
P-TAXI: Enforcing Memory Safety with
Programmable Tagged Architecture

by

Witchakorn Kamolpornwijit

S.B., Massachusetts Institute of Technology (2015)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○ 2016 Massachusetts Institute of Technology. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 12, 2016

Certified by. .
Dr. Howard Shrobe

Principal Research Scientist, MIT CSAIL
Thesis Supervisor

Accepted by .
Dr. Christopher Terman

Chairman, Masters of Engineering Thesis Committee

2

P-TAXI: Enforcing Memory Safety with

Programmable Tagged Architecture

by

Witchakorn Kamolpornwijit

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Buffer overflow is a well-known problem that remains a threat to software security.
With the advancement of code-reuse attacks and return-oriented programming (ROP),
it becomes problematic to protect a program from being compromised. Several defenses
have been developed in an attempt to defeat code-reuse attacks. However, there is
still no solution that provides complete protection with low overhead.

In this thesis, we improved TAXI [1]–[3], a ROP defense technique that utilizes a
tagged architecture to prevent memory violations. Inspired by Programmable Unit
for Metadata Processing (PUMP) [4], we modified TAXI so that enforcement policies
can be programmed by user-level code and called it P-TAXI (Programmable TAXI).
We demonstrated that, by using P-TAXI, we were able to enforce memory safety
policies, including return address protection, stack garbage collection, and memory
compartmentalization. In addition, we showed that P-TAXI can be used for debugging
and taint tracking.

Thesis Supervisor: Dr. Howard Shrobe
Title: Principal Research Scientist, MIT CSAIL

3

4

Acknowledgments

This thesis would not have been possible without support, insight, guidance, and

thoughtful commentary from Dr. Howard Shrobe, my thesis supervisor. I would like

to give a special thanks to Julián González and Samuel Fingeret for answering many

questions about TAXI and guiding me through its code base.

I would like to thank Stelios Sidiroglou-Douskos, Hamed Okhravi, Andre DeHon,

Isaac Evans, participants in the Micropolicy discussion, and members of Cybersecurity

at CSAIL for helping me in multiple ways related to this thesis.

This work is sponsored by the Office of Naval Research under the award N00014-

14-1-0006, entitled Defeating Code Reuse Attacks Using Minimal Hardware Modifica-

tions. Opinions, interpretations, conclusions, and recommendations are those of the

author and do not reflect official policy or the position of the Office of Naval Research

or the United States Government.

5

6

Contents

1 Introduction 19

2 Background 21

2.1 Code-Injection Attacks . 21

2.1.1 Example . 21

2.1.2 Defenses . 23

2.1.2.1 Data Execution Prevention (DEP) 23

2.1.2.2 StackGuard . 24

2.2 Code-Reuse Attack . 25

2.2.1 Return-To-Libc Attack . 26

2.2.2 Return-Oriented Programming 26

3 Return-Oriented Programming 27

3.1 Variants of ROP Attacks . 28

3.1.1 ROP Using pop and jmp Instructions 28

3.1.2 Jump-Oriented Programming 28

3.2 Detection-Based Defenses . 28

3.2.1 ROPdefender . 28

3.2.2 kBouncer . 29

3.2.3 ROPecker . 29

3.2.4 Circumvention . 29

3.3 Address Space Layout Randomization (ASLR) 30

3.3.1 Variants of ASLR . 31

7

3.3.1.1 Address Space Layout Permutation (ASLP) 31

3.3.1.2 Instruction Location Randomization (ILR) 31

3.3.1.3 ASLR-Guard . 31

3.3.1.4 Timely Address Space Randomization (TASR) . . . 32

3.3.2 Circumvention . 32

3.3.2.1 Derandomization Attack 32

3.3.2.2 Just-In-Time Code Reuse 33

3.3.2.3 Blind ROP . 33

3.3.2.4 Side Channel Attacks 33

3.4 Annotated Language . 34

3.4.1 Cyclone . 34

3.4.2 CCured . 34

3.4.3 Rust . 35

3.5 Bound-Based Defenses . 35

3.5.1 HardBound . 35

3.5.2 SoftBound . 36

3.5.3 Baggy Bound . 36

3.6 Code-Pointer Integrity (CPI) . 36

3.6.1 Circumvention . 37

3.7 Control-Flow Integrity (CFI) . 37

3.7.1 Variants of CFI . 38

3.7.1.1 Compact Control Flow Integrity and Randomization

(CCFIR) . 38

3.7.1.2 Control Flow and Code Integrity (CFCI) 38

3.7.1.3 Cryptographically-Enforced Control Flow Integrity

(CCFI) . 38

3.7.1.4 Opaque Control-Flow Integrity (O-CFI) 38

3.7.2 Circumvention . 39

3.7.2.1 Coarse-Grained CFI 39

3.7.2.2 Problem with Static Analysis 39

8

3.7.2.3 Counterfeit Object-Oriented Programming (COOP) . 39

3.7.2.4 Control Jujutsu . 39

4 Tagged Architecture 41

4.1 Capability Hardware Enhanced RISC Instructions (CHERI) 41

4.2 Programmable Unit for Metadata Processing (PUMP) 42

4.2.1 Policies . 43

4.2.2 Implementation . 43

4.2.3 Policy Correctness . 44

5 RISC-V 45

5.1 Instruction Set . 45

5.2 Registers . 47

5.3 Spike . 47

5.4 Proxy Kernel (PK) . 47

6 TAXI 49

6.1 Tagged Architecture . 49

6.1.1 Tag Unit . 50

6.1.2 Tag Cache . 50

6.2 Policies . 50

6.2.1 Return Address Protection . 50

6.2.2 Linearity of Return Address 51

6.2.3 Data Blacklisting . 51

6.3 Performance . 52

7 P-TAXI 53

7.1 Contributions . 53

7.2 Threat Model . 54

7.3 Design . 54

7.3.1 Policy . 55

7.3.1.1 Filter . 55

9

7.3.1.2 RISC-V Instruction Classification 56

7.3.1.3 Action . 56

7.3.2 Commands . 56

7.3.2.1 TAGCMD . 56

7.3.2.2 TAGPOLICY . 58

7.3.3 Privilege Bits . 58

7.4 Implementation . 59

7.4.1 Application-Specific Policies 59

7.4.2 Policy Detection . 59

7.4.3 Policy Enforcement . 60

7.4.4 User-Level Libraries . 60

7.4.5 LD_PRELOAD Environment Variable 61

8 Sets of Policies for P-TAXI 63

8.1 Base Sets of Policies . 63

8.2 Return Address Protection . 65

8.3 Memory Compartmentalization . 65

8.4 Taint Tracking . 66

8.5 Stack Garbage Collection . 69

8.6 Instruction Counting and Debugging 69

9 Evaluation of P-TAXI 71

9.1 Effectiveness Against Attacks . 71

9.1.1 Code-Injection Attack . 71

9.1.2 Code-Reuse Attack . 71

9.1.3 Data-Oriented Programming 72

9.1.4 Format String Attack . 72

9.2 Performance . 73

9.3 Future Works . 73

10

A P-TAXI Source Code 75

A.1 Policy Definition (ptaxi_common.h) 75

A.2 P-TAXI Simulator . 77

A.2.1 Header File (ptaxisim.h) . 77

A.2.2 Source File (ptaxisim.cc) . 78

A.3 User-level Libraries . 90

A.3.1 Basic Interface (ptaxi_user.h) 90

A.3.2 Header File for Inclusion by User-Level Applications (ptaxi.h) 91

B Policy Source Code and Test Cases 93

B.1 Policies . 93

B.1.1 Base Policies . 93

B.1.2 Return Address Protection . 97

B.1.3 Memory Compartmentalization & Taint Tracking (Privilege) . 97

B.1.4 Stack Garbage Collection . 99

B.1.5 Call Debugging . 99

B.2 Test Cases . 100

B.2.1 Return Address Protection . 100

B.2.2 Get and Set Tags . 101

B.2.3 Malloc with Memory Compartmentalization 101

B.2.4 Basic Taint Tracking . 103

B.2.5 Stack Garbage Collection . 103

11

12

List of Figures

2-1 Stack after the execution of line 4 with input “ABCD”. 22

2-2 Stack after the execution of line 4 with input “AAAAAAAAAAAAAA”. 23

2-3 Stack in the same condition as in figure 2-1 but with StackGuard enabled. 25

2-4 Stack after the execution of line 4 with input “AAAAAAAAAA<address

to system>”. 26

13

14

List of Tables

5.1 Numbers of general-purpose RISC-V instructions, categorized by exten-

sion. 46

5.2 List of RISC-V opcodes used by general-purpose instructions. 46

7.1 List of fields available for each P-TAXI policy. 55

7.2 List of P-TAXI instruction types. 57

7.3 List of P-TAXI actions. 58

8.1 List of base sets of policies implemented in the P-TAXI user-level libraries. 64

8.2 List of P-TAXI policies used to implement the base sets of policies. . 64

8.3 List of policies for return address protection. 65

8.4 List of policies for memory compartmentalization. 67

8.5 List of policies for taint tracking. 68

9.1 List of SPEC2006 tests used to estimate numbers of tag reads and

writes with the enforcement of the P-TAXI return address protection

policy set. 74

15

16

List of Code Listings

2.1 Example C program with a buffer overflow vulnerability. 22

7.1 Example C program that utilizes ptaxi.h. 61

7.2 Example C library that can be loaded into existing programs to enable

P-TAXI via LD_PRELOAD. 61

8.1 Malloc implementation that utilizes P-TAXI policies to enable memory

compartmentalization. 66

8.2 Example code utilizing taint tracking. 68

A.1 ptaxi_common.h . 75

A.2 ptaxisim.h . 77

A.3 ptaxisim.cc . 78

A.4 ptaxi_user.h . 90

A.5 ptaxi.h . 91

B.1 ptaxi_base_policy.h . 93

B.2 ptaxi_policy_return_address.h 97

B.3 ptaxi_policy_privilege.h . 97

B.4 ptaxi_policy_gc.h . 99

B.5 ptaxi_policy_debug_call.h . 99

B.6 test_return_address.c . 100

B.7 test_getsettag.c . 101

B.8 test_simple_malloc.c . 101

B.9 test_taint_tracking.c . 103

B.10 test_gc.c . 103

17

18

Chapter 1

Introduction

Buffer overflow is one of the well-known types of software bugs that allows an attacker

to execute malicious code by intentionally crafting a sequence of inputs to a system

that overruns the boundaries of a buffer. Discovered at least as early as 1972 [5],

buffer overflow is still considered one of the top three categories of the most dangerous

software errors, according to MITRE [6].

Because of the severity of buffer overflow attacks, many defense mechanisms have

been developed over time to protect computer systems from being vulnerable. However,

new techniques of buffer overflow attacks, including code-reuse attacks and return-

oriented programming, have rendered ineffective many types of defenses, including

Data Execution Prevention and StackGuard. As a result, it is much more difficult to

protect a program from being compromised. Several defenses have been developed

in an attempt to defeat code-reuse attacks. However, there is still no solution that

provides complete protection with low overhead.

Chapter 2 provides background on the history and example of buffer overflow

and code-reuse attacks. In Chapter 3, we discuss in detail about Return-Oriented

Programming (ROP), its variants and countermeasures.

Chapter 4 and Chapter 5 describe the tagged architecture and the RISC-V in-

struction set, respectively, as these core components were used to develop TAXI.

In Chapter 6, we discuss TAXI, a tagged architecture approach to prevent memory

19

violations.

P-TAXI, which is the main contribution of this thesis, is described in Chapter 7,

with the basic sets of policies shown in Chapter 8. In Chapter 9, we evaluate P-TAXI

and provide ideas for future works.

20

Chapter 2

Background

In this chapter, we will discuss major classes of buffer overflow attacks and several

countermeasures that have been developed over the past decades to prevent such

attack schemes. We will also review the effectiveness of such countermeasures.

2.1 Code-Injection Attacks

Code-injection attacks are one of the simplest forms of buffer overflow attacks. To

initiate the attack, an attacker would craft a payload, called “shell code,” which

contains machine instructions that the attacker wishes to execute. The attacker then

combines the shell code with a long sequence of inputs that overflows the stack of

the application, resulting in replacement of the return address on the stack with the

memory address of the shell code. Alternatively, if a program utilizes the function

pointer feature of the C programming language, it is also possible to override a function

pointer in a vulnerable program to replace the value of the function pointer with the

memory address of the shell code [7].

2.1.1 Example

The C program in Listing 2.1 receives an input and stores it in the variable name and

displays it back to the user. If a user inputs “ABCD”, the call stack of the program,

21

after the gets function in line 4 is called, will be as in Figure 2-1 [8].
1 #include <stdio.h>
2 void f() {
3 char name [6];
4 gets(name);
5 printf("Your name is %s\n", name);
6 }
7 void main() {
8 f();
9 return 0;

10 }

Listing 2.1: Example C program with a buffer overflow vulnerability.

...

‘A’ name[0]

‘B’ name[1]

‘C’ name[2]

‘D’ name[3]

‘\0’ name[4]

<unfilled> name[5]

%ebp %ebp

address to main:9 %esp

f

...main

...

Figure 2-1: Stack after the execution of line 4 with input “ABCD”.

However, we can see that in line 4, this program uses the gets function which does

not provide a way to specify the maximum number of characters that should be read

into the variable name. As a result, if a user of the program enters an input with more

than 5 characters (which results in more than 6 bytes written to the buffer because a

string has to end with a null character), the user would be able to overflow the buffer.

For example, with an input of “AAAAAAAAAAAAAA”, the call stack will be as in

Figure 2-2. When Function f is completed, the instruction pointer of the machine will

be changed to 0x41414141 instead of an address that point back into function main.

22

(0x41 is an ASCII value of ’A’.) If the attacker changes the return address to point to

the location of name[0] and puts shell code at the beginning of the input stream, the

attacker would be able to execute arbitrary machine code with this program privilege.

...

‘A’ name[0]

‘A’ name[1]

‘A’ name[2]

‘A’ name[3]

‘A’ name[4]

‘A’ name[5]

0x41414141 %ebp

0x41414141 %esp

f

...main

...

Figure 2-2: Stack after the execution of line 4 with input “AAAAAAAAAAAAAA”.

2.1.2 Defenses

2.1.2.1 Data Execution Prevention (DEP)

Data Execution Prevention (DEP, also known as W⊕X) is a way to prevent code-

injection attacks by blocking execution of instructions that appear on marked mem-

ory regions. DEP utilizes the No-eXecute (NX) bit feature, supported by modern

processors, allowing an operating system to mark certain areas of the memory as

non-executable. Normally, the operating system will mark stack and heap areas of a

program as non-executable, preventing attackers from providing arbitrary shell code

to be executed by the program. DEP has been implemented and supported by major

operating systems, including Windows, Linux, and OS X [9]–[11].

23

2.1.2.2 StackGuard

StackGuard (also known as stack canaries) [12] is another technique to prevent code-

injection attack. To restrict modification of return addresses, the compiler is modified

to add instructions to push a “canary word” to the call stack every time a return address

is pushed on the stack, as shown in Figure 2-3. Instructions to check for a correct

canary word are also added so that if the canary word on the stack is overwritten

with an incorrect value, the program will crash instead of return. Canary words are

generated randomly every time a program starts so that an attacker would not be

able to predict canary words by looking at the program’s binary. Many compilers

have added a feature similar to StackGuard. For example, in GCC, a stack protection

feature was added in version 4.1 and has been enabled by default. Users who do not

want to have such protection in their program need to disable it with an argument

-fno-stack-protector when compiling the program [13].

Since StackGuard only modifies parts of the calling convention that most programs

do not rely on, there is no need to modify the source code of most programs. Operating

system support is also unnecessary as the implementation can be done solely on the

user level [12].

