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This paper consists of some notes on inverse problems of higher

dimensions, in which the quantities of interest (local density and wave

speed) are functions of two or three spatial variables, e.g. p(x,z) and

c(x,z), or p(x,y,z) and c(x,y,z). These notes are not designed to be complete,

but to summarize the results obtained so far in applying layer stripping

techniques to these problems.

I. Introduction

The subject of this paper is the inverse seismic problem in dimensions

higher than one, in which local density and wave speed are functions of more

than one spatial variable. To clarify matters, some terminology is introduced.

The dimension of an inverse problem is defined as the number of spatial

variables on which the quantities of interest (p and c) depend. Thus, the

two-dimensional (2-D) problem is the inverse problem of determining p(x,z)

and c(x,z) from surface measurements of the displacement u(x, z=0O, t), and the

three-dimensional (3-D) problem is the inverse problem of determining p(x,y,z )

and c(x,y,z) from surface measurements of the displacement u(x, y, z=O, t).

Note that the dimension of a problem need not be the same as the dimension

of the medium for which it is defined -- a problem of given dimension can be

embedded in a medium of higher dimension. For example, the "offset problem"

described in [1] is a 1-D problem embedded in a 2-D medium, while the point-

source problem of that same paper is a 1-D problem embedded in a 3-D medium.

While a considerable amount of work has been done on the 1-D problem,

much less has been done on the 2-D and 3-D problems.
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Generaliziig l-D results and techniques to the 2-D and 3-D problems has

proven to be very difficult, and applying other techniques to these higher-

dimensional problems has been contingent on rather severe assumptions. The

Born approximation (basically an assumption that medium parameters vary slowly

with depth) was used by Cohen and Bleistein [2], and the WKBJ approximation

(an assumption analogous to geometrical optics in which energy is assumed to

propagate along rays) has been used by Clayton and Stolt [3]. Raz [4] has

proposed a migration-like technique that involves a distorted-wave Born model.

Various assumptions are made, including a straight-ray approximation between

scattering and observation points. Results of a numerical 2-D inversion are

presented, and a 3-D procedure proposed.

Newton 15] has described a general 3-D inverse scattering problem solution

that reconstructs a Schrodinger potential from a scattering amplitude given as

a function of energy and directions of incident and scattered particles. Solution

of a generalized Marchenko integral equation is required. Morawetz and

Kriegsmann [6] have proposed an iterative scheme in which an initial guess at

a 2-D potential V(x,y) is iteratively refined. In the numerical examples

presented for a l-D inverse potential problem, up to thirteen iterations were

required, and also some smoothing to prevent numerical instability. The

computations and memory required for 2-D inversion are admitted to be enormous.

The rest of this paper can be divided into three sections. First, a

layer-stripping algorithm is given which reconstructs a 2-D density p(x,z),
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with the assumption of constant wave speed c. This is given more for

illustrating the application of layer stripping to higher-dimensional problems

than as a useful algorithm. Next, the "offset problem" described in [1] is

generalized to a 2-D problem embedded in a 3-D medium, and a layer-stripping

solution specified. Finally, some thoughts on generalizing 1-D results to

higher dimensions are given, and some difficulties in doing this are discussed.

II. Layer-Stripping Reconstruction of p(x,z)

In this section a recursive layer-stripping algorithm is derived for

solving the 2-D problem with constant wave speed. In particular, the density

p(x,z) is reconstructed from surface observation of pressure p(x, z=O, t) and

medium acceleration w(x, z=0O, t). The wave speed c is assumed to be constant

throughout the medium, and will in fact be taken to be unity (.this amounts to

scaling depth z by c). Of course, this will not be a practical result; however,

it will illustrate the application of the layer-stripping idea to a higher-

dimensional problem. Assuming a constant wave speed removes the problem of

defining the wavefront, which turns out to be the complicating factor in applying

layer-stripping to higher-dimensional problems (see Section IV).

