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EXPERIENCING MATHEMATICAL PROVES

SYNTAX OF AN ASTROLABE

BY

FRANCESCA LIUNI

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE ON MAY 1 9, 2016 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE IN ARCHITECTURE STUDIES

ABSTRACT

The goal of thesis is discussing the way historical scientific instruments are exhibited in Art or
Science Museums. The astrolabe and the related mathematical theories, as developed in the
Arabic and Persian tradition between X-XI Century, are taken as emblematic case for this
analysis. The proposed solution is the design of museum spaces which translate the language
of this instruments through the syntax of the space itself.
The debate has its premise in Benjamin' concept of historical experience which is essential not
only for clarifying our approach to the discipline of History of Science but it is also a pivotal
point for addressing the question of how we can understand these objects. A historical
scientific instrument is the by-product of the scientific knowledge of a specific time and place.
It is a synthesis, a representation which concentrate the plurality/multiplicity of knowledge in
the materiality of one object, it is the picture of Benjamin's Concept of History. The knowledge
the astrolabe embeds is the scientific knowledge of the Arabic and Persian mathematicians
of X-XI century and its construction is a tangible proof of the exactness of mathematical
theorems it relies on. Hence, the language of this object has to be the language of
mathematics. Its terms and primitives compose the grammar of the axiomatic method
(derived from Euclid) and the proof is the syntax of this linguistic system. The design proposes a
three-dimensional version of mathematical proofs of some of the theorems used for the
construction and functioning of the astrolabe. It is an attempt of bringing the proof from the
two-dimension of the paper to the three-dimension of the visitor in order to provide him an
experience that is the spatial experience of a proof brought in his three-dimension. The
architecture visualize the process of reasoning of the mathematicians by creating a space
that looks like a sketch. The sketch is tool we use for visualizing our process of reasoning, hence
the design has to follow the "rules" of sketching and materialize its lines.

Thesis Supervisor: Azra Aksamija
Title: Assistant Professor of Art Culture and Technology
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INTRODUCTION

Knowledge stems from observing and questioning. "Logic is the very

foundation upon which all human knowledge rests" 1 .

This is an effective synthesis of the essence of the concept of science for the

Islamic scholars during the so-called Golden Age of Islamic Science (X-XV

century). Answering is not a fundamental step in the process of learning; the

main achievement a man should aim is being able to develop a process of

understanding based on what al-Ghazzali defines "the necessary stepping

stone to eternal bliss" 2, namely logic.

This statement implies that, according to Islamic scientific method3, knowledge

has to be achieved through a consequential logical process in which nothing

can remain not proved, or better, nothing can remain not questioned.

All the Islamic scientific production during this period is based on this concept

and their consistent outcome in the field of mathematics 4 is a direct

consequence of their "scientific method".

Leading a research assuming that any statement has to be doubted and then

proved following a consequential chain of reasoning encourages them to find

a way to make their result clear and especially repeatable. Namely, anyone

would like to re-check the result can follow the logic consequentiality of the

mathematical demonstration which was based on the Euclidean axiomatic

1 F. ROSHENTAL, p.205
2 lbidem, quoting Al-Ghazzali, p.206.
3 The term is historically not applicable to the pre-modern Islamic tradition, although in this
paper we are going to cast some doubts on this idea.
4 Mathematics as a discipline included geometry and astronomy.
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method and anyone would like to have a tangible proof of a theorem can use

a scientific instruments which has been built according to the theorems

axiomatically proved.

The repeatability of a measurement is the base of the scientific intellectual

honesty. A scientific community, such as the Arabic and Persian community of

the X-IV century, which claims as an assumption of its research method that

the exactitude of their reasoning is based on a thorough and constant process

of proving cannot help but rely on the use of instruments.

The Arabic and Persian community between the X and the XIV century not

only produces and impressive amount of scientific instruments but also

developed a consistent corpus of theories on the construction of these

instruments.

A large part of these instruments is currently preserved and exhibited in Art or

Science museums as a tangible or visible synthesis of how they developed their

"scientific method".

Herein it is where the past communicate us its story and where we listen. Herein

it is where we learn from the past.

Here it is where my inquiry starts and where I met my limits and the limits of our

communication strategy, where I challenged those limits and I followed my

curiosity. Where I asked to myself if and how an architect can play her role in

this convoluted process of past/present communication.

10
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PREMISE

The way historical scientific instruments are nowadays exhibited in the art

museums or history of science museums entails a descriptive approach to

historical objects. Highlighting aesthetic, chronology or craft of these objects

(policy of art museums) or explaining their functioning (policy of science

museums) is a procedure that refers to a vision of history fixed in time, a

historicist method that is constraining for scientific objects. Museums' historicism

describes the past "how it really was" 5 ignoring that, in order to understand a

historical scientific instrument, "communicate" with it and translate its

language we have to dialectically study how and what made aesthetic or

functioning possible or necessary: what is the frame of their formation.

The frame is the apparatus of knowledge behind the object and its evolution

in the context of history of science. Therefore, the following questions are 1.how

can we read this apparatus, 2.how can we use museums for making it legible,

and 3.what will be the means for doing this? The answer, by recreating a

historical experience.

Therefore, the role of the museum should be materializing a historical

experience by making this apparatus of knowledge embedded in the

instrument legible.

Hence, the first step has to be defining what is a historical experience.