Unfortunately, StackGuard is ineffective in preventing buffer overflow attacks in

multiple ways. First, StackGuard does not prevent an attacker from modifying local

variables on the stack, including function pointers. In a vulnerable function that

utilizes function pointers, the attacker would use the buffer overflow technique to

modify the function pointers to point to the location of shell code that the attacker

provided. Second, StackGuard assumes that the attacker would not be able to read

the canary words. If the attacker can find a way to read canary words from the call

stack, the attacker can still proceed to craft an input sequence with known canary

words, thereby avoiding detection of stack inconsistency [14].

24

...

‘A’ name[0]

‘B’ name[1]

‘C’ name[2]

‘D’ name[3]

‘\0’ name[4]

<unfilled> name[5]

%ebp %ebp

Canary Word

address to main:9 %esp

f

...main

...

Figure 2-3: Stack in the same condition as in figure 2-1 but with StackGuard enabled.

2.2 Code-Reuse Attack

Code-reuse attacks are another form of buffer overflow attacks. In this attack scheme,

instead of providing shell code directly, the attacker modifies a return address on the

stack or a function pointer to point to existing code anywhere in memory. Because it

is not necessary for the attacker to provide shell code as an input, the attack renders

ineffective many defenses that prohibit execution of memory regions that contain

program data and user input, including Data Execution Prevention [15].

However, this type of attack requires an attacker to have information about existing

instructions in the regions of the memory that are executable. Therefore, compared

with code-injection attacks, code-reuse attacks are likely to be more difficult to exploit

on an application to whose binaries the attacker does not have access to [15].

25

2.2.1 Return-To-Libc Attack

A return-to-libc attack is a basic form of code-reuse attacks. By using a buffer overflow

to override a return address on the stack to point to a function in libc (or another

standard C library), the attacker can force a program to make a call to any function in

libc, including system, which is a function that allow an application to run any shell

command. Figure 2-4 shows an example of the call stack of the program in Listing 2.1

using the input that utilizes a return-to-lib-c attack to execute an arbitrary command

by forcing a call to the system function in the standard C library [16].

...

‘A’ name[0]

‘A’ name[1]

‘A’ name[2]

‘A’ name[3]

‘A’ name[4]

‘A’ name[5]

0x41414141 %ebp

address to system %esp

f

...main

...

Figure 2-4: Stack after the execution of line 4 with input “AAAAAAAAAA<address
to system>”.

2.2.2 Return-Oriented Programming

Return-oriented programming (ROP) is a more advanced form of code-reuse attacks.

Since there are many variations of ROP and multiple defenses that have been created

in an attempt to defeat ROP, this thesis will discuss ROP in detail in Chapter 3.

26

Chapter 3

Return-Oriented Programming

Return-oriented programming (ROP) is an improvement over the return-to-libc attacks

described in Section 2.2.1. Instead of using whole functions existing in the standard

C library, ROP utilizes code sequences existing in libc or other loaded libraries as

building blocks to construct a gadget for the attack. Because the instruction set

of the Intel x86 architecture is very dense and can also be interpreted in multiple

ways (as there is no requirement for an instruction to be aligned in memory), it is

simple to find and construct code sequences that end with a ret instruction in large

libraries. Such sequences are called “gadgets.” Because it is possible to find many

code sequences that can be used for gadget construction, Shacham [17] shows that it

is possible to construct a Turing-complete machine from such gadgets, allowing an

attacker to execute any arithmetic and logic operations and to execute any function

with the same privilege as the program.

Because of its power, ROP gained considerable interest from the computer security

community. This has led to the development of many techniques that attempt to defend

against ROP and the whole class of code reuse attack. Since there are many attacks

and circumvention techniques related to ROP, this chapter will discuss variations of

the ROP attack first, then talk about defenses and their effectiveness.

27

3.1 Variants of ROP Attacks

3.1.1 ROP Using pop and jmp Instructions

In the original ROP paper by Shacham [17], all building blocks that are used to

construct an attack gadget need to end with a ret instruction. As such, there have

been many attempts to use patterns of execution of ret instructions to defeat ROP.

However, Checkoway et al. [18] show that it is possible to make an attack gadget that

does not result in ret instruction being executed at all. For example, pop and jmp

instructions on Intel x86 can be used as a replacement to achieve the same result as

the original ROP attack. The replacement can also be constructed to have the same

Turing-completeness property.

3.1.2 Jump-Oriented Programming

In addition to using pop and jmp instructions, Bletsch et al. [15] demonstrate that

only jmp instructions are required for the attack. Instead of finding code sequences

that end with ret or ret-like (pop and jmp) instruction, they show that by chaining

“functional gadgets,” which are sequences of instructions that contain jmp instructions,

this attack can accomplish the same goal as ROP. The attack can also circumvent

many anti-ROP defenses that monitor the execution of ret instructions in short

sequence.

3.2 Detection-Based Defenses

3.2.1 ROPdefender

ROPdefender attempts to defeat ROP by preventing return addresses on the call stack

from being exploited by ROP. It watches for all call and ret instructions. For each

call instruction, it puts an expected return address into the shadow stack, a stack that

is hidden from the application. When a ret instruction is called, ROPdefender pops a

28

return address from the shadow stack and checks whether it matches the address that

the ret instruction is going to return. If there is a mismatch, ROPdefender terminates

the program. Since ROPdefender is an instrumentation-based tool, it does not require

any modification to binaries. However, the average run-time overhead is around 200%,

which is high, even when compared to other detection-based defense approaches [19].

3.2.2 kBouncer

kBouncer is an implementation of two ROP defense approaches. First, kBouncer

checks that for each execution of a ret instruction, the return address that appears

on the stack points back to valid call sites, which are locations that occur immediately

after call instructions. Second, kBouncer checks a gadget-chain length, which is the

number of instructions executed in each taken indirect branch. It uses the Last Branch

Record (LBR), a feature in recent Intel CPUs, to record information about indirect

branches. By running these checks only during each system call, kBouncer has an

overhead of only 4%. However, since kBouncer is implemented using the Microsoft

EMET toolkit, kBouncer only works on Windows [20].

3.2.3 ROPecker

ROPecker attempts to prevent ROP attacks by looking at the gadget-chain length,

similar to kBouncer. However, the ROPecker system is built on the Linux kernel level,

instead of using the EMET toolkit, which requires binary rewriting. ROPecker also

uses a sliding window mechanism and offline analysis to reduce overhead and provides

more accuracy in indirect branching detection [21].

3.2.4 Circumvention

While several detection-based defenses claims to retain compatibility with legacy

software, and while some of them are very efficient, these defenses are not effective

at preventing attackers who know the implementation details of such protections.

29

For ROPdefender, attack gadgets that avoid using a ret instruction can escape the

defense easily.

kBouncer also has similar flaws. First, if an attacker uses only called-preceded

gadgets, the call-preceded policy can be circumvented. Carlini and Wagner [22] show

that only 70KB of binary code is enough to construct such gadgets. Second, the gadget

classification mechanism, which uses the gadget-chain length to detect ROP attacks,

can be circumvented by issuing multiple “long gadgets.” These are gadgets long enough

for kBouncer to not classify them as ROP attempts. With enough long gadgets, Last

Branch Record (LBR) would not be able to store all branching information and the

older information will be flushed. As such, real ROP attack gadgets would still be

able to execute because they are hidden from detection by kBouncer .

ROPecker also has similar issues. However, since ROPecker sacrifices performance

to run ROP detection more frequently, overloading the LBR to flush traces of ROP

attacks does not always work with ROPecker. However, by using the same approach

repeatedly, Carlini and Wagner [22] show that there must be a period that ROPecker

can not detect the attack. A technical report by Schuster et al. [23] also mentioned

similar circumvention techniques for kBouncer and ROPecker.

3.3 Address Space Layout Randomization (ASLR)

Address Space Layout Randomization (ASLR) is another technique that was created

to defend against both code-injection and code-reuse attacks. To prevent the attacks,

before running a program, a system with ASLR randomly assigns address offsets to

the base of each segment in the program’s binary, instead of just using the offsets

provided in the binary as in the system without ASLR. The randomness makes it more

difficult for an attacker to perform a code-reuse attack, as the attacker usually needs

to be able to determine the address of gadgets or functions to prepare the attack [24].

Similar to DEP, ASLR is widely adopted and supported by major operating systems

[9]–[11]. However, to support ASLR, a legacy program needs to be recompiled with

the position-independent executable (PIE) features enabled.

30

3.3.1 Variants of ASLR

3.3.1.1 Address Space Layout Permutation (ASLP)

Address Space Layout Permutation (ASLP) provides a way for a legacy program

compiled without PIE to be able to use address randomization without the need for

recompiling the program. ASLP implements two approaches to enable this: user-

level randomization and kernel-level randomization. For the user-level randomization,

ASLP uses a binary rewriting scheme. For a user to enable the user-level ASLP for

a program, the user runs the provided tool that relocates binary regions to different

memory addresses. The tool also detects all references to such regions and modifies

them so that the program can still work as expected [25].

On the other hand, the kernel-level implementation of ASLP allows users to run

all programs without any modification, as the similar permutation scheme is done

transparently in the kernel [25].

3.3.1.2 Instruction Location Randomization (ILR)

Instruction Location Randomization (ILR) improves ASLR by randomly placing every

instruction in memory. For a program to run with ILR, the program needs to undergo

offline analysis using a disassembler and branch and call site analyzers. After that, the

program can run on a per-process virtual machine. The virtual machine is required

as all instructions appear randomly in the memory. Therefore, without the virtual

machine, a program can not be properly executed. However, because of this, it is

much more difficult to perform ROP attack on a system with ILR than one with

ASLR [26].

3.3.1.3 ASLR-Guard

ASLR-Guard provides protection to code pointers in two ways. First, ASLR-Guard

separates memory between code and data regions. In particular, ASLR-Guards

provides a way for “sensitive stack data”, including return addresses, to be stored

separately from other data in the call stack. Second, ASLR-Guard encrypts code

31

pointers using XOR encryption so that an attacker cannot read the actual memory

address to which the code pointers point. Because of the encryption, ASLR-Guard

also prevents attackers from overwriting code pointers as the attackers would not be

able to encrypt a location without a correct key [27].

3.3.1.4 Timely Address Space Randomization (TASR)

Because ASLR only randomizes offsets of memory regions when programs start, if an

attacker can find a way to read memory, the attacker might be able to learn the offsets.

For example, derandomization attack, shown in Section 3.3.2.1, allows an attacker to

guess the offsets almost immediately. Timely Address Space Randomization (TASR)

mitigates the problem by re-randomizing locations of executable regions and updating

every code pointer that points to such locations between each system call. With this

protection, the attacker would not be able to learn the correct memory address to

create an attack gadget on time [28].

3.3.2 Circumvention

3.3.2.1 Derandomization Attack

Derandomization attack is a technique to attack ASLR on 32-bit machines by reducing

the search space of offsets. By using addresses placed on the stack by the program

itself, derandomization attacks allows an attacker to reduce the complexity of searching

for the right offset of the libc segment from 25 bits to 16 bits. With only 16 bits

of search space, attackers can use a brute force approach to find the right offset to

construct an attack. According to Shacham et al., re-randomizing frequently would

not help prevent the attack, as it can add no more than one bit of entropy [29].

On the other hand, 64-bit machines are not affected by this attack because an

attacker would need to use brute force in 40 bits of address space, which is not feasible

in most cases [29].

32

3.3.2.2 Just-In-Time Code Reuse

Just-In-Time Code Reuse is a technique that enables attacks on an application with

multiple memory disclosure vulnerabilities, even with ASLR enabled. With multiple

memory disclosures, ASLR is undermined as the attacker would simply be able to

search through all mapped memory. In some cases, an attacker would be able to

construct gadgets on-the-fly and only need to search through only a small address space.

This attack works on both 32-bit and 64-bit machines and is also platform-independent

[30].

3.3.2.3 Blind ROP

While there are many code-reuse attack approaches that circumvent ASLR and other

protections, those attacks are difficult to perform on many targets that use proprietary

and closed-source software. Even with the source code, if a binary is compiled

differently on each specific machine, it is still difficult to launch a ROP attack as the

attacker would not know the specific location of the desired gadgets.

Blind ROP (BROP) shows that it is possible to attack the targets without access to

their binary, even with ASLR, DEP, and stack canaries enabled. By using generalized

stack reading technique to find ROP gadgets, BROP can find locations of libc functions

that appear on the Procedure Linking Table (PLT), allowing the attacker to construct

a ROP gadget using such information. [31]

3.3.2.4 Side Channel Attacks

Because just-in-time code reuse and blind ROP attacks require code to be read from

memory, some variants of ASLR make it more difficult for an attacker to do so,

including ILR in Section 3.3.1.2. However, Seibert et al. show that the attacker can

use side channel attacks to leak information indirectly, without having to read code

from memory. For example, if an attacker can overwrite a variable in a loop, the

attacker might be able to read information by repeatedly recording timings that the

application takes before responding back to the attacker and using statistical analysis

33

to determine information from the data. The paper also demonstrates that this kind

of attack works even in the situation where the attack is performed remotely between

two machines in the same network [32].

3.4 Annotated Language

The C language allows developers to perform a number of actions that cannot be done

directly in higher level languages, including accessing memory without any data type

checking, dereferencing pointers without any bound check, and using native assembly.

Such freedom helps developers to write code that interacts directly with hardware,

allowing them to write very high-performance software. However, those features also

have an unintended consequence that makes it much more dangerous for developers

to accidentally introduce bugs, especially security bugs, to the software. Annotated

language is a solution that has been developed to provide stronger memory safety and

reduce software bugs by limiting what developers can do with C language.

3.4.1 Cyclone

Cyclone is one of the earliest attempts to modify the C language. Cyclone adds multiple

restrictions on what developers can do, including restricting pointer arithmetic and

disallowing any use of setjmp and longjmp. It also enforces run-time bound checking

on every pointer with the “fat pointer” scheme. The benchmark shows that Cyclone

has the average runtime overhead of 16% more than the original programs in C [33].

3.4.2 CCured

CCured also imposes restrictions on pointer usage. However, CCured gives more

flexibility to developers to make their decisions to trade off safety with performance.

CCured also uses type interference to reduce the overhead of the program by making

static verification and removing unnecessary checks that prove to be impossible.

CCured has an overhead of 3% more than the same code compiled in C without any

34

protection [34].

3.4.3 Rust

Rust is a programming language that was created with the intention to make a

program more secure. However, the syntax, while similar to C/C++, is not designed

to be compatible with the C/C++ code. Rust also supports the purely functional

language paradigm, which is not originally available in C++ [35], [36].

3.5 Bound-Based Defenses

In light of the ineffectiveness of DEP, stack canaries, and ASLR in preventing code-

reuse attacks, techniques to restrict a range of addresses that pointers can point to are

developed with the goal of guarantee complete spatial memory safety. This section

will discuss three implementations of such approaches: HardBound, SoftBound and

Baggy Bound.

3.5.1 HardBound

HardBound protects a pointer from overflowing its intended range by transparently

storing information about the base and bound, ranges of addresses that the pointer

can point at. By doing so, HardBound provides spatial memory safety, preventing

overflow from happening in the first place. In addition to that, Hardbound uses

compression to store the base and bound of each pointer. This allows HardBound

to reduce memory access as more pointer information would be able to fit in the L2

cache. HardBound also adds a “tag metadata space” to store information on whether

each memory address is a pointer data type so that the machine is not required to

access the base and bound information for non-pointer data, improving the overall

performance [37].

HardBound does not guarantee temporal memory safety and requires modification

to the hardware. However, it provides very low overhead compared to the earlier fat

35

pointers scheme.

3.5.2 SoftBound

SoftBound uses a similar protection mechanism to that in HardBound, but without

requiring any hardware modification. SoftBound is implemented by inserting a check

before every pointer dereferencing and manipulation. By doing a transformation of at

the compile time, SoftBound does not require any source code change. However, it is

still necessary to recompile a program to utilize SoftBound. The average overhead

that SoftBound incurs is also much higher than HardBound does, with 67% compared

to 10% [38].

3.5.3 Baggy Bound

Baggy Bound uses a technique to similar SoftBound’s. However, instead of adding

two additional pointers to represent the base and bound, Baggy Bound uses spare

bits that pointers in 64-bit architecture already have to store the base and bound.