This problem was first formulated and solved using layer stripping ideas

by Symes 17]. Symes's approach was to reconstruct the medium layer by layer by

solving a Schrodinger equation in the lateral variable x to obtain the lateral

dependence of density p at each depth. The layer stripping solution to this

problem using first-order equations which can easily be adapted into a recursive



algorithm is due to Levy 18].

The mathematical technique used to solve the partial differential equations

in this algorithm consists of propagating the characteristic variables in depth

z, lateral position x, and time t. This technique has been applied to the

problem of the propagation of axial shear waves by Achenbach [9], and to the

1-D problem by Santosa and Schwetlick 110]; the form used here appears in

Bruckstein et al. [11].

The acoustic and stress-strain equations for this problem are

a2p/t2 = - p(aw x/X + aw /az) (1)
x z

p/x = - pwx (2a)

p/Dz = - pw (2b)

where w and w are the horizontal and vertical, respectively, components of
x z

acceleration. Eliminating wx by substituting (2a) in (1) yields

aw /Dz = (P2 p/Dx2 - D2 p/Dt2 )/pi . (Dp/x) (9p/x)/p2 (3)

It is assumed that the pressure p and vertical acceleration w (hereafter
z

w will be replaced by w, for convenience) have the forms

w(x,z,t) = 6(t-z) + w0 (x,z,t) l(t-z) (4)

p.(x,z,t) = p0(x,z,t) l(t-z) (5)

where 1(') is the unit step function. The impulse in (4) represents the source

excitation; the step functions merely represent the causal natures of p and w.

Substituting (4) and (5) in (2b) and equating the two impulsive terms

yields

p(x,z) = p0 (X,Z,Z) . (6)

Substituting (4) and (5) in (3) and equating the two 6(-) terms also
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yields (6), so the equations are consistent. In addition, equating the

6() terms yields the added condition

p(x,z) = 2(p 0 /t/w 0 (t=z. 7)

This additional condition ensures that the problem is not ill-posed and that

a unique solution is forthcoming.

The algorithm in differential form consists of (2b), (3), and (6). In

words it may be described as follows:

Assume all quantities known at depth z.
Update to depth z + A:

(1) Update pressure p using (2b). Do for all x and t.
(2) Update acceleration w using (3). Do for all x and t.

(3) Obtain the updated density p from (6). Do for all x.

The derivatives in (3) could perhaps best be accomplished by using

an FFT. The p and w updates are simple replacements, so the update can be

done point by point.

This algorithm shows how layer-stripping is carried out in higher-

dimensional problems -- the updates proceed along the entire wavefront, point

by point. The wavefront itself describes the set of points currently being

updated. This example was chosen to make the wavefront as simple as possible:

a flat planar impulse moving vertically with unit velocity. When the wave

speed c is also varying in space, the wavefront becomes distorted, and

characterizing it becomes much more complicated.

III. The 2-D Offset Problem

In this section the 1-D offset problem of 11] is generalized to two

dimensions. Recall that in the 1-D offset problem impulsive plane waves
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were incident upon a 2-D medium with 1-D material parameter variation, viz.

p(z) and c(z). Running this experiment twice, at two different angles of

incidence, allowed the recovery of p(z) and c(z) separately. A generalization

of this experiment will now allow p(x,z) and c(x,z) to be recovered separately.

The problem set--up is as described in [1], only now p(x,z) and

c(x,z) are functions of one lateral coordinate as well as depth, and the

impulsive plane wave now has a normal lying in the y-z plane, where y is the

other lateral coordinate. This may be visualized as a horizontal stack of

identical inhomogeneous plates, with the normal to the impulsive plane wave

having components in the direction of the stacking and in the direction of

increasing depth.

