
Finding Similar Questions in Large-Scale Community QA

Forums

by

Hrishikesh S. Joshi

B.S., Computer Science & Mathematics, MIT (2013)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the M F TECNOLFGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUL 19 2016

February 2016 LIBRARIES
Massachusetts Institute of Technology 2016. All rights reserved. ARCHIVES

Author

Certified by.

Signature redacted
.............
Department of Electrical Engineering and Computer Science

January 27, 2016

Signature redacted
Regina Barzilay

Professor
Thesis Supervisor

Accepted by
Signature redacted

------Y r i s t o p h e r J . T e r m a n
Chairman, Department Committee on Graduate Theses

C)

Finding Similar Questions in Large-Scale Community QA Forums

by

Hrishikesh S. Joshi

Submitted to the Department of Electrical Engineering and Computer Science
on January 27, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Question answering forums are rapidly growing in size with no automated ability to refer
to and reuse existing answers. In this paper, we develop a methodology for finding seman-
tically related questions. The task is difficult since 1) key pieces of information are often
buried in extraneous details in the question body and 2) available annotations are scarce
and fragmented, driven largely by participants. We design a novel combination of recurrent
and convolutional models (gated convolutions) to effectively map questions to their seman-
tic representations. The models are pre-trained within an encoder-decoder framework (from
body to title) on the basis of the entire raw corpus, and fine-tuned discriminatively from
limited annotations. Our evaluation demonstrates that our model yields a 10% gain over a
standard IR baseline, and a 6% gain over standard neural network architectures (including
CNNs and LSTMs) trained analogously. 1

Thesis Supervisor: Regina Barzilay
Title: Professor

'Code and data are available at https://github. com/taolei87/rcnn

3

4

Acknowledgments

I'd like to first and foremost thank my thesis supervisor, Prof. Regina Barzilay, for providing

me the opportunity to do this work in the past year. She found time on multiple days per

week despite her busy schedule to meet with me when I had questions or needed help, and

I value her mentorship and genuine caring for my work on this thesis and personal learning

more broadly very much. I've learned a tremendous amount in the course of the year, and

I owe a large part of it to her patience in allowing me to persevere and work through issues

that inevitably came up over an extended period of time over and over again.

I'd further like to thank our lab group for serving as a great source of learning and

encouragement throughout the year. In particular, I'd like to thank Karthik Narasimhan

and Tao Lei for their help. Karthik provided an incredible amount of guidance when I first

started, and Tao's collaboration was instrumental in helping us overcome a lot of efficiency-

related issues we later had. I'd like to thank Prof. Tommi Jaakkola from MIT, along with

Prof. Alessandro Moschitti and Prof. Lluis Marquez from the Qatar Computing Research

Institute (QCR.I), for their collaboration on this work as well.

I'd like to thank my parents, Santosh and Nilima Joshi, for their never-ending support,

and my numerous friends still living in the Cambridge area post-undergrad who made my

time here in the past year memorable as always.

5

6

Contents

1 Introduction 13

2 Related Work 17

2.1 Question Retrieval 17

2.2 Answer Selection 19

2.3 Deep Learning Techniques . 21

3 Question Retrieval Setup 23

4 Neural Network Approaches 25

4.1 Convolutional Neural Networks (CNNs) . 25

4.1.1 O verview . 25

4.1.2 Modifications for Text Processing . 26

4.2 Long Short-Term Memory Networks (LSTMs) 28

5 Model & Training Methodology 31

5.1 Recurrent Convolutional Neural Networks (RCNNs) 31

5.1.1 Context Dependent Weights . 32

5.1.2 Pooling Strategies . 33

5.2 Pre-training Using the Entire Corpus . 33

6 Experimental Setup 35

6.1 D ataset . 35

6.2 Task Setup and Annotations . 35

7

6.2.1 Training Set

6.2.2 Dev and Test Sets

6.3 Baselines and Evaluation Metrics

6.4 Hyperparameters

6.5 Word Vectors

7 Results

7.1 Overall Performance

7.2 Discussion

7.3 Re-Ranking Analysis

8 Conclusion

8.1 Contributions

8.2 Future Work.

. .

. .

. .

. .

. .

8

36

36

37

37

38

39

39

39

42

45

45

46

. .

. .

. .

. .

. .

List of Figures

1-1 A pair of similar questions. 14

4-1 Sample CNN architecture consisting of multiple convolutions and pooling lay-

ers (Kalchbrenner and Blunsom, 2013) . 27

7-1 Training loss (solid lines) versus MRR on the dev set (dotted lines) during pre-

training. Red lines with diamonds are RCNNs and blue lines with triangles

are LST M s. 41

7-2 Pairs of similar questions from the test set which the RCNN model re-ranks

better than the baseline models. The left column corresponds to the query

question, and the right column corresponds to a question marked as similar

in the 20 questions provided by BM25 based on the query question. 42

7-3 Pairs of similar questions from the test set which the RCNN model re-ranks

better when the title & body are both used as opposed to title only. The left

column corresponds to the query question, and the right column corresponds

to a question marked as similar in the 20 questions provided by BM25 based

on the query question. 43

9

10

List of Tables

6.1 Various statistics from our Training, Dev, and Test sets derived from the Sept.

2014 Stack Exchange AskUbuntu dataset. 36

7.1 The configuration of neural network models tuned on the dev set. d is the

hidden dimension, 10| is the number of parameters and n is the filter width of

the convolution operation. 40

7.2 Comparative results of all methods on the question similarity task 40

7.3 Choice of pooling strategies . 40

7.4 Comparison between model variants when question bodies are used or not

used. Numbers are reported on the test set. 41

11

12

Chapter 1

Introduction

Question answering (QA) forums such as Stack Exchange' are rapidly expanding and already

contain millions of questions. The expanding scope and coverage of these forums often leads

to many duplicate and interrelated questions, resulting in the same questions being answered

multiple times. By identifying similar questions, we can potentially reuse existing answers,

reducing response times and bloat. Unfortunately in most forums, the process of identifying

and referring to existing similar questions is done manually by forum participants with

limited, scattered success.

The task of automatically retrieving similar questions to a given user's question has

recently attracted significant attention and has become a testbed for various representation

learning approaches (Zhou et al., 2015; dos Santos et al., 2015). However, the task has proven

to be quite challenging - for instance, dos Santos et al. (2015) report a 22.3% classification

accuracy, yielding only a 4 percent gain over a simple word matching baseline.

Several factors make the problem difficult. First, submitted questions are often long and

contain extraneous information irrelevant to the main question being asked. For instance,

the first question in Figure 1-1 pertains to booting Ubuntu using a USB stick but a large

portion of the body contains tangential details that are idiosyncratic to this user such as

references to Compaq pc, Webi and the error message. Not surprisingly, these features are not

repeated in the second question in Figure 1-1 about a closely related topic. The extraneous

detail can easily confuse simple word-matching algorithms. Indeed, for this reason, some

lhttp: //stackexchange. com/

13

Figure 1-1: A pair of similar questions.

existing methods for question retrieval restrict attention to the question title only. While

titles (when available) can succinctly summarize the intent, they also sometimes lack crucial

detail available in the question body. For example, the title of the second question does not

refer to installation from a USB drive. The second main reason for difficulty arises from the

available annotations, which are limited and noisy. Indeed, the pairs of questions marked as

similar by forum participants are largely incomplete. Our manual inspection of a sample set

of questions from AskUbuntu 2 showed that only 5% of similar pairs have been annotated by

the users, with a precision of around 79%.