Baggy Bound stores the value of log2(𝑠𝑖𝑧𝑒) instead of the whole base and bound in

each pointer, reducing numbers of bits needed and allowing faster check using bitwise

operations. However, Baggy Bound requires that the size of all allocated memories

be a power of two. Baggy Bound has an average overhead of only 12% and does not

require any hardware or source code modification [39].

3.6 Code-Pointer Integrity (CPI)

Code-Pointer Integrity (CPI) is a technique to protect code pointers by storing them

in a “safe region.” The safe region is a region of memory that can be accessed only by

modified instructions that have been statically analyzed by CPI, preventing attackers

from overwriting code pointers. To implement the safe region, CPI uses a different

method for each CPU architecture. For x86-32, CPI uses the segment protection

mechanism in hardware. However, in x86-64 and ARM, CPI uses a technique similar

36

to ASLR to hide the location of the safe region [40].

CPI claims to provide very low overhead, only 2.9% for C and 8.4% for C++.

The paper also discusses another implementation, called Code-Pointer Separation

(CPS), that has an overhead of approximately half that of CPI, but with fewer security

guarantees [40].

3.6.1 Circumvention

According to Evans et al. [41], a version of CPI that is implemented for x86-64 and

ARM utilizes the location hiding technique to provide storage for code pointers. This

version of CPI is subject to the same problem that ASLR has. By using side-channel

attacks, similar to the one that is described in Section 3.3.2.4, an attacker can locate

the safe region and modify the code pointers.

However, Kuzentsov et al. [42], the developers of CPI, argued that the attack as

mentioned is only a flaw in the implementation, not in the CPI technique, and can be

fixed by a small number of changes.

3.7 Control-Flow Integrity (CFI)

Control-Flow Integrity (CFI) prevents code-reuse attacks by constraining all control

transfer instructions, including ret and jmp, and blocking the execution of these

instructions that follows an unexpected execution path. CFI constructs a control-flow

graph (CFG) by analysis. CFG is used to make a decision about whether an execution

of instruction should be allowed. The CFG analysis can be performed with static

analysis or execution profiling. The CFI enforcement can be done in multiple ways,

including instrumentation of a binary [43].

37

3.7.1 Variants of CFI

3.7.1.1 Compact Control Flow Integrity and Randomization (CCFIR)

Compact Control Flow Integrity and Randomization (CCFIR) improves upon CFI

by locating all indirect control-transfer instructions in a section on memory called

the “springboard section.” By doing so, CCFIR simplifies how CFI is validated for

each instruction, resulting in the improvement of overall performance. CCFIR has an

average overhead of 3.6% [44].

3.7.1.2 Control Flow and Code Integrity (CFCI)

Control Flow and Code Integrity (CFCI) allows an existing binary to be protected

by CFI. CFCI implements a secure library loading model for secure loading, which is

used to protect other types of attacks. CFCI has an average overhead of 14.37% [45],

[46].

3.7.1.3 Cryptographically-Enforced Control Flow Integrity (CCFI)

Cryptographically-Enforced Control Flow Integrity (CCFI) uses message authentica-

tion codes (MACs) to enforce CFI at runtime. As such, CCFI can detect some usages

of pointers that static analysis is not able to detect. CCFI takes advantage of AES-NI,

a set of AES-related instructions in new Intel CPU models, to speed up cryptographic

processes that are used to validate the MACs [47].

3.7.1.4 Opaque Control-Flow Integrity (O-CFI)

Opaque Control-Flow Integrity (O-CFI) uses both fine-grained code randomization

and coarse-grained CFI to mitigate implementation-disclosure attacks, which are

attacks that use information about program memory to construct a specific attack for

each scenario. To hide control flow graphs from an attacker, O-CFI creates a bound

lookup table at a random location in memory, preventing an attacker from reading

information in the control flow graph [48].

38

3.7.2 Circumvention

3.7.2.1 Coarse-Grained CFI

Davi et al. show that while CFI is likely to be effective in preventing ROP attacks,

many implementations of CFI use a coarse-grained approach to improve the average

performance of programs. These coarse-grained solutions are insufficient to prevent at-

tackers as Turing-complete ROP gadgets can still be constructed in such environments.

Even the combinations of all coarse-grained defenses are not sufficient to prevent such

attack [49].

3.7.2.2 Problem with Static Analysis

Similar to coarse-grained CFI, Goktas et al. demonstrate that CFI that utilizes only

static analysis to create a control-flow graph is breakable [50].

3.7.2.3 Counterfeit Object-Oriented Programming (COOP)

Counterfeit Object-Oriented Programming (COOP) is an attack that focuses specifi-

cally on C++. COOP uses a chain of C++ virtual functions that exists in some C++

applications to construct a ROP gadget. Because CFI needs to allow legitimate flow

that uses the chain, the attack is not detected by CFI implementations [51].

3.7.2.4 Control Jujutsu

Control Jujutsu is an attack that is based on the incompleteness of the control-flow

graph creation. Because it is impractical to create a perfectly accurate control flow

graph in a large-scale program, a control flow graph normally includes some edges of

flow that are not possible in a legitimate execution of the program. Evans et al. show

that even with the fine-grained CFI and strict control flow graph creation, an attacker

might be able to utilize inaccuracy characteristic of the control flow graph to construct

a ROP attack. They also show that such attacks are not only possible in theory, but

also possible in many real-world applications, including Apache and Nginx. [52]

39

40

Chapter 4

Tagged Architecture

Tagged architecture is a type of computer architecture that stores a tag for each word

in the memory. The tag can be used for multiple purposes. For example, a system

can use the tag to store data type information for every variable in memory. The

tag can also be used for debugging purposes or marking areas of memory for garbage

collection. The idea of tagged architecture dates back as early as 1973 [53]. However,

the majority of modern computer architectures, including the Intel x86 and ARM,

still do not support the implementation of tagged architecture at the hardware level.

In this chapter, we will discuss two tagged architectures that have been developed

with the goal of improving security of software: Capability Hardware Enhanced RISC

Instructions (CHERI) and Programmable Unit for Metadata Processing (PUMP).

4.1 Capability Hardware Enhanced RISC

Instructions (CHERI)

Capability Hardware Enhanced RISC Instructions (CHERI) is a modification of the

64-bit MIPS IV instruction set to support capability models, allowing the enforcement

of memory policies and fault isolation at the hardware level. Similar to HardBound,

CHERI provides complete memory safety. CHERI also supports an enforcement of

capability, allowing a program to enforce specific protection in some sensitive memory

41

regions [54].

In CHERI, a 256-bit memory capability is used to enforce the protection. The

capability contains the base and bound (64 bits each for the total of 128 bits) and

permission fields (31 bits). The 97 unallocated bits can be used by the user-level

application to store data. To prevent an attack from modifying the capability by

overwriting it, one bit of tag is used for every 32 bytes of the memory to distinguish

between capability and general-purpose data. CHERI uses the physical memory

address instead of the virtual address in the tagging scheme to avoid the need for

memory address translation [54].

The implementation of CHERI is based on Bluespec Extensible RISC Implemen-

tation (BERI). However, by adding the tagged architecture and capability supports,

CHERI uses 32% more logic elements than BERI and has an overhead of 8.1%,

compared with BERI [54].

In an attempt to retain the compatibility with C programs, Chisnall et al. [55]

analyzed 13 open-source applications to observe the specific usage of C features and

idioms that might break when compiling the applications for the CHERI architecture.

They modified CHERI instructions and created an abstract machine that allowed the

modified CHERI to run these C programs with little to no modification to the source

code.

4.2 Programmable Unit for Metadata Processing

(PUMP)

Programmable Unit for Metadata Processing (PUMP) is an architectural model that

generalizes tagged architecture. PUMP allows programming of the processor, enabling

a user-level program to enforce customized tag propagation and memory enforcement

policies that are suitable for each environment. Specifically, PUMP allows a program

to enforce policies that use an instruction and the values of tags as an input. With

the input, the policy can be created to propagate new tag values into the output or to

42

block the execution of an instruction [4].

The flexibility of this policy customization makes it possible to implement many

forms of memory enforcement, including spatial and temporal memory safety and

control-flow integrity. PUMP can also be used for trait tracking without any hardware

change. PUMP has a small overhead of approximately 10% of running time and under

60% for memory usage [4].

4.2.1 Policies

PUMP can enforce a wide range of policies, including memory protection, capabilities,

data type, taint tracking, and invariant checking. A program can enforce a policy

by either inserting the policy when the program is loaded or creating a miss handler

that inserts a policy on-demand. A miss handler is called every time the policy is not

found in the rule cache [4].

Each policy can contain filters for the following inputs: program counter, current

instruction tag, and tag on both input and output arguments of the instruction.

Each policy can take multiple actions, including blocking the instruction from being

executed, modifying tags of the result value, and setting a program counter [4].

4.2.2 Implementation

To implement PUMP, a processor is modified to include a PUMP rule cache. The rule

cache contains logic gates that receive execution information from components in the

original part of the processor. The rule cache also contains a small associative memory

that is used for the caching mechanism. The rule cache produces three outputs for

each instruction. These outputs are program counter, result tag, and binary value

indicating whether a matched policy is found in the cache memory.

PUMP uses several techniques to optimize for high performance, including tag

compression and miss-handler acceleration. PUMP also uses an additional cache for

tag translation to reduce the energy usage.

43

4.2.3 Policy Correctness

By using dynamic sealing, a proof mechanism that is used to prove the correctness of

several cryptographic algorithms, an abstract and symbolic machine can be constructed

to prove micro policies in PUMP. These constructions are shown to be able to prove

multiple micropolicies, including ones for memory safety, control-flow integrity, and

memory compartmentalization [56].

44

Chapter 5

RISC-V

The content of this chapter is based on the RISC-V instruction set manual volume I

[57] and volume II [58].

RISC-V is an open-source instruction set specification developed by the Computer

Science Division at UC Berkeley with the goal of becoming a standardized instruction

set for both industrial and academic usages. RISC-V is designed to be simple and

extensible.

In this chapter, we will provide an overview of the design of RISC-V. We will also

discuss Spike, an instruction simulator for RISC-V, and its components.

5.1 Instruction Set

Instructions in RISC-V ISA are of variable length, with a minimum length of 32 bits,

and can be extended to any size depending on support from the hardware. In this

section, we will focus on the instructions in the general-purpose ISA, as defined in the

RISC-V instruction set manual.

The general-purpose instructions are divided into two categories: base instruction

set and extension instruction set. Instructions in the base instruction set are required

to be supported by all RISC-V-compatible CPUs. However, a hardware designer can

choose to exclude instructions in the extension instruction set. Numbers of instructions

45

in the base instruction set and each extension are shown in Table 5.1.

Extension 32 bits 64 bits Total

Base Integer 47 15 62
Standard Extension for Atomic (A) 11 11 22
Standard Extension for Multiplication and Division (M) 8 5 13
Standard Extension for Single-Precision Floating Point (F) 34 4 38
Standard Extension for Double-Precision Floating Point (D) 26 6 32

Total 126 41 167

Table 5.1: Numbers of general-purpose RISC-V instructions, categorized by extension.

Instructions in RISC-V ISA can also be classified by its “opcode”, which is the

seven lowest bits in each instruction. For all instructions with a length of greater than

or equal to 32 bits, the lowest two bits of instructions need to have values of 11 in

binary. Table 5.2 shows a list of opcodes in RISC-V.

Opcode (in binary) Name Number of Instructions

0000011 LOAD 7
0000111 LOADFP 2
0001111 MISCMEM 2
0010011 OPIMM 12
0010111 AUIPC 1
0011011 OPIMM32 4
0100011 STORE 4
0100111 STOREFP 2
0101111 AMO 22
0110011 OP 18
0110111 LUI 1
0111011 OP32 10
1000011 MADD 2
1000111 MSUB 2
1001011 NMSUB 2
1001111 NMADD 2
1010011 OPFP 50
1100011 BRANCH 6
1100111 JALR 1
1101111 JAL 1
1110011 SYSTEM 16

Table 5.2: List of RISC-V opcodes used by general-purpose instructions.

46

5.2 Registers

RISC-V is designed to have 31 general-purpose integer registers, x1-x31, and 32

privileged control registers (PCRs), pcr0-pcr31. (The x0 register is hard-wired to

always contain zero.) Hardware implementations of RISC-V should treat all general-

purpose registers in the same way. However, the RISC-V port of the Linux kernel has

a convention for register usage. For example, Register x1 is called ra and should be

used to store a return address [59].

In contrast to the general-purpose registers, each PCR has a specific function at

the hardware level. For example, pcr0 is a status register that contains values of the

instruction pointer and other hardware-level settings.

5.3 Spike

Spike is a hardware simulator for RISC-V based on QEMU, an open-source hypervisor.

Spike emulates each instruction directly, which makes it slower than some modern

hypervisors that utilize hardware acceleration to accelerate the simulation. However,

because of the simplicity of the emulation, Spike is suitable as a tool for experimenting

with changes to the RISC-V instruction set [60].

5.4 Proxy Kernel (PK)

Since Linux is a full-feature kernel, it contains many components that are not required

for experimentation and boots slowly in a system with high overhead, including in the

Spike simulator. Proxy Kernel is a kernel implementation that allows a program to

run on Spike without having to use the Linux kernel. It acts as a minimal layer to

support applications that are compiled with Newlib, a C standard library for embedded

systems [61].

47

48

Chapter 6

TAXI

This chapter is a summary of TAXI, an approach to defeat code-reuse attacks with

minimal hardware modification. The content of this chapter is based on the theses by

Issac Evans [1], Sam Fingeret [2], and Julián González [3].

TAXI is a set of modifications to the RISC-V instruction set with the intention of

preventing code reuse attacks with tagged architecture. It aims to preserve compati-

bility with C applications at the source code level. In this chapter, we will discuss

TAXI and its implementation.

6.1 Tagged Architecture

In TAXI, tagged architecture is implemented by dividing memory into two sections:

data memory and shadow memory. For every 64 bits of data, there is an 8-bit tag

that is associated with the data. The tag is contained inside of the shadow memory,

hidden from the normal operation of user-level applications. The tag is used to store

metadata. Specifically, the tag can be used to determine whether the data is a return

pointer or a function pointer. The tag can also contain other information as needed,

depending on each protection scheme.

49

6.1.1 Tag Unit

To enable enforcement of the tagging scheme at the hardware level, a “dedicated

hardware tag unit” has been added to P-TAXI. For every instruction executed,

information about the execution is provided to the tag unit. This information includes

the instruction itself, the tag values of parameters provided to the instruction, and the

value of the program counter. The tag unit processes these inputs in parallel to the

actual execution of the instruction. By considering the policies that are hard coded in

the tag unit, the tag unit makes a decision about whether the instruction should be

allowed to execute. In the case that a policy is violated, the tag unit will trigger a

trap signal. The signal then propagates to the operating system to take further action.

6.1.2 Tag Cache

Because there is a tag attached to every word in the memory, without any caching,

tag values will need to be retrieved from the memory directly for every instruction

execution. This would result in incurring tremendous overhead. TAXI solves this

problem by adding tags to every level of caching. In particular, tag registers are added

to accompany every register. For the L1 and L2 caches, there are also tag caches

added for every word in the cache with the same level of performance. In addition,

between the L2 cache and the memory, a large tag cache is added to reduce a number

of direct access to the memory.

6.2 Policies

TAXI provides three sets of policies that can be enforced at the hardware level: return

address protection, linearity of return address, and data blacklisting.

6.2.1 Return Address Protection

With tagged architecture, TAXI prevents an attacker from modifying return pointers

in the stack by tagging every return address. For every function call, TAXI tags a

50

return address that returned from an execution of the jal instruction, a jump-and-link

instruction used for function calls in RISC-V. When the return address is saved or

restored from the memory, the tag is also propagated in the same flow. When a

function returns, TAXI checks for the existence of the tag in the return address stored

in the register that contains the return address. If the tag does not exist, TAXI will

trigger a trap.