The acoustic and stress-strain equations are now

a2p/t2 = - pc2 (w /ax + yw /9y + aw /Dz) (8)
x y z

- pwx = 3p/fx (9a)

-pw = Dp/Dy (9b)

- pwz = 3p/z (9c)

where the quantities are the same as in (1) and (2) and w is the other
y

acceleration component. Proceeding as in [1], the fact that p(x,z) and

c(x,z) do not vary with y means that if the medium is subject to an impulsive

plane wave whose Fourier transform for z < 0 (above the surface) is

-j(k x ± k y + k z)
e j( x yY z , then the wave number ky will not vary with x and z either

above the surface or below it. Hence the Fourier transform of the pressure

takes the form

P(xAylz^) = (xz,) ejk y -jwy sin ei/Co (10)p(xyz,.) = (xzw) e y = l(xz,W) e i 0 (10)
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where .i is the angle of incidence for the plane wave and cO is the

(homogeneous) wave speed for z < 0 (above the surface).

Taking Fourier transforms of (8) and (9), substituting (10), defining

cos (x,z) = 1-- c(x,z) sin /c (11)

and converting back to the time domain yields, in perfect analogy to [1],

(.2p/3t2) cos2 . (x,z) =- pc2 (Dw /9x + w z/}z) . (12)
1 X Z

Note that . (x,z) can be interpreted as the angle between the tangent to the

actual ray path at a point (x,y,z) and its projection on the x-z plane.

Compare this to i.(z) in [1], which was the angle between the tangent to the

ray path at depth z and the z-axis. Equation (12) shows that the problem

has been reduced from a 2-D problem embedded in a 3-D medium to a 2-D problem

embedded in a 2-D medium.

Since the partial derivatives in (9a), (9c), and (12) constitute a gradient

and divergence, respectively, they must (taken collectively) be independent

of the choice of coordinates. Thus we may change from x and z to the time-

varying curvilinear coordinates s and e, where s is normal to the (2-D) wave-

front and e is tangent to it (see Fig. 1). Note that s also represents arc

length along the projection of a ray on the (x,z) plane, and e represents arc

length along a projected wavefront. We have s = 0 along the surface (z=0),

and e = 0 along the ray passing through the origin (x,z) = (0,0). This

representation will be important in the next section.

Writing (9a), (9c), and (12) in terms of s and e yields

(92p/9t2) cos2 6 (s,e) = - pc2 (w s/s + Dwe/9e) (13)
1 s e
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- pwS = Up/Us (14a)

- pwl' = ap/ae

where w and w are the components of acceleration in the appropriate
S e

directions. Eliminating w gives
e

(a2p/at2) cos e8. (s,e) - pc2 (aw S/as)+ c 29p/De 2 - (c2/p)

(ap/ae) (Dp/De) (15)

and defining the travel times

dT/ds = l/c (s,e) (16)

dTi/dT = cos Gi(se) , i=1,2 (17)

for two experiments with initial angles of incidence e1 and e2 allows the

pressure and acceleration to be written in the forms

i i
w (.Te,t) = (t-T ) + w s(T,e,t) l(t-T ) (18a)

i i
p (T,e,t) = p(T,et) l(t-i ) (18b)

i
where p is the pressure field resulting from the experiment at angle of

i
incidence i., and similarly for w

1 S

Substituting (18) in (15) and (14a) yields

p0(T,et = Ti) = pc(T,e)/cos 8i(T,e) (19)
0 1 1

which represents the information gained from the first reflection at T for all

e. From (19) (.for both experiments) and (11) c(T,e) may be found, and then

p(T,e) immediately follows.
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Equations (14a), (15), (16), (17), and (19) taken together thus constitute

a differential algorithm for computing p(T,e) and c(T,e), with the update taking

place as an increment in the ray path travel time T. The algorithm may be

summarized as follows:

i i
Given: p (T,e,t), w (T,e,t), p(T,e), c(T,e), cos 6. (T,e), i (T,e), i = 1,2

-s 1 1

Update all quantities in T.

Each step is done pointwise for all e and t.