12
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1. THEORY

1.1 PHILOSOPHICAL FRAMEWORK. CREATING AN HISTORICAL EXPERIENCE

First and foremost, the Jetztzeit6 as locus of the historical construction. The

present (Jetzt) is the place where History stands as a synthesis and where the

historian depicts aan experience with it, which stands alonen 7 .

In Benjamin's On the Concept of History8, experience is a meeting between

past and present where one renounces to the appropriation of the other; the

two terms live in a mutual dimension of distance and proximity where none of

them prevails. Hence, the role of the subject, as observer of the past plunged

in the perspective of the present, is attenuated by the experience because

the subject constructs himself through the experience and is no longer a

premise to it.

According to this statement, the past does not enlighten the present, but it is

to be held fast ((only as a picture, which flashes its final farewell in the moment

of its recognizability)). Through this picture what has been (the past) join the

Jetzt (the here-and-now, the present) creating a constellation, an unicum

composed by a system of points which have different coordinates in space

and time but which come together as a projection on the plane of the curved

sky observed by the subject. Missing one of this points would affect the image

6 Literally, "the time of the present". Walter Benjamin uses this term in the Concept of History
(XIV) for comparing the homogeneous and empty time of the historicist and the here-and-
now of the historical materialist.
7 W. Benjamin, 1950, XVI.
8 As published posthumous in 1950.
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of the constellation, that is, the past will disappear as soon as the present will

not (recognize itself as meant in it9)).

As a consequence, the picture can be defined as a dialectic image

happening in an instant of time, it is what Benjamin calls the dialectic of

immobility that we experience dealing with historical objects.

The introduction of Benjamin's discourse in the debate on historical scientific

instruments, and in the larger field of History of Science, is not only fundamental

for clarifying our approach to the discipline but it is also a pivotal point for

addressing the question of how we can understand these objects.

A historical scientific instrument is the by-product of the scientific knowledge of

a specific time and place. It is a synthesis which concentrate the plurality and

multiplicity of knowledge in the materiality of one object, it is the picture of

Benjamin's On the Concept of History. Moreover, science itself is dialectic, in

the literal sense of being able to 8io-Myiv 10, to be a diachronic infinitesimal

addition and revision of concepts which, at a specific time, ends up in a

synthesis called invention/discovery. This latter is not an epiphany but it is the

result of an always ongoing relation between former scientific studies and

current researches.

If we follow this reading of historical instruments, it becomes clear that, in order

to understand them we have to preserve a dialectic approach to the past and

also keep in mind that, if we consider the instrument as a physical

9 lbidem, V.
10 From 6i0 , through which defines its phenomenological-diachronic path, rejecting any stasis
of the formal-logic objectification and Myuv, collect, gather, pick up related with the intention
of dialectic method of systematizing by moving from the analytic distinctions of multiplicity to
the unification of categories of ideas.
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correspondent of Benjamin's picture, its importance has to be something

which provide us a dialectic view on the present/past relation. This cannot help

but being the scientific knowledge that made its construction possible.

In order to analyze this issue into details I decided to consider the astrolabe, as

developed in the XI-XII century in the Arabic and Persian tradition, an

emblematic case of study due to the fact that it is one of the main example of

this misinterpretation of object's language and failure in communication that

both museum of art and science share.

In order to clarify why we can talk about a failure in communication, I will briefly

explain what is an astrolabe, how it is composed and what intuitively should

be the best way to observe or understand it.

15



1.2 CASE OF STUDY. THE ASTROLABE

1.2.1 FROM A THREE-DIMENSIONAL MODEL OF THE UNIVERSE TO A BI-
DIMENSIONAL SURFACE.

Our understanding of scientific tools is theoretically undermined by the

compelling necessity of the use and hence, even though instruments are a

material transposition of a theories, when and if they achieve the goal of

performing their own function, from the perspective of the user become pure

objects and no longer vehicles of explaining, performing and proving physical

or mathematical concepts.

Briefly, we use a clock only for the necessity of knowing what time is it and we

utterly ignore how it gives us this information.

Nevertheless, in this case the straightforward language of mechanic supplies

to our negligence reconnecting principle and function. On the contrary, when

we use a mathematical instrument we would never be able to intuitively

understand it. The abstraction of mathematics prevents us to visually connect

what we see with what it means.

The gap between physical representation and theoretical construction is truly

consistent, insomuch as it not only obstacle our understanding of the

instruments but also our possibility to use it. Namely, when we approach to a

mathematical instrument, our comprehension, even of its use, is not intuitive

(as in mechanical instruments) but it requires a deepened analysis and a

previous knowledge of the concepts behind its functioning.

16



This is a feature common to all the Medieval Islamic instruments, in contrast with

the mechanical devices, and this is the reason why in order to answer to our

general question (how can we display a scientific instrument? What is its

language and how it "communicates" with us) is more useful to solve our

problem with a mathematical approach: we need to build a frame of

reference, to make our assumptions and to use a standard case in order to

demonstrate our thesis.

Therefore, we chose the chief of the astronomical and also mathematical

instruments used in the Medieval Islam and which embodies, in our opinion, all

the contradiction on which we have reflected above: the astrolabe.

We start by examining its approach as mean of communication for science

(frame of reference), we briefly define its function and how it works

(assumptions) and finally the graphically explain its geometrical construction

(demonstration) in order to show where lies its inner contradiction and where

how it explains its hypertext character.

