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ABSTRACT

The problem of scene classification is one of the significant open challenges in the
field of machine vision. During the past few years, there has been a resurgence of
interest in this area due to the potential applications in content-based digital image
database indexing. Most proposed solutions have either skirted the problem by
using textual annotation or have employed image statistics such as color histo-
grams or local textural measures. While adequate for some tasks, these approaches
are unable to capture the global configuration of a scene, which seems to be of crit-
ical significance in perceptual judgments of scene similarity. The key question this
thesis addresses is how to encode a scene so as to incorporate its overall structure in
a manner that would allow subsequent generalization to other members of the
scene class. We present a novel approach, called “configural recognition”, as a par-
tial solution to this problem. The main features of this approach are its use of qual-
itative spatial and photometric relationships within and across regions in low
resolution images.The emphasis on qualitative measures endows the approach with
an impressive generalization ability and the use of low-resolution images renders it
computationally efficient. We present results of testing this approach on a large
database of natural scenes. We also describe how qualitative scene concepts may be
automatically learned from exampies. The applicability of the configural recogni-
tion approach is not limited to natural scenes; we conclude by describing some
other domains for which the approach seems well suited.

Thesis Supervisor: Eric Grimson
Title: Professor of Electrical Engineering and Computer Science
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B [ntroduction

Objcct recognition is widely considered to be one of the most challenging problems in

the domain of machine vision. A robust object recognition systein needs to be capable of recog-
nizing or classifying a single object under varying poses, over changes in illumination, in pre-seg-
mented or cluttered environments, under small non-rigid deformations, despite occlusions, in
both greyscale and color images, and through differing immaging equipment. Much work in
machine vision has been devoted to developing efficient techniques that can tolerate such varia-
tions. However, these efforts have met with limited success so far. For instance, even the seemi-
ingly simple task of recognizing the American flags in Figure 1.1 will likely pose a challenge for
most existing recognition systems. The American flag on the left is oriented horizontally, illumi-
nated from above and to the right, and undergoing small non-rigid deformations. The flag on the
right is oriented vertically, illuminated from above and to the right with a yellowish light, and due
to non-rigid deformations is self-occluding. These differences in image conditions are probably

of significant magnitude to defeat most existing recognition systems.

FIGURE 1.1. Images of one object: an American Flag




Scene recognition appears to be an even more complex problem than single object recog-
nition. Scenes can encompass many objects which are subject to a variety of changes in imaging
conditions and can be arranged in a vast number of compositions. Figure 1.2 shows a bustling
city sidewalk at mid day. This image contains many object. such as pedestrians, trees, street
lamps, sign posts, cars, store fronts, and a flag. The problem of recognizing or classifying images
such as this ‘city sidewalk’ scene is rendered difficult because of the high degree of image vari-
ability. The interplay between the large number of objects and the resulting object occlusions,
shadows, illuminations, and reflections presents serious challenges to even the most sophisticated
recognition strategy.

An important question to ask is whether it is necessary to recognize the individual objects
in the image as a precursor to recognizing or classifying the scene. If object recognition is always
required, then scene recognition inherits all the significant problems associated with object recog-
nition compounded by the difficulties of recognizing multiple objects in complex configurations.
Given the number of possible objects, their composition, and the variable viewing conditions,
scene classification via individual object recognition becomes an almost intractable problem.

This thesis addresses the question of whether scene recognition or classification can be
performed without the need for comprehensive object recognition. If one could eliminate the
need for object recognition at the start of the computation queue, scene classification could poten-
tially become a more tractable and computationally simpler problem. In this thesis, we will
describe ard demonstrate one approach. We will also address whether the technique for scene
classification developed in this thesis can be used directly for, or at least to facilitate, object rec-

ognition.




FIGURE 1.2. A bustling city scene containing many objects.

1.1 Scene classification

1.1.1 Definition of the problem

The goal of the work described in this thesis in the context of scenes is quite different
from that of previous researchers who have addressed the problem of “scene understanding™. The
focus of much of conventional scene understanding work is to recover the gcometry of the scenc;
the three-dimensional surface coordinates from a set of two-dimensional images. The gcometry
of the scene may be the desired sclution to the problem, i.c. for use in surface relicf map con-
struction or a 3-D CAD model, or the information may be used as a precursor for object recogni-

tion [15][29][71].
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In this thesis, however, scenes are viewed simply as compositions of two-dimensional fea-
tures such as colored regions. The scene classification problem which is addressed is to build a
concept of a class based on these image features from a set of examples and to identify members
of the class from novel images. The input to a scene classification system is either a predefined
scene model or a set of one or more example images. The desired output is a set of images which
perceptually beloug to the same class as described by the model or the set of examples.
Figure 1.3 shows some input/output examples for the class of snowy mountain images.

Scene classification can thus be subdivided into two problems. The first is the problem of
capturing or describing a scene concept in the form of a scene model. The model may be pro-
vided from an a priori description or from a description extracted automatically from a set of
example images. The second problem is to classify or to detect novel images of the class given
the scene model. The overall goal of an automated scene classification technique is to robustly
and efficiently determine the similarities of images within a class and to determine the features

that distinguish between different classes for both class model generation and detection.
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Input

“snowy
mountain”

: “snowy
mountain”

FIGURE 1.3. Example of inputs to and desirable corresponding outputs from a scene classification system.
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1.1.2 Difficulty of the problem

In this thesis, we deal mainly with the classification of natural images. Figure 1.4 shows
several different classes of natural images, including coastal scenes, field panoramas, underwater
scenes, and snowy mountain scapes. The problem of natural scene classification presents some
formidable difficulties due to the wide variety of possible stimuli and the diverse conditions under
which the stimuli may be observed. For instance, even within a single class, such as the coastal
images shown, scenes may differ greatly in their distribution of color, absolute position of
regions, illumination, viewing position and even content.

More generally, the difficulty of the problem of scene classification can be broken down
into three areas:

1) The first is the dimensionality of the problem. Looking at a digitized image, every pixel
in that image may be considered as a distinct piece of information. For instance, in a typical
512x512 pixel image, there are over 260,000 potential pieces of information. One way to reduce
the complexity of the problem is to require the computer vision algorithm to extract only relevant
or salient pieces of information from the image and use those as a basis for classification. We will
refer to this reduced data as a set of primitives.

2) The second significant problem is to determine which are the relevant primitives and
what are the relationships between these primitives that capture the “essence” of a scene. A scene
may be characterized by, among other things, color, texture, geometrical shapes, and salient
objects. A useful model needs to be able to capture the important aspects of the scene such that it
is distinctive enough to distinguish between different stimuli and permissive enough to recognize
the same stimuli under a variety of lighting, pose, and landscape changes.

3) The third significant problem is how to efficiently and robustly identify scenes from
extracted image primitives. To identify a scene, we must relate the primitives found in the image
to the primitives encoded in our model. In the worst case, the number of possible pairwise com-
parisons between image and model primitives is exponential. The complexity of the problem
grows with increasing variations within a class and with the addition of sensor noise. It is desir-
able to have a method which can quickly identify relevant image primitives and decide whether
those primitives together constitute a particular type of scene.

In this thesis, we will examine all ot these problems.

13



FIGURE 1.4. Example of several classes of images. (a) coastal images. (b) field panoramas. (¢) underwater
views. (d) snowy mountain scapes.
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1.2 Practical uses for scene classification

Scene classification is not just a problem of academic interest. It has practical uses in
many types of domains, including but not limited to, a robot trying to identify its surroundings, a
surveillance system that can automatically detect suspicious activity outside a high security area,
a geological system that can identify and track different classes of weather patterns, a geographic
monitoring system that can classify terrains both on Earth and on other planets. The most topical

application for scene classification is in the management of large libraries of digital images.

1.2.1 Image Database Indexing

Recently there has been a dramatic growth in digital image libraries. For example, collec-
tions from the National Geographic and the Louvre have been digitized. The Library of Congress
intends to spend $60 million to digitize 5 million images [26]. In addition, the expansion of the
Internet to a wide range of people coupled with user friendly web browsers have greatly increased
the availability of and the demand to access on-line digital image stock from a wide range of pro-
viders.

With the increase in the number of available digital pictures and the ease of access to
these libraries, the need has arisen for more complete and efficient annotation (attaching classifi-
cation labels to images) and indexing (accessing specific images from the database via a query)
systems. Image database indexing systems can be used in a wide variety of applications from a
casual user browsing for images, to advertisers, news agencies, and magazine publishers seeking
stock photography. Such systems may also aid in other areas including the management of art
galleries, museums, scientific databases, and retail stock. Further applications are found in fash-
ion and interior design. Database indexing is not limited to static image storage and retrieval. A
complimentary stock of video sequences are being digitized and archived.

Traditionally, image/video database indexing systems have annotated the database with
key words. A user retrieves desired images by submitting text-based queries to the system using

one or a combination of these key words. Some of the textual query systems are so complexly
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designed that a middle-man familiar with a particular annotation system must be employed to
carry out the third-party request. In a current state of the art system, the middle-men may actually
perform the search by accessing the images from memory.

Figure 1.5 shows a simple textual query system from a stock photography vendor. The
word “coast” was used as the input search string. Figure 1.6 shows a few of the 2700 images
found by the query system based on the input. These two figures illustrate the main problems of
trying to index into an image database using text based keys. The returned images can be quite
varied and, in many cases, their content is often only indirectly tied to the original query. The lat-
ter point is best illustrated by the gull and map pictures. In such text based systems, the content of
the image, the level of detail of description, and the vocabulary used is decided by the annotator.
The annotator’s biases and preferences in most cases will not match the biases and preferences of
the user, resulting in many “false” positives, selected images that do not fit the user’s expecta-

tions, and many “false” negatives, desirable images bypassed by the system.

Using plain English phrases, describe the kinds of images you would like to see.

Descrigtion: Display Results As:
‘ PR o Qmages only
Elmages and partial

FIGURE 1.5. A textual query interface to an image database indexing system.
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20 ot 2711 matches displayed below...

® Magcllan Geographix, 1996 € Revin Moris, 1992

€ Carolina Biological Compan

€ Andrc Jcany, 1992 ® Michacl Townsend, 19088 Phototakc, 1904

€ Alon Rcininger, 1982 € Jorc Azcl, 1994

€ Yoas Lcvy, 1994

& Jorc Azcl, 1089

hee B

€ Dasid Bumectt, 1986 ® Catherine Kamow, 1995 € Annic Griffiths Bele 1001
o
o
)

FIGURE 1.6. Images selected as a result of the text query “coast”. Many of the selected images are quite varied
and some do not match human intuition of what should comprise a coastal image.
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Such systems could be greatly enhanced if the queries could be performed automatically
on the image content and if the query could be formulated and refined at the time of access. A
more comprehensive system could tolerate queries of the form, “Given these example images that
represent a class, return other images from the database that are also instances of this class”. Sim-
ilarly, a user could ask the system to return images that belong to a predefined class, such as
“coastal”. An interactive system would allow the user to refine the query by rating the returned
images and resubmitting an improved class concept. A general automated image classification
strategy could enhance the performance, flexibility, reliability, and ease of use of existing image

indexing systems.

1.3 Aim and scope of the thesis

The aim of this thesis is to provide a solution for the problem of scene classification. This
thesis will develop a novel approach called ‘configural recognition’ that is eminently suited to
encode and utilize the global structure of scenes. Configural recognition utilizes qualitative rela-
tionships between colored regions as primitives and encodes such relationships in a global
deformable template. The scheme will be shown to be computationally efficient - both theoreti-
cally and empirically. We will demonstrate our approach to classification on the domain of natural
scenes. We will show results of the system tested on a database of 700 images. We will also sug-
gest an interactive learning technique to develop the scene models.

The scheme deveioped here, although versatile in many situations, has some significant
limitations. In particular, the solution presented in this thesis will not encompass situations where
classification is based on fine quantitative discriminations. Additionally, the solution will not

apply to classification of functionally or emotively defined scenes/objects.

1.4 Structure of the thesis

In this chapter we provided a brief introduction to the problem of scene classification and
the important application of image database indexing. In the next chapter, we investigate how
spatial configuration and global organization in scenes may encode the semantic content of a

scene and, therefore, may be a key component for scene classification. Chapter 3 discusses the
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benefits of the use of qualitative measures in scene models. In Chapter 4, we show how natural
scenes can be classified using templates which encode a global configuration of qualitative rela-
tionships between scene patches. We demonstrate our approach on a 700 image dataset. Chapter
5 suggests strategies to automatically learn a class template from a set of example images. In
chapter 6, we aualyze the strengths and weaknesses of the configural recognition approach to
scene classification. Finally, in chapter 7 we briefly discuss how the configural recognition

approach might be applicable for other tasks such as object detection.




SN T Vi Importance of Global

A key question that needs to be addressed by any approach secking to perform scene
classification is: what is the image information that would allow reliable and robust classifica-
tion? More succinctly, what aspects of scene content are relevant for the purposes of classifica-

tion?

2.1 The role of global organization or scene siructure

Scenes may be described in a variety of ways. For instance, two popular proposals in this
regard suggest describing a scene either as a collection of objects or as having some set of partic-
ular image statistics, such as color or texture measurements. However, it seems that in either pro-
posal the description of the image pieces by themselves, either as labeled objects or as image
statistics, may not fully capture a scene’s content.

Figure 2.1 shows two collages both of which contain the same seven distinct and recog-
nizable objects; four seashells, one piece of bone, and two pieces of rope. Perceptually,
Figure 2.1(a) is interpreted as a largely random collection of these parts, while Figure 2.1(b) is
seen as a person. The large disparity between the two perceptions can be attributed to how the
objects are spatially arranged.

Let us consider another example to highlight the importance of an image’s global spatial
arrangement. Figure 2.2(a) shows several images of snowy mountains. They can be described as
having the same histograms of colors; blue, white and grey-green. Figure 2.2(b) shows a waterfall
image, a rocky coastline, and a scrambled snowy mountain image. All three of these images con-
tain approximately the same amount of blue, grey-green, and white regions as the images in
Figure 2.2(a), however, perceptually we would not characterize them as snow-capped mountains.
The images in Figure 2.2(b) have the correct chromatic components, but they are arranged in the

wrong overall configuration.
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The main point of Figure 2.1 and Figure 2.2 is that, irrespective of the representation used
for the image parts, object descriptions or image statistics, it is usually the overall configuration
of thos> parts that is most critical for classification. These observations which have been pre-
sented anecdotally here derive strong support from several psychological studies. It has been
shown that a stimulus in correct spatial configuration allows for more accurate and rapid detec-
tion or recognition of itself or its parts than the same stimulus with incorrect spatial relations
[51[71[12]. The conclusion we arrive at is that the overall organizaticii o1 a scene’s parts or scene
structure strongly influences its interpretation. This idea will be one of the central themes of this

thesis.

FIGURE 2.1. Two versions of Andre Masson’s “Ludion: Bottle-Imp”, containing shells, rope, and bone; (a)
contains a scrambled version, (b) shows the original.
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(a)

FIGURE 2.2. (a) Three pictures of snow capped mountains. (b) Scenes of a waterfall, a coastline, and a
scrambled mountain image.

2.2 Representations for encoding scene structure

If scene organization is an important component for classification, the next question that
we must address is precisely what information from the scene is used in that organization. In the
previous section we described a scene in two ways, as a global organization of recognized
objects, such as shell, bone, and rope, or as a structured configuration of image statistics, such as
regions of blue, white and grey colors. Let us now examine these two strategies in a little more

depth.
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2.2.1 How important is image parcellation into distinct objects?

Whether it is necessary to recognize objects in an image before performing the classifica-
tion is a fundamental question for scene classification. We addressed this issue briefly in the intro-
ductory chapter. In this section, we present a mcre comprehensive discussion.

Clearly, object recognition is important in some situations. Figure 2.3 shows Picasso’s
painting “Woman Dressing Her Hair”. This is an example of a structure which is recognizable
even though the spatial relationships between the constituent objects are jumbled. This is proba-
bly because of the recognizability of the individual objects. This is best illustrated in the face
region. The face is recognizable, because its subparts, the eyes, nose and raouth are evident, even

though they are incorrectly organized.

FIGURE 2.3. “Woman Dressing Her Hair” by Picasso. This figure is recognized as a person because the
individual parts such as the eyes, nose, and mouth are recognizable, even though these facial features are in
the wrong spatial organization.

23



On the other extreme are situations where in some scenes are recognizabic even though
their individual parts are not. Figure 2.4 shows four parts of an image. In isolation, these four
parts are unidentifiable. However, in the context of the whole image, they become evident respec-
tively as a portion of a tree, part of the sky, a person, and a swatch of grass. The intact painting is

shown in Figure 2.5.

FIGURE 2.4. Four parts of an image. Alone they are unrecognizable

A similar and perhaps more convincing demonstration is provided by low frequency
counterparts of images. Figure 2.6 shows the low frequency components of several images. The
images contain only a global organization of color regions. These images are easily recognizable
by human observers, even though none of their constituent parts by themselves are.

The last two points suggest that scene classification can proceed without the need for rec-
ognition of the individual parts. This suggestion is ‘good news’ for an automated scene classifica-
tion technique, because object recognition is a difficult problem in its own right. A scene
classification strategy which attempts to perform individual object recognition as an initial step
may be thwarted by the difficulty of the recognition component.

There is a large body of work in computer vision which addresses the problem of object
recognition. Some examples include [24][25][30][44][51][67][69]. Most of these strategies use
geometric models and are aimed at recognizing static objects. The successes in this area have
usually been when the objects have well-defined boundaries, are largely unoccluded and viewed
under constrained lighting conditions. These strategies are not well suited for complex scenes
consisting of multiple objects which may be viewed under varying viewing and lighting condi-
tions. The arrangement of the objects and the resulting occlusions, shadows, and reflections

greatly increases the complexity of object recognition (see Figure 2.7).
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Some strategies have been developed to try to focus the attention of the recognition algo-
rithm on parts of the scene that belong to one object [10][39]{45]. Although there has been some
success using geometry and color information to solve the problem of localizing unoccluded
objects in a cluttered scene, focusing attention and recognizing most or all objects, irrespective of
the arrangement of objects in a scene, is extremely difficult and currently computationally prohib-

itive.

FIGURE 2.5. Painting by Maurice Prendergast, “Summer in the Park”. An example of an image that can be
meaningfully interpreted due to the spatial arrangement of the different subparts, even though the latter are
not identifiable by themselves (see Figure 2.4).
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FIGURE 2.6. Low frequency components of three images; a snowy mountain scene, a car, and a face. All are
recognizable even though their individual parts may not be.