In this paper, we design a recurrent neural network model and an associated training

paradigm to address these challenges. On a high level, our model is used as an encoder to

map the title, body, or the combination to a vector representation. The resulting "ques-

tion vector" representation is then compared to other questions via cosine similarity. We

introduce several departures from typical architectures on a finer level. In particular, we

incorporate adaptive gating in non-consecutive CNNs (Lei et al., 2015) in order to focus

temporal averaging in these models on key pieces of the questions. Gating plays a similar

role in LSTMs (Hochreiter and Schmidhuber, 1997), though LSTMs do not reach the same

level of performance in our setting. Moreover, we counter the scattered annotations available

from user-driven associations by training the model largely based on the entire corpus. The

2http: //askubuntu. com/

14

Title: How can I boot Ubuntu from a USB?
Body: I bought a Compaq pc with Windows 8 a
few months ago and now I want to install Ubuntu
but still keep Windows 8. I tried Webi but when
my pc restarts it read ERROR OxO00007b. I know
that Windows 8 has a thing about not letting you
have Ubuntu but I still want to have both OS
without actually losing all my data ...

Title: When I want to install Ubuntu on my lap-
top I'll have to erase all my data. "Alonge side
windows" doesnt appear
Body: I want to install Ubuntu from a Usb drive.
It says I have to erase all my data but I want
to install it along side Windows 8. The "Install
alongside windows" option doesn't appear. What
appear is, ...

encoder is coupled with a decoder and trained to reproduce the title from the noisy ques-

tion body. The methodology is reminiscent of recent encoder-decoder networks in machine

translation and document summarization (Kalchbrenner and Blunsom, 2013; Sutskever et

al., 2014; Cho et al., 2014; Rush et al., 2015). The resulting encoder is subsequently fine-

tuned discriminatively on the basis of limited annotations yielding an additional performance

boost.

We evaluate our model on the AskUbuntu corpus from Stack Exchange used in prior

work (dos Santos et al., 2015). During training, we directly utilize noisy pairs readily available

in the forum, but to have a realistic evaluation of the system performance, we manually

annotate 8K pairs of questions. This clean data is used in two splits, one for development

and hyperparameter tuning and another for testing. We evaluate our model and the baselines

using standard information retrieval (IR.) measures such as Mean Average Precision (MAP),

Mean Reciprocal Rank (MRR.) and Precision at n (P~rn). Our full model achieves a P@1

of 64.5%, yielding 10% absolute improvement over a standard IR baseline, and 6% over

standard neural network architectures (including CNNs and LSTMs).

15

16

Chapter 2

Related Work

The growing popularity of community QA forums has resulted in the use of community

QA datasets in performing various tasks including question retrieval and answer selection.

Question retrieval, the task addressed in this work, involves finding similar existing questions

in the corpus given a query question. Answer selection is a closely related task that involves

finding relevant existing answers given a query question, and can include finding similar

questions as part of the approach though often consists of various other techniques including

the use of answer-answer similarity. We hereby provide an overview of previous approaches

taken in performing these tasks using community QA datasets, along with recent applications

of deep learning techniques most closely related to our work.

2.1 Question Retrieval

Previous work on question retrieval in the community QA domain has used machine trans-

lation, topic modeling and knowledge graph-based approaches (Jeon et al., 2005; Li and

Manandhar, 2011; Duan et al., 2008; Zhou et al., 2013). More recent work has relied on

representation learning to go beyond word-based methods, aiming to capture semantic rep-

resentations for more refined mappings. We hereby outline various approaches in question

retrieval on community QA datasets in further detail.

17

Translation Models Translation models previously used for this task have involved us-

ing a language modeling framework to learn word-to-word translation probabilities between

words in the titles of questions (Jeon et al., 2005; Li and Manandhar, 2011). This approach

represents a statistical machine learning way to assess similarity between pairs of questions.

Given a pair of questions (q1 , q2), such models generally represent the similarity S(ql, q2) as

follows:

S(ql, q2) = fwqP(wlq2)

P(wlq2) = E12 T(wlt)P(tjq2)

where T(wIt) refers to the probability that w is a translation of t. T(w1w) is generally set

to 1, and a smoothing parameter not provided here is further used to avoid zero values for

P(wlq2).

Topic Modeling Duan et al. (2008) use a topic modeling approach that identifies question

topic and focus for a set of questions using a tree-based model, and subsequently use this in-

formation in a language modeling framework to assess question similarity. Their work makes

use of categorial information provided in the Yahoo! Answers dataset such as 'Computers &

Internet -> Computer Networking.' Given a set of questions Q from a set of categories C,

they generate a set of topics T consisting of certain n-grams such as nouns from the question

titles, and model a topic profile as follows:

P(C~t)
c="nt(ct)p'ccc count(c,t)

where count(c, t) denotes the frequency of topic term t in category c. Further, they define the

specificity of a topic term based on the inverse of the topic profile such that a topic term with

high specificty would appear in fewer categories and likely be more specific to the question

as opposed to a topic term with lower specificity. Based on this, they construct a topic

chain for each question with the chain of topics ordered in decreasing order of specificity,

and form a tree consisting of such topic chains for the set of all questions Q. Next, they use

a language modeling approach to determine a cut in the tree, labeling the nodes above the

cut in the tree as the question topic (high specificity) and nodes below the cut in the tree as

18

the question focus (low specificity), and subsequently use this information to assess question

similarity.

Knowledge Graphs Zhou et al. (2013) use a knowledge-graph based approach that lever-

ages Wikipedia entries to identify concepts and relations between questions. They initially

preprocess Wikipedia to collect a set of concepts along with semantic relations including syn-

onyms, polysemy, hypernym, and associative relations. Next, they use a set of techniques

including word disambiguation to map words in questions to relevant Wikipedia entries.

Given such mappings, they devise a method for using the semantic relations between the

Wikipedia entries representing the questions to assess question similarity.

Convolutional Neural Networks (CNNs) Recent work has used novel techniques in-

corporating neural networks for the question retrieval task. Zhou et al. (2015) propose a

method for learning word embeddings using category-based metadata information for ques-

tions. They define each question as a distribution which generates each word (embedding)

independently, and subsequently use a Fisher kernel to assess question similarity. Dos Santos

et al. (2015) propose an approach which combines a convolutional neural network (CNN)

and a bag-of-words representation for comparing questions.

2.2 Answer Selection

Recent work on answer selection using community QA datasets has also involved the use of

neural network architectures, in particular CNNs and LSTMs (Severyn and Moschitti, 2015;

Wang and Nyberg, 2015; Feng et al., 2015; Tan et al., 2015). Similar to our work, these

approaches apply neural network techniques, but focus on improving various other aspects

of the model. For instance, Feng et al. (2015) explore different similarity measures beyond

cosine similarity, and Tan et al. (2015) adopt the neural attention mechanism over RNNs

to generate better answer representations given the questions as context. We hereby outline

previous neural network approaches in answer selection using community QA datasets in

further detail.