17
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of Harvard Collection of Scientific Instruments (photo by Francesca

The astrolabe is de facto a radical example of this disconnection: between the

phase of using and the phase of making (seen as thinking the object) there is

a factual disproportion. It cannot be ascribed in the lists of machinery, neither

in the list of tools or devices. Even ifs it performs a measure, and at this extent it

literally satisfies its role of instrument, it does not "perform its knowledge". At the

18



first approach with the instruments, the apparently confused interpolation of

numerous curves on its surface is not able to intuitively communicate the

theoretical apparatus behind it. If we observe an astrolabe, assuming that we

know that it is used for measuring the altitude of celestial objects and that we

also know how to do it, we cannot understand that it is a plane representation

of the Celestial Sphere and how this sphere works.

Herein lies its inner contradiction: its complexity, aimed to make it an extremely

precise measurer, deceives it preventing its ability to communicate.

Metaphorically, it is a class board shown to blind students.

Indeed, the astrolabe is officially a tool/instrument/device whose aim should

be simplify and make accessible to everyone its knowledge, or better, explain

it to whom want to learn.

An instruments that contradicts its own nature of instrument as democratic

simplifier, can be still defined instrument?

From a theoretical perspective the astrolabe is a unique and from an

epistemological perspective it belongs to the family of computers, a not simple

simplifiers which encapsulates different level of information arranged as a

hypertext.

We could easily object that there is a great deal of instruments in the history of

science which can be listed in this category. Therefore, to be more precise,

what makes the astrolabe unique is not its computational approach to

19



knowledge but rather the fact that it uses this type of approach in the X

century11 .

The main achievement of this instrument is de facto its being precursor of time,

more than its construction and its methodology to explain embodied theories

is not its only cutting-edge feature.

Indeed, its inner conflict seems to be a possible reflection of an ongoing

contrast in the field of Islamic astronomy in the Middle-Age: the systematization

of mathematics as independent discipline and its consequent separation from

observational astronomy.

If we consider that "theories express knowledge through the descriptive and

argumentative functions of language" and "instruments express knowledge

both through the representational possibilities that materials offer and through

the instrumental functions they deploy"12 , we can easily notice that the

astrolabe express its knowledge by using both methods. Knowing that, in the

first definition, the descriptive function are the one used by mathematics and

the argumentative ones can be referred to the language of geometry, we can

try to suggest what generates this contradiction: the astrolabe acts as an

instrument satisfying its function through assemblage of movable copper

pieces, but it uses the synthetic abstractions of mathematics and geometry to

explain its knowledge.

1 The astrolabe were officially "invented" in Greece before this century. However the
advancement that it reaches during the Islamic period make our analysis possible.
12 D. Baird, Thing knowledge, p.131.
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A visual demonstration of this double identity becomes clear in observing its

construction. For this reason the last step of our study is explain the geometrical

construction used to trace the curves on the surface of the astrolabe. All the

drawings have been developed trying to connect three-dimension and bi-

dimension in order to understand the connection between how they visualize

the Universe, how they use the stereographic projection as mean of

construction and to what this apparatus corresponds on the surface of the

astrolabe. Moreover, I have added some three-dimensional reproduction of

the conic projection which can help the reader to intuitively understand the

geometry.

In order to clarify our analysis, we are going to describe the tympanum's

surface (PLATE 2 and 3) and the rete's surface (PLATE 4).

The introductory image provides a representation of the way Islamic

astronomers visualized the Universe during the Middle-Age. The spherical

composition is based on translated original texts and late and contemporary

commentary cited in the bibliography.

As we know, the shape of the Islamic Universe is strictly based on the

Aristotelian and hence Ptolemaic model. The point 0 in the center of the

sphere represents the Earth, located at the center of the Universe according

to the geocentric theory.

The medieval Islamic idea of Universe is composed by two concentric spheres.

The inner smaller sphere is the Earth (0). The outer greater sphere is called

Celestial Sphere. The stars (S) are located on this latter and they are considered

21



as observed from the Earth, which is tied to the geometrical center, that is, it

does not rotate on its axis and it does not orbit around the Sun. On the contrary,

the external sphere rotates clockwise and hence all the celestial objects,

considered fixed on this surface, follow the same movement.

In order to understand how this system we need to explain its frame of

reference.

A frame of reference is the set of coordinates which is built as a mathematical

model to locate geometrical entities. Nowadays, in astronomy, we distinguish

four different frames according to the coordinates chosen to determine the

direction or the position of objects in this geometrical space: horizon system,

right ascension system, hour angle system, ecliptic system. These information

are usually expressed in terms of two orthogonal coordinates or polar

coordinates. The first one is reckoned from a primary reference plane and it is

usually measured orthogonal to it, whereas the second one is reckoned from

a secondary reference plane but it is measured on the primary plane13 .

If we reconsider our double-sphere concentric model, we can identify as

primary reference plane the so-called Celestial Horizon (blue plane),

geometrically the plane orthogonal to the generative axis of the Celestial

sphere which passes through the center and intersect the surface of the sphere

tracing a circumference called Celestial Circle. The secondary reference

plane is the Observer Celestial Meridian, the plane orthogonal to the primary

22
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whose intersecting circumference passes through the eventual location of a

star (considered a point of the Sphere surface), the location of the observer on

the Earth (Observer Meridian, that is the circle passing through the geometrical

point where the observer is located) and the two poles of the Celestial Sphere.

These latter are called Zenith and Nadir, North and South respectively,

intersection of the main axis of the sphere with the surface. The intersection

circumference is called Vertical Circle.

Therefore, the direction vector of the star is the straight line connecting the

observer (0) to the star (S), whose coordinates in the Horizon System are

expressed with two parameters: the Altitude and the Azimuth.