6.2.2 Linearity of Return Address

To ensure that an attacker cannot create an attack gadget that copies return addresses

with valid tags and uses them afterward to perform a code-reuse attack, TAXI also

provides a set of policies called “blacklist no partial copy.” With this policy, TAXI

ensures that there is only one copy of each valid return address existing at a time

for each return address created by calling a function. To achieve this goal, for every

move of the return address, including ones between registers and to/from the memory,

TAXI clears a tag existing in the source before adding a tag to the destination.

6.2.3 Data Blacklisting

Without support from compilers, it is difficult for both the CPU and the operating

system to determine types of data in each memory word. However, in the RISC-V

architecture, there are multiple commands that can be used to load and store data

to/from the memory, allowing a program to load values of various sizes, ranging from

8 bits to 64 bits. Since TAXI is implemented on the 64-bit RISC-V architecture,

we know that all pointers need to have the size of 64 bits. Because of this, for all

non-64-bit load and store operations, we can be certain that both the source and the

destination of these operations are not pointers. As such, TAXI marks these registers

and memory locations as data only, preventing the dereferencing of certain non-pointer

values.

51

6.3 Performance

With the tag cache mechanism described in Section 6.1.2, TAXI has very low overhead

when the size of the tag cache is sufficiently large. With 8MB of tag cache, the overhead

of TAXI is lower than 5%, on average, when benchmarking using the SPEC2006 test

suite.

52

Chapter 7

P-TAXI

In this thesis, we made several modifications to TAXI, described in Chapter 6, allowing

an enforcement of TAXI to be programmable by user-level programs. We called our

modifications P-TAXI. This chapter will discuss our contribution and the design of

P-TAXI.

7.1 Contributions

Inspired by tagged architecture and PUMP described in Chapter 4, we modified TAXI

to allow it to be programmable in a way that is similar to PUMP. However, P-TAXI

still retains the size of a tag for each word in the memory to 8 bits. Specifically, this

thesis has made the following contributions:

∙ Modified TAXI to allow each application to have a distinct set of memory safety

enforcement policies. The set of policies can be chosen by either a developer of

the program or a user who runs the program.

∙ Created a policy specification and framework that are flexible and universal,

allowing application developers to implement policies for various purposes.

∙ Developed a policy enforcement simulator as an add-on to TAXI such that we

can test the correctness of policies and measure their performance.

53

∙ Demonstrated that with these modifications, P-TAXI can be used in multiple

scenarios for multiple purposes, including but not limited to defeating code-reuse

attack, debugging, and trait tracking.

7.2 Threat Model

Some defense approaches assume that there might be a malicious code existing and

running on a system. However, such threat models are not reasonable for P-TAXI

because the implementation is created to allow developers to have full control of the

enforcement policy. Therefore, for P-TAXI, we make an assumption that a program

running on the system might contain some vulnerabilities that allow an attacker to

perform buffer overflow attacks. However, the program is not intentionally developed

to be malicious.

7.3 Design

Because P-TAXI is not created to solely address a specific class of security bugs, we

designed P-TAXI to allow developers to add a set of policies to their program. To

make this possible, we added an instruction called TAGPOLICY that receives policies

from a program and stores the policies in a separate memory called “policy storage.”

Since the size of policies is marginal, in hardware implementation, the policy storage

is intended to be a component inside the CPU, similar to the L2 cache.

After the policies are added to the policy storage, an application can enable the

programmable policy enforcement unit by running the TAGCMD instruction. With the

enforcement enabled, for each instruction executed, the enforcement unit will scan

through a set of policies added specifically for the application and determine whether

the policy matches. If there is a policy that matches with the instruction, the action

specified in the policy will be performed.

54

7.3.1 Policy

Each policy contains two components: filter and action. A filter is a set of conditions

that is used to specify whether the policy should be applied in a specific scenario. An

action is an outcome that should occur if the policy matches with all filters.

7.3.1.1 Filter

P-TAXI supports multiple filter conditions as shown in Table 7.1.

Type Name Description Bits

Filter

TAG_ARG1 Mask and match bit field for tag on ARG1. 16

TAG_ARG2 Mask and match bit field for tag on ARG2. 16

TAG_OUT Mask and match bit field for tag on OUT. 16

RS1 Mask and match bit field for RS1. 10

RS2 Mask and match bit field for RS2. 10

RS1VAL Mask and match bit field for the value of
RS1.

16

RS2VAL Mask and match bit field for the value of
RS2.

16

PRIV Mask and match bit field for current privi-
lege state.

16

INSN_TYPE Instruction type filter. 8

IGNORE_COUNT Numbers of policy matches to skip before
starting to take any action.

8

Action

ACTION Action to do. 8

TAG_OUT_SET Bit field of value to set to tag 8

TAG_OUT_TOMODIFY Bit field to set which bits of tag value to
be modified.

8

PRIV_SET Bit field of value to set to privilege state. 8

PRIV_TOMODIFY Bit field to set which bits of privilege state
value to be modified.

8

Total 172

Table 7.1: List of fields available for each P-TAXI policy.

55

7.3.1.2 RISC-V Instruction Classification

Some RISC-V instructions can be used in multiple ways. For example, the ADDI

instruction is used for both adding and copying values. The JALR instruction is also

used for both jump and return. These usages of instructions make it complicated to

implement a policy based solely on the names of instructions. P-TAXI solves this

problem by reclassifying RISC-V instructions into multiple instruction types, shown

in Table 7.2. As shown in the table, P-TAXI also separates load and store instructions

into two groups, based on whether the instructions are intended for 64-bit data. The

purpose of this is to allow application developers to create a policy that acts differently

when loading and storing data that can be interpreted as a pointer.

7.3.1.3 Action

P-TAXI supports actions as shown in Table 7.3.

7.3.2 Commands

P-TAXI has two additional commands that can be called by user-level programs:

TAGCMD and TAGPOLICY.

7.3.2.1 TAGCMD

The TAGENFORCE instruction in TAXI is renamed to TAGCMD to represent the purpose

of this instruction in P-TAXI. In TAXI, TAGENFORCE can be used only to enable or

disable tag enforcement. However, in P-TAXI, we modified this instruction to also

allow user-defined behaviors by policies.

TAGCMD accepts three arguments: command code, an input register, and an output

register. A policy can be added to P-TAXI to make the execution of TAGCMD with the

specified command code behave in the way that is defined in the policy. For example,

in normal conditions, TAGCMD will copy a value from the input register to the output

register. A policy with the GETTAG action can make TAGCMD acts as a command to

retrieve tag values from registers.

56

P
-T

A
X

I
T

yp
e

D
es

cr
ip

ti
on

R
IS

C
-V

in
st

ru
ct

io
n
s

A
rg

u
m

en
ts

A
R

G
1

A
R

G
2

O
U

T

LO
A

D
In

st
ru

ct
io

ns
th

at
lo

ad
a

va
lu

e
fr

om
m

em
or

y
fo

r
no

n-
64

-b
it

da
ta

.
LB

,L
H

,L
W

,.
..

M
em

or
y

N
/A

R
eg

is
te

r
R

D

LO
A

D
64

In
st

ru
ct

io
ns

th
at

lo
ad

a
va

lu
e

fr
om

m
em

or
y

fo
r

64
-b

it
da

ta
.

LD
M

em
or

y
N

/A
R

eg
is

te
r

R
D

ST
O

R
E

In
st

ru
ct

io
ns

th
at

st
or

e
a

va
lu

e
to

m
em

or
y

fo
r

no
n-

64
-b

it
da

ta
.

SB
,S

H
,S

W
R

eg
is

te
r

R
S2

N
/A

M
em

or
y

ST
O

R
E

64
In

st
ru

ct
io

ns
th

at
st

or
e

a
va

lu
e

to
m

em
or

y
fo

r
64

-b
it

da
ta

.
SD

R
eg

is
te

r
R

S2
N

/A
M

em
or

y

C
O

P
Y

A
D

D
I

in
st

ru
ct

io
n

th
at

is
us

ed
to

co
py

va
lu

es
be

tw
ee

n
re

gi
st

er
s

A
D

D
I

(i
m

m
=

0)
R

eg
is

te
r

R
S1

N
/A

R
eg

is
te

r
R

D

O
P

O
pe

ra
ti

on
in

st
ru

ct
io

ns
.

A
D

D
,S

U
B

,X
O

R
,O

R
,

A
N

D
,.

..
R

eg
is

te
r

R
S1

R
eg

is
te

r
R

S2
R

eg
is

te
r

R
D

O
P

IM
M

R
eg

is
te

r-
im

m
ed

ia
te

in
st

ru
ct

io
ns

.
A

D
D

I
(i

m
m
̸=

0)
,S

LT
I,

X
O

R
I,

..
.

R
eg

is
te

r
R

S1
N

/A
R

eg
is

te
r

R
D

JA
L

Ju
m

p-
an

d-
lin

k
(J

A
L)

in
st

ru
ct

io
n.

JA
L

Ta
rg

et
A

dd
re

ss
N

/A
R

eg
is

te
r

R
D

JA
LR

N
on

-r
et

ur
n

Ju
m

p-
an

d-
lin

k
R

eg
is

-
te

r
(J

A
LR

)
in

st
ru

ct
io

n.
JA

LR
(n

on
-r

et
ur

n)
R

eg
is

te
r

R
S1

Ta
rg

et
A

dd
re

ss
R

eg
is

te
r

R
D

R
E

T
U

R
N

R
et

ur
n

JA
LR

in
st

ru
ct

io
n.

JA
LR

(r
et

ur
n)

R
eg

is
te

r
R

S1
Ta

rg
et

A
dd

re
ss

R
eg

is
te

r
R

D

TA
G

C
M

D
TA

G
C

M
D

in
st

ru
ct

io
n.

TA
G

C
M

D
N

/A
N

/A
N

/A

TA
G

P
O

LI
C

Y
TA

G
P

O
LI

C
Y

in
st

ru
ct

io
n.

TA
G

P
O

LI
C

Y
R

eg
is

te
r

R
S1

R
eg

is
te

r
R

S2
N

/A

SE
T

TA
G

SE
T

TA
G

in
st

ru
ct

io
n.

SE
T

TA
G

R
eg

is
te

r
R

S1
R

eg
is

te
r

R
S2

N
/A

U
N

K
N

O
W

N
O

th
er

in
st

ru
ct

io
ns

no
t

m
at

ch
ed

w
it

h
an

y
ty

pe
s.

R
eg

is
te

r
R

S1
R

eg
is

te
r

R
S2

R
eg

is
te

r
R

D

Ta
bl

e
7.

2:
Li

st
of

P
-T

A
X

I
in

st
ru

ct
io

n
ty

pe
s.

57

Action Description

CONTINUE Continue to apply next policies.

ALLOW Allow the execution of the instruction and stop the policy processing
for this instruction.

BLOCK Block the execution of the instruction (cause trap) and stop the
policy processing for this instruction.

GC Do stack garbage collection and stop the policy processing for this
instruction.

DEBUG_LINE Show brief debug information.

DEBUG_DETAIL Show detailed debug information.

GETTAG Make TAGCMD returns the tag value of RS2 register (should use
only with TAGCMD instruction).

Table 7.3: List of P-TAXI actions.

Command code zero is reserved for enabling tag enforcement because there cannot

be a rule to enable policy enforcement, as the processing of policies would not be

enabled at the time the first TAGCMD instruction is called.

Because TAGCMD can be used to both get and set tag values, we decided not to

implement separate commands to get and set tags. However, an implementation of

get and set tags is included in the user-level library of P-TAXI.

7.3.2.2 TAGPOLICY

The TAGPOLICY instruction is created to allow a program to add policies to the policy

storage. TAGPOLICY accepts three 64-bit integer registers, representing a policy. The

three integers are generated from serialization of “policy struct”. Because of this, each

policy can contain values of at most 192 bits. However, this can be modified easily if

there is a situation that requires an extension to the size limitation.

7.3.3 Privilege Bits

To allow state-aware policies in P-TAXI, 8 privilege bits are allocated for each user-level

program. These privilege bits can be used in multiple ways, including to implement

58

memory compartmentalization. For example, when a program enters a segment that

need to interact with sensitive data, the program can enable a privilege bit so that

a different set of policies is used in the execution. A policy can be created to take

actions only when the privilege bits are in a specific state. The policy can also modify

the privilege bits as needed.

7.4 Implementation

This section described how major components of P-TAXI are implemented. However,

the source code of the P-TAXI simulator for Spike can be found in Appendix A.

7.4.1 Application-Specific Policies

P-TAXI uses a privilege control register (PCR) to allow each application to have a

distinct set of policies. When a policy is added for the first time in the life cycle of an

application, the value of the status PCR will be modified to include a context ID, an

identifier that is used to identify which set of policies to enforce for the application.

P-TAXI uses the status PCR for this purpose because it is expected to be saved and

restored every time an operating system engages in context-switching between two

processes. However, this limits the number of policy-enabled processes that can be

run at the same time to 127. If more than 127 processes are required, it is possible to

modify P-TAXI to use a separate PCR. However, the kernel of an operating system

would need to be modified to save and restore the PCR while making a context switch.

7.4.2 Policy Detection

As shown in Section 7.3.1, each policy in P-TAXI contains multiple conditions. For

efficiency, P-TAXI loads and stores tag values only when it needs to check or to update

the values. P-TAXI also uses the same tag caching mechanism as developed in TAXI

to avoid excessive access to the memory.

In Spike, policy detection is implemented to process each policy sequentially.

59

However, it is likely that policy detection can be done more effectively in hardware as

a chip can be designed to process multiple policies in parallel.

7.4.3 Policy Enforcement

After a policy is determined to be matched, P-TAXI examines the policy and selects

an appropriate action to take as specified by the policy. If the policy includes the

TAG_OUT_TOMODIFY field with a non-zero value, the tag value at the location of the

output of the instruction will be modified before P-TAXI takes any specified action.

To block the execution of an instruction, P-TAXI uses the same trap mechanism

as in TAXI. P-TAXI also allows policies to enforce stack garbage collection. This

is done by monitoring the stack pointer register and clearing the unallocated stack

memory area when the GC action is requested.

However, since the GC action is likely to need more than one CPU cycle and the

RISC-V architecture requires the execution of an instruction to use no more than

one CPU cycle, in the actual hardware implementation, it might be more feasible

to use a post-trap-handler approach. In the post-trap-handler approach, the CPU

causes a trap to allow an operating system to perform the specified action instead of

performing the action directly at the hardware level. This would allow more than one

cycle of execution of complex actions.

7.4.4 User-Level Libraries

We created a set of libraries to allow a user-level programs to interact with P-TAXI

components without having to write inline assembly code. To use these libraries, the

program includes a header file that contains all basic sets of policies. The header file is

called ptaxi.h. Listing 7.1 shows how a program can use P-TAXI in user-level code.

60

1 #include <stdio.h>
2 #include "ptaxi.h"
3

4 #define TAGBIT 1
5

6 void __attribute__ ((constructor)) ptaxi_app_policy () {
7 ptaxi_policy_return_address(TAGBIT);
8 ptaxi_enforce_policy ();
9 }

10

11 int main() {
12 printf("Hello World\n");
13 //...
14 return 0;
15 }

Listing 7.1: Example C program that utilizes ptaxi.h.

7.4.5 LD_PRELOAD Environment Variable

LD_PRELOAD is a feature in Linux that allows dynamic loading of a library. By using

LD_PRELOAD, it is possible to load any shared library into a program without having to

recompile the program. To use this feature, a user sets the LD_PRELOAD environment

variable by entering export LD_PRELOAD=<path to a library> in a terminal shell

before starting the program. Every program that executes subsequently will have the

specified library preloaded [62].

With P-TAXI, users can create a library to inject policies into a program. Listing 7.2

shows sample library code that can be compiled to run with LD_PRELOAD. This code

can be compiled as a library with GCC.
1 // To compile , run "riscv64 -unknown -linux -gnu -gcc -fPIC -shared -o

lib_gc.so test_gc.c"
2 #include "ptaxi.h"
3

4 void __attribute__ ((constructor)) ptaxi_inject_policy () {
5 ptaxi_policy_gc ();
6 ptaxi_enforce_policy ();
7 }

Listing 7.2: Example C library that can be loaded into existing programs to enable
P-TAXI via LD_PRELOAD.

