
The S4 Infrastructure Management System

by

Rodrigo Toste Gomes

B.S., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Tomás Lozano-Pérez

School of Engineering Professor in Teaching Excellence
Thesis Supervisor

Certified by. .
Adam Hartz

Lecturer
Thesis Supervisor

Accepted by .
Dr. Christopher Terman

Chairman, Masters of Engineering Thesis Committee

2

The S4 Infrastructure Management System

by

Rodrigo Toste Gomes

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the design and implementation of a system for managing the
infrastructure supporting a course relying on a large computer lab. Students’ infor-
mation privacy and security was an important focus in the design of this system, as
well as integration with existing software systems to facilitate its deployment. Par-
ticularly, the design was informed by the needs of the MIT class 6.01 (Introduction
to Electrical Engineering and Computer Science).

Thesis Supervisor: Tomás Lozano-Pérez
Title: School of Engineering Professor in Teaching Excellence

Thesis Supervisor: Adam Hartz
Title: Lecturer

3

4

Acknowledgments

I would like to thank all of the people—students and staff alike—that I have worked

with as part of MIT’s 6.01: Introduction to EECS class. I learned a lot every semester

I worked as a Teaching Assistant and, were it not for what I learned there, I would

have written a very different thesis.

In particular, I would like to thank the Professors Leslie Kaelbling and Tomás

Lozano-Pérez, and the Lecturer Adam Hartz, who have been amazing mentors through-

out my career at MIT, and were always available to listen to my ideas, and brainstorm

with me.

I would also like to thank all those who have directly contributed to the works

presented in this thesis. In particular, Geronimo Mirano, a fellow TA of the 6.01

course, contributed code for the software presented in section C.1, and Alexander

Couzens talked to me in the Coreboot IRC, guiding me on how to get the BIOS

installed in the 6.01 laptops (specifically contributing to the implementation of the

code in section C.2).

Additional thanks go to William Yashar, Jeremy Kaplan, and Shen Gao for their

willingness to brainstorm with me, listen to my ideas, and help in multiple projects

over the years.

Finally, I would like to thank my family for their continued support of all my

endeavors, and unconditional love. I would not be where I am without them.

5

6

Contents

1 Introduction 13

1.1 Motivation . 14

1.1.1 Hardware Upgrades . 14

1.1.2 Debathena without stable Internet 15

1.2 Kerberos Authentication . 16

1.3 Outline . 17

2 Issues and Initial Solutions 19

2.1 Upgrading to Solid State Drives . 20

2.2 Six-Oh Caster . 23

2.3 Upgrading Wireless Cards . 25

2.3.1 Installing the Coreboot BIOS 26

2.3.2 Results of the Wireless Upgrade 29

3 Replacing Debathena 33

3.1 Issues with Debathena . 33

3.2 The Six-Oh File Transfer System . 35

3.3 The Six-Oh Authentication Program 39

4 Conclusions and Future Work 43

A Attempted Software Installation of Coreboot 45

B Historical Reasons for Choosing Debathena 47

7

C Code 51

C.1 certfix . 51

C.2 vga_extract.sh . 53

C.3 setup.sh . 56

C.4 clone.sh . 57

C.5 client.py . 59

C.6 server.py . 65

C.7 catsoop_login.py . 72

C.8 firefox_sid_cookies.py . 74

C.9 catsoop_login_pam.sh . 76

D Figures 79

8

List of Figures

D-1 Integrated Circuit Clip . 80

D-2 SOIC-8 chip on T410 Motherboard 81

9

10

List of Tables

2.1 Metrics comparing new SSDs to old mechanical hard drives; read/write

rates were done with 100 samples, access time was done with 1000 samples 22

2.2 Results of the Wireless Card Experiment, Packet Loss and Round Trip

Time Metrics (in milliseconds) . 30

11

12

Chapter 1

Introduction

This thesis focuses on the work done to improve the infrastructure for the 6.011 laptop

lab. This work was done in the context of my work as a Teaching Assistant for the

class, and looking to fix issues in the hardware and software infrastructure that got

in the way of students’ learning during lab times.

The issues we focused on were: blocking of software by the AFS[14] filesystem, the

difficulty of maintaining a stable wireless connection by the laptops, and the delay

when logging in and loading software. The solutions consisted of a comprehensive

hardware upgrade to the lab laptops, and the design and partial development of a

new system for managing the lab.

This new system consists of four main components. The Six-Oh File Transfer sys-

tem facilitates students’ management of files, keeping them synchronized and available

across machines and sessions, and maintaining the students’ privacy via encryption.

The Six-Oh Auth Program unifies the student’s authentication to the class’s online

tutor and to the lab laptops. The Six-Oh Caster system allows course staff to easily

manage every machine, perform maintenance tasks, and identify issues with individ-

ual machines. Finally, the Six-Oh Deploy system allows course staff to easily deploy

updates and new operating system images to every machine in the lab. Together,

these systems comprise the S4 Infrastructure Management System.

16.01 is the Introduction to Electrical Engineering and Computer Science class at MIT. Every
year about 600 students (about 200 in the Fall and 400 in the Spring) take it.

13

The systems described in this thesis were designed to tackle specific issues encoun-

tered by the 6.01 class, but these issues were generic enough that these systems would

be helpful in other classes relying on a computer lab equipped with laptops and using

a networked file system. For the rest of this document, the issues and solutions will

be described in the context of the 6.01 class.

1.1 Motivation

The Introduction to Electrical Engineering and Computer Science class at MIT faces

unique challenges due to the resources it requires and the number of students that con-

sistently take it. The course offers a broad overview of EECS by teaching overarching

concepts in depth, specifically linear systems, circuits, probability, and search, using

robotics as a unifying application of these concepts and programming as a common

tool for applying them.

Before the development of the systems presented in this thesis, 6.01 relied on a

complex infrastructure of hardware and software systems to provide a unified authen-

tication and file management interface to the students. The students interacted with

ThinkPad T410 laptops during lab hours, which utilized the Debathena [2] operating

system. Debathena is developed at MIT for the students. The home directories of

students were kept in the Andrew File System (AFS), which provided synchroniza-

tion and backup for their files. Authentication in Debathena used Kerberos[17] which

students also used to authenticate to other services provided by MIT.

1.1.1 Hardware Upgrades

The machines used in the lab were slower than more recent machines, and we con-

sidered upgrading them to newer computers. We decided, however, to investigate

whether upgrades to certain hardware components on the existing machines could

make them perform similarly to newer machines. Some investigation suggested that

the laptops could be comparable to newer machines in performance by upgrading

14

their hard drives to solid state drives, and upgrading to wireless cards that support

the 5GHz band. These upgrades constitute the first part of this thesis.

Due to software blocks on the original Lenovo BIOS, we were unable to simply

replace the wireless cards in the laptops. When we replaced them, the BIOS stopped

the boot process. Thus, we also replaced the original BIOS with the open source Core-

boot BIOS which did not have these blocks, and was actively maintained. Installing

the Coreboot BIOS presented two major challenges: it required fully disassembling

the laptops, which had never been done on a ThinkPad T410. To tackle these chal-

lenges, a hardware maintenance guide was created, and we adapted the procedure

for installing Coreboot on a different laptop with the same chipset[1]. Two systems

were also developed to facilitate the hardware upgrade, specifically the Six-Oh Deploy

system, described in section 2.1, and the Six-Oh Caster system, described in section

2.2. The Six-Oh Caster system automates the installation of an operating system

image in the laptops with minimal user interaction. The Six-Oh Caster system allows

a member of the staff to perform maintenance tasks, software updates, and failure

detection on all machines simultaneously.

1.1.2 Debathena without stable Internet

There were also issues with Debathena. Specifically, the design goals and constraints

of Debathena did not align with the constraints we faced in lab, in particular the fact

that our Internet connection was not stable

The Debathena distribution for workstations is intended to be used on machines

permanently connected to the Internet. If the connection fails, AFS blocks, and

since the user’s home directory exists on AFS, all applications using that directory2

block as well. On desktops connected over Ethernet (such as the ones found in

“Athena Clusters” on campus) this is not a concern, but for our computer lab this

quickly became an issue. The laptops in the lab had difficulty maintaining a stable

wireless connection, and the subsequent blocking of applications when the network

2In practice, many applications. The browser was of particular importance, since that was the
tool students use to interact with the online tutor we use in the class.

15

got disconnected would interrupt the students’ work. It was also important that the

machines were mobile because we used them to control robots via a USB cable. If we

were to use desktops, mimicking the Debathena workstations on campus, we would

constrain the possible interactions students could have with the robots.

Our design constraints were different from AFS’s. While AFS’s design prioritized

a consistent state across replicas, we put a higher priority on the availability of the file

system. We could achieve this by accepting a temporary inconsistent state between

the laptops and the servers holding the files. An interesting property of the lab’s

infrastructure was that, while the Internet was not stable in the short term, in the long

term there was high confidence that a stable Internet connection would be achieved

for however long it would be necessary to synchronize the full file system. This led to

the design of a new file system: the Six-Oh File Transfer system, described in section

3.2. This system provides the students with a file system that does not block in case

of network failure, and synchronizes their files, achieving an eventually consistent

state with high probability.

1.2 Kerberos Authentication

The decision to develop a new file system with our requirements as design goals meant

that either Debathena would have to be modified to use this new file system, or the

course would stop using Debathena. Most of the software offered by Debathena is

tied to AFS, and due to the issues with AFS described above, we decided to phase

out Debathena. This decision was further supported by the possibility that “Athena

Clusters” throughout campus might be closing [19]. One aspect of Debathena, how-

ever, that was advantageous was its integration with Kerberos authentication. Every

student has a Kerberos account that they use to authenticate to various services at

MIT. No longer using Debathena exposed the question of whether Kerberos support

should be maintained, with the advantages that it brings (unified authentication with

other MIT services), or if other methods would be more appropriate and bring other

advantages.

16

We could implement support for Kerberos authentication via a Pluggable Authen-

tication Module[21] and a custom script for dealing with creating the local users and

downloading their files. Using Kerberos came with a trade-off, however. To maintain

the students’ information privacy and security, there was a strong emphasis on main-

taining only encrypted copies of the students’ files. The system could encrypt files

with the student’s Kerberos when they first login. This would, however, have serious

issues if the students were required to change their password at any time during the

semester. To re-encrypt a student’s files, we would need to be part of the Kerberos

password change process. We currently are not involved in that process, and that

would present a security risk, as Kerberos is used in many other MIT services. It

was thus apparent that an authentication system managed by the course would be

advantageous.

A home grown authentication service also had other advantages over Kerberos. It

would be easier to use by teachers outside MIT, whose schools do not have Kerberos

authentication, and also easier to add users3. With the advantages over Kerberos

clear, we decided to develop a new authentication service, the Six-Oh Authentication

Program, described in section 3.3, the final part of the S4 Infrastructure Management

System

1.3 Outline

The remainder of this thesis is structured as follows:

Chapter 2 describes in detail the issues that motivated the laptop hardware up-

grades, and explains the investigation that was done to find their causes. Then, it

goes into detail on how the hardware upgrade was performed, specifically the instal-

lation of Coreboot on every machine, and the development of the Six-Oh Deploy and

Six-Oh Caster systems to simplify the upgrade. It concludes with an empirical eval-

3There were often small classes with students from outside MIT in the 6.01 lab. These required
manual creation of local users for those students to use, which a new system for authentication could
make a lot easier

17

uation of the upgrades, showing how they tackled the issues described at the start of

the chapter.

Chapter 3 describes in detail the issues associated with using Debathena, and

which design goals and constraints an appropriate system for the lab would require.

The Six-Oh File Transfer and Six-Oh Authentication Program are then presented as

systems that meet those goals, and their design and implementation are explained.

Finally, chapter 4 provides concluding remarks, as well as suggestions for future

work.