The altitude a is the angle between the vector direction OS and the Celestial

Horizon, measured in degrees (00 to 900 because we consider only the portion

of celestial sphere that we can see up to the plane of the Horizon, that is half

of the sphere, -90' if we consider the Austral Hemisphere) in the plane of the

vertical circle through S. Its complementary angle is z = 90'-a, called Zenith

Angle.

The Azimuth A is the angle between the Vertical Plane of S and the Observer

Celestial Meridian, measured from North to East (00 to 3600) on the Celestial

Horizon.

The Celestial Equator (red plane), the plane intersecting the Celestial Horizon

is a geometrical extension of the Earth's Equator, orthogonal to the North

Celestial Pole (NCP) and South Celestial Pole (SCP).
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The stereographic projection used by the astrolabe (right image) is, in our case,

a projection from the pole P (coincident to the South Celestial Pole) on the

Equatorial plane. For this reason we have rotate our model in order to better

visualize the projection. The scheme helps to understand how this type of

projection works. Briefly, we consider as projected points all the points of

intersection between the projective line and the equatorial plane. For

example, h is the projection of H and h' of H', horizon.

PLATE 2 represents the construction of the horizon and the almicantarats

(circles of equal altitude). The horizon is the blue plane and the almicantarats

the orange parallel plane. We have to notice that the maximum circles which

give us the edge of the astrolabe is the stereographic projection of the Tropic

of Capricorn. The eccentric circle visible in the projective plane is the Horizon

HH' and the concentric circles inside its parallels.

The three-dimensional drawing at the bottom of the page is a representation

of how we can obtain this circles on the horizontal plane rr by imagining to

reason with conics' intersections.

PLATE 3 is the geometrical construction of the projection of the circles of equal

azimuth, planes orthogonal to HH', horizon. In this case the geometric

construction is not so straightforward. As usual, we need to trace our Tropic of

Capricorn as edge of the astrolabe, and the horizon as line which cut the

azimuthal circle defining what stars of the rete are visible above the horizon at

a defined time and what is their angle.
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This construction starts from the projection on the Equatorial line of Zenith and

Nadir, z and n, respectively. The center of the line which connect these two

point identifies a straight line orthogonal to the Equatorial plane. On this line

we can draw the center of azimuth. In our example we have divided our

circumference with 150 angles. Knowing that the sinp=ab/ac, that is the

cathetus of the right-angled triangle abc (between z' and Cp) ab=sinqp ac.

Hence, since that they know the values of the sine of angles until 0.5, they

could easily trace the length of ab and find the center of azimuth Ci5o.

The same process is used for all the centers of azimuth even though we could

also divide the main circumference with a goniometer and find the

correspondent centers tracing a straight line from z' through the extremity of

the arc of circumference drawn by the selected angle.

On the right of the image an upper view of the three-dimensional model of the

celestial sphere which can help us to prove that if we were able to observe

the Universe from the zenith, what we would see on the Equatorial plane would

be a series of azimuthal circles, curved edge of the correspondent meridian

planes. In this figure we also show how to measure our azimuth starting from

the North (Celestial Meridian) and going toward east.

PLATE 4 shows the construction of Ecliptic, the path of the Sun, the Tropic of

Cancer and the Tropic of Capricorn. In the case of Tropics we have a perfectly

orthogonal conic projection, instead the ecliptic's plane is inclined by 23.50,

hence is projection will be eccentric.
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1.2.2 OUTLINE OF THE CURRENT EXHIBITING PRACTICE

This choice of the astrolabe as case of

study stems from a direct observation

or documentary research on

astrolabes' collections which led me

understand how much my experience

as a visitor was constrained by the

curatorial practice

The consistent astrolabe's collection of

the Doha Museum of Islamic Art, the

collection of the Museum of Science

and Technology of Istanbul, the Oxford

Museum of History of Science are just

few examples of what has been

defined so far an historicist approach:

the astrolabes are exhibited in glass showcases that the visitors can generally

observe only from one side; they are labeled with catalogue numbers and

information about chronology and material. If the collection own more than

five or ten pieces, it is possible to find a panel with a short explanation on the

use of the instrument, which most of the time does not go far then "the

astrolabe was an instrument used for measuring the altitude of celestial object

and locating it in a space/time map traced on the surface of the instrument

itself".

26



Museum of Islamic art, Doha, Qatar (photo by Denxiogamarcha).

This is the policy of the Art museum or museums of History of Science. The value

of the object is essentially recognized to be its craft (generally the astrolabe

were elegantly decorated with flowers motif) or simply its significance as a

document of the past. Its role as scientific instrument is utterly omitted.

Conversely, the exhibition strategies of Science Museums go in the opposite

direction. Along with the original object is often exhibited a reconstruction with

which the visitors can play in order to simulate the actual use of the instrument.
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Museum of Natural History, New York (phot credit:

This last exhibition strategy better deal with the nature of the object itself by

highlighting its value as a scientific instrument more than as an art object. It

breaks the historicist approach of the Art museum trying to engage the visitors

by let him re-experience the way the instruments was used in the past.

Nevertheless, this methodology causes a total loose of connection with the

past. The object is reduced to an old-fashion toy and there is no interest in

explaining the actual historical context in which the object has been

developed and that is an essential part of it. The visitors interact with a copy of

the original object and use it in a copy of the real sky (see fig.), as happen in

the Museum of Science and Technology in Islam of Saudi Arabia.