FIGURE 2.7. Partioning objects and recognizing them in complex scenes is sometimes perceptually difficult.
This drawing by Picasso has no complicating colors, textures, shadows, or reflections., however it is quite
difficult even for humans to segment out the individual women due to their intricate arrangement. An
automated system would be greatly challenged by such an image.
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An additional drawback that conventional object recognition schemes suffer from is that
their largely geometric strategies are ill equipped for recognition of natural objects such as trees,
rocks, water, coastlines, and clouds which constitute a major portion of all outdoor scenes (see
Figure 2.8). There have been attempts to use color and texture information to segment natural
objects in such scenes [27][50). However, these techniques are often time consuming and may be
prone to error due to the great color and textural variabilities of natural objects in the same image
and across different images (see Figure 2.9).

Considering all the problems that plague individual object recognition schemes, the idea
of recognizing the scene as a whole without first labeling its individual parts seems very attrac-
tive. This idea has some support in the area of psychology, especially in the area of face recogni-
tion/detection. Tanaka et. al. show that parts of faces, such as the eyes, nose, and mouth, of
identifiable people are more quickly recognized when presented in an upright face, or in context,
than those parts presented alone [66]. The results suggest that faces in the correct configuration
are recognized in a more holistic manner, i.e. as a pattern, than via the identification or labeling of
individual salient features. Results favoring a more holistic pattein matching strategy have been
found with other objects. For instance, Cave and Kosslyn foun: that the particular type of divi-
sion of an object into parts, e.g. unnatural vs. natural, where the parts were in a correct spatial
arrangement, had little effect on speed or accuracy of recognizing the object [12]. Cave and Koss-
lyn suggest that representations of parts may be extracted after, rather than before, object identifi-
cation.

Even though this thesis emphasizes the idea of recognizing scenes without first explicitly
recognizing the individual scene parts, it is important to note that the approach we propose is not
mutually exclusive with one based on specific object detection/recognition. In fact, it is likely that
in a practical instantiation, such as an image database indexing system, both techniques may be
fruitfully combined.
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FIGURE 2.8. Illustration that geometric models are ill-suited for natural objects. For instance, although the ice
chunks and ice slabs in the left image may be somewhat described via compact geometric forms such as
polyhedral shapes, describing the ice in the right image via these shapes is much more difficult.

Throughout this discussion, we have assumed that the boundary between what constitutes
an object and what constitutes a scene is defined (or similarly what constitutes an object and an
object subpart). In fact, this distinction is not always so clear. We will discuss in Chapter 7, how
the approach developed for sccne classificav v can effectively be used for individual object rec-
ognition/classification. So, the question of whether scene recognition is fundamentally distinct

from individual object recognition might not, in the final analysis, be too meaningful.




FIGURE 2.9. Segmentation of natural images using color and texture properties is a difficult problem. This
figure shows a scene with five highlighted regions: A and B are tree regions, D is a water region, I and C are
sky regions. The textural properties of A, B, and C and the average color properties of D and F are shown
below the image. The texture of A and C seem more similar than A and B even though A and B are hoth tree
regions, while C is a sky region. The average color properties of D and E seem very similar even though they
are from a water and sky region respectively. Segmentation based on these cues may lcad to an incorrect
partioning of the image.

2.2.2 Encoding image structure as an organization of colored pixels

Instead of thinking of an image as a collection of distinct objects, let us consider it to be
merely a set of colored pixels. In this framework, we have to handle the important question of
how to represent the structure of this pixel set. There are multiple possibilities that can be placed

on a continuum whose two ends are defined by 1) conventional template matching where image




structure is represented exactly as the absolute color and ahsolute position information of every
pixel and 2) cumulative statistics, such as color and luminunce histograms and Fourier amplitude
spectrum signatures, where no posi*ioning information may be encoded.

In the first case, the actual image or subpart of an image is used as a model, often referred
to as a template. New images are classified or recognized if they contain the model template or
some constrained distortion of the template. Current applications that utilize templates include
systems for face recognition [11] and sign post detection [6). There are several benefits to using
templates. The template is easy to store as an image. No costly preprocessing is necessary to gen-
erate the template or to prepare a novel input image for matching. Matching the template to an
image involves differencing or correlational operations, which can be implemented quite effi-
ciently.

On the other extreme, cumulative statistics have also been used successfully in some lim-
ited recognition applications. For instance, Swain and Ballard implemented a recognition tech-
nique using color histograms as object models [63]. Cumulative statistics have several
advantages. Most statistics are easy to compute. Models in the form of these statistics are com-
pact. Matching between models and the novel processed in.ages involves comparing a small set
of numbers which is computationally attractive.

Neither extreme, however, has been successfully used for the classification of scene con-
tent. Figure 2.10 and Figure 2.11 illustrate why neither extreme is appropriate for scene classifi-
cation. Figure 2.10 shows two ice scenes and a picture of their difference. Although both belong
to the same class, the absolute colors and absolute positions of the image regions are quite differ-
ent, rendering the template matching scheme ineffective. In general, two instances of the same
class may differ greatly in their absolute measurements. In addition, there is most likely no sim-
ple distortion of one to fit the other to produce a good match. Figure 2.11 addresses the other
extreme. The figure shows a snowy mountain image and its scrambled counterpart. The color his-
tograms for each of the images are exactly the same, even though the images do not belong to the
same class. This suggests that scene content often may not be well described by global measure-

ments.
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FIGURE 2.10. A measure of similarity between a template (first ice scenc) and a novel image (second ice scene)
can be defined as function of their absolute difference. Although the two ice images belong to the same class,
their absolute difference (third picture) is large, suggesting that template matching may not be an effective
scene classification technique.
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FIGURE 2.11. A measure of dissimilarity for a cumulative statistic technique can be defined as function of the
difference between the color histograms of two images. The two images shown in this figure (a snowy mountain
image and its scrambled counterpart) have exactly the same color histograms even though they do not belong
to the same class. This suggests that comparing cumulative statistics may not be an effective technique for
image classification.

Because of the problems outlined above, real applications of these two extremes in image
database applications have not been too fruitful for retrieving images based on their perceptual
content. For instance, Equitz uses a form of template matching to find images in the database that
are most similar to an input image [18]. The result of the queries, shown in Figure 2.12(h), are

images that are almost identical in configuration and luminance to the input image, shown in (a).

31



No evidence of class generalizabilty was demonstrated. Qubic, another indexing system, uses
color histograms as one component of their search strategy [4]. When a color histogram of the
input image is the main basis for the query, the resulting images are similar in overall color but
can differ greatly in their perceptual content. Figure 2.13 shows the results of one query of this
type. The top left image was the query image, the other seven are the ordered closest matches.
This image of a boat at sunset was is found to match most closely with an image of money, a sand
dune scene, a image of molten liquid and a picture of a woman eating a slice of watermelon. The
two images that perceptually match most closely in content with the input image did not even

have the highest color similarity scores.

FIGURE 2.12. A query based on low resolution template matching. The input image is shown in (a). (b) contains
the retrieved images. Only images which are an exact match or a slight deviation from the input image are
returned.
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FIGURE 2.13. A query based on color percentages. The top left image of the sailboat at sunset was the query
image. The other seven are the closest matches from the database in order of computed similarity. & of the
returned images come from such diverse classes as stacked money, desert scenes, molten liquid, and a woman
eating watermelon.

Ideally, one would like to use a strategy positioned between these two extrenmies. Such a
strategy would encode the °general’ perceptually salient structure of the scene. General salient
structure may be expressed as relative spatial relations between scene subparts. In the next sec-

tion, we suggest a framework for encoding ‘general’ structure via qualitative relationships.

2.3 Qualitative encoding of scene structure

Qualitative measurements coarsely encode the relative relationships between entities,
such as spatial position between two regions in an image. This is in contrast to quantitative mea-
surements which express the absolute value of those entities, e.g. x-y image coordinates of those
regions, or cumulative measures which express no information of the value of the individual enti-
ties. Qualitative relationships allow us to capture a flexible representation of the structure of a

scene, while retaining some information about the individual components of that scene.
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suggesting the idea of perceptual grouping based on qualitative spatial relationships.

Qualitative or relative relationships have been used effectively in the psychology commu-

nity as a model of how humans make categorical judgments. Figure 2.14 shows one example of

how relative relationships can be used as a measure of perceived similarity. Figure 2.14(a) shows

a dot above a line. Figure 2.14(b) shows the dot above the line but displaced in the x-y plane by

some amount d. Figure 2.14(c) shows the dot displaced from the original position in

Figure 2.14(a) by the same amount d, but in a direction to put it below the line. Most observers

when asked to rate whether (b) or (c) is more similar to (a) report that (b) is perceptually closer in

nature to (a) than (c) to (a). This suggests that observers might be using some qualitative notion of
whether the dot is above or below the line to make class judgments.

Above/below is one type of qualitative spatial relationship. The qualitative horizontal ana-

log of this relation is left/right. Various combinations of these two types of spatial relationships

provide a general language to describe a scene structure and a way to determine scene similarly
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or to perform scene classification. Although we have discussed the use of qualitative relationships
for describing synthetic scenes, by analogy qualitative relationships might be important for real

scenes as well.

FIGURE 2.15. The three snow-capped mountain scenes from Figure 2.2(a) are shown. Each is divided into three
regions (A,B,C). Perceptually, the corresponding regions have similar content. Across all the images regions A,
B, and C have the same relative spatial attributes (although they differ in their absolute sizes and positions).

With respect to the spatial layout of real scenes, scene classes may also be described by
image regions which relate to each other via these qualitative relationships. For example,
Figure 2.15 shows the snow capped mountains from Figure 2.2(a). This class of images may be
described as having three perceptually salient regions, a blue region (A), a white region (B), and a
grey-green region (C). The corresponding regions have been annotated on the images. In all of
the images region A is above region B which in turn is above region C. Therefore, even though
the particular instances of the class exhibit these regions at diverse absolute locations (e.g. blue
sky/white snow transition, measured in pixels from the top of the image, is at 50 in image 1, 38 in
image 2, and 40 in image 3) and over different spatial extents (region B is 50, 27 and 33 percent
respectively of images 1, 2 and 3), one constant is that the regions all have the same relative spa-

tial layout.

2.4 Summary

In this chapter, we have discussed the importance of the global spatial organization or

scene structure for the classification of images. There are several points we addressed:
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*We illustrated that the spatial organization of a scene, whether the scene is described as a
collection of objects or as having some set of particular image statistics such as color or texture,
is critical for its classification.

» We addressed the question of what representations should be used for encoding scene
structure and suggesied that scenes may be represented as an organization of colored pixels rather
than as an arrangement of objects. We also suggested that scene classification may in some cases
precede object recognition or recognition of scene-subparts.

» We demonstrated two extremes for representing scenes as an organization of colored
pixels. On one extreme the scene may be viewed as a template, where absolute spatial positions
are encoded. On the other extreme the scenz can be represented as a set of cumulative statistics,
where no positioning information is encoded. We suggested that neither strategy is well suited for
scene classification.

» We suggested that a more fruitful strategy may be to encode scene structure in terms of

the relative spatial relationships between scene parts.

Relative spatial relationships between colored image regions provide a partial language to
describe scene content. However, we still need to define how to represent other properties of the
local regions such as color. For instance, loosely defined terms such as “blue”, “white”, or “grey-
green” may have some perceptual meaning, but, they are difficult to encode in terms of digital
image color spaces, such as the red, green, and blue color gamut (i.e. what values of red, green,
and blue components combine to make “grey-green?). One idea to surmount this problem is to
relate descriptions of the region properties to the structure of the scene. Therefore, just as we can
define qualitative spatial relationships between image regions, we also can define qualitative rela-
tionships between other region attributes such as chromatic and luminance content.

We will show in following chapters that a combination of qualitative spatial relationships
and qualitative region attributes provides a flexible but rich description of scene content and that

this type of description can be used for reliable and efficient scene classification.
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Bl Qualitative Models

The human visual system is remarkably adept at perceiving differences between the col-

ors or luminances of image regions. However, it is very limited in its ability to estimate the abso-
lute values of these attributes. Even in the detection of differences, the visual system seems to
partition the relationships into coarse cquivalence classes such as “brighter than” and “bluer
than”. This suggests that qualitative inter region relationships might be more important than
quantitative absolute measurements for at least some visual tasks. This observation partly moti-
vates our approach of encoding image structure in a effort to capture perceptually meaningful
content in terms of qualitative relationships.

In many cases the relative or ordinal relationships between image regions are important
for perceptual classification of scenes. The classification of a scene may remain valid long as the
relative relationships between the image regions remain the same, even though the absolute
region values may change. However, when the ordinal relationships are violated, often the per-
cept and therefore the classification of that image is greatly altered. Figure 3.1(a) shows three
images; a coastal view, a sunset panorama, and a picture of clouds. Figure 3.1(b) shows the three
images where the contrast has been increased, however, the inter-region color and luminance rela-
tionships remain the same. Increasing the contrast is a linear function that stretches the difference
between the high and low values in an image. Figure 3.1(c) shows the three images from
Figure 3.1(a) inverted. In this case, the R, G, and B components of each image pixel have been
inversely mapped, therefore, reversing the signs of most of the ordinal relationships within these
three color bands. Obscivers report (nat the corresponding images to Figure 3.1(a) in
Figure 3.1(b) do fall into the same class, although some perceive that the camera parameters or
lighting conditions might have changed. On the other hand, subjects report that the corresponding

images in Figure 3.1(a) and Figure 3.1(c) do not belong to the same class. For instance observers
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have reported that the inversion process on the coastal image produced an image of a glacier. The
sunset panorama seems to have changed to a daytime water image with waves or clouds. Finally,

the transformed cloud scene appears to be a relief map illuminated from below.

(a)

FIGURE 3.1. Example of how relative relationships between image regions may be important for scene
classification. (a) shows a coastal image, a sunset view, and a cloud picture. (b) shows the same images with
increased contrast; the absolute values of the regions have changed, however, the ordinal relotions remain the
same. (c) shows the images from (a) inverted; the ordinal relations between image regions are reversed.
Perceptually, classification of the corresponding images in (a) and (b) are similar. However, classification of
the corresponding images in (a) and (c) are quite different.

Another motivation for using relative relationships in describing a scene class is that
human perception of a visual stimulus is greatly influenced by the surroundings of the stimulus.
For instance, the perceived luminance of an image patch can be altered by what surrounds that
patch. Figure 3.2 is an example of the simultaneous contrast illusion [17]. The figure shows how a

background gradient can make two equiluminant grey patches appear dissimilar. Figure 3.3,
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shows that a natural image patch may be described as “light” in one context, e.g. in a the coastal
image, and “dark” in another, e.g. in a cloud scene, even though the average luminance of those
patches are the same in both images. Analogous displays can be created to demonstrate a similar
effect of context on perceived patch color. Thus, we suggest that an image region should be

described in terms relative to the scene which contains it.

FIGURE 3.2. Example of the perceptual effecs of a background on two equiluminant grey patches. On a uniform
background they appear to be the same intensity. However, when displayed on a background with a gradient the
left paich appears to be brighter than the right.

FIGURE 3.3. Example of the effect of context on lightness perception. Within the context of the coastal image,
the indicated patch is considered “light”. Within the context of the cloud image, the highlighted patch seems
“dark”. However, both patches have the same average luminance. The average luminance of the indicated
patches are shown below the images.
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In this chapter, we describe class models that use qualitative relationships between image
regions. After reviewing prior work on qualitative object models, we give a concrete example of a
language which can be used to describe a qualitative class model. We also describe the computa-
tional complexity of generating the class model and of matching the class model to novel images

for the purposes of classification.

3.1 Prior related work using qualitative models

The most closely related work to what we are about to describe is the ratio-template con-
struct devised by Sinha [57]. Sinha encodes sets of ratios of luminance values between image
regions as qualitative object models. He has discovered that such models may be used for object
detection under varying conditions. To show this, Sinha developed an invariant for frontal face
detection under varying illumination conditions. The invariant consists of a set of image regions
in a fixed spatial position, corresponding to facial features, and relative luminance relationships
between the image regions. For instance, the model encodes that the regions corresponding to the
eyes should be darker than the regions corresponding to the forehead, cheeks, and nose. Sinha
demonstrated that the relative relations remained valid for a majority of faces and over many
changes in illumination. The template can be evaluated at different locations and over several
spatial scales of an image to detect instances of faces. Figure 3.4(a) contains a schematic of the
template. Figure 3.4(b) shows the template overlaid on a face. Sinha has also developed a correla-
tional learning scheme to learn ratio-templates from a set of example images. While this scheme
performs well for the task of object detection, it seems not directly suited for situations wherein
the structural arrangement of image entities can under go changes from one instance to another.

Smith and Chang have developed a system called VisualSEEK for image database index-
ing which uses spatial relationships between image regions as one component of a metric of

image similarity. The query mode is to have the user specify color, texture, size, and absolute

position of several image regions on a grid. Based on the patches input by the user, the system




extracts measures of color, texture, position, and relative position and then uses a weighted com-
bination of these cues to retrieve similar images from a database [S8][59]. The emphasis, how-

ever, is on the use of multiple absolute measures for determining image similarity.

FIGURE 3.4. Example of a qualitative model which describes the class of frontal faces. (a) shows the patches,
their spatial positions, and the corresponding relative luminance relationships. (b) shows the template applied
to an image. The face is correctly detected.

There has been some other prior work using qualitative spatial relationships in the context
of scene classification to describe the relationships between objects or object subparts in images.
One goal of such scene classification systems is to compute queries of the form “give me all the

images where object O; and object O; have relation 7;;". Another goal of such systems is to mea-

sure the similarity between two images or an image and a sub-image based on how well the geo-
metric attributes and relative relationships of the scene parts match. Most of these systems bypass
the difficult object recognition bottleneck by assuming that the objects are already labeled or by
defining objects as simple geometric entities such as closed curves, which can be extracted from
images using simple image processing techniques. The main focus of most of this work is on how

the relationships, such as “next to” are defined given a set of object properties, such as center of
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mass, how the symbolic queries are represented, and how such queries can be efficiently pro-
cessed [1][13][14][28]1[49][65]. However, the assumption of already labeled or casily extracted
objects makes discussions of these issues more academic than practical. In addition, these strate-
gies ignore the critical step of determining or learning what relationships between which salient

objects are important for a scene class definition.