In addition, Appendices A and B contain historical accounts of alternative so-

lutions to some of the problems solved in this thesis, and why they did not work;

Appendix C contains the source code for the several systems described in this thesis;

and Appendix D contains figures

18

Chapter 2

Issues and Initial Solutions

6.01 uses ThinkPad T410 laptops in the lab. These machines have specifications

comparable to more modern machines1, but we faced issues using them. Specifically,

there was a delay when logging in2 and loading software3, and it was difficult to

maintain a stable wireless connection. The difficulty with maintaining a wireless

connection meant that the laptops were always connected to Ethernet4, otherwise

AFS would not work. This limited the mobility of the laptops, which limited the

scope of projects available to the students. We taught students concepts in Electrical

Engineering and Computer Science using robots as a motivating platform, and these

connect to the laptops via a USB cable. The limited mobility of the laptops meant

that the robots also had limited mobility, constraining the motions of the robots to

a small area.

Due to these issues, we considered obtaining new laptops. The budget for new

machines, however, allowed about $300 per machine, which would afford machines

with similar specifications[3] as the ThinkPad T410 laptops in use (dual core CPUs,

around the 2.0GHz clock speed mark, and 4GB of ram), and features that were not

1The specific variation we had used Intel Core I3-370M processors at a clock speed of 2.4GHz,
with 2GB of RAM.

2It took about 16 seconds for a student to get to a working desktop after entering their password
3In particular, we had just upgraded to Python 3.5, and loading the library Matplotlib took a

long time. This library was used in a lot of the course’s software.
4This was not reliable either, as the Ethernet cables and ports got worn out with use, making it

very easy to accidentally disconnect the Ethernet cable with a small amount of movement.

19

relevant to the course (such as touch screens and thinner bodies). One big motivation

to buy new machines, however, was the fact that our laptops were unable to maintain

a stable wireless connection in the lab room. Some experiments with potential new

laptops showed that it should be possible to maintain a stable connection with new

hardware. We decided, however, to investigate whether upgrades to certain hardware

components on the existing machines could make them perform similarly to newer

machines.

The first issue of delays when loading software seemed to have a simple solution:

upgrade the hard drives to solid state drives. It was not entirely clear that this would

improve the speed of login, as the use of Kerberos[17] and AFS[14] involved the use of

the network for authentication. Evidence supporting this, however, was that most of

the delay happened while the hard drive activity light was turned on.5 The difficulty

maintaining a wireless connection, however, was not well understood6, and required

some more investigation. It was concluded, however, that the source of the problem

was the lack of 5GHz support in the cards we were using, and the solution was to

upgrade them to newer ones.

To facilitate the upgrade to solid state drives, two systems were developed: the

Six-Oh Deploy System, which allowed for a quick installation of a new system image

on every machine, and the Six-Oh Caster system, which allowed staff to easily apply

updates and fixes to all the machines simultaneously. These systems are described in

section 2.1 and section 2.2, respectively.

2.1 Upgrading to Solid State Drives

We upgraded the mechanical hard drives to solid state drives not only to solve the

delays when logging in and loading software, but also to extend the laptops’ service

life. The ThinkPad T410 laptops in use were purchased in 2011, and were still using

5AFS caches directories locally when they are requested, so it seemed likely that the hard drive
activity was due to a large download of files, and the high amount of activity suggested that the
bottleneck was the writing speed of the disk, rather than the network.

6Several hypotheses (bad drivers and bad routers) had been presented in the past and solutions
tried, but all were proven wrong, as they didn’t solve the issue

20

the same hard drives 4 years after being purchased. Although it is not clear what

the real service life of consumer hard drives is, one of the most comprehensive studies

done[6] suggests that the median service life is 6 years of use. These hard drives are

not used continuously, so they likely have a longer life, but this suggests that they

may be likely to start failing soon; therefore, new drives were acquired. Given the

decreasing cost of solid state drives and their higher performance, we upgraded the

laptops to solid state drives.

The initial strategy for performing this upgrade was to install the solid state

drives on the machines, install Lubuntu on each, and update it with the software

required for the class. This would have been a lengthy process, and upgrades of this

scale were usually performed before the start of a new semester. This allowed time

to perform the upgrade and test the new system to guarantee that it would work

well without impacting the students. This upgrade, however, happened during the

semester, so this initial strategy was not ideal. We instead used a different strategy.

We first installed the Lubuntu operating system on one machine, and then fully

cloned its SSD’s contents to the other drives. Although this strategy seemed to work

at first, it had three important issues. First, the Lubuntu operating system keeps

track of hardware UUIDs to name its network devices, so while certain scripts were

setup to initialize wlan0 to connect to the wireless network, wlan0 did not exist.

Instead, the wireless interface was named wlan1. Second, the laptops used the dhcpcd

DHCP daemon, which sends a unique identifier to the router so the router knows

which machine it is talking to. Our initial assumption was that the unique identifier

would depend on the MAC address of the network interface, but it actually depends

on the network interface name (the same for all machines) and a separate unique

identifier stored in a file (/etc/dhcpcd.duid) which was copied between computers.

This resulted in DHCP conflicts. Finally, the cloning procedure was fairly slow,

taking several minutes per drive, since it cloned every sector of the drive, even if that

sector contained no information.

A new strategy was necessary, and this motivated the design and implementation

of the Six-Oh Deploy System. The Six-Oh Deploy system, rather than cloning the

21

Metric Mechanical Solid State
Time to Login (Ethernet) 16 11
Time to Login (Wireless) 18 11
Time to StartUp (s) 29 11
Average Read Rate (10MB samples, MB/s) 65.0 274.4
Average Write Rate (10MB samples, MB/s) 57.8 219.3
Average Read Rate (1MB samples, MB/s) 65.7 248.1
Average Write Rate (1MB samples, MB/s) 35.8 145.8
Average Access Time (ms) 17.85 0.08

Table 2.1: Metrics comparing new SSDs to old mechanical hard drives; read/write
rates were done with 100 samples, access time was done with 1000 samples

full hard drive, finds the smallest amount of information necessary to restore the

system, and regenerates unique ids that get cloned. Specifically, this involved cloning

the partition layout and partition types of the drive to clone; and copying the files,

maintaining their original permissions, and resetting those files that set or relied on

unique ids. This strategy was programmed in two separate scripts. The first copies

the files and partition layout of a source hard drive, and removes files depending

on UUIDs (this script, setup.sh can be found in section C.3). The second recreates

the partition layout in a new drive and copies the original files to that drive. After

completing the copy, the script also reconstructs the Linux /etc/fstab file (which relies

on partition UUIDs) and installs the GRUB boot loader (this script, clone.sh can be

found in section C.4).

With this new strategy, the disk cloning took under a minute per disk. An unfore-

seen advantage was that multiple disks could be cloned at the same time (provided

they could all be connected to the same machine simultaneously), which made the

process faster. After all the disks had the software installed, they were installed in the

laptops, which perceptibly improved the experience of using them. Table 2.1 shows a

comparison between using a mechanical hard drive and a solid state drive on multiple

metrics that are relevant to subjective experience. This also confirmed that a large

part of the delay in logging in was due to speed of the hard drives.

The Six-Oh Deploy system could only be used if a hard drive was removed from

22

a laptop or if the system was run from a live-CD. This was sufficient for the solid

state drive upgrade because the drives had not yet been installed in the laptops. For

future upgrades, however, this was a limitation. Even if run from a live-CD, which

would not require removing the hard drive, it was necessary to start the upgrade on

every individual laptop. This system had the design goal of simplifying the upgrade

process to the point where a member of staff would only have to run one command

once to upgrade every machine.

To achieve this goal, we designed an extension to the Six-Oh Deploy system7 that

upgrades a laptop with a single shell command, and a second system, the Six-Oh

Caster system (described in section 2.2) that runs a shell command entered by a

user on every lab machine simultaneously. Combining these two systems, we upgrade

every laptop by running the Six-Oh Deploy upgrade command simultaneously on all

the machines, with the user only writing it once.

The extension to the Six-Oh Deploy system uses GRUB to launch a script from

the boot menu. This script exists in a separate partition on the disk, and is a slightly

modified version of the clone.sh script we described above. This version, instead of

copying files and a partition description from a local copy, copies them from a known

server.8, and guarantees that the partition in which it exists is not modified. Finally,

the script creates the GRUB entry that launches Six-Oh Deploy, and also creates a

script in the installed operating system that reboots into that GRUB entry. With

Six-Oh Caster, that script can be run on every laptop simultaneously, with the user

only entering it once.

2.2 Six-Oh Caster

The Six-Oh Caster system broadcasts a shell command entered by a user in a trusted

machine, to every laptop in the lab. This shell command is then run on every laptop

7This extension is still under development due to time constraints, although its design is complete.
It is our plan to complete it over the Summer following the completion of this thesis.

8An SSL connection, protected with certificates is used to prevent man in the middle attacks.
This also allows the script to easily self-update.

23

with administrative privileges, allowing staff to perform upgrades and other main-

tenance tasks without having to repeat the task on every machine. This system

consists of two scripts: client.py (included in appendix C.5) and server.py (included

in appendix C.6).

The client.py script runs on the laptops and is launched when the laptop boots.

The script first connects to a trusted server through an SSL connection.9 Then it

checks for a file in a specific location (in this case /etc/6.01/loc) which identifies the

laptop. If that identity exists, the script sends it to the server, otherwise it goes

unnamed from the server’s perspective. After connecting, the client.py script waits

for data from the server, and forwards it to the input of a concurrently running

bash process. The output of that bash process is redirected back to the server for

logging/processing purposes. In case of network failure, the client continuously tries

to reconnect to the server.10

The server.py script is launched from the trusted server when an administrative

action needs to be executed. The script listens for connections on an SSL socket, and

when a client connects, it adds them to a list of message receivers. When a client

sends their name, the server associates their socket with that name. If the server is

started with the logging option, it creates a file in the directory assigned to logging

with the client’s name, and logs all the responses from that client in that file. The

logs directory can also be used to see which named laptops are online.11 Once all the

laptops are connected, the user can type a command in the standard input of the

server process, and that command is sent to all connected machines and executed on

each. The responses from the named machines are written to their respective log file.

The first uses of this system were to reboot all the machines concurrently, and to

run update scripts. This system will eventually be used to run the Six-Oh Deploy

9The certificate verification process prevents an attacker from masking as the trusted server. It
also makes sure that the connection is encrypted.

10It is setup with an aggressive TCP_KEEPALIVE option so that it can detect early if the network
connection goes down, and try to reconnect from there. Otherwise, if the network connection went
down, and then came back up, it would take a long time to reconnect, since the socket connection
would no longer be open.

11These names can be used by a user with access to the server to determine which laptops are
turned on and connected to the network. This facilitates diagnosis of failures on specific laptops.

24

script on every machine, allowing for an easy upgrade. The objective of these two

systems together is for a user to be able to test an operation or system image on a

single laptop, and then easily apply it to every laptop in the lab. After the completion

of the Six-Oh Deploy system, it will be possible to run a single command that upgrades

every machine. With the use of the Six-Oh Caster system, that command can be run

concurrently on every machine, with minimal user work.

2.3 Upgrading Wireless Cards

One of the major issues with the 6.01 laptops was their unreliable network connection.

This would cause AFS and consequentially other software to block, and was disruptive

when students were working. Using the laptops’ stock wireless cards, it was difficult to

maintain a stable connection for more than a few minutes in the lab. Their Ethernet

ports had become worn out by use, unable to keep an Ethernet cable connected,

and the USB adapter solution only provided temporary relief, and required more

maintenance. It was also highly desirable to increase the mobility of the laptops

to increase the scope of the projects students are able to do with the robots. The

most desirable solution to this problem was to understand what caused the wireless

connection to fail, and fix that specific issue.