Recreating the context of use of the astrolabe and letting the visitors playing

in an interior space (decorated as a celestial sphere or not) is a dangerous

attitude: it destroys not only the connection with the history embedded in the

object but also the experience of observing the real sky and the relation of the

28
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instrument with nature. Trying to understand and systematize nature is the

moving factor at the base of the intention of constructing an astrolabe. It is

also the moving factor of all the Arabic and Persian scientific community

between the X and the XIV century. The reason why the felt the necessity of

re-build the Greek prototype of an astrolabe and improve it.

Therefore, on one hand we have the pure historicist approach of the Art

museum and on the other hand we have the over-educational flattening

strategy of science museum.

What both miss is what I have defined at the beginning of this thesis as the

dialectic approach. If we still want to believe that the aim of museums (art or

science museums) is using the past to inform the present by creating a

communication between the exhibited objects and the visitors, we need to

understand what each objects belonging to a collection has to communicate.

Then, what "language" is it using for communicating.

I am not going to discuss herein the difference between the language of art

and the language of science, but it is necessary to state that a difference exists

and that it has its roots in the way they communicate.

Whereas an art object has an intuitive and immediate language, a scientific

object requires a slow and complex understanding of all the theories

developed for made its construction possible. Therefore, when we observe a

scientific instrument we are observing an endless apparatus of knowledge

synthetized in one instrument.

This is the reason why when we exhibit a historical scientific instrument we

should find a way to make this apparatus legible.
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1.3 MATHEMATICAL FRAMEWORK

The astrolabe, as scientific instrument, is based on mathematical14 theorems

and its construction is a tangible proof of the exactness of its theoretical

propositions.

As Frege writes in his Conceptual Notation a mathematical proof (( tests the

validity of a chain of reasoning and expose each presupposition which tends

to creep in unnoticed, so that its source can be investigated)) 15 Therefore, the

goal of a proof are two: 1. giving certainty to the proved proposition; 2.

showing the foundations on which it has been proved in order to make the

process of proving repeatable and hence objective.

Why defining the concept of proof is essential in the field of Arabic

Mathematics and in the case of the astrolabe?

The first statement of most of the treatises of mathematics developed in the

historical context we are discussing is based on a sort of methodological dictat:

proving again and in different ways what the Greeks had developed during

the previous centuries. Accordingly, Arabic mathematics has its ontology in the

concept of proof which ends up to be a sort of methodology of approaching

to every mathematical problem. It is utterly based on the concept of proof

14 We have to consider that even is the astrolabe is an instrument for astronomical observations,
at that time astronomy was part of mathematics. Moreover, according to the classification of
F. Charette there were different types of astronomical instruments developed during the XI-XII
century in the Islamic area: mathematical, graphical, trigonometric and observational
instruments. The astrolabe belongs to the first group (explaining why would involve a larger
discussion on scientific instruments that is not part of our research).
15 G. Frege, Conceptual Notation, p.104.
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probably seen as a way to challenge the undisputable preeminence of the

Greek science.

Therefore, proving becomes a recurring statement for Arabic mathematicians

who thoroughly translate, apply and extend the Greek model of theorems'

demonstration. Moreover, between the X and the XIV century (during the so-

called "Islamic Golden Age of Science") mathematics become an

overwhelming presence in the field of science. The great importance Arabic

mathematicians gave to the concept of proof has its roots in a sort of constant

"obsession" for calculating everything and then using logically developed

proofs for demonstrating the exactness of their calculations. The astrolabe is

an example of this effort of "mathematizing" the space: it is technically a

representation (by stereographic projection) of the Universe (or what was their

idea of Universe) on a bi-dimensional surface. A universe where everything had

its place in a perfect geometrical construction and hence everything could

be calculated.

This strictly structured system finds in mathematical proofs its means for

checking and justifying the correctness of the system itself. In order to

guarantee the precision of their construction they needed a method of

proving that was as constrained as their mathematical model that is the

axiomatic method.

The mathematics the astrolabe refers to inherits the Euclidean axiomatic

system (due to the Greek legacy1 6) which is, as described by Hilbert at the

16 The Arabic and Persian science has been developed in continuity with the Greek one.
Scientists translated all the Greek texts in Arabic and Persian and started to develop their own
science.
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beginning of the XX century, composed by terms and primitives combined to

create axioms. The axioms contain the fundamentals proprieties of the objects

that constitute the primitive concepts of the theorem itself.

Nevertheless, Euclid axiomatic method also includes what Hilbert calls

intuitions; Euclid used proprieties belonging to objects of which he had

knowledge of (for example line, points, etc.) and his system worked perfectly

only as long as the not-defined terms (primitive terms) satisfied the axioms.

The structure of this system based on terms not to be defined and established

as "conventions" 17 necessary for create meaningful propositions resembles a

linguistic system (indeed it has been theorized by Frege and Hilbert in the

attempt of defining a language for mathematics). Therefore, if the astrolabe is

based and constructed on mathematical theorems using an axiomatic

method, and these theorems are structured as a linguistic system, then the

language the astrolabe uses and that we have to interpret is the language of

axiomatic geometry.

This mathematical grammar structures the language of the theorems the

astrolabe relies on. Hence, understanding its language is a process which

embeds the necessity of translating the language of an axiomatic system. Still,

whereas the axiomatic system is the grammar defined through terms and

primitives, the mathematical proof is the syntax of this language.
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2. THEORY IMPLEMENTATION

After outlining the theoretical framework we need to define how we can

implement it, that is how we can address the request of the materialist historian

and at the same time follow the instructions of the mathematician.