(1) Update p i api/a = - pc w (20)

i i 2pi 2 2 222i /ae2
(2) Update w :Dwi/DT - [(D p /9t ) cos e. (T,e) - c2 p/e

+ (c 2/p) (p/ae) (p i/De)]/(pc) (21)

(3) Update T. :; iT./T = cos 8.i(,e) (22)

+ 2+ / 2
(4) Compute U : U(T,e) =(p (le,t = T )/pl(T e,t=Tl)) (23)

(51 Compute c: c(T,e) = cO[ (U-1)/(U sin 02 - sin 2 1)] 1 / (24)

+ + 2 2.2 1/2
(6) Compute cos 6 : cos (.T ,e) [1 c( e) sin (25)

(7) Compute p :: p(T ,e) p (T ,e,t = 1 ) cos 6(T ,e)/c(T , e). (26)

This algorithm bears a marked resemblance to the corresponding algorithm

in 11], and it is not difficult to see why. In the 1-D offset problem algorithm

updates similar to those above were carried out as the planar wavefront advanced

from depth z to depth z + A. In the 2-D offset problem the wavefront is no

longer a flat plane, but is described at time t by the equation T(x,z) = t.

Hence the increment occurs in ray path travel time T, which by definition is the

same for all rays, i.e. all along the wavefront. When T is incremented, the
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wavefront advances slightly, and information about the medium is obtained

from the first reflection using (19), which applies all along the wavefront.

Travel time T is used instead of ray arc length s, since the latter changes

by varying amounts along the wavefront in a given time increment. In the

1-D problem there was no variation of wave speed c along the wavefront.

Of course, it is still necessary to convert p(T,e) and c(T,e) back

into the original (x,z) coordinates. This is done by a form of differential

ray tracing or wave front tracing, Let 4(T,e) be the angle between a tangent

to the wavefront atthe point (T,e) and the (horizontal) x-axis (see Fig. 1).

Clearly the wavefront will advance locally in the direction 4 - 90°.

Now, 4 is of course a function of e, unless the medium is homogeneous.

But 4 changes with T due to variation of the wave speed c along the wavefront --

without such variation, the wavefont would retain its shape. This allows the

derivation of an update equation for 4. From Fig. 2, we have

tan(& (T + 6Tr,e) - 4(T,e)) = (c(T,e + de) - c(t,e))cT/6e (27)

and letting 6T and de go to zero yields

f( T,e)/9aT = 9c(T,e)/~e . (28)

This equation is an update equation for 4, since c(T,e) is assumed to be known

at T for all e, hence 9c/3e may be computed (although this computation is not very

stable).

Now, suppose the coordinates (x,z) associated with the point (T,e) are

known for all e. When T is incremented by A, these coordinates will change
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slightly, by amounts 6x and 6z. But clearly

6x(.T,e) = c(T,e) A sin 4(Te) (29a)

6z(T,e) = c(T,e) A cos f(T,e) (29b)

This allows p(x,z) and c(x,z) to be computed recursively, as follows:

Given: c(T,e), p(T,e), x(T,e), z(T,e),cos ¢(T,e),sin ¢(T,e).

Update all quantities in T. Each step is done for all e.

(1) Update cos ¢ from 9 cos ~a/T = - (sin ¢) 3c/De (30)

(2) Update sin 4 from a sin ¢/9T = (cos ¢) ac/De (31)

(3) Update x and z from (29)

(4) Update c(T,e) and P(T,e) by the algorithm (18) - (24)

(5) Output c(T + A,e), p(T + A,e), x(T + A,e),z(T + A,e) as c(x,z)

and p(x,z). This is quite suitable for plotting.

Note that (28) has been used in (30-) and (31), and that 4(O,e) is initialized

to zero,

IV. Generalizations of 1-D Results to Higher -Dimensions

In this section some ways in which methods and results for the 1-D

inverse seismic problem generalize to higher dimensions are discussed. Also,

some difficulties in applying layer-stripping to higher-dimensional problems

are noted.

It is known, e.g. [10], that for the 1-D inverse seismic problem in which

an impulsive plane wave is normally incident on a 1-D medium, and the upgoing

wave at the surface measured, then the only information about the medium that
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can be reconstructed exactly is the impedance as a function of travel

time, viz. pc(T). How might this result generalize to higher dimensions?