There was evidence that it was be possible to keep a stable wireless connection in

the lab. Specifically, at any time during lab hours, most students’ phones and many

personal laptops were connected to the network without any obvious issue. This was

only circumstantial evidence, however, since for most use cases it is not noticeable

if the Internet intermittently disconnects, unlike with AFS, where an Internet con-

nection that disconnects intermittently causes many applications to block for a long

period of time. This, however, supported the case that a solution might exist. A key

insight into that solution was the realization that, while the laptops stock wireless

cards were only able to connect to the 2.4GHz band, most modern personal laptops

and smartphones are able to connect to the 5GHz band. A scan of the available wire-

less networks also showed that there were a large number of unsanctioned wireless

25

networks on the 2.4GHz band, potentially causing a large amount of interference.

Following that hypothesis, we conducted an experiment, upgrading the stock wire-

less cards to new wireless cards supporting 5GHz. This experiment, however, turned

out to not be as straightforward as expected.12 It is standard procedure for Lenovo

to program a whitelist of supported wireless cards into their BIOSes. This meant

that it would be necessary to either somehow bypass the BIOS whitelist, or find an

appropriate wireless card that was supported by the laptops in use (ThinkPad T410).

We found supported wireless cards, but there was not enough quantity to install

them on all the laptops if the experiment was a success. We attempted to contact

Lenovo/IBM to procure more stock, but we did not receive a response, so we decided

to find a method to bypass the BIOS protection.13

2.3.1 Installing the Coreboot BIOS

We found methods to remove the whitelist from the original Lenovo BIOS, although

they lacked documentation, and did not work consistently[4][10]. There were also

binaries for several Lenovo/IBM BIOSes, reportedly only changed so that the whitelist

was removed, and Internet forums existed for requesting BIOSes with the whitelist

removed[11]. One of the big disadvantages with this approach was that it required

either modifying code directly on the BIOS binaries without a clear knowledge of

what the consequences of such modifications would be, or trusting that the provided

binaries had not been modified in other ways. This was not acceptable, as students

would be using the laptops and handling their sensitive data on them, which an unsafe

BIOS could potentially access. We decided on a different option: installing the open

source Coreboot BIOS[12]. This approach had the advantage that course staff could

audit the code if necessary, and that the software was under active development. It

had the caveat, however, that it had never been successfully installed on a ThinkPad

T410.

12The original expectation was that it would consist of acquiring a new wireless card with support
for the 5GHz band, and installing it, and the required drivers.

13Lenovo/IBM eventually responded, but at that time, the experiment had been done, deemed a
success, and all the laptops had their wireless cards upgraded.

26

The Coreboot BIOS had, however, been successfully installed in a laptop with the

same chipset as the ThinkPad T410[1]. One of the main challenges with following

the documented procedure was that there was no known way to install the Coreboot

BIOS from within an operating system. The mechanism used by Lenovo for BIOS

upgrades is not clear, but it seems that they that they lock writing to the BootBlock

region of the ROM14, and on a BIOS upgrade, the new BIOS code is written to

other regions of the ROM; on startup, the old BIOS overwrites itself with the newly

written BIOS. It is not clear if the BIOS also performs signature checking to prevent

non-Lenovo authorized BIOS from getting installed.15

Another option was to disassemble the laptop and directly write to the ROM

with a hardware connection. This was the method suggested in the original article

describing how to install CoreBoot on the ThinkPad X201 laptop. Specifically, the

ROM on these machines was usually a MX25L6445E[9] or compatible chip, on which

it was possible to write using the SPI protocol. To interface with the chips, we could

use an Integrated Circuit Clip, or directly solder wires to the chip. Initial research

indicated that the clip could not be used due to a specific type of ROM chip being

used[8]. An inspection of the laptops, however, revealed that they had a different

type of chip (SOIC-8 chips, seen in figure D-2) which were compatible with clips that

could be easily obtained.16

We could, then, write to the ROM using a clip and an SPI programmer. For this

procedure, we followed the guide for installing Libreboot[5] (a free and open source

BIOS based on Coreboot) on a ThinkPad X200 laptop[16]. We decided to follow

that guide because the ROM chips on the X200 and T410 laptops are compatible in

terms of connections and programming procedure. The first challenge was to create

14This is the region that has the code that the CPU runs on startup.
15The fact that there are successful modifications to the Lenovo BIOS to remove its whitelist

suggests that such checking either does not happen, or happens at a limited scope.
16Soldering was too risky: even if successful on one machine, it would be too time-intensive, and

it was likely to damage the other machines. Initially, we believed that it was not possible to use a
clip to write to the T410 ROM due to a different type of ROM chip connection (TSOP). Specifically,
while it is easy and cheap to obtain a clip for interfacing with a SOIC-8 chip, such as the one in
figure D-1, the same is not true for a TSOP chip. Soldering directly on the pins seemed the only
option available to us. We decided to confirm this, and disassembled a laptop, and found that it
had a SOIC-8 chip instead.

27

a working image of Coreboot for the laptop. The most recent version of Coreboot

did not work with the ThinkPad T410. It would display characters but block before

booting into a hard drive. This confirmed that the procedure for writing to the ROM

with the clip worked correctly, especially as it was possible to backup and restore the

factory image through that same procedure.

Instead of patching the latest Coreboot image, the version of Coreboot used in

the guide for the ThinkPad X201 was chosen. The challenge in using that version was

that it required a VGA BIOS to initialize the graphics.17 The process of extracting

the VGA BIOS was a lot more involved than expected, as following the existing

guide[7] did not work. To facilitate this process, a script vga_extract.sh (presented

in section C.2) was created. This script takes the location of a BIOS upgrade ISO

(which can be obtained from Lenovo) and places all the possible VGA BIOS files in a

directory specified by the user18. These files can be inspected to find the VGA BIOS

corresponding to the graphics adapter in the laptop, which can then be used to build

a Coreboot image (following the instructions in the guide for the ThinkPad X201)

that works with the ThinkPad T410.

After installing Correboot on one laptop, we tested it with a new wireless card

supporting the 5GHz band. The Atheros AR5B22 chipset was chosen specifically due

to its support for the 5GHz band, and for the fact that it was supported by free

software drivers. This initial test was highly successful: the machine was usable, and

the students and staff who chose to use it did not seem to notice that it was not

connected to Ethernet.

With this initial successful test we decided to increase the sample size of the ex-

periment. The 6.01 lab has about 80 machines. It was possible that if all 80 machines

were connected, we would lose the stable wireless connection observed on the first

test. To mitigate this risk, we decided to do a gradual deployment of Coreboot and

17The newer version includes an open source VGA BIOS that works with this chipset, which is
why we got a picture on the screen, despite the laptop not booting up. In the image without a VGA
BIOS it would boot—we confirmed this with an external display—but it would not display a picture
on the laptop display.

18The ThinkPad T410 laptops could be configured with different graphics adapters, which is why
the BIOS image provided different VGA BIOSes.

28

the wireless cards. We tried to create a method by which Coreboot could be installed

without disassembling the laptops (this attempt is described in Appendix A), but this

was unsuccessful. We decided instead to install Coreboot via the hardware interface

method described above. This process was lengthy because it required disassembling

the entire laptop, and removing the motherboard to be able to reach the ROM chip.

To make this process as efficient as possible, a fast ThinkPad T410 maintenance guide

was created, and staff members were recruited to aid in the process (the SPI flashing

part of the procedure was fast; the bottleneck was on how quickly the machines could

be disassembled and reassembled).

2.3.2 Results of the Wireless Upgrade

The first phase of this experiment was to have 10 laptops running Coreboot with a

5GHz card. This was followed by a second phase with 30 more laptops upgraded.

This second phase was also successful, so we upgraded the remaining machines in a

final third phase. Each of these phases showed promising results: students did not

have issues logging in or using the machines, except for two isolated issues19 during

the interim upgrade period.20

Overall, the upgrade of the wireless cards was a success. For the first time since

the course began, all the laptops were connected to the wireless network without

stability issues. We empirically evaluated these observations with a simple test: 5

laptops concurrently sent one ICMP packet per second for one hour to the same

server21, using the ping tool. One of the machines was connected to a stable Ethernet

connection, three of the other machines were using the 5GHz wireless card22, and the

19These happened during a lab section and were quickly resolved, although the underlying cause
was not found. It could have been a network failure, or a password entered incorrectly.

20A period of 3 weeks, as more machines with new wireless cards got deployed.
21This was the most important server that these machines had to reach, as it hosts the online

tutor the students use. Sending packets to this server also meant that outside network issues would
not affect the test, as the server is in the same room as the laptops, and the wireless switches are
connected to the same switches as the server.

22Most laptops in the lab were turned on at this time, which meant there were about 70 other
laptops on the same network as these 3 machines, thus this was a good approximation of what the
students faced during lab hours.

29

Laptop Packet Loss Fraction Min RTT Max RTT Avg RTT RTT 𝜎
5GHz #1 0 0.9 48.3 1.6 1.3
5GHz #2 0 0.8 68.1 1.6 2.3
5GHz #3 0 0.8 57.3 1.5 2.0
Ethernet 0 0.1 0.7 0.3 0.1
2.4GHz 0.007 1.5 214.4 8.4 15.4

Table 2.2: Results of the Wireless Card Experiment, Packet Loss and Round Trip
Time Metrics (in milliseconds)

remaining machine was using the stock 2.4GHz wireless card.23 The results of this

test can be found in Table 2.2.

One of the most relevant results in the table is the packet loss amount. It is worth

stressing that in this case, lost packets most likely correspond to network connection

drops. Every connection drop can cause a student to lose several minutes of work due

to AFS waiting for some time before trying to reconnect.24 Course staff can intervene

and make this process faster, but it still means a few minutes of lost work for a

student. The 2.4GHz wireless card had a few packets lost, which made it unusable

for AFS. The round trip time is also very high for the 2.4GHz cards compared to the

5GHz cards, which, from subjective experience, made using AFS, which synchronizes

on every close operation, a very slow experience. In practice, when all the machines

were on the 2.4GHz band, the interference was a perceptible problem: network drops

were much more common, which made wireless effectively unusable for AFS.

Comparing the 5GHz cards to the Ethernet shows that Ethernet is preferable,

however. This was expected, but it is also because of the stability of the connection

in this case. In practice, Ethernet is very reliable as long as the laptop is kept mostly

stationary. While there is a very slightly perceptible difference between using the

23Since this was the only machine using the 2.4GHz band, it was not a good approximation of
what the students had to deal with before the upgrade, but unfortunately this test was not designed
or run before the upgrade to the new wireless cards.

24When the wireless network was disconnected, it would quickly reconnect. AFS, however, would
permanently lose the connection it had to the server. AFS is, however, designed to try and use
its current connection for a user-specified amount of time before trying to create a new connection.
This is due to the fact that the workstations it was designed to work in were more likely to fail in
ways that did not eliminate the existing connection.

30

5GHz wireless cards and Ethernet with AFS25, it does not affect the students’ experi-

ence in practice, and it improves the laptops’ mobility„ allowing for more educational

opportunities.

The hardware upgrades proved to be highly valuable to the lab by increasing the

service life and mobility of the laptops. The development of Six-Oh Caster and Six-Oh

Deploy also means that we will be able to deploy and apply upgrades to the machines

in a much more efficient manner. The hardware upgrades also slightly improved

the experience with Debathena[2] due to the reduced login time and stabler Internet

connection. Still, Debathena is not the best fit for the lab. We still expect network

connection failures, even if they are a much rarer occurrence. These will cause AFS to

block, and consequently any software using the student’s home directory. It should be

possible for the students to keep using the laptops even if the network is disconnected,

as for many assignments the Internet is not essential. Thus, we designed the Six-Oh

Transfer and Six-Oh Authentication Program systems to replace Debathena.

25This is mainly visible if you press the ENTER on a terminal. The time it takes for a prompt to
display is higher than on Ethernet, particularly visible if the key is kept pressed.

