum at Scale One

Even though the sum of the finest-scale process is a function of the entire finest-scale
process, it can be advantageous, as will be shown in the example of Section 4.3.5, to
model this value at a node other than the root node. Consider augmenting the variable
at Oy with h. The augmented variable which preserves the Markov property of z(0a, )
is
za(Oal)
: =0 f[¥]
¢(0a) = = . (4.18)
‘ Sh-a /14

h.2
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While, as argued in the previous example, the last element of ((0a;) is not needed for
maintaining Markovianity or consistency with the nodes descending from node 0q;, it
is necessary if h is to be captured at this node.

To maintain consistency, the information contained in h; at node 0a; must be
propagated to the other half of the tree, i.e., that descending from node 0a;. To
accomplish this, it is necessary that the value of hy be available to this part of the
process; therefore, the root node must be augmented as

_ | =(0)
¢(0) = [ by ] . (4.19)
The state 2(0ay) can be augmented exactly as in Eq. (4.17). Note that because we
have chosen to place the measurement at node 0a;, ((0) does not need to include the
sum over the “left” half of the tree, (as we do not introduce the constraint on this sum
at the root node). Comparing with the augmented model in the preceding subsection,
the dimension of {(0) in this model has been reduced while that of ((0c;) has been
increased. The remaining states are identical in the two models. As before, having
defined the states, the model parameters can be generated from Eq. (4.14).

@ 4.3.3 An Algorithm for Augmenting Internal Multiscale Realizations

Using the previous two examples for intuition, we now present a general algorithm for
adding linear functions of f to the coarser-scale variables of internal multiscale models.
This algorithm applies to a much broader class of processes than those discussed in
the previous section. The multiscale model can have an arbitrary number of children
per node and the finest-scale process can have any desired covariance—not just that of
1D Markov process. The algorithm proceeds in two stages: (a) first, the augmented
variables ((-) are created for each node on the tree, and then (b) the model parameters
are computed from Eq. (4.14) for the augmented process 2°%(-).

The algorithm which follows is for adding a single linear functional (g, f) to the
variable at node 7. This procedure can then be applied recursively to add additional
linear functions. The initial step is to determine {(7). As discussed in Section 4.3.1, the
augmented variable which preserves the Markov property of z(r) is given by Eq. (4.13).
The next step is to define ((-) for the remaining nodes in the tree to guarantee that the
information generated by =“(7) is passed consistently to the finest-scale process. First
consider the nodes descendent from node 7. Since all the descendents of node 7 are
linear functions of f,, the entire process descendent from node 7 is uncorrelated with
fre when conditioned on z(7). Thus, augmenting any variable descendent from node
7 with a linear function of f;c will have no effect upon the parameters derived from
Eq. (4.14). Consequently, since the linear function (g, f) can be decomposed as

(glf) =<gvaT)+(gT"’afT‘)w (420)

the variables descendent from node 7 only need to be made consistent with (gr, f-).
In fact, because of the conditioning property of z(s), (where s is a descendent of 7),
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the augmented variable only needs to include (g,, f;). This augmentation will guar-
antee that all the process noise added to the descendents of node 7 is conditioned on
(g, f). Therefore, the augmentation of z(s) which preserves Markovianity and maintains
consistency is

W,
() =] o [f=W1, (4.21a)
| Lrs
i gsan 0 ree 0
T . .
Gy=| O e | (4.21b)
L
L 0 e 0 g’a'hT

Now consider determining ((-) for nodes not in S;. These nodes must be augmented
to make the value of (g,<, f;<) consistent with the finest-scale process f,.. However, if
the support of g is not the entire domain, we may only need to augment a subset of the

nodes in S¢. Specifically, define the direct ancestors of 7 as 77, 752, ..., and let o be
the ancestor closest to node r for which
9" f =94 fs. (4.22)

Only nodes descendent from node ¢ need to be augmented, since, conditioned on z(o),
the variables at any node outside the subtree descending from o are uncorrelated with
fo and hence with g7 f. Consider first the augmentation of a node s # 7 on the path
connecting 7 and o, (i.e., s is a direct ancestor of 7 that is either node o or a descendent
of ). As always, (g, f) can be expressed as

<gvf) = (gsa“fsal) + (gsngvfsn'z) +...+ (g-ﬂlq,'fsaq,) + <g-'i" f-‘l‘> : (423)

While (gs¢, fs<) is not needed at node s to maintain Markovianity, it must be included
in ((s) to ensure that this value is passed to the state at node 7. This is a generalization
of the description of ((0a;) in Eq. (4.18), for which the last component of the state
was not required for Markovianity but was needed to have the entire linear functional
available at node 7. In the more general case here, the last component is needed to
have the entire linear functional available at a descendent of node s, (namely, node 7).

Turning to the other g, components in Eq. (4.23), all but one must be included in
¢(s). This component corresponds to the child sa, of node s for which 7 € S,q,, i.e., the
child of node s that is either node 7 itself or a direct ancestor of node 7. This component
can be excluded without disturbing Markovianity or consistency and can be generated
at a descendent of node s. This is a generalization of the augmentation of node 0 given
in Section 4.3.2, where z(0) only needs to be augmented with hy = 3°,° 4 f[k] and not

with by = 31 _o fIK].
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The augmented variable ((s) is then given by

((s) = [—WG—O] [ j{’c ] (4.24a)

where the elements of G, f correspond to all of the elements on the right-hand side of
Eq. (4.23) except the one not needed for the augmentation. For example, if i = 1 is
the term not needed for the augmentation and if the elements of f, are organized as

T
f.’T = [fsa|T1 f.lagTv ot 7fsaq,T] ) then

[0 gea)) O - 0 ]
0 0 guy' O -+ 0
G,=|: : . (4.24b)
0 0 gsaq,T 0
0 o0 - 0 gel |

Finally, once we have augmented each of the direct ancestors of 7 up to and including
o, the descendents of these nodes must also be augmented. This is exactly the same
procedure used to augment the descendents of node 7, i.e., each state is augmented with
those elements necessary to maintain both Markovianity ...d internal consistency. The
resulting overall algorithm for state augmentation can then be summarized as follows:
for each node s € S,—recall that o is the node closest to 7 on the path from 7 to the
root node such that Eq. (4.22) is satisfied—and s not at the finest scale

(a) If s = 7, then ((7) is given by Eq. (4.13).
(b) If s # 7 and s is on the path from o to 7, then ((s) is given by Eq. (4.24).
(c) Otherwise, ((s) is given by Eq. (4.21).

For s ¢ S, or s at the finest scale, then ((s) = 2(s). Note that if 7 = o, i.e., if the linear
function placed at node 7 is a function only of f,, then the augmentation is simplified.
Namely, ¢(s) is given by Eq. (4.21) for s € S;, and ((s) = z(s) for s ¢ S;.

Once the matrices Vs have been determined, the final step of the augmentation
algorithm is to compute the model parameters from Eq. (4.14). Given the parameters
of the original multiscale model, only the parameters for s € {S,,07} need to be re-
computed for the augmented model.

For adding linear functions of f, i.e., multiple linear functionals, to the state at node
7 or any number of nodes of a multiscale tree, the state augmentation just described
can be applied recursively to individual linear functionals. This recursive procedure
can be used to represent nonlocal measurements of f or coarse resolution functions to
be estimated within the multiscale framework. Note, however, that Eq. (4.14) need
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only be executed once, after all the linear functionals have been incorporated into the
augmented states {(-).

Numerous examples of the augmentation algorithm are provided in Chapters 5 and 6
in the context of hydraulic conductivity and travel time estimation. (See Chapter 3 for
a discussion of these parameters.)

B 4.3.4 Implementation Issues for State Augmentation

The feasibility of the state augmentation algorithm of course depends on the number
of computations and storage elements required to implement Eq. (4.14). Given all the
necessary covariance matrices Prs) and Pyg)¢(s5), computing the autoregression pa-
rameters requires roughly O(Nd®) computations (assuming the state variables have the
same dimension). More to the point, the number of computations required to imple-
ment Equation (4.14) when the augmented state covariances are known is of the same
order as the number of computations required to implement the multiscale estimation
of the augmented tree model. Because the number of computations required for the
multiscale estimator is a function only of the augmented variable dimensions, we turn
our attention to the formation of the covariance matrices P, and Pe(s)e(s7)- The
dimensions of the augmented variables are the subject of the next subsection.

When the vector f has very large dimension, the primary obstacle to implementing
Eq. (4.14) is the formation of the covariance matrices F(s) and Py(q)¢(sy)- The reason
is that Py cannot be explicitly stored in memory when the dimension of f is large.
For instance, if the finest-scale process corresponds to a 2D field of 64-by-64 elements,
Py has approximately 17 million elements, making it infeasible to derive Py, directly
from stored matrices Py and V. For these large problems, the augmented covariances
must computed implicitly, i.e., without explicitly storing Py. The ability to compute
these matrices implicitly, as well as the method vsed, will depend upon the particular
application. As a demonstration, consider the examples in Chapters 5 and 6, where the
finest scale process is a stationary Markov Random Field and the variables at coarser
scales are augmented with nonlocal functions giT f. From Section 2.3.2, we know that
the original variables (before augmentation) for multiscale models of MRF's correspond
to samples of the MRF on boundaries of the 2D domain of interest. Partition ((s) as
¢(s) = [2(s)T, 6(s)T]T, where z(s) contains the samples of the MRF and 0(s) = G,f
contains the linear functions added to the variable at node s. The covariance Py(4) can
be determined by sampling the covariance function of the Markov random field. The
other elements of P(,) can be determined using the stationarity of f. Namely, if g7 f
corresponds to an element of 6(s), then g” P+ can be computed using the FFT and zero
padding determined by the correlation length of the MRF. The computation of G, Py
thus requires O(dgN log N') computations when the number of finest-scale elements (the
dimension of f) is equal to N and the dimension of # is equal to dy. The computation
of Py, from G,P; requires and additional dgN computations, while Py(s)z(s) is given
by sampling the columns of Gy P, which correspond to the boundary samples in z(s).
Thus we have computed Py (,) in essentially O(d(s)N log N) computations and O(d(s)N)
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storage elements. The cross-covariances Py(4)¢(sy) can be formed similarly. The lesson
to keep in mind, however, is that the feasibility of the augmentation algorithm hinges
upon the ability to perform such implicit calculations, and there undoubtedly exist
applications for which the covariances in Eq. (4.14) cannot be computed efficiently.

Another implementation issue is that the augmented state variables may have singu-
lar or ill-conditioned covariances. In this case, the augmented variables must be reduced
before executing Eq. (4.14). One method for reducing the augmented variables is to use
the singular estimators described in Chapter 2. The parameter A, in Eq. (4.14) is such
that A,((s¥) is the LLSE estimate of ((s) from ((s¥), while Q, is the corresponding
error covariance. If ((s7) has an ill-conditioned covariance matrix, then the singular
estimator in Eq. (2.14) can instead be employed. Namely, before computing the model
parameters, the augmented states can be reduced to

Ga(s) = L((s), (4.25)

where L, removes the componeunts of ((s) that have variances smaller than the machine
precision. This projection should have little effect upon the resulting model, since the
components discarded are near zero. The model parameters for the well-conditioned
model are

Py = LoVo Py VLY (4.26a)
As = LoPioqsnLis (LsiPosnLin) ™ (4.26b)
Qs = LaPi(y Ls = Lal(oxqsm Lz (Lsv Pesm L3) ™ LaaPecamciaLs (4.26¢)

Note that both P,y and L, are required for the computation of the parameters (A45,Q5)
and all (Ayq;,Qsq;)- This implies that P,y and L, will be required when computing the
parameters at scales m(s) and m(s) +1. If P, and L, are not stored when computing
the model parameters for scale m(s), one must be very careful when computing the
model parameters for scale m(s) + 1 (which involves computing both P, and L,
again). Very small perturbations in the coefficients of P, can lead to very large
differences in the matrix L,. For reasons of consistency, the use of different projection
matrices L, for calculating the coefficients at neighboring scales will lead to significant
errors in the statistics of the realized model.

B 4.3.5 Performance of the Augmented Multiscale Processes

The utility of the multiscale framework is the ability to efficiently provide statistical
analysis in the form of optimal estimates and error covariances. Assuming the model
parameters can be computed efficiently, the remaining question is how the state aug-
mentations affect the computational efficiency of multiscale estimator. Remember that
the number of computations required by the multiscale estimator increase cubicly with
the dimension of each state of the tree. For cach linear functional (g, f) placed at node
7 by the algorithm of Section 4.3.3, the state at each node s in the subtrec descending
from 7 will increase by ¢, elements—unless 7 is a descendent of o, where o is defined
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in Section 4.3.3, in which case the state dimension at node 7 increases by ¢ + 1 and
the state dimension at node o increases by g, — 1. While the effect of this increase is
insignificant when adding a single linear functional of f, the effect will be problematic
when a large number of linear functionals must be added. Therefore, an important
problem is to manage the dimension of the states in the augmented multiscale model.
There are basically three methods for reducing the dimension of the state variables.
First, as mentioned in the previous subsection, the state dimensions can be reduced
whenever the augmented variables ((s) have ill-conditioned covariances. Second, as
demonstrated in the following example, the nodes 7; can be choser intelligently so as
to minimize the effect of the augmentation. Third, and most importantly, approximate
multiscale models which sacrifice statistical accuracy for computational efficiency can
be employed. Some methods for approximation are discussed in Section 4.4.

One-Dimensional Flow

The problem of optimal node placement is best illustrated by example. We consider
the estimation of hydraulic conductivity for 1D flow from measurements of conductivity
and head. (See Chapter 3 for a description of the hydraulic conductivity estimation
problem.)

For steady-state flow in 1D, consider estimating log-conductivity on the interval
z € [0,1]. The boundary conditions are h(0) =1 and h(1) = 0. Assume that f(z) is a
1D first-order Markov process with zero mean and covariance

E[f(2)f(x +r)] =3I, (4.27)

Samples of this 1D Markov process can be mapped to the finest scale of one of the
multiscale models described in Section 2.3.2. In particular, assume a binary tree with
six scales, four samples per state, and N = 128 elements at the finest scale. (For N = 16,
the samples of the Markov process represented by each variable of the multiscale model
are illustrated in Figure 2.3b.) A sample path of f and the corresponding head function
are illustrated in Figure 4.1, along with the noisy point measurements. The head
function is observed at x; = /8, i = 1,...,7. The Fréchét derivatives of the head
measurements are illustrated in Figure 3.4, i.e., the head samples are linearized about
the mean of the conductivity function, my = 0.

The variables of the multiscale representation of the 1D Markov process can be
augmented so that all of the head measurements are modeled at the root node of the
tree. (The measurement support node o is equal to the root node for all of the linearized
head measurements.) The estimate f(z) of the finest-scale process of the multiscale
model is given in Figure 4.2. The multiscale estimator also computes the estimation
estimation error variances E[(f(.r) - f(;v))2], which are included in Figure 4.2 in the
form of confidence intervals. The confidence intervals are equal to the LLSE estimate
plus or minus a single standard deviation of the estimation error. As would be expected,
most of the true conductivity function lies within the confidence interval.
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Figure 4.1. (a) A sample path of the log-conductivity function, and (b) the corresponding head
function. The noisy measurements are indicated by o’s.
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Figure 4.2. LLSE estimate of the log-conductivity function (solid line) along with the one standard
deviation confidence intervals (dotted lines). The true conductivity function is also provided (dashed

line).
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A closer look at the state augmentation for the head measurements illustrates how
the state dimensions of the augmented model can be reduced, even when no approxima-
tions are made. Assume that all seven head measurements are placed at the root node
of the tree by recursively applying the algorithm of Section 4.3.3. The seven linearized
head measurements are represented by the inner products (g*, f), where (g, f) is the
128 sample Riemann sum approximation of LLO 9(zi, 2| fo)f(z) dz. Using a naive ap-
plication of the augmentation algorithm, the dimension of each state of the multiscale
tree will increase by fourteen. However, all of these dimnensions can be reduced. To see
this, first note that the seven Fréchét deiivatives are piecewise constant with a discon-
tinuity at the corresponding measurement sample x;; therefore, each Fréchét derivative
is equal to a linear combination of the eight local averages

i/8
a,.,-=/ fla)dr, 1=1,...,8.
(

i—1)/8

Since the state z(0) can be augmented with each of these local averages without de-
stroying the Markov property of this state, this variable only needs to be augmented
with eight elements. Secondly, z(0a;) only needs to be augmented with ay,... ,aq,
and z(0az) only needs to be augmented with as,... ,ag. Finally, note that the discon-
tinuities of all seven Fréchét derivatives lie at the houndaries of the eight finest-scale
intervals partitioned by the four nodes at scale m = 2. Over each of these intervals, the
Fréchét derivatives are constant, and thus linearly dependent. This “local linear depen-
dence” means that (g, fs) o (g2, fs) for all nodes s at scales m(s) > 2. Therefore, the
augmentation of any state z(s) for m(s) > 2 is given by the two local averages over the
two finest-scale intervals descendent from node s. The resulting augmentation is illus-
trated in Figure 4.3. The seven measurements are thus incorporated with only a minor
increase in the state dimension, especially at the finer scale nodes. These increases are
considerably less than would be predicted from a repeated application of the algorithm
of Section 4.3.3, and are due to the local linear dependence of the kernels g* over the
finest-scale intervals partitioned by the nodes of the tree. Thus one can imagine mod-
ifying the structure of the tree models, i.e., tailoring the descendents of each node, to
maximize this linear dependence and minimize the effect of the augmentation on the
estimation algorithm.

Another way to reduce the effect of the state augmentation on the multiscale es-
timator is to distribute the measurements at various nodes on the tree, even though
o may be identical for each measurement. One problem with placing all the measure-
ments at a single node is that the dimension of this node can become quite large, and
the computations required by the multiscale estimator increase cubicly with each state
dimension. For this example, keep (g*, f) at the root node, but place (g2, f) and (g°, f)
at nodes 0a; and Oa; and place (g’ f) for i = 1,3, 5,7 at the four nodes at scale m = 2.
In this case, by repeatedly applying the algorithm of Section 4.3.3 and also accounting
for local linear dependence, the dimension of the state at the root node increases by
only two, the states at scales m = 1 and m = 2 increase by three, and the remaining
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Figure 4.3. The states of the first three scales of the multiscale model for a 1D Markov process
after the inclusion of the seven linear functionals illustrated in Figure 3.4. The brackets in each state
represent local averages of the finest scale process.

states for scales m > 2 increase by 2. Thus a redistribution of the coarse-resolution
functionals leads in this case to nontrivial computational savings.

In general, the “localization” of the nonlocal measurement kernels is rarely exact
but instead approximate. For most applications, the problem will be to choose the mea-
surement nodes 7; such that the resulting multiscale model minimizes the associated
estimator complexity for a given tolerance of the statistical accuracy cf the multiscale
model. The approximations made in the augmentation will depend on voth the mea-
surement kernels and the covariance (prior) of the finest scale process. For example,
if the finest-scale covariance has very long correlation lengths, we might first discard
fine-scale fluctuations in the measurement kernels before representing them on the tree.

E 4.4 Approximate Realization Algorithms for Internal Models

All of the multiscale models discussed thus far are for modeling exactly the second-order
statistics of the finest-scale process and any nonlocal functions represented at coarser-
scale nodes. In this section, we first describe how the augmentation algorithm of the
previous section can be applied to internal multiscale models that only approximately
capture the desired second-order statistics. Next, we describe how to manage the in-
crease in state dimension due to augmentaticu by developing approximate multiscale
models. The key property of these approximate models is that they are consistent.

B 4.4.1 State Augmentation for Approximate Multiscale Models

For internal multiscale models that exactly .captuie the joint statistics of the finest-
scale process and the nonlocal functions to be estimated or measured, the internal
variables z(s) = W,b; = V, f exactly decorrelate the g, + 1 vectors in in Eq. (4.10). For
approximate multiscale models, this decorrelation is only approximate, i.e.,

/_)(bsril yrtt bso,,v bsa,,+| I ‘/Sf) > Oi (428)
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where p is defined in Section 2.3.4. There are basically two methods—heuristic and
optimal—for realizing multiscale models with approximate statistics. Heuristic methods
are useful when the internal variables V; f for the exact models can be determined with
little or no computation. An example is the nultiscale model for MRFs described in
Section 2.3.2. As illustrated in Figure 2.4a, the internal variable at node s for the
exact model consists of the boundaries of the finest-scale process descending from node
s. However, if the correlation distances of the MKF are more than a few samples
long, then the samples along any boundary will be highly correlated. Thus, one can
decrease the sampling rate along the boundaries, as illustrated in Figure 2.4b, while
still approximately decorrelating the subsets of the random field at the finest scale. A
similar multiscale model for a finest-scale process with Gaussian covariance is proviaed
in [70].

An optimal approach to realizing approximate multiscale models is to choose the
internal variables V, f so that errors in the model’s statistics are minimized for some fixed
cost function, e.g., the number of computations required by the multiscale estimator.
By statistical errors, we mean errors in the multiscale model representation of the
joint statistics of the finest-scale process and the nonlocal functions to be estimated or
measured. This problem has not been satisfactorily solved, but some foundation was
provided in [49]. The approach taken in [49] is to fix the dimensions of the internal
variables?, and then to choose V; so as to minimize 5 in Eq. (4.28). Because the internal
matrices V, are chosen independently, the algorithm is called “myopic”.

To augment the variables of these approximate multiscale models with arbitrary
linear functions of the finest-scale process, we make use of Theorem 3 in Chapter 2. As
shown in [49], this theorem leads to the following corollary.

Corollary Assume that the linear combination V, f satisfies

P(bsays--- vbsay s bsag i |Vsfy=¢, (4.29)
then for any linear combination Rya,bsa,, 1 = 1,... ,¢qs + 1, the conditional correlation
satisfies

ﬁ(bsnl IR ) banv bsaq.“ I st'l Rsa.-bsa.') S €. (430)

In other words, augmenting the internal variables z(s) = V;f, with additional linear
functions of b,sq, (for individual values of i) will not increase the correlation among
the vectors bs,;. Because bso, includes f,4,, the augmentation algorithm described
in the previous section can be used to add linear functions to approximate internal
models. Fortunately, the augmentation can only increase the statistical accuracy of the
multiscale model.

?Recall that [49] provides multiscale models for which only the finest-scale covariance are specified.
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@ 4.4.2 Approximatior Algorithm

In this section we discuss how to control the increase in the state dimensions due to
augmentation. More generally, we show how to consistently reduce the state dimensions
of multiscale models. The approximation which follows amounts to discarding elements
of the tree variables which are either insignificant or which must be removed to have a
manageable state dimension. However, just as care must be taken when augmenting the
variables of internal multiscale models, care must be taken when discarding elements
of these variables. In particular, the elements must be discarded so that the resulting
multiscale model is consistent.

To define the consistency of multiscale models, consider the relationship between
2(s) and its children. Assume for now that z2(s) = W, f,, which is the case if only the
finest-scale covariance is specified. The autoregression yields

z(say) Ayay w(say)
z(say) Ao w(sa
= | a(e) + (: 2| (4.31)
z(saq, ) Asaq, w(saq. )
A

Define z; (s) and z(s) by

z(s) = z(s) + z.(s),
Z"(S) = AT/\,
Az (s)=0.

The vector A = (AAT) ™! A z(s) follows from these relations. The component z/ (s) is not
used in the prediction of the children of node s. Because z, (s) must be uncorrelated
with the variables at any descendents of the children sa;, ¢ = 1,...,qs, it can be
removed from z(s) without affecting the statistics of the finest-scale process or the
estimation of the finest-scale process from observations of z(s). An example of such
inconsistency was provided in Section 4.3.2 by augmenting the root node with the
average value of the finest-scale process. The problem in this example was that the
descendents of the root node did not prcpagate the average value at the root node to
the finest-scale descendents. The solution was to augment the descendents of 2(0)
with local averages so as to make the model consistent. Analogously, we should expect
that removing elements of z(s) will require the removal of elements of the ancestors of
z(s) so as to make the mcdel consistent. A consistent model is one with no redundant
elements, i.e., z; (s) = 0. In other words, all the elements of the state z(s) are used to
predict its children.

This consistency requirement can be used to reduce the state dimensions of the
models produced by the Canonical Correlations algorithm of [49]. Because the inter-
nal variables W, f, are chosen independently, there is no reason to believe that the
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resulting model will be consistent. This inconsistency leads to unnecessarily large state
dimensions. The unnecessary elements can be removed using the following steps:

o for each node s at scale m(s) = M -3, where M is the finest scale, set z(s) = z(s).

e compute the multiscale model autoregression parameters (4,,Q,) for each node
s € {t|m(t) = M};

e repeat this process for scales m = M - 2,... ,0.

The final result provides the autoregression parameters of a consistent multiscale model.
Note that the algorithm must begin at the finest-scale nodes of the tree. The reason
is that the consistency requirements for the state at node s are given in terms of its
children sa;; thus, the variables at the child nodes have to be determined first.

Now we can describe how to consistently reduce the state dimensions of multiscale
models that have been augmented using the algorithm of Section 4.3.3. Assume that
we have the augmented internal variables ((s) = V;f. The consistency requirements
are similar to those just described for multiscale models focusing on the finest scale
process; the only difference is that some of the augmented portion of {(s) must be
ignored when enforcing consistency. Remember from Section 4.3 that, for each nonlocal
functional g7 f placed at node s, the variables at node s and nodes descending from
node s must be augmented with linear functions derived from g7 f. However, as argued
in Section 4.3.3, the descendents only need to be augmented to be made consistent with
(9s, fs); the component (g,e, f,<), if it is nonzero, is ignored. The reason is that (g, fs<)
is generated at ancestors of node s, so the descendents of node s are not affected by
this function. Therefore, the consistency requirements for the variable at node ¢ do not
include the components of the functionals placed at node s that are functions of fiec.
To be more precise, first rewrite ((s) as

6 ={ gt | (4:32)
=V,f, (4.33)

where G fsc contains the components (g.r, fsc) for the nonlocal functions placed at
node s, i.e., all g7 f for which 7; = s. The consistency requirement is that every linear
combination of V{f be used in the prediction of the children {(sq;), i = 1,... ,¢s.
Those components not used are discarded from ((s).