19

Long Short-Term Memory Networks (LSTMs) Wang and Nyberg (2015) use a bi-

directional, stacked LSTM model (refer to Section 4.2) to model questions and answers

together. The set of word vectors corresponding to an answer is appended to the set of word

vectors corresponding to the respective question, and they add a special vector in between to

demarcate the split between the question and answer. The bi-directional feature of the model

allows it to incorporate context before and after the word being processed as opposed to only

using context from the previous word. The bi-directional and stacked features of the LSTM

model serve to provide bi-directional context and greater learning ability respectively, and

have been shown to improve performance when applied to recursive neural network models.

Tan et al. (2015) use a similar bi-directional LSTM model that allows contextual information

from both sides of a word to be used, but further have an attention-based component that

uses a softmax value at each step to weight the output vector, feeding the output to a CNN

layer. At each step, the LSTM model computes a softmax value based on the question em-

bedding, and subsequently multiplies the output vector resulting from the answer embedding

prior with it to the average or mean pooling step. Then, the output vector resulting from

the original question representation and the modified answer is used as input to a traditional

CNN model. The results show that their full model, consisting of the attention-based bi-

directional LSTM with a CNN layer, achieves the best performance when compared to other

related models on the TREC-QA dataset.

Convolutional Neural Networks (CNNs) Severyn and Moschitti (2015) use a tradi-

tional CNN network for creating representations of questions and answers, but instead of

using cosine similarity for comparing representations[they learn an embedding matrix that

operates on the question and answer representations. Further, they augment the resulting

vector with additional features, and use a softmax layer to generate a similarity metric for

the question and answer. -Feng et al. (2015) use a traditional CNN network, and propose

a set of different architectures in terms of how the question and answer representations are

modeled as well as a set of comparison metrics. The different architectures vary in terms

of whether weights are shared and how many hidden layers are placed before and after the

CNN layer, and the results show that sharing weights and placing a hidden layer both before

20

and after the CNN layer provides the best performance. Further, they vary the comparison

metric used, including cosine similarity, various functions such as polynomial, sigmoid, and

exponential, and Geometric and Arithmetic mean of Euclidean and Sigmoid Dot product

(GESD and AESD, respectively). They find that GESD and AESD outperform cosine simi-

larity and all other functions as a metric for comparison of the output representations from

the CNN model.

2.3 Deep Learning Techniques

In recent years, deep neural networks have been shown to perform well across a number of

natural language processing tasks including language modeling (Bengio et al., 2003; Mikolov

et al., 2010), sentiment analysis (Socher et al., 2013; Iyyer et al., 2015; Le and Zuidema,

2015), question answering (Iyycr et al., 2014), syntactic parsing (Collobert and Weston, 2008;

Socher et al., 2011; Chen and Manning, 2014) and machine translation (Bahdanau et al.,

2014; Devlin et al., 2014; Sutskever et al., 2014). The models proposed have varied primarily

in terms of model architecture, and have included recurrent neural networks (Mikolov et

al., 2010; Kalchbrenner and Blunsom, 2013), recursive models (Pollack, 1990; Kiichler and

Goller, 1996), and most similar to our proposed model, convolutional neural nets (Collobert

and Weston, 2008; Collobert et al., 2011; Yih et al., 2014; Shen et al., 2014; Kalchbrenner

et al., 2014; Zhang and LeCun, 2015; Lei et al., 2015).

The model proposed in this work is a recurrent convolutional neural network, most closely

related to the work by Lei et al. (2015). Lei et al. (2015) use convolutions that apply to

all non-consecutive words with a fixed decay rate which determines the level to which the

prior context is used in computing the representations. We refine this model by introducing

a variable decay rate based on the context such that it decreases the weights given to the

prior context if the current context is relevant, and decreases the weights otherwise. Further,

we introduce a semi-supervised learning approach that leverages all of the questions in the

corpus, allowing us to initialize the parameter weights in the model based on pre-training

that focuses on enabling the model to learn constrained representations of questions.

21

22

Chapter 3

Question Retrieval Setup

We begin by introducing the basic discriminative setting for retrieving similar questions. Let

q be a query question which generally consists of both a title sentence and a body section.

For efficiency reasons, we do not compare q against all the other queries in the data base.

Instead, we retrieve first a smaller candidate set of related questions Q(q) using a standard IR

engine, and then we apply the more sophisticated models only to this reduced set. The goal

is to rank the candidate questions in Q(q) so that all the similar questions to q are ranked

above the dissimilar ones. To do so, we define a similarity score s(q, p; 6) with parameters

6, where the similarity measures how closely candidate p E Q(q) is related to query q. The

method of comparison can make use of the title and body of each question.

The scoring function s(-, -; 6) can be optimized on the basis of annotated data D

{(qi, pt, Q) },where (qi, pf) is a correct pair of similar questions and Q7 is a negative set of

questions deemed not similar to qi. The candidate set during training is just Q(qi) = {pt} U
Q. . The correct pairs of similar questions are obtained from available user annotations,

while the negative set Qi is drawn randomly from the entire corpus with the idea that the

likelihood of a positive match is small given the size of the corpus. During testing, we also

make use of explicit manual annotations of positive matches.

In the purely discriminative setting, we use a max-margin framework for learning (or

fine-tuning) parameters 6. Specifically, in the context of a particular training example where

23

qj is paired with pt, we minimize the max-margin loss L(O) defined as

max {s(q,p; 0) - s(qi,pt; 0) + 6(p,pf)},
PEQ(qi)

where 6(-, -) denotes a non-negative margin. We set 6(p,pf) to be a small constant when

p = pt and 0 otherwise. The parameters 0 can be optimized through sub-gradients &L/&9

aggregated over small batches of the training instances.

There are two key problems that remain. First, we have to define and parametrize the

scoring function s(q, p; 9). We design a recurrent neural network model for this purpose and

use it as an encoder to map each question into its corresponding meaning representation. The

resulting similarity function s(q, p; 0) is just the cosine similarity between the corresponding

representations. The parameters 9 pertain to the neural network only. Second, in order

to offset the scarcity and limited coverage of the training annotations, we pre-train the

parameters 0 on the basis of the much larger unannotated corpus. The resulting parameters

are subsequently fine-tuned using the discriminative setup described above.

24

Chapter 4

Neural Network Approaches

4.1 Convolutional Neural Networks (CNNs)

4.1.1 Overview

CNNs (LeCun et al., 1998) have traditionally been applied to tasks related to image recog-

nition, providing techniques for identifying objects and other attributes within images while

taking into account distortion and invariance, but have more recently also been successfully

applied to various NLP tasks including sentiment analysis, semantic parsing, and question-

answering (Kalchbrenner et al., 2014; Kim, 2014; Kim et al., 2015; Zhang and LeCun, 2015;

Gao et al., 2014).