31

32

Chapter 3

Replacing Debathena

3.1 Issues with Debathena

One of the major issues with Debathena[2] in the lab was the use of AFS[14]: this

file system worked well in the settings it was designed for, but it did not fit the

use case presented in the 6.01 lab. Specifically, AFS synchronizes a file on every

close operation. Assuming a stable network connection, this does not present an

issue, particularly due to the high bandwidth, low latency networks that campus

workstations are connected to. The workstation that AFS is designed to be installed

on have low risk of an unstable network condition, since they are fixed machines

connected to the network via Ethernet. The 6.01 lab’s computers, however, have a

much higher risk of network instability.

In a computer lab equipped with laptops, the network is not stable. Despite multi-

ple attempts at improving the wireless signal quality within the lab room, the laptops

could not hold a persistent, stable wireless connection. An Ethernet connection was

often stable enough, but moving the laptops around caused both their Ethernet ports

and cables to get worn over time. The wear of the ports and cables made it very

easy to accidentally disconnect a cable, even with just a small amount of movement.

A temporary solution already in place was to use USB Ethernet adapters to replace

the worn down ports of the laptops, which allowed for a temporary relief of the is-

sue. There were cases, however, where a cable or Ethernet adapter was worn down,

33

causing the Ethernet cable to disconnect with movement. These adapters were also

more prone to failure when compared to the Ethernet ports of the laptops, requiring

occasional replacement. This constituted a continuous investment in maintenance

and a higher frequency of interruptions to the students’ work than if we could use

the wireless network. Even with the wireless card upgrades, however, we expected

and observed rare connection failures. The frequency of failures was also expected

to increase, as devices in surrounding labs and buildings would start using the 5GHz

band, and causing interference.

The difficulty of maintaining a stable network connection was highly disruptive

due to AFS blocking when trying to synchronize files. In particular, this would cause

the code editor IDLE and the web browser Firefox to block, which are necessary

for the students to work and learn in lab, and thus should block as infrequently as

possible.1 Despite these issues, Debathena was preferred over other solutions due to

historical reasons. These reasons, however, were less relevant when we decided to

replace it with a new system.2.

The decision to replace Debathena with a new system for the course meant evalu-

ating what functionality Debathena provided that was important, what was desirable,

and if there were desirable features that Debathena did not provide. The most impor-

tant features that Debathena provided were file synchronization via AFS and common

authentication across machines via Kerberos[17]. It was also desirable to maintain the

feature that the authentication to the online tutor is shared with the authentication

to the machines (via certificates or some other means). Furthermore, Debathena did

not provide an easy way to deploy code files that the students used in their work.

With Debathena, the students ran a script to download the code to their home direc-

tory, or downloaded it from the online tutor website. With a new file synchronization

mechanism, it was desirable that it would allow for an easier deployment of code files.

Another desirable feature that Debathena did not provide was easy user management.

The Kerberos authentication system is out of the control of the 6.01 staff members,

1IDLE is the main editor the students use for writing code, and the browser is essential for
interacting with the online tutor.

2A more detailed description can be found in Appendix B

34

so we could not add users easily. This was of particular importance because other

educational programs, with non-MIT students, used the lab on occasion. Moving

away from Kerberos could provide the staff with a means to easily add users to the

laptops.

The most important component to replace was AFS, which caused the majority of

the issues. Existing options for file synchronization were investigated, but none were

deemed adequate. Many were not freely available (such as Dropbox, or BitTorrent

Sync), which made their use not desirable, while others introduced features in their

design that added complexity, but were not useful to the course. The implementa-

tion of these systems was also not ideal in many cases. One example was the ORI

filesystem[15], which was almost ideal for the course. The available implementation,

however required a complex system of trust to exist (every machine that was sharing

files needed SSH keys to access every other machine), and did not work reliably. Thus,

we decided to develop a new system with design goals and constraints tailored to our

lab, the Six-Oh File Transfer system.

3.2 The Six-Oh File Transfer System

Due to time constraints, this system was never fully implemented. Its design, however,

has been completed, and is presented in this section. It is our plan to complete the

implementation in the Summer following the completion of this thesis.

The move away from AFS meant that the course (rather than the University)

would be hosting the student’s files. To protect the students’ privacy, it was essential

that these files were not visible to the staff. To achieve this constraint, we encrypted

the files that are stored in the server, using the authentication passphrase as a key to

decrypt them. When a student uses a laptop, they see the decrypted files, but only

the encrypted copies are stored on the server.

This constraint, however, meant that whatever service held the encrypted files

had to be involved when there was a passphrase change. Otherwise, if a student

logged in after changing their passphrase, the files would still be encrypted with the

35

previous passphrase, causing conflicts. To achieve this, a new authentication system

would have to be developed to replace Kerberos. An alternative solution would have

been to prompt the user on login that, while they authenticated successfully, the

decryption step failed, and ask them to enter both their previous and new passphrase

to re-encrypt the files. While both solutions were similarly complex to implement,

the implementation of a new authentication service was preferable for a few reasons.

First, it would enable easy creation of new users. Second, its implementation could

be greatly simplified if we used the existing password based authentication from

CAT-SOOP[13], the online tutor used by the class. Finally, if we used the CAT-

SOOP password authentication system, we would no longer need to use certificates

for authentication, which had historically caused many issues for the students (see

appendix B for more details). This system, the Six-Oh Authentication Program, is

described in section 3.3 in detail.

One issue with encryption, however, was how to implement the desirable feature

of easily deploying code to the machines.3 To achieve this goal we used public key

encryption. Every student would have a private and public key pair. This pair would

be created upon student registration, and the private key would be encrypted by

their passphrase. Using public key encryption, staff members would be able to deploy

code files to the students’ directories, using their public key, but would not be able

to read their contents. In practice public key encryption is not suitable for files.

Encrypting an entire file with a public key algorithm such as RSA[18] takes a long

time, and would cause the file system to slow down considerably. There are, however,

encryption mechanisms suitable for file encryption. These are, however, symmetric

encryption mechanisms that rely on a single key. We can combine a public key

encryption mechanism with a symmetric one, however, by following the following

strategy:

∙ Generate a random key for the symmetric algorithm.

3With Debathena, the students ran a shell command that downloaded the code files to their
desktop. While we could continue using this solution, we designed Six-Oh File Transfer with the
design goal of enabling an automatic solution for code deployment.

36

∙ Encrypt the file with the symmetric algorithm and the generated key.

∙ Encrypt the generated key with the public key algorithm.

∙ Place the encrypted key in the header of the file.

Decrypting the file now consists of decrypting the generated key at the header of

the file, and using it to decrypt the remainder of the file.

Another challenge with encryption is handling the case of a lost password. Under

the scheme described above, a student would lose access to their files entirely, since it

is impossible to recover the information without the passphrase. A possible solution

to this would be to have a master key accessible by course staff. This key could be

made secure by encrypting it with multiple keys, each belonging to a different member

of the staff, thus requiring multiple members of the staff to come together to recover

a student’s files. This solution, however, adds a large amount of complexity to the

system, and makes the students’ files less secure, as now staff would be able to access

them. Due to these concerns, and the fact that losing one’s files does not come at a

high cost to a student (their grade is most likely not affected, as CAT-SOOP keeps

track of all their work), we did not tackle this challenge.

It was also important that the Six-Oh File Transfer system not block when the

network failed, with the acceptable tradeoff that eventual consistency was achieved

across replicas of the user’s files. To satisfy all these requirements, we designed the

the system as follows:

When a user logs in, a request is made to a central server for their files. The

user’s home directory is then downloaded from the server to the machine.4 Using

the authentication token from the user, these files are decrypted and placed in a

separate location from the encrypted copies, where they are only accessible by root

4Any file synchronization strategy should work here. For this particular implementation, we
plan to use rsync, particularly because it simplifies caching—a machine can keep a local copy of
the encrypted files, which are updated with minimal traffic on login; a better mechanism might be
to build a lazy file synchronizing system that immediately returns, but keeps synchronizing in the
background, lazily blocking when requests come for files that have not been synchronized yet.

37

and the user.5 Ideally, this location is destroyed when the machine turns off, or made

inaccessible if the operating system is not on.6

An encrypted write ahead log (WAL) is kept on disk to improve the performance

of the system7 and allow for recovery in case of failures, such as system crashes and

network issues. In case of a crash, the system would try synchronize the files on

startup. Any actions in the WAL that had not been applied to the files, however,

would not be available to the system, as it would no longer have the encryption key

accessible. Therefore, the WAL is also synchronized in this case. On user login, if

there are any synchronized WAL actions, these get applied, the modified files are sent

to the server, and the WAL is purged.

A custom FUSE filesystem is then mounted in the home directory of the user.

Every request that does not modify the files is passed through to the location of the

non-encrypted files. Every request that modifies a file is first written as an encrypted

WAL, a message is sent through a Unix socket advertising which file was changed,

and finally the change passes through to the decrypted files. When the filesystem is

mounted, a separate process is started in the background. This process listens on the

same Unix socket that the FUSE filesystem advertises on. If files are changed, the

process periodically encrypts the modified files and sends them to the server. While

encrypting the file, operations that may modify it are blocked by a file lock to keep

consistency. The WAL entries describing the changes between the previous encrypted

version and the new one are then purged. To handle the failure of a system crash

before purging the WAL, the headers of the encrypted files are augmented: the files

are versioned, and each WAL entry increments their version number. Thus, from the

WAL, it is possible to know which version a file would be in when applying a specific

entry. Even if a WAL entry remains after the file has been updated, it will not get

applied repeated times because it has a smaller version number. This design does

5The root user is trusted in this system, as it would have many other ways of obtaining the user’s
files otherwise, for example by modifying the login scripts, and logging their authentication tokens.

6Ways to do this would be to put the files in a ram disk, provided there is enough system memory,
or encrypting the disk, and only allowing staff to turn on/reboot the machines.

7Without the WAL, every file modification would require a re-encryption of the modified file.
With the WAL, only the modification needs to get encrypted.

38

not guarantee that the system will never enter an invalid state, however. Specifically,

when encrypting the new version of a file, if the operation used to replace the previous

version can fail in an invalid intermediate state, the whole system enters an invalid

state. It is thus important that this operation has a low probability of having invalid

intermediate states, so that either the original file, or the new one are the only possible

results in case of failure.

On logout, all the pending operations are applied and synchronized, and the un-

encrypted copy is deleted (the encrypted copy is kept as a cache). A separate process,

launched on system startup, manages the cached copies, deleting them if disk space

is required. Further, if a failure happens that results in a reboot, a process is started

on startup that synchronizes every cached copy with the server, to guarantee that no

changes are lost.

The Six-Oh File Transfer system achieves its design goals by separating operations

on the file system from the synchronization operation. The FUSE file system does

not block if the network is disconnected, it just keeps writing new WAL entries.

The process in charge of synchronizing changes with the server only blocks in the

synchronization step, not on the encryption step. The encryption step would be

the only place that could cause the FUSE filesystem to also block. When the laptop

reconnects to the network, the process in charge of synchronization will guarantee that

the files are correctly synchronized. In case of failures, there are multiple safeguards

in place to guarantee that the state of the filesystem on the local machine is eventually

consistent with the state on the server.

3.3 The Six-Oh Authentication Program

With Debathena, the students were using Kebreros to authenticate and obtain certifi-

cates that authenticated them with CAT-SOOP. The main goal of the authentication

system was that it would transparently allow for the students’ files to be re-encrypted.

Secondary goals were transparent authentication with CAT-SOOP on login and easy

creation of new users by staff members. The CAT-SOOP system can provide au-

39

thentication via password and can easily be extended to perform extra actions on a

password change.8 It was also very easy to add new users to CAT-SOOP. Due to

these advantages, we decided to implement the Six-Oh Authentication Program by

using the existing CAT-SOOP password authentication mechanism, and modifying

CAT-SOOP to re-encrypt the students’ files on a password change.

This system was developed as a PAM[21] script that would talk to CAT-SOOP.