To further reduce the dimensions of the augmented variables, we can systematically
discard elements. There are a number of possible criteria for deciding what information
to discard, e.g.,

e retain only the J(s) linear combinations of ((s) that correspond to the d(s) largest
eigenvalues of F(,), or

» retain only the linear combinations of ((s) that correspond to eigenvalues of F¢(,)
greater than ¢, or



Sec. 4.4. Approximate Realization Algorithms for Internal Models 97

o r~tain only the d(s) linear combinations of ((s) that maximally decorrelate ((sa;),

< C(sayg).

The latter criterion is preferred, since this reduction is invariant to multiplying the
elements of ¢((s) by scalars. In any case, the only problem is to ensure that any such
reduction of the variables is done consistently. A fine-to-coarse scale approximation
algorithm follows as:

e for every node at scale m(s) = M — 1, make the augmented state ((s) consistent
with the variables at scale M; remember that only V¢ f needs to be made con-
sistent with the children of ((s); call {;(s) the new consistent variables at scale
M-1;

o reduce the C"(s) at scale M — 1 according to the particular reduction criterion,
e.g., discard the linear combinations of (.(s) corresponding eigenvalues less than
€s)

e update the multiscale model autoregression parameters (A,,Q,) for each node
s € {t|m(t) = M};

e repeat this process for scales m =M - 2,...,0.

The only trick is to keep track of how the particular nonlocal functions to be repre-
sented at coarser-scale nodes are affected by the variable reduction steps. Note that
the consistency of ((s) is enforced before the variable reduction, which in turn ensures
that the reduced variable is consistent with its children.
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Chapter 5

Multiscale Modeling and Estimation
of Hydraulic Conductivity

In this chapter, the multiscale framework is used to estimate hydraulic conductivity
from measurements of both hydraulic conductivity and hydraulic head. The practical
importance of, and problems associated with, hydraulic conductivity estimation were
discussed in Chapter 3. The problems stem primarily from the natural variability of
hydraulic conductivity and the difficulty in measuring it. Hydraulic conductivity is
known to vary significantly over many spatial scales [38], exhibit long-range dependen-
cies that increase with the scale of observation [38], and require nonstationary models to
be characterized statistically [98, 99]. The only way to measure hydraulic conductivity
directly is to extract samples from the earth’s subsurface. These observations are ex-
pensive and limited in spatial coverage; instead, one must rely on indirect observations
that range from analyzing the reflection of acoustic waves across geologic boundaries to
measuring the change in fluid pressure that results from injecting fluids into the side of
a wellbore. Because these measurements are sparse and limited in spatial resolution, it
is impossible to determine the hydraulic conductivity function at every scale of varia-
tion. Instead, additional information must be supplied, usually in the form of a prior
probability distribution and/or a finite-dimensional parameterization of the hydraulic
conductivity function.

As noted in Chapter 3, the spatial resolution of the conductivity parameterization
is usually chosen to be constant [98]. Furthermore, this constant resolution is chosen
as close as is computationally feasible to the resolution of the finest-scale measurement.
This approach can lead to a prohibitively large number of parameters to be estimated,
even when the number of measurements is small. The class of multiscale models pro-
vides an alternative parameterization. Because the phenomenon of interest is modeled
at multiple resolutions, the estimate can have resolution that varies according to the
Cistribution of the resolution in the measurements. Furthermore, using the algorithms
provided in Chapter 4, coarse resolution and nonlocal measurements can be modeled
and naturally incorporated at coarse scale nodes of the multiscale tree. These multi-
scale processes capture the relationship between the measurements made at different
scales and the conductivity function at each scale represented on the tree.

99
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This chapter focuses on the estimation of hydraulic conductivity for 2D flow from
observations of head and conductivity. This problem has been studied by many others,
e.g., 1, 68, 74, 97]. Other indirect observations of hydraulic conductivity, such as tracer
tests and contaminant concentrations, are usually available in field studies [38, 69]. The
incorporation of these measurements can lead to considerable improvements in the accu-
racy of the log-conductivity estimate. However, computing conductivity estimates from
numerous measurement sources, which usually provide observations at different resolu-
tions, is a difficult problem and no consistent and computationally feasible framework
exists for assimilating these various measurement sources. The multiscale framework is
one possibility, and, although only head and conductivity measurements are considered
in this chapter, the general approach that we describe applies to these broader classes
of measurements. (In particular, in Chapter 6 we demonstraie how tracer-test mea-
surements can be incorporated within the multiscale framework.) This chapter begins
in Section 5.1 with a discussion of the influence of head measurements on conductivity
estimates. These results demonstrate that the contribution of head measurements to
hydraulic conductivity estimates depends heavily on the experimental setup, e.g., the
geometry of the head and conductivity sampling, the existence of pumping and injec-
tion wells, and the nature of the boundary conditions. In Section 5.2, the multiscale
framework is applied. In particular, the nonlocal head measurements are represented
as point measurements of coarse-scale variables, while the conductivity measurements
are represented as point measurements of the finest-scale process. The head measure-
ments are incorporated into the multiscale framework using the state augmentation
algorithm of Chapter 4. The examples of Section 5.2 demonstrate that nontrivial data
fusion problems can be solved within the multiscale framework. In Section 5.3, the
estimates of hydraulic conductivity are used to re-linearize the head measurements.
This re-linearization is then incorporated into an iterative algorithm that computes the
Gauss-Newton maximization of the posterior probability density. If the maximization
produces a global extremum, then the MAP estimate is produced.

B 5.1 The LLSE Estimation of Conductivity from Head Measurements

Before applying the multiscale framework, we first analyze the influence of head mea-
surements on LLSE estimates of hydraulic conductivity. The aquifer is assumed to be
in steady state, so that the hydraulic head is related to conductivity by

V. (KVh)=Q. (5.1)

This equation is discussed in detail in Chapter 3. In this chapter, only two-dimensional
flow is considered. Two-dimensional flow describes horizontal flow in an aquifer of
limited vertical extent or flow in an aquifer that has little conductivity variation in the
vertical direction. In either case, the conductivity function to be estimated is a vertical
average of conductivity, which is called transmissivity in the groundwater literature
[27, 38]. For simplicity of exposition, we will not make this distinction.
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Figure 5.1. An illustration of the boundary conditions for flow in the x; direction.

Assume for the following examples that log-conductivity is a Markov Random Field
with zero mean and covariance

E[f(z)f(x+ 7)] = gleIrlTd , (5.2)

where |r|T = [|r1], |r2|]. The parameters d; and d; are the inverse correlation distances
in the x; and x, directions, respectively. For now, fix 02 = 1 and d = [3/2,3/2]. We
will analyze the problem of estimating Ny-by-Ny evenly spaced samples of f on the
unit square Q = [0,1] x [0,1]. The head measurements are linearized about fo = 0,
the mean conductivity, using the adjoint method described in Section 3.3. Also assume
that the head measurement errors have variance ”)2; = 0.005.

For the first example, assume that @ = 0 and that the boundary conditions are
given by the following: h = 1 along x; = 0, h = 0 along x; = 1, and the water
flux normal to the boundaries xo = 1 and x; = 0 is equal to zero. These boundary
conditions are illustrated in Figure 5.1. The log-conductivity function to be estimated
is plotted in Figure 5.2 and the corresponding head function is plotted in Figure 5.3a.
Head measurements are provided at the fifteen locations marked in Figure 5.3b. All
of these measurements are in the vicinity of the line x; = 0.5. Assume for all of the
examples in this section that the head measurement noise has variance o} =0.005.

The LLSE estimate of log-conductivity from the head measurements in Figure 5.3b
and the associated error variances of each log-conductivity sample are plotted in Fig-
ure 5.4. Remember that the LLSE estimate and error covariance are actually only
approximations based on the linearization of the head measurement equation; there-
fore, one must be careful in drawing any conclusions about uncertainty reduction from
the error variance plots. The most striking feature of the estimate in Figure 5.4 is
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Figure 5.3. (a) The head function produced by the log-conductivity function in Figure 5.2 and the

boundary conditions in Figure 5.1. (b) Fifteen head measurements located along a single value of x;.
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(a) (b)

Figure 5.4. (a) The LLSE estimate of log-conductivity from the head measurements at the locations
in Figure 5.3b and (b) the corresponding estimation error variances.

the lack of variation in the estimate, even near x;. There are two reasons for this.
First, as noted in Section 3.4, the head measurements for this scenario are insensitive
to conductivity values near the measurement location. This insensitivity is manifested
in the estimation error variances near x; = 0.5, which are close to the prior variance of
0% = 1. The other reason, also noted in Secticn 3.4, is that head measurements in this
scenario provide no information about the DC value of log-conductivity. All of the DC
information in the estimate is supplied by the prior mean of zero.

An explanation for the insensitivity of the head samples to absolute values of con-
ductivity is provided by the following analysis [67]. The steady-state flow equation for
QR=0is

V- (KVh) =0,

If the head function h(z) is known everywhere on the domain of interest, then the flow
equation is equal to a first-order ODE for K along each streamline, i.e.,

d
T (e@) K@) =0,

where s is the direction along the streamline and a(z) is a function of h(z). The
streamlines follow from the vector field Vh, which is known. However, to uniquely
determine K along each streamline requires an initial condition or final condition for
K. Thus, even when h is known everywhere in the domain of interest, the problem of
estimating K is ill-posed.

For the second example, consider the fifteen head samples at the locatious in Fig-
ure 5.5. Unlike the previous measurement geometry, these measurements provide in-
formation about Vh in the direction of flow. The estimate based on these head mea-
surements and the corresponding error variances are illustrated in Figure 5.6. This
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Figure 5.5. The locations of fifteen head samples.
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Figure 5.6. (a) The LLSE estimate of log-conductivity from the head measurements at the locations
in Figure 5.5 and (b) the corresponding estimation error variances.

estimate has considerably more variation than the estimate in Figure 5.4, including a
correct prediction of large conductivity values near z = (1,1); also, the error variances
are generally smaller than those in Figure 5.4b. However, the estimate of f(z) is still
very poor and the reduction in uncertainty is still quite small.

The influence of the head measurements changes considerably when @ # 0 and Q is
strong enough to considerably influence flow behavior in the aquifer. Consider again the
estimation of conductivity assuming that head is known everywhere in the domain of
interest, but that Q = Q¢ 6(z — z,), which is a point source idealization of an injection
(Qo > 0) or pumping (Qg < 0) well. If the source strong enough, then all streamlines
will originate at £ = z,. Assuming Qo is known, then K can be determined at the
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Figure 5.7. The head function for a pumping well at z, = (0.5,0.5).

wellbore from Darcy’s Law!. Since the wellbore is the origination of each streamline, K
can be determined everywhere in the reservoir. Thus, head measurements should have
significant influence on conductivity estimates when the source function is known and
exerts influence on flow in the aquifer.

For the third example, consider the case when Q is a pumping well located at
zs = (0.5,0.5) and is the primary determinant of flow over the domain of interest,
Q. For the boundary conditions, assume that A = 0 along the entire boundary of (2.
These boundary conditions are chosen so that every point in the aquifer is crossed by a
streamline originating from x, = (0.5,0.5), which will allow us to illustrate the scenario
in which head measurements maximally constrain the conductivity function. The head
function is illustrated in Figure 5.7. Assume again that the head samples are located at
the points illustrated in Figure 5.5. The LLSE estimate of hydraulic conductivity and
the corresponding error variances are shown in Figure 5.8. Note that the reduction in
uncertainty, as measured by the error variance, is much greater than for the two previous
examples. Also, the log-conductivity estimate has much more structure. However,
the head measurements alone are still unable produce a very accurate estimate of the
conductivity function. This problem will be remedied somewhat when conductivity
measurements are included along with the head measurements.

In the following section, the multiscale framework is applied to the estimation of
hydraulic conductivity from head and conductivity samples. The introduction of con-
ductivity measurements will generally decrease the influence of the head measurements.
Head measurements will provide the most influence in regions where no conductivity
samples are present. Also, head measurements, unlike conductivity measurements, can
constrain the conductivity estimates in the interwell regions where no measurements
are made.

1Here we have made the assumption that the wellbore has nonzero radius, so that the head gradient
is finite at the wellbore,
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Figure 5.8. (a) The LLSE estimate of log-conductivity from measurements of the head function in
Figure 5.7 at the locations in Figure §.5. (b) The corresponding estimation error variances.

B 5.2 Applying the Multiscale Framework to Conductivity Estimation

In Section 4.3.5, the multiscale framework was applied to the estimation of hydraulic
conductivity for one-dimensional flow. A considerably more challenging problem is the
estimation of hydraulic conductivity for two-dimensional flow. To apply the multi-
scale framework to the estimation of 2D conductivity from measurements of head and
conductivity requires

e the specification of multiscale stochastic process that describes the conductivity
function at all scales of interest and

e the representation of both the head and conductivity measurements as point ob-
servations of the multiscale process.

If the finest scale of the multiscale tree represents samples of hydraulic conductivity,
then the conductivity measurements can be represented as point observations of the
finest-scale process. However, as discussed in Section 3.3, samples of hydraulic head are
nonlocal and nonlinear functions of conductivity. To apply the multiscale framework,
the head measurements must be linearized about some conductivity function fy. The
adjoint method for computing a linear relationship between point values of head and
the conductivity function is described in Chapter 3. Because the linearized head mea-
surements are nonlocal, they are most naturally modeled at the coarser scales of the
multiscale process. In this section, the state augmentation algorithm of Section 4.3 is
used to represent the nonlocal head measurements at the coarser scales of the tree.
The use of the state augmentation algorithm implies that an internal multiscale
model already exists for the conductivity function. In this chapter, the finest-scale
samples of the log-conductivity function are modeled (a priori) as discrete-index Markov
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Random Fields. Multiscale models for MRFs were described in Section 2.3.2. The
variables of these models consist of dense samples along the boundaries of the finest-
scale regions partitioned by each node—see Figure 2.4. We again assume that f(r) has
zero mean covariance given by Eq. (5.2). The Ny-by-Ny rectangularly spaced samples
of this process form a discrete-index Markov random field?. As shown in Section 2.3.2,
if Ny = 2M+1 11 then these samples are naturally mapped to the finest scale of a quad-
tree with M scales. However, we must emphasize that the multiscale framework is in
no way restricted to such a simple process, or even to MRFs. Markov Random Fields
are only chosen because the corresponding multiscale processes are easily visualized.

We now consider a number of example applications of the multiscale framework.
For each example, both the performance of the multiscale framework (in terms of com-
putational efficiency, accuracy in computing the LLSE, etc.) and the results of the
conductivity estimation will be analyzed.

M 5.2.1 Example: Horizontal Flow, Head and Conductivity Samples at iden-
tical Locations

For this example, consider estimating 33-by-33 (N = 33) samples of log-conductivity
on the unit square Q = [0,1] x [0,1]. The steady-state flow satisfies Eq. (5.1) with
Q = 0 and the boundary conditions are illustrated in Figure 5.1, which implies flow in
the x; direction. The covariance of the log-conductivity samples is given by sampling
Eq. (5.2) with 02 = 0.5 and d = [3/2,3/2].

The measurements consist of twenty pairs of head and conductivity samples, located
at the points shown in Figure 5.9. These samples might correspond to the measurements
provided in twenty wells at a common depth or geologic stratum. The measurement
noises for the head and conductivity measurements have variance of = 0.001 and 0} =
0.1, respectively.

The Nj-by-Ny finest-scale samples of conductivity are mapped to variables at the
finest scale of a quad-tree with M = 4 scales. The conductivity measurements are
easily incorporated as point measurements of the finest-scale process. The nonlocal
head measurements (linearized about fo = 0) can be represented at coarser scales of
the tree using the state augmentation algcrithm of Section 4.3. The four head samples
nearest £ = (0.5,0.5) are represented at the root node. Each of the remaining head
measurements is represented at the node at scale m = 1 whose finest-scale descendents
include the quadrant of € in which the head measurement is located.

Because the linearized head measurements are nonlocal (the Fréchét derivatives are
nonzero for all ), the state dimensions at each node on the tree should increase by
20¢ (¢ = 4) at each node after applying the augmentation algorithm of Section 4.3.
However, before the model parameters are computed from Egs. (2.30) and (2.32), the
state dimensions can be reduced by accounting for probabilistic dependence among the
elements of each internal variable. (See Section 4.3 for a more thorough discussion.)

2In general, sampling a continuous-index MRF does not produce a discrete-index MRF [15]).
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Figure 5.9. Each x corresponds to location at which both the head and conductivity function are
sampled.

The dimensions of variables at scales zero and one of the multiscale tree model for the
aforementioned MRF increase by forty. While less than eighty (4*20), these increases
in the state dimensions are still significant and lead to large increases in the number
of computations required by the multiscale estimator. The problem is that we have
modeled the head measurements exactly, even though large additional reductions in the
state dimensions can likely be achieved without significant degradation of the statistical
relationships. One such approximate algorithm was discussed in Section 4.4, but it is
not implemented in this thesis.

The total complexity required by the multiscale estimation algorithm is approxi-
mately 500 M-flops, while a direct implementation of the LLSE estimation and error
covariance equations requires approximately 250 M-flops. This comparison, however,
is somewhat meaningless, since the two problems are very different. The multiscale
algorithm produces an estimate and error variance for the conductivity process at mul-
tiple scales, while the standard LLSE estimate produces only a finest-scale estimate
and the corresponding complete error covariance matrix. However, this is the largest-
sized problem for which the normal equations for standard LLSE estimation can be
implemented on our computer. Storing just the covariance matrix of the finest-scale
process requires 33* = 1.2 million storage elements. If the linear dimension of the do-
main is doubled, storing the covariance in double precision arithmetic would require
8 x (2 * 33)2 = 150 megabytes. Fortunately, this O(N}') growth in complexity does not
hold for the multiscale estimator. Thus the real advantage of the multiscale algorithm
will be for larger-sized domains, for which the standard implementation of the LLSE
normal equations requires too many storage elements.

The log-conductivity function to be estimated and the corresponding head function
are illustrated in Figures 5.10 and 5.11. The LLSE estimate of the process at the
finest scale of the multiscale tree is illustrated in Figure 5.12, while the estimation
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Figure 5.10. A sample path of the log-conductivity function, plotted in (a) gray scale and (b) using
a mesh plot.
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Figure 5.11. The head function produced by the conductivity function in Figure 5.10 and the boundary
conditions in Figure 5.1.

error variances are illustrated in Figure 5.13. Recall that the unconditional variance of
log-conductivity is 0.5. Note that the estimate has fine-scale variations only near the
conductivity measurements.

R 5.2.2 Example: Flow in a Vertical Slice

While the previous example considered flow in the horizontal plane, we now present an
example? for which x, corresponds to depth. Again consider estimating 33-by-33 sam-
ples of log-conductivity on the unit square Q = [0,1] x [0, 1], but assume an anisotropic

3This example is drawn directly from [21].
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Figure 5.12. The LLSE estimate of the log-conductivity function in Fig. 5.10: (2) gray scale image,
(b) mesh plot.
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Figure 5.13. The variance of the estimation errors associated with the log-conductivity estimate in
Figure 5.12.
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Figure 5.14. A sample path ~ the log-conductivity function plotted in (a) gray scale and (b) mesh
plot.

covariance function with d = [5/3,6] and ¢ = 1 in Eq. (5.2). This covariance implies
that the log-conductivity function has stronger correlation in the horizontal direction
(x1) than in the vertical direction (x2), which is typical of groundwater aquifers that
arise from sedimentary deposition. A sample path of this discrete-index MRF is plotted
in Figure 5.14.

Flow is again given by Eq. (5.1) with Q = 0 and the boundary conditions illustrated
in Figure 5.1. The head function is plotted in Figure 5.15a. The measurements provided
are the 123 conductivity samples and the 20 head samples illustrated in Figure 5.15b.
The head and conductivity samples are no longer assumed to be at the same locations.
The measurement geometry is meant to simulate measurements along fully or partially
penetrating wells. The measurement noises for the head and conductivity measurements
~gain have variances o2 = 0.001 and a} = 0.1, respectively.

The LLSE estimates of the finest-scale process and the associated error variances
are plotted in Figures 5.16 and 5.17, respectively. Note that the error variances decrease
much more significantly in regions of dense conductivity sampling than in regions of
dense head sampling, illustrating the minimal influence of the head measurements when
Q = 0. More importantly for multiscale modeling, note that the conductivity estimate
has fine-scale variations only where such variations can be inferred from the data, e.g.,
near the line x; = 0.12 in Figure 5.16. This suggests reducing the number of parame-
ters used to describe the conductivity estimate in areas where the estimate is smooth.
Namely, there is no reason to model hydraulic conductivity to very fine resolution if
such variables cannot be justifiably estimated from the data. The advantage of a multi-
scale parameterization is that the finest resolution at which the process is modeled can
be varied in different regions of the aquifer according to the distribution of resolution
supplied by the measurements. The only problem is how to determine the distribution
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Figure 5.16. The LLSE estimate of the log-conductivity function in Fig. 5.14

(b) mesh plot.
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Figure 5.17. The variance of the estimation errors associated with the log-conductivity estimate in
Figure 5.16.

of resolution a priori, before realizing the multiscale model. Such modeling is beyond
the scope of this thesis, but is absolutely necessary if the multiscale framework (at least
in the capacity presented in this thesis) is to be successfully applied to large data fusion
problems. Also, within a full nonlinear optimization, where for each iteration the head
measurements are linearized about the current conductivity estimate, this approach
might eventually be used to reduce the number of parameters used to re-linearize the
head measurements, and hence reduce the number of computations required for the
conductivity estimation. The re-linearization of the head measurements is discussed in
the following section.

For this example, the multiscale estimator requires slightly fewer computations (380
M-flops) than does a direct solution to the normal equations (470 M-flops) for producing
the LLSE estimate and the corresponding error variances. Compared to the previous
example, the number of computations required for the multiscale estimator has de-
creased. The reason for this decrease is that the twenty head measurements used in
this example are highly correlated, so that the increase in state dimensions from aug-
mentation is smaller once probabilistic dependence is accounted for. The increase in
the number of computations required for the normal equations is due to the increase in
the number of conductivity measurements. An advantage of the multiscale estimator is
that the number of measurements has little effect on number of computations required.
Note that the overall sampling density of the finest-scale process for our 2D example
is low, as illustrated in Figure 5.15b, so the muitiscale framework will compare more
favorably as the number of finest-scale measurements increases.

® 5.3 MAP Estimation: Nonlinear Optimization

The LLSE estimators described in the previous sections, whether implemented using
the multiscale framework or standard solutions to the normal equations, are based
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on linearizations of the head measurement equation. Because the covariance of the
head measurements and the cross-covariance between head and conductivity functions
are approximated from the linearization, the estimates and error covariances are ap-
proximations of the exact LLSE estimator. (See Section 2.1.2 for a more complete
discussion of approximations to LLSE estimators when the measurements are nonlin-
ear.) In all of the previous examples, the zero function (fp = 0) is used as the point of
linearization. Define f to be the estimate based on this linearization. Since we expect
Il = fIl < IIf = foll, the linearization should generally be improved if f rather than the
zero function is used as the point of linearization. The newly linearized head measure-
ment equation can then be used to obtain an approximation of another LLSE estimate.
This process can be repeated iteratively, and the general algorithm (expressed in terms
of the the normal equations) is summarized by Eq. (2.21). As noted in Section 2.1.2
(see [69] for details), this iterative procedure is the Gauss-Newton solution of the MAP
estimator; in other words, this procedure is the Gauss-Newton minimization of the cost
function J(f) defined in Eq. (2.19).

The Gauss-Newton solution of the MAP estimator can be implemented within the
multiscale framework, but there are a number of issues to be considered. For instance,
at each iteration the head measurements are linearized about the present estimate of
the finest-scale conductivity function, fi. As fi changes, so do the Fréchét derivatives
of the head samples. Since the Fréchét derivatives change, the state augmentation
algorithm of Section 4.3 must be re-applied at each iteration. For K total iterations,
this will imply both K implementations of Egs. (2.30)-(2.32) and K calculations of the
Fréchét derivatives, which can be quite costly if K is large. An important question,
then, is how fast the Gauss-Newton iteration converges.

W 5.3.1 Example: Horizontal Flow, Head and Conductivity Samples at Iden-
tical Locations

Consider again the example discussed in Section 5.2.1. To initialize the Gauss-Newton
iteration, set fo = 0. The multiscale framework, in conjunction with the augmentation
algorithm of Section 4.3, will be used to successively compute estimates of the log-
conductivity function. Note that f1 was computed in Section 5.2.1. At each successive
iteration, the head measurements are linearized about the most recently computed esti-
mate of the finest-scale process, fx. Once these Fréchét derivatives have been computed,
the multiscale model parameters can be updated using the augmentation algorithm of
Section 4.3. The estimates then follow from an application of the multiscale estimation
algorithm.

The convergence of the Gauss-Newton iteration is plotted in Figure 5.18, where
fr is the estimate of the finest-scale process after the k-th iteration. The estimate
after six iterations and the difference fg — f; are plctted in Figure 5.19. Note from
Figure 5.18 that the Gauss-Newton estimate converges geometrically as a function of k
to its final value foo, and that the difference ||fi41 — fx|| is quite small even for k = 3.
The convergence of the sequence fr, however, does not guarantee that this sequence
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Figure 5.18. The convergence of the Gauss-Newton iteration measured in terms of || feer = fil] for
k=12,...,6

converges to the global maximum of the posterior density [69], nor does it guarantee
that foo is actually an improvement over f1. For this particular example, we have

I fs — Il = 6.43

1 — fll = 6.44

Il firigea — Il = 6.78
£l =17.0

where fk..ig,d is the LLSE estimate? of conductivity based on only conductivity measure-
ments. The kriged estimate is computed to show that the head measurements improve
the log-conductivity estimate, at least in terms of the £; norm. Also, the Gauss-Newton
iteration converges to an estimate of log-conductivity that is slightly better than fi.

These results are typical for log-conductivity functions with small variance o
Namely, the sequence fi converges rapidly to an improved estimate of log-conductivity
that is slightly more accurate than fi. Furthermore, the rate of convergence of the
iteration is geometric. The amount that the Gauss-Newton estimate is an improvement
over the single iteration estimate (based on the linearization fo) depends on the value
of the head measurement noise v,. If vy is large, the head measurements will supply
inaccurate information about log-conductivity, so that an improved linearization of the
head measurements will not necessarily lead to an improved estimate.