CNNs are characterized by convolutions that enable the use of hierarchical features,

shared weights, and pooling layers. A convolution refers to the operation between a weight

vector W and a sequence x representing the sentence, where xi is generally represented

by a vector such as a word embedding. The weight vector W represents the filter of the

convolution. Narrow convolutions consist of IWI <; lxi, and result in a feature map of size

|xi - |W + 1, whereas wide convolutions have no restrictions on the relative lengths and

result in a feature map of size |xi + IWI - 1. Concretely, if we let n denote the filter width,

and W 1 , - , W, the corresponding filter matrices, then the convolution operation is applied

25

to each window of n consecutive words as follows:

Ct = W 1xt-n+1 + W2xt-n+2 + - + Wnxt

ht.= tanh(ct + b)

The sets of output state vectors {ht} produced in this case are typically referred to as feature

maps. Since each vector in the feature map only pertains to local information, the last vector

is not sufficient to capture the meaning of the entire sequence. Instead, we consider max-

pooling or average-pooling to obtain the aggregate representation for the entire sequence. As

shown in Figure 4-1, a CNN model can consist of multiple convolutions and pooling layers

operating on varying hierarchical representations of the input.

4.1.2 Modifications for Text Processing

Lei et al. (2015) recently showed significant improvements in common tasks such as sentiment

classification and news categorization resulting from further extensions of the temporal CNN

model for text processing. In particular, they propose a convolution over non-consecutive

words with a decay factor as opposed to using consecutive words only, and provide an efficient

method for performing feature mapping operations based on tensor products as opposed to

linear operations.

Let us consider an input sentence S represented by x E Rad, where d denotes the

dimensionality of vector xi and L denotes the length of sentence S.

Non-Linear Operations

Traditional CNN architectures model n-grams by concatenating vectors xi through xj+.n-1,

and subsequently learning a weight matrix W of length dn. Lei et al. (2015) instead propose

non-linear operations that replace the concatenation step by a tensor product. In place

of a weight matrix W as described, Lei et al. (2015) model a 3-gram (W1 , W2, W3) with

the corresponding tensor product WI 0 WV2 0 W 3, expanding the n-gram sequence into a

higher dimensional tensor using tensor products. The set of resulting h filters thereby have

dimensionality d x d x d x h, denoting a set of filters capable of learning high-dimensional

26

Frr tnna ria d
er

I70

LI"

0 77

Th rat jl c t n thr rMy~ mral

Figure 4-1: Sample CNN architecture consisting of multiple convolutions and pooling layers
(Kalchbrenner and Blunsom, 2013)

27

I

interactions between n-gram features. The size of the set of h filters leads to parametric

explosion for common values of d such as d = 300, and Lei et al. (2015) provide an efficient

method for representing the tensor products in Kruskal form using low-rank factorization.

Modeling Non-Consecutive Words

Applications of CNN models to text processing have generally involved learning parameters

based on n-gram features representing consecutive words. Lei et al. (2015) propose the use

of non-consecutive words in learning, using a decay factor that provides greater importance

to n-grams closer together. The motivation behind this extension is to enable the model to

more accurately learn phrases such as "it was not so good", where sub-phrases such as "not

... good" provide relevant meaning when taken together but are not necessarily consecutive

in terms of their word ordering in the sentence. Lei et al. (2015) provide an efficient imple-

mentation using dynamic programming that enables modeling of non-consecutive n-grams

with a runtime linear in terms of the sequence length of sentence S.

4.2 Long Short-Term Memory Networks (LSTMs)

LSTM cells (Hochreiter and Schmidhuber, 1997) have been used to capture semantic infor-

mation across a wide range of applications, including machine translation and entailment

recognition (Bahdanau et al., 2014; Bowman et al., 2015; Rocktischel et al., 2015). Their

success can be attributed to neural gates that adaptively read or discard information to/from

internal memory states.

The LSTM model successively reads tokens {xj} 1 constituting the question title or

body, and transforms this sequence into states {h.}' =. Specifically, each recurrent step of

the LSTM network takes as input the token xt, internal state ct_1, as well as the visible

state ht_ 1, and generates the new pair of states ct, ht according to

it = a(Wzxt + Uhti- + W)

ft = a(Wfxt + Ufht_ 1 + bf)

28

ot - Oa(W~xt + U~ht_1 + b")

zt = tanh(Wzxt + Uzht-1 + bz)

Ct = it 0 z + ft O ct_-1

ht = ot 0 tanh(ct)

where i, f and o are input, forget and output gates, respectively. Given the visible state

sequence {hj}. 1 , we can aggregate it to a single vector exactly as with RCNNs. The LSTM

encoder can be pre-trained in the same way as well.

29

30

Chapter 5

Model & Training Methodology

5.1 Recurrent Convolutional Neural Networks (RCNNs)

We describe here our encoder model, i.e., the method for mapping the question title and

body to a vector representation. Our approach is inspired by temporal convolutional neural

networks (LeCun et al., 1998) and, in particular, its recent refinement (Lei et al., 2015), tai-

lored to capture longer-range, non-consecutive patterns in a weighted manner. Such models

can be used to effective summarize occurrences of patterns in text and aggregate them into

a vector representation. However, the summary produced is not selective since all pattern

occurrences are counted, weighted by how cohesive (non-consecutive) they are. In our prob-

lem, the question body tends to be very long and full of irrelevant words and fragments.

Thus, we believe that interpreting the question body requires a more selective approach to

pattern extraction.

Our model successively reads tokens in the question title or body, denoted as {xi}

and transforms this sequence into a sequence of states {hi}I. The resulting state sequence

is subsequently aggregated into a single final vector representation for each text as discussed

below. Our approach builds on (Lei et al., 2015), thus we begin by briefly outlining it. Let

WI and W2 denote filter matrices (as parameters) for pattern size n = 2. Lei et al. (2015)

generate a sequence of states in response to tokens according to

ct,,t = W1xt/ + W2xt

31

Ct - E2 t,<tAtt'1 ct',t

ht = tanh(ct + b)

where A E [0,1) is a constant decay factor used to down-weight patterns with longer spans.

The operations can be cast in a "recurrent" manner and evaluated with dynamic program-

ming. The problem with the approach for our purposes is, however, that the weighting is

the same for all, not triggered by the state ht- 1 or the observed token xt.

5.1.1 Context Dependent Weights

We refine this model by learning context dependent weights. For example, if the current

input token provides no relevant information (e.g., stop words, punctuation), the model

should ignore it by incorporating the token with a vanishing weight. In contrast, strong

semantic content words such as "ubuntu" or "windows" should be included with much larger

weights. To achieve this effect we introduce neural gates similar to LSTMs to specify when

and how to average the observed signals. The resulting architecture integrates recurrent

networks with non-consecutive convolutional models:

At= or(WAxt + UAht_ + bA)

c) = At(+ (1 - At) 0((Wx)

C(2) At A0C(2) + (1 - At) (2 +Wcxt)

0"~) =At ® __n + (1 - At) 0 (c~2jn-l Wx)

ht = tanh(ct" + b)

where a() is the sigmoid function and 0 represents the element-wise product. Here c1, (1) (n)
t ' t

are accumulator vectors that store weighted averages of 1-gram to n-gram features. When

the gate At = 0 (vector) for all t, the model represents a traditional CNN with filter width n.