A desirable feature would be to have this script not only authenticate the user to

the laptop, but also login the user to CAT-SOOP on their browser. When a student

uses password authentication on CAT-SOOP, their browser sends a POST request

through HTTPS with the student’s username and password. The server replies with

either an error page, or a success page, and a session ID cookie. That session ID

allows the user to access CAT-SOOP resources without having to authenticate.

The catsoop_login.py script (presented in section C.7) communicates with the

CAT-SOOP server via POST and tries to login. The exit code of this script indicates

whether login was successful or not. If it was, its output is the session ID. The

firefox_sid_cookies.py script (presented in section C.8) takes a session ID and home

directory location. If that user has a firefox profile, the script adds the session ID

as a cookie. Finally, the catsoop_login_pam.sh script (presented in section C.9) ties

those two scripts together by using the first to determine whether the authentication

was successful, and the second to add the session ID to that user’s firefox session. It

also creates a home directory for the user if one does not already exist9 and initializes

a default Firefox profile before running the firefox_sid_cookies.py script. In case of

failure, the script tries to diagnose what could have failed, and displays helpful error

messages.

The Six-Oh Authentication Program thus allows users to use their CAT-SOOP

credentials to login to a laptop, and it also logs them in to the CAT-SOOP online

tutor. This system not only allows for the implementation of the Six-Oh File Transfer

8This system is free software, and was originally developed by the Adam Hartz, who ran the
6.01 course; the familiarity of the course staff with CAT-SOOP motivated the decision to use its
authentication mechanism and extend it.

9Note that this portion of the code will be replaced with the Six-Oh File Transfer system once it
is implemented.

40

system, but allows the course staff to easily add students to the system.

41

42

Chapter 4

Conclusions and Future Work

We presented two sets of work that all contributed to making a better experience

for students in our lab, with fewer interruptions: the evaluation and deployment

of Hardware upgrades, aided by two new software systems (part of Six-Oh Deploy,

and the Six-Oh Caster system), which will facilitate future Software and Hardware

upgrades; and the development of a replacement for Debathena[2], via the the Six-

Oh File Transfer system design, and the Six-Oh Authentication Program. Together,

these systems form the S4 Infrastructure System, which when complete provides a

set of tools for using and managing a computer lab equipped with laptops.

The completed portions of this work are already adding value: the laptops have

a higher useful service life, and mobility, allowing for new learning experiences, and

the management of the software in the machines is easier for staff. We also plan to

deploy the Six-Oh Authentication Program in the semester following the completion

of this thesis, facilitating a seamless authentication with the tutor, and facilitating

other classes happening in the lab.

There is still a lot of work to be done: it is necessary to complete the Six-Oh

Deploy and Six-Oh File Transfer systems first. Once complete, there are other areas

of research that can branch from the work in this thesis.

Installing Coreboot on machines is still an involved process. It takes about one

hour per person per laptop to install Coreboot. It would be very valuable to have a

way to install Coreboot in the ROM from an operating system. Some research work

43

shows that this should be possible by modifying modules in the BIOS [20] to unlock

the BootBlock, which would enable a direct write of the Coreboot BIOS. It would

also be of value to have this research happen for more modern devices.

One disadvantage of the current Six-Oh File Transfer system design is that it

counts on a centralized system. That is also true of the other tools in use in the 6.01

course (for example CAT-SOOP, and the other tools developed in this thesis). That

means that the 6.01 server is a single point of failure. A valuable research direction

would be to find ways to make all these tools distributed. An interesting application

would be to leverage the fact that there are a lot of laptops in the lab, which most of

the time are underused, since lab is closed outside of certain scheduled times.

The Six-Oh File Transfer system can also be the base for other research projects.

Specifically, which synchronization mechanism to use, and supporting cooperation

between different users. A bidirectional synchronization mechanism could allow more

than one machine modifying the same files, particularly if there is some way to handle

conflicts. Leveraging such a mechanism, and the fact that public key encryption could

be used to allow multiple users to decrypt the same files, one could extend the Six-Oh

File Transfer system to support directories shared by multiple users, but only visible

to those users. Another direction for further research in the file synchronization

mechanism is supporting lazy serving of files. As it stands, the Six-Oh File Transfer

system might require long login times, if the user’s synchronized files are large and

not cached on the machine. A better synchronization system would have the files

immediately available as they’re synchronizing, and lazily serve them as needed. Thus,

the login time would only be as long as needed to synchronize the files read on login.

It is our hope that the S4 Infrastructure System is completed soon after this thesis

is submitted, and keeps providing value to the 6.01 course and possibly other courses

with similar labs. These systems, and the challenges and tradeoffs faced also suggest

interesting directions for future research extending them.

44

Appendix A

Attempted Software Installation of

Coreboot

When trying to install Coreboot, we researched ways to install it from within an

operating system. The method we attempted consisted of modifying the ROM flash-

ing scripts in the BIOS upgrade images from Lenovo. Specifically, by calling the

phlash16.exe script, and providing it modified BIOS images (to include Coreboot in-

stead of a Lenovo BIOS). This did not work, and made the computer unusable. A

post-mortem analysis of the resulting ROM image showed that, while part of Core-

boot was written to the ROM, part of the ROM was unchanged. This portion of the

ROM corresponded to the BootBlock region, which the X201 guide[1] theorized was

blocked by software. Several experiments were done with this, specifically changing

the location of the Coreboot binaries within the ROM, but none managed to install

Coreboot. It is unknown if this method could be used at all, because the Lenovo BIOS

might implement a limited signature verification so only authorized BIOS images get

loaded.

Further research suggested that the only reason it was possible to make the system

non-functional was that, while the main Lenovo BIOS boot code was protected, and

potentially signature checked, it loads other modules that were not protected, and

could be modified[20]. We posit that it should be possible to inject code into one

the BIOS modules that unlocks the BootBlock region of the ROM, thus allowing a

45

tool such as Flashrom to be used to write Coreboot[12] to the ROM from within an

Operating System. Due to time constraints and inexperience with reverse engineering

of software, this approach was not explored further.

46

Appendix B

Historical Reasons for Choosing

Debathena

There was one historical reason why AFS[14] was preferred over other solutions: it

would synchronize the students’ files with workstations spread out across campus.

That allowed students to easily retrieve their files and work on the course’s projects

without having to be in lab, instead going to an “Athena Cluster” anywhere on cam-

pus. This advantage is no longer as relevant as it used to be. It was observed that

students don’t rely as much on “Athena Clusters” as at the time of the course inau-

guration, instead preferring to use their personal laptops. This actually made it more

of a hindrance for a student to retrieve their files, as they would have to install extra

software to access OpenAFS, or get their files over SSH1. It was also uncertain whether

the “Athena Clusters” were going to exist for a lot longer[19], making this advantage

even less relevant. This advantage also came with one caveat: it wasn’t always possi-

ble to have the same versions of software in common with the campus workstations,

and the files that each different version stored were sometimes incompatible, causing

software to behave incorrectly for the students using those workstations (one exam-

ple of this was Firefox’s locking mechanism preventing students from opening new

1This might not require extra software, depending on the operating system—both Linux and Mac
OS come with software to access files over SSH usually pre-installed, although Windows does not—,
but requires a familiarity with the necessary software that many students taking 6.01 did not have
initially and which is out of the scope of what the course was trying to teach

47

sessions).

Despite the issues with AFS, Debathena provided the course with one major ad-

vantage: using Kerberos[17] credentials for authentication. MIT uses Kerberos as a

central authentication mechanism for many of its services. In particular, students

can get client certificates for their browsers that authenticate them with many ser-

vices at the school. The course used Kerberos authentication so that the users did

not have to manage user accounts for the online tutor[13]: authentication was done

via certificates, which would be available across different labs via AFS. Certificate

authentication, however, did not work as well as expected.

For reasons that were never completely understood, the Firefox’s certificate store

became corrupted, not only preventing students from being able to authenticate with

the online tutor, but also preventing them from installing new certificates. The ini-

tial solution to this problem was to delete their entire Firefox profile, erasing their

browsing history and other settings, but ultimately solving the problem. Later, it was

found that there was a single file cert8.db in the profile directory that contains the

certificates. Deleting that file seemed to fix the issue, although it required students

to re-install certificates. Eventually, a script certfix (presented in section C.1) was

written and deployed to the lab’s machines as a way for staff to quickly fix the issue.2

An initial theory as to why this file corruption happened was that it could be due

to the course using custom Firefox profile locations on the lab laptops. This was done

initially to minimize interference with the profiles used by the campus workstations,

due to the different Firefox versions in use. An experimental fix was done that

consisted of simply using the default Firefox profile. This did not solve the issue,

however, and it exposed other issues: Firefox would now sometimes be unable to

generate a key for certificate creation, even after running the aforementioned certfix.

The best theory for why that happened was due to version mismatches with campus

workstations’ Firefox installations.

An interesting property of these certificate store corruption cases was that they

2This script found the profile directory and deleted the cert8.db file from there; it was written
by the author of this thesis in cooperation with Geronimo Mirano from the 6.01 staff

48

tended to happen to certain students with a disproportionate probability. This led to

the theory that there could be laptop usage patterns that increased the odds of having

the certificate store corrupted. A hypothetical such pattern would be to consistently

leave the browser window open when logging out, or logging out via a hard shutdown

without closing the browser. It is possible that, due to the rarity of client certificate

usage in browsers, this functionality isn’t well tested and that Firefox might leave

the certificate store in invalid states when not properly shutdown. It is possible that

the AFS mechanism for synchronization (only synchronize when a file descriptor is

closed) couple with an unreliable network connection made that more likely. These

hypotheses, however, were not confirmed, as, despite repeated attempts, a test case

that could consistently (or at least with high probability) reproduce the issue was not

found.

49

50

Appendix C

Code

C.1 certfix

1 #!/ usr /bin /python

2 import sys

3 import os

4

5

6 de f main (argv) :

7 f i l e p a t h = os . env i ron [’HOME’] + ’ / . moz i l l a / f i r e f o x / p r o f i l e s . i n i ’

8 f = open (f i l e p a t h)

9 l i n e s = f . r e a d l i n e s ()

10 f . c l o s e ()

11 t ry :

12 indx = l i n e s . index ("Defau l t=1\n")

13 pa th l i n e = l i n e s [indx−1]

14 path = path l i n e [5 : −1]

15 except ValueError :

16 f o r l in l i n e s :

17 t ry :

18 n , v = l . s p l i t (’= ’)

19 i f n == ’Path ’ :

20 path = v [: −1]

21 break

51

22 except :

23 pass

24

25 cer t_f i l e_path = os . path . dirname (f i l e p a t h) + "/" + path + "/ ce r t 8 . db

"

26 t ry :

27 os . remove (cer t_f i l e_path)

28 pr in t ("Removing %s to f i x f i r e f o x . " % cert_f i l e_path)

29 except :

30 pass

31

32 i f __name__ == "__main__" :

33 main (sys . argv)

code/certfix

52

C.2 vga_extract.sh

1 #!/ bin /bash

2 # Requires : 7z + g e t e l t o r i t o , and t o o l s to compi le b ios_extract and

phnxsp l i t

3 #

4 INITIAL_DIR=‘pwd ‘

5 ISO_FILE=$1

6 OUT_DIR=$2

7 i f [! −e "$ISO_FILE"] | | [! −d "$OUT_DIR"]

8 then

9 echo "Usage : $0 lenovo_bios_disk . i s o output_directory " && ex i t 1

10 f i

11

12 TMP_DIR=‘mktemp −d ‘

13 f unc t i on c l ean {

14 echo DONE

15 rm −r f $TMP_DIR

16 }

17 trap c l ean EXIT

18 CURRENT=‘pwd ‘

19 cp $ISO_FILE $TMP_DIR/ d i sk . i s o

20 cd $TMP_DIR

21

22 # Extract f i l e s from ISO f i l e , so we can get the rom

23 echo "Extract ing f i l e s "