Note that we did not display the convergence of J( f&) as a function of k for two
reasons. First, the computation of this quantity is very expensive, as it requires the
implicit inversion of the covariance of the entire finest-scale log-conductivity function.

2

*Kriging is a term commonly used in geostatistics to refer to the computation of the LLSE estimate
of a random process from samples of that process (23], although kriging sometimes refers only to the
case in which measurement noise is zero.
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Figure 5.19. (a) The estimate of the log-conductivity function after K = 6 iterations, (b) the difference
between this estimate and the single iteration estimate plotted in Figure 5.12.

Second, the measurement covariance cannot be computed exactly due to the nonlincar-
ity of the head measurements. Using the linearized measurement variance Ry in place
of R can lead to a sequence J(f;) that increases with k.

To see how well the Gauss-Newton iteration performs for log-conductivity functions
with large variance, consider the same example but with ¢2 = 10. A sample path of the
log-conductivity function is plotted in Figure 5.20. The sequence || fk.,.l - fk|| is plotted
in Figure 5.21. Note that this convergence rate is much slower than the convergence
rate plotted in Figure 5.18. In fact, the general trend is that the sequence || fk+1 - fill
converges more slowly as o? increases, and in some instances will not converge® to an
asymptotic estimate fm.

The implication in terms of total computations is that larger variances of log-
conductivity will generally require more iterations of the Gauss-Newton optimization.
The benefit, however, is the Gauss-Newton iteration generally provides greater improve-
ments over the single iteration estimate fi when o2 is large. For this example,

Il fra — £l = 29.7
Ifr - fll = 42.3

Il frigea — fII = 66.4
I1£ll = 76.1

so that fi4 is a significant improvement over fi. Also, compared to the 0% = 1 example,
the Gauss-Newton iteration provides a more significant improvement over the single

5Some empirical results on the convergence of the Gauss-Newton iteration are provided in {100}, while
Chavent [12] provides conditions under which the nonlinear optimization has a unique and well-posed
minimum.
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Figure 5.20. The log-conductivity function produced by o? = 10.
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Figure 5.21. The convergence of the Gauss-Newton iteration measured in terms of || fu+1 — fi|| for
k=1,2,...,14 for the example in which o* = 10.
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iteration estimate, even when the differences || f, — f|| are normalized by || f||. Finally,
note that the estimates fi for this example are significant improvements over the es-
timate fkriged based on only conductivity measurements. The reason is that for head
measurements of fixed quality (o2 constant), the value of these measurements is greater
for higher-variance log-conductivity functions. In other words, the signal-to-noise ratio
of the head measurements has increased.



Chapter 6

Travel Time Measurements and
Estimation

This chapter analyzes travel times in two-dimensions under steady-state flow condi-
tions, i.e., when the head function and velocity fields do not change with time. The
travel time is simply the time it takes a particle to travel from one region of the aquifer
to another. Travel times arise as quantities of interest when using tracer tests or ana-
lyzing contaminant plumes. If the effects of particle displacement due to diffusion and
kinematic dispersion are ignored, travel times are completely determined by the velocity
field of the aquifer. Because the velocity fields are determined by hydraulic conductivity
(and other hydrologic parameters like porosity and recharge rates), tracer tests can be
used to infer the hvdraulic conductivity function. For other applications, such as EPA
performance analyses, the problem is to estimate rather than measure travel time. In
this case, uncertainties in hydraulic conductivity must be propagated to uncertainties
in particle travel times.

In a manner similar to the incorporation of head measurements described in Chap-
ters 3 and 5, travel-time measurements can be used to condition hydraulic conductivity.
Travel times due to advective transport (no diffusion) are functions of groundwater ve-
locities, which follow from Darcy’s Law as

o(z) = —-nT];v—)K(:c) Vh(z), 6.1)
where n(z) is the effective porosity function. (Effective porosity describes the volumetric
percentage of the rock in which fluid is able to flow.) Porosity usually has much less vari-
ability than hydraulic conductivity, and is assumed constant or slowly varying in most
practical applications {27, 31, 85]. Since head is a function of conductivity, it is clear
from Eq. (6.1) that velocity is also a function of conductivity, and in fact is completely
determined by conductivity if the boundary conditions, recharge rate, and porosity are
known. Thus travel times can serve as measurements of the conductivity function. For
example, in [47] tracer tests were incorporated along with cross-well seismograms to es-
timate the coarse-scale distribution of hydraulic conductivity. Acoustic waves are useful
for determining lithographic boundaries, but must be coupled with other measurements
in order to uniquely determine the coarse-scale hydraulic conductivity of the individ-

119
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ual regions. In [37], measurements of hydraulic head and contaminant concentrations
were used to estimate parameters of the log-conductivity distribution. The utility of
incorporating travel-time measurements for the estimation of hydraulic conductivity is
also suggested in [31]: “Tracer data are known to be a good source of information on
aquifers’ heterogeneity: data such as concentration and travel times provide informa-
tion [that] is vital for identifying large features of the conductivity field that act as
flow paths and barriers.” Thus, not only might travel-time measurements reduce the
uncertainty in the equations of groundwater flow, but they also have the potential to
supply information about the conductivity field that is qualitatively different from the
information supplied by head and conductivity measurements.

Another application of travel-time analysis is for EPA performance analyses [85, 98],
which require a probabilistic distribution for the travel times associated with ground-
water flow equations. For instance, the Waste Isolation Pilot Plant is a region in the
subsurface of New Mexico currently being evaluated for its suitability as a repository
for transuranic wastes generated by the DOE [98, 99]. The problem imposed on the
DOE by the EPA is to determine a probability distribution for the time that a leaked
particle would take to travel outside the Pilot Plant region when the only available data
are hydraulic head and conductivity measurements.

In this chapter, we present a unified approach to the estimation of travel time
and the incorporation of travel-time measurements. Analogous to the linearization
of head measurements given in Chapter 3 and Appendix C, a linearization of travel
times with respect to the log-conductivity function is described in Section 6.1. This
linearization is then built into a multiscale model for hydraulic conductivity using the
state augmentation algorithm of Chapter 4. If head measurements are also represented
by the multiscale model, then, as shown in Section 6.2, the multiscale framework can be
used to fuse measurements of conductivity, head, and travel times into an estimate of
hydraulic conductivity. Secondly, the exact same model can also be used to determine
the conditional distribution of travel time from measurements of head and conductivity.
These conditional distributions are presented in Section 6.3, where they are compared
to the distributions generated by conditional simulations—the Monte Carlo approach.

B 6.1 A Linearized Relationship between Travel Time and Log-Conductivity

Travel times due to advective flow were discussed in Section 3.1. Define z(t) to be the
location of a particle of interest at time t, and assume that the location of the particle
at t = 0 is known with certainty. This particle will flow along the streamline that passes
through z(0). If C is the streamline that passes through z(0), the time for the particle
to travel from z(0) to the end of this streamline is

_ [v(z)-dzx
= [ (62

where the differential dz is always in the direction tangent to the streamline C. This
equation is identical to Eq. (3.7).
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Figure 6.1. The travel of a particle along a streamline originating at z(0) to the line x; = L.

In this chapter, we do not consider the travel time between x(0) and another point,
but instead analyze the travel time from z(0) to a control plane x; = L, as illustrated
in Figure 6.1. (Recall that boldface is usad to distinguish the two spatial components
x; and x; from the measurement locations z;.) Define tc, to be the travel time to
the control plane. As noted in [85], this travel time is a natural description for any
application in which one is concerned with the total mass of solute discharging through
a plane. Implicit in this description of travel time is the assumption that water generally
flows in the x;-direction, so that all possible streamlines originating from z(0) pass
through x; = L.

The goal of this section is to develop a linearized relationship between travel time
to a control plane and log-conductivity. This linear relationship will be in the form

oo ~ tep(fo) + /Q gz fo) (f(@) ~ folz}) d, (6.3)

where fj is the log-conductivity function used as the point of linearization and tep(fo)
is the time to travel from z(0) to the control plane when log-conductivity is equal to
fo. Our linearized analysis of travel time follows the linearized analysis provided in
(85], only we do not make the assumption that Vhy is a constant. (If Vhg is equal to a
constant, then the travel time tcp(fo) is for travel in a straight line.) Also, the analysis
of [85] is solely in terms of second-order moments, whereas we will develop an explicit
functional relationship between t., and log-conductivity.

The first step for linearizing travel time is to develop a linearized relationship be-
tween velocity and log-conductivity. Decompose the head and log-conductivity func-
tions as

f(z) = fo(z) + 6f(x), (6.4a)
h(z) = ho(z) + 6h(z) + h.o.t, (6.4b)
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where hg is the head function when the log-conductivity is fg, and h is the head function
when log-conductivity is f. Both h and hg satisfy the same boundary conditions. In
Equation (6.4b), éh is the first-order perturbation of head, which is a linear function of
8f . The exact relationship between 6h and §f was described in Section 3.3. Substituting
Equation (6.4) into Eq. (6.1) and ignoring the higher-order terms in Eq. (6.4b) yields

1

vA - el 7 (hg + 6h), (6.5a)
- -% efo*t hy — %ef”&f Véh, (6.5b)
e _% efo(1 + 6f) Vho — %eh(l + 6) Véh, (6.5¢)
~ —%e"’ Vho — %ef" Vho 6f — %e!" Véh, (6.5d)

where the last two approximations are made by discarding terms that are not first-order
in 6f and 6h. Thus, velocity can be approximated as

v(z) = U(z) + u(x), (6.6a)
U(z) = —% efo Vhy, (6.6b)
u(z) = -% efo (Vho 6f + V) , (6.6¢)

where U(z) is the “background velocity” due to the conductivity function fo and u(z)
is the perturbation in velocity due to éf. Since 6h is linear in §f, the approximation
to the velocity perturbation is linear in §f. In this case, Equation (6.6) describes a
linearized relationship between log-conductivity and velocity.

To linearize travel time, consider the following equation

t
2(8) = 2(0) + / o(z()) dt'. 6.7)
t'=0
This is not necessarily a useful definition for particle location, since z(t) appears on
both the left and right-hand sides of the equation. However, the path z(¢) can be
approximated by the path determined by the background velocity U(z). Define Cy to be
the streamline originating from z(0) and terminating at x; = L according to the velocity
function U(z), so that Cy(t) is the position of the particle at time ¢ according to the
background velocity. The location of the particle can be approximated by substituting
Co(t) for z(t) into the right-hand side of Eq. (6.7). This substitution gives

t

z(t) = z(0) + / v(Co(t')) dt’ . (6.8)

t'=0
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Since x1(tcp) = L, the first component of this equation is

tep

L —-x,(0) = /_ v} (Co(t')) dt’, (6.92)
tep tep

~ / Ui(Co(t')) dt' + / u; (Co(t')) at’, (6.9b)
t'=0 t'=0

where v1(x), Uy(z), and u;(z) are velocities in the x1-direction. Note that t.,(fo) is the
travel time to the control plane when the velocity field is U(z), i.e., [Co(tep( fo)], =L
Define 6tcp = tcp — tep(fo). Substituting tep = tep(fo) + 6tcp into Equation (6.9b) gives

tep(Jo) tep(fo)+6tep
L -x,(0) = / Uy (Co(t’)) dat’ + / Uy (Co(t')) at’

Ji'=0 ., t'=tcp(fo)

W

L—x;(0)

tep(fo) tep(fo)+6tep
+ / uy (Co(t')) dt’ + / u1 (Co(t')) dt'  (6.10)
t'=0 ¢'=tcp(f0)

The last term on the right-hand side of Eq. (6.10) is certainly second-order in 0tcp and
&f, and thus is discarded to yield

tcp(f0)+6tcp t:p(!ﬂ)
f U, (Co(t')) dt' = -—/ uy (Co(t')) dt’ . (6.11)
t =0

'=tep(fo)
The right-hand side of Eq. (6.11) is linear in 8f, but the left-hand side is linear in &t
only if Ui(z) is constant in the neighborhood of Co(tep(fo)). For our linearization, we
will define an aggregate velocity U; that describes Ui(z) in this neighborhood, so that
the left-hand side of Eq. (6.11) is approximated by U1btep. The linear relationship
between 6., and 6f follows as

1 tcp(,ﬂ) , ,
Jtcp = —_ﬁ— U (Co(t )) dt (6128.)
1 Jt'=0
ui(z) = —% efo(z) (6f(z)2’;% + axilﬁh(:v)) . (6.12b)

Recall that 6h(z) = (gn(z,2’| fo), 6f ('), where gn(z,z’ | fo) is the Fréchét derivative
defined in Section 3.3.

To numerically compute the kernel 9t(z] fo) in Eq. (6.3), we employ the following
algorithm:

(a) integrate Eq. (6.12a) using trapezoidal integration, and

(b) for each velocity sample u; (;) used in the integration, compute the contribution
from 52——16h(a:,-) using the Fréchét derivatives from Chapter 3.

The complexity of this computation increases linearly with the number of time samples
used for the integration. For all of the examples described in this chapter, one can
obtain a very good approximation of 9¢(z| fo) using a small number, e.g., sixteen, of
time samples.
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Figure 6.2. The kernel g:(z| fo) that provides a linearized relationship between travel time and
log-conductivity for fo = 0. The contour lines of the function are projected onto the plane z = —16.

B 6.1.1 Example Linearizations

One advantage of our approach to travel-time analysis is that the kernels g:(z| fo)
are computed explicitly, which allows one to determine the influence of travel-time
measurements on hydraulic conductivity estimates. As an example, consider the flow
conditions illustrated in Figure 5.1, which lead to flow in the x;-direction. Consider the
travel time from z(0) = (0.25,0.5) to the plane x; = 0.75. For this and the following
examples, assume that the effective porosity is constant and equal to » = 0.2. For
fo =0, the kernel g;(z | fo) is plotted! in Figure 6.2. This function shows that the travel-
time perturbation (g, f — fo) is most sensitive to log-conductivity values on the line from
z(0) to (0.75,0.5). This line is the path Cp, starting at z(0) and terminating at x; =
0.75, determined by the background velocity. Therefore, if this linear approximation is
applied to travel-time measurements, the linearized measurement equations will supply
accurate information only when C, the true travel path, is close to Cp. Also note that
g¢(z | fo) is negative along the path Cp, as should be expected, since an increase in
log-conductivity should lead to decreased travel times. The positive values of ¢:(z | fo),
located just off the path Cp, are due to the second term in Eq. (6.12b).

For a second example, consider the linearization about the log-conductivity function
fo = sin(2mx;) sin(27x,). The conductivity function Ko = e/0 is plotted in Figure 6.3a.
The background velocity field and flow path Cg are illustrated in Figure 6.3b. This flow

'Note from the linearization in Eq. (6.12) that g.(z | fo) will have impulses along the path Co due to
the first term in Eq. (6.12)b. However, because we work with a discrete representation of conductivity,
where each element of the discrete-index conductivity field corresponds to an aggregate value of f(z)
over a small region of area Ax;-by-Ax,, the kernel that is calculated is a convolution of g:(z | fo) with
pulses of area Ax;-by-Axsz. The locations of these pulses correspond to the locations of the local areas
represented by each element of the discrete-index conductivity function.
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Figure 6.3. (a) The conductivity function Ko = exp(sin(27x,) sin(27x3)) and (b) the corresponding
background velocity field. The streamline that begins at z(0) = (0.25, 0.5) and terminates on Xx; is also
illustrated with *’s.

Figure 6.4. The kernel g:(z | fo) that provides a linearized relationship between travel time and log-
conductivity for fo = sin(27x;)sin(2rx2). The contour lines of the function are projected onto the
plane z = —10.

path terminates on the control plane x; = 0.75 at x = (0.75,0.69). The kernel g¢(z | fo)
is plotted in Figure 6.4. Note again that the travel-time perturbation (g¢, f — fo) is
most sensitive to log-conductivity values on the path Cp. (The lack of a distinct ridge in
g¢(z | fo) along the path Cp is an artifact of the MATLAB function used to plot g:(z | fo)
from discrete samples, and is not a feature of the function itself.)
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a* p

Head BC | Flux BC
0.01 0.98 0.94
0.1 0.97 0.5
05 | 0.89 055 |
1.0 0.82 0.77
5.0 0.39 048 ||
100 [ 019 032 |

Table 8.1. Estimates of the cross-correlation between 6tc, and At.p, based on 4000 sample paths of
log-conductivity. The boundary conditions are either flux or head conditions at x, =0, h =0at x; =1,
and no flux conditions elsewhere. The linearization is based on fo = 0.

M 6.1.2 The Accuracy of the Linearization

To characterize the accuracy of the travel-time linearization, we calculate the cross-
correlation between At = top, — tep(fo) the approximation 8., = (g, f — fo) when
fo = 0. The cross-correlation, defined by

- E [(AtcP - E[AtCP] ) (6tCP -L [6tcp] )]
B var[Atcp]l/%ar[atcp]l /2 ’

p

is a useful measure of how well 6., approximates At.p, assuming that the variance of
these two random variables is identical.

Assume that log-conductivity is zero-mean and has the covariance given by Eq. (5.2)
with r; = ro = 3/5. For the flow conditions, assume the boundary conditions provided
in Figure 5.1. The first column of Table 6.1 provides the variance of the log-conductivity
function. Note that the variance of K is related to the variance of f by

2

ok =¢° (e"2 -1), (6.13)

assuming that f has zero mean. Thus an increase in o2 from 0.1 to 5.0 corresponds to
the much larger increase in conductivity variance from 0% = 0.12 to 2.2 x 10*. The
second column of Table 6.1 provides estimates of p based on 4000 sample paths of f.
As would be expected, the cross-correlation decreases with increasing log-conductivity
variance. For a second example, replace the head boundary condition at x; = 0 with
the flux condition ¢ = [1.0, 0.0]T. Note that both flow scenarios yield identical head
functions and velocity fields when the log-conductivity is equal zero. Again, the cross-
correlation decreases with increasing log-conductivity variance. For both scenarios, the
linearization becomes quite poor for o2 > 5.0, which is quite similar to results for the
accuracy of the head function linearization cited in [38]. However, using measurements
of head and conductivity to condition log-conductivity and improve the linearization
allows the time-travel linearization to be applied to measurements of travel time even
when o2 > 5.0.
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Figure 6.5. A sample path of the log-conductivity function, plotted in (a) gray scale and (b) using a
mesh plot.

B 6.2 Estimation of Hydraulic Conductivity

Now that we have described how to approximate travel-time in the form of Eq. (6.3),
travel-time measurements can be incorporated within the multiscale (or any other
LLSE) framework. The purpose of this section is to analyze the effect of travel-time
measurements on hydraulic conductivity estimation, and also to demonstrate that the
multiscale framework can be used to fuse three very different types of measurements
into an optimal estimate of hydraulic conductivity. However, we do not address some
of the significant multiscale modeling issues, such as developing low-order approximate
multiscale implementations of this data fusion problem. Such issues are deferred to
future work.

We now build on the example of Section 5.2.1 that was later revisited in Section 5.3.1.
The true path is illustrated by the dashed line in Figure 6.6, which is a replica of
Figure 5.10. The locations of the head and conductivity measurements were illustrated
in Figure 5.9. For the travel-time measurement, assume that a particle is released from
z(0) = (0.25,0.5), and the time to travel to the control plane x; = 0.75 is measured.
Assume that the measurement noise has very small variance (6 = 10~%) and assume
n = 0.2 for the effective porosity. The path traveled by the particle is illustrated in
Figure 6.6 along with the locations of the head and conductivity measurements. The
path traveled by the particle when fo = 0 is also illustrated, and is the straight line
from z(0) = (0.25,0.5) to = = (0.75,0.5). The true travel time is {c; = 0.1493 units,
while the background travel time is tcp(fo) = 0.1 units. This indicates that there must
be a region of negative log-conductivity on the path from z(0) to the control plane.

The linearized travel-time measurement is represented at the root node of the multi-
scale model described in Section 5.2.1, and leads to an increase of three in the dimension
of the state at the root node. The finest-scale estimate of log-conductivity is illustrated
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Figure 6.6. Each x corresponds to location at which both the head and conductivity function are
sampled. The dashed line corresponds to the particle travel path, C, while the solid line is the path Co
traveled according to the background velocity.
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Figure 8.7. The LLSE estimate of the log-conductivity function in Fig. 6.5: (a) gray scale image, (b)
mesh plot.

in Figure 6.7, and the corresponding error variances are illustrated in Figure 6.8. The
difference between the estimate in Figure 5.12 and the estimate in Figure 6.7 is illus-
trated in Figure 6.9. As would be expected from the kernel in Figure 6.2, the difference
between the two estimates is greatest along Cp, the straight line from z(0) = (0.25,0.5)
to £ = (0.75,0.5). Also, the effect of the travel-time measurement is to decrease the
log-conductivity along this path to account for the increased travel time.

Extending the results of Section 5.3.1, the Gauss-Newton iteration can be used to
approximate the MAP estimate of log-conductivity from the measurements of conduc-
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Figure 6.8. The variance of the estimation errors associated with the log-conductivity estimate in
Figure 6.7.
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Figure 6.9. The effect of the travel-time measurement, illustrated as the difference between the log-
conductivity estimate in Figure 6.7 and the estimate in Figure 5.12, which is based only on head and
conductivity measurements.
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tivity, head, and travel time. Again the problem is to assess the trade-off between the
improvements provided by the MAP estimates (over the linearized LLSE estimate with
fo = 0) and the increase in computations. The Gauss-Newton iteration is implemented
using the multiscale framework and the linearization discussed in the previous section.
The estimate fl produced by the first iteration of this algorithm is identical to the esti-
mate shown in Figure 6.7. Also, as in the example in Section 5.3.1, the Gauss-Newton
iteration converges very quickly to the asymptotic value. Also, this asymptotic value
appears to be the global maximum of the conditional density for log-conductivity?, i.e.,
the MAP estimate. After six iterations, the errors in the finest-scale log-conductivity
estimates are

Ifs — £Il = 6.20
Ifi - fll = 6.26
il =17.0

This minor improvement is consistent with the results of Section 5.3, where it was
shown that the improvement provided by the Gauss-Newton estimate is generally small
for 02 < 1, yet can be significant for large log-conductivity variances.

It is worthwhile to consider the path traveled when log-conductivity is equal to
the estimate produced by the Gauss-Newton iteration. The true travel path and that
for f = fg are plotted in Figure 6.10. While the two paths are similar, recall from
the previous section that the travel-time linearization is highly localized around values
of log-conductivity on the path used as the point of linearization. Therefore, large
differences between the path used as the point of linearization and the true path can
diminish the contribution of the travel-time measurements to the conductivity estimate.
Such large deviations will occur when the log-conductivity variance is large, say for o2 >
5.0. For these problems, the difficulty in locating the true path is due primarily to the
nature of the travel-time measurements. Measurements of f., provide no information
about the value of x5 at which the particle crosses the control plane. However, knowing
the location along x; in addition to the travel time would significantly constrain the
number of paths leading to the measured travel time. Whether or not such information
is available is beyond the scope of this thesis, but the linear approach provided in the
previous section certainly can be extended to this class of travel-time measurements.

# 6.3 Conditional Travel-Time Analysis

The previous section demonstrated that the multiscale framework can be used to es-
timate hydraulic conductivity from measurements of head, conductivity, and travel

2We tested for the global maximum using a large number of simulations and intelligent guesses
for the initial log-conductivity estimate. Also, the Gauss-Newton iteration appears to converge in
general to the global (MAP) estimate when 0? < 0.5. How the convergence is affected by increasing a?
(and changing the measurement geometry, measurement noise, conductivity correlation length, etc.) is
beyond the scope of this thesis.
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Figure 6.10. The dotted line corresponds to the true travel path, C, while the solid line is the path
traveled according to the log-conductivity function produced by the Gauss-Newton algorithm.

time. The linearized travel-time measurement was represented at the root node of a
multiscale model for hydraulic conductivity. For some applications, such as those de-
scribed in [31, 85, 98], travel time measurements are not available, and the problem is
to determine a distribution for travel time conditioned on measurements of head and
conductivity. Because the multiscale estimator produces estimates and estimation er-
ror variances at every scale of the multiscale process, the multiscale framework can also
be used to characterize conditional distributions of travel time. For example, consider
the conductivity estimation problems discussed in Section 6.2. The multiscale models
described in these examples can also be used to estimate mean and variance of the time
to travel from z(0) = (0.25,0.5) to the control plane x; = 0.75, conditioned on the head
and conductivity measurements of these examples.

Before analyzing conditional travel-time distributions, it worthwhile to say a few
words about unconditional travel-time distributions. Most importantly, travel-time
distributions are essentially log-normal when conductivity is log-normal. This observa-
tion has been verified by extensive numerical simulation, but can also be argued from
the relationship between velocity and log-conductivity, which from Darcy’s Law is

v=—Lel Vh. (6.14)
n
The distance Az traveled in a small time At is
Ar = (—-::ef vn) At. (6.15)

Taking the magnitude of both sides and solving for At yields

_laz)  _;
At = VAl ne™ /. (6.16)
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Assume now that the distance travelled, ||Az||, is fixed and we wish to determine the
effect of variations in f on travel time. Since variations in h(z) are relatively smooth
compared to variations in f(x), we can assume to first-order that Vh remains relatively
constant in comparison to e/. Therefore, the time step At will be log-normal when
conductivity is log-normal. Travel times are the sum of such time steps. When the log-
conductivity field is highly correlated, a significant portion of each travel path wiil be in
a region of relatively constant log-conductivity, such as a high-conductivity zone. In this
case, we would expect the total travel tiine to be approximately log-normal. As the ratio
of the length of the travel path to the correlation length of log-conductivity increases,
the time steps that make up the total travel time become more independent. Therefore,
travel time should be more normally distributed for large ratios of the length of the
travel path to the correlation length of log-conductivity. These intuitive arguments
have been supported by all of our numerical simulations.

The correlation length of log-conductivity also affects the variance of travel time.
Namely, the variance of the travel-time distribution increases as the correlation length
in the direction of flow increases. This relationship also is intuitive, since strong correla-
tions in the direction of low will increase the probability that the conductivity function
has elongated regions of very large or very small conductivity, which will disperse the
travel-time distribution.