As At > 0, however, c "n becomes the sum of an exponential number of terms, enumerating

all possible n-grams within x1 , - - - , xt (seen by expanding the formulas). Note that the gate

At(.) is parametrized and responds directly to the previous state and the token in question.

We refer to this model as RCNN from here on.

32

5.1.2 Pooling Strategies

In order to use the model as part of the discriminative question retrieval framework outlined

earlier, we must condense the state sequence to a single vector. There are two simple

alternative pooling strategies that we have explored - either averaging over the states1 or

simply taking the last one as the meaning representation. In addition, we apply the encoder

to both the question title and body, and the final representation is computed as the average

of the two resulting vectors.

Once the aggregation is specified, the parameters of the gate and the filter matrices can be

learned in a purely discriminative fashion. Given that the available annotations.are limited

and user-guided, we instead use the discriminative training only for fine tuning an already

trained model. The method of pre-training the model on the basis of the entire corpus of

questions is discussed next.

5.2 Pre-training Using the Entire Corpus

The number of questions in the AskUbuntu corpus far exceeds user annotations of pairs of

similar questions. We can make use of this larger raw corpus in two different ways. First,

since models take word embeddings as input we can tailor the embeddings to the specific

vocabulary and expressions in this corpus. To this end, we run word2vec (Mikolov et al.,

2013) on the raw corpus in addition to the Wikipedia dump. Second, and more importantly,

we use individual questions as training examples for an auto-encoder constructed by pairing

the encoder model (RCNN) with the corresponding decoder. The resulting encoder-decoder

architecture is akin to those used in machine translation (Kalchbrenner and Blunsom, 2013;

Sutskever et al., 2014; Cho et al., 2014) and summarization (Rush et al., 2015).

Our encoder-decoder pair represents a conditional language model P(titlej context), where

the context can be any of (a) the original title itself, (b) the question body and (c) the

title/body of a similar question. All possible (title, context) pairs are used during training

to optimize the likelihood of the words (and their order) in the titles. We use the question

title as the target for two reasons. The question body contains more information than the

'We also normalize state vectors before averaging, which empirically gets better performance.

33

title but also has many irrelevant details. As a result, we can view the title as a distilled

summary of the noisy body, and the encoder-decoder model is trained to act as a de-noising

auto-encoder. Moreover, training a decoder for the title (rather than the body) is also much

faster since titles tend to be short (around 10 words).

The encoders pre-trained in this manner are subsequently fine-tuned according to the

discriminative criterion described already in Section 3.

34

Chapter 6

Experimental Setup

6.1 Dataset

We use the Stack Exchange AskUbuntu dataset used in prior work (dos Santos et al., 2015).

This dataset contains 167,765 unique questions, each consisting of a title and a body, and a

set of user-marked similar question pairs. We provide various statistics from this dataset in

Table 6.1.

6.2 Task Setup and Annotations

User-marked similar question pairs on QA sites are often known to be incomplete. In order

to evaluate this in our dataset, we took a sample set of questions paired with 20 candidate

questions retrieved by a search engine trained on the Ubuntu data. The search engine used

is the well-known BM25 model (Robertson and Zaragoza, 2009). Our manual evaluation of

the candidates showed that only 5% of the similar questions were marked by users, with a

precision of 79%. Clearly, this low recall would not lead to a realistic evaluation if we used

user marks as our gold standard. Thus, we needed manual annotations for the dev and test

sets. Unfortunately, annotating all pairs (hundreds of thousands) is too costly also because

this task requires experts in the domain and consequently it is not suitable for Mechanical

Turk-based approaches. For this reason, we formulated the problem as a re-ranking task

of the first 20 most similar questions retrieved by the BM25 model. This choice is rather

35

Table 6.1: Various statistics from our Training, Dev, and Test
2014 Stack Exchange AskUbuntu dataset.

sets derived from the Sept.

reasonable as, in a real-world scenario, the user would like to see a short list of similar

questions.

6.2.1 Training Set

We use user-marked similar pairs as positive pairs in training since the annotations have

high precision and do not require additional manual annotations, allowing us to use a much

larger training set. We use random questions from the corpus paired with pi as negative

pairs in training. We randomly sample 20 questions as negative examples for each query

question pi.

6.2.2 Dev and Test Sets

We re-constructed the new dev and test sets consisting of the first 200 questions from the

dev and test sets provided by dos Santos et al. (2015). For each of the above questions,

we retrieved the top 20 similar candidates using BM25 trained on Ubuntu and manually

annotated the resulting 8K pairs as similar or non-similar.

'The annotation task was initially carried out by two expert annotators, independently. The initial set
was refined by comparing the annotations and asking a third judge to make a final decision on disagreements.
After a consensus on the annotation guidelines was reached (producing a Cohen's kappa of 0.73), the overall
annotation was carried out by only one expert.

36

Corpus # of unique questions 167K

of unique questions 12,584
of user-marked pairs 16,391

of query questions 200
Dev # of annotated pairs 200 x 20

Avg # of positive pairs per query 5.8

of query questions 200
Test # of annotated pairs 200 x 20

Avg # of positive pairs per query 5.5

6.3 Baselines and Evaluation Metrics

We evaluated the neural network models-including CNNs, LSTMs and RCNNs-by

comparing them with the following baselines:

* BM25, we used the BM25 similarity measure provided by Apache Lucene.

* TF-IDF, we ranked questions using cosine similarity based on a vector-based word

representation for each question.

* SVM, we trained a re-ranker using SVM-Light (Joachims, 2002) with a linear kernel

incorporating several similarity measures from the DKPro similarity package (Bar et

al., 2013). This model has been shown to provide state-of-the-art results in sentence

similarity challenges.

We evaluated the models based on the following IR metrics: Mean Average Precision (MAP),

Mean Reciprocal Rank (MRR), Precision at 1 (PA1), and Precision at 5 (P@5).

6.4 Hyperparameters

We performed an extensive hyperparameter grid search to identify the best models for the

baselines and neural network models. For the TF-IDF baseline, we tried n-gram feature

order n E {1, 2, 3} with and without stop words pruning. For the SVM baseline, we used

the default SVM-Light parameters whereas the dev data is only used to increase the training

set size' when testing on the test set. We also tried to give higher weight to dev instances

but this did not result in any improvement.

For all the neural network models, we used Adam (Kingma and Ba, 2014) as the optimiza-

tion muethod with the default setting suggested by the authors. We optimized other hyperpa-

rameters with the following range of values: learning rate E { le -3, 3e - 4}, dropout (Hinton

et al., 2012) probability E {0.1, 0.2, 0.3}, CNN feature width E {2, 3, 4}. We also tuned the

pooling strategies and ensured each model had a comparable number of parameters. The

default configurations of LSTMs, CNNs and RCNNs are shown in Table 7.1. We used MRR

to identify the best training epoch and the model configuration. For the same model config-

uration, we report average performance across 5 independent runs.

37

6.5 Word Vectors

We ran word2vec (Mikolov et al., 2013) to obtain 200-dimensional word embeddings using

all Stack Exchange data (excluding StackOverflow) and a large Wikipedia corpus. The word

vectors are fixed to avoid over-fitting across all experiments.