3.2 Model parts- image patches

As described in the last chapter, we suggested that a scene class may be modeled in terms
of relative relationships between spatial and photometric attributes of image regions. Precisely
what is implied by ‘image region’ must stili be defined. The example of the snow capped moun-
tain images partitioned into three salient regions in Figure 2.15 may have suggested that we
should use a “smart” segmentation process to partition the images into patches of blue, white and
grey-green in order to recover the structwie of the scene. However, as suggested in chapter 2, seg-
mentation of a scene via color or texture can be computationally expensive and can lead to per-
ceptually incorrect partitions.

To partition an image into regions or patches, we adopt a much simpler approach. We can
simply break up the image into » blocks, irrespective of the contents of those blocks. The blocks
may be the size of a pixel or extend over many image pixels. The blocks may be of any size or
shape. In the practical demonstration described in the next chapter, the blocks are usually equally
sized and square.

The goal is to partition the image finely enough so that some patches extend over part of
one perceptually cohesive image region. It is desirabie, but not necessary, that the partitioning is
coarse enough such that only a few patches together cover a cohesive image region. It may be
necessary to partition the image at different scales so that hopefully at ieast one scale has a some-
what optimal covering of the image by these partitions. Figure 3.5 shows a snowy mountain
region partitioned at three different scales. The image in the middle is an example of a desirable

partitioning.
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There will be many cases where the arbitrarily chosen image patches cover parts of two or
more perceptually cohesive image regions. These patches may in effect be ignored, as long as
there are some patches which cover part of only one cohesive image region. Such regions may be
ignored both in the example images used to build a class model (see chapter 5) and in novel
images.

The attributes of the image regions can be described in a number of ways. For instance,
the luminance of an image region may be computed as the mean, median, or mode of the lumi-
nances’ of the pixels that comprise that region. Definitions of mean and median are provided
below [52]. In the most trivial case, where the image region corresponds to one pixel, the lumi-
nance of the image region equals the luminance of the pixel it covers. The position of the image
region may be described by the centroid or one of the bounding points on the region. Similarly,
when the region covers only one image pixel, the position of the region is the x and y coordinates
of the pixel.

mean of x,...xy:

median of x,...xy:
if the values x;j = 1,...,N are sorted in order, then

Xmed = x(N+l)/2 for N odd

Xmed = 1/2(xnp + X(np2)41)  for Neven

There are several benefits of this partitioning strategy. First, it is computationally simple.
There are no complicated preprocessing or abstraction steps. The majority of the preprocessing
work consists of image smoothing and averaging of region attributes. Second, we do not presume
that the partitioning has segmented the image into connected perceptually salient parts. Segmen-
tation of an image is a difficult problem. The expectation that the image has been scgmented

“properly”, in most cases, will cause problems for the subsequent stages which rely on this infor-
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mation. Third, the class model comprises of image regions which are simple to describe (e.g.
square image regions) and also easy to compare to novel images which have been partitioned in a

similar manner.
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FIGURE 3.5. Coarse o fine partitioning of the image into equal size square regions.

3.3 Model parts - salient regions and their mutual relation-
ships

A class model is a compact representation of a set of logically related images which share
the same or similar characteristics. Thus, the class model should consist of only the salient
regions and their relationships which embody those similar characteristics and which can be used
to discriminate members of that class from non-members. In the most specific case, the model
may represent only one example image. Therefore, all the image regions should be included in
the model. This configuration is now similar to a template. In the most general case, the model
covers all possible images and therefore need not contain any image regions or relationships. In
between these extreme cases, only the salient or discriminatory details need be encoded in the
model. For instance, many coastal scenes contain waves breaking on the shore, resulting in white

image patches between the blue of the ocean and the brown or grey of the shore. However, the
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breaking waves are not a requirement for the general class of coastal images, and therefore, may
be omitted from the model. The relationship between the ocean patches and shore patches will be
the salient ones that distinguish the images that belong to the coastal class from images that are
members of other image classes. However, if the desired class is “coasts with pounding surf™,
then the relationships between the breaking waves and the water, and the breaking waves and the

shore become significant.

3.4 Describing Qualitative relationships

We now need a language which describes the qualitative relationships between model
regions. Regions have many attributes. Some of the most basic ones are spatial position, color,
luminance, and size. In the following four sub-sections we give examples of how to represent
these relationships. We focus on this set in particular because they are the ones which we found
were most useful in our applied task of classifying natural images, which is discussed in the fol-
lowing chapter. In subsection 3.4.4, we discuss how other region attributes such as shape, orienta-
tion, and density may be encoded in a qualitative fashion. These region attributes may become
important for classifying other sets of images, such as synthetic images, spac. scenes, and fabric
catalogues.

Qualitative relationships for each attribute may be computed between any subset of the

patches in the model. For instance, if the relationships are pairwise, there are O(n?) totai number
of relationships to compute for any one attribute. Relations between subsets of triples or quadru-
ples may be used. However, the increase in number of patches in the subset increases the expo-
nent of the polynomial in the computation time. Experimentally, we found model descriptions of
pairwise relationships to be sufficiently descriptive. In the following subsections, we give cxam-
ples of relative pairwise relationships.

Figure 3.6 shows an image which consists of three salient patches (A, B, C). We can
compute position, luminance, color, and size of each patch. Using these measurements, we can
then find the qualitative pairwise relationships between the patches. The value of a qualitative

measure is either greater than (>), less than (<), or equal to (=).
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FIGURE 3.6. Example image with three salient patches. Patch A is light brown. Patch B is a purple blue. Patch C
is dark green.

3.4.1 Qualitative spatial relationships

Lo b b b bl b i b

Qualitative spatial relationships are based in terms of the image coordinates. Images are
usually described as a two-dimensional array of basic elements or pixels. Image size therefore is
denoted as the width times the height of the image in pixels. Figure 3.6 is a 167 by 127 sized
image. We assume that the origin of the image (0,0) is in the upper left hand corner. If we use x
and y coordinates of the centers of the image regions to denote their position in the image, region
A is at position (26,22), region B is at position (121,51), and region C is at position (70,106). Let
A and Ay denote the x and y positions of region A. Corresponding notation can be used for
regions B and C. We can compute qualitative spatial relationships in both the horizontal direction

(x) and vertical direction (y).
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The six pairwise spatial relationships between the regions are the following;:

A, <B,; Ay <B,
By >Cy; By <Cy
Ay <Cys Ay <Cy

We can describe these relationships also in terms of above/below and right/left which may
be more perceptually meaningful. In the vertical direction, “less than” corresponds to “above”
and “greater than” corresponds to “below”. In the horizontal direction, “less than” corresponds to
“to the left of” and “greater than” corresponds “to the right of””. Thus, region A is above and to the
left of region B. Region B is to the right and above region C. Region A is to the left and above
region C.

If we allow patches of varying size, it is possible for a larger patch to substantially overlap
another patch in either the x or y direction. In such a situation, computing relative spatial relation-
ships based on patch centers may not provide a perceptually valid or informative description. For
instance, in the case where a larger patch overlaps a smaller patch in the y direction, the smaller
patch may be described as “above” or “below” the larger patch even if its center is slightly above
or below the center of the larger patch. In such cases, we would want to use information other
than the middle of the regions to describe relative spatial positions. More sophisticated methods
and terminology for describing the spatial relationships between two geometric regions or
between two objects have been developed. References to some of this work are provided in sec-

tion 3.1.

3.4.2 Qualitative photometric relationships
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The photometric properties of an image region are its color and brightness distributions.
Color and brightness of a region are dependent on the light received by an observer from that
region. These photometric properties are a function of the lighting of the scene, reflectivity of the
surface materials, and the three-dimensional geometsy of the scene. An array of photosensitive
devices in the image plane can be used to measure scene lightness at particular points or over
small regions. Generally, the photometric properties of an image may be described by several
sensors with different spectral sensitivities in the visible spectrum. The photometric values at one
point in the array of sensors corresponds to a pixel’s color and luminance[52].

One common way to describe the color of a pixel is via the measured red, green, and blue
spectral intensities at a corresponding small patch in the real scene. This color scheme is com-
monly referred to as RGB. The R, G, and B values that are stored are based on a bounded and
quantized partitioning of the spectral intensities. Often the scale for each of these color compo-
nents ranges from 0 to 255. The color gamut described by this color model is produced by adding
together all the different combinations of R, G, and B values. The luminance or brightness of a
pixel is usually computed as a weighted sum of its R,G, and B. The weights commonly used for
the R, G, and B values are respectively 0.3, 0.6 and 0.1. It is easy to visualize this color space as a
unit cube oriented so that it is sitting on one of its points (see Figure 3.7). The three edges from
that vertex correspond to the R, G, and B scales. The value at that point corresponds to black
where R=G=B=0. The diagonal axis from that point through the cube, with equal amounts of
each primary color, is the luminance axis. The other endpoint of this axis corresponds to white
[20].

There are many other color schemes which can be used to describe the photometric prop-
eriies of an image including hue, saturation, and brightness (HSB), cyan, magenta, yellow and
black (CMYK), Luminosity and color axes a & b (LAB), and a retinal cone coordinate system
(see [20] and [52] for full descriptions of these and other color models). Experimentally, we
found the RGB coordinate system to be sufficiently descriptive of a scene’s colors and well suited

as a basis for qualitative measurements.
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FIGURE 3.7. The RGB cube.

FIGURE 3.8. The luminance component of Figure 3.6 is shown here.

The luminance of each of the patches in Figure 3.6 is shown in Figure 3.8. The luminance
values of region A,B, and C respectively are 206, 90, and 69. We can denote the luminance of a

region in the form of A,
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The three pairwise luminance relationships between the regions are the following:

A]>Bl
B|> Cl
Al> Cl

We can describe these relationships in a language that is more perceptually meaningful
where “greater than” corresponds to “brighter than” and “less than” corresponds to “darker than”.

In this language, A is brighter than B, B is brighter than C, and A is brighter than C.

Red Channel Green Channel

Blue Channel

FIGURE 3.9. The red, green, and blue components of Figure 3.6 shown separately.

Figure 3.9 shows the red, green, and blue components of Figure 3.6 separately. Brighter
colors correspond to greater values in either R,G, or B. The (R, G, B) tristimulus color compo-
nents of A, B, and C in Figure 3.6 are respectively (254, 200, 100), (75, 80, 200), and (50, 80, 60).
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The color component of a patch is denoted in the following manner, e. g. for patch A as A, or Ay
or Ag. We can compute relative patch colors by separately computing the relative values in each

color band.

The 9 pairwise color relationships between the regions are the following

In the red channel:
A.>B,
B.>C,
A.>C,
In the green channel:

Ag > B,

B,=C,

Ag>Cy
In the blue channel:

Ay <By

By > G,

Ap > Gy

Cross channel relative relationships within a patch are a way of encoding that patch’s gen-
eral color. For instance patch B is perceptually blue. This is reflected in the cross channel rela-

tionships. B, > B, and By, > B. Cross channel relative relationships between different patches

may also be computed.
Relative intra-pixel cross-channel color measurements have been used in a system by
Fishler to classify each pixel of an image into a set of predefined categories [19]. This pixel clas-

sification algorithm is part of a larger body of work to develop natural scene interpretation algo-
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rithms for autonomous robots. With respect to its color, a pixel is classified to be one of “water/
rock”, “cloud/snow/sky”, “ground”, “live vegetation”, or “shadow-unknown” based on the abso-
lute and relative relationships of the red, green, and blue color components of that pixel. The
cross-channel color relationships are used effectively to quantize the color space into bins which
represent these categories. The pixel classification system is hard coded. For instance, a pixel is
categorized as ground if its red component is greater than its green component, its green compo-
nent is greater than its blue component, and the ratio of its blue component to the sum of its red,

green, and blue components is greater than 0.27.

3.4.3 Qualitative size relationships

Patches may have different sizes. For instance, in Figure 3.6, regions A and C are 32x32
pixels. Region B, on the other hand, is 45x45 pixels. We can, thus, encode that region B is greater
in overall size than regions A and C. Region size is an sasy way to emphasize the difference
between fine and gross details in a model without performing texture calculations. For instance,
in a snow capped mountain class, the white of the snow may consist of only a small portion in
each of the images in that class. This is in contrast to the blue of the sky and grey of the mountain

which may dominate most of the images.

3.4.4 Other qualitative relationships

There are many other relative region properties that can be used in the description of the
model. Examples include relative patch shape and texture. Figure 3.10 illustrates some these
properties. For instance region B is rounder than region A. Region C is more elongated than
region B. The texture in region C is more dense than the textures in regions A and B. The texture

in region A is more horizontally oriented than the texture in region B.
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FIGURE 3.11. Three synthetic field scenes
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FIGURE 3.12. A model which captures the commonalities between the synthetic field scenes in Figure 3.11.

Figure 3.11 shows three synthetic field scenes. A model which encompasses the similari-
ties of scenes is shown in Figure 3.12. All of the scenes contain at least one pair of regions where
a first region (A) is more blue, less green, and above a second region (B). In addition, to the rela-
tive relationships between the patches, there are some intrapatch reiationships associated with A
and B. The first region’s blue component should be greater than both of its red and green compo-
nents. The second region’s green component should be greater than both of its red and blue com-
ponents. This qualitative model captures the concept of a relatively blue “‘sky” over a relatively
green “field”, irrespective of the extents and absolute colors of the sky and field.

3.6 The role of quantitative information

Throughout this chapter, we have discussed the nature of qualitative models for scene
classification. One important question is whether there is scope for any quantitative information
in the scene models. Quantitative information may indeed be important in defining a particular
scene class. Therefore, our qualitative models should have the ability to also encompass some
quantitative information. For instance, it may be important to a scene class that there be a yellow
stream of light in the exact middle of the image, that the sky region be a particular color of
vibrant blue, or that the brightness difference between iwo regions be greater than some amount.

We may want to incorporate information that is not expressible in terms of the attributes defined
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in this chapter. For instance, we may want to incc oorate in the model that there should be a sign
in the image with the word “restaurant” on it. In most cases, the quantitative information acts to

restrict the size of the class described by the model.

3.7 Qualitative model as a directed graph

The qualitative model shown in Figure 3.12 lcoks very similar to a directed graph. In fact,
we can think of both the model and the portioned image as graph structures. The patches repre-
sent the nodes in the graph while the pairwise relative relationships between the patches represent
the edges in the graph. The pairwise relative relationships are explicit in the model and implicit in
the image. The act of checking whether the image satisfies the constraints of the model, or classi-
fying the image, is similar to trying to find a subgraph in the partitioned image that matches the
model.

A directed graph G is defined as a collection of vertices V and a set of directed edges E,
which connect those vertices. The direction of the edges specifies how one can traverse the graph,

i.e. to go from vertex v; to vertex v;.

The qualitative model and the image can be represented with a different directed graphs,
where a is the number of attributes used to describe the model and the image. For instance in
Figure 3.12, the attributes used to describe the class model are vertical spatial position and the
R,G, and B color components. The direction of the edges in each graph denotes the relative rela-
tionship between the image regions or graph vertices. Let us define that there is a directed edge in

the direction from v; to v;, if with respect to attribute a, v; < v;. If, with respect to attribute a, v; =
vj, then there is an undirected edge from v; to v;. If in the model graph there is no relation between
v; and v;, then no edge is encoded between the two. This last condition is meaningful only for the

model graph, as there may not be a relevant or consistent relationship between two model regions

over one or more attributes.
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Figure 3.13 and Figure 3.14 show respectively the model from Figure 3.12 and onc of the
images from Figure 3.11 expressed as four directed graphs (ignoring luminance and size). These
graphs represent the interpatch relationships (the intrapatch relationships are not considered

here). Note that in the model, there are no encoded relationships between the red components of

the regions

Spatial Red Green Blue

® ® @
(® ‘® ‘®

FIGURE 3.13. The model in Figure 3.12 can be represented as fovr different graph structures, one for vertical
spatial arrangement and one for each of three color channels. These graphs encode the relative relationships
between the patches
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FIGURE 3.14. The graph representation of one of the images from Figure 3.11 is shown here. The pairwise
relationships between all the image patches have been computed and the values are represented as the
direction of the edges.

Using graph terminology, matching the model to the image is equivalent to computing

whether the image graph contains a subgraph which is isomorphic to the model graph. Let I, and
M, correspond to the image and model graphs for an attribute a. The formal definition of the

graph isomorphism problem is as follows:
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Given two graphs [,=(V1, E1) and M,=(V2, E2), does I, contain a subset V. € V1 and a
subset EC E1 such that |V|= |V2|, |E|= |E2|, and there exists a one-to-one function

f:V2 — V satisfying {4 v} € E2 ifand only if { f(u), f(v)} € E7[20] We define that for a
graph M, that if E2 ={}, as in the case of the red component graph in Figure 3.13, then all sub-

graphs of I, where |V|= |V2| are isomorphic to M,,

In the framework of our qualitative model, there are two conditions for M to match a sub-
graphinI:

1) There exists a vertex set V € V1 such that for all a, there must exist an image sub-
graph (V, E) inl, that is isomorphic to graph M.

2) The intrapatch relationships of the vertices in M and corresponding subsct of image

vertices V must be the same.

For the model graphs in Figure 3.13 and the image graphs in Figure 3.14, the vertices of
the subgraphs in the image that the match model graph are {C,D}, {C,E}. and {C,F}. The corre-
spondence between the vertices in the model and the vertices in the image is that A matches C,
and B matches D,E, or F.

The example shows that there may exist more than one subgraph in the image that
matches the model. This gives us some important information regarding the grouping of regions.
For instance if the vertex pairs {C,D}, {C,E}, and {C,F} match {A,B}, then we might group C
into one region and D,E, and F into another region. Thus, the end result of the matching process
may result in a perceptually consistent segmentation of the image. This segmentation may be
used to recognize or label different regions of the image. A segmentation of two or more images
would allow us to compute a registration between those images.

The example we have just described shows that there exists at least onc perfect match
between the model and the image. However, in the real applications, the model may not always
exactly match part of the image. In such cases, we would want to find the best common subgraph
in both the model and the image. The definition of “best” however is variable and may change

according to the application. In some cases, the best subgraphs are the ones which contain the
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maximum number of image and model regions, where at least one of the relations over all the
attributes are consistent. In other cases, it would be desirable to find the largest number of image
and model regions, where all the relations over all the attributes are consistent. Some of the rela-
tions (or edges) may be more important than others in the model. We can represent this by putting
weights on the model edges. Therefore, another definition of the best matching subgraph is the
one which contains the edges with the highest total score. Figure 3.15 shows an example image
which does not contain any subgraphs that match the model. Such an image may definitely be

labeled as not part of the class described by the model.