We now use the multiscale model described in the previous section for the estima-
tion of travel time from measurements of head and conductivity. Assume the same
experimental set-up as in Section 6.2, except that we now assume that the travel time
measurement is not available and instead we wish to estimate it. The LLSE estimate of
6tcp, call it 6fcp, can be determined from the estimate of z(0), since 6t.p is represented
at the root node of the multiscale process. The (approximate) LLSE estimate of Zp, is
then

fcp = to + 6£cp . (6-17)

Note that 6., can also be determined from the inner product of the estimate of the
finest-scale process—illustrated in Figure 5.12—and the kernel g;(z | fo). However, to
derive the associated estimation error variance from g;(x| fo) would require the error
covartance matrix for the entire finest-scale process. Recall that we seek a conditional
distribution for travel time, not just an estimate. That the multiscale estimator also
produces the error variance for each state variable is the whole motivation in this
example for modeling travel time at the root node.

For this example, the following results are obtained from the estimate and error
variance of the root node:

fep = 0.1460, (6.18a)
E[(tep ~ fep)?] = (0.0215)%. (6.18b)

Recall that the true travel time is t;, = 0.1493 units, and the background travel time
is tep(fo) = 0.1 units. For this particular example, the multiscale estimator does a very
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Figure 6.11. The histogram for travel time produced by two-hundred conditional simulations of log-
conductivity and as many implementations of the flow equation. The dotted line is the (appropriately
normalized) PDF of a normal random variable with mean 0.1460 and standard deviation 0.0215.

good job of estimating travel time, since the true travel time is well within a standard
deviation of the estimation error.

A more brute force but widely used method for computing the conditional distribu-
tion of travel time, which can be used to verify the results of the multiscale analysis,
is the Monte-Carlo approach. The basic idea is to generate a number of realizations of
the conditional distribution for log-conductivity, to compute the travel time associated
with each conductivity function, and then to generate a histogram representing the
conditional distribution of travel time. The advantage of this approach is that it is not
based on a linear approximation of travel time. To implement this approach, one must
be able to efficiently generate many conditional simulations of log-conductivity and to
solve the 2D flow equation for each log-conductivity function. Unlike most approaches
to conditional simulation, which require a computationally intensive factorization of the
entire estimation error matrix, the multiscale estimator produces a multiscale mode! for
the estimation errors [61]. (See Appendix B for more details.) Once the parameters
of the multiscale error model are computed, conditional simulations of log-conductivity
can be rapidly generated. The bottleneck in computations, then, is the implementation
of the 2D flow equations. For the previous example, two-hundred conditional simula-
tions of log-conductivity lead to the histogram for travel time plotted in Figure 6.11.
The mean and median of this histogram are 0.1549 and 0.1514, which are both slightly
higher than the true travel time, but the true travel time is well within a standard
deviation of the mean of this distribution.

The histogram in Figure 6.11 can also be used to verify the travel-time distribution
implied by the multiscale estimator. The normal distribution with mean fcp and stan-
dard deviation 0.0215 is superimposed on the histogram using dotted lines. Asis evident
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from the figure, the two distributions are very similar, but the histogram appears to
be more log-normal than normal. This log-normality is again due to the log-normality
of the conditienal distribution for conductivity, the variance of which is illustrated in
Figure 5.13. That the conditional distribution implied by the multiscale model is close
to the true conditional distribution is because log-normal random variables with small
variances are approximately normal. An open question is how tn use the linearized
travel-time equation to develop accurate conditional distributions for travel time when
the variance of the conditional distribution for log-conductivity is large. One poten-
tial solution is relinearization, possibly using multiple paths of linearization at each
iteration.



Chapter 7

Modeling and Estimation of
Fractional Brownian Motion

A wide variety of physical phenomena are described by random processes whose power
spectral densities behave as 1/f®. For example, 1/f processes can be used to describe
average temperature distributions [45, 57|, annual flow rates in rivers [45], the noise
in vacuum tubes and electrical components [57], biological time series like heartbeats
[96], economic time series like the Dow Jones Industrial Average [96], and traffic in
communications networks [94]. Processes with 1/f-like power spectra are also used to
generate images that model real world objects like clouds and mountain ranges [4, 89)].
These processes possess two common characteristics, statistical self-similarity and long-
range dependence. A popular model that possesses these two characteristics is the class
of fractional Brownian motions [64], which are a generalization of Brownian motion.
In this chapter, we focus on multiscale representations of fractional Brownian motion
(fBm).

Fractional Brownian motions are defined as the zero-mean Gaussian random pro-
cesses with statistically stationary and self-similar increments. The first models for fBm
[64] were fractional integrals of white Gaussian noise, but such nonlinear integrals are
not useful for synthesizing or processing (estimating, smoothing, and the like) fBm. An
alternative is to approximate fBm with models that lead to efficient synthesis or pro-
cessing algorithms. Two such approximations are random midpoint displacement and
wavelet-based representations. The random midpoint displacement algorithm, which
was described in Section 2.3.2 as a method for synthesizing Brownian motion, is a pop-
ular tool for approximately synthesizing fBm [4]. Because the the wavelet transform has
been shown to approximately whiten fBm [36, 96], wavelets are another useful tool for
approximately synthesizing fBm. In addition, Wornell [96] also used the wavelet-based
framework for accomplishing signal processing tasks like the estimation of fBm from
uniformly sampled and noisy measurements.

Both the midpoint displacement and the wavelet-based approximations lead to syn-
thesis algorithms consisting of a progression from coarse to fine scales, adding succes-
sively finer details at each step. Because the algorithms are analogous to the multiscale
autoregression, the random midpoint displacement and wavelet-based approximations

135
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are naturally represented by multiscale pro.esses, as shown in [62] and [35], respectively.
The advantage of representing fBm within the multiscale framework is the ability to
take advantage of the efficient processing and synthesis algorithms. In this chapter, we
present a number of multiscale models that approximately represent fBm. We first show
that the multiscale models based on midpoint displacement and the wavelet transform
can be easily enhanced, without increasing the order! of the models, to more accurately
represent fBm. Next, we provide higher-order multiscale models that improve the accu-
racy of the approximation at the expense of increased computational complexity. One
higher-order model combines the midpoint displacements and wavelet coefficients into
a single multiscale model. Finally, a more general algorithm is provided that takes
advantage of the self-similarity and stationary increments properties of fBm to yield
multiscale models that approximate the statistics of fBm to any desired accuracy. Ex-
tensions to these models are suggested in Chapter 8.

B 7.1 Fractional Brownian Motion

Fractional Brownian motion (fBm) was first proposed in [64] as a class of random
processes with strong interdependence between distant samples. A fractional Brownian
motion (fBm) is a Gaussian process with zero mean and covariance? [64]

E[z(t)z(s)] = ";[m?” + |s?H — |t — 5], 0<H<I1. (7.1)

This class of processes is completely characterized by E[z(1)?] = o? and the Hurst
exponent H. The covariance and variance functions are plotted in Figure 7.1 for 0 =1
and three values of H. Fractional Brownian motion is statistically self-similar in the
sense that

z(at) E aflz(t), a>0, (7.2)

where 2 denotes equality in (finite-dimensional) distribution. While fBm is nonsta-
tionary, its power spectral density is well-defined over any finite bandwidth observation
window as [96]

C

S::(f)_ngH') H <f<fa, (7.3)

for some constant ¢ and any two positive frequencies 0 < f; < fa. The nonstationarity
of the process is evidenced near f = 0, where Eq. (7.3) implies infinite power in the
low-frequency components of z(t).

1 An n-th order tree model is one for which all the variables have dimension n or less.

2To be consistent with the literature on fBm, the function z(t) with independent variable ¢ is chosen
to represent fBm. However, note that in the rest of this thesis, because many of the applications involve
estimating random processes that are functions of space, z is chosen as the independent variable.
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Figure 7.1. The covariance functions of fBm for 0 = 1 and (a) H = 0.3, (b) H = 0.5, and (c) H = 0.7.
(d) The variance function of fBm for & = 1 and H = 0.3 (dashed line), H = 0.5 (solid line), and H = 0.7
(dotted line).
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The nonstationary covariance function in Eq. (7.1) masks a more elegant definition
of z(t) in terms of its increments process. A process z(t) is an fBm with Hurst exponent
0 < H <1 if and only if

e z(t) is Gaussian and has zero mean,

e z(t) has stationary increments, meaning that
2
E|[(a(t +5) - =(1))’] = g(s),
where g(s) is called the structure function,

e and x(t) has self-similar increments, i.c., g(as) = a*fg(s) .

The self-similarity of the increments implies that the structure function g(s) must have
the form g(s) = o?|s|?". The covariance function in Eq. (7.1) follows from this structure
function and the stationary increments property. Fractional Brownian motion reduces
to Brownian motion for H = 0.5. Sample paths illustrating the self-similarity of fBm are
provided in Figure 7.2. Figure 7.2a plots a sample path of z(¢) on the interval ¢ € [0,1]
for H = 0.3, while Figure 7.2b plots another sample path of 2= x(t) on the interval
t € [0,2] for H = 0.3. Note that the plot of Figure 7.2b effectively compresses the
interval [0, 2] by a factor of two to match the unit interval in Figure 7.2a. The similarity
between the two plots is a manifestation of the statistical self-similarity. Figures 7.2c-d
are analogous plots for H = 0.7. Again, one can see the self-similarity of fBm. Note
that fBm for H < 0.5 has more fine-scale energy than Brownian motion, while fBm for
H > 0.5 has less fine-scale variation than Brownian motion.

The stationary and self-similar increments properties are important attributes of
fBm. However, fBm does not have independent increments?, except for the special case
when H = 1/2. For H = 1/2, z(t) is a Markov process. This distinction is important,
because not only are the increments of Brownian motion correlated for H # 1/2, they
are strongly correlated over large distances. This strong interdependence is what makes
the modeling and analysis of fBm such a difficult problem.

A discrete-time version of fBm can be derived from samples of z(t). If z[n] 4 z(nAt),
then z[n] is a zero-mean Gaussian process with covariance function [55]

02( At)zH
2
and the variance of the increments process is E[(z[n + m] — z[n])?] = o2(At)*# |m|?H.
The increments process is stationary and self-similar for compressions or expansions of
the time axis by powers of two, i.e., E[(z[n+2Fm]—z[n])?] = (2F)*¥ E[(z[n+m]-z[n])?]
for positive integer values of k. Discrete-time fBm can be described in terms of a first-

order autoregression

Elz[n]z[m]] = (InfPH + [m|*¥ ~ |n — m|*), (7.4)

z[n] = z[n - 1] + w[n], z{0] =0, (7.5)

3Kasdin states erroneously, and likely by mistake, that fBm has independent increments (56, p.817).
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Figure 7.2. (a) A sample path of fBm (H = 0.3, 0 = 1) on the interval ¢ € [0,1], and (b) A sample
path of fBm (H = 0.3, ¢ = 1) scaled by 2% on the interval t € [0,2]. Plots (c) and (d) are the

analogous graphs for H = 0.7 and a scaling of 27%7 in (d).
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where the first-order increments process w(n], also known as discrete fractional Gaussian
noise [55], has covariance

r[m] = Efwln + m]w(n|] (7.6)
_ 0.2(At)2H

5 (Im+ 1% + |m - 12# - 2jm|*H).

The stationarity of w(n] follows from the stationary increments property of fBm. Since
fBm is Markov for H = 1/2, w[n] is white for H = 1/2. For H > 1/2, w(n] is positively
correlated with the other increments; for H < 1/2, w(n] is negatively correlated with
other increments.

While the discrete-time version of iBm is derived directly from samples of fBm, one
must be careful in applying any of results from continuous-time to the discrete-time
processes, and vice versa. The reason is that sampling fBm leads to significant aliasing
for H < 1/2, since there is significant energy in the high-frequency components of fBm
for H < 1/2.

M 7.1.1 Random Midpoint Displacement for Brownian Motion

As discussed in Section 2.3.2, the random midpoint displacement algorithm synthesizes
Brownian motion by generating samples at successively finer sampling intervals [4].
Midpoint displacement follows from the Markovianity of Brownian motion, which holds
that, conditioned on any two samples z(¢;) and z(t;) for ¢; < 3, the samples z(t) on
the interval t € (t;,t2) are independent of those outside the interval. The implication

is that if samples of Brownian motion have been generated for times to,¢;,... ,tN,
then the midpoints of the /V intervals partitioned by these samples can be generated
independently.

While the midpoint displacement algorithm was discussed in Section 2.3.2, we review
it here for Brownian motion in order tc understand how it can be applied to fractional
Brownian motion. Assume that we want to synthesize a path of Brownian motion on
the unit interval ¢ € [0,1]. The endpoint =(0) is always zero and the endpoint z(1) can
be generated from a sample of the distribution A(0,02). The midpoint z(1/2) can be
decomposed as

2(1/2) = E[z(1/2)| =(1),2(0)] + £(1/2). (7.7)

Because Brownian motion is Gaussian, E[z(1/2) | z(1), z(0)] is the linear least-squares
error (LLSE) estimate of z(1/2) from z(1) and z(0). Also, Z(1/2) is the estimation
error, which must be independent of z(1) and z(0). Using standard LLSE estimation
equations, the elements of Eq. (7.7) follow as

E[z(1/2)| 2(1),2(0)] = %m(l) , (7.8a)
var[Z(1/2)] = ¢2/4. (7.8b)
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The midpoint 2(1/2) can be expressed as an interpolation—Eq. (7.8a)—and a displace-
ment Z(1/2) that can be generated independently of z(1) and z(0). This interpolation
and displacement is illustrated in Figure 2.2a. Note that Equations (7.7) and (7.8) are
the same as Eq. (2.34), since E [:1: | y] E[x y] for jointly Gaussian random variables.

The next step of the displacement algorithm is to generate the midpoints x(1/4)
and z(3/4). These midpoints can be decomposed as

z(1/4) = E[x(1/4)| 2(1/2),z(0)] + Z(1/4), (7.9a)
£(3/4) = E[z(3/4) | z(1), z(1/2)] + Z(3/4).- (7.9b)

This set of equations is identical to Eq. (2.35). Using both the independent increments
and the independence of Bayes’ least-squares estimation errors from conditioning in-
formation, the displacements Z(1/4) and Z(3/4) are independent of each other and the
samples z(0), z(1/2), and z(1). Again invoking the LLSE estimation formulas, Eq. (7.9)
becomes

2(1/4) = %::(1/2) + 5(1/4), var[5(1/4)] = 0%/8, (7.10a)
2(3/4) = § (=) +2(1/2)) +33/9),  var[36/4)] = /8. (7.10b)

To compute the midpoint displacements ai finer intervals, the LLSE estimator can
be repeatedly applied. However, we can also make use of the statistical self-similarity
of Brownian motion. Self-similarity implies that

1\2
Py (g-(ms1)y = (5) P;(3-m),
1\2
PI(2—(m+l))I(2—nl) = (5) Pz(g-m)x(g-(m-l)) f

Applying these relationships recursively to Eq. (7.10) yields

2(2H) = 2a(2™) + F(ETHY), (7.11a)
var[F(2~(™H1))] = o2 (%)mﬂ, (7.11b)
z(3/2™*) = % (z(2~™1) + z(27™)) + £(3/2™F), (7.11c)

var[Z(3/2™!)] = o (%)m“. (7.11d)

Furthermore, the independent increments property of Brownian motion means that the
interpolation and displacement at any given scale are shift-invariant, i.e.,
E[z(2~(™D) + At) | 2(27™ + At), z(At)] = z(z-"' + At) + z(At)),  (7.12a)
~ 1\m+2
var[£2~(™*) + At)] =0 (-2-) , (7.12b)



142 CHAPTER 7. MODELING AND ESTIMATION OF FRACTIONAL BROWNIAN MOTION

for any At > 0. In other words, the interpolation at the midpoint is always the average
of the endpoints, and the variance of the displacement is constant for a given scale m
and decreases geometrically with increasing scale m. The shift-invariance for Brownian
motion greatly simplifies the midpoint displacement algorithm, since the interpolation
is constant across all scales and shifts, and the variance of the displacement varies
geometrically with scale. However, as shown in the next section, the shift-invariance
does not apply to fBm for H # 1/2, since fBm for H # 1/2 does not have independent
increments.

B 7.1.2 Random Midpoint Displacement for fBm

As shown in [4], random midpoint displacement can be used to generate sample paths
of a distribution that is approximately equal to the distribution of fBm. To illustrate
this algorithm, and to highlight the approximations made, assume again that we want
to synthesize fBm on the unit interval ¢t € [0,1]. As for Brownian motion, the first step
is to set z(0) = 0 and then generate z(1) from a sample of the distribution A(0,0?).
If the midpoint of the unit interval is decomposed as in Eq. (7.7), the LLSE estimator
equations provide

E[z(1/2)| 2(1),z(0)] = %x(l) and  var[%(1/2)] = o? [(%)211 - (%)2] , (7.13)

where z(1/2) is independent of x(1) and z(0). Using the self-similarity of fBm, we can
then derive

E[z(2=(mDy | z(27™),z(0)] = %$(2‘"‘), (7.14a)
var[5(2~™+1))] = o2 (%)2'"” [(%)2" - (%)2] . (7.14b)

Equation (7.14a) represents an interpolation of the midpoint of the interval [0,27™]
from the endpoints £(0) and z(2™™), while 7(2~(™*+1) is the displacement.

The midpoint displacement algorithm for fBm given in [4] is based upon Equa-
tion (7.14), and is directly analogous to the midpoint displacement algorithm for Brow-
nian motion. Assume that the samples (iAt,_;), where At,—; = (1/2)™, are known
for : = 0,...,2™. These samples might have been synthesized at previous iterations
of the midpoint displacement algorithm, and they are illustrated by the solid circles in
Figure 7.3. The samples at the midpoints of the intervals [kAtm—1, (k + 1)Atp,-1] are

te = (2k +1)Atm, k=0,...,2™"—1,

where At,, = At;,—1/2. These samples are illustrated by the gray circles in Figure 7.3.
For the algorithm in [4], each sample x(t;) is synthesized as an interpolation from the
nearest samples z(tx — Aty,) and z(tx + At;m), plus a displacement whose variance is
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Figure 7.8. The m-th iteration of the midpoint displacement algorithm. The samples generated after
the first (m — 1) iterations are illustrated by the solid e's spaced by Atm-1. The samples generated at
the m-th iteration are the gray circles. The linear interpolation is illustrated by the dashed lines, while
the variance of the displacements Zx = Z((2k + 1)Aty) is given by Eq. (7.15b).

given by Eq. (7.14b). This interpolation and displacement are
1

2(th) = 5 (alte + Atm) +o(tk ~ Atm)) +E(te) (7.15a)
interp‘ga.tion g
var[E(ty)] = o (%)2'"" [(%)2" - (%)2] . (7.15b)

All of the displacements Z(tx) are assumed to be independent. The interpolation of
Eq. (7.15a) is illustrated in Figure 7.3 by the dashed lines, while the newly synthesized
samples are represented by the gray circles. The result is that x(t) is generated for
t = iAty,, i = 0,1,...,2™tL, Finer sampling intervals can be achieved by repeating
this process.

This algorithm, while simple and efficient, is an exact representation of fBm only
for H = 1/2. For H # 1/2, two approximations are made. First, the interpolation
and displacement given by Eq. (7.15) is statistically correct only for H =1/2 or k = 0.
(Note that Eq. (7.15) reduces to Eq. (7.14) for k = 0, i.e., when one of the endpoints is
z(0).) Unless k =0 or H =1/2,

E[z(tk) | z(te + Atm), x(te — Atm)] # % (z(tk + Atm) + z(te — Aty)) , (7.16)

meaning that the conditional expectation is not equal to a simple average of the endpoint
samples. Furthermore, the variance of the prediction error Z(tx) varies as a function
of k, and is equal to the variance in Eq. (7.15b) only for ¥k = 0 or H = 1/2. The
second approximation made by the midpoint displacement algorithm of [4] is that the
displacements (%) are not independent. For instance, conditioned on x(0), z(1/2), and
z(1), the displacements Z(1/4) and Z(3/4) are correlated when H # 1/2. In Section 7.2,
we propose multiscale models that improve upon these two approximations by using
statistically accurate descriptions of the interpolation and displacement.
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@ 7.1.3 Wavelet Decompositions

Because fBm is both non-stationary and self-similar, the wavelet transform seems to
provide a natural decomposition of fBm. The (orthonormal) wavelet synthesis of fBm
is given by

z(t) = V2J i aslk] p(27t - k) + i vam i dulk)¥(2™t - k),  (7.17)

k=—-00 m=J k=-o00

where 1(t) is the wavelet function, ¢(t) is the scaling function, dm[k] are the detail
coefficients, and aj[k] are the approximation coefficients at scale J. The index k is the
spatial offset and m is the scale index.?

As shown in [96], fBm is made stationary when filtered by any ideal bandpass filter.
The wavelet function ¥(t) is the impulse response of a bandpass filter, albeit not ideal.
Because 1/f processes are made stationary when filtered by ideal bandpass filters [96],
it should not be surprising that the detail coefficients at any given scale m are stationary
[36]. The variance of the stationary process at scale m is [36]

(2H+1)
) " (7.18)

var [dpm[k]] = U;V(H, ¥) (%

where V(H, ) is a constant that depends on only the Hurst exponent and the wavelet
funciion. The variance of the wavelet detail coefficient decreases geometrically with
scale at a rate proportional to H, as do the displacements in random midpoint dis-
placement.

If the wavelet coefficients are to be used to approximate fBm, the detail coeffi-
cients must be sufficiently close to independent. Mutual independence leads to efficient
synthesis algorithms, since the detail coefficients can be generated independently. As
shown in [36, 90, 96], the detail coefficients at any given scale are independent only for
H = 1/2. For H # 1/2, the correlation between detail coefficients at any given scale
decays asymptotically as [36)

E[dm[k]dal]] ~ O(|k — 1]XH=R)) (7.19)

where R is the number of vanishing moments of the wavelet function, i.e., the regularity
of the wavelet function. The correlation between detail coefficients at different scales
behaves similarly, i.e., they are approximately uncorrelated if H and R are chosen
appropriately. Note that even for H = 1/2 the detail coefficients at different scales are
not all uncorrelated.

The wavelet decomposition can be used to approximately synthesize fBm if the
wavelet detail coefficients are assumed to all be independent [36]. Also, because the

4Note that the scale index m increases for detail coefficients corresponding to finer resolution wavelet
functions. This convention is made to be consistent with the definition of m for the multiscale tree
models, but m is the negative of the scale index used in (36].
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wavelet transform is an approximate Karhunen-Loéve transform of fBm, it can be used
to efficiently estimate fBm from dense samples of y(t) = z(t) + v(t), where the v(t)
is white noise with constant variance [96]. While this approach is quite attractive,
especially since the wavelet decomposition can be applied to 1/f processes other than
fBm, there are some drawbacks. First, unless the wavelet regularity R is large enough,
the fBm synthesized assuming independent detail coeflicients will have a number of
artifacts due to correlation among the detail coefficients. Also, one must deal with
the boundary effects which arise from a wavelet with large R and a finite-length data
interval. Finally, there are applications for which the measurements are not dense, are
not of the finest scale, or have space-varying measurement noise. An alternative model
for fBm, based on the Haar wavelet but using the multiscale stochastic models of [19], is
proposed in the following section and overcomes many of the aforementioned difficulties.

B 7.2 Low-Order Multiscale Models and fBm

In this section, low-order multiscale tree models that approximate the statistics of
fBm are developed. The advantage of the multiscale framework is that multiscale
tree processes can be efficiently estimated and synthesized [19, 61]. The midpoint
displacement algorithm and wavelet synthesis equation, which consist of adding finer
aad finer details at each step, can be represented by a multiscale autoregression. After
defining these tree models, we show how the statistical approximations of fBm can be
improved by

e for the midpoint displacement, using a statistically correct formula for the inter-
polation and displacement, and

o for the wavelet-based model, accounting for local correlations among the detail
coefficients.

The displacements and detail coefficient of these enhanced models no longer have con-
stant variance at each scale. (The interpolation for the enhanced displacement model
also varies across a given scale.) Numerous examples are provided to illustrate the
performance of these enhanced models.

W 7.2.1 improved Midpoint Displacement

The random midpoint displacement algorithm of Section 7.1.2 can be directly trans-
lated into a multiscale autoregression satisfying Eq. (2.22). This multiscale model for
fBm is identical in form to the multiscale model for Markov processes summarized in
Section 2.3.2. Brownian motion is Markov, so these models directly apply for H = 1/2.
For H # 1/2, the models are approximate in that the finest-scale covariance is only
approximately equal to that of fBm. To be more specific, assume that we are interested
in modeling fBm on the unit interval, and that Aty = (1/2)M*! is the finest sampling
interval of interest. The (2M+! + 1) samples z(nAty) can be synthesized from M + 1
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Figure 7.4. A multiscale tree representation of sampled fBm for Aty = 1/16. Each ellipse illustrates
the samples contained by a tree variable, e.g., z(0) = [z(0), =(1/2), =(1)]7.

iterations of the midpoint displacement algorithm given by Eq. (7.15). The first iter-
ation generates z(0), (1/2), and z(1), which can be mapped to the root node of the
tree. Using a binary tree, the 2"*! + 1 samples of z(t) generated by completion of the
m-th iteration (m = 0,... , M) can be mapped to the 2™ nodes at the m-th scale of
the tree. This mapping is illustrated in Figure 7.4 for Aty = 1/16, i.e., M = 3. Each
variable z(s) contains three samples of z(t), with the finest scale variables containing
three consecutive samples spaced by Aty. The states at the first two scales of the bi-
nary tree are given by z(0) = [z(0), z(1/2), z(1)]T, z(0cy) = [z(0), =(1/4), z(1/2)]7,
and z(0ay) = [z(1/2), z(3/4), z(1)]T. The multiscale autoregression that implements
the midpoint displacement of Eq. (7.15) is given by

[ 1 0 0]

z(san) =] 1/2 1/2 0 | 2(s) + w(0ay), (7.20a)
0 1 0
[0 1 0 ]

2(saz) =10 1/2 1/2 [ 2(s) + w(0az), (7.20b)
0 0 1 |

Quor = Qoo = izg(0, 2% (3) 0 [(5) - (3) ] 0). (200

The process noise variances are obtained from Eq. (7.15b). For H = 1/2, the tree
model will have the correct finest-scale covariance [62]. We refer to the multiscale
model defined by Eq. (7.20) the simple displacement model.