24 g e t e l t o r i t o −o boot . img d i sk . i s o | | e x i t 1

25 rm di sk . i s o

26 dd i f=boot . img o f=boot2 . img sk ip=16384 i f l a g=skip_bytes | | e x i t 1

27 rm boot . img

28 mkdir d i sk

29 cd d i sk

30 7z x . . / boot2 . img | | e x i t 1

31 rm . . / boot2 . img

32 BIOS_FILE=‘ f i nd . −name * . FL1 ‘

33

53

34 # Decompress BIOS

35 echo "Decompressing BOIS"

36 g i t c l one https : // github . com/ coreboot / b ios_extract . g i t | | e x i t 1

37 cd b ios_extract

38 make | | e x i t 1

39 . / bcpvpd . . / $BIOS_FILE . . / . . / b i o s . rom | | e x i t 1

40 cd . . / . . /

41 rm −r f d i sk | | e x i t 1

42

43 # Sp l i t the BIOS in to i t s modules

44 echo " Sp l i t t i n g BIOS in to modules"

45 wget http ://www. endeer . cz / b i o s . t o o l s / phnxsp l i t . z ip | | e x i t 1

46 unzip phnxsp l i t . z ip | | e x i t 1

47 rm phnxsp l i t . z ip

48 cd phnxsp l i t

49 # Fix phnxsp l i t

50 patch <<EOF

51 −−− Makef i l e 2008−11−01 12 :45 :40 .000000000 −0400

52 +++ . . / Make f i l e . o ld 2016−05−15 20 :51 :44 .270978708 −0400

53 @@ −4,15 +4 ,16 @@

54 #

55

56 MAKE = make

57 +GCC = gcc −m32 −march=i686

58

59 phnxsp l i t :

60 − gcc phnxsp l i t . c l z int_decode . o phnxfunc . o −s −fpack−s t r u c t −o

phnxsp l i t

61 + \$ (GCC) phnxsp l i t . c l z int_decode . o phnxfunc . o −s −fpack−s t r u c t −o

phnxsp l i t

62

63 l z int_decode :

64 − gcc lz int_decode . c −c −o lz int_decode . o −fpack−s t r u c t

65 + \$ (GCC) lz int_decode . c −c −o lz int_decode . o −fpack−s t r u c t

66

67 phnxfunc :

54

68 − gcc phnxfunc . c −c −o phnxfunc . o −fpack−s t r u c t

69 + \$ (GCC) phnxfunc . c −c −o phnxfunc . o −fpack−s t r u c t

70

71 c l ean :

72 rm −f * . o

73 EOF

74 make r ebu i l d

75 cd . .

76 mkdir DUMP

77 cd DUMP

78 . . / phnxsp l i t / phnxsp l i t . . / b i o s . rom

79 cd . .

80 rm −r f phnxsp l i t

81 rm b io s . rom

82

83 # For every f i l e that has a mention o f vga rom , put them in the output

84 # d i r e c t o r y

85 cd $INITIAL_DIR

86 f o r f in $TMP_DIR/DUMP/*

87 do

88 i f grep − i vga\ b io s $ f

89 then

90 cp $ f $OUT_DIR

91 f i

92 done

code/vga_extract.sh

55

C.3 setup.sh

1 #!/ bin /bash

2 ORIGIN=""

3 DISK=$1

4 i f (! ([−e $DISK] && ["$DISK" != ""]))

5 then

6 echo "Usage : $0 ORIGIN_DISK"

7 e x i t 1

8 f i

9

10 f unc t i on c l ean {

11 i f ["$CLONE" != ""]

12 then

13 umount $ORIGIN

14 rm −r f $ORIGIN

15 f i

16 }

17 trap c l ean EXIT

18

19 # Copy the f i l e s now

20 ORIGIN=‘mktemp −d ‘

21 mkdir o r i g i n a l

22 cp −a $ORIGIN/ . o r i g i n a l /

23

24 # Fix f i l e s f o r c l on ing

25 rm o r i g i n a l / e t c /dhcpcd . duid # DHCP Unique ID

26 rm o r i g i n a l / var / l i b /dhcpcd5/* # Lease memory

27 echo > o r i g i n a l / e t c /udev/ r u l e s . d/70− pe r s i s t e n t−net . r u l e s # Device names

28

29 echo "DONE"

code/setup.sh

56

C.4 clone.sh

1 #!/ bin /bash

2 ORIGIN=""

3 CLONE=""

4 DISK=$1

5 NAME=$2

6 i f (! ([−e $DISK] && ["$DISK" != ""])) | | [−z "$NAME"]

7 then

8 echo "Usage : $0 DISK NAME"

9 e x i t 1

10 f i

11

12 f unc t i on c l ean {

13 i f ["$CLONE" != ""]

14 then

15 umount $CLONE/dev

16 umount $CLONE/proc

17 umount $CLONE/ sys

18 umount $CLONE

19 rm −r f $CLONE

20 f i

21 }

22 trap c l ean EXIT

23

24 # Create the layout

25 s f d i s k ${DISK} < layout . dump

26 mkfs . ext4 ${DISK}1 −F

27 mkswap ${DISK}5

28

29 # Mount f o r copying

30 ORIGIN=o r i g i n a l

31 CLONE=‘mktemp −d ‘

32 mount ${DISK}1 $CLONE

33 cp −a $ORIGIN/ . $CLONE/

34

57

35 # Setup GRUB + f s t ab

36 mount −−bind /dev $CLONE/dev

37 mount −−bind /proc $CLONE/proc

38 mount −−bind / sys $CLONE/ sys

39 UUID_FIRST=‘ b lk id −s UUID −o value ${DISK}1 ‘

40 UUID_SECOND=‘ b lk id −s UUID −o value ${DISK}5 ‘

41 # Fix f s t ab with c o r r e c t UUIDs

42 cat > $CLONE/ etc / f s t ab <<EOF

43 # / etc / f s t ab : s t a t i c f i l e system in format ion .

44 #

45 # Use ’ b lk id ’ to p r i n t the un i v e r s a l l y unique i d e n t i f i e r f o r a

46 # dev i ce ; t h i s may be used with UUID= as a more robust way to name

dev i c e s

47 # that works even i f d i s k s are added and removed . See f s t ab (5) .

48 #

49 # <f i l e system> <mount point> <type> <opt ions> <dump> <pass>

50 # / was on /dev/ sda1 during i n s t a l l a t i o n

51 UUID=$UUID_FIRST / ext4 e r r o r s=remount−ro 0 1

52 # swap was on /dev/ sda5 during i n s t a l l a t i o n

53 UUID=$UUID_SECOND none swap sw 0 0

54 EOF

55 # I n s t a l l grub

56 chroot $CLONE <<EOF

57 grub− i n s t a l l $DISK

58 GRUB_DISABLE_OS_PROBER=true update−grub

59 e x i t

60 EOF

61 # Fix name

62 echo $NAME > $CLONE/ etc /6 .01/ l o c

63

64 sync

65

66 echo "DONE"

code/clone.sh

58

C.5 client.py

1 #!/ usr /bin /python3 −u

2 import time

3 import subproces s

4 import os

5 import s s l

6 import socket

7 import s e l e c t

8 import sys

9 import getopt

10 import f c n t l

11 import j son

12

13 NAME = sys . argv [0]

14 argv = sys . argv [1 :]

15 DEFAULT_CAFILE = ’ rootCA .pem ’

16 DEFAULT_PORT = 6601

17

18

19 de f usage (out=sys . s t d e r r) :

20 g l oba l NAME

21 pr in t (’ ’ ’ Usage :

22 %s [−p −−port port_number] −h,−−host host [−a −−ca c a_ f i l e] [−n −−

name name] [−−help]

23 [−p\t−−port \ tPort number on the s e r v e r . By de fau l t , i t i s port

6 6 0 1 .]

24 −h\t−−host \ tSe rve r ’ s host . Could be name or IP . Required .

25 [−a\t−−ca\ tLocat ion o f C e r t i f i c a t e Authority f i l e . Defau l t : %s .]

26 [−n\t−−name\tName to send to s e r v e r .]

27 [−−help \tShow th i s he lp text .]

28 ’ ’ ’ % (NAME, DEFAULT_CAFILE))

29

30 SHORT_OPTIONS = ’p : a : h : n : ’

31 LONG_OPTIONS = [’ port=’ , ’ ca=’ , ’ host=’ , ’name=’ , ’ he lp ’]

32

59

33

34 de f parse_arguments (argv) :

35 t ry :

36 opt ions , argv = getopt . gnu_getopt (argv , SHORT_OPTIONS,

LONG_OPTIONS)

37 except getopt . GetoptError :

38 usage ()

39 re turn (argv , None)

40

41 de f parse_opt (x) :

42 re turn x i f x [−1] != ’=’ e l s e x [: −1]

43 opt_to_names = { ’−− ’ + parse_opt (opt) : parse_opt (opt)

44 f o r opt in LONG_OPTIONS}

45 long_ind = 0

46 f o r i in SHORT_OPTIONS:

47 i f i == ’ : ’ :

48 cont inue

49 opt_to_names [’− ’+i] = parse_opt (LONG_OPTIONS[long_ind])

50 long_ind += 1

51 server_args = d i c t ((opt_to_names [opt_name] , opt)

52 f o r opt_name , opt in opt ions)

53

54 re turn argv , server_args

55

56 RETRY_WAIT = 1

57

58

59 de f check_options (server_args) :

60 r e t = None

61 i f ’ he lp ’ in server_args :

62 re turn 0

63

64 i f ’ host ’ not in server_args :

65 re turn 2

66

67 i f ’ port ’ in server_args :

60

68 t ry :

69 server_args [’ port ’] = in t (server_args [’ port ’])

70 i f not (0 <= server_args [’ port ’] <= 65535) :

71 pr in t (" Inva l i d port number" , f i l e=sys . s t d e r r)

72 r e t = 2

73 except ValueError :

74 pr in t ("Port number must be i n t e g e r " , f i l e=sys . s t d e r r)

75 r e t = 2

76

77 i f (’ ca ’ in server_args and not os . path . i s f i l e (server_args [’ ca ’])) \

78 or not os . path . i s f i l e (DEFAULT_CAFILE) :

79 pr in t (" C e r t i f i c a t e Authority f i l e must e x i s t " , f i l e=sys . s t d e r r)

80 r e t = 2

81

82 re turn r e t

83

84

85 de f main (argv) :

86 argv , server_args = parse_arguments (argv)

87 i f s e rver_args i s None :

88 re turn 2

89 options_check = check_options (server_args)

90 i f options_check i s not None :

91 usage (sys . s tdout i f options_check == 0 e l s e sys . s t d e r r)

92 re turn options_check

93

94 whi le True :

95 bash_proc = subproces s . Popen (["/bin /bash"] , s td in=subproces s .

PIPE ,

96 stdout=subproces s . PIPE , bu f s i z e =0)

97 t ry :

98 run_cl i ent (bash_proc , ** server_args)

99 except KeyboardInterrupt as e :

100 pr in t ("Terminating")

101 break

102 except Exception as e :

61

103 pr in t ("Found except ion : \ n%s" % s t r (e))

104 f i n a l l y :

105 bash_proc . k i l l ()

106 pr in t ("Retrying ")

107 time . s l e e p (RETRY_WAIT)

108 re turn 0

109

110 # From :

111 # http :// s tackove r f l ow . com/ que s t i on s /287871/ pr int−in−terminal−with−

co l o r s−using−python

112 SERVER_COLOR = ’ \033 [01 ;31m’

113 ENDC = ’ \033 [0m’

114

115

116 de f run_cl i ent (comm, host , port=DEFAULT_PORT, ca=DEFAULT_CAFILE, name=

None) :

117 i f name == ’ ’ :

118 name = None

119 context = s s l . c reate_defau l t_context (c a f i l e=ca)

120 a f t e r_ id l e_sec = 1

121 i n t e rva l_se c = 1

122 max_fai ls = 1

123 sock = socket . socke t (socke t .AF_INET)

124 sock . s e t sockopt (socke t .SOL_SOCKET, socket .SO_KEEPALIVE, 1)

125 sock . s e t sockopt (socke t .IPPROTO_TCP, socket .TCP_KEEPIDLE,

a f t e r_ id l e_sec)

126 sock . s e t sockopt (socke t .IPPROTO_TCP, socket .TCP_KEEPINTVL,

in t e rva l_se c)

127 sock . s e t sockopt (socke t .IPPROTO_TCP, socket .TCP_KEEPCNT, max_fai ls)

128

129 conn = context . wrap_socket (sock , server_hostname=host)

130

131 # Make stdout nonblocking .