In which way does architecture manage this issue? What a designer can do in

order to translate the theory in practice? The answer is designing a space

which follow the rules of the mathematicians and visualize his theories by

shaping the space according to his rules. In this way we can obtain a space

which represent the process of reasoning of the mathematician and therefore

allows the visitors to have what we have defined so far a dialectic approach

to history: the visitor does not observe the object but he observes the

generative process the object, that his the evolution of mathematical concept

which made the construction of the object possible.

Hence, we have defined that we are going to implement our theoretical

framework using architecture as a tool. The design methodology will be

divided in two parts:

1) THE PRELIMINARY DESIGN PROCESS which involves defining what we are

de facto going to materialize through architecture, which mathematical

concepts and which rules are we going to follow in order to recreate a

perfect correspondence between mathematics as a theory and its

material translation into space.
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2) DESIGN PRINCIPLES. Which principles are we going to follow in

composing the architectural space, which material are we going to use

and why; how the visitor move in this space.
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2.1. CONVEYING HISTORICAL EXPERIENCE

If we need to recreate an historical experience which dialectically connects

past and present in the picture (in the Benjamin sense of the word) of the

astrolabe, we have to materialize a historical experience that enables the

dialogue among exhibited object and observing subject.

As we have stated in the first part of this thesis, recreating an historical

experience means making the apparatus of knowledge in which the object

has been developed and which allowed its construction legible.

In our case the apparatus, as we has already explained, is composed by all

the mathematical1 8 theories developed by the lively community of Arabic

scholars.

I decided to pick four of the main mathematical concepts as explained by Ibn

al-Haytham in the translated collection of Roshi Rashed 19 related with the

astrolabe and represent them by dividing the museum space in four parts. The

concepts selected are:

* Calculating the volume of the sphere

* The solid angle

* The concept of sine and cosine

* The stereographic projection

These concept are organized according to a precise path which lead the

visitors: 1. the general concept of the volume of the sphere, intended as the

18 It has to be noticed that mathematics included geometry and astronomy as subset of it.
19 R.Rashed, 2014.
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Celestial Sphere as shape of their Universe; 2. the relation between the sphere

and the observer, that is measuring distance of celestial objects on the surface

of the sphere (through the angles of spherical triangle) and measuring the

distance between the observer and the sky (through the solid angle); 3. What

geometrically meant calculating an angle (sine); 4. How these concepts live

behind the bi-dimensional surface of the astrolabe (the stereographic

projection).

The design is an attempt of bringing the proof from the two dimension of the

paper to the three-dimension of the visitor in order to provide him an

experience that is the spatial experience of a proof brought in his three-

dimension. The possibility of visualizing the proof improves the understanding of

the mathematical concepts the instruments uses and, at the same time,

materializes part of the scientific knowledge behind the instrument in a sort of

"conceptual explosion" of the object itself.
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2.2 CONVEYING MATHEMATICAL PROOFS

The language of the astrolabe, as we have stated above, is mathematics. Its

terms and primitive compose the grammar of the axiomatic method and the

proof is the syntax of this linguistic system.

The design translates this axiomatic system using architectural objects as

means of translation.

Therefore, if we consider that in this language, ((each primitive terms is usually

declared to be one of several grammatical types: an obiect, a relation, or a

functionn20, then, the primitive term which represents an object of the

axiomatic system serve as a noun of our mathematical grammar (points and

lines are examples of objects); the one representing a relation is the verb (for

example, lies on, intersect, meet); the terms representing a function is an

((operator)) applicable to different objects (for example the distance between

two points/objects)21.

Hence, our design is composed by numbered elements (such as the wooden

structure and the connected strings) which represents the terms or nouns of

our mathematical grammar. All these elements intersect each other creating

relation which are the verbs of our grammar (such as the distance between

the vertical pillar A 1, tangent to the surface of the cylinder circumscribed to

the actual sphere, and the center of the sphere is the radius RI of the sphere

itself.

20 J.M. Lee, Axiomatic geometry, p.24
21 lbidem.
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The grammar so structured creates propositions (with noun, verbs and

"operator"). The sum of all the proposition describes the syntax of the space as

a representation of the mathematical language of the astrolabe.

38



3. DESIGN

((Sometimes

architectures becomes

objects out of scale, they

acquire the size of a

coffee maker or the size

of a jalopy because they

are represented as ideas

and ideas do not have

dimension, they are not

measurable, they do not

obey to quantitative Conceptual representation

laws)). 22  of the design

Dealing with the representation of a mathematical concept means being able

to visualize an abstraction, an idea or something that does not have a visible

or direct correspondent in the reality. Any attempt of visualize mathematics

involves the use of geometry.

Geometry is the connection between abstractions and tangible and it is the

tool of architects use for shaping the space.

However, the design of the space we are proposing combine the abstraction

of mathematics to the rigor of geometry. The four space we are designing are

22 P.Portoghesi in Introduction to Aido Rossi, Disegni. 1990-1997, Milano, 1999.
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not only a simple representation of a geometry, but they are a mathematical

proof of a geometrical concept. Namely, what a visitor is going to see around

him, his space, is a strict geometrical space design by using the grammar of a

mathematical proof.

Nevertheless, we stated that we want the visitors to have what we have called

so far an historical experience and that this experience consists in re-living the

process of reasoning of the mathematicians which is developing the theorems

at the base of the construction of the astrolabe.