For H # 1/2, the distribution of the process at the finest scale of the tree will
differ from that of sampled fBm. One reason for the discrepancy, as mentioned in
Section 7.1.2, is that the displacements are not truly independent for H # 1/2, whereas
the multiscale process noise is independent by assumption. For instance, consider the
generation of z(0a; ) and z(0az) from 2(0), which is the autoregression from scale m = 0
to m = 1. For this transition, Eq. (7.20) represents Eq. (7.15) for tx = 1/4 and 3/4 and
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Aty = 1/4, ie.,
E[z(1/4) | 2(1/2),2(0)] = %x(l/Z), (7.21a)

E[(3/4) | 2(1),2(1/2)] = % (2(1) + 2(1/2)) , (7.21b)
var[5(1/4)] = var[5(1/4)], (7.21¢)

_ o (L\2H[1\2H 142

=7 (2) [(2) (2) ] ' (7:21d)
The process noise w(0a; ) represents 7(1/4) and w(0az) represents 7(3/4). By assump-
tion, these process noise values are independent; however, the true variables (1/4) and
7(3/4) are correlated for H # 1/2, meaning that the multiscale model must introduce
some errors in modeling the covariance of fBm.

The other reason noted in Section 7.1.2 for the discrepancy between the covariance
at the finest scale of the simple displacement model and the covariance of fBm is that
the interpolation and displacement should vary across a given scale. The sample z(t)
generated according to Equation (7.15) will have variance o2|tx|># only when k = 0
or H = 1/2. For H # 1/2, the statistics of the process z(t) on the interval ¢t €
[tk — Atm, tk + Atm), after conditioning on the samples at the endpoints, depend on the
location k of the interval. To derive an interpolation and displacement that produces
the correct variance for each sample z(t;), the following LLSE prediction equations can
be used

Efz(tx) | X (t)] = Pe(e)x(t)Px(p,) X (k) (7.22a)
X(te) 2 [z(te + Atwm) z(te — Ati)]T (7.22b)

var [Z(te)] = Peer) = Paeo)x () Py PX 012000 (7:22¢)

F(tx) £ 2(tx) - Elz(te) | X ()] - (7.22d)

The covariance matrices follow from sampling Eq. (7.1).

The tree model representing fBm can be improved without changing the interpre-
tation of the state variables from those of the simple displacement model. Namely,
we assume that each z(s) at scale m(s) represents three samples of z(t) spaced by
At = (1/2)™t!. The model parameters based on the optimal prediction of the sam-
ples in z(s) from those in z(s7) are given by Egs. (2.30) and (2.32). Call the resulting
model the enhanced displacement model. For this model, the process noise rep-
resenting the midpoint displacements is no longer constant across any scale (unless
H =1/2), and the interpolation is no longer the simple average of the endpoints. How-
ever, the model will still be an approximate representation of fBm, since the internal
variables z(s) = [z(tx — Atm), z(tk), z(tk + Atm)]T do not exactly decorrelate fBm on
the three intervals [ty — Atm, tk], [tk, tk + Atm), and [0, tx — Aty) U [tx + At 1]

The two approximations of fBm, the simple displacement model defined by Eq. (7.20)
and the enhanced displacement model based on optimal prediction, can be compared
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Figure 7.5. A comparison of the simple displacement and enhanced displacement models approxi-
mating fBm for H = 0.3 and 0 = 1. (a) The finest-scale covariance of the simple displacement model
and (b) the absolute value of the difference between Eq. (7.4) and the finest-scale covariance. (c) The
finest-scale covariance of the enhanced displacement model and (d) the absolute value of the difference
between Eq. (7.4) and the finest-scale covariance.
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Figure 7.8. The variance E[z(t)*] = |t|*" of fBm for (a) H = 0.3 and (b) H = 0.7 is shown by the
solid lines. The variance of the process at the finest scale of the simple displacement model is illustrated
by dashed lines. The variance of the enhanced displacement model is exact and equal to the solid lines.

to illustrate the effect of the enhancement. Because the finest-scale processes of these
two models are meant to represent fBm, the covariance at the finest scale of the two
models can be compared with the exact covariance of fBm. Consider fBm with H = 0.3
and o2 = 1 on the unit interval ¢t € [0,1]. Figure 7.5a illustrates the covariance at
the finest scale of the simple displacement model, while Figure 7.5b is the absolute
value of the difference between the finest-scale covariance and the fBm covariance in
Eq. (7.4). Figures 7.5¢c and 7.5d are the analogous figures for the enhanced displacement
model. The variances of the two models are compared to the exact variance [t|%¢ in
Figure 7.6a. Note that the errors in the finest-scale covariance of the enhanced model
are significantly smaller than those of the simple displacement model, especially along
the diagonal. In fact, the variances of the samples represented at the finest scale of
the enhanced multiscale model are identical to samples of |t|®6. The reason is that the
variances of the finest-scale elements of any multiscale model computed from Eqs. (2.30)
and (2.32) will be exact, i.e., equal to the diagonal of Py. The finest-scale covariances of
the simple and enhanced displacement models are compared for H = 0.7 in Figure 7.6b
and Figure 7.7. Again, the enhanced displacement model is an improvement over the
simple displacement model, especially in terms of representing the variance of fBm.
However, the errors in general are much smaller for H = 0.7 than for H = 0.3. The
reason is that, the larger the value of H, the smaller the variances of the displacements
at fine-scales. Therefore, even if the displacement variances are modeled incorrectly,
they will have less inluence on the covariance of the finest-scale process.

The bottom line is that both of the displacement models produce better approxima-
tions of fBm for H > 1/2 than for H < 1/2, but the enhanced model is more accurate
for all values of H.
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Figure 7.7. A comparison of the simple displacement and enhanced displacement models approxi-
mating fBm for H = 0.7 and 02 = 1. (a) The finest-scale covariance of the simple displacement model
and (b) the absolute value of the difference between Eq. (7.4) and the finest-scale covariance. (c) The
finest-scale covariance of the enhanced displacement model and (d) the absolute value of the difference
between Eq. (7.4) and the finest-scale covariance.
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Figure 7.8. Sample paths of fBm, random midpoint displacement, and modified displacement for
H =0.1. A DC value of three is added to the midpoint displacement sample patk and a DC value of
three is subtracted from the modified displacement sample path to allow comparison.

To see how errors in the finest-scale covariance are manifested in the sample paths
of the two models, consider 2 = 1 and H = 0.1. A small value of H is chosen to
maximize the chance that artifacts in the covariances will be visible from sample paths.
Figure 7.8 shows sample paths at the finest-scales of the two multiscale models, as well
as a sample path of fBm. While the sample path of the enhanced displacement model
appears similar to the sample path of fBm, the sample path of the simple displacement
model has larger small-scale variations due to the incorrect variances used at small
scales by the random midpoint displacement algorithm.

Approximating fBm within the multiscale framework allows one to accomplish a
number of signal processing tasks. Consider the estimation of z(t) from noisy measure-
ments. A sample path of fBm (for H = 0.3 and o2 = 1) is illustrated in Figure 7.9a.
Consider estimating z(t) for t € [0, 1] from sparse and noisy measurements near the end-
points of the interval. The noisy measurements can be represented as y(t;) = z(t:) + v,
where var[v;] = 0.05, and they are illustrated by o’s in Figure 7.9a. The LLSE estimate
of z(t) based on the exact fBm prior model is illustrated by the solid line in Figure 7.9b.
The estimates (of the finest-scale processes) produced by the two multiscale models are
given by the dashed (simple displacement model) and dotted (enhanced displacement
model) lines. As would be expected from the covariances in Figure 7.5, the enhanced
displacement model more closely approximates the estimates based on the fBm prior
distribution. However, the finest-scale estimates produced by both models are well
within a standard deviation of the estimation error for the exact LLSE estimate.
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Figure 7.9. (a) A sample path of fBm for H = 0.3 and o2 = 1. Noisy measurements are represented
by o's. (b) The exact LLSE estimate (solid line), the estimates produced by the two multiscale models
(dashed and dotted lines), and the one standard deviation error bars for the exact LLSE estimate
(dash-dot line).

W 7.2.2 Improved Wavelet-Based Models

The approximate independence of the detail coefficients for a wavelet transform of fBm
can be used to derive another multiscale representation of fBm. The basic idea is to
map the detail coefficients at scale m—the variables dm[k] in Eq. (7.17)—to the process
noise at scale m of a binary tree model. Because the process noise of multiscale tree
models is white, these multiscale models will be approximate. For the Haar wavelet

1, 0<t<1/2,
P(t)y=¢ -1, 1/2<t<1, (7.23)
0, otherwise,

the multiscale tree model has a particularly simple form [35]. Because the wavelet
functions ¥(2™¢ — k) at any scale m are non-overlapping for all values of k, each sample
z(t) depends on only one detail coefficient at each scale. Furthermore, the value of
z(t) on any interval [k/2™,(k + 1)/2™] depends only on the approximation coefficient
amlk], the detail coefficient dm[k], and the detail coefficients at scales finer than m.
This leads to a multiscale tree model with each variable z(s) containing a detail and a
approximation coefficient at scale m(s). As shown in [35], the autoregression for this
model is

=75 5 "o | stem + [‘I’]wd(s), (7.242)

w(s)

1, s is a left descendent ,

a
mod(s) = { ~1,  sis a right descendent, (7.24b)
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when s is not a leaf node. Because z(s) represents an approximation coefficient and a

detail coefficient at a particular scale, i.e., z(s) = [am[k], d,,,[k]]T for some value of k,
wq(s) must represent dm,[k]. The transition to the finest scale is simply

2(s) = % [1 mod (s)]2(s7), (7.25)

so that z(s) at the finest scale represents an approximation coefficient at scale M, which
for the Haar basis is equal to 2M/2 times the average value of z(t) over some interval
of width 1/2M.

As shown in [36, 96], the variance of the detail coefficients for the continuous-time
wavelet transform of fBm obey Eq. (7.18). These variances decrease geometrically with
increasing scale, but are constant for a given scale m. Equation (7.18) can be used for
the variances of the process noise in Eq. (7.24), since each wq(s) represents a detail
coefficient dn[k]. This relationship implies

0 0
Qs = [ 0 varfwa(s) | ’ (7.26a)
var(wy(s)] = var [dm(s)[K]] (7.26b)
o? 1\ (2H+1)m(s)

The finest scale process of the multiscale model defined by Egs. (7.24)-(7.26) is an
approximation of fBm. There are two reasons for the approximation. First, the detail
coefficients are correlated. Because the process noise of multiscale models is assumed
to be uncorrelaced, the correlation among the detail coefficients cannot be captured
by this model. Second, the finest-scale process represents approximation coefficients,
i.e., local averages, of z(t). This will lead to approximation errors if, for example, the
measurements are of samples of 2(t). Representing these measurements at the finest
scale of the multiscale tree will lead to measurement errors due to the scale mismatch
between the samples measured and the local averages represented at the finest scale.
This mismatch will be largest for small H, when there is significant fine-scale energy in
fBm. We now discuss multiscale models that address these two approximation.

Local correlations among the detail coefficients can be represented within the multi-
scale framework to more accurately model the statistics of fBm. Each state z(s) of the
multiscale model defined by Eqs. (7.24)-(7.26) represents an approximation coefficient
and, if m(s) # M, a detail coefficient at scale m(s) of the Haar wavelet transform. A
more accurate model retains this definition of the state variables, but computes (A4,, Q)
so that the multiscale autoregression is the optimal prediction of z(s) from z(s7¥). These
model parameters follow from Egs. (2.30) and (2.32) when Py is the covariance of the
approximation coefficients at the finest scale, scale m = M. Assume that d,[k] is
the detail coefficient represented by z(s). While w(s) in the multiscale model defined
by Egs. (7.24)-(7.26) represents dm[k], the process noise in the model based on opti-
mal prediction represents dp,[k] condiiioned on the detail and approximation coefficient
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represented by z(s7), i.e.,

fo o
Q= [ 0 var[wg(s)] |’

var[@a(s)] = var [dmn(s) (k] = E[dm(s)[K]2(s7)7] Py E[2(87)dm(a)[K]] - (7.27b)

Therefore, this multiscale model will capture “local” corrclations among the detail co-
efficients represented by states at neighboring nodes in the tree. Since these are the
strongest correlations among the detail coefficients [36], the optimal prediction model
will do a better job of approximating the statistics of fBm than does the model with
process noise variance given by Eq. (7.26).

The second approximation arises only when one wishes to model samples rather
than local averages of fBm. If the finest-scale of the multiscale tree is to represent
samples of fBm, then, if the model is to be internal, the state variables can no longer be
the coeflicients of the continuous-time wavelet transform. As shown in [35], the state
variables 2(s) can represent coefficients of the discrete-time Haar wavelet transform
rather than those of the continuous-time transform. The multiscale model proposed in
[35] retains the autoregression of Egs. (7.24)-(7.25). However, the variances of the detail
coefficients given by Eq. (7.26) only apply to the continuous-time wavelet transform. In
[35), Fieguth showed, at least for the Haar wavelet transform, that the variances of the
discrete-time detail coefficients can significantly differ from those in Eq. (7.26). Fieguth
replaced the variances of the detail coefficients in Eq. (7.26) with those of the discrete-
time Haar wavelet transform. The variance of the discrete-time detail coefficients is
again constant at any given scale, since the wavelet transform of fBm yields a stationary
process of detail coefficients at any given scale, but they do not adhere to the strict
geometric decay of Eq. (7.26). The deviation from strict geometric decay is greatest for
H « 1/2, when aliasing due to the sampling of fBm is greatest. Call the resulting model
the simple wavelet model. When samples of fBm are to represented at the finest
scale of a multiscale tree model, this model is an improvement over the model defined by
Egs. (7.24)-(7.26), especially for small H. However, the simple wavelet model does not
account for any correlations among the detail coefficients. An obvious improvement is
to continue to represent coefficients of the discrete-time wavelet transform as the state
variables on the tree, but to instead use the optimal prediction equations to compute
the multiscale autoregression parameters. These parameters follow from Egs. (2.30)
and (2.32) when P; is the covariance of the samples represented at the finest scale of
the tree. Call this multiscale model the enhanced wavelet model.

We can now compare the simple and enhanced wavelet models to determine the effect
of representing local correlations in the detail coefficients. The simple wavelet models
are shown in [35] to be very useful for estimating the Hurst exponent H from samples of
fBm. However, these models are not entirely appropriate for synthesizing or estimating
fBm. The covariance at the finest scale of the two multiscale models is illustrated
in Figure 7.10 for H = 0.3 and H = 0.7. The covariances of the simple wavelet
model are quite different from the covariances provided in Figure 7.1. Furthermore, the

(7.27a)
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Figure 7.10. The covariance at the finest scale of the simple and enhanced wavelet models: (a) the
simple wavelet model for H = 0.3 and (b) H = 0.7, and the enhanced wavelet model for (c) H = 0.3
and (d) H =0.7.

discontinuities in the covariances of Figures 7.10a and 7.10b will lead to discHatinuities
in estimates or sample paths of the finest-scale process. The covariances at the fineat
scale of the enhanced wavelet model are illustrated in Figures 7.10c and 7.10d for
H = 0.3 and H = 0.7, respectively. The enhanced wavelet model does a much better
job of approximating the covariance of fBm than does the simple wavelet model, without
increasing the dimension of the states in the model. The difference between the models is
especially noticeable along the diagonal of the covariance matrices, where the enhanced
model provides the exact variance of fBm and the simple model provides a constant
variance. The variance of the simple wavelet model is constant because the variance of
the process noise is constant across any scale.

To see the artifacts introduced by the simple wavelet model, consider the synthesis
of the finest-scale process. Sample paths are illustrated in Figure 7.11 for both H =
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Figure 7.11. Sample paths of fBm and of the finest scale of simple and enhanced wavelet models for
(a) H =0.3 and (b) H = 0.7. A DC value of three is added to the simple wavelet model sample paths
and a DC value of three is subtracted from enhanced wavelet model sample paths.

0.3 and H = 0.7. The sample paths generated by this simple wavelet model have
distracting artifacts due to the “blockiness” of the covariance function. The artifacts
are especially noticeable for H > 1/2, as illustrated by the discontinuities in the top
signal of Figure 7.11b. These artifacts will also appear in estimates of the finest-scale
process from sparse measurements, since such estimates will require interpolation from
the prior covariance.

To compare the enhanced wavelet model to the enhanced displacement model, com-
pare Figure 7.12 to Figures 7.5d and 7.7d. The enhanced displacement models gener-
ally provide more accurate representations of fBm, especially for H = 0.7. Also, for
H = 1/2, the enhanced displacement model is exact and the enhanced wavelet model
is only approximate. However, a direct comparison is not entirely fair, since the di-
mensions of the states is three for the displacement model, while the dimensions of the
states in the wavelet model is two. In the following section, we propose a model that is
a synthesis of the displacement and wavelet models.

B 7.3 Higher-Order Multiscale Models for fBm

Given the multiscale models for approximating fBm described Section 7.2, a natural
question is how to develop higher-order multiscale models, i.e., models with larger state
dimensions, that more closely approximate the statistics of fBm. Some higher-order
models immediately come to mind. For example, a multiscale model could have states
that represent approximation and detail coefficients of a more regular (smooth) wavelet
transform. The advantage of using more regular wavelet functions is that they lead to
detail coefficients that are closer to independent than those of the Haar transform [36].
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Figure 7.12. The absolute difference between the exact covariance of sample fBm and the covariance
at the finest scale of the enhanced wavelet model for (a) H = 0.3 and (b) H = 0.7.

The correlation among the detail coefficients is the source of the approximation errors in
the finest-scale covariances of the wavelet-based multiscale models. The disadvantage is
that the states of multiscale models based on more regular wavelets will have dimensions
larger than two due to the overlap of the wavelet functions at any given scale. In other
words, because samples of z(t) will depend on the value of more than one wavelet
coefficient at any given scale, the multiscale variables have to rcpresent more than one
detail coefficient.

Another higher-order multiscale model that more accurately represents fBm is given
by adding more Haar detail coefficients to the variables of the multiscale tree. The en-
hanced wavelet model described in Section 7.2.2 represents a single detail and approxi-
mation coefficient at each state, so that the only correlations between detail coefficients
represented by the multiscale model are those between detail coefficients represented
at neighboring nodes on the tree. Any approximation errors in the covariance of the
finest-scale process are due to correlations in the detail coefficients not represented by
the model. Thus, the accuracy of the approximation will increase when more detail
coefficients are represented by the each state.

The implementations of either of these higher-order multiscale models is rather
straightforward, but they are not considered in this chapter. Instead, we first consider
a higher-order model that is the synthesis of the wavelet and displacement models. Re-
call that the approximations in the multiscale model based on midpoint displacement
are most significant for H < 1/2, since the energy in the displacements is largest for
H < 1/2. In contrast, the Haar wavelet detail coefficients are more strongly correlated
for H > 1/2 than for H < 1/2. A multiscale model that synthesizes the enhanced
displacement and wavelet models should overcome the drawbacks of the two individual
models. The basic idea is to combine the states of the displacement and wavelet mod-
els, and then to compute the model parameters according to optimal prediction, i.e.,
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according to Equations (2.30) and (2.32).

To be more specific, assume that we wish to model NV evenly spaced samples of
fBm at the finest scale of the multiscale tree. Let z[n| = z(nAt) for 1 < n < N be
the N samples. For notational simplicity, assume that that N = 2M+2 50 that we can
choose a binary tree with M scales and four samples of z[n] represented at each of the
2M finest-scale nodes. This mapping to the finest scale is illustrated in Figure 7.13
for M = 2. For each node s, the finest-scale descendents of s represent x[n] on an
interval of width 4 - 2M-™(9) samples, i.e., [4k 2M~™() 4 1, 4(k + 1)2M~™()] for some
value 0 < k < 2™3)_ The discrete-time Haar approximation and detail coefficients with
support on the interval [4k2M-™() 4+ 1. 4(k + 1)2M-m(3)] are denoted by a,,[k] and
dm[k]- The variable of the multiscale tree that combines samples and wavelet coefficients
follows as

zlni] ]
z[ng]
_ | zlng]

(s)= 2] | (7.28)
amlk]

| dm(k]
ny 2 4k2M-me) 41,
N9 2 (4k + 2) gM-m(s)
ny 2 (4k +2)2M-™) 41,

ng 2 4k + 1)2M-m0)

e

where n; and ng are the endpoints of the interval descending from sa; and n3 and
n4 are the endpoints of the interval descending from saz. The samples represented
by each state are illustrated in Figure 7.13 for M = 2. Note that z(s) contains four
samples of the finest-scale process, rather than the three samples used for the midpoint
displacement model. The four samples are used only for symmetry. Because z[nq] and
z[na] are consecutive samples and will be highly correlated, removing either x[ng) or
z[n3] has minimal effect on the finest-scale statistics of the resulting tree model, (as
we have verified in simulations). The parameters of the tree model can be calculated
using Egs. (2.30) and (2.32). We refer to the resulting multiscale model the endpoint-
average model.

The improved accuracy, in terms of representing fBm, of the endpoint average model
over the enhanced displacement and wavelet models can be seen from Figure 7.14. Fig-
ure 7.14 shows the absolute value of the difference between the covariance at the finest
scale of the endpoint average model and the exact covariance in Ec. (7.4). Compar-
ing Figure 7.14a with Figures 7.5d and 7.12a, we see that the covariance errors are
smallest for the endpoint average model when H = 0.3. Comparing Figure 7.14b with
Figures 7.7d and 7.12b, we can conclude again that the covariance errors are smallest
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Figure 7.13. For sixteen samples of z[n] represented at the finest scale, the states z(s)—represented
by ellipses—of the multiscale model contain the endpoints of the two finest-scale intervals descendent
from node s. For the endpoint-average model, the appropriate Haar wavelet transform coefficients must
also be added to the states.
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Figure 7.14. The absolute difference between Eq. (7.4) and the covariance of the finest-scale process
of the “endpoint-average” multiscale model model for (a) H = 0.3 and (b) H =0.7.

for the endpoint average model when H = 0.7. In both cases the maximum errors are
reduced significantly using this higher-order multiscale model. The superiority of the
endpoint-average model should not be surprising, since it is guaranteed by the Corollary
in Section 4.4. Namely, while the finest-scale processes fsa,, fsaq, and f,c partitioned by
node s are not completely uncorrelated after conditioning on either the endpoints or the
detail coefficients in Eq. (7.28), the two combined can only decrease the decorrelation
as measured by the correlation function 7 defined by Eq. (2.42).

While the endpoint-average model improves on the multiscale models discussed in
Section 7.2, it is at the cost of increased state dimensions and hence a decrease in
efficiency. The real question, however, is how close the endpoint-average model is
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to the optimal tree model with state dimensions of six, i.e., the sixth-order multiscale
process that most accurately models fBm. We do not attempt to completely answer this
question, but instead propose a systematic approach for designing multiscale tree models
that are in some sense optimal. These models are based on Canonical Correlations
analysis, but use the statistical self-similarity and stationary increments of fBm to
greatly simplify the number of computations required for the design of the multiscale
models. As an example, the sixth-order multiscale approximation of fBm returned by
the method we now describe has covariance errors of roughly an order of magnitude
less than those of the endpoint-average model.

@ 7.3.1 A Canonical Correlations Realization for fBm

In the remainder of this chapter, a general method for realizing multiscale models of
fBm is presented. The goal is to develop an efficient realization algorithm that provides
an optimal trade-off between the state dimensions of the multiscale process and the
statistical fidelity at the finest scale. This method is based on Canonical Correlations,
but makes use of the statistical self-similarity and stationary increments property of
fBm. The statistical self-similarity leads to a relationship between internal variables at
neighboring scales that allows us to simplify the multiscale modeling of any statistically
self-similar process. We next show how the stationary increments property leads to
further simplifications and the efficient design of multiscale models for fBm. The basic
result is that the Canonical Correlations decomposition of the finest-scale covariance
matrix need only be computed at a small and fixed number of times, rather than a
number of decompositions proportional to the number of finest-scale nodes.

To illustrate the implications of self-similarity for multiscale realization, first con-
sider an example. Assume that samples of a random process z(t) are to be represented
by the nodes at the finest scale of a binary multiscale tree. Also assume that we are
only interested in modeling z(t) on the interval [0, T]. Recall that f, is always defined
as vector of the finest-scale process descendent from node s. From Section 2.3.4, the
internal variables can be restricted to the form

z(s) = W fs, (729)

where f, contains the finest-scale descendents of node s. The vector f, represents z(t)
on some interval [t,t3]. The internal variable z(s) is chosen such that the correlation
among the three vectors fsa,, fsa,, and fs is minimized. The minimization is over a
fixed dimension d(s) for 2(s) and the correlation is measured by 5(fsay, fsaq, fsc | Wsfs)-
Using Canonical Correlations, the internal variable z(s) is determined in two steps [49].

1. Determine the linear combination Tj f,,, that decorrelates f,,, from f,af. As
illustrated in Figure 7.15a, this amounts to decorrelating samples of z(t) on the
interval [t1,t2] from those on [t,t;]°, which is the complement of the interval

[tlat2]'



Sec. 7.3. Higher-Order Multiscale Models for fBm 161

2. Determine the linear combination T fsq, that decorrelates fsa, from fsag. This
amounts to decorrelating samples of z(t) on the interval [t3,t3] from those on

[tg, t3]°.

Both T} and T can be computed using Canonical Correlations decompositions of Py.
The internal matrix W, then follows as®

2(s) = [ Tgx 792 ] &;_l _ (7.30)
w, Js

The problem with this approach is that each internal variable is computed indepen-
dently, requiring O(N) applications of Canonical Correlations for a tree with N finest-
scale nodes.

To take advantage of the self-similarity of fBm, a particular r.apping of the samples
of z(t) to the finest scale of the tree must be chosen. Namely, the mapping must be
chosen such that for any node s (not at the finest scale) there exists a node at scale
m(s) + 1 whose finest-scale descendents are self-similar to the descendents of node .
If the descendents of node s represent z(t) on the interval [t1,t3], then the descendents
of some node T at scale m(r) = m(s) + 1 must represent the interval [t;/2,t3/2]. This
interval is a compression of [t;,%3] by a factor of two. The relationship between nodes
s and 7 is illustrated in Figure 7.15. As a specific example, consider Figure 7.13. The
finest-scale interval descending from the root node is (0, T}, while the interval descending
from node Oq; is (0,7/2].