132 # Sometimes s e l e c t says the re ’ s output , but read f a i l s .

133 # This makes i t p o s s i b l e to handle those ca s e s g r a c i ou s l y .

134 fd = comm. stdout . f i l e n o ()

62

135 f l = f c n t l . f c n t l (fd , f c n t l .F_GETFL)

136 f c n t l . f c n t l (fd , f c n t l .F_SETFL, f l | os .O_NONBLOCK)

137

138 conn . connect ((host , port))

139 i d e n t i f i c a t i o n = { ’name ’ : name}

140 conn . send (j son . dumps(i d e n t i f i c a t i o n) . encode (’ ut f−8 ’))

141 t ry :

142 whi le True :

143 r ead_l i s t , _, _ = s e l e c t . s e l e c t ([comm. stdout , conn] , [] , [])

144 f o r r in r ead_ l i s t :

145 i f r == conn :

146 o = r . read ()

147 i f o == b ’ ’ :

148 re turn 0

149 comm. s td in . wr i t e (o)

150 sys . s tdout . wr i t e (’%s s e r v e r%s > ’ %

151 (SERVER_COLOR, ENDC))

152 sys . s tdout . wr i t e (o . decode (" utf−8"))

153 e l s e :

154 t ry :

155 o = comm. stdout . r e ad l i n e ()

156 except OSError :

157 # c l e a r or r e s e t f o r example get here , i t ’ s

weird .

158 cont inue

159 i f (o == b ’ ’) :

160 pr in t ("Bash has found an er ror , qu i t t h i s

connect ion ")

161 re turn

162 sys . s tdout . wr i t e (o . decode (" utf−8"))

163 conn . send (o)

164 f i n a l l y :

165 conn . c l o s e ()

166

167 i f __name__ == ’__main__ ’ :

63

168 sys . e x i t (main (argv))

code/client.py

64

C.6 server.py

1 #!/ usr /bin /python3 −u

2 import sys

3 import socket

4 import s s l

5 import getopt

6 import os

7 import s e l e c t

8 import j son

9

10 DEFAULT_PORT = 6601

11 DEFAULT_CAFILE = "rootCA .pem"

12 DEFAULT_CERTFILE = " c o n f i d e n t i a l / s e r v e r . c r t "

13 DEFAULT_KEY = " c o n f i d e n t i a l / s e r v e r . key"

14 DEFAULT_HOST = ’ ’

15 DEFAULT_LOG = None

16

17 NAME = sys . argv [0]

18 argv = sys . argv [1 :]

19

20

21 de f usage (out=sys . s t d e r r) :

22 g l oba l NAME

23 pr in t (’ ’ ’ Usage :

24 %s [−p −−port port_number] [−c −−c e r t c e r t i f i c a t e _ f i l e] [−k −−key

key_f i l e] [−a −−ca c a_ f i l e] [−h −−help] [− l −−l og]

25 [−p\t−−port \ tPort number to bind to . Defau l t i s %d .]

26 [−c\t−−c e r t \ tLocat ion o f c e r t i f i c a t e f i l e .]

27 [−k\t−−key\ tLocat ion o f key f i l e .]

28 [−a\t−−ca\ tLocat ion o f C e r t i f i c a t e Authority f i l e .]

29 [−−host \ tHost the s e r v e r should bind to .]

30 [−h\t−−help \tShow th i s he lp text .]

31 [− l \ t−−l og \ tD i r e c to ry to put l o g s in .]

32 ’ ’ ’ % (NAME, DEFAULT_PORT) , f i l e=out)

33

65

34 SHORT_OPTIONS = ’p : c : a : k : h l : ’

35 LONG_OPTIONS = [’ port=’ , ’ c e r t=’ , ’ ca=’ , ’ key=’ , ’ he lp ’ , ’ l og=’ , ’ host=’

]

36

37

38 de f main (argv) :

39 t ry :

40 opt ions , argv = getopt . gnu_getopt (argv , SHORT_OPTIONS,

LONG_OPTIONS)

41 except getopt . GetoptError :

42 usage ()

43 re turn 2

44

45 de f parse_opt (x) :

46 re turn x i f x [−1] != ’=’ e l s e x [: −1]

47 opt_to_names = { ’−− ’ + parse_opt (opt) : parse_opt (opt)

48 f o r opt in LONG_OPTIONS}

49 long_ind = 0

50 f o r i in SHORT_OPTIONS:

51 i f i == ’ : ’ :

52 cont inue

53 opt_to_names [’− ’+i] = parse_opt (LONG_OPTIONS[long_ind])

54 long_ind += 1

55

56 server_args = d i c t ((opt_to_names [opt_name] , opt)

57 f o r opt_name , opt in opt ions)

58 i f ’ he lp ’ in server_args :

59 usage (out=sys . s tdout)

60 re turn 0

61 e l s e :

62 re turn s ta r t_se rve r (** server_args)

63

64

65 de f s t a r t_se rve r (c e r t=DEFAULT_CERTFILE, key=DEFAULT_KEY,

66 ca=DEFAULT_CAFILE, port=DEFAULT_PORT, host=DEFAULT_HOST

,

66

67 l og=DEFAULT_LOG) :

68 t ry :

69 port = in t (port)

70 e r r o r = False

71

72 i f not (0 <= port <= 65535) :

73 pr in t (" Inva l i d port number" , f i l e=sys . s t d e r r)

74 e r r o r = True

75

76 i f c e r t i s None or not os . path . i s f i l e (c e r t) :

77 pr in t (" Inva l i d c e r t i f i c a t e f i l e " , f i l e=sys . s t d e r r)

78 i f key i s None :

79 pr in t ("There i s no appropr ia t e d e f au l t c e r t i f i c a t e f i l e .

" ,

80 f i l e=sys . s t d e r r)

81 e r r o r = True

82

83 i f key i s None or not os . path . i s f i l e (key) :

84 pr in t (" Inva l i d key f i l e " , f i l e=sys . s t d e r r)

85 i f key i s None :

86 pr in t ("There i s no appropr ia t e d e f au l t key f i l e . " ,

87 f i l e=sys . s t d e r r)

88 e r r o r = True

89

90 i f ca i s not None and not os . path . i s f i l e (ca) :

91 pr in t (" Inva l i d CA f i l e " , f i l e=sys . s t d e r r)

92 e r r o r = True

93

94 i f (e r r o r) :

95 r a i s e getopt . GetoptError ("Bad Option")

96 except ValueError :

97 pr in t ("Port number must be i n t e g e r ")

98 usage ()

99 re turn 2

100 except getopt . GetoptError :

101 usage ()

67

102 re turn 2

103

104 pr in t (" S ta r t i ng s e r v e r at %s :%d\n"

105 " C e r t i f i c a t e : %s \tKey : %s%s" %

106 (host , port , cer t , key , ’ ’ i f ca i s None e l s e ’ \tCA : %s ’ % ca)

,

107 f i l e=sys . s t d e r r)

108

109 context = s s l . c reate_defau l t_context (s s l . Purpose .CLIENT_AUTH, c a f i l e

=ca)

110 context . load_cert_chain (c e r t f i l e=cert , k e y f i l e=key)

111

112 # For ke epa l i v e

113 a f t e r_ id l e_sec = 1

114 i n t e rva l_se c = 1

115 max_fai ls = 1

116

117 bindsocket = socket . socke t (socket .AF_INET, socke t .SOCK_STREAM)

118 bindsocket . s e t sockopt (socket .SOL_SOCKET, socket .SO_REUSEADDR, 1)

119 bindsocket . s e t b l o ck i ng (Fa l se)

120 bindsocket . bind ((host , port))

121 bindsocket . l i s t e n (5)

122 connected = {}

123 t ry :

124 whi le True :

125 r e ad_ l i s t = [sys . s td in , b indsocket] + l i s t (connected)

126 readable , _, _ = s e l e c t . s e l e c t (r ead_l i s t , [] , [])

127 f o r r in readab le :

128 i f r == sys . s td in :

129 message = sys . s td in . r e ad l i n e ()

130 i f message == ’ ’ :

131 re turn

132 f o r c in connected :

133 c . send (bytes (message , ’UTF−8 ’))

134 e l i f r == bindsocket :

135 t ry :

68

136 conn , fromaddr = bindsocket . accept ()

137 except socke t . e r r o r :

138 pr in t ("Error on accept , i gno r i ng . " , f i l e=sys .

s t d e r r)

139 cont inue

140 conn . s e tb l o ck i ng (True)

141 conn . s e t sockopt (socke t .SOL_SOCKET,

142 socke t .SO_KEEPALIVE,

143 1)

144 conn . s e t sockopt (socke t .IPPROTO_TCP,

145 socke t .TCP_KEEPIDLE,

146 a f t e r_ id l e_sec)

147 conn . s e t sockopt (socke t .IPPROTO_TCP,

148 socke t .TCP_KEEPINTVL,

149 i n t e rva l_se c)

150 conn . s e t sockopt (socke t .IPPROTO_TCP,

151 socke t .TCP_KEEPCNT,

152 max_fai ls)

153 t ry :

154 ssl_conn = context . wrap_socket (conn , s e rve r_s ide

=True)

155 connected [ssl_conn] = False

156 pr in t ("Computer connected %s" % s t r (fromaddr))

157 except (s s l . SSLEOFError , s s l . SSLError ,

158 Connect ionResetError) as e :

159 pr in t ("Bad SSL connect ion . %s " % s t r (e) , f i l e=

sys . s t d e r r)

160 e l s e :

161 pr in t ("Data r e c e i v ed from socket . " , f i l e=sys . s t d e r r)

162 t ry :

163 o = r . recv ()

164 i f connected [r] i s Fa l se and log i s not None :

165 t ry :

166 i d e n t i f i c a t i o n = json . l oads (o . decode (’

ut f−8 ’))

167 name = i d e n t i f i c a t i o n [’name ’]

69

168 i f name i s not None :

169 f = open (l og+’ / ’+name , ’wb ’ , 0) \

170 i f l og i s not None e l s e Fa l se

171 connected [r] = (name , f)

172 pr in t (connected [r])

173 cont inue

174 except :

175 pass

176 i f o == b ’ ’ :

177 pr in t (" Socket c l o s ed connect ion . " , f i l e=sys .

s t d e r r)

178 de l connected [r]

179 r . shutdown (socke t .SHUT_RDWR)

180 r . c l o s e ()

181 cont inue

182

183 i f connected [r] i s not Fa l se :

184 name , f = connected [r]

185 f . wr i t e (o)

186 except ValueError :

187 pr in t ("This can r a r e l y happen i f someone c l o s e s

"

188 " connect ion during accept or handshake

s t a r t . \ n"

189 "Seems to be a bug with SSL or so cke t s . \ n"

190 "We are j u s t removing the socke t from our

queue "

191 " in t h i s case " , f i l e=sys . s t d e r r)

192 de l connected [r]

193 cont inue

194 except (ConnectionResetError , OSError) :

195 pr in t ("This seems to happen due to timeouts ,

a lthough "

196 " that i s not 100% c l e a r . We j u s t c l e an l y

remove"

197 " the socke t from the queue when i t

70

happens" ,

198 f i l e=sys . s t d e r r)