38

Chapter 7

Results

7.1 Overall Performance

Table 7.2 shows the performance of the baselines and the neural encoder models on the

question similarity task. The results show that our full model, RCNNs with pre-training,

achieves the best performance across all metrics on both the dev and test sets. For instance,

the full model gets a P 1 of 64.5% on the test set, outperforming the word matching-based

method BM25 by over 10 percent points. Further, our RCNN model also outperforms the

other neural encoder models and the baselines across all metrics. The ability of the RCNN

model to outperform the other models indicates that the use of non-consecutive filters and a

varying decay factor is effective in improving performance beyond traditional neural network

models.

Table 7.2 also demonstrates the performance gain from pre-training the RCNN encoder.

The RCNN model when pre-trained on the entire corpus consistently gets better results

across all the metrics.

7.2 Discussion

Pooling strategy We analyze the effect of various pooling strategies for the neural network

encoders. As shown in Table 7.3, our RCNN model outperforms CNNs and LSTMs regardless

of the two pooling strategies explored. We also observe that simply using the last hidden

39

d 101 n Pooling
LSTMs 240 423K - mean-pooling
CNNs 667 401K 3 mean-pooling
RCNNs 400 401K 2 last state

Table 7.1: The configuration of neural network models tuned on the dev set. d is the hidden
dimension, 101 is the number of parameters and n is the filter width of the convolution

operation.

state as the final representation achieves better results for the RCNN model.

Method Dev Test
MAP MRR P01 P@5 MAP MRR P@1 P05

BM25 52.0 66.0 51.9 42.1 56.0 68.0 53.8 42.5
TF-IDF 54.1 68.2 55.6 45.1 53.2 67.1 53.8 39.7
SVM 53.5 66.1 50.8 43.8 57.7 71.3 57.0 43.3
LSTMs 58.7 72.5 60.0 47.1 58.1 71.2 58.3 43.3
CNNs 58.3 73.0 61.1 47.0 57.8 71.3 58.0 43.4
RCNNs 59.9 73.4 61.8 49.4 62.6 75.0 64.2 46.0
LSTMs + pre-training 58.8 73.4 60.6 47.7 59.0 70.3 56.7 43.5
RCNNs + pre-training 61.5 75.8 65.2 49.9 63.9 76.2 64.5 47.8

Table 7.2: Comparative results of all methods on the question similarity task

Method Dev Test
MAP MRR P01 P05 MAP MRR P01 P05

CNNs, max-pooling 58.8 72.2 59.9 47.3 58.2 71.4 57.6 44.9
CNNs, mean-pooling 58.3 73.0 61.1 47.0 57.8 71.3 58.0 43.4
LSTMs, last state 56.9 70.4 57.6 46.1 57.8 69.8 56.6 42.8
LSTMs, mean-pooling 58.7 72.5 60.0 47.1 58.1 71.2 58.3 43.3
RCNNs, last state 59.9 73.4 61.8 49.4 62.6 75.0 64.2 46.0
RCNNs, mean-pooling 59.7 74.3 62.5 48.6 59.6 71.9 58.5 44.9

Table 7.3: Choice of pooling strategies

Question body Table 7.4 compares the performance of the TF-IDF baseline and the

RCNN model when using question titles only or when using question titles along with ques-

tion bodies. TF-IDF's performance changes very little when the question bodies are included

(MRR and P 1 are slightly better but MAP is slightly worse). However, we find that the in-

clusion of the question bodies improves the performance of the RCNN model, achieving a 2%

to 4% improvement with both model variations. The RCNN model's greater improvement

40

TF-IDF MAP MRR P@1
title only 54.3 66.8 52.7
title i body 53.2 67.1 53.8

RCNNs, mean-pooling MAP MRR PA1
title only 55.6 68.7 54.8
title + body 59.6 71.9 58.5

RCNNs, last state MAP MRR P 1
title only 58.9 73.0 61.5
title I body 62.6 75.0 64.2

Table 7.4: Comparison between model variants when question bodies are used or not used.
Numbers are reported on the test set.

85 77.0
F" LSTM

RCNN

70 RCNN 70.3

40 f .56.8

25 50.0
0 5 10 15 20

Epoch

Figure 7-1: Training loss (solid lines) versus MRR on the dev set (dotted lines) during
pre-training. Red lines with diamonds are RCNNs and blue lines with triangles are LSTMs.

as compared to TF-IDF's from the inclusion of the question bodies illustrates the ability of

the model to pick out components that pertain most directly to the question being asked

from the long, descriptive question bodies.

Pre-training Note that, during pre-training, the last hidden states generated by the neural

encoder are used by the decoder to reproduce the question titles. It would be interesting to

see how such states capture the meaning of questions. As shown in Figure 7-1. we compute

the question similarities using these representations and evaluate MRR on the dev set. The

representations generated by the RCNN encoder perform quite well, resulting in over 70%

MRR without the subsequent fine-tuning.

The LSTM network does not perform as well as the RCNN model across a range of

learning rates and dropout rates during pre-training. The LSTM encoder obtains only 65%

MRR. 5% worse than the RCNN model's MRR performance. As a result, we do not observe

41

Questions Similar Questions

Title: What is the difference between installing
Ubuntu on a USB device and a laptop hardisk?
Body: Now, I have a laptop with Windows 8. Title: Ubuntu installation on USB
For various reasons, I want to install Ubuntu that Body: I have a 8GB pendrive which i want to

I cn crrywit meonthevarousP~sI wrkuse as my HDD I want the Ubuntu 14.04 to beI can carry with me on the various PCs I work installed on USB and i want possibility to save
with. The same installation so that I don't have
to constantly take care of installing new things files on the USB, update the system and so on...

and dependencies...

Title: How can I manually edit the unity top
panel? Title: How to rearrange the panel indicators?
Body: After the recent update of 11.10,1 am left Body: How do I move Panel (Not Launcher)
with two battery indicators, for some reason-the icons in Ubuntu Unity? I'm using Ubuntu 11.10new one, with the options to show the remaining x64 with Unity environment and I need to rear-
time and bring up the power settings, and the range the indicators on the top panel. How can Iold one, which doesn't do anything when clicked do that?
How can I manually edit the top panel listings to
remove this artifact?

Title: Can't boot from USB when installing

Title: Install ubuntu from USB drive Ubuntu
Body I avea lpto wit nocd/vd riv. IBody: I downloaded Ubuntu 11. 10 32bit and put

Body: I have a laptop with no cd/dvd drive. I it in on USB drive using Universal USB Installer
want to remove win 8 and put ubuntu instead. I fromhttp://www.pendrveinux.com/u Inversal-
am not sure if there is UEFI in this laptop (its usb-installer-easy-as-1-2-3/ . I then restarted
the cheapest). I don't want to buy a usb optical my laptop. I pressed Esc and chose "Boot Man-
drive just for this. Is there a reliable and EASY agementop b tre ws no oi fBooting
way to install ubuntu from a USB drive onto my agement", but there was no option for booting
nwatop nsl ufrom USB. The only options I could see were
new laptop ?... boot from hard drive and boot from internal

CD/DVD. What should I do?...