For a binary tree with M scales, ignoring the discretization effects, the mapping
of z(t) that leads to this self-similar relationship between the variables at neighboring
scales is the following: each finest-scale node must represent an interval of fixed width
T/2M, where the intervals are nonoverlapping and neighboring nodes represent consecu-
tive intervals. For example, two finest-scale nodes with a common parent will represent
the intervals (0,T/2M) and (T/2M,T/2M~1]. The parent of these two nodes has finest-
scale descendents representing (0,7/2~1], which is an expansion of (0,T/2M] by a
factor of two. Once the finest-scale intervals have been chosen, the form of the internal
variable z(7) can be approximately derived from that of z(s). When z(t) is statistically
self-similar, the process on the intervals represented at descendents of node s are self-
similar to those descendent from node +. Thus, were it not for the discrete nature of
the finest-scale process, the internal matrix W, would be identical to W,. (Recall that
W, and W, are the internal matrices with d rows that minimize p(fsay, faaz, fae | W fs)
and B(frays fras, fre | Wz fz), respectively.) However, because of discretization, f, has
one-half the number of elements of f,, and one must be careful when deriving W from
W,. In what follows, we show how an approximation of W; can be derived from W,,
and more generally how all the internal matrices at some scale m + 1 can be derived

50ne issue that is not addressed here is how to allocate the dimnension d(s) between T f,a, and
Tzfm,-
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Figure 7.15. (a) The finest-scale descendents of node s represent samples of z(t) on the interval [¢;, ta),
while the finest-scale descendents of sa; and sz represent z(t) on [t1,ta] and [ta,ts], respectively. (b)
A node 7 at scale m(7) = m(s) + 1 has finest-scale descendents that represent the compressed interval
[t1/2, t3/2].
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from the internal matrices at scale m. This leads to significant computational savings
in the realization of internal multiscale models that have self-similar processes at the
finest-scale.

To show how the internal variables at scale m + 1 are related to those at scale m
when z(t) is statistically self-similar, first consider the decorrelation of two intervals of
z(t). The correlation of two intervals of z(t) can be defined analogous to the correlation
between two vectors defined by Eq. (2.38). Define

L[t1,t5] 2 the set of bounded linear functionals of z(t)

on the interval [t;, ).

Recall that the correlation between two scalar random variables is

p(u,v) = E(x =~ mu)(v ~ m)] : (7.31)

OyOy

where oy is the standard deviation of u. The correlation conditioned on y is

E[(u ~ my)(v —my) | 'y] '

K] - 7.
p(w,v]y) o (7.32)
The correlation between z(i) for t € [t1,t;] and z(t) for ¢ € [t3,4] is defined as
p(z. [t tal,[tata]) S max p(&(z), fa()), (7.33)
{CIEE[tl.tzl}
£2€L(t3,L4)
and the correlation conditioned on y is
ﬁ(I’ [tla t2]7 [t3’ t‘l] | y) é max p(fl(.’l:), Z2(IL‘) l y) . (734)
{lxeﬁlh.tzl}
€2€L[t3,t4]

Note that, due to the homogeneity of linear operators, p(¢;(az), £2(8z))= p(£i(z), €2(z))
for any two real scalars a and 8. Also, because conditioning on ~y is equivalent to con-
ditioning on y for any scalar v, we have

p(tr(ez), €2(87) | y)= p(ti(2), Ea(e) | 9) (7.35)
This implies that
oz, [t1,ta), [ta, ta] | vy) = P(z, [ts, 12, [ta, ta] | ¥) (7.36)

for any two scalars a and ~.

Define z,(t) £ z(at) for an a > 0. We will use the following theorem to relate
internal variables at neighboring scales when the finest-scale process is statistically self-
similar.
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Theorem 4 Assume that the linear functional £ € L[t,ts] satisfies

= arg erg[m ol (z, [t1,t2], [t, ta] | Lo()) . (7.37)

For any stqtistically self-similar process :cgt) and any scalar a > 0, the bounded linear
functional £(z) € L|at), aty] that satisfies £(z) = €(x,) must also satisfy

i= arg  min ﬁ(a:, [at;, ata], [ats, aty] |fo(x)) . (7.38)
(oEE[ah,atz]

Recall that z,(t) L z(t). For any two linear functionals ¢, € L[t;,¢2] and
¢, € L|t3, ty), self-similarity implies that p(¢;(z), l2(z)) = p(¢1(xa), €2(xa)), since

E[Zl eg(l')] = a_2HE[€1(Ia 82(34)]
var[fl(:r ] =a” var[fl xa)] ’

-2H

var[€y(z)] = a”*var [Zz(a:a)] .

Riesz's Lemma [83] can be used to show that for any bounded linear functional ¢(z),
there exists a function g(t) such that

{(z) = /g(t z(t)dt.

Applying a change of variables to such integrals, there exist linear functionals 6 €
Llat;, aty] and f, € L[ats,aty] such that 6 (z) = 6(x,) and ly(z) = ly(z,). The
existence of these linear functionals leads to

6 (z), ¢ ¢ 61 (afz), ba(az) | €(a
{cleut}[a;xmz]} p(ti(2), @) ) {t;ecltl tz]} o(tia”a) tole a:)| (e7=)
lzGC[ta,h] t2€£[¢3.t4]

= 0 (xq), L Uza)),
{lxelgﬁxhtz]} ( 1(Za) Z(za)l (z ))
02€L[ta 4]

max  p(i(e),ba(2) | i(z)
{{165[011 .ﬂlzl}
£2€L[at3,at4)

where the last equality follows from #(z) = #(z,). Therefore,
B(z, [t1,ta), [ta, ta] | €(x)) = P(=, [at1, ata), [at3, at4] | {(z))

The result of the theorem follows.
Q.E.D.

Theorem 4 can be extended to open intervals or unions of intervals, e.g., [t1,t2) or
(t1,t2)U(0,t1/2) in lieu of [¢;,¢;]. Theorem 4 also applies if a vector of linear functionals
is substituted for £(z).
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Theorem 4 basically states that the linear functionals that maximally decorrelate
two intervals of a statistically self-similar process can also be used to determine the
linear functionals that maximally decorrelate any common expansions or cuntractions
of these intervals. For example, return to the example illustrated in Figure 7.15. Assume
for the moment that we are interested in modeling fBm on [0, 00), i.e., T = co. Under
this assumption, the complement of the interval [t;, o] is [t1, t2]¢ = [0, 1) U(22, 00). Also
assume that z(s) contains the set of linear functionals that

o maximally decorrelates x(t) on [t1,t2] from z(t) on [t1,t2]° and
e maximally decorrelates z(t) on [t2,t3] from z(t) on [ta,23]°.

Using Theorem 4, we can also determine from these linear functionals in z(s) the internal
variable z(7) that

e maximally decorrelates z(t) on [t;/2,t2/2] from =(t) on [t1/2,t2/2]° and
e maximally decorrelates z(t) on [tp/2,t3/2] from z(t) on [t2/2,t3/2]°.
To derive z(7) from z(s), note that the i-th element of 2(s) can be expressed as

ti(z) = / ® Gt)a(t) dt (7.39)

4t

for some function gi(t). The corresponding element in z(7) follows from Theorem 4 as
ti(z) = ti(za), ie,

bi(zy) = /ts gi(t)z(at) dt, (7.40a)
13}
= fata (gi(t/a)/a)x(t)dt, (7.40b)
aty
= li(z). (7.40c)

Since a = 1/2 for this example, the kernel defining the i-th element of z(r) is 2g:(2t),
a time-compression and magnitude-expansion of gi(t) by a factor of two. However,
remember that conditioning on 2¢;(2t) is equivalent to conditioning on g;(2t), so that
only the time-compression is important in the derivation of z(7).

These results might lead one to believe that, given the internal variables for all
the nodes at a single scale m, the internal variables at all other nodes can be derived
directly from those at scale m. There are two problems with this line of reasoning. First,
the finest-scale represents samples of z(t), so that the compression given by Eq. (7.40)
cannot be directly applied. Second, the interval [0,T] modeled at the finest scale of
the tree is finite, so that [t;/2,t2/2]¢ is not related to [t1,2]° by a simple compression.
The following discusses how to overcome these problems, and how the results lead to
an algorithm for modeling {Bm.



166 CHAPTER 7. MODELING AND ESTIMATION OF FRACTIONAL BROWNIAN MOTION

A
g,(0) ?
A
A glK-1]
g;[0]
! T — t
t ar ty

Figure 7.16. A function of impulse spaced by At on the interval [t;,23). The area of the impulse at
ti + kAt is gi[k], 0 < k < K — 1, where K = (t3 — t1)/AL.

The Effect of Sampling on Theorem 4

Using Eq. (7.40) to derive z(7) from an internal variable at scale m(r) — 1 assumes
that the internal variables are linear functionals of the continuous-time process z(t).
However, because the process at the finest-scale of a multiscale trees usually represents
samples of z(t), the internal variables will instead be linear functions of samples of
z(t). In this case, Equation (7.40) cannot be used to determine the internal variable
that corresponds statistically to a compression of z(s). If z(s) represents linear functions
of samples of z(t) spaced by At, then each kernel g;(t) will have the form

K-1

9i(t) = > ailk] 6(t — kAt —t,), (7.41)
k=0

which is illustrated in Figure 7.16. The impulses of g;(2t), however, will be spaced by
At/2. Half of these samples are not represented by the finest-scale process. Therefore,
we must either choose an external model (by representing at z(7) samples that are not
represented at the finest scale), or we can approximate z(7) in terms of z(s).

To approximate z(7) in terms of z(s), it is worthwhile to first consider multiscale
models for which the finest-scale represents local averages of x(t) over non-overlapping
intervals [kAt, (k + 1)At]). (These local averages are equal, within a constant factor, to
approximation coefficients of the Haar wavelet transform.) For these models, W, can
be derived exactly from W,. Define

1, 0<t<A,
#e) -{ 0, otherwise. (7.42)

Then (z(t), ¢(t — kAt)) is the “average” value of z(t) over the interval [kAt, (k + 1)At).
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Each element of z(s) will be expressible as

K-1

ti(z) = Y gilk] (x(t - kAL - t1), §(t ~ kAL — t1)), (7.43a)
k=0

= 2?1[3 , (7.43b)

where f, contains the average values represented at descendents of node s and g, is a
vector containing g;[k]. From Eq. (7.40), the corresponding element of z(7) is

K-1
bi(z) =Y 2gilk] (z(2t — kAL — t1),$(2t - kAL~ t1)). (7.44)
k=0

Using ¢(t) = ¢(2t) + ¢(2t — At),

K/2-1
Gi(z) = Y 2(ail2k — 1] + gi[2k]) (z(t — kAL — £1/2), 6(t - kAL - 11/2)), (7.45a)
k=0
= b fx, (7.45b)

where f, contains the average values represented at descendents of node 7. The k-th
element of the vector h; is 2(g:[2k — 1] + gi[2K]).

When the finest scale of the multiscale tree represents samples of the self-similar
process z(t), Equation (7.45) can be used as an approximate method for deriving states
at scale m + 1 from the corresponding states at scale m. The approximation is given
by replacing the terms (z(t — tg), ¢(t - t)) in Eqgs. (7.43) and (7.45) with samples of
z(t). For fBm, the accuracy of this approximation will depend on the sampling interval
At and the Hurst exponent H. For small values of H, i.e., H near zero, the statistics
of samples of fBm differ most from the statistics of local averages of fBm. The reason
is that fBm has significant fine-scale energy for small values of H, so that low sampling
rates lead to significant aliasing. Therefore, we would expect for a fixed At that the
approximation given by Eq. (7.45) to be worst for H < 1/2, (or, alternatively, that a
smaller At is needed for smaller H).

The Finite Interval Problem

The second problem with using Eq. (7.40) to determine z(7) from z(s) is that an infinite
interval was assumed to be represented at the finest scale of the tree. To illustrate the
source of the problem, again consider the example illustrated in Figure 7.15. In using
Eq. (7.40) to derive z(7) from z(s), an implicit assumption was that [t1/2,t2/2]° is a
compression of [t1, 2]¢ and that [t2/2,t3/2]° is a compression of [ta, i3]°. If [0,T] is the
interval to be represented a the finest scale of the tree, then [t;,t2]° = [0,21) U (2, T]
and [t;/2,t2/2]° = [0,¢1/2) U (t2/2,T}; the compression relationship will only hold if
T = 0o. Since T is always finite, the derivation of z(7) from Eq. (7.40) will always be
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approximate. As an example, consider z(0) and its descendent 2(0a;) in Figure 7.13.
The finest-scale descendents of z(0) represent samples of z(t) on the interval (0,7,
while the descendents of z(0a)) represent samples of z(t) on the interval (0, T/2]. This
interval is a compression of the interval (0,T) by a factor of two. But the comple-
ments of these two intervals are not related by a compression. The internal variable
z(0) must conditionally decorrelate samples of z(¢) on the interval (0,T/2] from those
on (0,7/2]° = (T/2,T]. The internal variable 2(0c;) must conditionally decorrelate
samples of z(t) on the interval (0,T/4] from those on (0,T/4]¢ = (T/4,T]. (In addi-
tion, 2(0ca;) must conditionally decorrelate samples of z(t) on the interval (T/4,T/2)
from those on (T/4,T/2]c = (0,T/4 U (T/2,T].) Even though the descendents of 2(0)
and z(0a;) are related by a simple compression by a factor of two, there is no such
relationship between the intervals decorrelated by the two internal variables.

If the internal variable at node 2(0ay) is to be derived from z(0), one possible
solution is to compute 2(0) assuming that (0,T)c = (T, 2™0T] for some positive integer
value of mg. In other words, z(0) will conditionally decorrelate samples of z(¢) on the
intervals (0,T/2], (T/2,T), and the additiona] interval (T,2™°T). For my = 1, these
intervals are an expansion of the three intervals partitioned by node 0ay; therefore, z(0)
can be used to derive z(0a), say according to Eq. (7.45), so that z(0a;) decorrelates
samples of z(t) on the intervals (0,7/4], (T/4,T/2], and (T/2,T]. To compute internal
variables for scales m > 2 fron 2(0), larger values of mg can be used. The obvious
trade-off to be made is between the decorrelation supplied by z(0a; )—and decorrelation
supplied by the internal variables at finer scales that are also derived from 2(0)—and
the additional computations required to compute z(0).

Another manifestation of the finite interval is that half of the internal variables at
scale m 41 will have no ancestors at scale m for which the results of Theorem 4 apply.
For example, consider noce 2(0a) in Figure 7.13. The finest-scale descendents of node
O are samples of z(t) on the interval (T/2,T). However, there is no node at the pre-
vious scale whose finest-scale descendents Tepresent the interval (T,27]. The internal
variable z(0a3) can, of course, be computed using a direct application of Canonical Cor-
relations, but the application of similar Canonical Correlations required for analogous
variables at finer scales will lead to an algorithm requiring O(N) Canonical Correlations,
where N = 2M s the number of nodes at the finest scale of the tree.

To overcome this problem, we can instead invoke the stationary increments prop-
erty of fBm to argue that the internal Inatrices are approximately constant, i.e., “shift-
invariant”, across any scale of the tree. To see how the stationary increments property of
fBm leads to internal matrices that are effectively shift-invariant, consider the decorrela-
tion of samples of x(t) on two consecutive intervals. The sampled process is denoted by
z[n], and the intervals considered are n € [m,m+m;—1]andn € [m+my, m+2m, -1).
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The vectors representing these two intervals are

z[m) z[m + m,]
z[m + 1] z[m +my + 1]

Typ = . and X,, = . (7.46)
:cfm +my — 1] a:[.m +2m; — 1]

The linear function T3z, of dimension d which minimizes p(Zm, Xy | T1Zm) is given by
the Canonical Correlations decomposition of the covariance matrix

PI P:l: X
PI = m mam . 7.47

If the eigenvalue (or SVD) decompositions of the matrices P, and Px,, are given by

P, = A5 AT,
Px,, = AS,AT

the matrix T} is given by the first d rows of the matrix UT, where USVT is the singular
value decomposition of the matrix S; Y ZATP,:,“ XmA25, 2 The terms Sy Y 2Af and
Sy Y 2A; effectively normalize the variances of the vectors ,, and X,,. The source of
the correlation between ., and X, is contained in P;_x,..

The matrix Pr_ x, can be simplified using the stationary increments property.
Namely, using Eq. (7.5), there exists au invertible m;-by-m; transformation Q such
that

[ z[m] ] [ z[m + my] ]
wlm + 1] wlm +m; + 1)
Ym = Q= | wm+2] , and Y, =QXpn= | wim+m +2]
| wm+m; —1] | | wim +2m; — 1] |
(7.48)
The cross-covariance between z,, and X,, can then be transformed to
QPnx. QT =
E[z[m]x[m + m,]] | Elz[m]wm +mi+1]] -+ E[z[m]wm + 2m, - 1]]

E|z{m + mjJw[m + 1]]
: P,
E[z[m + mi|w[m + m; - 1]

where the matrix P, is stationary due the the stationary increments property of fBm,
i.e., w[n] is a stationary process. The (i,j)-th entry of P, is equal to r[i — j}, where

(7.49)
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r is defined in Eq. (7.6). Note that E[z[m]w[m + m, + n]] is zero only for H = 1/2,
and for H # 1/2 it is a function of m. A similar observation applies to the first column
of Eq. (7.49). However, as demonstrated in the following paragraph, the Canonical
Correlations decomposition based on this cross-covariance varies very little with m for
m > mj.

The matrix T} returned by Canonical Correlations will essentially be a function
of the cross covariance E[y,.Y,T] given in Eq. (7.49). However, recall that Canonical
Correlations first normalizes by the standard deviation of each element in z,, and X,,,
so that T is invariant to any scaling of z[m] or x[m+m,]. If we divide the first element
of ym by the standard deviations of z[m] and divide the first element of Y, by the
standard deviations of z{m + m,], then the (1,1) entry of the covariance matrix in
Eq. (7.49) is

E[z[m]z[m + m]] 3 (I + fm 4 mg 22— jmy |PH)

;= (7.50)
var [z[m]]/*var [z[m + m,]] '/ |m|H|m + my|?

For m > m; and 0 < H < 1, this term tends to one. The other terms along the first
row of E[me,,T: ] are

E[z[m|w[m + =] _ E[z[m]z[m + n]] — E[z[m]z[m + n —1]]

var [z[m]) 1/2 var [z[m]]/? '
_1 (m+n)2H_ (m+n—-1)2H ﬁH+ (n—l)zH
) m m m m '

formi+1<n<2m;—-1. Form>m; and 0 < H < 1, these terms all tend to zero.
Similar analysis shows that of the terms
E[z[n + mi]w[m + n]]

var [ar[m + ml]] 1/2 (7.52)

also tend to zero for increasing m. Hence for large m relative to the size of the interval
m;, we have the following approximation

E[ymY,T] ~ [%‘I?T] : (7.53)

Because this matrix is independent of the value of m, the matrix T} returned by Canon-
ical Correlations will be independent of the location of the interval [m,m + m; — 1].
This independence can be used to determine internal variables at a given scale from
other internal variables at a given scale. In fact, as shown in the following examples, all
of the internal variables at a given scale can be derived from a single internal variable.
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Algorithms for Approximating fBm

Theorem 4, along with Eq. (7.40), shows in principle how any internal variable at scale
m can be used to derive one of the internal variables at scale m + 1, provided the
mapping of fBm to the finest scale is done appropriately. In reality, one must also
account for

o the discrete nature of the finest scale process and
e the finite interval represented at the finest scale.

The discrete nature of the finest-scale process can be handled using an approximation
based on the exact relationship between internal variables at neighboring scales when
the finest-scale process represents local averages of z(t)—see Eq. (7.45). The finite
interval is handled by assuming that all of the internal variables at a given scale are
given by the same internal matrix.

To describe an algorithm for realizing multiscale approximations of fBm, consider
modeling N samples of fBm on the interval (0, T] at the finest scale of a binary tree. If
we assume N = 2M+2 then we can use an M scale tree with four samples represented
at each finest-scale node. (See Figure 7.13 for an example of the finest-scale mapping
when M = 2.) The sampling interval is At = T/N. We would like to be able to realize
the corresponding multiscale model using a minimum number of Canonical Correla-
tions. This number should also be independent of N. An algorithm requiring just two
Canonical Correlations decompositions is given by considering and interval of length T
embedded within the larger interval [0,27], and then using shift-invariance to derive
a multiscale representation of the process on [0,T]. The two Canonical Correlations
required are the following:

e compute the linear corbination T} f; that maximally decorrelates samples of z(t)
on the interval (T/2,T] from those on (0,T/2] U (T,2T], where fi contains the
samples on (T'/2,7T), and

e compute the linear combination T3 f, that maximally decorrelates samples of z(t)
on the interval (T,37T/2] from those on (0,T) U (3T'/2,2T], where f; contains the
samples on (T',3T/2].

Note that we have chosen two intervals, (T'//2,T] and (T, 3T/2], that are sufficiently far
from the boundaries of the interval entire [0,27]. The reason is that most of the internal
variables in the tree must decorrelate some interval (1,2 from (t1,t2]¢ = (0, t1]U(t2, T},
where neither (0,t;] nor (t2,T] is empty. (One of these intervals will be empty only
when the finest-scale descendent of a node includes either z(At) or =(T').) Thus, using
both shift-invariance and self-similarity, all of the internal variables can be reasonably
approximated from T f; and T3 f2. To be more specific, the variable at the root node,
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using shift-invariance, is given by

_ Tl 0 f001
z(0) = [ 0 T, ] [ fou ] : (7.54)
N ——
Wo

The variables at finer scales can be derived from Wy using Eq. (7.45) and shift-invariance.
The only drawback of this algorithm is that, because the number of computations
required for a Canonical Correlations decomposition grows cubicly with the number
of samples to be decorrelated, doubling the size of the interval from (0,77 to (0,27
increases the number of computations for a single decomposition by eight. A more

efficient algorithm is the following:

1. Compute z(0) as usual, i.e., use Canonical Correlations to decorrelate samples of
z(t) on (0, T/2] from those on (T/2, T]. This requires one application of Canonical
Correlations to the N-by-N covariance matrix Py.

2. Compute z(0ay) as usual, which requires two applications of Canonical Correla-
tions to Py. Use shift-invariance to compute 2(0ay).

3. Compute the internal variable at the “third” node of scale m = 2, i.e., the node
s whose finest-scale descendents represent the interval (T/2,3T/4]. Two applica-
tions of Canonical Correlations yield an internal variable of the form

2(s) = [ TO‘ 7‘,’2 } H: ] . (7.55)
W,

4. The remaining variables at scale two follow from shift-invariance. The variables at
finer scales can be derived from W, using Eq. (7.45) together with shift-invariance
at each scale.

Note that this algorithm requires five applications of the Canonical Correlations to
an N-by-N covariance matrix rather than two applications to a 2N-by-2N covariance
matrix. The model parameters follow from Eqs. (2.30) and (2.32).

Example Multiscale Models

To justify Eq. (7.45) and the assumption of shift-invariance, we can compare the mul-
tiscale model produced by this algorithm to that produced by the “myopic” Canonical
Correlations algorithm, which computes every internal variable independently. For
02 = 1 and the unit interval (T = 1), the covariance errors provided by these two
approaches are compared in Figure 7.17. The dimensions of the states for all the
models illustrated in Figure 7.17 are six, except for the finest-scale states which have
dimension four. An interesting result is that the “efficient” realization algorithm, which
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Figure 7.17. The absolute value of the difference between Eq. (7.4) and the covariance of the finest-
scale process produced by the “myopic” Canonical Correlations realization for (a) H = 0.3 and (b)
H = 0.7; the absolute value of the errors in the covariance of the finest-scale of the “efficient algorithm”

for (c) H = 0.3 and (d) H = 0.7. The dimension of the states not at the finest scale, for both models,
is six.

uses Canonical Correlations to compute directly only three internal variables, compares
favorably with the “myopic” realization algorithm. Namely, the errors illustrated in
Figures 7.17c and 7.17d are roughly equal in magnitude to the errors illustrated in Plg-
ures 7.17a and 7.17b, which are the covariance errors at the finest scale of the “myopic”
model. Remember that the errors along the diagonal are zero for both models, since the
variance errors are always zero for any model computed from Egs. (2.30) and (2.32).
Recall that the algorithm we have just described uses three Canonical Correlations,
plus the approximate self-similarity and stationarity of the matrices W,, to determine
the states at each scale. The reason that our algorithm does so well compared to
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Figure 7.18. For (a) H = 0.3 and (b) H = 0.7, the linear functional nf the finest-scale pro-
cess that maximally decorrelates (top) (T/2,37T/4] from (T/2,3T/4)° and (bottom) (T/4,3T/8] from
(T/4,3T/8]°.

exhaustive Canonical Correlations is that the functionals returned by exact Canonical
Correlations very closely follow the approximation we are making. Specifically, examples
illustrating the near self-similarity and shift-invariance of the linear functionals returned
by Canonical Correlations are illustrated in Figures 7.18 and 7.19, respectively. First
consider self-similarity. The variable z(0a3) at scale m = 1 must decorrelate samples of
z(t) on the interval (T'/2,3T/4] from those on (T'/2,3T/4]°. There is a corresponding
internal variable at scale m = 2 that decorrelates samples on (T/4,3T/8] from sam-
ples on (T/4,3T/8]¢. The linear functional g7 f, where f is a vector representing the
finest scale process, that maximally decorrelates samples on (T'/2,3T/4] from those on
(T/2,3T/4]¢ is illustrated in the top of Figure 7.18a for H = 0.3. (Note that g, not
g% f is plotted.) The plot in the bottom of Figure 7.18a is the linear functional that
maximally decorrelates samples on (T'/4,3T/8] from those on (T'/4,3T/8]¢. The anal-
ogous linear functionals for H = 0.7 are plotted in Figure 7.18b. For both values of
H, the linear functionals are essentially related by a compression of the time-axis by a
factor of two. To check the “shift-invariance” assumption, we can compare the linear
functional that decorrelates (T'/4,3T/8| from (T'/4,3T/8]° to the linear functional that
decorrelates (T'/2,5T/8] from (T/2,5T/8]¢. These two functionals are compared in Fig-
ures 7.19a and 7.19b for H = 0.3 and H = 0.7, respectively. For both values of H, the
two functionals are very closely related by a shift of the time axis, which justifies our
assumption of shift-invariance.