Spatial Red Green Blue

HOBE

FIGURE 3.15. Example of an image which does not match the model in Figure 3.12, and therefore would not be
classified as part of the synthetic field class.
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3.7.1 Complexity of graph matching

The problem of computing subgraph isomorphism or the largest common subgraph is NP
Complete (see [20] for a more detailed explanation). This means that to find a match between the
model and the image, we would have to consider all possible one to one mappings of modecl

regions to image regions. If the model contains m regions and the image contains i regions, where
m < i, the number of possible one to one mappings is (m)m! , which according to Stirling’s

approximation is exponential{16]. For instance, if there are 8 model regions and 64 image

(64)!

regions, then the number of pairings is -———=— = 1.7e+!4, which is approximately 64%.

(64 - 8)!

However, the model’s qualitative relationships may provide some constraints which
reduce the number of pairings. For example, not all model and image region pairings satisfy the
relative spatial constraints encoded in the model. Let us assume because of the spatial censtraints
that each model patch can only match a bounded number of image regions. Let the number of

image regions that can match each model patch equal k<'i. Using these constraints the number

of matching image and model regions is k”. Although this is still exponential, it is much less
than (’;)m! for small values of k. Such a scenario is depicted in Figure 3.16, where each of 8

model regions can only match to a set of 4 independent image regions. The number of possible

pairings is 48 = 65536, which is a reduction from the previous number of model and image pairs

on the order of 2.7e+9 times.
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FIGURE 3.16. Because of constraints from the model, the model regions may only validly match a subset of the
of image regions. This figure shows a 64 pixel image where each model region, shown as circles, may only
match within a local neighborhood 4 out of the 64 image regions.

The values of 8 model regions and 64 image regions used in the previous calculations are
not a drastic underestimate. We wili show in the next chapter that only a few model regions can
classify a large set of natural images. In addition, we will show that the match need only be per-
formed on low resolution images which contain between 64 (8x8) and 1024 (32x32) image
regions.

Verifying whether there is a match between the model and a sub-graph of the image is lin-

ear in the number of edges in the model and the number of attributes.

3.7.2 Probability of false positives

One potential argument against using qualitative models is that by discarding difference in
magnitudes between regions, the model may be too general, therefore, resulting in many false
positives. In this subsection, we analyze the probability of an image containing a false positive.

Let a model M contain a graphs, one for each attribute, where each graph contains the
same v nodes and a different set and number of directed edges. For simplicity, let us assume that

the number of edges e in each graph is the same. An edge has three possible values, two directed
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and one undirected (corresponding to the three types of ordinal relationships between two model

regions). Thus, the number of model possible configurations is 3. If the image graphs have the
same topology as the model graphs, a first order approximation of the probability of randomly

generating a specific model configuration from a uniform independent set a of attributes is (1/

3)%4.

(a) (b) (©)

FIGURE 3.17. All cycles expect for the one shown in (c) represent physically invalid graphs. (a) shows a invalid
cycle with directional edges. (b) shows a non-valid cycle with 3 directional edges and one non-directional edge.
(c) shows a valid cycle which consists of only non-directional edges.

This first order approximation, however, is an lower bound on the probability of a false
match. Some graphs are physically impossible. For instance, there cannot be any cycles in the
graphs. Figure 3.17(a) depicts a cycle. If the edges represent luminance relationships, this sug-
gests that node A is brighter than node B, which is brighter than node C, which in turn is brighter
than node A. The resulting conclusion is that node A is brighter than itself, which is not possible.
A cycle may contain a combination of uni-directional and non-directional edges. Figure 3.17(b)
shows an invalid cy:le which contains 1 non-directional edge which still suggests that A is
brighter than itself. The only cycle that is valid is one that is made of all non-directional edges as

shown in Figure 3.17(c) (This validly suggests that A is as bright as itself.) If there are ¢ edges in
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a cycle, then there are 2(2€ -1) possible cycles with that number of edges. For a model which con-
tains a graphs of e edges, if a cycle occurs in any one of the graphs the model is not physically

realizable. Thus, the number of impossible configurations due to cycles are

3 22 -1y -1

j=1

Therefore, the number of possible models without cycles is

3. Y (22 - 1) -1
j=1

There are some other invalid configurations. For instance, the attributes are not always
independent of each other. For instance, luminance is a function of color. Therefore, there cannot
exist a luminance relationship where A is brighter than B if the weighted average of the color
components of B is greater the weighted average of the color components of A.

However, if the attributes are independent, for an image with the same topology of the

model, the probability that the image matches the model is
e
ea j a
1/(3%-() (227-1)) -1))
j=1

In general the image will contain more vertices and edges than the model. The image

implicitly describes a fully connected graphs of v/ nodes and e/ edges. If the model contains v

nodes, the number of mappings of model nodes to image nodes is (vvl )v! . We can describe this

in terms of edges. Because the image graph is a complete graph vl = Jel. A model with v
nodes can contain at most e edges. An upper bound on the probability that a model configuration

exists in a randomly created larger image is:
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(M) (S -1y -m

j=1

which is equivalent to:

((We)/(Jel - e/ (3~ ¥ (2(2) - 1) - 1)

j=1

For 6 attributes, 8 model edges, and 64 image edges, an upper bound of the probability of
the model matching an image subgraph from a randomly generated image is approximately 2.2¢-
9. Table 1 shows this probability calculated for different combinations of model and image edges.
The probability of a false positive is 1 when there are 2 model edges and 100 image edges. In

general, the probability of a false positive under these conditions is quite low.

TABLE 1. Probability of a false positive over e model edges (columns) and el image edges (rows)

N

e 1 2 3 4
0.001372 0.000000 0.000000 0.000000
0.001372 0.000002 0.000000 0.000000
0.001372 0.000006 0.000000 0.000000
0.001372 0.000023 0.000000 0.000000

1
4
9
16
25 0.001372 0.000113 0.000000 0.000000
36
49
64

0.001372 0.000677 0.000000 0.000000
0.001372 0.004742 0.000000 0.000000
0.001372 0.037935 0.000000 0.000000
81 0.001372 0.341411 0.000000 0.000000
100 0.001372 3414114 0.000001 0.000000

3.8 Qualitative model as a deformable template

There is an alternative way of considering the qualitative model and the matching process
between the model and the image. We can think of the model as initially having a fixed spatial

arrangement. This fixed spatial arrangement may represent the most likely or average position of
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the model regions in images classified by the model. (There is some evidence that humans use
averages of examples to create class models [68].) When the model is compared to the image, the
model can be deformed by moving the patches around so that the model best matches the image
in terms of relative luminance and photometric attributes without violating the encoded relative
spatial arrangements. The model in this sense is acting as a deformable template. The image
regions themselves may grow or shrink in order to better fit to the image. The resulting position
and size of the modei regions provides some informatior on how the image may be segrnented
into perceptually meaningful regions and how regions between two different images may be reg-

istered.

(a) (b)

FIGURE 3.18. Example of how a qualitative model can be formulated as a deformable template. The arrows in
(a) denote the relative relationships between the image patches. In figure (b) springs replace the arrows to
illustrate that the model can be deformed to match the image. The deformation is limited by the relative spatial
relationships and any quantitative information regarding the positioning of the patches. A measure of
goodness of fit is a combination how well the other relative relationships such as color and luminance are
satisfied and how little the model needed to be deformed to detect that match.

Figure 3.18(a) shows a model which contains three salient image regions. The lines
between the image regions denote the relative region relationships, including relative luminance
and color. We can replace the lines with springs to show that the model can be deformed by mov-
ing the patches around, as shown in Figure 3.18(b). A match between the model and a subset of
the image can be defined by how well the deformed model matches the image subset and how lit-

tle deformation was required to find that match.
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Deformable models have bezen used for other computer vision tasks such as object recog-
nition and image segmentation. However, the formulation for these models are mostly as deform-
able contours or snakes which try to maximize their fit to the boundary of an object or a region
[35]. Yuille et al utilized deformable outlines of mouths and eyes to recognize to extract these fea-
tures from images [71]. Kapur et al used snakes as part of a solution to cleanly segment brain tis-
sue from MRI scans [34]. The idea of a deformable model that utilizes image regions and relative

relationships between those regions differs greatly from the previous work.

(b)

FIGURE 3.19. Detecting both a distal and close-up view of a beach by deforming the qualitative model.

Figure 3.19(a) and (b) shows how our formulation of a deformable qualitative model may
be used to classify both a distal view and close up of the beach scene. The deformed model is

overlaid on the images and is also shown beside the images. In both cases, the relative spatial,
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color, and luminance relationships of the selected image regions satisfy the constraints of the
qualitative model. The amount of deformation from the original model (shown in Figure 3.18(b))

reflects the change in the viewing position of the observer.

3.9 Summary

In this chapter, we have described many aspects of qualitative models. The main points we
wish to highlight are:

» Models which encode qualitative relationships between image regions may be effec-
tively used to describe scene content.

» We can encode many types of qualitative comparisons in a model, such as relative spatial
position, luminance, color, and size.

e Some quantitative information can be included in a model.

« Information in the model can be weighted according to its importance.

« Finding all instances of the model in the image provides information for how the image
may be segmented in perceptually meaningful regions.

* Detection of the mode! in two or more images provides information for image to image
registration.

» Computing whether a match exists between a model and an image is computationally
tractable.

» The probability of a false positive in a randomly generated image whose attributes have
uniform distributions is low.

« Qualitative models can be thought of as a novel type of deformable template.

In the next chapter, we describe a system for using qualitative models for scene classifica-

tion
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INGciR] Natural Scene Classification

4.1 Introduction to the problem

In this chapter and the next, we describe a system which is an implementation of the ideas

described in the previous chapters for the specific task of natural scene classification. The work is
motivated in part by the steadily increasing need for image indexing systems which could anno-
tate and retrieve images based on their content.

The system is intended to be capable of discriminating between different classes of natu-
ral scenes. The goal of the system is to develop models which can concisely represent scene
classes and can be used to retrieve other members of the classes from the image database. The
user may then post queries to the system in the form “find all coastal images”, where a coastal
model has been predefined, or given a set of example images, return other pictures that belong to
the class described by the examples. Users may also refine the models based on the results of the
queries. In this chapter, we discuss the nature of the class models and present some examples of
their generalization and discrimination ability. In the next chapter, we suggest strategies for auto-
matically generating such models from a set of examples.

Although the system can ‘tolerate’ man-made objects in natura! scenes, its current imple-
mentation, as specified in this chapter and the next, has not been specifically designed to classify
other types of stimuli such as artificial objects, man-made scenes, indoor views, or images
defined by texture patterns. In chapter 7, we suggest how some of the techniques employed to

classify natural images may be used to classify or recognize individual objects.
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FIGURE 4.1. Examples of natural images.
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4.2 Prior work on scene classification

Most of the approaches for scene analysis developed so far, classify or identify scenes
based on a collection of statistical or local properties, including color, texture, and some shape
information. The goal of a majority of color and texture based techniques, and a few shape based
algorithms, is to perform scene classification based on non-semantic image attributes. The gen-
eral philosophy underlying examples «f this type of approach is that a combination of these
image statistics produces a good measure of image similarity and, therefore, indircctly captures
the image’s semantic meaning. In contrast, the goal of other shape analysis techniques and a few
color/texture segmentation algorithms is to delireate the image into meaningful objects or parts
of objects, such as cups, buildings, sky regions, and trees. The reasoning behind this type of
approach is that the classification of a scene can be derived from the semantic classification of its
parts.

The majority of the scene analysis work is directed toward the applied problem of image
database irdexing. Queries to such an indexing system include a real picture, a user annotated
image, or a user sketched image. These systems attempt to retrieve the images in the database
that are most similar to the input image. Most of these systeras are optimized for efficient image
retrieval from a database by representing both the query image and the images in the database as
feature vectors. Image retrieval is, therefore, reduced to comparing vectors. In this sectien, we
describe a few distinct approaches to scene classification or image database indexing. We have
classified the approaches as using either a combination of cues, using the cues in isolation, such
as texture, shape, and color, and also matching of templates.

QBIC (Query By Image Content), developed at IBM, was one of the first such commer-
cial database indexing systems to use the image itself as a query instead of a text string [4]. This
system, which has evolved considerzbly over the past several years, uses a combination of many
“low-level” cues to describe an image and is highly optimized in terms of speed of retricving
images from a database based on a visual query. The system uses color measureraents in the form
of a three element vector and a color histogram. Image texture is described in terms of coarse-
ness, contrast, and directionalit . Some shape features such as moments and parametric curves
are also used. Properties of the images in the databace are precomputed and stored as a vector. A

query involves comparing features of the new image with features of the stored images using a
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vector match metric with relative weights for each of the properiies. The strong points of the
system are its use of simple cues and efficient indexing. The system is very good at retricving
images with similar color, textural, and shape distributions. The difficuity, however, is that these
measures alone or in combination do not capture the meaning of the scene (see Figure 2.13).

There are several other systems that use the combination of cues approach. These include
VisualSEEk [58]{59], CANDID [36], JACOB[38], a commercial system from VIRAGE (sce
http://virage.com for more details). Some of these systems, including QBIC, have been extended
to index into video databases using direction of motion and dramatic scene changes as dynamic
cues.

In contrast to the combination of cues technique, Jacobs er al. use a multi-resolution
wavelet approach to describing scene content [31]. Images are encoded as “signatures” of the
highest m coefficients of the wavelet decomposition. This particular implementation uses the
Haar basis set. Image similarity is based on the number of matching wavelet coefficients between
an input image and a target image. This strategy is computationally attractive. The image “signa-
tures” are small, therefore, the storage requirements, processing times, and matching times are
low. The difficulty of this approach is that it is very sensitive to rotation, translation, non-uniform
occlusion, and clutter in the input image [40]. The system seems most adapted for finding a par-
ticular image in a database which the user is able to roughly sketch.

A number of different systems use multiresolution wavelet or filter based approaches to
indexing. Most of these systems use the outputs of the filters to derive shape from local arcas of
the image rather than a global image signature. Examples of such sy:tems include [54] which
takes in user delineated regions of interest from an image and processes these regions with deriv-
atives of Gaussians at several different scales. The goal is to retrieve images with similar objects
in roughly the same pose as the query image by matching the filtered patches in the query image
to filtered patches in target images.

Picard and Minka use a combination of different texture models to describe the contents
of images based on user lateled example image patches [50]. The system uses the texture mode!
(or a combination of models) that best explains similarly labeled example patches. The system
automatically propagates these labels on unclassified image patches. Scenes are then classified

based on these annotations. Queries of the form “Give me all images with trees and grass”, where
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trees and grass are defined as textural patterns, are also supported. This system suffers from two
problems. The first is a class of natural objects such as trees will have varying textures and colors,
for instance an oak tree in the fall vs. an evergreen tree. Secondly, there is no inherent concept of
a scene class. The user must specify which objects belong to a class such as “city scenes™.

There is a large body of work using shape cues to index images, used mostly to delincate
objects in images or given an image of an object to retrieve pictures of similar objects. Photobook
is an image database indexing system developed at the MIT Media Lab that can classify several
different categories of images [48]. The overall goal of the system is to reduce the images to a
small set of perceptually-significant coefficients. One of the classification modes uses the texture
work of Picard and Minka. Another of the classification modes computes parameterized 2-D
shapes of objects via eigenvectors. The eigenvectors encode how a 2-D shape has been deformed
with respect to a base shape. Two shapes may be compared by looking at the amplitudes of their
eigenvectors. The more similar the amplitudes, the more similar the shapes. The difficulty of this
system is that there must be a sufficient number of training examples to build the parameterized
model. In addition, objects in an image must have well defined unoccluded edges. Finally, the
technique requires that 2-D query shape must be aligned or brought into correct correspondence
with the base shape, which is a difficult problem in its own right.

A number of other systems use shape based cues to compare the similarity of two images.
For instance, Gallant and Johnston extract oriented edges and compute angles between pairwise
sets of edges [21]. Ang et al compute object shape attributes as region compactness, boundary
eccentricity, region moment, and regicn convexity [3].

There are severa!l proposals for using color histograms as cither image or object signatures
[61][62](64]. This body of work focuses mainly on how histograms may be matched. For
instance, they may be matched by using a sum of squares difference, comparing the dominant
features, and by incremental intersection. The difficulty with these approaches is that the spatial
relationships between subparts in an image or subparts in an object are not preserved.

In contrast, Equitz [18] uses a low resolution template approach to classifying images
which uses the absolute positions of the image elements. Equitz partitions the query image into
rectangles, usually by divisicn of the width and height of the image into 8 sections cach, and

computes the average color of each rectangle. The resulting grid of colors is then matched to pro-
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cessed images in the database. Color similarity is computed as a nonlinear function of distance in
LAB color space. Rectangles from the query image may seek out the best match in a limited
neighborhood of the target image. Image similarity is, thus, the sum of the color similarities for
each rectangle. As shown in Figure 2.12, however, the images retrieved by this type of approach
are very similar to the input image in terms of spatial layout and color.

In the next section, we describe our approach entitled “configural recognition™ that uses
novel qualitative metrics of photometric and spatial similarities to classify natural scenes. This

approach overcomes several of the problems faced by image classification systems reviewed here.

4.3 The “Configural Recognition” approach and its benefits

As mentioned in chapter 1, the goal of this thesis is to develop a computational strategy
for scene classification. This entails two related questions: 1) How should scene concepts be rep-
resented? and 2) What is an appropriate metric of similarity between scenes? We describe here a
novel technique, entitled “configural recognition”, that uses global organization with relative rela-
tionships over low-frequency photometric image regions to represent scenes. This representation
also suggests computationally simple strategies for assessing similarity between different scene
instances.

As described in chapters 2 and 3, a global organization of relative scene measures seems
to encode much of an images’s semantic or category information. By using this type of approach,
we are able capture more salient descriptions of a class rather than merely its overall color, tex-
tural, and shape properties or descriptions based on local disconnected image features. In addi-
tion, the combination of the use of low frequency images and qualitative relationships between
image patches solves some complexity problems inherent in scene classification.

In the introductory chapter, we suggested that the difficulty of scene classification can he
broken down into three basic areas. We briefly recapitulate them here as a prelude to suggesting
how the configural recognition approach ameliorates each of them.

e The first is the complexity of the problem. Images contain a wealth of information,
where each pixel may be considered as an important piece contributing to the scene’s classifica-

tion. In addition, there exist a large variety of algorithms which produce different descriptions of
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images, such as texture measurements, statistical descriptions, geometry fcatures, shading and
reflectance information, and color information, depending on the technique. A combination of the
amount of information and the great variety of ways to describe an image, leads to almost infinite
possibilities for processing a potentially large amount of data.