Namely, we have to represent the abstraction of a mind process which is

reasoning on the abstract concept of mathematics.

Therefore, the following question has to be: how can we visualize a mind

process?

In this specific case it is not only a matter of applying mathematics to geometry

in order to have a visual correspondent of it, but it is a matter of representing

the moment in which this happened. Then, how can we visualize a process of

reasoning? What the visual correspondent of this process?

The answer to this question is probably trivial for an architect: sketching.

Whenever our mind (architect or mathematicians) is thinking, our hand print

the product of this quick but consistent process on a piece of paper.

The design we are proposing let the visitors experience the cerebral ferment of

the mathematicians by leading him in a sort of "sketch architecture" where

any architectural element of the structure is visible and all the elements are

arranged together according to the rule of the grammar of our space. The
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grammar of our space is a direct derivative of the grammar of the

mathematical proof.

To conclude, the visitors live in a representation of a working progress drawing,

he lives in the mind of the mathematicians.
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1.1.1 6 MEMOS: LIGHTNESS, QUICKNESS, EXACTITUDE, VISIBILITY,

MULTIPLICITY, CONSISTENCY

In order to explain all the parameters and rules that our project has to

follow, I tried to analyze each features singularly. I would like to borrow

the 6 memos Italo Calvino used in his so-called American lectures in the

198523. These 6 memos were used By Calvino as leading principle for

discussing the future of literature in the technological era.

I would like to analyze my design following these principle because

paradoxically they are some of the principle that architects try to involve

in their design.

23 I.Calvino, Lezioni Americane, Milano, 1993.
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3.1 .1 QUICKNESS: SKETCHING. LIVING IN THE PROCESS OF REASONING

As we have stated in the introduction of the Design chapter, leaving in the

process of reasoning means leaving in a space which is a translation of a

sketch. The sketch is the visualization of the thinking of the mathematicians as

it is also the visualization of the creative process of the architect.

The main characteristic of a sketch is its quickness from which derives its

conciseness: the sketch follow the speed of reasoning and automatically

select the main information useful to summarize an idea in few lines.

How can we translate this idea into architecture?

In the case of our design the quickness it is not in the way we represent our

mathematical proofs in the space but it is a pivotal pint in the design process.

All the design has been realized by sketching on the paper and constructing

physical models which are not a direct representation of the architectural

design but a concise synthesis of how can the mathematical concept be

represented into the three-dimensional space of the visitors, which are the

main elements that constitute the architecture and at the same time highlight

the main lines' combination of the concept itself.

The construction of the physical model is the very first step of the design process

and the reason lays in the fact that in order to translate the process of

reasoning of the mathematicians into an architectural space I needed to be
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able to visualize only the essential part of the mathematical proof and then

quickly translate it into architecture.

Modeling by hand push you to reason about connection and construction: the

choice of the wood and strings or paper as a main material is also based on

the necessity of representing the sketch translation. The wood can be only cut

and intersect as the lines of a sketch intersects on the paper. The cotton strings

connected from point to point perfectly simulate the projection lines used in

any geometrical drawing.

The manual skills of making the physical model by hand without waiting the

time of a cutting machine or without previously plan what the part of the

design were going to look like, encourages the architect as a maker to be

quick as if he were sketching on the paper; he develop a progressive

construction which building methodology is based on a continuous problem-

solving process.

Finally, the models developed individually as representation of the four

concept, are not perfectly finish not only in order to suggest to the observer

the idea of the sketch but also because in the process of representing a

mathematical concept and at the same time doing architecture is not

necessary to complete the space but just to build enough of it in order to have

a suggestion of what the visitors are going to experience.

44



3.1.2 EXACTITUDE+VISIBILITY: FROM SKETCHES TO ARCHITECTURE.
TRANSLATION OF A DRAWINGS AND THE GRAMMAR OF THE SPACE

The exactitude is the precision of the construction and the thorough

correspondence between architectural objects and lines of the bi-dimensional

geometrical proof.

The exactitude and the rigor is a requirement of any mathematical proof.

Hence, it needs to be a principle of the architectural translation of the

mathematical proof.

Moreover, whereas in the mathematical demonstration every step has to be

clear and consequential and each word has to be defined at the beginning

according to a set of preliminary definitions, in the architectural design every

element has to be visible in order to create a "structural clarity" where every

element of the design is legible.

The visibility becomes a theoretical correspondent of the clarity of the

mathematical proof. Each element, joint or intersection of the structure of the

project has been designed in order to be visible not only for proving the

exactitude of the construction (built as a correspondent of the geometrical

drawing used for developing the proof) but also for highlighting a "structural

clarity" which resemble the wireframe profile of a sketch.

The architecture of the building is mainly a discrete structure composed by

pillars designed as a system of steel beams and wooden timbers.
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The pillars itself is composed by two wooden timbers flanked by a two separate

"L" steel beams. This double pillar system is then additionally supported by two

"C" steel beams located behind the main pillar. These last "C" beams

connects the main pillars which works horizontally by sustaining the roof with

the vertical system composed by intersection of thinner wooden timbers and

glass surfaces.

The goal is representing the base of a geometrical drawing where the pillars

creates a grid of points from which the lines of the geometrical construction

originate.

Therefore, each architectural objects correspond to a line or to a points of the

sketch the mathematicians is hypothetically developing during his process of

reasoning. The thicker lines becomes steel beams, the thinner ones wooden

timbers, the planes become glass surfaces and so on.