Figure 7-2: Pairs of similar questions from the test set which the RCNN model re-ranks
better than the baseline models. The left column corresponds to the query question, and
the right column corresponds to a question marked as similar in the 20 questions provided
by BM25 based on the query question.

a clear improvement by fine-tuning the LSTM encoder (when comparing with the result

without pre-training and fine-tuning).

7.3 Re-Ranking Analysis

RCNN vs. Other Models The RCNN model's performance gain over baseline methods

and other neural network methods can be explained by the model's ability to better re-rank

certain types of similar questions containing semantically similar words. Figure 7-2 shows

42

Questions Similar Questions

Title: No Ubuntu partitions on installed dual
boot system
Body: I have both Ubuntu 12.04 and Windows Title: Issue with partitioned disk while trying to
7 and dual booting. Ubuntu has 10GB of space install ubuntu 13.10 along with Windows 8
and I'm running out of space. I want to increase Body: I have an installed windows 8 OS on my C
this to 100GB, so I went to the Windows disk drive and looking forward to install Ubuntu 13.10
manager, it shows 100MB FAT16, 14GB recov- as a dual boot alongside Windows 8 OS. I have
ery NTFS, 540GB OS NTFS. There are no parti- the following partition set up, System reserved:
tions shown for Ubuntu/Linux in either the Win- 100 MB C: 60 GB (NTFS) D: 40 GB (NTFS) E:
dows disk manager or gparted. I used Windows 50 GB (NTFS) Unallocated: 60 GB I am trying
disk manager to free up 100GB of space on my to install ubuntu on the unallocated space&A4
hard drive, is there a way to transfer my installed
Ubuntu onto the new partition?...

Title: Can i install Ubuntu on HTC Butterfly
Body: After using Ubuntu on PC, I also wanted
to try on my "HTC Butterfly" - But not dare to

Title: HTC X920d a.k.a HTC Butterfly tried out what will happen or my data(Android

Body: In the near future will you be building OS) can be restore back or somethings else. So
UBdy esurfing on Google for information but only otherUnbuntu version for HTC X920d aka butterfly HT deis(lkHT DsrehTCSna

HTC devices (like HTC Desire hd, HTC Sensa-
tion, etc) are show that can install Ubuntu. If
I can, I also want to dual boot on my android
phone like PC!...

Figure 7-3: Pairs of similar questions from the test set which the RCNN model re-ranks better
when the title & body are both used as opposed to title only. The left column corresponds
to the query question, and the right column corresponds to a question marked as similar in
the 20 questions provided by BM25 based on the query question.

pairs of similar questions derived from the test set for which the RCNN model re-ranks

much better than the other models. In each instance, the RCNN model is able to find

similarities between semantically similar words such as 'installing' and 'installation' in the

first pair and 'install' and 'installing' in the third pair, allowing the RCNN model to get

relative improvements in performance over word-based models such as TF-IDF.

RCNN model using title only vs. title & body Related work in the community QA

domain (see Chapter 2) has largely used question titles only due to their lack of noise and

short lengths. The RCNN model however shows improved performance with the inclusion

of the question bodies. Figure 7-3 shows pairs of questions which the RCNN model re-

ranks better when the question bodies are included. In each instance, we can see that

there are semantically similar words in the title of a question and body of another, such as

43

'partitions' and 'partitioned' in the first pair, or the presence of semantically similar words

within question bodies, such as 'HTC' or 'butterfly' in the bodies of the second pair. The

RCNN model's ability to model such semantic similarities within the noisy, complex question

bodies is largely derived from the improvements outlined in Section 5.1.

44

Chapter 8

Conclusion

8.1 Contributions

RCNNs model In this paper, we employ gated convolutions to map questions to their

semantic representations, and demonstrate their effectiveness on the task of question retrieval

in community QA forums. The resulting RCNNs model achieves a P@1 of 64.5% on the test

set, outperforming the word matching-based method BM25 by over 10 percent points, and

further outperforms the other neural encoder models and the baselines across all metrics.

Incorporation of Noisy Question Bodies As described in Chapter 1, questions in large-

scale QA forums often contain meaningful information embedded in long, noisy question

bodies that is not always directly referenced in the question titles. In our approach, we

demonstrate the ability to effectively model the title and body representations together to

create question representations that provide state-of-the-art performance when compared

with standard baseline methods including CNNs and LSTMs.

Use of Large-Scale Unsupervised Data In using the entire corpus to pre-train the

encoder part of the RCNN model, we illustrate the ability to use unsupervised data to im-

prove performance. In most community QA sites including Stack Exchange, similar question

annotations made by eligible users represent only a fraction of the true set of similar ques-

tions, making it difficult for traditional supervised approaches to perform well. In effectively

45

using the entire corpus in an unsupervised manner to improve performance, we provide a

novel approach for enabling learning when dealing with insufficient or impartial supervised

training data.

8.2 Future Work

Answer Selection In the question retrieval task addressed in this work, we develop a

methodology for finding similar questions in large-scale QA forums. From the standpoint of

a user using such a forum, finding a question already asked that's similar to the question

they query can be helpful in finding relevant information quickly, but further value can

potentially be provided to the user by suggesting a pre-existing answer to the question. The

most obvious extension of our work along this avenue would be to return the most likely

answer given to the similar question(s) identified, and there are other potential avenues of

using the representation learning in our work, including incorporation of answers within the

question representation framework.

Other Datasets This work focused solely on the AskUbuntu dataset from Stack Exchange,

and the dataset choice was largely based on prior work with the dataset along with the lack

of noise and relatively restricted domain of question topics in it. Extending this work to

other growing QA forums, such as Quora, and QA forums in other cultural domains, such

as Qatar Living, would provide additional grounds for testing the models and assessing their

performance on a variety of other question types commonly found in online QA forums.

46

Bibliography

[Bahdanau et al.2014 Dzmitry .Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014.

Neural machine translation by jointly learning to align and translate. arXiv preprint

arXiv:14 09.04 73.

[Bdr et al.2013 Daniel Bar, Torsten Zesch, and Iryna Gurevych. 2013. Dkpro similarity:

An open source framework for text similarity. In Proceedings of the 51st Annual Meeting

of the Association for Computational Linguistics: System Demonstrations, pages 121-126,
Sofia, Bulgaria, August. Association for Computational Linguistics.

[Bengio et al.2003 Yoshua Bengio, R6jean Ducharme, Pascal Vincent, and Christian Janvin.

2003. A neural probabilistic language model. The Journal of Machine Learning Research,
3:1137-1155.

[Bowman et al.20151 Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christo-
pher D Manning. 2015. A large annotated corpus for learning natural language inference.

arXiv preprint arXiv:1508.05326.

[Chen and Manning2014] Danqi Chen and Christopher D Manning. 2014. A fast and accu-

rate dependency parser using neural networks. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EAMNLP), pages 740-750.

[Cho et al.2014] Kyunghyun Cho, Bart Van Merrisnboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase rep-

resentations using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078.