It is worthwhile to note that the internal variables of any multiscale model based
on Canonical Correlations change form with the value of H, which is not true for
the displacement and wavelet multiscale models proposed earlier. Also, the first few
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Figure 7.19. For (a) H = 0.3 and (b) H = 0.7, the linear functional of the finest-scale pro-
cess that maximally decorrelates (top) (T/2,3T/4] from (T/2,3T/4]° and (bottom) (T'/4,3T/8] from
(T/4,3T/8]°.

°<

elements of the internal variables for the Canonical Correlations realization are similar
to the variables of the displacement model in that the functions are weighted heavily
at the endpoints of the intervals, yet they are also nonlocal, as are the wavelets.

Another interesting comparison is between Figures 7.17c-d and Figures 7.14a-b.
Figures 7.14a-b display the covariance errors at the finest scale of the endpoint-average
model with states consisting of four samples and two wavelet coefficients; thus, the state
dimensions of the two models are the same. However, the covariance at the finest scale
of the multiscale model produced by the “efficient” algorithm is more accurate than that
produced by the endpoint-average model for both H = 0.3 and H = 0.7. The covariance
errors for the “efficient” model are about an order of magnitude less than those for the
endpoint-average models. (Note that the vertical axes in Figures 7.14 and 7.17 are not
the same.) This demonstrates that the models produced by the “efficient” algorithm
provide more accurate approximations of .Bm than those derived from less rigorous
justifications for augmenting the state dimensions.

Sample paths for the six-dimensional “efficient” models are illustrated in Figure 7.20
for H = 0.3 and H = 0.7. These sample paths have no visibly discernible artifacts.

These examples illustrate that the self-similarity and stationary increments proper-
ties of fBm can indeed be exploited for the development of internal multiscale models.
The proposed algorithm provides a systematic approach to realizing multiscale models
that approximate the statistics of fBm within any degree of accuracy. The only draw-
back is that a Canonical Correlations decomposition of an N-by-N covariance matrix
is still required, which implies O(N3) computations. However, we are not necessarily
restricted to Canonical Correlations decompositions, nor is p(-) the only correlation
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Figure 7.20. Sample paths produced by the multiscale models based on Eq. (7.45) and shift-invariance
for (a) H=0.3 and (b) H =0.7.

measure that is suitable for self-similar processes, i.e., there are other correlation mea-
sures that “satisfy” Theorem 4. Also, we can likely use interpolation to derive internal
variables at coarser scales from those at finer scales, leading to more efficient algorithms.
These issues, as well as the development of multiscale models for the broader class of
self-similar processes, are briefly discussed in Chapter 8.



Chaptei 8

Contributions, Limitations, and
Potential Solutions

The first section of this chapter summarizes the major contributions of this thesis. In
Section 8.2, we point out the limitations of our approaches, the problems that must be
addressed, and some possible solutions. Finally, alternative approaches to multiscale
realizations are described in Section 8.3.

B 8.1 Summary of Contributions

Multiscale Modeling of Nonlocal Properties

One of the major contributions of this thesis is the development of a methodology for
realizing multiscale stochastic processes that not only have a desired statistical struc-
ture at the finest scale, but also represent particular nonlocal functions of the random
phenomenon at coarser scales of the multiscale process. Before this thesis, the coarser
scale variables of multiscale tree processes were chosen primarily to allow efficient pro-
cessing of the finest-scale variables. However, because the multiscale estimator and
likelihood calculator can incorporate observations at all scales on the tree, and because
the multiscale estimator produces by default the LLSE estimate and error variance
of every variable on the tree, there is sufficient motivation for representing particular
nonlocal functions of the phenomenon of interest at the coarser scale nodes. Doing so
allows one to incorporate measurements made at different resolutions, and to estimate
and produce error variances for aggregate properties of the phenomenon.

The first approach presented was a rather straightforward extension of the real-
ization algorithm presented in [51]. While the internal (or state) variables used in
[51] are the linear functions that decorrelate subsets of the finest-scale process, the
internal variables produced by the algorithm of Section 4.2 also decorrelate the par-
ticular coarse-scale or nonlocal functions that are to be represented at coarse scales of
the tree. If the state variables are computed independently using Canonical Correla-
tions, the number of computations required by this algorithm will be overwhelming for
large-sized problems. However, the basic principles behind this approach apply to any
multiscale realization, such as the augmentation algorithm described in Section 4.3 or

177
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the fine-to-coarse algorithm outlined in Section 8.3.

To overcome the computational burdens associated with Canonical Correlations,
we presented a method that augments the states of internal multiscale models with
the desired nonlocal functions of the finest-scale process. The idea is basically to build
on multiscale models, like the multiscale models for fBm described in Chapter 7, that
already represent the finest-scale statistics of the phenomenon of interest. The state
augmentation is not straightforward, i.e., there is more involved than just adding the
desired nonlocal functions to the corresponding coarse-scale variables. For one, the
Markov property must be preserved. Secondly, the descendents of the coarse-scale vari-
able that is augmented must also be augmented to ensure that the nonlocal functions
generated at the coarse-scale node are passed consistently to the finest-scale process.
Once the state variables have been augmented, the parameters of the augmented mul-
tiscale model can be computed using Eqs. (2.30) and (2.32).

An interesting feature of the state augmentation algorithm is that any linear func-
tion of the finest-scale process can be added to the variable at any node of the internal
multiscale model. The natural question is, given a set of nonlocal properties to be
measured or estimated within the multiscale framework, at which nodes should these
functions be represented. The obvious answer is the set of nodes that, after the aug-
mented model has been computed, leads to the most efficient processing algorithms.
But this does not tell us how to choose the optimal set of nodes. An example was pro-
vided to illustrate that the choice of nodes at which the nonlocal functions are placed
does effect the state dimension of the augmented model, but no general solution is
presented. The problem is that the nodes at which the nonlocal functions are placed
will have the most significant impact (on the state dimensions of the augmented model)
when approximations can be tolerated.

The real power of the multiscale framework is based on efficient processing algo-
rithms. These algorithms are functions of the state dimensions of the multiscale tree;
for example, the number of computations required by the multiscale estimator grows
cubicly with each state dimension. If a large number of nonlocal functions are added to
the variables at coarse scales of the process, the increased state dimensions will destroy
the utility of the multiscale framework. In these cases, one should be willing to sacrifice
statistical accuracy for computational efficiency. In fact, for many problems one should
be able to significantly reduce the state dimensions before incurring meaningful errors
in the statistics of the model. In this spirit, we proposed an approximate state aug-
mentation algorithm based on compression and consistency. The compression involves
removing the elements of each state variable deemed to be least significant. Consis-
tency requires that any elements removed from the fine-scale variables should also be
removed from the coarser-scale variables, since these elements cannot be consistently
passed from the coarser-scale variables to the finest scale of the process. This consis-
tency requirement implies that the approximation algorithm should proceed from fine
to coarse scales. In fact, we will return to consistency in Section 8.3, showing how it
can form the heart of an efficient fine-to-coarse realization algorithm.
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Multiscale Modeling and Estimation of Hydraulic Conductivity

The second contribution of this thesis is to apply the multiscale framework to a non-
trivial data fusiou problem in which the measurements are provided at different spatial
resolutions. For our example, we considered the estimation of hydraulic conductivity in
2D from measurements of head, conductivity, and travel times. The basic approach is
to linearize the head and travel-time measurements about some log-conductivity func-
tion, and then to represent the observed head and travel-time values as variables at
coarser scales on the tree. For the examples provided in this thesis, samples of log-
conductivity are represented at the finest scale of a multiscale tree and the finest-scale
process is a Markov Random Field. Head and travel-time measurements are added to
the coarse-scale variables using the algorithm of Section 4.3.

Before incorporating travel-time measurements, we first focused on the estimation
of conductivity from head and conductivity measurements only. The first step was to
analyze the effect of head measuremenis on conductivity estimates. The effectiveness
of the head measurements in constraining the conductivity function depends in large
part on the the particular flow scenario, i.e., the form and uncertainty of the boundary
conditions, the locations of the head measurements, and whether the aquifer is forced
by a known function Q, e.g., a pumping or injection well. The existence of a pumping
well was shown to significantly improve the effectiveness of the head measurements in
regions where the pumping governs flow behavior. The signal-to-noise ratio of the head
measurements, i.e., the ratio of the variance of the head function te the variance of the
head measurement errors, is also a significant determinant of the effectiveness of the
head measurements.

Next, the multiscale framework was applied to two hydraulic conductivity estima-
tion problems. For both problems, the head measurements were linearized about the
conductivity function fo = 0. For the first problem, the head and conductivity mea-
surements were at the same twenty locations. The state augmentation algorithm was
used to represent the head measurements at coarse scales of the tree, and the aug-
mented multiscale tree incurred modest increases in the state dimensions—about forty
at the two coarsest scales. Note that, since the head measurements are based on a
linear approximation, the augmented multiscale model only approximates the cross-
covariance between the head measurements and the log-conductivity samples at finest
scale. Consequently, the estimate and error variances produced by the multiscale es-
timator are approximations of the optiinal LLSE estimator. Nevertheless, in spite of
the linearization, incorporating the head measurements in addition to the conductivity
measurements generally leads to a decrease in the log-conductivity estimation error.
For the second example, the head and conductivity function were measured at separate
locations. These measurements included regions of both dense conductivity and dense
head samples. The estimate of the finest scale of the multiscale tree, however, only has
fine-scale detail in regions in which there are dense conductivity measurements. This
example illustrates that head measurements reduce the estimation error, but provide
only coarse-resolution information about the conductivity function.
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The linearized head measurement equations can be improved by lineariing about
estimates of the log-conductivity function rather than fo = 0. This leads to an iter-
ative algorithm in which the head measurements are successively linearized about the
most recent log-conductivity estimate. While this iterative algorithm generally leads
to improved log-conductivity estimates, the cost is increased computational complex-
ity. Namely, at each iteration the Fréchét derivatives must be computed for a new
conductivity function. This implies L, + 1 forward simulations of the groundwater
flow equation for L, head measurements. These simulations can be quite costly if
the number parameters used to describe the conductivity function is large. (In these
examples, the number of parameters is equal to the number of conductivity samples
represented at the finest scale of tree.) Also, the augmentation algorithm must be re-
applied with each new set of linearized head measurements. This repeated application
can also lead to a significant increase in the number of computations. To determine the
true costs of the iteration, one must answer how quickly the log-conductivity estimate
converges to its final valuec and by how much the asymptotic value is an improvement
over the estimate computed from a linearization about fo = 0. As a general rule, we
show that the estimate converges more slowly for large log-conductivity variances, but
that large-conductivity variances also lead to greater estimation error reductions due
to re-linearization.

Using a procedure very similar to the linearization of head measurements provided
in Chapter 3, we showed how measurements of travel-time to a control plane can be
linearized in terms of perturbations of log-conductivity. This linearization allows al-
lows the incorporation of travel time measurements within the multiscale framework,
so that conductivity can be estimated from measurements of head, conductivity, and
travel times. An example of such an estimator was provided. For some applications,
travel time measurements are not available, and one is interested in estimating a condi-
tional distribution for travel times in the aquifer. In this case the multiscale framework
provides two methods for computing distributions of travel times that are conditioned
on head and conductivity measurements. One is a Monte-Carlo method, which involves
using the multiscale error model to compute numerous conditional simulations of the
log-conductivity function. The advantage of this method is that it does not depend on
the linearization of travel time, but it also requires numerous implementations of the
2D flow equation. The second approach is to build the travel-time variable directly into
the multiscale model, just as we did for the multiscale model that incorporates travel
time measurements. The key to this approach is to be able to describe travel time as a
linear function of hydraulic conductivity. If travel time is then represented as a coarse-
scale variable of the multiscale process, the multiscale estimator will produce both the
estimate and error variance of travel time, i.e., the conditional distribution assuming
that travel time is a Gaussian random variable. Both approaches were demonstrated
and compared, and the deviation between the two is largest for large variances in the
conditional distribution for log-conductivity, since the travel-time linearization breaks
down for large conductivity variances. Also, for large conductivity variances, the con-
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ditional distribution of travel time is no longer approximately Gaussian, but is better
represented as log-normal random variable.

Multiscale Modeling of Fractional Brownian Motion

The third major contribution of this thesis is the construction of a class of multiscale
models that approximate fractional Brownian motion (fBm). The first set of approxi-
mate models is based on the random midpoint displacement and wavelet synthesis algo-
rithms for synthesizing fBm. The midpoint displacement algorithm (wavelet synthesis)
makes the implicit assumption that the displacements (wavelet detail coefficients) are
completely uncorrelated. However, the displacements and detail coefficients are corre-
lated, and the correlations are most strong among local values. For instance, any detail
coefficient is most strongly correlated with those coefficients that have common support
and are at neighboring scales and time indices. By capturing these correlations within
the multiscale framework, not only is fBm more accurately represented, but one can
also take advantage of the efficient processing and synthesis algorithms. Also, because
multiscale models are nonstationary, the multiscale autoregression can account for the
fact that the interpolated value at the midpoint of two samples is not necessarily the
average of these two samples. (This observation has implications only for the multi-
scale model based on random midpoint displacement.) The interpolation depends on
the dictance between the samples, the location of the samples, and the value of the
Hurst exponent. The two resulting multiscale approximations of {Bm were shown to
be quite accurate, especially considering that the state dimensions are equal to two
for the wavelet-based multiscale model and three for the midpoint-displacement-based
multiscale model.

The second approach to modeling fBm is more systematic, and also uncovered some
deeper issues associated with multiscale modeling. This approach is based on a deeper
understanding of the implications of statistical self-similarity and stationary increments
in the context of multiscale models. (Recall that fractional Brownian motion is both
statistically self-similar and has stationary increments.) When the process to be mod-
eled at the finest scale of a multiscale tree is self-similar, we showed that, in the absence
of discretization effects, the linear functionals that define each variable of the resulting
multiscale tree are related to linear functionals at finer scales by compressions of the
“time” axis. Thus, the variables at any scale of the tree can be determined from the
variables at either coarser or finer scales by expansions and compressions of the time
axis. Also, if the stationary increments property of the finest-scale process is invoked,
the linear functionals defining the variables at any scale can be approximated by the
linear functionals of a single variable at that scale. These results were used to efficiently
compute an approximate multiscale model for fBin that is very accurate, even when
the dimensions of the state variables are small.
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B 8.2 Limitations and Problems to be Addressed

We now provide some commentary on the research just summarized. These comments
are meant to serve two primary purposes. First and foremost, they will hopefully make
the reader aware of any difficulties that may arise when implementing the methods
described in this thesis. Secondly, we suggest areas that require more investigation,
and perhaps entirely new ways of approaching the problems. Like the previous section,
this section is organized according to the three main contributions of the thesis.

Multiscale Modeling and Nonlocal Properties

Two approaches were presented for constructing multiscale models that represent par-
ticular nonlocal functions at coarser scales. The first, described in Section 4.2, is com-
pletely general, i.e., places no restrictions on the statistics of the multiscale process.
However, the current implementation of this algorithm is based on Canonical Correla-
tions, meaning that it is computationally infeasible for large problems. The alternative
approach provided in Section 4.3 is based on augmenting internal multiscale models
whose internal variables are known or can be easily computed. While more efficient
than the general approach, there are still some limitations that should be addressed.

e The number of ciasses of random fields and processes for which the internal vari-
ables are known or can be computed easily is still limited primarily to Gauss-
Markov Random Fields and 1/f-like processes.

e The effectiveness of the state augmentation depends on the computation and
storage costs associated with implementing Eq. (4.14).

The first limitation is a manifestation of a more fundamental issue—the need to inves-
tigate what classes of stochastic processes are naturally modeled by auto-regressions
in scale. For example, what class of processes can be modeled by thirc order binary
tree models, and what are the properties of these models. We saw in Chapter 7 that
fractional Brownian motion is well approximated by a number of different multiscale
models with state dimensions less than or equal to three. A surprising result is that the
state variables of these models can vary quite widely, from the samples used by the mid-
point deflection model to the local averages used by the wavelet model. This diversity
would lead one to believe that there is considerable flexibility in the multiscale models
that can realize a particular statistical structure, even when the state dimensions are
fixed. A related question is what growth in the state dimensions of the coarsest scale
variables is required in order to model random fields that have relatively smooth covari-
ance functions. The multiscale models for MRFs used throughout this thesis are not
appropriate for very large problems, since the dimensions of the states at coarser scales
grow linearly with the linear dimension of the domain of interest. The MRF models
were used in this thesis primarily as a vehicle to illustrate our methods.
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The difficulty in implementing Eq. (4.14) is computing the covariance matrices P (s
and Py(,)((s7)- For the augmented variable ((s), the covariance is given by

Pysy = VaPpVT, (8.1)

Note that ¢(s) = V,f contains! both the original internal variables and the nonlocal
functionals to be represented at node s or its ancestors. The problem with computing
P (s) is twofold. First, for large-sized random fields, Py cannot be stored explicitly. Sec-
ond, for the components of ((s) corresponding to nonlocal functions of f, the number of
computations required to compute the corresponding elements of Py(,) can be very large.
Both of the problems are overcome if the finest-scale process is stationary. For example,
even if every element of ((s) is nonlocal!, VP can be computed in O(d(s)Ny log Ny)
computations using an FFT approximation, where d(s) is the dimension of ¢ (s) and
Ny is the dimension of f. The result will require d(s)Ny storage elements, and then
an additional d(s)2N; computations to compute F(,). Similarly, the cross-covariance
P (s)c(s7) Will require d(s)d(s¥)N; additional computations. Computing the model pa-
rameters when Py is nonstationary will likely rejuire a different approach, tailored to
the statistics of the finest-scale process.

One can also make a more fundamental criticism of any multiscale modeling frame-
work based on Eq. (4.14) (or Eqgs. (2.30) and (2.32)). Namely, the modeling is com-
pletely controlled by the statistics of the finest-scale process. A primary motivation for
using the multiscale framework is to let coarser scale variables account, at least approx-
imately, for the correlations between variables separated by large distances. Defining
every variable in terms of a linear function of the finest-scale process, and computing
all of the model parameters from the entire finest-scale covariance Py, however, will
likely require too much effort to exactly or approximately capture correlations over
large distances. An alternative modeling approach is suggested in Section 8.3, but the
bottom line is to be able to realize multiscale models without ever having to operate
on the entire finest-scale covariance matrix. The 1/ f-like models proposed by (19, 34]
are in this spirit, since the finest-scale covariance is never specified explicitly; instead,
the process noise covariances are chosen to achieve a desired power-spectral-density.

Another issue not fully addressed in the development of the state augmentation
algorithm is the placement of the nonlocal functions. The problem is to choose the set
of nodes at which the nonlocal functions will be represented that minimizes the resulting
increase in estimator complexity. If the nonlocal functions are simple summations of
local averages of the finest-scale process, as for the nonlocal functions in the exainple
of Section 4.3.5, the optimal choice of nodes can be chosen. The reason is that all of
these functionals can be expressed in terms of small number of localized basis elements.
The state augmentation can then be expressed in terms of the simpler problem of
representing each of these local basis elements. For more general functions, such as
the linearized head measurements and travel-time measurements of Chapters 5 and 6,
the choice of nodes at which to represent these functions is no longer obvious. For the

1Recall that f in this context is the vector representing the process at the finest scale of the tree.
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example of Section 5.2.1, the head measurements were placed at the nodes for which
the finest-scale descendents of that node represent the log-conductivity perturbations
that account for most of the variation in the head measurement. (The linearized head
sample Sh(x;) is most sensitive to conductivity perturbations in a neighborhood centered
about z;.) This choice works well when most of the head measurements are located
away from the boundaries partitioned by the coarser scale nodes. For instance, if all
the head measurements were on the quadrant boundaries partitioned by the root node,
then all of these measurements would be represented at the root node. Similarly, this
method will also place travel-time measurements at the root node when the starting
point £(0) and the control plane are in different quadrants of the aquifer. Representing
all of the nonlocal measurements at the root node, or at the very coarse-scale nodes, will
lead to an unacceptably large increase in the dimensions of the coarse scale variables.
One possible solution, when log-conductivity is modeled as an MRF, is to adjust the
boundaries partitioned by the coarser scale nodes according to the locations of the
measurements.

One reason why the problem of placing the nonlocal functionals was not fully ad-
dressed in this thesis is that the placement of the nonlocal functions will have the most
significant impact on the complexity of the resulting multiscale estimator when an ap-
proximate multiscale model is realized. Namely, when the state augmentation does not
have to be exact, there is considerably more flexibility in the linear functions to be rep-
resented at the individual state variables. In this case, the root node might contain a
few nonlocal functions of the finest-scale process that provide coarse approximations to
the nonlocal measurements. A method for constructing approximate models from the
state augmentation algorithm was provided in Section 4.4. This approximation is based
on discarding the information in ((s) that is least valuable in terms of predicting its
children. This algorithm also ensures that the resulting multiscale model is consistent,
i.e., every element of the state at node s must be used in the prediction of its children.
While this approximation is likely very effective at reducing the state dimensions of the
resulting multiscale model and simultaneously controlling modeling errors, there are still
two significant problems that should be addressed. First, the full covariance matrices
Pe(sy and Pe(4)¢(s5) must be computed, no matter how large the dimensions of the aug-
mented variables, before the approximation is made. Secondly, the approximation is not
necessarily optimal in terms of minimizing estimation errors. The ultimnate goal of the
multiscale model should be to represent as accurately as possible the cross-covariances
between the variables to be estimated and the variables that are measured, since these
cross-covariances are the only information required by LLSE estimators. These consid-
erations should somehow be reflected in any approximate multiscale realization used
for estimation.
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Multiscale Modeling for Data Fusion and Estimation of Hydraulic Conduc-
tivity

In Chapters 5 and 6, a number of examples were presented of the estimation of con-
ductivity from measurements of conductivity, head, and travel time. For all of these
examples, log-conductivity was modeled as a multiscale stochastic process, and the
nonlocal head and travel-time mecasurements were added to coarser-scale variables of
the tree using the state augmentation algorithm of Section 4.3. These examples were
limited in the sense that

e the finest-scale log-conductivity function in each case was a Markov Random Field,
and

o the joint (second-order) statistics of the finest-scale process and the nonlocal func-
tions were modeled exactly.

The problem with exact models is that they cannot be applied to large problems, un-
less the log-conductivity function is naturally modeled by a multiscale model with small
state dimensions. For exact multiscale models of Markov Random Fields, the number
of computations required by the multiscale estimator grows cubicly with the linear di-
mension of the finest-scale process, and the number of storage elements required for the
model parameters grows quadratically. Since the prior model is usually an ab..action
and approximation of the true variation and uncertainty in the phenomenon of inter-
est, there is sufficient motivation to accept an approximate model. Also, there is no
compelling reason to exactly model the cross-covariance between a head or travel-time
perturbation and log-conductivity samples at distant locations. The multiscale frame-
work appears to be well-suited to approximating the joint-statistics of log-conductivity
and measurements made at multiple resolutions, and the application of such approxi-
mate models deserves a thorough investigation.

Another intriguing property of the multiscale framework is the ability to produce
estimates of log-conductivity that have spatially varying resolution. For most of the
applications of the multiscale framework that preceded this work, the measurements are
dense and located only at the finest scale. However, for groundwater field experiments,
the available data are typically very sparse, irregularly distributed in space, and at
multiple resolutions. From these measurements, an estimate of conductivity with uni-
form spatial resolution is usually produced, meaning that either an inordinately large
number of parameters is estimated that cannot be justified by the data, or the estimate
is unnecessarily smooth in regions of fine-scale measurements. However, because the
multiscale estimator produces estimates of the tree process at every scale, an estimate
with spatially varying resolution can be selected. The resolution can be distributed ac-
cording to the resolution supplied locally by the measurements. Consider the estimate
of log-conductivity, illustrated in Figure 5.16, from the head and conductivity measure-
ments at the locations in Figure 5.15b. The estimate has fine-resolution detail only
in the regions where dense conductivity measurements are supplied. In between these
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Figure 8.1. A tree model used to incorporate sparse, multiresolution measurements. The nodes that
are measured are indicated by shaded boxes. The dashed lines indicate branches of the tree that do
not need to be modeled if one is interested in an estimate with spatially varying resolution.

regions, because the estimate of the finest-scale process is smooth, a coarser-resolution
estimate can be justified.

The advantage of a multiscale estimate of conductivity is that computation and
storage costs can be reduced without significantly affecting the fidelity of the estimate.
For the examples provided in Chapters 5 and 6, the finest-scale parameterization of
log-conductivity was used as the linearization point for the head and travel-time mea-
surements. Because the number of computations required to implement the 2D flow
equation grows cubicly with the number parameters used for the conductivity function,
a multiscale parameterization can significantly reduce these costs. A multiresolution
parameterization of conductivity can also reduce the number of computations and stor-
age elements required for the multiscale modeling and the multiscale estimator. The
idea is to prune the multiscale tree by eliminating the subtree that descends from each
variable that is to be included in the multiresolution estimate. For instance, consider
the tree illustrated in Figure 8.1. The shaded squares indicate the locations of measure-
ments. The dashed lines indicate branches of the tree that will likely not be needed,
and thus should not be represented in the model. The only problem with this approach
is that one must decide a priori, i.e., before constructing the model, which branches
should be removed. We leave this problem to future investigations.