61

62

Chapter 8

Sets of Policies for P-TAXI

Because P-TAXI is programmable, there are unlimited numbers of sets of policies

that can be implemented for user-level programs. In this chapter, we show basic sets

of policies that are useful to apply to typical applications. Since the actual code to

enforce these policies and their test cases is verbose, they are shown in Appendix B.

8.1 Base Sets of Policies

Because P-TAXI is designed to keep modification to hardware as marginal as possible,

P-TAXI only provides two commands, TAGCMD and TAGPOLICY. Additional policies

need to be added to P-TAXI by software to allow more complex policies. For example,

to be able to set tags and privilege bits from a program, a program need to add a

policy to change the behavior of the TAGCMD command. Several base sets of policies

are provided in the P-TAXI user-level libraries. These base sets of policies can be

used by both user-level programs and more advance sets of policies. These base sets

of policies are described in Table 8.1. The implementation of these set of policies are

shown in Table 8.2.

63

Name Description

PROPAGATE Propagate tags in the output argument when instructions in a
specified type is called.

CLEAR Clear tags in the output argument when instructions with a specified
type is called.

SETTAG Allow a user-level program to call TAGCMD to set tags with the
registers.

CLEARTAG Allow a user-level program to call TAGCMD to clear tags in the
registers.

GETTAG Allow a user-level program to call TAGCMD to retrive tags in the
registers.

SETPRIV Allow a user-level program to call TAGCMD to set privillage bits.

CLEARPRIV Allow a user-level program to call TAGCMD to clear privillage bits.

Table 8.1: List of base sets of policies implemented in the P-TAXI user-level libraries.

Name # Filter Action

Instruction
Type

Additional
conditions Action Output

tag
Priv.
Bits

PROPAGATE 1 <Specified> TAG(ARG1) = 1 - Clear -

2 —–"—– TAG(ARG1) = 0 - Set -

CLEAR 1 —–"—– N/A - Clear -

SETTAG 1 TAGCMD RS1 = <Specified> - Set -

CLEARTAG 1 —–"—– —–"—– - Clear -

GETTAG 1 —–"—– —–"—– GETTAG - -

SETPRIV 1 —–"—– —–"—– - - Set

CLEARPRIV 1 —–"—– —–"—– - - Clear

Table 8.2: List of P-TAXI policies used to implement the base sets of policies.

64

8.2 Return Address Protection

Return address protection is implemented in TAXI to prevent an attacker from

modifying return pointers in the call stack to initiate code-reuse attacks. However,

TAXI implementation is accomplished by hard-coding the behavior of instructions.

With P-TAXI, we developed a set of policies that behave in the same way as in TAXI,

but without any change to the hardware. Table 8.3 shows the set of policies that

provides return address protection.

Filter Action Rationale
Instruction

Type
Additional
conditions

1 JAL N/A Set TAG(RD) = 1 Set tags on return ad-
dress values.

2 RETURN TAG(ARG1) = 0 BLOCK Block a return attempt
without a valid tag.

3
STORE64,
LOAD64,
COPY

<Base Policy: PROPAGATE> Propagate tags when
they are copied.

4

STORE,
LOAD,

OP,
OPIMM

<Base Policy: CLEAR>
Clear tags on output of
operations and non-64-
bit load/store.

Table 8.3: List of policies for return address protection.

8.3 Memory Compartmentalization

In large applications, a vulnerability in one component of a program can affect other

components because there is no protection from accessing and modifying memory

values in unrelated areas by the same process. With P-TAXI, a set of policies can

be created to allow basic memory compartmentalization. For example, in the simple

malloc implementation shown in Listing 8.1, P-TAXI can prevent other parts of the

program that use this malloc implementation from accessing its metadata with the

65

set of policies shown in Table 8.4.

1 // ...
2 void *pmalloc_internal(size_t size) {
3 malloc_ll *node = sbrk(sizeof(malloc_ll) + size);
4 node ->size = size;
5 node ->back = NULL;
6 node ->next = malloc_root;
7 if (malloc_root != NULL) {
8 malloc_root ->back = node;
9 }

10 ptaxi_base_policy_settag_multi(MALLOC_TAGBIT , node , sizeof(
malloc_ll), 1);

11 malloc_root = node;
12 void *res = ((void *) node) + sizeof(malloc_ll);
13 return res;
14 }
15

16 void *pmalloc(size_t size) {
17 ptaxi_policy_privilege_enter(MALLOC_TAGBIT);
18 void *res = pmalloc_internal(size);
19 ptaxi_policy_privilege_leave(MALLOC_TAGBIT);
20 return res;
21 }
22 // ...

Listing 8.1: Malloc implementation that utilizes P-TAXI policies to enable memory
compartmentalization.

8.4 Taint Tracking

Taint tracking is a mechanism for detecting the movement of data in a program by

tracing flows of data. It can be used to detect security vulnerabilities, especially

sensitive data leaks [63], [64].

P-TAXI can be used for basic taint tracking. Specifically, a set of policies can be

created to track the propagation of an input or other tracked data. For example, in

Listing 8.2, we can determine whether variable D is a result of computation that uses

variable A with the set of polices shown in Table 8.5.

66

Filter Action Rationale
Instruction

Type
Additional
conditions

1

LOAD,
LOAD64,
STORE,

STORE64

TAG(ARG1) = 1,
PRIV = 0 BLOCK

Block non-privilege
code from loading or
overwriting sensitive
area.

2
LOAD64,
STORE64,

COPY
<Base Policy: PROPAGATE> Propagate tags when

they are copied.

3 TAGCMD <Base Policy: SETTAG> Create SETTAG com-
mand.

4 —–"—– <Base Policy: CLEARTAG> Create CLEARTAG
command.

5 —–"—– <Base Policy: SETPRIV> Create SETPRIV com-
mand.

6 —–"—– <Base Policy: CLEARPRIV> Create CLEARPRIV
command.

Table 8.4: List of policies for memory compartmentalization.

67

1 // ...
2 uint64_t get_unfiltered_input () {
3 uint64_t input = 42;
4 ptaxi_base_policy_settag(TAINT_TAGBIT , (void *) (& input), 1);
5 return input;
6 }
7

8 int main(int argc , char** argv) {
9 uint64_t A = get_unfiltered_input ();

10 uint64_t B = 4;
11 uint64_t C = B * 20;
12 uint64_t D = A + 5;
13

14 int s1 = ptaxi_base_policy_gettag(TAINT_TAGBIT , (void *) (&C));
15 int s2 = ptaxi_base_policy_gettag(TAINT_TAGBIT , (void *) (&D));
16 printf("TAG(C) = %d (should be 0), TAG(D) = %d (should be 1)\n",

s1, s2);
17

18 return 0;
19 }

Listing 8.2: Example code utilizing taint tracking.

Filter Action Rationale
Instruction

Type
Additional
conditions

1

LOAD,
LOAD64,
STORE

STORE64,
COPY,
OPIMM

<Base Policy: PROPAGATE> Propagate tags.

2 OP <Base Policy: PROPAGATE>
(but with either ARG1 or ARG2)

Since OP instructions
have two operands,
the result is tagged
if either of inputs is
tagged.

3 TAGCMD <Base Policy: SETTAG> - Create SETTAG com-
mand.

4 —–"—– <Base Policy: CLEARTAG> - Create CLEARTAG
command.

5 —–"—– <Base Policy: GETTAG> - Create GETTAG com-
mand.

Table 8.5: List of policies for taint tracking.

68

8.5 Stack Garbage Collection

P-TAXI provides a built-in stack garbage collection. Developers can utilize this by

adding a policy with the ACTION field set to GC to P-TAXI. The common way to use

this feature is to add a policy to do stack garbage collection on every function return.

8.6 Instruction Counting and Debugging

P-TAXI can be used to debug and measure the performance of a program in multiple

ways. For example, a developer can add a policy to trap upon some specific instruction

or to trap when some memory address is read or modified. P-TAXI also provides a

built-in counter for each policy that can be used to count occurrences of instructions

in specific conditions.

69

70

Chapter 9

Evaluation of P-TAXI

In this chapter, we evaluate the effectiveness of P-TAXI against multiple attacks and

measure the performance with SPEC2006. We also provide a list of future works that

can be conducted to improve P-TAXI.

9.1 Effectiveness Against Attacks

9.1.1 Code-Injection Attack

As we can see from Chapter 2, Data Execution Prevention is shown to be able to

prevent code-injection attacks. A set of policies can be created to provide the same

type of protection. However, a loader would need to be modified to mark instructions

loaded from a binary with an appropriate tag.

Since the RISC-V architecture supports permissions in the page-table level, it is

already possible to use DEP without P-TAXI. Therefore, it might be better to use

the permission field in the page table in this case.

9.1.2 Code-Reuse Attack

To absolutely prevent code-reuse attacks, including Return-Oriented Programming,

it is likely to be necessary to provide complete memory protection. However, many

71

defense schemes can be used to make it more difficult and impractical to attack a

system. As shown in Chapter 8, tagging of return pointers can prevent an attacker

from overwriting return pointers directly. If we can tag every data type correctly,

it is also possible to use P-TAXI to provide additional protection. However, with

the limitation of small tag per words, another protection scheme should also be used

in combination with P-TAXI to increase the effectiveness of preventing code-reuse

attacks.

9.1.3 Data-Oriented Programming

Data-Oriented Programming is a technique to attack a program without using any

existing code on the memory. However, it uses primitive variables to allow an attacker

to read or write from any location in memory, depending on vulnerabilities [65].

P-TAXI can be used to reduce the severity of the attack in several ways. First,

compartmentalization would limit the scope of attacks because as the attacker would

not be able to read or write to sensitive memory areas, except from a function that

requires reading or writing to the area. Second, if tagging is done correctly for all

pointers, an attacker might not be able to write to a pointer, which is one of the

requirements of the attack. Third, if tagging is used for input filtering, a set of policies

can be created to distinguish between validated data and raw input. A policy can be

used to limit instructions that can be used with raw data.

9.1.4 Format String Attack

Format string attacks are caused by developers using an unfiltered input string directly

as a format string. For example, if an unfiltered string is passed to the first argument of

printf, an attacker would be able to utilize this string to read and write to arbitrary

memory locations [66].

Similar to data-oriented programming, compartmentalization and data type tagging

can help reducing the severity of format string attacks.

72

9.2 Performance

Since P-TAXI is programmable, it is difficult to measure objectively the performance

of P-TAXI as it can vary depending on use cases and how the enforced set of policies

is implemented. As such, we choose to measure the performance of P-TAXI for the set

of policies that is used to enforce return address protection shown in Section 8.2. We

decided to use SPEC2006 to provide a wide range of applications for the benchmark.

Because the implementation of P-TAXI is done solely on the Spike simulator, it

is not possible to measure performance in actual CPU time. Therefore, we measure

numbers of tag reads and writes to/from registers and memory instead. We did not

consider using the tag cache, as such benchmark is already presented for TAXI. The

result of the benchmark is shown in Table 9.1.

9.3 Future Works

The following are some of the ideas that can be implemented to improve P-TAXI:

∙ Improving data type tagging and integrating P-TAXI with other protection

schemes to guarantee complete memory safety.

∙ Modifying P-TAXI and Linux kernel to enable on-the-fly insertion of policies.

For example, a kernel can be modified so that traps resulting from a policy

violation are automatically caught and sent back to the user-level side. This

would allow user-level programs to add only necessary policies in each instance.

∙ Allowing user-level applications to specify the size of tag per words. This would

allow user-level applications to have more flexibility in policy developments.

∙ Implementing the post-trap-handler approach, described in Section 7.4.3, for

complex actions, including GC. The post-trap-handler approach would allow

these complex actions to perform at the user level instead of the hardware level.

73

T
est

N
am

e
T
otal

#
of

in
stru

ction
s

M
atch

ed
#

R
ead

#
W

rite
W

ith
R

ead
from

A
R

G
1

W
ith

ou
t

R
ead

from
A

R
G

1

-
R

O
U

T
R
W

O
U

T
-

R
O

U
T

R
W

O
U

T

400.perlbench
2,687,020,357

72.50%
107.97%

2.32%
26.12%

36.80%
1.49%

1.50%
33.26%

0.83%
401.bzip2

34,637,103,431
71.50%

78.84%
1.12%

28.40%
63.15%

1.12%
0.10%

7.24%
0.00%

403.gcc
5,419,336,001

73.43%
111.27%

2.04%
24.99%

35.70%
1.47%

1.58%
35.69%

0.57%
410.bw

aves
117,419,510,623

59.38%
67.86%

0.39%
39.85%

51.30%
0.37%

0.77%
7.69%

0.02%
416.gam

ess
242,675,586

53.02%
60.77%

0.91%
46.22%

45.22%
0.80%

0.77%
6.87%

0.11%
429.m

cf
3,129,160,587

74.80%
114.98%

1.70%
24.96%

33.18%
1.67%

0.24%
39.92%

0.03%
433.m

ilc
28,731,951,101

24.69%
31.42%

0.07%
74.62%

18.58%
0.07%

0.70%
6.04%

0.00%
435.grom

acs
35,469,684,347

21.69%
25.85%

0.67%
77.49%

17.70%
0.66%

0.82%
3.33%

0.01%
436.cactusA

D
M

13,497,373,910
22.00%

29.12%
0.14%

77.81%
14.93%

0.14%
0.18%

6.93%
0.00%

444.nam
d

48,640,271,482
29.02%

32.49%
0.09%

70.95%
25.49%

0.09%
0.03%

3.44%
0.00%

445.gobm
k

69,972,013,926
73.68%

97.46%
1.08%

25.48%
49.97%

0.77%
0.84%

22.63%
0.31%

447.dealII
108,862,629,102

59.98%
73.32%

1.23%
38.45%

47.02%
1.19%

1.58%
11.73%

0.04%
450.soplex

95,242,541
59.62%

71.41%
0.80%

39.72%
47.77%

0.73%
0.66%

11.05%
0.08%

453.povray
5,968,418,895

57.11%
78.16%

1.05%
41.35%

36.83%
0.77%

1.53%
19.23%

0.28%
454.calculix

164,729,135
61.21%

74.06%
1.64%

38.03%
47.60%

1.51%
0.76%

11.96%
0.13%

456.hm
m

er
32,572,489,558

61.26%
68.70%

0.34%
38.11%

54.12%
0.34%

0.63%
6.80%

0.00%
458.sjeng

18,803,228,920
68.82%

81.71%
1.02%

30.57%
55.39%

0.99%
0.77%

12.25%
0.03%

459.G
em

sF
D

T
D

7,466,145,344
50.11%

59.13%
0.67%

49.38%
41.16%

0.43%
0.51%

8.28%
0.23%

462.libquantum
315,468,561

66.57%
90.08%

0.09%
33.15%

43.26%
0.08%

0.28%
23.22%

0.01%
464.h264ref

106,500,405,338
69.90%

83.37%
0.54%

29.42%
56.25%

0.54%
1.00%

12.79%
0.00%

465.tonto
17,696,715,977

54.02%
62.82%

0.95%
44.90%

45.61%
0.67%

1.10%
7.44%

0.28%
470.lbm

26,346,119,630
50.36%

56.16%
0.34%

48.85%
45.01%

0.34%
0.79%

5.01%
0.00%

471.om
netpp

1,979,754,738
72.47%

116.22%
2.73%

24.25%
30.35%

1.64%
3.28%

39.38%
1.08%

473.astar
23,584,541,951

71.02%
94.30%

0.24%
28.38%

48.11%
0.23%

0.59%
22.68%

0.00%
481.w

rf
71,296,120,342

32.55%
37.91%

0.80%
66.45%

27.41%
0.68%

1.10%
4.24%

0.12%
482.sphinx3

8,767,402,592
50.51%

63.94%
0.96%

48.90%
36.79%

0.86%
0.59%

12.75%
0.09%

483.xalancbm
k

326,001,319
70.84%

113.92%
2.09%

26.97%
28.77%

1.18%
2.19%

39.99%
0.90%

A
verage

29,281,167,233
56.74%

73.45%
0.96%

42.36%
40.13%

0.77%
0.92%

15.62%
0.19%

Table
9.1:

List
ofSP

E
C

2006
tests

used
to

estim
ate

num
bers

oftag
reads

and
w

rites
w

ith
the

enforcem
ent

ofthe
P

-TA
X

I
return

address
protection

policy
set.