In this way each architectural element end up to be part of a grammar of the

space. Each elements works as a term of the grammas which meets other

terms composing a syntax that is the syntax of the space and at the same time

the syntax of the mathematical proof.
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3.1.3 CONSISTENCY AND MULTIPLICITY: DESIGN METHOD

The multiplicity of the project lays in his volumetric composition.

Each room that explain a mathematical concept is seen as independent,

conceptually and structurally.

The design I proposed is only one of the possible arrangement of these rooms

or individual boxes in the space.

Assuming that we change our urban setting, we are free to change the

arrangement of our boxes and also add other boxes creating a growing

architecture. The goal is representing not only the endless knowledge that has

been accumulated and developed in order to design the astrolabe, but also

more generally the essence of knowledge itself (scientific knowledge or not)

as an infinite addition of information that can be combined together in order

to generate other knowledge.

The connection between the different boxes which is the path the visitors is

invited to follow in the museum is aimed to be a slow process of acquisition of

knowledge that does not have neither an end nor a beginning.

The choice of representing only four mathematical concept is only a necessary

constraint I needed to have in order to do a sort of experiment on the possible

representation of the process of reasoning and developing knowledge of a

mathematicians.

The experience of this space has to happen over the day. Since the astrolabe

was an instrument for calculating the altitude of celestial objects and therefore
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it was an instrument strictly related with the changing of the sky, the design has

to be consistent with this idea.

The visitors who arrive in the morning visits a static space made of pure

geometrical constructions. The appearance of the building change over time

until the night when a set of optical fibers lights up showing the line of the

construction of the mathematical proof. Namely, the architecture of the

building is the basic geometrical drawing on which the light strings which

appear at the end of the day construct the mathematical proof.

These strings are visible but transparent during the day in order to invite the

visitor to ask to himself what they represent and encourage him to try to

develop his own proof waiting for the solution.
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3.1.4 LIGHTNESS: TRANSLATING A SKETCH USING CONSTRUCTION MATERIALS

The lightness is the lightness of a drawing. The transparency becomes a

necessary requirement for the construction not only for addressing what we

have defined as "structural clarity" but also for representing the lightness of the

lines on a piece of paper.

The double system of glass used for some of the walls and the roofs reacts

differently according to the time of the day and the inclination and the

intensity of the light that hits it. Therefore, the space seems to change his

consistence and his lightness over the day from an opaque combination of

volumes to a transparent intersection of lines.

The lightness is also obtained by using wooden and steel structure in order to

have the wood as a main material for representing both a specific thickness of

lines (intended as translation of the sketch) and also the intersection of those

lines. The wood can be cut and intersect and the points of intersection as joints

or simple connections are always visible as it occurs in a pencil sketch.

The steel, also visible (in order to respect the "structural clarity" we discuss

above) allows us to use thinner wooden timber and obtain a visual effect of

lightness.
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4. CONCLUSION

The goal of this research was re-creating a historical experience in order to

change our approach to historical scientific instruments. Architecture has

been used as a tool for achieving this goal.

As I stated in the last section of this thesis, architeture can create an experience

and archiecture can visualize ideas. However, the design proposed does not

want to be the solution to the issue we are discussing, but only one of the

possible solution. The reason why this research cannot define a set of rules or

claim to have found a definitive solution is that we are deling with abstraction:

we are proposing a visualization/materialization of a representation of an

abstract idea.

We could state that in order to have a dialectic approach with a scientific

instrument we can re-live its process of creation and that its process of creation

is (in this case) the mathemathical framework, namely the process of

reasoning. We could also state that the connection between thinking and

seeing is sketching and hence our architecture has to resemble a sketch. We

should then follow the 6 memos proposed at the end of the thesis as a guide

for designing an architecture that meets the requirements and the principles

of mathemetics.

The design proposed is an experiment realized by choosing a case of study for

proving that architecture can materialize a mathematical concept and that

architecture can make out of this concept an experience.
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The power of this discipline is the moving factor of this research.

Accordingly, if the main question of the thesis is: how can I create an historical

experience? The only certain answer we have found is: using design because

it is the only tool we have for make the visitors having an experience and at

the same time visualizing an abstraction.

This thesis want to open a discussion on the way we exhibit nowadays historical

scientific instruments which affect the way we approach to them. The analysis

and the design developed does not want to state a solution but to propose a

new way to deal with this issue. We claiming that, as architects, we do not

know the solution but we have the privilege to know how to use the tool that

embedd the solution in itself becuase architecture is the combination of the

abstraction and intuitive language of Art and the exactitude and the

practicality of Science.
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5. DRAWINGS

5.1 THE GEOMETRY OF THE ASTROLABE

53



N

P1 NI 1

NCP0

U-1

CD

)SCP ~ ~ crI\tii

~U

U,

L-



PLATE 2

pJ(H

ZI

-t -S 24-

NCP ........................... -........ .

T

55

'4,

p

. ot I equarorial plane

ZFNITH

h Pt

Nc 1

equatorial hine



PLATE 3

t.

1'-

/ 
/

--I.6.1

C&
H

ivflzv io 
4

7
 2

1
7

8
7

56

~I.



EC
UP

TIC
 A

ND
 T

RO
PC

S

-
4n--
...

 
.
..
.
..

.

V

1< I
U

,
-.

1

mm
w



5.1 ARCHITECTURE
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PLATE 6

SECTIONED PLAN AND SCHEME OF THE FOUR BOXES WHCIH COMPOSE THE

SPACE
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5.3. PHYSICAL MODEL
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