[Collobert and Weston2008 R. Collobert and J. Weston. 2008. A unified architecture for
natural language processing: Deep neural networks with multitask learning. In Interna-

tional Conference on Machine Learning, ICML.

[Collobert et al.2011 Ronan Collobert, Jason Weston, L6on Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost) from scratch.

The Journal of Machine Learning Research, 12:2493-2537.

[Devlin et al.2014 Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard
Schwartz, and John Makhoul. 2014. Fast and robust neural network joint models for sta-
tistical machine translation. In 52nd Annual Meeting of the Association for Computational

Linguistics.

47

[dos Santos et al.2015 Cicero dos Santos, Luciano Barbosa, Dasha Bogdanova, and Bianca
Zadrozny. 2015. Learning hybrid representations to retrieve semantically equivalent ques-
tions. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 694-699, Beijing, China, July. Association for Compu-
tational Linguistics.

[Duan et al.2008 Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong Yu. 2008. Searching
questions by identifying question topic and question focus. In ACL, pages 156-164.

[Feng et al.2015 Minwei Feng, Bing Xiang, Michael R Glass, Lidan Wang, and Bowen Zhou.
2015. Applying deep learning to answer selection:- A study and an open task. arXiv
preprint arXiv:1508.01585.

[Gao et al.2014 Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong He, Li Deng, and
Yelong Shen. 2014. Modeling interestingness with deep neural networks. In Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing.

[Hinton et al.2012 Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R Salakhutdinov. 2012. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

[Hochreiter and Schmidhuber1997 Sepp Hochreiter and. Jirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735-1780.

[Iyyer et al.2014 Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher,
and Hal Daum6 I1. 2014. A neural network for factoid question answering over para-
graphs. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 633-644, Doha, Qatar, October.

[Iyyer et al.2015 Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daum6 III.
2015. Deep unordered composition rivals syntactic methods for text classification. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1681-1691, Beijing, China, July.

[Jeon et al.2005] Jiwoon Jeon, W Bruce Croft, and Joon Ho Lee. 2005. Finding similar ques-
tions in large question and answer archives. In Proceedings of the 14th A CM international
conference on Information and knowledge management, pages 84-90. ACM.

[Joachims2002 T. Joachims. 2002. Optimizing search engines using clickthrough data. In
ACM SIGKDD KDD.

[Kalchbrenner and Blunsom2013 Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent con-
tinuous translation models. In Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2013), pages 1700-1709.

48

[Kalchbrenner et al.2014] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014.
A convolutional neural network for modelling sentences. In Proceedings of the 52th Annual
Meeting of the Association for Computational Linguistics.

[Kim et al.2015] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2015.
Character-aware neural language models. arXiv preprint arXiv:1508.06615.

[Kim2014 Yoon Kim. 2014. Convolutional neural networks for sentence classification. In
Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014).

[Kingma and Ba2014] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

[Kiichler and Goller1996 Andreas Kiichler and Christoph Goller. 1996. Inductive learning
in symbolic domains using structure-driven recurrent neural networks. In KI-96: Advances
in Artificial Intelligence, pages 183-197.

[Le and Zuidema2015 Phong Le and Willem Zuidema. 2015. Compositional distributional
semantics with long short term memory. In Proceedings of Joint Conference on Lexical
and Computational Semantics (*SEM).

[LeCun et al.19981 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324,
November.

[Lei et al.2015 Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015. Molding enns for
text: non-linear, non-consecutive convolutions. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1565-1575, Lisbon, Portugal,
September. Association for Computational Linguistics.

[Li and Manandhar2011] Shuguang Li and Suresh Manandhar. 2011. Improving question
recommendation by exploiting information need. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies-
Volume 1, pages 1425-1434. Association for Computational Linguistics.

[Mikolov et al.2010 Tomas Mikolov, Martin Karafidt, Lukas Burget, Jan Cernocky, and
Sanjeev Khudanpur. 2010. Recurrent neural network based language model. In IN-
TERSPEECH 2010, 11th Annual Conference of the International Speech Communication
Association, Makuhari, Chiba, Japan, September 26-30, 2010, pages 1045-1048.

[Mikolov et al.2013 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Efficient estimation of word representations in vector space. CoRR.

[Pollack1990] Jordan B Pollack. 1990. Recursive distributed representations. Artificial
Intelligence, 46:77-105.

[Robertson and Zaragoza2009] Stephen Robertson and Hugo Zaragoza. 2009. The proba-
bilistic relevance framework: BM25 and beyond. Now Publishers Inc.

49

[Rocktischel et al.2015 Tim Rocktsschel, Edward Grefenstette, Karl Moritz Hermann,
Tomas Ko6isky, and Phil Blunsom. 2015. Reasoning about entailment with neural atten-
tion. arXiv preprint arXiv:1509.06664.

[Rush et al.20151 Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A neural
attention model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685.

[Severyn and Moschitti2015 Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to
rank short text pairs with convolutional deep neural networks. In SIGIR.

[Shen et al.2014} Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Gr6goire Mesnil.
2014. Learning semantic representations using convolutional neural networks for web
search. In Proceedings of the companion publication of the 23rd international conference
on World wide web companion, pages 373-374. International World Wide Web Conferences
Steering Committee.

[Shen et al.2015j Yikang Shen, Wenge Rong, Nan Jiang, Baolin Peng, Jie Tang, and Zhang
Xiong. 2015. Word embedding based correlation model for question/answer matching.
arXiv preprint arXiv:1511.04646.

[Socher et al.20111 Richard Socher, Cliff C. Lin, Andrew Y. Ng, and Christopher D. Man-
ning. 2011. Parsing natural scenes and natural language with recursive neural networks.
In Proceedings of the 26th International Conference on Machine Learning (ICML).

[Socher et al.20131 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D.
Manning, Andrew Y. Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pages 1631-1642, October.

[Sutskever et al.2014 Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014. Sequence to
sequence learning with neural networks. In Advances in neural information processing
systems, pages 3104-3112.

[Tan et al.20151 Ming Tan, Bing Xiang, and Bowen Zhou. 2015. Lstm-based deep learning
models for non-factoid answer selection. arXiv preprint arXiv:1511.04108.

[Wang and Nyberg2015] Di Wang and Eric Nyberg. 2015. A long short-term memory model
for answer sentence selection in question answering. In A CL, July.

[Yih et al.2014 Wen-tau Yih, Xiaodong He, and Christopher Meek. 2014. Semantic parsing
for single-relation question answering. In Proceedings of A CL.

[Zhang and LeCun2015l Xiang Zhang and Yann LeCun. 2015. Text understanding from
scratch. arXiv preprint arXiv:1502.01710.

[Zhou et al.2013 Guangyou Zhou, Yang Liu, Fang Liu, Daojian Zeng, and Jun Zhao. 2013.
Improving question retrieval in community question answering using world knowledge. In
Proceedings of the Twenty- Third international joint conference on Artificial Intelligence,
pages 2239-2245. AAAI Press.

50

[Zhou et al.2015 Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu. 2015. Learning
continuous word embedding with metadata for question retrieval in community question
answering. In Proceedings of the 53rd Annual Meeting of the Association for Conputa-
tional Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 250-259, Beijing, China, July. Association for
Computational Linguistics.

51