A
llnum

bers
except

the
totalnum

ber
ofinstructions

are
show

n
in

percent
ofthe

totalnum
ber

of
instructions.

T
est

434.zeusmp
is

excluded
as

it
resulted

in
segm

entation
fault.

T
est

437.leslie3d
is

excluded
as

it
did

not
com

plete
w

ithin
10

hours
in

the
m

odified
Spike

sim
ulator.

74

Appendix A

P-TAXI Source Code

Due to space constraints, this appendix only displays the crucial parts of the P-TAXI

modifications to the Spike simulator. Please see https: // github. com/ riscv-mit/

riscv-isa-sim/ tree/ ptaxi for the entire repository of the P-TAXI code base.

A.1 Policy Definition (ptaxi_common.h)

1 #ifndef _PTAXI_COMMON_H
2 #define _PTAXI_COMMON_H
3

4 #include <stdint.h>
5

6 enum ptaxi_insn_type_t {
7 PTAXI_INSN_TYPE_UNKNOWN ,
8 PTAXI_INSN_TYPE_LOAD ,
9 PTAXI_INSN_TYPE_LOAD64 ,

10 PTAXI_INSN_TYPE_STORE ,
11 PTAXI_INSN_TYPE_STORE64 ,
12 PTAXI_INSN_TYPE_COPY ,
13 PTAXI_INSN_TYPE_OP ,
14 PTAXI_INSN_TYPE_OPIMM ,
15 PTAXI_INSN_TYPE_JAL ,
16 PTAXI_INSN_TYPE_JALR ,
17 PTAXI_INSN_TYPE_RETURN ,
18 PTAXI_INSN_TYPE_TAGCMD ,
19 PTAXI_INSN_TYPE_TAGPOLICY ,
20 };
21

22 enum {
23 PTAXI_ACTION_CONTINUE = 0, // no action

75

https://github.com/riscv-mit/riscv-isa-sim/tree/ptaxi
https://github.com/riscv-mit/riscv-isa-sim/tree/ptaxi

24 PTAXI_ACTION_ALLOW = 1,
25 PTAXI_ACTION_BLOCK = 2,
26 PTAXI_ACTION_GC = 4,
27 PTAXI_ACTION_CALL = 8,
28 PTAXI_ACTION_DEBUG_LINE = 16,
29 PTAXI_ACTION_DEBUG_DETAIL = 32,
30 PTAXI_ACTION_GETTAG = 64,
31 };
32

33 typedef uint8_t ptaxi_action_t;
34

35 struct ptaxi_policy_t {
36 // Filter
37 enum ptaxi_insn_type_t insn_type :8;
38 uint8_t rs1_mask;
39 uint8_t rs1_match;
40 uint8_t rs2_mask;
41 uint8_t rs2_match;
42 uint8_t rs1val_mask;
43 uint8_t rs1val_match;
44 uint8_t rs2val_mask;
45 uint8_t rs2val_match;
46 uint8_t tag_arg1_mask;
47 uint8_t tag_arg1_match;
48 uint8_t tag_arg2_mask;
49 uint8_t tag_arg2_match;
50 uint8_t tag_out_mask;
51 uint8_t tag_out_match;
52 uint8_t priv_mask;
53 uint8_t priv_match;
54

55 // Action
56 ptaxi_action_t action :8;
57 uint8_t tag_out_set;
58 uint8_t tag_out_tomodify;
59 uint8_t priv_set;
60 uint8_t priv_tomodify;
61 uint8_t ignore_count;
62 };
63

64

65 union ptaxi_policy_serialized {
66 struct ptaxi_policy_t policy;
67 struct ptaxi_policy_serialized_result {
68 uint64_t a;
69 uint64_t b;
70 uint64_t c;
71 } regs;
72 };
73

74 #endif

Listing A.1: ptaxi_common.h

76

A.2 P-TAXI Simulator

A.2.1 Header File (ptaxisim.h)

1 // See LICENSE for license details.
2

3 #ifndef _RISCV_PTAXI_SIM_H
4 #define _RISCV_PTAXI_SIM_H
5

6 #include "decode.h"
7 #include "mmu.h"
8 #include "processor.h"
9 #include <vector >

10 #include <utility >
11 #include "ptaxi_common.h"
12

13 struct ptaxi_policy_context_t {
14 ptaxi_policy_t policy;
15 size_t match_count;
16 };
17 struct ptaxi_context_state_t {
18 std::vector <ptaxi_policy_context_t > policy_contexts;
19 bool is_enable;
20 uint8_t priv_bits;
21 uint64_t lowest_sp_addr;
22 };
23

24 struct ptaxi_benchmark_counters {
25 uint64_t insns;
26 uint64_t match_insns;
27 uint64_t tag_read;
28 uint64_t tag_write;
29 uint64_t needs [16]; // 16 bits , RARG1/RARG2/ROUT/WOUT
30 };
31

32 #define TAG_RET_FROM_JAL 1
33 #define TAG_RET_FROM_MEM 2
34

35 enum insn_var_type_t {
36 INSN_OUT , INSN_ARG1 , INSN_ARG2 ,
37 };
38

39 class ptaxi_sim_t {
40 public:
41 ptaxi_sim_t ();
42 reg_t execute_insn(processor_t *p, reg_t pc, insn_fetch_t fetch);
43 void add_policy(processor_t *p, uint64_t a, uint64_t b, uint64_t c

);
44 void run_tag_command(processor_t *p, uint64_t cmd);
45 void start_benchmark(processor_t *p);

77

46 void stop_benchmark(processor_t *p);
47 private:
48 void print_policies(size_t context_id);
49 ptaxi_insn_type_t get_insn_type(insn_t insn);
50 size_t get_ptaxi_context_id(processor_t *p, bool add_if_needed);
51 std::pair <ptaxi_action_t , int > determine_ptaxi_action(processor_t

*p, insn_t insn , reg_t pc);
52 uint8_t get_or_set_tag(processor_t *p, insn_t insn , reg_t pc ,

ptaxi_insn_type_t insn_type ,
53 insn_var_type_t var_type , bool set_tag , uint8_t tag_val);
54 uint8_t load_tag_from_mem(processor_t *p, uint64_t addr , uint8_t

rm);
55 void store_tag_to_mem(processor_t *p, uint64_t addr , uint8_t rm,

uint64_t val);
56 tagged_reg_t v;
57 // states [0] is a default policy template.
58 std::vector <ptaxi_context_state_t > states;
59 bool benchmark_mode = false;
60 ptaxi_benchmark_counters counters;
61 };
62 #endif

Listing A.2: ptaxisim.h

A.2.2 Source File (ptaxisim.cc)

1 #include "ptaxisim.h"
2

3 #include "mmu.h"
4 #include "disasm.h"
5 #include "decode.h"
6 #include <vector >
7

8 // From https :// stackoverflow.com/questions /3219393/ stdlib -and -
colored -output -in -c

9 #define ANSI_COLOR_RED "\x1b [31m"
10 #define ANSI_COLOR_GREEN "\x1b [32m"
11 #define ANSI_COLOR_YELLOW "\x1b [33m"
12 #define ANSI_COLOR_BLUE "\x1b [34m"
13 #define ANSI_COLOR_MAGENTA "\x1b [35m"
14 #define ANSI_COLOR_CYAN "\x1b [36m"
15 #define ANSI_COLOR_RESET "\x1b[0m"
16

17 #define OPCODE_LOAD (0 b0000011)
18 #define OPCODE_LOADFP (0 b0000111)
19 #define OPCODE_MISCMEM (0 b0001111)
20 #define OPCODE_OPIMM (0 b0010011)
21 #define OPCODE_AUIPC (0 b0010111)
22 #define OPCODE_OPIMM32 (0 b0011011)
23 #define OPCODE_STORE (0 b0100011)
24 #define OPCODE_STOREFP (0 b0100111)
25 #define OPCODE_AMO (0 b0101111)

78

26 #define OPCODE_OP (0 b0110011)
27 #define OPCODE_LUI (0 b0110111)
28 #define OPCODE_OP32 (0 b0111011)
29 #define OPCODE_MADD (0 b1000011)
30 #define OPCODE_MSUB (0 b1000111)
31 #define OPCODE_NMSUB (0 b1001011)
32 #define OPCODE_NMADD (0 b1001111)
33 #define OPCODE_OPFP (0 b1010011)
34 #define OPCODE_BRANCH (0 b1100011)
35 #define OPCODE_JALR (0 b1100111)
36 #define OPCODE_JAL (0 b1101111)
37 #define OPCODE_SYSTEM (0 b1110011)
38

39 #define OPCODE_TAGCMD (0 b0001011)
40 #define OPCODE_TAGPOLICY (0 b0101011)
41

42 #define REG_SP 2
43

44 #define TAG_RET_FROM_JAL 1
45 #define TAG_RET_FROM_MEM 2
46 #define SR_TAG_SHIFT 9
47 #define PTAXI_DEBUG_MODE_CONTEXT_ID 42 // Any number > 0 is fine

here , just for debugging purpose.
48

49 // Adapted from https :// stackoverflow.com/questions /1941307/c-debug -
print -macros

50 #define PTAXI_VERBOSE
51 //#define PTAXI_DEBUG
52 #ifdef PTAXI_VERBOSE
53 #define DPRINTF(fmt , args ...) printf(fmt , ## args)
54 #else
55 #define DPRINTF(fmt , args ...)
56 #endif
57

58 #ifdef PTAXI_DEBUG
59 #define DDPRINTF(fmt , args ...) printf(fmt , ## args)
60 #else
61 #define DDPRINTF(fmt , args ...)
62 #endif
63

64 ptaxi_sim_t :: ptaxi_sim_t () {
65 struct ptaxi_context_state_t default_state;
66 default_state.is_enable = false;
67 default_state.priv_bits = 0;
68 default_state.lowest_sp_addr = 0;
69 states.push_back(default_state);
70 }
71

72 ptaxi_insn_type_t ptaxi_sim_t :: get_insn_type(insn_t insn) {
73 switch (insn.opcode ()) {
74 case OPCODE_LOAD:
75 if (insn.rm() == 3) {
76 return PTAXI_INSN_TYPE_LOAD64;

79

77 } else {
78 return PTAXI_INSN_TYPE_LOAD;
79 }
80 case OPCODE_STORE:
81 if (insn.rm() == 3) {
82 return PTAXI_INSN_TYPE_STORE64;
83 } else {
84 return PTAXI_INSN_TYPE_STORE;
85 }
86 case OPCODE_OP:
87 return PTAXI_INSN_TYPE_OP;
88 case OPCODE_OPIMM:
89 if (insn.rm() == 0 && insn.i_imm() == 0) {
90 return PTAXI_INSN_TYPE_COPY;
91 }
92 return PTAXI_INSN_TYPE_OPIMM;
93 case OPCODE_JAL:
94 return PTAXI_INSN_TYPE_JAL;
95 case OPCODE_JALR:
96 // rs1 == X_RA (X_RA = 1)
97 if (insn.i_imm () == 0 && insn.rs1() == 1 && insn.rm() == 0 &&

insn.rd() == 0) {
98 return PTAXI_INSN_TYPE_RETURN;
99 }

100 return PTAXI_INSN_TYPE_JALR;
101 case OPCODE_TAGCMD:
102 return PTAXI_INSN_TYPE_TAGCMD;
103 case OPCODE_TAGPOLICY:
104 return PTAXI_INSN_TYPE_TAGPOLICY;
105

106 default:
107 return PTAXI_INSN_TYPE_UNKNOWN;
108 }
109 }
110

111 size_t ptaxi_sim_t :: get_ptaxi_context_id(processor_t *p, bool
add_if_needed) {

112 size_t context_id;
113 if (benchmark_mode) {
114 context_id = PTAXI_DEBUG_MODE_CONTEXT_ID;
115 } else {
116 context_id = (p->get_pcr(CSR_STATUS) & SR_TAG) >> SR_TAG_SHIFT;
117 }
118 if (add_if_needed && context_id == 0) {
119 reg_t old = p->get_pcr(CSR_STATUS);
120 context_id = states.size();
121 if (context_id >= (1 << 7)) {
122 DPRINTF("Context ID Full ...\n");
123 return 0;
124 }
125 p->set_pcr(CSR_STATUS , old | (context_id << SR_TAG_SHIFT));
126 }
127 while (context_id >= states.size()) {

80

128 states.push_back(states [0]);
129 }
130 return context_id;
131 }
132

133 void print_insn(processor_t *p, const char *str , insn_t insn) {
134 disassembler_t* disas = p->get_disassembler ();
135 printf("\x1b [32m%s: %-25s", str , disas ->disassemble(insn).c_str ())

;
136 printf("RS1: %2lu , RS2: %2lu , IMM: %8ld , RS1VAL: %8lu (0x%8lx),

RS2VAL: %8lu (0x%8lx)\x1b[0m\n",
137 insn.rs1(), insn.rs2(), insn.i_imm (), RS1 , RS1 , RS2 , RS2);
138 }
139

140 std::pair <ptaxi_action_t , int > ptaxi_sim_t :: determine_ptaxi_action(
processor_t *p, insn_t insn ,

141 reg_t pc) {
142 size_t context_id = get_ptaxi_context_id(p, false);
143 if (context_id == 0 || !states[context_id]. is_enable ||

IS_SUPERVISOR) {
144 return std:: make_pair(0, -2);
145 }
146

147 ptaxi_insn_type_t insn_type = get_insn_type(insn);
148 ptaxi_action_t action = 0;
149 uint8_t tag_arg1 = 0, tag_arg2 = 0, tag_out = 0, tag_out_updated =

0;
150 bool is_load_tag_arg1 = false , is_load_tag_arg2 = false ,

is_load_tag_out = false;
151 bool has_match = false;
152 size_t i;
153

154 for (i = 0; i < states[context_id]. policy_contexts.size(); i++) {
155 struct ptaxi_policy_t policy = states[context_id].

policy_contexts[i]. policy;
156 bool match = (insn_type == policy.insn_type);
157 if (match && policy.rs1_mask) {
158 match = match && ((insn.rs1() & policy.rs1_mask) == policy.

rs1_match);
159 }
160 if (match && policy.rs2_mask) {
161 match = match && ((insn.rs2() & policy.rs2_mask) == policy.

rs2_match);
162 }
163

164 if (match && policy.priv_mask) {
165 match = match && ((states[context_id]. priv_bits & policy.

priv_mask) == policy.priv_match);
166 }
167

168 if (match && policy.rs1val_mask) {
169 match = match && ((RS1 & policy.rs1val_mask) == policy.

rs1val_match);

81

170 }
171 if (match && policy.rs2val_mask) {
172 match = match && ((RS2 & policy.rs2val_mask) == policy.

rs2val_match);
173 }
174

175 if (match && policy.tag_arg1_mask) {
176 if (! is_load_tag_arg1) {
177 is_load_tag_arg1 = true;
178 tag_arg1 = get_or_set_tag(p, insn , pc , insn_type , INSN_ARG1 ,

false , 0);
179 if (benchmark_mode) {
180 counters.tag_read ++;
181 }
182 }
183 match = match && ((tag_arg1 & policy.tag_arg1_mask) == policy.

tag_arg1_match);
184 }
185 if (match && policy.tag_arg2_mask) {
186 if (! is_load_tag_arg2) {
187 is_load_tag_arg2 = true;
188 tag_arg2 = get_or_set_tag(p, insn , pc , insn_type , INSN_ARG2 ,

false , 0);
189 if (benchmark_mode) {
190 counters.tag_read ++;
191 }
192 }
193 match = match && ((tag_arg2 & policy.tag_arg2_mask) == policy.