199 de l connected [r]

200 except KeyboardInterrupt :

201 pass

202 f i n a l l y :

203 pr in t ("Cleaning up connect i ons . ")

204 f o r c in connected :

205 c . shutdown (socket .SHUT_RDWR)

206 c . c l o s e ()

207 bindsocket . c l o s e ()

208

209 i f __name__ == ’__main__ ’ :

210 sys . e x i t (main (argv))

code/server.py

71

C.7 catsoop_login.py

1 #!/ usr /bin /python3

2 import pycur l

3 import sys

4 from u r l l i b . parse import ur l encode

5

6 username = input ()

7 password = input ()

8 web_page = "http :// s i cp−s4 . mit . edu /6 .01p/ spr ing16 ? l o g i n a c t i o n=l o g i n "

9 post_data = {

10 ’ login_uname ’ : username ,

11 ’ login_passwd ’ : password ,

12 }

13

14 logged_in = True

15 cook i e s = {}

16 de f check_answer (l i n e) :

17 g l oba l logged_in

18 logged_in = False

19

20 de f parse_headers (l i n e) :

21 g l oba l logged_in , c ook i e s

22 hdr = l i n e . decode (’ i so −8859−1 ’)

23 i f ’ : ’ not in hdr :

24 re turn

25 name , va lue = hdr . s p l i t (’ : ’ , 1)

26 name = name . s t r i p () . lower ()

27 value = value . s t r i p ()

28 i f name == " set−cook i e " :

29 cname , cva lue = value . s p l i t (’ ; ’) [0] . s p l i t (’= ’ , 1)

30 cname = cname . s t r i p () . lower ()

31 cva lue = cva lue . s t r i p ()

32 cook i e s [cname] = cva lue

33

34 c = pycur l . Curl ()

72

35 c . s e topt (c .URL, web_page)

36 c . s e topt (c .WRITEFUNCTION, check_answer)

37 c . s e topt (c .POSTFIELDS, ur l encode (post_data))

38 c . s e topt (c .HEADERFUNCTION, parse_headers)

39 c . perform ()

40 c . c l o s e ()

41

42 a s s e r t ’ s i d ’ in cook i e s

43 i f not logged_in :

44 sys . e x i t (1)

45 pr in t (c ook i e s [’ s i d ’])

46 sys . e x i t (0)

code/catsoop_login.py

73

C.8 firefox_sid_cookies.py

1 #!/ usr /bin /python3

2 import c on f i g p a r s e r

3 import os

4 import s q l i t e 3

5 import time

6 import sys

7

8 DURATION=24*60*60 # 24 hours

9 NOW=in t (time . time ())

10 EXPIRES=NOW+DURATION

11

12 # Process the page l i n k

13 page = "http :// s i cp−s4 . mit . edu /6 .01p/ spr ing16 "

14 i f " : // " in page :

15 page = page . s p l i t (" : // " , 1) [1]

16 host , path = page . s p l i t ("/" , 1)

17 path = "/" # cheat ing ? maybe a bug?

18 _, domain0 , domain1 = host . r s p l i t (’ . ’ , 2)

19 domain = "%s .%s " % (domain0 , domain1)

20

21 s id_value = input ()

22

23 par s e r = con f i g p a r s e r . Conf igParser ()

24 home = input ()

25 f i r e f o x = os . path . j o i n (home , " . moz i l l a " , " f i r e f o x ")

26 p r o f i l e = os . path . j o i n (f i r e f o x , " p r o f i l e s . i n i ")

27 i f not os . path . e x i s t s (p r o f i l e) :

28 sys . e x i t (0)

29 # as s e r t os . path . e x i s t s (p r o f i l e)

30

31 su c c e s s = par se r . read (p r o f i l e)

32 a s s e r t p r o f i l e in su c c e s s

33

34 pro f i l e_paths = ((par s e r [k] [’ I sR e l a t i v e ’] , pa r s e r [k] [’ Path ’]) \

74

35 f o r k in par s e r i f ’Name ’ in par s e r [k])

36 pro f i l e_paths = (os . path . j o i n (f i r e f o x , p [1]) i f p [0] e l s e p [1] \

37 f o r p in pro f i l e_paths)

38

39 f o r p in pro f i l e_paths :

40 conn = s q l i t e 3 . connect (os . path . j o i n (p , " cook i e s . s q l i t e "))

41 c = conn . cur so r ()

42 t ry :

43 c . execute (" d e l e t e from moz_cookies WHERE path=? AND host=? AND

name=’ s i d ’ " ,

44 (path , host))

45 c . execute (" i n s e r t i n to moz_cookies "

46 " (baseDomain , name , value , host , path , expiry , "

47 " la s tAcces sed , creationTime , i sSecure , isHttpOnly) "

48 "VALUES (? , ’ s i d ’ , ? , ? , ? , ? , ? , ? , 0 , 0) ; " ,

49 (domain , sid_value , host , path , EXPIRES, NOW, NOW))

50 f i n a l l y :

51 conn . commit ()

52 c . c l o s e ()

53 conn . c l o s e ()

code/firefox_sid_cookies.py

75

C.9 catsoop_login_pam.sh

1 #!/ bin /bash

2 # Desc r i p t i v e f a i l u r e

3 f unc t i on f a i l {

4 echo $* > / etc /6 .01/ message

5 e x i t 1

6 }

7

8 # Attempt to l o g i n to cat−soop

9 ping −c 1 s i cp−s4 . mit . edu &> /dev/ nu l l | | f a i l Unable to connect to cat−

soop s e r v e r

10

11 # In case o f e r r o r here ,

12 SID=‘(echo $PAM_USER; echo $PAM_AUTHTOK) | / e t c /6 .01/ catsoop_log in . py ‘

| | f a i l I n c o r r e c t Password

13 # We’ ve succeeded on the l o g i n !

14 # Add user . I f we are here , then t h i s i s a cat−soop user .

15 useradd −s / bin /bash $PAM_USER −d /home/$PAM_USER −K UID_MIN=10000 2> /

dev/ nu l l

16 # Mark user as logged in v ia kerberos

17 touch / e tc /6 .01/ l o g i n s /$PAM_USER. lock

18

19 # Create d i r e c t o r y which w i l l have unencrypted data

20 i n s t a l l −m700 −o $PAM_USER −g $PAM_USER −d /home/$PAM_USER | | f a i l

Fa i l u r e c r e a t i n g home

21

22 ###### START Six−Oh F i l e Trans fe r STUFF HERE INSTEAD LATER ######

23 i f [! −e / e tc /6 .01/ us e r s /$PAM_USER]

24 then

25 [−n ‘mount | grep −w /home/$PAM_USER‘] | | f a i l Home a l ready

mounted , no sync ing FS

26 # Let ’ s c r e a t e the d i r e c t o r y which w i l l have the encrypted data

27 i n s t a l l −m700 −o $PAM_USER −g $PAM_USER −d / etc /6 .01/ us e r s /$PAM_USER

| | f a i l Fa i l u r e sync ing

28 # Let ’ s encrypt i t !

76

29 (echo ; echo $PAM_AUTHTOK; echo $PAM_AUTHTOK;) | \

30 en c f s −S / etc /6 .01/ us e r s /$PAM_USER /home/$PAM_USER &> /dev/ nu l l | |

f a i l Fa i l u r e on encrypt ion

31 # F i l l i t with s k e l

32 cp −r / e t c / s k e l / . /home/$PAM_USER

33 chown −R $PAM_USER:$PAM_USER /home/$PAM_USER

34 fusermount −u /home/$PAM_USER | | f a i l Fa i l u r e unmounting home

35 f i

36 ###### END Six−Oh F i l e Trans fe r STUFF HERE INSTEAD LATER ######

37

38 # Make sure cur rent user owns encrypted d i r e c t o r y

39 chown −R $PAM_USER:$PAM_USER / etc /6 .01/ us e r s /$PAM_USER

40

41 # Mount home d i r e c t o r y i t not mounted a l ready

42 i f [−z " ‘mount | grep −w /home/$PAM_USER‘ "]

43 then

44 echo $PAM_AUTHTOK | sudo −u $PAM_USER enc f s −S / etc /6 .01/ us e r s /

$PAM_USER /home/$PAM_USER −− −o al low_other | | f a i l Fa i l u r e mounting

home

45 f i

46

47 # Setup f i r e f o x p r o f i l e

48 (echo $SID ; echo /home/$PAM_USER) | / e t c /6 .01/ f i r e f ox_s id_cook i e s . py

code/catsoop_login_pam.sh

77

78

Appendix D

Figures

79

Figure D-1: Integrated Circuit Clip

80

Figure D-2: SOIC-8 chip on T410 Motherboard

81

82

Bibliography

[1] Board:lenovo/x201. Website. https://www.coreboot.org/Board:lenovo/x201. [On-
line; accessed 03-May-2016].

[2] Debathena. Website. http://debathena.mit.edu.

[3] Detailed specifications - thinkpad t410. Website.
https://support.lenovo.com/us/en/documents/pd006109. [Online; accessed
13-May-2016].

[4] Do-it-yourself to remove the "white-list" restrictions from lenovo’s s10 netbook.
Website. http://www.sbbala.com/DellWWAN/Whitelist.htm. [Online; accessed
07-May-2016].

[5] Gnu libreboot. Website. https://libreboot.org/. [Online; accessed 18-May-2016].

[6] How long do disk drives last? Website. https://www.backblaze.com/blog/how-
long-do-disk-drives-last/. [Online; accessed 07-May-2016].

[7] How to retrive a good video bios. Website.
https://www.coreboot.org/VGA_support#How_to_retrieve_a_good_video_bios.
[Online; accessed 07-May-2016].

[8] Lenovo thinkpad t61.Website. http://coreboot.coreboot.narkive.com/7ljvm3wv/lenovo-
thinkpad-t61. [Online; accessed 07-May-2016].

[9] Mx25l6445e high performance serial flash specifica-
tion. Website. http://pdf1.alldatasheet.com/datasheet-
pdf/view/575511/MCNIX/MX25L6445E.html.

[10] Thinkpad bios hacking guide.Website. http://www.endeer.cz/bios.tools/bios.html.
[Online; accessed 07-May-2016].

[11] Thinkpad t410 whitelist removal. Website. https://www.bios-
mods.com/forum/Thread-Thinkpad-T410-whitelist-removal. [Online; accessed
07-May-2016].

[12] Anton Borisov. Coreboot at your service! Linux Journal, 2009(186):1, 2009.

[13] Adam John Hartz. CAT-SOOP: A tool for automatic collection and assessment
of homework exercises. PhD thesis, Massachusetts Institute of Technology, 2012.

83

[14] John H Howard et al. An overview of the andrew file system. Carnegie Mellon
University, Information Technology Center, 1988.

[15] Ali José Mashtizadeh, Andrea Bittau, Yifeng Frank Huang, and David Mazieres.
Replication, history, and grafting in the ori file system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 151–
166. ACM, 2013.

[16] Patrick "P. J." McDermott. Thinkpad x200. Website.
https://libreboot.org/docs/hcl/x200.html.

[17] B Clifford Neuman and Theodore Ts’ O. Kerberos: An authentication service
for computer networks. Communications Magazine, IEEE, 32(9):33–38, 1994.

[18] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtaining dig-
ital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[19] Rosa Ruiz. Athena clusters scheduled to be renovated or closed. Website.
http://tech.mit.edu/V133/N55/athenacluster.html, 2016.

[20] Anibal L Sacco and Alfredo A Ortega. Persistent bios infection: The early bird
catches the worm. In Proceedings of the Annual CanSecWest Applied Security
Conference, Vancouver, British Columbia, Canada. Core Security Technologies,
2009.

[21] Vipin Samar. Unified login with pluggable authentication modules (pam). In
Proceedings of the 3rd ACM conference on Computer and communications secu-
rity, pages 1–10. ACM, 1996.

84