* The second problem is evident from the description of the first difficulty. Given that we
have all of these computational methods to describe an image, which if any, can capture the con-
tent or essence of a scene or scene class. The demands on the choice of representation are espe-
cially high with natural scene classification, because scenes which may be perceptually grouped
into one class can differ greatly in their geometry, illumination, absolute colors, textures, and
even content (for instance not all water scenes contain breaking waves). Scenes may also be
viewed under different weather conditions, which can produce great image variabilities in scenes
that belong to the same class. It is desirable to have a vocabulary of scene descriptors which is
rich enough to describe may different types of classes, but is also easy to compute and represent.

« The third problem is one that is inherent in all computer recognition/classification prob-
lems. Given a model and an image, how may they be efficiently compared to determine if the
image is an instance of the model. In the worst case, every pixel in the image may be compared to
every basic element in the model.

In the next several sub-sections, we will detail the basics of the configural recognition
approach to scene classification and also suggest how such an approach can be used to cffectively

classify scenes while solving many of the problems listed above.

4.3.1 The use of low frequency/low resolution information

Surprisingly, humans need little detailed information to recognize many objects and
scenes. Figure 4.2 contains 12 reduced images ranging in source from man-made objects, natural
scenes, animals, and human faces. From these thumbnail low resolution images, we can make
coarse interpretations such as ‘flower scene’ to fine identifications of familiar faces such as *Indi-
ana Jones with a smirk’. Figure 4.3 illustrates that the only information retained in these small
images is an arrangement of low frequency photometric regions. Informal observations of this
sort suggest that we can conceivably base our classification algorithm on an image’s low fre-

quency information.
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FIGURE 4.2. Much of the work in recognition has been done using high-resolution images. However, several
psychophysical studies have shown that low resolution images are sufficient for several recognition tasks. The
images shown here are identifiable even though they contain only low-frequency information. For instance, the

images in the top row are only 30x30 pixels each.

FIGURE 4.3. This figure demonstrates that the only information retained in the low frequency subsampled
images is the arrangement of color regions. The low resolution lion image has been enlarged and the color
removed. The patches marked in red on the large greyscale image are shown side by side below the image for
comparison. No discernible local texture regions or other local features are evident in this image.
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Figure 4.2 and Figure 4.3 have suggested that the lack of highly detailed information does
not hamper the recognition of a large subset of scenes and objects. Figure 4.4 is a complimentary
illustration which shows that the general organization of the scene or object may be perceptually
evident even in the face of conflicting texture information or high resolution information.
Figure 4.4 shows an outline of a fish. The fish is on a highly textured newspaper background. The
interior texture of the fish consists of people and paraphernalia, such as umbrellas, in a beach set-
ting. The image is easily classified as a fish even though its exterior and interior texture are possi-
bly confusing. The fish is identifiable in full resolution, when the conflicting texture information
can be resolved, and also in its low resolution version (shown in Figure 4.5). This demonstration
suggests that high resolution texture information may, even when available, not participate in

strongly in the recognition process.

FIGURE 4.4. A picture of a fish with a highly textured background and interior. The fish is identifiable even
though the texture in the background (newspaper) and the texture in the interior (people at a beach) are
possibly confusing.
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FIGURE 4.5. In this low resolution version of the previous figure, the fish is identifiable even though the original
interior and exterior textures cannot be resolved.

There are several benefits of using low-frequency/low resolution images. 1'he first is that
the dimensionality of the problem is greatly reduced. The size of the images in Figure 4.2 are
roughly thirty times smaller than their original counterparts. The dimensionality of the problem
is thus lowered by almost an order of magnitude. Using the low-frequency image content also
confers immunity to high-frequency sensor noise and leads to a shift in focus from potentially
confusing detail to the use of relationships between image regions. Thus, the use of low fre-
quency information is compatible with the idea that relative relationships between photometric

image regions captures the perceptually salient content of a scene.

4.3.2 The use of qualitative relationships between image regions.

The configural recognition approach uses relative relationships between photometric
regions from the low-frequency images as image and model primitives. There are several benefits
of using low-frequency image regions and their relative relations as image and model primitives.

The first benefit is that no complex abstractions are performed on the low frequency pic-
tures to partition the image into regions. The current implementation of the system subdivides an
image into equally sized regions. The advantages of this type of approach are that complex time
consuming image operations are not required. In addition, the possibility of incorrect region seg-
mentations or identifications are eliminated.

The second benefit is that the use of relative relationships over these low frequency
patches allows the system to describe class similarities even though the exemplars may differ in
appearance due to various lighting conditions, viewing positions, and other scene parameters.
Thus, while absolute color, luminance, and spatial position of the image regions, especially in the

high frequency bands, cannot be used as reliable indicators of a scene’s identity, their overall rel-
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ative luminance, color and spatial positions can be expected to remain largely constant over these
various conditions. In the base version of the system, three kinds of inter-region relationships are
used in the scene model description. These are relative color, relative luminance, and relative spa-
tial position of the regions. Figure 4.6 shows a synthetic example of a beach scene concept con-
structed of three image regions and their relative relationships. Figure 4.6(c)-(f) illustratc how
these types of relative relationships remain valid over different but very commonplace image dis-
tortions. The beach concept includes a first patch which is bluer and above the other two, a sec-
ond patch which is greener and below the first and above the third, and a third patch which is
browner and below the first two. These relationships remain valid even thcugh the beach images
may undergo changes in scale, illumination, viewing parameters, and geometry.

Descriptions of scene classes using qualitative relationships based on low frequency infor-
mation provide a rich vocabulary to differentiate between many classes of images. For example,
consider a concept based on six attributes; relative color in terms of R, G, and B chromatic com-
ponents, relative luminance, and relative spatial position in x-y plane. Each attribute may have

one of three values; less than, greater than, or equal to. Assuming the relationships are indepen-

dent, there are 36 possible relative relationships (see section 3.7.2 for a discussion of when the
attributes are not independent). In a model of m image regions, there are (2) possible pairwise

m

relationships between those regions. Thus, there are (36) possible scene concepts which
can be described by those m patches. Therefore, for a model of eight patches there are over
i.4e+80 possible concepts. An important point, which has already been addressed in chapter 3, is
that not all relationships between all model regions are necessary to define a concept of a scene
class. In both hand-crafted concepts and autcmatically learned concepts, only the salient or dis-
criminatory relationships need to be encoded. Thus, although multiple patches provide a rich
description, we will show that only a few patches are necessary to classify images within one per-

ceptual group and to discriminate others not in that group.
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(©) (d)

FIGURE 4.6. (a) Example beach images. (b) Qualitative beach concept consisting of relative spatial and
photometric relationships between three image regions (capturing the relationships between the sky, water, and
sand). For instance the model includes a region that is more blue than two other regions below it. The model
remains valid over many scene variations, including (c) scale changes, (d) illumination variations (the colors
have changed but the relationships remain the same), (e) differing viewing parameters (distal vs. close up
view), and (f) geometry changes (in this case a different coast line).
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4.3.3 Using model information to detect the concept in novel images.

A central theme of the configural recognition approach is that a scene should be character-
ized as a whole of parts, rather than as a collection of parts which comprise a whole. The model,
which encodes the global organization of the parts, can be used to roughly guide the technique as
to where to look for or where to expect each piece of the scene concept in the image. The tech-
nique, therefore, only considers image features that are consistent with the general framework of
the model. The model driven approach greatly reduces the number of image features that need to
detected and evaluated. Model-guided approaches have been used successfully in other applica-
tions to reduce the complexity of computation and to increase the robustness of model-based rec-
ognition and classification [32]{42]. There is also psychophysical evidence that when humans are
given information regarding what type of stimuli they will be presented with, their time for recog-
nition or classification is more rapid than when they must interpret the visual stimuli without such

a priori information [37].

4.4 Model descriptions

4.4.1 Qualitative information

In the current implementation of the system, there are seven types of qualitative relation-
ships that are used to encode relationships between regions in the model. Each of these relation-
ships can have the following values: less than, greater than, or equal to. The relative color
between image regions is described in terms of their red, green and blue components. We may
compute the relative relationships between each of the bands independently or include cross-band
relationships, such as red to green comparisons between model patches. We can also encode rela-
tive luminance relationships. (Other relative chromatic relationships, such as relative hue and sat-
uration, can be easily incorporated into the system.) The spatial relationships used are relative
horizontal and vertical descriptions with respect to the upper left corner of the image and the car-

dinal axes. We also encode relative size. The size of a patch is described by how many square
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image regions it covers relative to the scale of the image. Three types of intra patch relative chro-
matic relationships can also be used in the model description. Thus, for one patch we can com-
pute the relationship between its values for R and G, G and B, and B and R.

Let a model m consist of two regions A and B. Regions A and B can be described in terms
of the x and y values of their centers. They can also be described in terms of their R, G, and B
chromatic values. For each patch we can compute the luminance from the tri-stimulus color com-

ponents. A and B can also be described in terms of their size. The possible comparisons between
pairs of attributes are:

Relative Spatial Positions:
(Ay By (A, By)
Single Channel Color relationships:
(Ap By) (Ag, By) (Ap, By)
Cross Channel Color relationships:
(Ap Bg) (Ap By)
(Ag, B,) (Ag, By)
(Aps Bp) (Ap, By)
Relative luminance:
(A}, Bp)
Relative Size:
(As, Bg)

Intrapatch color relationships:

(Ap Ag) (Ag, Ab) (Ab9 Ar)
(Bp Bg) (Bg9 Bb) (Bb9 Br)

Together, these qualitative relationships provide a language to describe class models.

81



4.4.2 Quantitative information

We employed several types of quantitative information in our class models to refine the
concept and reduce the possibility of false positives. The quantitative information used includes
bounds on the difference between two measurements, bounds on the relative magnitude of two
measurements, bounds on the absolute values of those measurements, and bounds on the sizes of
the model patches with respect to the scale of the image. An example of this type of information
is, for instance, that the red component of patch A should be greater than the red component of
patch B by a difference of at least 10 units. The model can incorporate information, such as, the
blue component of patch A should be 1.2 times greater than the blue component of patch B. We
may specify that the luminance of patch A should be greater than a specific value such as 60 or
that the y component of the center of patch A should exceed 2. In addition, we can specify that at
a particular image scale, patch A should encompass two image regions. These constraints can be
written more concisely as:

Ar-B,>10 Ap>12*By, A;>60 A>2 A =2

Quantitative information can be used to limit the acceptable values of the relative relation-
ships. Often, this is necessary to discriminate between changes in values which reflect a true dif-
ference between two distinct image regions versus insignificant changes which most likely come
from within one or similar image regions. Cases where values change by one unit from one
region to the next are probably not too significant, while changes of greater values or greater
magnitudes are important to recognize. The limit as to what constitutes a “valid” change may be
set as a parameter. This limit may differ depending on the type of relative attribute measured.

Quantitative information may also be used to encode a color, luminance, or spatial posi-
tion for some of the model patches. For instance, it may be important for night scenes that many

patches have the color black measured as r=0, g=0, and b=0.

4.5 Multiple templates and hierarchical scene concepts

We recognize that one template may not fully describe a scene class. Several templates
may be needed to account for varied scene complexity of dramatically different viewing condi-

tions within one class of natural images. Figure 4.7 shows three scenes which show a single tree
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or a pair of trees under different weather and lighting conditions. The color relationships between
the tree, ground, and sky patches is quite different in each of the images. For instance, in the first
picture the sky is more blue and less green than the trees. In the second picture, the sky is more
white than the trees. In the third picture, the sky is more orange and lighter than the tree. To cap-
ture the concept of scenes with a few trees, it may be necessary to encode several templates such

99 &

as those that describe “trees in summer”, “trees in winter”, and “trees at sunset”.

FIGURE 4.7. Separate templates may be needed to describe a broad class of natural images. For instance, this
figure shows three tree pictures under different conditions.; in summer, in winter, and at sunset. To describe the
class of tree scenes, it may be necessary io encode templates for each of these variations.

In addition, we may need to encode multiple templates which describe different levels of
details of a class or different aspects of the class. Figure 4.8 shows three mountain scenes. One
template which captures the common relationships between the sky, snow, and mountain regions
may be used to categorize all these scenes as part of the “snowy mountain” class. However, more
detailed templates may be needcd to discriminate between these three scenes or to describe sub-
classes of the more general mountain class. For instance, the middle picture contains a snowy
mountain with a lake. The picture on the right contains a snowy mountain with a lake and two
sets of trees. Thus, we can create more specific templates which encode the relationships between

the sky, snow, mountain and lake regions or a template which expresses the relationships between

the sky, sncw, mountain, lake, and tree regions.

83



FIGURE 4.8. More specific templates can be generated to describe variatinns on a more general concept. Three
snowy mountain images are shown. The middle image may be described as a snowy mountain with a lake. The
right most image may be described as a snowy mountain witl a lake and trees.

The templates may be organized into a hierarchical or intertwined data structure that
expresses the relationships between them. Figure 4.9 shows such a data structure based on the
templates used to describe the images in Figure 4.7 and Figure 4.8. The templates are shown as
boxes. Abstract labels, such as trees or lakes, are denoted as upper case text. Organizing templates
and labels in this manner allows for a more comprehensive annotation system. For instance, if an
image satisfies the “snowy mountain with lake and trees” template, it automatically inherits the
labels of mountain, lake, and tree scenes. The data structure may also suggest a more efficient
strategy to classify novel images. For instance, in a coarse to fine strategy more general templates
may be applied before more specific ones. Based on the respouses of the general templates, the
system cap be directed to try a sukset of the more specific templates. Using the same example, if
the image is a “snowy mountain with lakes and trees”, it will satisfy the broad snowy mountain
template. The template hierarchy implies that the more specific mountain templates should be

applied, while other tempiates under the trees and lakes categories may be ignored.
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MOUNTAINS LAKES

“snowy mountains”

“snowy mountains
with lakes”

“snowy mountains
with lakes
and trees”

“trees at sunset”] |“trees in summer”’|| “trees in winter”

FIGURE 4.9. Hierarchical encoding of templates and labels. The templates are denoted by the boxes. The
abstrac: labels are shown as upper case text.

4.6 The model to image matching process

The current implementation of the model to image matching process is very straightfor-
ward. All spatially valid configurations of model regions are evaluated. If the model is thought of
as a flexible template, the matching process essentially stretches and compresses each spring like
connection between each of the model patches until all valid deformations of the model are evalu-
ated.

For some classes of images, qualitative relationships may oniy be important across the
vertical or horizontal axis of the image. The templates described in section 4.8.3 utilize this infor-

mation to decrease the complexity of the matching problem. Thus, for a modzl of p patches and
an image of dimensions mxm, the complexity of the matching process is reduced from m? 1o

m®*D which is a significant reduction. However, because we are already using such low-fre-
quency images (ranging in size from 32x32 to 8x8), this optimization is not critical for the match-

ing process.
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It is possible to further optimize the matching process by scanning the image for a first
model region pair that satisfy the constraints of the model. This reduces the number of possible
mappings of the model to the image. The number can be further reduced by iteratively adding in
the constraints from additional model regions. The model regions used first should be the most
significant to the description of the class. The regions added in at later stages may not be as
important to the class concept. This strategy eliminates the need to exhaustively enumerate and
test all possible model to image mappings and is similar in spirit to pruniag the potentially large
interpretation tree [23].

For each valid spatial configuration of the model, we compute a measure of how well the
corresponding image patches and their relative relationships match the model. Currently, the
match metric reflects how many model interpatch and intrapatch relationships are satisfied by the
image. The image is classified as an instance of the model, if the number of interpatch and intrap-
atch relationships are greater than an a priori set of thresholds. The thresholds may be different
for each relationship, based on how well we expect the relationships to be satisfied in a real
image. For instance, in the class of snowy mountain images, the snow component is often scat-
tered across the mountain tops, rather than providing a full covering. The sky and bare mountain
regions, however, are usually visible across the image and have somewhat uniform colors.
Assuming that the model is correctly positioned over the sky, snow, and mountain regions of the
irnage, the sky to mountain relationship should hold across the image, while the sky to snow and
snow to mountain relationships may occur with only a 50% frequency across the image. In the
current implementation of the system, if one configuration of the model matches the image, then
the image is categorized as a member of the model class.

This measure of fit, however, does not take into account several other important attributes.
For instance, it is possible to add in a quantitative color component to the measure. In addition.
the relationships may be weighted according to how important they are to the concept. We alsc
may increase the measure of fit by how many deformations of the model match the image. It is
also possible to decrease the measure according to how much the model needed to be warped to
find a match. The percentage of the image covered by the warped model may also be added to the

measure of fit function.
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4.7 Refining the scene class model

The scene class model may be tailored to fit the preferences of a particular user. In the first
iteration, the pre-existing model is used to classify a portion of the database. These images arc
returned to a user, who may rate them. Based on this rating, the weight of the existing qualitative
relationships between the patches may be altered and new relationships may be extracted. Refine-
ment of the scene class may be used to make the class more general, to narrow the scope of the
class, or to encode in the class other important salient relationships. We discuss the refinement
process in more detail in the next chapter on learning class templates from a set of exampl:

images.

4.8 Testing the approach

The configural recognition approach to scene classification was tested by generating four
class templates and by using these models to classify a large database of natural images. In this
section, we describe the content of the image database, how the images were processed to extract
the low-frequency, low resolution content, the details of the class templates, and the results of
applying the templates to the images. For each template, the automated classification was
reported as a binary decision of either a member or non-member of the class. We compared the
results of the template classification to perceptual class judgments. The possible perceptual rat-
ings of each image with respect to a particular class consisted of “a member of the class™ or “not
a member of the class”. We compared the output of the templates with the perceptval judgments
of the observers. For each template, we report the “true positives”, “false positives”, “false ncga-
tives”. The experiments were run using a C program on a Pentium P.C. with a linux operating sys-

tem.