tag_arg2_match);
194 }
195

196 if (match && (policy.tag_out_mask || policy.tag_out_tomodify)) {
197 if (! is_load_tag_out) {
198 is_load_tag_out = true;
199 tag_out = get_or_set_tag(p, insn , pc, insn_type , INSN_OUT ,

false , 0);
200 tag_out_updated = tag_out;
201 if (benchmark_mode) {
202 counters.tag_read ++;
203 }
204 }
205 match = match && ((tag_out & policy.tag_out_mask) == policy.

tag_out_match);
206 }
207

208 if (match) {
209 has_match = true;
210 struct ptaxi_policy_context_t &policy_context = states[

context_id]. policy_contexts[i];
211 policy_context.match_count ++;
212 if (policy_context.match_count <= policy_context.policy.

ignore_count) {
213 continue;

82

214 }
215 tag_out_updated = ((tag_out_updated & (~ policy.

tag_out_tomodify)) | policy.tag_out_set);
216 if (policy.priv_tomodify) {
217 states[context_id]. priv_bits = ((states[context_id].

priv_bits & (~ policy.priv_tomodify))
218 | policy.priv_set);
219 DPRINTF("Priv Bits set to %d\n", (int) states[context_id].

priv_bits);
220 }
221

222

223 action |= policy.action;
224 if (policy.action == PTAXI_ACTION_BLOCK || policy.action ==

PTAXI_ACTION_ALLOW) {
225 break;
226 }
227 }
228 }
229

230 bool real_tag_update = false;
231 if (is_load_tag_out && (tag_out != tag_out_updated)) {
232 real_tag_update = true;
233 get_or_set_tag(p, insn , pc , insn_type , INSN_OUT , true ,

tag_out_updated);
234 }
235

236 if (benchmark_mode) {
237 uint8_t bits = (((uint8_t) is_load_tag_arg1) << 3) + (((uint8_t)

is_load_tag_arg2) << 2) +
238 (((uint8_t) is_load_tag_out) << 1) + (uint8_t)

real_tag_update;
239 if (real_tag_update) {
240 counters.tag_write ++;
241 }
242 counters.insns ++;
243 counters.needs[bits]++;
244 if (has_match) {
245 counters.match_insns ++;
246 }
247 }
248

249 return std:: make_pair(action , i);
250 }
251

252 reg_t ptaxi_sim_t :: execute_insn(processor_t *p, reg_t pc,
insn_fetch_t fetch) {

253 insn_t insn = fetch.insn;
254 uint64_t before_tag_val = 0;
255 ptaxi_insn_type_t insn_type = get_insn_type(insn);
256 if (insn_type == PTAXI_INSN_TYPE_TAGCMD && insn.rd() != 0) {
257 before_tag_val = TAG_S2;
258 }

83

259

260 std::pair <ptaxi_action_t , int > paction = determine_ptaxi_action(p,
insn , pc);

261 ptaxi_action_t action = paction.first;
262 disassembler_t* disas = p->get_disassembler ();
263

264 if (! benchmark_mode) {
265 if (action & PTAXI_ACTION_DEBUG_LINE) {
266 printf(ANSI_COLOR_CYAN "%p: %-25s DEBUG\n" ANSI_COLOR_RESET , (

void *) pc ,
267 disas ->disassemble(insn).c_str());
268 }
269

270 if (action & PTAXI_ACTION_DEBUG_DETAIL) {
271 size_t context_id = get_ptaxi_context_id(p, true);
272 printf(ANSI_COLOR_MAGENTA "PTAXI_ACTION_DEBUG_DETAIL: %s\n",
273 disas ->disassemble(insn).c_str());
274 printf("PC: %lx , Exit Rule: %d, Context ID: %lu\n", pc ,

paction.second , context_id);
275 print_insn(p, "INSN", fetch.insn);
276 print_policies(context_id);
277 printf(ANSI_COLOR_RESET);
278 }
279

280 if (action & PTAXI_ACTION_BLOCK) {
281 size_t context_id = get_ptaxi_context_id(p, true);
282

283 printf(ANSI_COLOR_MAGENTA "PTAXI_ACTION_BLOCK: %s\n"
ANSI_COLOR_RESET ,

284 disas ->disassemble(insn).c_str());
285 print_policies(context_id);
286 throw trap_tag_violation ();
287 return pc;
288 }
289 }
290

291 if (action & PTAXI_ACTION_GC) {
292 size_t context_id = get_ptaxi_context_id(p, false);
293 uint64_t cur_sp = STATE.XPR[REG_SP];
294 uint64_t lowest = states[context_id]. lowest_sp_addr;
295 DDPRINTF(ANSI_COLOR_MAGENTA "%10p: %-25s GCSTAR (--) = %p %p\n"

ANSI_COLOR_RESET , (void *) pc ,
296 disas ->disassemble(insn).c_str(), (void *) cur_sp , (void *)

lowest);
297 uint64_t clean_from = lowest - 8;
298 uint64_t clean_to = cur_sp - 8;
299 uint64_t clean_at;
300 for(clean_at = clean_from; clean_at < clean_to; clean_at += 8) {
301 MMU.store_tagged_uint64(clean_at , 0, 0);
302 }
303

304 DDPRINTF(ANSI_COLOR_GREEN "CLEAN FROM %p to %p\n"
ANSI_COLOR_RESET , (void *) clean_from ,

84

305 (void *) clean_to);
306

307 states[context_id]. lowest_sp_addr = cur_sp;
308 }
309

310

311 if (insn_type == PTAXI_INSN_TYPE_TAGCMD && insn.rd() != 0) {
312 if (action & PTAXI_ACTION_GETTAG) {
313 DDPRINTF(ANSI_COLOR_CYAN "%10p: %-25s GETTAG (%2d) = %d\n"

ANSI_COLOR_RESET , (void *) pc ,
314 disas ->disassemble(insn).c_str(), (int) insn.rs2(), (int)

before_tag_val);
315 WRITE_RD(before_tag_val);
316 } else {
317 WRITE_RD(RS2);
318 }
319 }
320

321 reg_t res = fetch.func(p, insn , pc);
322

323 if(insn.rd() == REG_SP && !IS_SUPERVISOR) {
324 size_t context_id = get_ptaxi_context_id(p, false);
325 if (context_id != 0) {
326 uint64_t cur_sp = STATE.XPR[REG_SP];
327 DDPRINTF(ANSI_COLOR_CYAN "%10p: %-25s MODISP (--) = %p\n"

ANSI_COLOR_RESET , (void *) pc ,
328 disas ->disassemble(insn).c_str(), (void *) cur_sp);
329 if (cur_sp < states[context_id]. lowest_sp_addr || states[

context_id]. lowest_sp_addr == 0) {
330 states[context_id]. lowest_sp_addr = cur_sp;
331 DDPRINTF(ANSI_COLOR_BLUE "%10p: %-25s LOWEST (--) = %p\n"

ANSI_COLOR_RESET , (void *) pc ,
332 disas ->disassemble(insn).c_str(), (void *) cur_sp)

;
333 }
334 }
335 }
336

337 return res;
338 }
339

340 void ptaxi_sim_t :: print_policies(size_t context_id) {
341 printf("Policy Count: %lu\n------\n", states[context_id].

policy_contexts.size());
342 for (size_t i = 0; i < states[context_id]. policy_contexts.size();

i++) {
343 struct ptaxi_policy_context_t policy_context = states[context_id

]. policy_contexts[i];
344 printf("%3lu |%5d |%3d%3d |%3lu\n", i, (int) policy_context.

policy.insn_type ,
345 (int) policy_context.policy.rs1val_match , (int)

policy_context.policy.action ,
346 policy_context.match_count);

85

347 }
348 printf("------\n");
349 }
350

351 void ptaxi_sim_t :: add_policy(processor_t *p, uint64_t a, uint64_t b,
uint64_t c) {

352 size_t context_id = get_ptaxi_context_id(p, true);
353 union ptaxi_policy_serialized ps;
354 ps.regs.a = a;
355 ps.regs.b = b;
356 ps.regs.c = c;
357

358 struct ptaxi_policy_context_t policy_context;
359 policy_context.policy = ps.policy;
360 policy_context.match_count = 0;
361 states[context_id]. policy_contexts.push_back(policy_context);
362 }
363

364 void ptaxi_sim_t :: run_tag_command(processor_t *p, uint64_t cmd) {
365 size_t context_id = get_ptaxi_context_id(p, true);
366 if (cmd == 0) {
367 DPRINTF(ANSI_COLOR_CYAN "Enforcing .. Context Id = %d\n"

ANSI_COLOR_RESET , (int) context_id);
368 states[context_id]. is_enable = true;
369 } else {
370 DPRINTF(ANSI_COLOR_YELLOW "TAG COMMAND %lu\n" ANSI_COLOR_RESET ,

cmd);
371 }
372 #ifdef PTAXI_VERBOSE
373 print_policies(context_id);
374 #endif
375 }
376

377 uint8_t ptaxi_sim_t :: get_or_set_tag(processor_t *p, insn_t insn ,
reg_t pc,

378 ptaxi_insn_type_t insn_type , insn_var_type_t var_type , bool
set_tag , uint8_t tag_val) {

379 bool is_invalid = false , is_mem = false;
380 uint8_t reg;
381 uint64_t addr;
382

383 switch (insn_type) {
384 case PTAXI_INSN_TYPE_LOAD64: // arg1 = MEM , arg2 = N/A, out = REG
385 case PTAXI_INSN_TYPE_LOAD:
386 if (var_type == INSN_ARG1) {
387 is_mem = true;
388 addr = RS1+ insn.i_imm();
389 } else if (var_type == INSN_ARG2) {
390 is_invalid = true;
391 } else {
392 reg = insn.rd();
393 }
394 break;

86

395 case PTAXI_INSN_TYPE_STORE64: // arg1 = REG , arg2 = N/A, out =
MEM

396 case PTAXI_INSN_TYPE_STORE:
397 if (var_type == INSN_ARG1) {
398 reg = insn.rs2();
399 } else if (var_type == INSN_ARG2) {
400 is_invalid = true;
401 } else {
402 is_mem = true;
403 addr = RS1 + insn.s_imm();
404 }
405 break;
406 case PTAXI_INSN_TYPE_TAGCMD:
407 case PTAXI_INSN_TYPE_OP: // arg1 = REG1 , arg2 = REG2 , out =

REGOUT
408 if (var_type == INSN_ARG1) {
409 reg = insn.rs1();
410 } else if (var_type == INSN_ARG2) {
411 reg = insn.rs2();
412 } else {
413 reg = insn.rd();
414 }
415 break;
416 case PTAXI_INSN_TYPE_OPIMM: // arg1 = REG1 , arg2 = N/A, out =

REGOUT
417 case PTAXI_INSN_TYPE_COPY:
418 if (var_type == INSN_ARG1) {
419 reg = insn.rs1();
420 } else if (var_type == INSN_ARG2) {
421 is_invalid = true;
422 } else {
423 reg = insn.rd();
424 }
425 break;
426 case PTAXI_INSN_TYPE_JAL: // arg1 = TARGET , arg2 = n/a, arg3 =

REGOUT
427 if (var_type == INSN_ARG1) {
428 /* is_mem = true;
429 addr = pc + insn.uj_imm ();*/
430 is_invalid = true;
431 } else if (var_type == INSN_ARG2) {
432 is_invalid = true;
433 } else {
434 reg = insn.rd();
435 }
436 break;
437 case PTAXI_INSN_TYPE_JALR: // arg1 = REG1 , arg2 = TARGET , arg3 =

REGOUT
438 case PTAXI_INSN_TYPE_RETURN:
439 if (var_type == INSN_ARG1) {
440 reg = insn.rs1();
441 } else if (var_type == INSN_ARG2) {
442 is_mem = true;

87

443 addr = (RS1 + insn.i_imm()) & ~reg_t (1);
444 } else {
445 reg = insn.rd();
446 }
447 break;
448 default:
449 is_invalid = true;
450 break;
451 }
452

453 if (is_invalid) {
454 DPRINTF("get_or_set_tag: ISINVALID TRAP!\n");
455 DPRINTF("GET OR SET TAG %lx %d %d %d\n", insn.bits(), (int)

insn_type , (int) var_type ,
456 (int) set_tag);
457 throw trap_tag_violation ();
458 return 0;
459 }
460 disassembler_t* disas = p->get_disassembler ();
461

462 if (is_mem) {
463 if (set_tag) {
464 store_tag_to_mem(p, addr , insn.rm(), tag_val);
465 DDPRINTF(ANSI_COLOR_CYAN "%10p: %-25s SETMEM (%p) = %d\n"

ANSI_COLOR_RESET , (void *) pc ,
466 disas ->disassemble(insn).c_str(), (void *) addr , (int)

tag_val);
467

468 } else {
469 uint8_t tag_val_from_mem = load_tag_from_mem(p, addr , insn.rm

());
470 DDPRINTF(ANSI_COLOR_CYAN "%10p: %-25s LOADTG (%p) = %d\n"

ANSI_COLOR_RESET , (void *) pc ,
471 disas ->disassemble(insn).c_str(), addr , (int)

tag_val_from_mem);
472 return tag_val_from_mem;
473 }
474 } else {
475 if (reg == 0) {
476 return 0;
477 }
478 if (set_tag) {
479 DDPRINTF(ANSI_COLOR_CYAN "%10p: %-25s SETREG (%2d) = %d\n"

ANSI_COLOR_RESET , (void *) pc ,
480 disas ->disassemble(insn).c_str(), (int) reg , (int) tag_val

);
481 STATE.XPR.write_tag(reg , tag_val);
482 } else {
483 return STATE.XPR.read_tag(reg);
484 }
485 }
486 return 0;
487 }

88

488

489 uint8_t ptaxi_sim_t :: load_tag_from_mem(processor_t *p, uint64_t addr
, uint8_t rm) {

490 switch (rm) {
491 case 0: // LB
492 return MMU.load_tag_only_int8(addr);
493 case 1: // LH
494 return MMU.load_tag_only_int16(addr);
495 case 2: // LW
496 return MMU.load_tag_only_int32(addr);
497 case 3: // LD
498 return MMU.load_tag_only_int64(addr);
499 case 4: // LBU
500 return MMU.load_tag_only_uint8(addr);
501 case 5: // LHU
502 return MMU.load_tag_only_uint16(addr);
503 case 6: // LWU
504 return MMU.load_tag_only_uint32(addr);
505 default:
506 DPRINTF("get_or_set_tag: ISINVALID TRAP2!");
507 throw trap_tag_violation ();
508 return 0;
509 }
510 }
511

512 void ptaxi_sim_t :: store_tag_to_mem(processor_t *p, uint64_t addr ,
uint8_t rm , uint64_t val) {

513 switch (rm) {
514 case 0: // SB
515 MMU.store_tag_only_uint8(addr , val);
516 break;
517 case 1: // SH
518 MMU.store_tag_only_uint16(addr , val);
519 break;
520 case 2: // SW
521 MMU.store_tag_only_uint32(addr , val);
522 break;
523 case 3: // SD
524 MMU.store_tag_only_uint64(addr , val);
525 break;
526 default:
527 DPRINTF("get_or_set_tag: ISINVALID TRAP3!");
528 throw trap_tag_violation ();
529 break;
530 }
531 }
532

533 void ptaxi_sim_t :: start_benchmark(processor_t *p) {
534 if (benchmark_mode) {
535 return;
536 }
537 DPRINTF(ANSI_COLOR_GREEN "Start Benchmark ..\n" ANSI_COLOR_RESET);
538 memset (&counters , 0, sizeof(counters));

89

539 benchmark_mode = true;
540 }
541

542 void ptaxi_sim_t :: stop_benchmark(processor_t *p) {
543 if (! benchmark_mode) {
544 return;
545 }
546 DPRINTF(ANSI_COLOR_GREEN "Stop Benchmark ..\n" ANSI_COLOR_RESET);
547 print_policies(PTAXI_DEBUG_MODE_CONTEXT_ID);
548 printf("RESULT ,%lu ,%lu ,%lu ,%lu", counters.insns , counters.

match_insns , counters.tag_read , counters.tag_write);
549 for(int i = 0; i < 16; i++) {
550 printf(",%lu", counters.needs[i]);
551 }
552 printf("\n");
553 benchmark_mode = false;
554 }

Listing A.3: ptaxisim.cc

A.3 User-level Libraries

A.3.1 Basic Interface (ptaxi_user.h)

1 #ifndef _PTAXI_USER_H
2 #define _PTAXI_USER_H
3

4 #include <stdint.h>
5 #include <string.h>
6

7 #include "ptaxi_common.h"
8

9 // Use macro so that we don’t have to set previous return pointers.
10 void ptaxi_tag_command(code) {
11 __asm__("tagcmd zero ,%0,zero" ::"r"(code));
12

13 }
14

15 void ptaxi_enforce_policy () {
16 ptaxi_tag_command (0);
17 }
18

19 void ptaxi_add_raw_policy(uint64_t a, uint64_t b, uint64_t c) {
20 __asm__ volatile ("tagpolicy %2,%0,%1" ::"r"(a), "r"(b), "r"(c));
21 }
22

23 void ptaxi_add_policy(struct ptaxi_policy_t policy) {
24 union ptaxi_policy_serialized ps;
25 ps.policy = policy;
26 ptaxi_add_raw_policy(ps.regs.a, ps.regs.b, ps.regs.c);

90

27 }
28

29 #endif

Listing A.4: ptaxi_user.h

A.3.2 Header File for Inclusion by User-Level Applications

(ptaxi.h)

1 #ifndef _PTAXI_H
2 #define _PTAXI_H
3

4 #include "ptaxi_common.h"
5 #include "ptaxi_user.h"
6 #include "ptaxi_policy_debug_call.h"
7 #include "ptaxi_policy_return_address.h"
8 #include "ptaxi_policy_privilege.h"
9 #include "ptaxi_policy_gc.h"

10

11 #endif

Listing A.5: ptaxi.h

91

92

Appendix B

Policy Source Code and Test Cases

Policy source code and test cases are also available at https: // github. com/ riscv-mit/

ptaxi-policies .