Independent of the multiscale framework, there are a number issues that arise in the
estimation of log-conductivity from conductivity, head, and travel-time measurements
that should be addressed. First, ihe effect of uncertainty in the boundary conditions
should be investigated, since the boundary conditions are rarely, if ever, known exactly.
Instead, they are usually inferred from head measurements and geologic barriers. Un-
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certainty in the boundary conditions should alter the contributions of both the head
and travel-time measurements. Second, uncertainty in the recharge rate (Q) should
also be accounted for, since ignoring the effect of recharge on the flow field can lead
to significant errors in the hydraulic conductivity estimate [99]. Third, the accuracy of
the error variances provided in the examples of Chapters 5 and 6 should be understood,
since these variances are based on the linear approximations of the head and travel
time measurements. Fourth, we would like to understand the range of log-conductivity
variances for which the Gauss-Newton algorithm converges and produces a desirable
log-conductivity estimate. A related problem is to consider using multiple paths for the
linearization of travel time. Finally, there is the problem of selecting the parameters
of the prior distribution of log-conductivity, which for our examples are the variance
and correlation lengths of the Markov Random Fields. According to [23, 38, 85], the
sensitivity of most inverse methods to the values of these parameters is a major source
of concern. The last problem leads one to the ultimate application—the application of
the multiscale framework to a problem involving real data.

Modeling Fractional Brownian Motion

One of our more fundamental motivations for the multiscale modeling of fractional
Brownian motion was to exploit the self-similar structure of a tree for modeling statis-
tically self-similar processes. The self-similarity of fBm led to Theorem 4, which in turn
led to the algorithm described in Section 7.3. This algorithm produces very accurate
approximations of fBm, yet requires only a few applications of the Canonical Correla-
tions decomposition. The only drawback is that these decompositions require the SVD
of essentially the entire finest-scale covariance matrix, meaning that the number of com-
putations grows cubicly with the number of finest-scale elements. A possible solution to
this growth in complexity is to compute the coarser-scale variables from the Canonical
Correlations made at a fixed, finer scale. In Section 7.3, we showed how to derive the
variables at any given scale from variables at coarser scales. The basic idea follows from
Theorem 4, i.e., the linear functionals that define the variables at one scale are related
to those at coarser scales by a compression of the time axis. Similarly, we should be able
to derive the variables at coarser scales from their descendent using an expansion of the
time axis. The only difficulty is that one must account for discretization effects, since
the process represented at the finest-scale of the tree is discrete. Recall that the deriva-
tion of finer-scale variables from coarser-scale voriables required averaging the linear
functionals that make up the coarser-scale node. Analogously, because the number of
finest-scale samples descending from a node increases as the scale of the node decreases
(to a coarser scale), the linear functionals derived from finer-scale variables will require
some interpolation. This interpolation should be the subject of future work.

For the multiscale approximations of fBm, the linear functionals that make up the
state variables are related not only by compressions of the time axis, but also by shift-
invariance. The variables at any fixed scale of these models are defined by the same
linear functions of their finest-scale descendents. However, because the process at the
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finest-scale is non-stationary, the model parameters computed from Eq. (2.32) are not
constant across any given scale. An interesting question, then, is how these model
parameters are related, and what statistical model is obtained by computing only a
small subset of the auto-regression parameters (A,, Q;) at any given scale. This would
not only reduce the number of computations required for implementing Eq. (2.32), but
would also reduce the number of storage elements required for the model parameters.

While the algorithin of Section 7.3 leads to accurate approximations of fBm, the
goal of our research was not just to model fBm. For many applications, the polynomial
growth in variance and the initial cordition var[z(0)] = 0 are undesirable, and one is
more interested in the properties of self-similarity and long-range dependence. For these
applications, we would like to take advantage of the self-similar structure of tree models,
but not necessarily to construct the models from the finest-scale covariance of fBm. The
approach taken in [96] is to implicitly bandpass fBm using the wavelet synthesis. The
question for the multiscale framework is how rich a class of statistically self-similar
models can be constructed with low-order multiscale models. One starting point is to
consider the multiscale modeling of other 1/f processes, e.g., fractional Gaussian noise
(=1 > H > 0), which is a stationary process and corresponds to the first-order difference
of discrete fBm. (Note that first-order differencing is not a bandpass operation, but the
attenuation of low frequencies removes the nonstationary component of fBm.)

Another important question is whether the multiscale models developed in Chapter 7
can be naturally extended to the efficient synthesis and estimation of fractal images.
Two of the most common methods for synthesizing two-dimensional fractal processes
are 2D extensions of the midpoint displacement algorithm and wavelet synthesis [4, 89].
These algorithms can be represented within the multiscale framework, as were the one-
dimensional analogues. Also, the algorithm of Section 7.3 can be extended to modeling
2D random fields that have structure functions f(s) = o?|s|?H, where s is a measure
of the distance between to points. The important question for these models is how
the dimensions of the coarser-scale variables scale with the linear dimension of the 2D
region represented at the finest-scale.

B 8.3 Alternative Approaches to Multiscale Modeling

We now return to the problem of realizing multiscale models that approximate desired
statistical relationships, which was the subject of Sections 2.3.4 and 4.2. Except for
the low-order multiscale models for 1/ f-like processes described in [34, 60], all of the
approaches to multiscale modeling described in this thesis are controlled by the covari-
ance of the finest-scale process, Py. For example, even the state augmentation algorithm
of Section 4.3, which represents particular nonlocal properties at coarser-scale nodes,
defines the augmented state covariances FPe(s) in terms of the finest-scale covariance,
ie.,

Pysy = Vs PV! .

vt
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Figure 8.2. (a) A realization algorithm that accepts as inputs (i) the finest-scale covariance, Py, (ii)
the mapping of Py to the finest-scale nodes of the tree, and (iii) the mapping of any desired nonlocal
linear functions of the finest-scale process to coarser-scale variables. (b) The dual approach to the
multiscale realization problem.

The reason is that the augmented coarser-scale variables are defined as linear func-
tions of the finest-scale process, i.e., ((s) = V,f. The general procedure of designing
multiscale models from the finest-scale covariance is illustrated in Figure 8.2a.

A dual approach to multiscale modeling is to determine how the multiscale model
parameters (A,, @;) lead to particular cross-covariances among the state variables. This
procedure is illustrated in Figure 8.2b. The advantage of this approach is that it works
directly with the model parameters and therefore can greatly simplify the realization
procedure. For example, the process-noise variance for the 1 / f-like processes described
in [34, 60] is restricted to the form

Q, = g2271m0) | (8.2)

where m(s) is the scale of node s. From this form for Q,, it was shown that the
finest-scale process of the resulting tree model has a power spectral density that is
approximated by 1/f7. In this case, providing a parametric form for the process-noise
variance allows one to understand the effect of the parameter v on the finest-scale
spectrum, and also simplifies the design process if one is only interested in a multiscale
model that has approximately 1/f spectrum. The problem in general is to understand
how particular forms of the auto-regression parameters (As, Q;) influence the statistics
of the tree variables at the finest-scale and other scales of interest, and then to use this
knowledge to design tree models that approximate the desired statistical structure.
While this dual approach to multiscale modeling is unlike any of the methods dis-
cussed in this thesis and will likely require a significant amount work to fully explore,
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we can suggest a concrete alternative to the realization algorithms discussed in Sec-
tions 2.3.4 and 4.2. Recall that, for the case in which one is only interested in the
statistics of the finest-scale process, each state variable z(s) is set equal to the lin-
ear function of f,—recall that f denotes the vector containing the finest-scale process
and f, is the finest-scale process descending from node s—that maximally decorre-
lates (with some restriction on the maximum dimension of z(s)) the finest-scale vectors
fsayr-++ 1 fsags fac- This linear function, 2(s) = W, fs, can be computed using Canon-
ical Correlations. In [49], the variable at each node is computed independently of the
variables at all other nodes. There are two significant drawbacks to this approach of
applying Canonical Correlations independently to each node.

e If approximation are made, they will not be done consistently.

e The Canonical Correlations decomposition effectively requires an SVD of the en-
tire ficest-scale covariance matrix for each variable that is calculated.

These two drawbacks can be overcome if one instead uses a fine-to-coarse realization
for which

e consistency is guaranteed, i.e., the variable z(s) is a linear function of its children
2(say),... ,z(say), and

e the Canonical Correlations is computed on a reduced-order covariance matrix.

This algorithm is motivated in part by the approximate state-augmentation algorithm
described in Section 4.4. In this section, we showed that a fine-to-coarse sweep is
essentially required to ensure that the multiscale model is consistent, i.e., that all of the
information generated a coarser-scale variables is passed to the appropriate variables
at finer scales. The other motivation for this algorithm can be illustrated when using
Canonical Correlations to determine any variable z(s) at scale M — 1, where M is
the finest scale. (Recall that the nodes at scale M are automatically determined by
the mapping of f to the finest scale.) In this case, z(s) conditionally decorrelates
the vectors z(sai), ... ,2(saq) and fs, where f,c contains all the finest-scale elements
not descending from node s. The vectors z(say), ... ,z(sag) will have relatively small
dimensions compared to the dimension of f., especially if the finest-scale process has
very large dimension. However, there is no need to capture the exact cross-correlations
between the elements in z(sc ), ... ,2(sa,) and those in f,c, especially for those elements
that are sepa:ated by large distances. Thus, the problem of determining states at
scale M — 1 becomes one of finding the linear combination of z(say), ... ,2(sag) that
maximally decorrelates the ¢ + 1 vectors

z(say), z(sag), ...z(sag), Lfge

where L is a linear transformation that accounts only in an aggregate sense for the
elements of f,c that are separated by a large distance from those represented by the
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descendents of node s. If the number of rows in L is on the same order as the dimension
of the vectors z(sa) ), z(saz), ... ,2(saq), then the number of computations required for
the Canonical Correlations decomposition will be greatly simplified.

Given that we have greatly simplified the calculation of the variables at scale M -1,
the remaining question is how to do so for the variables at scale M — 2 while also
ensuring consistency. One possibility is to treat the set of variables at scale M — 1
as the new finest-scale process with covariance P}M_l). This covariance will generally
have much smaller dimension than that of Py, and can be determined from Py using the
linear functions that define the variable at scale M —1. Then, each variable z(s) at scale
M —2 can be set to the linear combination of z(sa), z(saz), ... , z(sag) that maximally
decorrelates z(say), z(saz), ... ,z(say), and LZp - (s), where Zp-1(8) is the vector of
variables at scale M —1 that do not descend from node s and L is a transformation that
significantly reduces the dimension of Zps—)(s). Note that consistency is guaranteed,
since each variable at scale M — 2 is a linear combination of its descendents at scale
M -1.

This process can be continued recursively until the root node is reached. Then the
multiscale model parameters can be derived from the linear functions that define the
variables at each node. This algorithm has not been implemented, and is only one
of many possibilities for a fine-to-coarse realization algorithm. The questions of how
well this algorithm performs and what approximations are made will be left to future
research.
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Appendix A

Proof of the Markov Property for
Multiscale Trees

In this section, we derive the Markov property of the multiscale trees defined in Sec-
tion 2.2. This property follows from the whiteness of the process noise in Eq. (2.22)
and E[2(0)w(s)T] = 0. (Recall we assume that z(0) and w(s) are zero mean.)

Proof: Define (z|y) to be the LLSE error of estimating z from y, i.e.,

(z|y) =z - E[z]y].

For the purposes of this proof, it is important to note that the covariance of (z|y) is
equal to the covariance of z conditioned on y.

(i) To show that the variables in Sso, fore=1,... ,q are conditionally uncorrelated,
first note for any node t € S,4; that

(2(t)] 2(s)) = > B(t, Hw(l)

1 € path from sa; to t

where ®(t,1) is the state transition matrix from node ¢ to node l. Thus we have
(Z(t) l 2(3)) = waaa,-

for some matrix L;, where w,,, is a vector containing the process noise w(!) for all
| € S,a,- By the whiteness of the process noise, the q vectors w,,, are mutually
uncorrelated, and the g subsets of states descending from s are thus conditionally
uncorrelated.

(ii) Now we show that for any t € S, and r € S, that (2(t)| 2(s)) and (2(r) | 2(s))
are uncorrelated. Since (2(r)|z(s)) = Liwsq, for somei=1,...,q, we only need
to demonstrate that (z(t)|z(s)) and wsq, are uncorrelated for alli=1,...,q.

(2(2) | 2(s)) = 2(t) — E[z(t)] 2(s)]
z(t) — Pis Pa—l z(s)
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APPENDIX A. PROOF OF THE MARKOV PROPERTY FOR MULTISCALE TREES

The state z(t) is a function of z(0) and the process noise on the path from node
0 to node ¢, while z(s) is a function of z(0) and the process noise on the path
from node 0 to node s. Thus both z(s) and z(t) are uncorrelated with w,q, for
alli=1,...,q, and so must be (z(t)|z(s)). Q.E.D.



Appendix B

Multiscale Estimation Equations
and Error Model

This section includes the algorithm for the multiscale estimator derived in [17, 19)].
This algorithm has also been described in numerous other places, e.g., [32, 59], and
is included here only for completeness. The equations for the estimation error model
developed in [61] are also included, as they are required for the conditional simulations
generated in Chapter 6.

Consider the problem of estimating the states z(s) of a tree process given measure-
ments in the form of Eq. (2.27). As for optimal estimators of 1D time-series models,
like the Rauch-Tung-Striebel estimator [82], an important conceptual tool is the use
of backwards Markov models. Since the forwards multiscale models are defined as an
autoregression from coarse to fine scale, the backwards models are defined from fine to
coarse scale. Using the results of [93], the multiscale models in the form of Eq. (2.22)
satisfy the following backwards model [19]

z(s7) = Fyz(s) + w(s), (B.1a)
w(s) ~ (0,Q,), (B.1b)

where the parameters of the backwards model are given by

-1
Fy = Py3):(s)Pya) )

= P AT Py (B.1c)
as = P.z(.'ﬁ) - Fa Pz(,)z(g—'y') ,
= Py (I = AT P AsPu(am) - (B.1d)

Note that these equations simply represent the LLSE estimate of z(s7¥) from z(s), as
can be seen by comparing Eq. (B.1) to Eq. (2.9) with w(s) as the estimation error. The
backwards model differs slightly from the forwards model in that the process noise w(s)
is not uncorrelated with all other process noise. The results of [93] only guarantee that
w(s) is uncorrelated along any path to the root node.
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To simplify the multiscale estimator equations, we first define

i(s) 2 the LLSE estimate of z(s) given all y(s),
e(s) £ 2(s) - 3(s),
Y, £ {y(0)|o € Sy,0 # 5},
and
z(s]o) 2 the LLSE estimate of z(s) from Y, and y(o),
P(s|o) £ the covariance of the error 2(s) - Z(s| o),
2(s|o+) 2 the LLSE estimate of 2(s) from Y, ,
P(s|o+) 2 the covariance of the error 2(s) = 2(s|o+).

The estimation algorithm can be broken into two steps, analogous to the two sweeps
of the Rauch-Tung-Striebel smoother. The only difference is that the sweeps for the
multiscale algorithm proceed in scale, from the leaf nodes to the root node, and then
from the root node to the leaf nodes. This two sweep algorithm allows “communication”
between all nodes on the tree.

The Upwards Sweep

Assume for simplicity that all of the leaf nodes of the tree are at scale m(s) = M. Then
for all s such that m(s) = M, define

5(s]s+) =0, (B.2a)
P(s|s+) = Py (B.2b)

The need for this initialization will be apparent for the measurement update step below.
The upwards sweep, which calculates the LLSE estimate z(s | s) and the correspond-
ing error covariance is given by the following: for m = M,M - 1,...,0,

1. Measurement update

2(s|s) = 2(s|s+) + K, (y(s) — Cs2(s| s+)) (B.3a)
P(s|s) = (I - K,C,)P(s|s+) (B.3b)
= (I - K,C,)P(s|s+)(I - K,C,)T + K,R,KT (B.3c)

K, = P(s|s+)CT(C,P(s| s+)CT + R,) ™" (B.3d)

2. Upward prediction, for m # 0

2(s| sqi) = Fsa,2(s0; | sa) (B.4a)
P(s]sai) = Fya,P(sa;|sc:)FL,. + Qq, (B.4b)
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3. Merge of predictions, for m # M

i(s|s+) = s+)ZP (s| sai)2(s|se) (B.5a)
P(s|s+) = [1 - 4) z(,,+ZP (s15e)] " (B.5b)

Note that the measurement update at the root node produces the optimal estimate
2(0) = 2(0]0). Steps 1 and 2 are exactly analogous the Kalman filter update and
prediction steps. The only difference is the merge step, which is necessary for fusing
the multiple predictions of a state z(s) from its children.

The Downwards Sweep

The downwards sweep, which computes the optimal estimates Z(s) and their associ-
ated error covariances P,(,), fuses the results of the upwards sweep with those of the

downwards sweep. Namely, form=1,... ,M,
#(s) = (I — JsFy) 2(s| s) + Js2(s7), (B.6a)
Pe(s) = P(S - Js [P(S’7| P(Sﬁ)] JsT’ (B6b)
Js = P(s| )F,TP 1(s7]s), (B.6c)

where the sweep is initialized by 2(0) = 2(0|0) and P,(,) = P(0]0).

After completing the downward sweep, the LLSE estimate of state z(s) has been
computed. An important feature of the multiscale estimation algorithm is that the
LLSE error covariance P,(,) is also provided for no additional computational cost. These
covariances allow one to assess the fidelity of the estimates in terms of their second-
order statistics. To compute the cross covariances Pp(y)e(¢) for s # t requires additional
computations and the use of the multiscale estimation error model provided.

Numerical Stability

While the equations for the multiscale estimator are relatively straightforward, they
assume that many of the state and estimation error covariances are nonsingular and
well-conditioned. In particular, Eqgs. (B.3d), (B.5b), and (B.6c) a'l require the inversion
of matrices which in practice can be singular or ill-conditioned. These singularities can
be overcome using more a robust implementation of the LLSE estimator, such as the
SVD-based implementation provided in Section 2.1.1. Note also that we have included
the Joseph stabilized form for the measurement update covaraince in Eq (B.3c), which
ensures that the covariance P(s|s) is numerically positive semidefinite.
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Estimation Error Model

The estimation errors e(s) = z(s) — 2(s) can also be modeled by a multiscale model
whose parameters are by-products of the estimator equations [61]. Namely, the estima-
tion errors satisfy the following autoregression in scale

e(s) = Jse(s7) + w(s), (B.7a)
where
Q, = E[@(s)i(s)T] (B.7b)
= Fe(s) — JSPe(s?)JsT (B7C)
= P(s|s) - P(s]| s)FTP~1(s7| s) F,P(s|s), (B.7d)
J.

This autoregression is initialized by e(0) ~ (O,Pe(o)), and J, is computed as a by-
product of the estimator in Eq. (B.6c).

The error model allows for the computation of cross-covariances Pe(,)e(r) using
Eq. (2.26). The error model is also useful for conditional simulation, i.e., for generating
sample paths of the multiscale process conditioned upon the measurements. Becrause
the estimate Z(s) is uncorrelated with the error process, samples from the error process
can be computed independently of 2(s), and then added to 2(s) to form samples of the
conditional distribution. The generation of a sample path of e(s) requires the genera-
tion of samples of e(0) and the process noise w(s). The distribution of e(0) and w(s) is
known exactly if z(s) and y(s) are jointly Gaussian. In this case, the covariances P,

and é, can be either Cholesky! or square-root factored to yieid the relationships

e(0) = Upwo, (B.8)

Qs = Uswsa (Bg)

where the vectors w, are white Gaussian noise and can be generated rather easily. If
2(s) and y(s) are not jointly Gaussian, then this method can be used to generate sample
paths with the same second-order statistics as z(s) conditioned on y(s).

'The danger of the Cholesky factorization is that Pe(o) and Q. will in many cases be numerically
singluar or negative definite.



Appendix C

Variational Method for Linearizing
the Flow Equation

This section demonstrates how to compute the first variation of hydraulic head. The
first variation of hydraulic head is the component of head which is linearly related to a
perturbation in the conductivity function. This variation allows us to establish a linear
relationship between head and conductivity for small perturbations in conductivity.
The complete and nonlinear relationship between head and conductivity is given by

-V - (ef®Vh(z)) = Q(z), €N (C.1a)
h(:l:) = hb(a:), T € 0p (C.lb)
—ef@Vh(z) - 7i(z) = gu(z), z € QN (C.1¢)
where 89 = 8Qp U8Ny. This equation can be written more compactly as A(f,h) = b,
where
-Vv. (erh) Q1
A(f,h) = h and b= | hp | . (C.2)
—erh ‘n (/3

Note that A(f,h) = b is the implicit representation of the forward operator h = Fp(f).

We can expand the implicit differential operator about the conductivity function fo
by introducting a perturbation f = fo + éf. If hg = Fn(fo) and 6h is defined to be the
resulting head perturbation, then these perturbation must satisfy A(fo+6f, ho+6h) = b.
Writing out this system of equations gives

A(fo+ &f ho + 6h) =

—e¥f(V - efoVhg) — efo+¥(V26h + V fo - V6h + Vhe - VEf + Vbh - VEf)
ho + 6h (C.3)
—efot¥ Y (hy + 6h)

The first variation is a linear relationship between §f and 6h, so we can ignore the
higher-order terms. Also, by making the substitutions A(fo, ho) = b and e =1 + &f
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we obtain
—V . efoVbh — efoVhg - V& — 6f (Vel© - Vhg) =0, T€EN (C.4a)
6h =0, T € 3Qp (C.4b)
—efo(Vbh + 6f Vho + 6fVER) -7 = 0. T € 00N (C.4c)

Ignoring the higher-order terms and combining terms yields the following linear reala-
tionship between §h and &f

—V.efovUsh = V. elo §f Vhy, €N (C.5a)

bh=0, z € 0Qp (C.5b)

—efoVsh -7 = efo 6f (Vho - 7). T € Oy (C.5¢)



Appendix D

Proof of the Multiscale Realization
Algorithm

This section demonstrates that the multiscale models produced by the realization al-
gorithm of Section 4.2 have the desired finest-scale covariance. Remember that a mul-
tiscale model is defined in terms of the root node covariance Py and the autoregression
parameters A, and Q5. Thus the proof must work directly with these parameters.

The assumption made by the following proof is that the multiscale model is internal.
Recall that a model whose parameters are derived from Egs. (2.30) and (2.32) need not
be internal (see Section 4.4, even when the internal matrices W, are chosen to satisfy
the Markov property. However, since one can always choose a set of internal matrices
W, for which the resulting model is internal, we focus only on this case. The extension
to external models is rather straightforward, and simply involves partitioning the states
into two components, one which is a linear function of the finest scale process and the
other which is uncorrelated with all other variables on the tree.

For notational simplicity, we will assume that the trees are binary with M +1 scales
and 2M nodes at the finest scale. The proof is inductive. For M = 1, the tree has three
nodes, with z(0) at the root node and z(1) and 2(2) at the finest scale. Assume that
£, is mapped to node one and f, is mapped to node iwo, where f = {fT, f7]7. The
parameters of the tree are

Py = WoP Wy, (D.1a)
A; = (WP W{)(WoPWg)™t, i=1,2  (D.1b)
Qi = (WiPyWT) — (WP WT)(WoPsWe ) (WiPsWE)T,  i=12  (D.1c)

where W is chosen according to the Markov property and W;f = f;, i = 1,2. Straight-
forward calculations show that P,; = W.-Ple-T for i = 1,2. The cross-covariance
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z(0)

“Mi Mj
Figure D.1. The fusion of two binary trees into one tree with M = 4. The dashed lines denote the

branches added to the fused tree.

between the two finest-scale variables follows as

P,1):2) = Ale(o)Ag, (D.2a)
= (W1PyWq )P} (W2 PiWG)T (D.2b)
= W1 PyW§ (WoPWq ) "' Wo Py Wy, (D.2c)

Pr=FPis\wo 1)

where (f | Wof) is equal to f conditioned on Wyf. Since f; and f; are uncorrelated
after conditioning upon Wy f, we have

P,(1).(2) = WA PsWT ~ (D.3a)
= Ppq, - (D.3b)

Now assume that the vector f = [fT, f7|7 is the process to be mapped to the finest
scale of an (M + 1)-scale binary tree. For the inductive step, we can also assume that
we are given two multiscale processes with M scales, where the finest scale of the first
tree has the distribution f; ~ (0, Pf,) and the finest-scale of the second tree has the
distribution f; ~ (0, Py,). The (M + 1)-scale tree is formed by fusing the two trees as
illustrated in Figure D.1. The root node of the first M-scale becomes z(1), while that
of the second M-scale becomes z(2).

We must now show that the (M + 1)-scale tree has the proper second-order statistics
at the finest scale. By assumption, the finest scales of each of the two subtrees have
the proper auto-covariances Py, and Py,. Define zp; to be the i-th variable at the
finest scale of the tree, where 1 < i < 2M~! indexes the the variables of the first (left)
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subtree and 2~ +1 < 4 < 2M indexes the the variables of the second (right) subtree.
Also define D; to be the matrix which satisfies zpy; = D;f. We only need to show
that E[zpi2fy;] = DiP;D] for all 1 < i < 2M~1 and 2M~' +1 < j < 2M. From the
autoregression parameters, we have

T
E[zmizyy;] = (H Al) (A1P.)AT) (H Ak) ) (D.4)
leP; KeP;

where P; is that set of nodes on the path from the i-th node at scale M to node one,
excluding node one. Similarly, P; is that set of nodes on the path from the j-th nrode
at scale M to node two, excluding node two. These state transition matrices can be
also be represented as

IT 4 = E[(D:f)2()T]| P} ) (D.5a)
lep;

(D Py[W1 O]T) (l)' (D.5b)

II 4« = E[(D;f)2(2)T] P, 3 (D.5¢)
keP;

= (D; P[0 W) P, (D.5d)

where the second and fourth equalities follow from the assumption that the model is
internal. Substituting Eq. (D.5) into Eq. (D.4) yields

El[zmizyy;] = Di Py[Wh O] (W1 P, W)~} (W1 0)7 Py[0 Wl (Wo P, W]) ™! [0 Wl P DY,

Fy=Pisywy 1)

(D.6)

where we have used A;P,q)A] = [W1 0]T P[0 W2]T, which follows from the analysis
of the two-scale tree. The matrix Ps w,y,) is the covariance of f after conditioning on
Wi f1. Since f1 and f, are uncorrelated after conditioning on Wi f), Eq. (D.6) reduces
to

E[zmizly;] = Di P;[0 Wa)T (W Py, W3') ™! [0 W] Py DT, (D.7a)
Pr=Prywary)
= D;PDT, (D.7b)

where (f | Waf2) is f after conditioning on W7 f;. Q.E.D
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