4.8.1 The test database

The test database consists of 700 images from prepackaged CD-Rom collections which
contained 100 images each. Each 100 image collection consists of images that the vendor, Corcl,
classified into one theme. The titles of the CD-Roms were “Fields”, “Sunsets and Sunrises”,

“Glaciers and Mountains”, “Coasts”, “California Coasts”, “Waterfalls”, and “Lakes and Rivers”.
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The total collection contains piciures which have a wide range of content, colors, textures. The
pictures have been taken from a variety of viewing positions (i.e. close-up vs. panorama) and
under many different types of viewing conditions. Although the images in these compilations
were mostly of natural images, many contain people, animals, and man-made structures such as
fences, houses, and boats. The images in these collections contain a varicty of sub-classes of
images. For instance, the “California Coasts” compilation contains scenes of lighthouses, ani-
mals, bridges, and sand formations, the “Lakes and River” collection encompasses mountains
with lakes, trees with lakes, ice images, waterfalls, and even a person fishing, the *Waterfall” CD
has waterfalls through barren rocks and also through dense vegetation, the “Ficld” images consist
of fields of many different types of grass, flowers, and tre~s. The collections also contain overlap-
ping classes, for instance both *“California Coasts” and “Sunsets and Sunrises” contain sunset
images and both the “Glaciers and Mountains” and “Lakes and Rivers” contain snowy mountain

images.

4.8.2 Processing the database

Each image in the database was iteratively smoothed and subsampled to create a pyramid
of low resolution images (see [2] for more details on image pyramids in image processing). Each
pyramid consists of three images of sizes respectively 32x32, 16x16, and 8x8 pixels. Figure 4.10
shows the result of the pyramid generation process on one image. In this figure, the computed
low-resolution images have been scaled to the same size to illustrate the decreasing frequency
content as a result of each iteration. Pixels in the low resolution images represent averages of

larger regions in the higher frequency images.
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FIGURE 4.10. Creation of a low-resolution image pyramid. The original image is iteratively smoothed and
subsampled to create three images of sizes 32x32, 16x16, and 8x8. The three images in this illustration have
been scaled to the same size to show the decrease in the level of detail from the first image in the pyramid to the
last.

4.8.3 Construction of qualitative templates for several scene classes

We constructed class templates for snowy mountains, snowy mountains with lakes, fields,
and waterfalls. For each class model, we describe the details of template, the resolution of the
images to which the template was matched, how the template was matched to the low resolution
images, and the complexity of the matching process. All the templates described in this section
were hand crafted after visual inspection of a few sample images. The templates arc intended to
serve as proofs of concept; i.e. they demonstrate that it is indeed possible to design simple quali-
tative concepts that may be used to correctly classify a reasonably diverse set of input images.

More systematic general ways of deriving such templates will be discussed in chapter 5.
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4.8.3.1 Snowy Mountain Template

The snowy mountain template represents the class of images which contain frontal views
of snowy mountains. The template consists of three regions (A,B,C). Region A corresponds to the
sky. Region B corresponds to the snow. Region C corresponds to the mountain. The qualitative
relationships between the regions, the quantitative information, and the intraregion relationships
encoded in the model are shown in Table 2. These relationships express the photometric and spa-
tial relationships which are often valid in snowy mountain images. The spatial relationships
express that the sky should be above the snow or low-lying clouds, which in turn shoula be above
the mountain. The photometric relationships express that the sky is usually bluer than the snow
and the mountain, the snow is generally lighter than both the sky and the mountain, and, finally,
the mountain most likely is darker than both the sky and the snow. The intraregion relationships
for the sky suggest that its blue color component is usually greater than its red or green compo-
nents. The size relationships express that the snow usually comprises a smaller part of the image
than the sky or mountain. Figure 4.11 illustrates the general structure of the snowy mountain tem-
plate. The colors shown in the figure are examples of colors that satisfv the specified photometric

relationships between the regions.
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Ap > 1.2%Cy,

B, =C, B, >C B, >C, B, < Cq
By < Cy Bg > Cg
Bb > Cb
Ab > Ar AS = /x2
Ap > Ag B, = /x]
Cy=1x4

FIGURE 4.11. The snowy mountain template consists nf three regions A, B, and C. The figure shows their

relative spatial relationships and sizes. The colors of the regions satisfy the photometric relationships of the

model.
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The model is compared to low resolution images at the first level of the pyramid (32x32
pixels). Figure 4.12 shows examples of mountain images at this resolution. At this resolution, the
sky, snow, and mountain are still distinct.

Generally, the difference in snowy mountain regions exist along the vertical image axis.
The regions are largely uniform horizontally across the image. We use this information to opti-
mize the detection process. For a given vertical configuration of the model, where region A is
above B which is above C, the technique starts at the left side of the image (x = 0) and sweeps the
configuration horizontally across the image to try to detect triples that satisfy the pairwise rela-
ticnships and other attributes shown in the table 2.

The model regions are specified to contain one or more low resolution image pixels. For
instance, region A is hard coded to contain 2 images pixels, one on top of the other. Similarly,
region C is specified to contain 4 image pixels in a vertical configuration. For reasons of effi-
ciency, the image pixels in each of the regions are compared to the pixels in other regions that
share the same column (or have the same x value). Figure 4.13 shows how the image pixels in
each region A (A1, A2) are compared to the image pixels in region C (Cl, C2, C3, C4). There are
no cross column comparisons of regions as the template moves across the image.

The relations are encoded as sets of pairwise relationships. The pairwise relationships are
defined as valid if all the pertinent constraints shown in the table hold for a given pixel in a first
region and a given pixel in the second region. As the template is swept across the image, the num-
ber of configurations of valid (A,B), (B,C) and (A,C) pixel pairs are counted. The image is con-
sidered to be in the class described by the model if 85% of the image pixels in regions A and B
satisfy the specified relative relationships, 60% of image pixels in regions B and C satisfy the
specified relative relationships, and 90% of image pixels in regions A and C satisfy the specified
relative relationships. These percentages reflect the fact that the sky (A) and mountain (C) regions
usually span the image, while the snow distribution (B) is variable.

All spatially valid vertical orderings of the three regions are compared to the image in the

manner described above. For a column size of m pixels and three model regions, there is an upper
bound of m> configurations. If the model regions contain r image pixels, the number of pairwise

comparisons for one image column is 3,2, For an image of width n, the number of computations
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is 3*nr? *m>. In the case of the mountain template, the upper bound on the number of compari-

sons made is 48*32% or O(32%), which is not very large. This is comparable to an operation which

accesses every pixel once in a /024x1024 image.

FIGURE 4.12. Four low resolution snowy mountain images of size (32x32) scaled by 300% for viewing purposes.

FIGURE 4.13. At a specific location of the template, the image pixels in each of the regions are compared to each
other. This example shows how image pixels in region A are compared to image pixels in region C. As the
template is moved, the interregion comparisons are made at each column in the image. No cross column
relationships are computed.
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4.8.3.2 Snowy Mountain with lake template

The snowy mountain with lake template describes a subset of the images in the class rep-
resented by the previous template. One extra region (D) which corresponds to the lake is added to
the template. The template describes all views of mountains with lakes in the foreground of the
image. The template does not distinguish between frozen or liquid lakes. This template encom-
passes all the previous relationships from the snowy mountain template and adds the spatial and
photometric relationships between the mountain and lake regions. These relationships express
that the lake should be below the mountain in the image plane. In general, the lake should also be
lighter or lighter and bluer than the mountain. We express this OR relationship by encoding two
sets of relationships between regions C and D in Table 3. Figure 4.14 shows the revised mountain
template. The colors shown in the figure are examples of colors that satisfy the specified photo-

metric relationships between the regions.

TABLE 3. The extra relationships encoded in the snowy mountain template with lake

..

The matching of this model to the iinage uses the same process as the previous template.
In addition the same size resolution images are used (32x32 pixels). The image is considered an
instance of the class, if the mountain concept is detected and if the relationships between the pix-

els in region C and D are valid 90% of the time. The computation complexity of matching this

model to the inage versus the previous model is on the order O( 329).
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FIGURE 4.14. The revised snowy mountain template which includes a lake region. The template consists of four
regions A, B, C, and D. The figure shows their relative spatial relationships and sizes. The colors of the regions
satisfy the pkotometric relationships of the model.

4.8.3.3 Field Template

The field template characterizes the class of images that contain sky and field regions. The
template consists of two regions (A,B). Region A corresponds to the sky. Region B corresponds
to the field. The specifics of the model are shown in Table 4. These relationships express the pho-
tometric and spatial relationships which are often valid in field scenes. The spatial relationships

express that the sky is above the field in the image plane. The photometric relationshups express
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that the sky is generally bluer than the field. The color components of the field should have the
relationships that the red and green chromatic values should be greater than the blue chromatic
value. Figure 4.15 illustrates the general structure of the field template. The colors shown in the
figure are exampies of colors that satisfy the specified photometric relationships between the
regions.

The model is compared to the processed images at the lowest level of the pyramid, which
contain the fewest details. The size of the images are 8x8 pixels. Figure 4.16 shows examples of

field images at this resolution.

TABLE 4. The relationships encoded in the field template.

)

FIGURE 4.15. The field template consists of two regions A and B. The figure shows their relative spatial
relationships and sizes. The colors of the regions satisfy the photometric relationships of the model.
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FIGURE 4.16. Four low resolution field images of size (8x8) scaled by 1200% for viewing purposes.

Similar to the case with mountains, the perceptual difference in regions of field images
usually exists along the vertical image axis. The regions generally are largely uniform along the
horizontal axis. This information is used to optimize the detection process. For a given configura-
tion of the model, where region A is above region B, the technique starts at the left side of the
image (x = 0) and sweeps the configuration horizontally across the image to try to detect pairs
that satisfy the relationships and other attributes shown in Table 4.

The model patches are specified to contain only one image region. For reasons of effi-
ciency, the image regions in A and B are only compared if they are in the same image column.
The number of valid sets c¢f pairwise relationships are counted as the tempiate is swept horizon-
tally across the image. The image is considered to be a member of the class described by the
model if the relationships between regions A and B are satisfied 80% of the time.

All spatially valid vertical orderings of the two regions are compared to the image in the

manner described above. The upper bound on the number of comparisons to detect the field con-

cept is 0(83).
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4.8.3.4 Waterfall Template

The waterfall template represents the class of images which contain waterfalls in a some-
what vertical orientation. The waterfall must be at least as long as 40% of the vertical size of the
image. The waterfall templat: consists of three regions (A, B, C). Region B corresponds to the
waterfall. Region A and C respectively correspond to the areas on the left and right side of the
fall. The qualitative relationships between the regions, the quantitative information, and the
intraregion relationships encoded in the model are shown in Table 5. Thesc relationships express
the photometric and spatial relationships which are often invariant in waterfall images. The spa-
tial relationships express that the waterfall should be in between two regions. The photometric
relationships express that the waterfall is usually lighter than the surrounding regions and that the
waterfall is more blue and green than red. Figure 4.17 illustrates the general structure of the
waterfall template. The colors shown in the figure are examples of colors that satisfy the specified

photometric relationships between the regions.

The model is compared to the processed image at the second level of the pyramid which is

of size 16x16 pixels. Figure 4.18 show examples of waterfalls at this resolution

TABLE 5. Relationships encoded in the waterfall template.

Lee
-t
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FIGURE 4.17. The waterfall template consists of three regions A, B, and C. The figure sk:ows their relative
spatial relationships and sizes. The colors of the regions satisfy the photometric relationships of the model.

FIGURE 4.18. Four low resolution waterfall images of size (16x16) scaled by 600% for viewing purposes.

In comparison to the previous classes, the differences in waterfall regions usually exist
along the horizontal image axis and are largely uniform along the vertical axis. This information
is used to optimize the detection process. For a given horizontal configuration of the model,
where region A is to the left of region B which is to the left of region C, the technique starts at the
top of the image (y = 0) and sweeps the configuration vertically down the image to try to detect
triples that satisfy the pairwise relationships and intrapatch relationships shown in Table 5.

The model regions are specified to contain one or more low resolution pixels. For
instance, regions A and B are designated to contain 2 image pixels, one next to the other. For rea-
sons of efficiency, the image pixels in each of the regions are only compared to the pixels in other

regions that share the same row (or have the same y value).
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The relations are encoded as sets of pairwise relationships. The pairwise relationships are
defined as valid if all the pertinent constraints shown in the table hold for a given pixel in a first
region and a given pixel in the second region. As the template is swept down the image, the num-
ber of configurations of valid (A,B) (B,C) and (B,B) pixel pairs are counted. In addition, the long-
est string of pixels that satisfy the (B,B) relationships is remembered. The image is considered to
be in the class described by the model if 60% of the (A,B) and (B,C) relationships are satisfied,
50% of the (B,B) relationships are satisfied, and the Jongest string of contiguous B regions is at
least 40% of the image. These percentages reflect that the waterfall should comprise at least 40%
of the image, allowing for possible sky regions.

All spatially valid horizontal orderings of the three regions are compared to the image in

the manner described above. The complexity of matching the model to the image is O(16%).
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4.9 Results

In this section, we report the results of the automated classification using the described
templates. Subsections 4.9.1 - 4.9.4 show examples of the “true positives”, “false positives”, and
“false negatives” for each of the templates. The “ground truth” for the results is based on the per-
ceptual judgments of two observers. Table 6 summarizes the results in terms of percentages over
the 700 image database broken into two groups for each scene class; perceptually true positives
and negatives. (True positives and false negatives are described with respect to the total number

of positives. False positives and true negatives are described with respect to the total number of

negatives.)

TABLE 6. Results described as percentages over the 70{) image database

‘ ’ e 0 “mle'”, “false” “false” “tme”
RESULTS | positives | negatives | positives | negatives
Snowy
mountain 75% 25% 12% 88%
template
Snowy
mountain 67% 33% 1% 99%
with lake
_ template
Field 80% 20% 7% 93%
template
‘Waterfall 33% 67% 2% 98%
~ template
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4.9.1 Results for the snowy mountain template
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FIGURE 4.20. More true positives detected by the snowy mountain template
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FIGURE 4.22. All the false negatives that were not detected by the snowy mountain template.
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4.9.2 Results for the snowy mountain with lake template
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FIGURE 4.23. All the true positives detected by the snowy mountain with lake template.
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FIGURE 4.24. All the false positives detected by the snowy mouniain with lake template.
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FIGURE 4.25. False negatives not detected by the snowy mountain with lake template.




4.9.3 Results for the field template
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FIGURE 4.26. Some true positives detected by the field template




FIGURE 4.27. Additional true positives detected by the field template,
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FIGURE 4.28. Some false paositives detected by the field template.
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FIGURE 4.29. False negatives not detected by the field template

14



4.9.4 Results for the waterfall template.

115



FIGURE 4.30. True positives detected by the waterfall template
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FIGURE 4.31. All the false positives detected hy the waterfall template
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FIGURE 4.32. Some of the false negatives not detected by the waterfall template
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4.10 Testing the approach on other types of scenes

In this section, we present results which demonstrate that the configural recognition
approach is extendable to scenes that include man-made structures such as buildings. This exam-
ple will also serve to demonstrate the ability of our approach to incorporate other image attributes
such as texture for image classification purposes.

We developed a cityscape template that characterizes the class of images that contain pan-
oramic views of sky and large buildings. The salient aspects of many cityscape scenes are the
color of both the sky and the buildings and also the texture of the buildings (and lack of texture in
the sky). In most of our examples of city panoramas, the sky was generally blue and without tex-
ture, the buildings had either a golden brown, greenish, or blue hue and together created a texture
with significant vertical orientation.

The template constructed to characterize this class consists of two regions (A,B). Region
A corresponds to the sky. Region B corresponds to the buildings. The specifics of the model are
shown in Table 7. These relationships express the photometric, spatial, and texture relationships
which are often valid in cityscape scenes. The spatial relationships express that the sky is above
the buildings in the image plane. The intraregion photometric relationships express that the sky is
generally blue (written as one intraregion relationship for region A) and that the buildings are pre-
dominantly brown, green or blue (written as three possible intraregion relationships for region B).

The texture relationship between the two patches (denoted as A, and B,) encodes that region B

should have almost an order of magnitude more vertical texture than region A. Figure 4.33 illus-
trates the general structure of the cityscape template. The colors and textures shown in the figure
are examples of colors and textures that satisfy the specified photometric and texture relation-
ships.

The model is compared to both a low resolution color image and a filtered higher resolu-
tion greyscale image. The color images used contained very little detail and were of size 8x8 pix-
els. The greyscale images were of size 128x128 pixels and were filtered with a simple vertically
oriented edge detector. Figure 4.34(a) shows examples of color low resolution cityscape images.
Figure 4.34(b) shows examples of the filtered higher resolution greyscale images and

Figure 4.34(c) shows the filter used to generate those images.
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TABLE 7. The relationships encoded in the cityscape template.

Each of the model regions encompasses two contiguous rows of pixels in the low resolu-
tion color images and two regions of size 128x16 pixels at the corresponding positions in the fil-
tered higher resolution images. For instance, if region A encompasses the first and second rows in
the color image, it is also encompasses the first 32 rows in the filtered image. All non-overlapping
configurations of model region A and B, where A is above B, are evaluated to determine if the cri-
teria in Table 7 hold for a given image. The criteria hold if all the color pixels encompassed by
region A and region B satisfy the color criteria and if the sum of the luminances in the texture

regions encompassed by region A and B satisfy the texture criteria.

i |

FIGURE 4.33. The cityscape template consists of two regions A and B. The figure shows their relative spatial
relationships. The colors and textures of the regions satisfy the relationships encoded in the model.
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FIGURE 4.34. cityscape images (a) low resolution color images (magnified by 1600% for viewing purposes) (h)
higher resolution texture images (c) the filter to used to generate the texture images.



4.10.1 Results

We tested the cityscape template on a database of 32 city images and the original database
of 700 natural images. The template correctly identified 71% of the cityscapes. The “true” posi-
tives are shown in Figure 4.36. The template incorrectly identified 14% of the natural images as
cityscapes. The false positives were mainly from the coastal and field images. The misidentified
images had the correct relative colors. They also had a great deal of texture in some regions.
However, the texture of the images existed at all orientations, not just in the vertical direction.
Additionally, the texture was not arranged in long vertical lines, but appeared fragmented.
Figure 4.35 shows one of the misidentified coastal images and its filtered counterpart. The city-
scapes template can easily be adjusted to be more discriminating via the use a more sophisticated
texture filter or by encoding that region B should not have dominant texture in bands other than

the vertical and horizontal ones.