Writing the 2-D acoustic and stress-strain equations in the (s,e)

coordinates defined in the last section gives

p = - pc (Du /as + au /ae) (32)
s e

ap/2s = - p a2 u 2/at2 (33a)

Up/De = - p a2 u/at2 (33b)

where u and u are components of displacement in the appropriate directions.
s e

Now, in the 1-D case changing variables from depth to travel time resulted

in a set of equations entirely in terms of the impedance pc(T), which allowed

recovery of this quantity by layer-stripping. Unfortunately, this is not

possible for (32) and (33), since e would also have to be differentially scaled

by c, and this brings in other terms. And as long as p and c are present

separately in these equations, there is no way they can be propagated from

knowledge (from the first reflection) of their product pc alone.

The solution here is to recognize an implicit feature of the 1-D inverse

seismic problem: Since the problem takes place along a single vertical ray

path, only acoustic (i.e. P-wave) wave propagation along this path need be

considered. In the 2-D case, this is tantamount to considering only acoustic

wave propagation along a ray path. From the nature of acoustic wave propagation,

this means that ue is negligible ([12], p. 95). (Note that this assumption

would simplify the algorithms of the preceding sections.) With this
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assumption, (32) and (33) become

p = - pc2 aus/as (34)p PC 2 Du /Ds (34)

Up/Us =- p2us/t2 (35)Pt. (35)

which have the same form as the basic 1-D equations. Defining outgoing and

incoming waves as

O(s,e,t) = p/1pc + p Du /ut (36a)

I(s,e,t) = p/vpc - Vp/ cus//t (36b)

and assuming an impulse present in the outgoing wave yields, as in [1], the

fast Cholesky equations of the 1-D problem

(D,/aT + /Dt) O(T,e,t) = - r(T,e) I(T,e,t) (37a)

(/DT - 9/Dt) I(T,e,t) = - r(T,e) O(T,e,t) (37b)

r(T,e) = 2I(T,e,T) (38)

now applied along each ray (i.e. for each e). Thus instead of reconstructing

pc(T), we now reconstruct pc(T,e).

A variation on the 1-D problem provides for pure shear wave propagation,

with pc(T) again being reconstructed. For the 2-D problem, we simply neglect

u instead of u . Since (32) and (33) are symmetric in us and u , the result

is once again a fast Cholesky algorithm which reconstructs pc(T,e).

As in the 1-D problem, some sort of offset experiment, involving the mediuir

responses to impulsive plane waves at two different angles of incidence, is

necessary in order to reconstruct p and c separately, and as functions of x and

z. The 2-D offset problem where the normal to the plane wave lies in the



(y,z) plane was solved in the previous section. More desirable would be a

solution to the 2-D offset problem where the normal to the plane wave lies in

the (x,z) plane (so that all of the action takes place in this plane), but

there seems to be no way to relate the different wave front histories resulting

from the two experiments to each other.

Why is a 2-D offset experiment necessary in order to reconstruct p(x,z)

and c(x,z) separately? Considering the numbers of observed quantities, desired

quantities, and dependent variables of both sheds some light on this. The

following table summarizes the situation for each problem:

Total number Total number

of dependent of dependent

Problem Observations variables Output variables

1-D upgoing wave U(o,t) 1- pc(T) 1

1-D offset velocities v (O,t), v (Ot) 2: p(z), c(z) 2

2-D upgoing wave U(x,O,t) 2': pc(T,e) 2

2-D offset velocities v (x,O,t), v (x,0,t) 4 : p(x,z), c(x,z) 4

3-D upgoing wave U(x,y,O,t) 3 pc(T,ele2) 3

l-D elastic upgoing P and S waves from 3 p(z), Xz), (z), (z) 3
P and S excitations

p(x,y,z) acceleration w(.x,y,O,t) 3 P(x,y,z)

For the elastic problem, the upgoing waves are constructed from different

velocity components, and the converted reflection responses (P to S) and

S to P) are the same. Hence there are only three measured quantities, instead

of four.
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