FIGURE 4.35. One of the coastal “false positives” and its jiltered version.
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FIGURE 4.36. True positives detected by the cityscapes template



4.11 Discussion

In this chapter, we introduced a novel approach to image classification called “configural
recognition”. The approach employs novel qualitative metrics over low resolution image regions
to classify images or to compute image similarity. This is in contrast to the majority of prior work
on scene classification that uses quantitative measures of an image’s color, texture, and shape
characteristics to compute image similarity. We found that qualitative, rather than quantitative,
measures are effective to describe scene content. We presented the configural recognition
approach to classification in the form of a system that can be used for image database indexing.
Configural recognition has several advantages, but also some significant shortcomings. In this
section, we will discuss the benefits and the limitations in the context of the results we presented

in sections 4.9 and 4.10.

Generalization across scene class:

A significant benefit of the configural recognition appreach to scene classification is that
by using qualitative models we are able to effectively generalize over different attributes of a
class. For instance, the field class model is able to detect field scenes even though the scenes dif-
fer in their colors (green vs. red or brown grass/flowers), textures (solid field vs. tall grass or rows
of crops), illumination (bright sunny day vs. cloudy and overcast), in the viewing parameters
(close up vs. panorama), and in some content (i.e. the presence or absence of trucks, trees, barns
or fences). Figure 4.37 shows some of the field scenes detected by the field ternplate that differ in
these parameters. A classification strategy based on quantitative color and texture, template

matching, or object recognition would most likely not be able to generalize as effectively.
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FIGUREE 4.37. Examples of the ability to generalize over different attributes of the same class. The images are all
field scenes even though they differ in the attributes of (a) color, (b) texture, (c) illuminatior:, (d) viewpaoint, (¢)
content.




Discrimination between classes:

Another significant benefit of the configural recognition approach to scene classification is
that we are able to effectively discriminate between different classes. For instance, the snowy
mountain template correctly did not detect some glaciers, coastal images, ice pictures, and a city
scene with a gushing river which share the same color attributes and some of the same texture
attributes as snowy mountains scenes, but have incorrect spatial configura ons. In addition, the
mountain template did not classify a scrambled snowy mountain image as part of the class.
Figure 4.38 shows a few of these true negatives. A strategy based solely on color or texture mea-

surements would not be able to make some of these distinctions.

FIGURE 4.38. Some of the true negatives not detected by the snowy mountain template.

Computational efficiency:

The system is also computationally efficient. The models are matched to very low resolu-
tion imagery containing at most 32x32 pixels. In addition, the models used to demonstrate the
approach contained very few regions (between 2 and 4). To test four templates, of varying com-
plexity, on 100 images in our database took under 10 minutes on a pentium p.c. with an external

file server.
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The advantages of significant generalization ability and computational efficiency, how-
ever, come with a price. The impressive ability to generalize sometimes leads to overgencraliza-
tion. For instance, the snowy mountain template detected such false positives as a sunset scene, a
coastal scene, a tree scens with clouds, a group of white houses on a cliff, an animal standing on a
hill overlooking water, and a picture of pounding surf, which to a human observer clearly do not
belong to the class. The snowy mountain template was also not able to finely discriminate cloudy
mountain scenes from snowy mountain scenes. In addition, the snowy mountain template, as pre-
sented, would not be able to discriminate a real snowy mountain from a synthetic image which
consists of three horizontal bands of blue, white, and grey in the correct spatial configuration.

Figure 4.39 shows some of these false positives.

FIGURE 4.39. Some of the false negatives detected by the snowy mountain class.

There are several additions, however, to the configural recognition approach that may
allow us to prevent overgeneralization. Some of the false positives are incorrect because they
have the wrong quantitative colors, despite having the correct qualitative colors. Examples
include the sunset, coastal, tree, and animal scenes. This may be corrected by using a perceptually
based quantitative color system (we discuss one possibility for such a system in the next chapter).

Other false positives such as the houses on the coast, the pounding surf, the cloudy mountain, and
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the color patch image are detected because the system does not have any fine discrimination abil-
ity in small details. It is possible that using quantitative texture measurements in conjunction with
the existing qualitative measures could mitigate this problem.

In some cases, the qualitative models may be very restrictive. For instance, the waterfall
template only detected 33% of all the waterfalls in the database. However, the concept of any
class is unlikely to be captured by a single qualitative template, which is one reason why a single
template does not detect all the instances of one class in the database. However, a small set of
such templates can be expected to capture a majority of the instances of the scene class. For
instance, many of the waterfalls not detected by the existing template had green or brown sur-
rounds which were almost as bright as the waterfall itself. Other waterfalls not detected were not
vertically oriented. Provisions for these conditions were not encoded in the original waterfall tem-
plate. By adding two or three more templates to capture these variations, it is possible to cover
most of the instances of the class.

It is desirable to design a set of templates which together capture most of the true posi-
tives and have few false positives. From the data in Table 6, the templates with the fewest false
positive rates were the waterfall and snowy mountain with lake templates. The waterfall template,
as just described, is an example of a narrow detector due to the qualitative constraints. The snowy
mountain with lake template is also a narrow but accurate detector most likely due to the fact that
it had four model regions, the greatest number of regions amongst all the templates. This suggests
that a small set of narrow templates, due to the qualitative constraints or the number of model

patches, might span a large class and result in a low false positive rate.

This chapter has provided essentially a proof of existence that qualitative concepts that
can describe significant subsets of a scene class. All the templates included here were hand-

crafted. In the next chapter, we discuss strategies to automate the template construction process.
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SNV [ carning the Scene Class

In the previous chapter, we demonstrated that models consisting of qualitative relation-
ships between low frequency image regions could be used effectively to classify images. The
models described there were hand-crafted after visually inspecting salient regions in example
images and extracting the consistent relationships between those regions. It would be desirable if,
instead of having to hand-craft the models, an automated process could take a set of example
images and generate a template or a set of tcmplatcs which describe the reicvant consistencics
between the pictures in the example set.

The automatic learning of scene classes is very important for a practical system. The sys-
tem must be flexible enough to identify the particular class a user is interested in. Two users of the
system may partition the images into very different categories depending on the class of images
they wish to retrieve. An image retrieval system must be able to discern the biases and prefer-
ences of the user with respect to the class of images he is trying to access.

There are several ways for a user to indicate his preferences without handcrafting a tem-
plate himself. The user may show several examplies of images which fall into the desired class.
The user may also indicate the salient regions which should contribute to the class concept in
each of the example images.

The learning process does not have to terminate in only one pass. The system may gener-
ate an initial template based on the information provided by the user and can then retrieve images
based on this rough estimate of the class. The user in turn can rate the returned images using a
range from “very desirable” to “completely undesirable”. Based on these responses the system
can refine the class concept so that the images it retrieves are more compatible with the expecta-
tions of the user. The refinement process may be stopped at any time, when one or more accept-

able images have been retrieved.
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In this chapter, we discuss three techniques to learn a class concept in the form of a quali-
tative template. The techniques are variants on a correlational type of learning algorithm to
extract the relevant consistent attributes over a set of examples. These algorithms are similar in
part to those described by Sinha in [57]. First, however, we briefly discuss why the problem of

learning in this context is computationally difficult.

5.1 Difficulty of the problem

To generate a model which encodes the consistent relationships between salient regions,
an automated system must identify the salient regions in each of the images, compute a corre-
spondence between these regions over the example set, and determine the consistent relation-
ships.

The problem of learning the model from a set of examples is difficult in part due to the
amount of variation between the exanple images, the amount of variation within a single image,
the amount of noise or irrelevant attributes, and also the sizc of the images. These problems mani-
fest themselves in both the partitioning of the regions and computing inter-image region corre-
spondence. For instance, image regions that are perceptually grouped by humans may not have
uniform quantitative color and textural properties throughout the region. It is, thus, difficult to
determine when the variations between pixels are significant such that the set of pixels should be
divided into several image regions rather than grouped into one image region. In addition, the
corresponding salient regions in one image may have very different quantitative characteristics in
another image. For instance, the sky in field scenes may be cloudy and textured or blue and with-
out texture. Even if the sky regions in each of the field images were correctly partitioned, it would
be difficult to decide if they have the same label or, in other words, if they correspond to each
other. In general, there are an exponential number of pairings between regions in one image and
regions in another image. Finally, the segmentation and the correspondence are dependent on the
class concept. For instance, if the desired class concept is a field with sky and clouds, then the
image should be partitioned into regions corresponding to these labels. However, if the desired

concept is field with sky, then any white cloud regions and blue sky regions should be grouped
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together into one larger region. This problem can not be addressed in a purely bottom up manner
or from the image information alone. The segmentation and resulting correspondence may have
to be altered based on feedback from the user.

In order to learn a scene concept from a set of examples, the issues of partitioning an
image into regions and computing region correspondences between a group of images must be
addressed. In addition, for these strategies to be used in a real system, they must be computation-
ally efficient. In the next section, we describe some techniques which address the problems of
region partitioning and region correspondence to derive qualitative models of scene classes from

a set of examples.

5.2 Learning the class templates from a set of example images

The task of learning a class model is as follows: given a set of example images, to extract
the relative relationships and quantitative information that is consistent amongst the example
images and is relevant to the class concept. The goal is to create a qualitative model which is
derived from the low frequency components of the example images. We discuss three approaches

to solving this problem.

5.2.1 Learning without region grouping

The first approach to solving the problem of learning a class concept from a set of exam-
ples ignores the problems of region grouping and, therefore, treats each pixel in the low resolu-
tion images as a distinct region. The algorithm computes all pairwise qualitative relationships
between each image pixel and based on this information attempts to compute a correspondence
between regions with consistent relationships across the set of example images. The goal of this
technique is to determine the consistent relationships in a robust and computationally efficient

manner while allowing for some positional variance between the corresponding regions.

There are several steps to the learning algorithm:
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The first step creates low resolution versions of the full resolution images by extracting
the low frequency components. As described in section 4.8.2, this can be achieved by blurring
and subsampling the set of example images. The pixels in the resulting smaller images represent
space averaged image regions from the full resolution images.

The second step, for each of the low resolution images, computes all the pixel pairwise
relationships. Each of these relationships is encoded as an n dimensional vector, where n is equal
to the number of attributes. The attributes may, for instance, include relative color and luminance.
At this point it is not necessary to compute the spatial relationships due to the fact that the posi-
tions of both pixels in a pair are known.

For each pixel, we also compute a rough estimate of its color from a coarsely quantized
color space, as a measure of perceptual color. In this implementation, we map the full R,G,B
color space to 27 equally sized partitions. This is achieved by mapping the range of each color
component (0-255) to three values (0,1,2). The estimate of color is “attached” to the high dimen-

sional relationship vector.

At this point in the algorithm, for an image of size m, there are on the order of m? high
dimensional vectors, m for each pixels. Figure 5.1(a) shows for one pixel its pairwise relation-
ships encoded as vectors and quantized color. It is not necessary, however, to retain all the m rela-
tionships for that pixel. Instead, the image can be grouped into directional equivalence classes
with respect to that pixel (notice that an equivalence class does not imply a space averaging of the
underlying regions). In Figure 5.1(b) we show one example of this grouping. This step has two
beneficial effects. The first is that relative spatial relationships, such as “above” and “below” have
been introduced. The second is that the we can eliminate the redundant relationships in each
equivalence class, thereby reducing the number of relationship vectors associated with each pixel.
This is shown pictorially in Figure 5.1(c). The steps of grouping the image into equivalence
classes and computing the non-redundant relationships in each equivalence class may be done for

each pixel in the image.
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FIGURE 5.1. (a) Relative relationships to all other pixels (described as vectors) and quantized color shown for
one pixel. (b) Example of directional equivalence classes. (c) Hllustration of the reduction in redundant
relationships via the use of directional equivalence classes.
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Each image in the example set may be processed in the manner described above. The next
step is to compute the consistent set of relationships for each region in each image. There is, how-
cver, a problem in that the correspondence of pixels across images is not known. To compute the
consistent relationships, it would not be meaningful to compare relationships between different
regions such as a sky pixel in image 1 and a grass pixel in image 2. It is possible to look at all
pairings of pixels across images and try to determine the set of pairings that have the greatest
number of consistent relationships and colors. Hopefully, the set of consistent pairings will be
between corresponding image region. This strategy, however, is computationally expensive
because there are an exponential number of such pairings.

A seemingly reasonable assumption that overcomes this problem is that corresponding
pixels in each image are likely to occur in approxirnately similar positions. Thus, we assume that
a pixel in image 1 located at position (x,y) will most likely correspond to a pixel in image 2 at
position (x £ i, y + j), where i and j are parameters.

We can incorporate this assumption in our processed images by Laving each pixel inherit
the relative relations/color from its neighbors. The extent of the neighborhood is variable. It also
is possible to weight the importance of the attributes from the neighbors of a pixel as an inverse
function of their distance from that pixel. This step is somewhat analogous to smcothing the pro-
cessed images.

To determine the set of consistent relationships, we now need only compare the set of
relationships/colors at each pixel location across all the example images. The example images can
be summarized by one image which contains all the relationships/colors for each pixel location
and the frequency with which they occurred. The frequency of occurrence of the relationships and
associated colors is a measure of their consistency.

The summary image may be used intact as a class model or it may be translated into a
“graph” structure similar to the models shown in chapters 3 and 4 by locking for pairs of pixels in
the summary image that have inverse relative relationships. To convert the summary image into a
graph structure, it is first necessary to choose a consistency threshold to eliminate relationships
and nodes that are not important to the model. Nodes that remain after the thresholding steps

become vertices in the graph structure. Nodes with inverse relationships can be connected via
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directional edges. For instance, the graph structure should contain an edge between node i and
node j, if node i specifies that it is more blue, less red, and less green, than a node which is below
it and node j specifies that it is less blue, more red and more green than a node which is above it.

It may be desirable to keep the summary image for further refinement of the model. The
initial model may be used to retrieve images. The user may select a subset of the returned images
and ask the system to update the model by increasing or decreasing the consistency of already
enccded relationships or by adding new relationships.

The measures of consistency of regions encoded in the processed model are equivalent to
the thresholds used in the prior chapter to determine if the relationships between two image
regions were “sufficiently” satisfied. This algorithm computes what the tolerable thresholds are
for making that determination.

The algorithm as described is computationally efficient. The preprocessing steps of
smoothing and subsampling the image, computing the pairwise relationships between low resolu-
tion image pixels, reducing the number of pairwise relationships by computing directional equiv-
alence classes for each pixel, and allowing each pixel to inherit its neighbor’s attributes are all
steps which can be computed in O(m?) time, where m is the number of pixels in the image. These
steps may performed off-line for each image in the database. The step of computing the consis-
tent relationships, which must be done at the time of the query, is only O(m), since each pixel in
each image is considered once in creating the class model. m, for our purposes, is generally
small, since we use greatly subsampled versions of the original images, ranging from (8x8) to

(32x32) pixels.

5.2.1.1 Testing the approach on synthetic images

We first tested the approach by generating 25 synthetic images of size (8x8) pixeis. As
described in the previous chapter (8x8) is not an unrealistic image size for natural scene classifi-
cation. Each pixel in the synthetic images was given a random color. A three patch qualitative
concept, also generated randomly, was embedded in each image. The absolute colors and posi-
tions of the patches in the concept were allowed to vary as long as the qualitative color and spatial

relationships were not violated. A different instance of the qualitative concept was embedded in
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each image. Figure 5.2(a) shows four example images from the synthetic example set of 25
images. The concept patches are indicated by white outlines. The goal was to test the learning

approach to see if the concept could be recovered.

r2<r3

g2 > g3
b2 <b3

(c)

FIGURE 5.2. Demonstration of the learning algorithm on synthetic images. (a) Four sample synthetic images
which consist of randomly colored patches are shown. The three patches of the qualitative concept embedded
in the images are highlighted in white. The spatial locations and colors of the patches were allowed to vary in
each image as long as they satisfied the relative constraints. (b) The summary image shows the consistency of
the patches across all the sample images. Black denotes no consistency. White denotes 100% consistency. (c)

The relationships between the three 100% consistent patches from the summary image are shown as a
qualitative model. The model matckes the embedded concept.
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Figure 5.2(b) shows the summary image generated from the implementation of the algo-
rithm. The patches in the image range from black to white, where black denotes no consistency
and white corresponds to total consistency. The image indicates that there were three patches in
each example image which had 100% consistent relationships to other patches. Note that the
three consistent patches in the summary image are not in exactly the same locations as the quali-
tative concept patches in each image. The locations of the patches in the summary image repre-
sent the average location of the concept patches across the example image. Figure 5.2(c) shows
the graph model derived from the three patches and their consistent relationships. The graph is

identical to the original concept.

5.2.1.2 Testing the approach on real images

The results of testing the approach on real images suggests that majcr modifications are
required to attain the level of performance obtained with the synthetic image database. There are
several reasons for this. The first is that each image pixel should not be considered as a candidate
for a node in the model graph. In addition, our assumption of corresponding regions occurring in
localized areas of the example images is somewhat unrealistic for real images.

The algorithm works well on the synthetic images because each image pixel does repre-
sent a distinct image region. Therefore, it is realistic that each image pixel initially should be con-
sidered equally important to the class concept. In real images, such as field scenes, image pixels
will not cover an entire perceptually coherent region. For instance, even in an 8x8 pixel field
image, the entire top row or the first 8 pixels is likely to correspond to the sky. The algorithm as
stated will give equal importance to each pixel in the sky region. These pixels will likely have the
relevant attributes that they are bluer than the majority of the pixels below them, both directly
below and below and to the right and below and to the left, and each sky pixel may have the rela-
tionship that it is just as blue as many of the pixels around it. These relationships are accurate for
field models. However, they are also accurate for the majority of natural images that contain sky.
Figure 5.3 shows a low frequency and full resolution version of a field and a coastal image. Many
of the relative relationships between the low frequency regions in the field image will also be

valid in the low frequency coastal image.
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" (a)

(b)

FIGURE 5.3. (a) A low resolution and full resolution field image. (b) A low resolution and a full resolution
coastal image. Many of the relative color relationships between low resolution image regions in the field scene
are also satisfied in the coastal scene.

In general, the discriminating features, such as field regions which specify that they
should be more green or red that the regions above them, may be drowned out by the overwhelm-
ing consistency of the sky regions with respect to the other image pixels. Even the relationships
which do encode that there should be regions which are more green than those above them, may
exist to some extent in images from other classes. In general, we found models generated via the
algorithm had a very slight discrimination ability between different classes of natural images. The
difference in discrimination was not sufficient to accurately classify novel images as examples or

non-examples of the class covered by the models.
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The second problem is that our assumption that image features will be found in a iocal-
ized area in every example image is not valid for some classes of natural images. For instance, the
regions corresponding to the stream of water in a waterfall scene may be in any column of the
image and comprise of a variable subset of the column’s pixels. To fully generate a waterfall tem-
plate using the framework of the algorithm it may be necessary to compare more than just local-
ized regions for consistency. Figure 5.4 shows three waterfalls with varying positions and

orientations.

FIGURE 5.4. Three waterfalls with significant variations in location and geometry. The azsumption that image
features will be found in a localized area across example images is not valid for this set.

Our results suggest that the algorithm may be greatly augmented by a region grcuping
step and a better correspondence algorithm in order to build more concise and accurate scene
models. This idea is supported by the observation that humans tend to establish relationships
between extended regions that have homogeneous properties. In the next section, we suggest a
novel strategy for region grouping. We also suggest how this strategy may aid the correspondence

problem.

5.2.2 Learning with region grouping

Region grouping may help us eliminate some of the problems that the previous algorithm
faces. In general, region grouping allows us to specify that pixels in one region should be consid-
ered together and that the group of pixels should have some common relationships to cach other
and to other pixels outside the group. For matching purposes, most of the shared relationships

associated with the grouped pixels should apply in order for the model region to match a subpart

139




of a novel image. Region grouping also specifies that regions that belong to one group shouid
generally occur together within a contiguous area. Models generated by the previous algorithm
would allow that two sky regions be matched to very different spatial positions in a novel image.
For instance one sky region may be matched to a valid sky region at the top of a novel image,
while a second sky region could be matched to a lake in that novel image, as long as there was
something less blue below the lake.

Many algorithms have been developed to segment distinct regions in an image based on
their quantitative color, textural, and shape attributes. These algorithms applied to natural scene
classification are generally not robust due to the fact that regions often differ greatly in their quan-
titative attributes [27][43][50][55]. However, such segmentation, even if imperfect may be suit-
able for our purposes.

We suggest that region grouping via quantitative attributes may be augmented by the use
of qualitative intrapatch relationships and qualitative interpatch relationships. Such measures may
provide some invariance to differences in quantitative attributes. In addition, grouping image
regions which have consistent relationships among themselves and to other regions is directly
compatible with the goal of generating a qualitative model which encodes sets of image regions
which have consistent relationships to other sets of image regions.

We have developed a novel perceptually motivated technique of partitioning up the RGB
color space. Each partition of the color space represents groups of colors which may be perceptu-
ally equivalent. For each image region, we compute a comparison between the red and green, the
green and blue, and the red and blue color comporents. This is similar in spirit to the color
opponency found in the early stages of the primate visual system [33]. For viewing purposes, we
remapped the red channel to 0, 128, or 255 if the red color component respectively was less then,
equal to or greater than the green color component of the patch. The green and blue channels can
be remapped in a similar manner, where the green channel reflects the comparison between a
patch’s red and green components and the blue channel reflects the difference between a patch’s
blue and red components. Note that there exist other ways to remap the red, green, and bluz chan-
nels which may better reflect the intrapatch relative color. In addition, we may quantize the color
space in a finer manner. For instance, we found that colors especially which lie along the lumi-

nance axis should be more finely represented in the color quantized space. Currently, the RGB
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color of value (0,0,0) which corresponds to black and the value (255,255,255) are mapped to the
same value (128,128, 128). Perceptually, however, these two colors appear very different.  In
terms of scene classification, would not want to determine that a dark island in the middle of a
blue sea and a white iceberg in the middle of blue sea are similar in terms of their color attributes.

Figure 5.5(a) shows nine full frequency field images. Figure 5.5(b) shows the low resolu-
tion versions of the images remapped into a relative color space. Even though the sky and field
regions vary in terms of their quantitative color both within the images and across the images,
each of these regions appear to have distinct homogeneous quantized colors. The colors for each
of the regions are similar across the example images. We have found similar results for other
clasces of natural images such as snowy mountains and sunset scenes.

The results suggest that region grouping may be significantly easier using measures of
intrapatch color rather than quantitative color. We are currently investigating the idea of grouping
regions which have similar relative relationships to other image patches.

Grouping the image regions may significantly decrease the complexity of computing the
correspondence between regions in example images. First, the number of regions to be consid-
ered is be reduced from the total number of pixels in the image to a much smaller number. Addi-
tionally, from our initial experiments, corresponding regions across images of the same class may
have the same or similar relative intrapatch attributes. These issues need to be explored in a more
detailed manner. Once we have computed the corresponding regions across the set of example
images, we can determine which relationships are consistent between those regions in each
image. We can then generate a qualitative model which consists of the common regions in cach

image and their consistent relative attributes.
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(b)

FIGURE 5.5. This figure shows 9 field images (a) in full resolution and (b) in the low resolution color quantized
representation.
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5.2.3 interactive region grouping and region correspondence

Instead of totally automating the process of region grouping and region correspondence,
the user may provide some of this information. We are developing an interactive system in which
the user selects a few salient regions in one or more example images. The system, using coarse
similarity criteria, retrieves some images consistent with the user’s initial specification. The
regions are implicitly in correspondence across the images. The user can score the retricved
images. A correlational learning process determines the consistent relationships between the
salient regions across images by taking into account the user’s rating of the images.

The learning process may proceed in a systematic manner to try to extract the relevant
relationships between the selected regions. On each pass of the algorithm, the system may try to
determine the relevant relationships across one attribute class by allowing that attribute to vary in
the selected images. For instance, on a first pass, the system may provide images that have
regions with similar spatial relationships and slightly varying colors. Based on the response of the
user, some of the valid color relationships may be determined. In a second pass, the svstem may
return regions with similar colors to the original input regions, but in different spatial arrange-
ments. As the process continues, the consistent relationships over the set of attributes may be used
to generate a qualitative class model. The qualitative model may then be used to probe into a large
database.

Figure 5.6 shows an example of the interactive learning process for a snowy mountain
image. The goal was to try to automatically develop a template that could classify the set of
snowy mountain images from this example. Figure 5.6(a) shows the example input image with
three salient regions highlighted in red. Figure 5.6(b) shows the low resolution version of the
image (8x8 pixels). Figure 5.6(c) shows the low resolution color quantized version of the image.
The color quantized image was created by comparing the intrapatch color components. The quan-
tization was computed in a slightly finer manner than described in the previous section. For

instance, the luminance axis has been quantized into several distinct colors, rather than just one.
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image # 114047 image # 114015 image # 114036
weight = 223 weight = 165 weight = 165
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image # 114028 image # 114058 image # 5065
weight = 142 weight = 132 weight = 124

image # 144045
weight = 118 weight = 115 weight = 105

image # 114018 image # 5020

image # 114008
weight = 158

image # 114053
weight = 119

image # 5053
weight = 99

FIGURE 5.6. Example of a first iteration of the interactive learning process. (a) shows the query image. (h)
shows the salient regions marked by the user. (c) shows the low resolution version of the query image. (d) shows
the color quantized version of the low resolution image. The images below the line are the result of a first query
based on the salient regions in the input image. The corresponding regions found by the algorithm are denoted

on each image in red. For each image, its number image and its similarity score to the input image are
reported. The seals denote the images which were chosen by the user for use in refining the class model.
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The algorithm uses a weighted combination of the color quantized values of the salient
regions and the color quantized values of the background to select a few images from the natural
scene database of 700 images which may be similar to the input image. In this first iteration, the
positions of the patches were allowed to vary slightly as long as they maintained their relative
spatial relationships. The goal was to retrieve images that were similar in spatial arrangement to
the input image but had a varving range of absolute colors. Figure 5.6 shows the twelve images
with the highest similarity score to the input image. The image numbers and similarity scores are
shown below the images.

At this point, the user may rate the input images. The returned images which were snowy
mountains and had the salient patches in roughly the right locations are indicated with a seal. This
information can be fed back into the system in order to extract the consistent relationships
between the regions in each of the chosen images.Table 8 shows the initial qualitative model
oased on the input image in Figure 5.6. The consistency measures in terms of percentages for the
relationship pairs over the color attributes are shown. The patches 0, 1, and 2 correspond to the
three patches in Figure 5.6(b) starting from the top. The possible values over one attribute are
patch i < patch j, patch i = patch j, patch i > patch j. Given this initial model and the input image,
the system may again probe the database, return some example images, and based on the user’s

response revise the model.
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TABLE 8. Initial qualitative model based on the regions in the query image in Figure 5.6

5.3 Implementing learning in a practical system

Figure 5.7 shows a database search/template learning protocol for a practical indexing
system, irrespective of how the model is generated (e.g. no segmentation, automatic segmenta-
tion, or user specified segmentation of regions). The basic approach is to probe a small number of
images on the first iteration of learning the class model. As the model is further refined, the sys-
tem may probe deeper into the large database of images. At the end of the learning process, the

refined model may be used to retrieve images from the rest of the database or other databases.
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FIGURE 5.7. Database search/template learning protocol for a practical indexing system

5.4 Discussion

In this chapter, we have discussed several techniques for learning a scene class from a set
of examples. From our experiments, we found that an initial region grouping step was highly ben-

eficial for determining the relevant consistent relationships over a set of images. We discussed
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how region grouping may be performed via quantitative and qualitative information. In an inter-
active learning approach, we demonstrated that a qualitative model can be generated based or.
corresponding regions in a set of example images. We suggested how this model may be refined
through feedback from the user.

There are several other issues that need to be addressed in learning a scene class from a
set of examples. Our learning technique builds up a union of the most likely relationships
between salient image regions. We need to learn the appropriate quantitative bounds on those
relationships to limit the scope of the model. We also need to expand our techniques to learn dis-
junctions of relationships (e.g. the field region should be browner or greener than the sky region).
All of our learning techniques incorporate information from positive examples. However, we may
fruitfully use negative examples in the learning process. They may be used to better delineate the
boundaries between classes. They may also be used generate negative nodes or negative relation-
ships in the class model which explicitly encode that these nodes/relationships should not be

found in images which are instances of the class.
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e ad Conclusion

In this thesis, we presented a novel approach to classifying scenes. The goal of scene clas-

sification is the following: given a specification for a scene class, either as a symbolic query or as
a set of example images, to retrieve other images which would perceptually be categorized as
instances of the class. Automated scene classification techniques are eminently suited for the
applied problem of image database indexing. With the increase in the number of digital libraries,
there is a need for automated comprehensive annotation and robust indexing systems.

One possible method for classifying scenes is to try to recognize each individual object in
the scene and then based on some inference procedures evaluate the type of scene the image rep-
resents. This solution is not attractive because object recognition is a difficult problem, especially
when the objects are embedded in a complex scene. One of the main questions we attempted to
address was whether scene classification could proceed without a prior step of individual object
recognition.

In the first chapter we discussed the problem of scene classification. Scene classification is
difficult because members of one class may differ greatly in their color, texture, illumination,
viewing position, and geometry. Our goal was to try to establish what characteristics of a scene
best describe the content of the scene and whether these characteristics could be used to capture
the essence of a scene class.

In chapter 2, we discussed how global spatial configuration is important for scene classifi-
cation. We motivated our approach by showing several examples whereby changing the spatial
configuration of the scene changed the perception of the scene. In this chapter, we suggested that
scene classification could proceed before object recognition. Therefore, scene classification could
be based on image regions, which are viewed as two-dimensional patches with spatial, photomet-
ric and texture attributes, rather than semantically meaningful image parts. We argued that neither

absolute spatial configurations or cumulative statistics of these regions was necessary or sufficient
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for scene classification. Instead, we suggested that relative spatial organization may be critical for
models of scene classes. Additionally, we suggested that image details were not crucial for image
classification and therefore may be unnecessary for most class models.

In chapter 3, we discussed that other relative measures of image patches might be impor-
tant to describe scene content. For instance, we suggested that the absolute photometric values of
image regions were not crucial to the description of a scene class, but rather the direction of their
contrast was important. In the same chapter, we presented a detailed description of qualitative
models.

In chapter 4, we presented a novel approach to scene classification, entitled “configural
recognition”. This approach draws heavily from the inferences made in the prior two chapters.
The approach to classification uses global scene organization, proceeds directly on the image
without the need for complex abstractions, and represents class models as sets of qualitative rela-
tionships between low frequency image regions. We described how such models can tolerate
many commonplace scene distortions, such as those from changes in scale, illumination, viewing
position, and geometry.

Our approach differs significantly from the prior work in the area of scene classification.
Most of the prior work uses quantitative image statistics such as color, texture and shape to com-
pute image similarity. Most of these statistics are based o high frequency image detail. We
showed several demonstrations that the quantitative nature of these approaches could not over-
come the problems of general scene classification and therefore in most cases were not good mea-
sures of scene content.

We discussed how the configural recognition technique could be applied effectively to the
problem of natural scene classification. We demonstrated our approach by hand-crafting four nat-
ural scene class models, one for snowy mountains, snowy mountains with lakes, fields, and
waterfalls. We tested each of these class models on a database of 700 natural images and com-
pared the results to human perceptual judgements. We found that the templates had an impressive
ability to generalize over a large perceptual class. The templates were able to discriminate
between many images of different classes, some of which had the same color and textural charac-

teristics but in incorrect configurations, resulting in low false positive rates. We showed that the
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template matching process was computationally efficient due to the use of low resolution infor-
mation and simple models. Additionally, we suggested how other attributes such as texture could
be incorporated into the models to classify other types of scenes containing man-made objects.

In chapter 5, we discussed how such class models could be learned automatically from a
set of examples. We presented three approaches for learning a class model. We also presented a

novel technique for region grouping based on relative intrapatch relationships.

In summary, the thesis makes four contributions.

* We introduced qualitative image representation strategies that allow us to capture mean-
ingful scene content, which has not been demonstrated in the prior work. The representation strat-
egy also provides a robust metric for inter-image similarity.

 The approach presented is able to incorporate global scene configuration in a manner
that allows subsequent generalization to other members of a scene class. In addition, the approach
is computationally efficient.

* We demonstrated the approach in a practical system for natural scene classification.

* We also described methods to learn qualitative scene classes from a set of examples.

Although configural recognition appears to be a promising strategy for the difficult prob-
lem of scene classification, we need also to be aware of its limitations. For instance, the technique
is not suited to make fine quantitative discriminations, such as between different types of moun-
tains or various varieties of grass. The technique is not well suited to describe classes of function-
ally defined objects. Additionally, the technique is not able to classify scenes which depend on
object recognition, such as office scenes or living rooms.

In the next chapter, we discuss how the configural recognition approach may be applied to

other domains.
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§34 Looking Ahead

The success of the configural recognition approach for the problem of natural scene clas-

sification suggest some interesting ideas for future research. In this chapter, we discuss how scene
classification via configural recognition can aid object recognition in a complex environment. We

also suggest that the configural approach may be adapted for object classification.

7.1 Object recognition in scenes

The goal of much computer vision research is to identify objects in scenes. The scenes
may contain multiple objects in a variety of configurations and under varying viewing parame-
ters. Traditional approaches to the problem of recognizing objects in a scene search the whole
image for salient regions which might contain one object. This action is often described as
“focusing the attention” of the visual system. The focus of attention mechanisms usually involve
looking for regions in the immage that contain colors or geometrical features that might belong to a
single object or a specified target object.

Many researchers have suggested that if the context of the scene is known, the complexity
of the object recognition problem is greatly reduced in at least two ways [47][60]. First, the type
of scene dictates the kind of objects that are usually found in such scenes. For instance, beach
scenes may contain beach balls, beach chairs, and people, but rarely do they contain objects such
as planes, sofas, or phone handles. Second, the scene also dictates where the cbjects associated
with that scene might be positioned in the image. For instance, beach chairs are usually placed on
the beach. They are sometimes found near the water. But they are rarely in the sky. Thus, if the
type of scene is known, the range of objects and number of possible locations for the objects is

constrained, thereby reducing the complexity of the object recognition problem (see Figure 7.1).
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FIGURE 7.1. The four pictures in this figure all beach scenes. One would expect to find beach chairs in the
scene, but not telephones. Additionally, the beach chairs are most likely to be on the sand or in the water rather
than in the sky. Studies such as those performed by Biederman have found that observer's recognition
performance in flashed presentations is impaired by these incorrect spatial contexts(8][9]. Even though these
pictures are not too ccmplex in terms of their perceptual content, together they make the point that knowing
scene context aids object recognition by reducing the set of objects likely to be found in the scene and also by
reducing where those objects may be located in the scene.

The idea of establishing scene context before object recognition is one of the themes of
this thesis. The configural recognition approach to scene classification, therefore, imght be used
as a precursor to and also an aid to object recognition. Using the configural technique we can first

classify a given scene, thus, providing us with the scene context. Secondly, the template which

detects the scene can be used to label the regions of thc scene, such as sky water and sand. The
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configural recognition approach to scene classification, thus, provides the information regarding
the scene context and the approximate position of the some of the scene parts. With this informa-

tion, the complexity of the problem of object recognition may be greatly reduced.

7.2 Static object classification

Scene classification and object detection may not be fundamentally different types of
operations that require separate types of processing. Our approach to scene classification is to
detect a qualitative pattern in low frequency regions over the majority of the image. Object detec-
tion strategies may use the same approach, but look for qualitative patterns in sub portions of the
image.

Sinha has already demonstrated the use of qualitative models for detecting frontal views
of faces under varying illumination conditions [57]. We suggest that qualitative view based mod-
els can be designed for other objects such as cars, people, planes, and steam trains.

Figure 7.2 shows an example of a qualitative model for side views of vehicles!. The quali-
tative model is coupled with geometry information specifying the shape of the wheels. The model
is matched to subportions of low frequency images (/5x/5 pixels). The wheel detectors are used
as verification devices after the qualitative model has found a potential match. (The wheel detec-

tors are applied to high frequency image data at the locations specified by the template).

A

A
A A
: * NP
C

-

FIGURE. 7.2. Qualitative model of side views of vehicles. The model consists of 7 regions, classified into three
types. The model specifies that the regions labeled A should be similar and different from the regions labeled B
and C. In addition, the regions labeled B should contain circular regions.

1. The vehicle detector was designed and tested in collaboration with A. Lakshmi Ratan of the MIT Antificial Intelligence Labora-
tory and P. Sinha of the MIT Department of Brain and Cognitive Science.
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The model was tested on over 100 images. Figures 7.3, 7.4, and 7.5 show some of the

results.

FIGURE 7.4. Some false negatives not detected by the vehicle template.
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FIGURE 7.5. Some true negatives not detected by the vehicle template. Non side views of cars are considered to
be true negatives.
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