B.1 Policies

B.1.1 Base Policies

1 #ifndef _PTAXI_BASE_POLICY_H
2 #define _PTAXI_BASE_POLICY_H
3

4 #define PTAXI_TAGCMD_PREFIX_GETTAG 100
5 #define PTAXI_TAGCMD_PREFIX_SETTAG 110
6 #define PTAXI_TAGCMD_PREFIX_CLEARTAG 120
7 #define PTAXI_TAGCMD_PREFIX_SETPRIV 130
8 #define PTAXI_TAGCMD_PREFIX_CLEARPRIV 140
9

10 uint8_t log2bit(uint8_t tagbit) {
11 uint8_t out = 0;
12 while(tagbit != 0) {
13 out++;
14 tagbit = (tagbit >> 1);
15 }
16 return out;
17 }
18 void ptaxi_base_policy_propatgate_by_type(uint8_t tagbit , enum

ptaxi_insn_type_t insn_type ,
19 uint8_t arg1 , uint8_t arg2) {
20 struct ptaxi_policy_t default_policy , policy;

93

https://github.com/riscv-mit/ptaxi-policies
https://github.com/riscv-mit/ptaxi-policies

21 memset (& default_policy , 0, sizeof(default_policy));
22 default_policy.tag_out_tomodify = tagbit;
23 default_policy.insn_type = insn_type;
24

25 if (arg1) {
26 policy = default_policy;
27 policy.tag_arg1_mask = tagbit;
28 policy.tag_arg1_match = tagbit;
29 policy.tag_out_set = tagbit;
30 ptaxi_add_policy(policy);
31 }
32

33 if (arg2) {
34 policy = default_policy;
35 policy.tag_arg2_mask = tagbit;
36 policy.tag_arg2_match = tagbit;
37 policy.tag_out_set = tagbit;
38 ptaxi_add_policy(policy);
39 }
40

41 policy = default_policy;
42 policy.tag_out_set = 0;
43 if (arg1) {
44 policy.tag_arg1_mask = tagbit;
45 policy.tag_arg1_match = 0;
46 }
47 if (arg2) {
48 policy.tag_arg2_mask = tagbit;
49 policy.tag_arg2_match = 0;
50 }
51 ptaxi_add_policy(policy);
52 }
53

54

55 void ptaxi_base_policy_clear_by_type(uint8_t tagbit , enum
ptaxi_insn_type_t insn_type) {

56 struct ptaxi_policy_t policy;
57 memset (&policy , 0, sizeof(policy));
58 policy.tag_out_tomodify = tagbit;
59 policy.insn_type = insn_type;
60 policy.tag_out_set = 0;
61 ptaxi_add_policy(policy);
62 }
63

64

65 void ptaxi_base_policy_create_settag(uint8_t tagbit) {
66 struct ptaxi_policy_t policy;
67 memset (&policy , 0, sizeof(policy));
68 policy.insn_type = PTAXI_INSN_TYPE_TAGCMD;
69 policy.rs1val_mask = 0b11111111;
70 policy.rs1val_match = PTAXI_TAGCMD_PREFIX_SETTAG + log2bit(tagbit)

;
71 policy.tag_out_tomodify = tagbit;

94

72 policy.tag_out_set = tagbit;
73 ptaxi_add_policy(policy);
74 }
75

76 void ptaxi_base_policy_create_cleartag(uint8_t tagbit) {
77 struct ptaxi_policy_t policy;
78 memset (&policy , 0, sizeof(policy));
79 policy.tag_out_tomodify = tagbit;
80 policy.insn_type = PTAXI_INSN_TYPE_TAGCMD;
81 policy.rs1val_mask = 0b11111111;
82 policy.rs1val_match = PTAXI_TAGCMD_PREFIX_CLEARTAG + log2bit(

tagbit);
83 policy.tag_out_set = 0;
84 ptaxi_add_policy(policy);
85 }
86

87 void ptaxi_base_policy_create_gettag(uint8_t tagbit) {
88 struct ptaxi_policy_t policy;
89 memset (&policy , 0, sizeof(policy));
90 policy.tag_out_tomodify = tagbit;
91 policy.insn_type = PTAXI_INSN_TYPE_TAGCMD;
92 policy.rs1val_mask = 0b11111111;
93 policy.rs1val_match = PTAXI_TAGCMD_PREFIX_GETTAG + log2bit(tagbit)

;
94 policy.tag_out_set = 0;
95 policy.action = PTAXI_ACTION_GETTAG;
96 ptaxi_add_policy(policy);
97 }
98

99 void ptaxi_base_policy_create_setpriv(uint8_t tagbit) {
100 struct ptaxi_policy_t policy;
101 memset (&policy , 0, sizeof(policy));
102 policy.insn_type = PTAXI_INSN_TYPE_TAGCMD;
103 policy.rs1val_mask = 0b11111111;
104 policy.rs1val_match = PTAXI_TAGCMD_PREFIX_SETPRIV + log2bit(tagbit

);
105 policy.priv_tomodify = tagbit;
106 policy.priv_set = tagbit;
107 ptaxi_add_policy(policy);
108 }
109

110 void ptaxi_base_policy_create_clearpriv(uint8_t tagbit) {
111 struct ptaxi_policy_t policy;
112 memset (&policy , 0, sizeof(policy));
113 policy.insn_type = PTAXI_INSN_TYPE_TAGCMD;
114 policy.rs1val_mask = 0b11111111;
115 policy.rs1val_match = PTAXI_TAGCMD_PREFIX_CLEARPRIV + log2bit(

tagbit);
116 policy.priv_tomodify = tagbit;
117 policy.priv_set = 0;
118 ptaxi_add_policy(policy);
119 }
120

95

121 uint8_t ptaxi_base_policy_gettag(uint8_t tagbit , void *addr) {
122 uint64_t out;
123 uint64_t cmd = PTAXI_TAGCMD_PREFIX_GETTAG + log2bit(tagbit);
124 uint64_t in = *((uint64_t *) addr);
125 __asm__ volatile ("tagcmd %0,%2,%1" : "=r"(out) :"r"(in), "r"(cmd)

);
126 return out;
127 }
128

129 // tagval is a boolean. True = set/False = clear
130 void ptaxi_base_policy_settag(uint8_t tagbit , void *addr , uint8_t

tagval) {
131 uint64_t cmd;
132 if (tagval > 0) {
133 cmd = PTAXI_TAGCMD_PREFIX_SETTAG + log2bit(tagbit);
134 } else {
135 cmd = PTAXI_TAGCMD_PREFIX_CLEARTAG + log2bit(tagbit);
136 }
137 uint64_t *raddr = (uint64_t *) addr;
138 uint64_t in = *raddr;
139 uint64_t out = 0;
140 __asm__ volatile ("tagcmd %0,%2,%1" : "=r"(out) :"r"(in), "r"(cmd)

);
141 *raddr = out;
142 }
143

144 void ptaxi_base_policy_settag_multi(uint8_t tagbit , void *addr ,
size_t size , uint8_t tagval) {

145 size_t block = size /4;
146 uint64_t* pos = (uint64_t *) addr;
147 size_t i;
148 for (i = 0; i < block; i++) {
149 ptaxi_base_policy_settag(tagbit , addr , tagval);
150 pos++;
151 }
152 }
153

154 // privval is a boolean. True = set/False = clear
155 void ptaxi_base_policy_setpriv(uint8_t tagbit , uint8_t privval) {
156 uint8_t cmd;
157 if (privval > 0) {
158 cmd = PTAXI_TAGCMD_PREFIX_SETPRIV + log2bit(tagbit);
159 } else {
160 cmd = PTAXI_TAGCMD_PREFIX_CLEARPRIV + log2bit(tagbit);
161 }
162 ptaxi_tag_command(cmd);
163 }
164

165 #endif

Listing B.1: ptaxi_base_policy.h

96

B.1.2 Return Address Protection

1 #ifndef _PTAXI_POLICY_RETURN_ADDRESS_H
2 #define _PTAXI_POLICY_RETURN_ADDRESS_H
3

4 #include <stdlib.h>
5

6 #include "ptaxi_common.h"
7 #include "ptaxi_user.h"
8 #include "ptaxi_base_policy.h"
9

10 void ptaxi_policy_return_address(uint8_t tagbit) {
11 struct ptaxi_policy_t default_policy , policy;
12 memset (& default_policy , 0, sizeof(default_policy));
13 policy = default_policy;
14 policy.insn_type = PTAXI_INSN_TYPE_JAL;
15 policy.tag_out_tomodify = tagbit;
16 policy.tag_out_set = tagbit;
17 ptaxi_add_policy(policy);
18

19 policy = default_policy;
20 policy.insn_type = PTAXI_INSN_TYPE_RETURN;
21 policy.tag_arg1_mask = tagbit;
22 policy.tag_arg1_match = 0;
23 policy.action |= PTAXI_ACTION_BLOCK;
24 policy.ignore_count = 4;
25 ptaxi_add_policy(policy);
26

27 ptaxi_base_policy_propatgate_by_type(tagbit ,
PTAXI_INSN_TYPE_STORE64 , 1, 0);

28 ptaxi_base_policy_propatgate_by_type(tagbit ,
PTAXI_INSN_TYPE_LOAD64 , 1, 0);

29 ptaxi_base_policy_propatgate_by_type(tagbit , PTAXI_INSN_TYPE_COPY ,
1, 0);

30 ptaxi_base_policy_clear_by_type(tagbit , PTAXI_INSN_TYPE_STORE);
31 ptaxi_base_policy_clear_by_type(tagbit , PTAXI_INSN_TYPE_LOAD);
32 ptaxi_base_policy_clear_by_type(tagbit , PTAXI_INSN_TYPE_OP);
33 ptaxi_base_policy_clear_by_type(tagbit , PTAXI_INSN_TYPE_OPIMM);
34 }
35

36 #endif

Listing B.2: ptaxi_policy_return_address.h

B.1.3 Memory Compartmentalization & Taint Tracking

(Privilege)

1 #ifndef _PTAXI_POLICY_PRIVILEGE_H
2 #define _PTAXI_POLICY_PRIVILEGE_H
3

97

4 void ptaxi_policy_privilege_init(uint8_t tagbit) {
5 ptaxi_base_policy_create_settag(tagbit);
6 ptaxi_base_policy_create_gettag(tagbit);
7 ptaxi_base_policy_create_cleartag(tagbit);
8 ptaxi_base_policy_create_setpriv(tagbit);
9 ptaxi_base_policy_create_clearpriv(tagbit);

10 ptaxi_base_policy_propatgate_by_type(tagbit ,
PTAXI_INSN_TYPE_STORE64 , 1, 0);

11 ptaxi_base_policy_propatgate_by_type(tagbit ,
PTAXI_INSN_TYPE_LOAD64 , 1, 0);

12 ptaxi_base_policy_propatgate_by_type(tagbit , PTAXI_INSN_TYPE_COPY ,
1, 0);

13 }
14

15 void ptaxi_policy_privilege_protect_tag_from_nonprivilege(uint8_t
tagbit) {

16

17 }
18

19 void ptaxi_policy_privilege_protect_data(uint8_t tagbit) {
20 struct ptaxi_policy_t default_policy , policy;
21 memset (& default_policy , 0, sizeof(default_policy));
22 default_policy.priv_mask = tagbit;
23 default_policy.priv_match = 0;
24 default_policy.action = PTAXI_ACTION_BLOCK;
25

26 policy = default_policy;
27 policy.insn_type = PTAXI_INSN_TYPE_LOAD;
28 policy.tag_arg1_mask = tagbit;
29 policy.tag_arg1_match = tagbit;
30 ptaxi_add_policy(policy);
31

32 policy = default_policy;
33 policy.insn_type = PTAXI_INSN_TYPE_LOAD64;
34 policy.tag_arg1_mask = tagbit;
35 policy.tag_arg1_match = tagbit;
36 ptaxi_add_policy(policy);
37

38 policy = default_policy;
39 policy.insn_type = PTAXI_INSN_TYPE_STORE;
40 policy.tag_out_mask = tagbit;
41 policy.tag_out_match = tagbit;
42 ptaxi_add_policy(policy);
43

44 policy = default_policy;
45 policy.insn_type = PTAXI_INSN_TYPE_STORE64;
46 policy.tag_out_mask = tagbit;
47 policy.tag_out_match = tagbit;
48 ptaxi_add_policy(policy);
49 }
50

51 void ptaxi_policy_privilege_enter(uint8_t tagbit) {
52 ptaxi_base_policy_setpriv(tagbit , 1);

98

53 }
54

55 void ptaxi_policy_privilege_leave(uint8_t tagbit) {
56 ptaxi_base_policy_setpriv(tagbit , 0);
57

58 }
59 #endif

Listing B.3: ptaxi_policy_privilege.h

B.1.4 Stack Garbage Collection

1 #ifndef _PTAXI_POLICY_GC_H
2 #define _PTAXI_POLICY_GC_H
3

4 #include <stdlib.h>
5

6 #include "ptaxi_common.h"
7 #include "ptaxi_user.h"
8

9 void ptaxi_policy_gc () {
10 struct ptaxi_policy_t policy;
11 memset (&policy , 0, sizeof(policy));
12 policy.insn_type = PTAXI_INSN_TYPE_RETURN;
13 policy.action = PTAXI_ACTION_GC;
14 ptaxi_add_policy(policy);
15 }
16

17 #endif

Listing B.4: ptaxi_policy_gc.h

B.1.5 Call Debugging

1 #ifndef _PTAXI_POLICY_DEBUG_CALL_H
2 #define _PTAXI_POLICY_DEBUG_CALL_H
3

4 #include <stdlib.h>
5

6 #include "ptaxi_common.h"
7 #include "ptaxi_user.h"
8

9 void ptaxi_policy_debug_call () {
10 struct ptaxi_policy_t default_policy , policy;
11 memset (& default_policy , 0, sizeof(default_policy));
12

13 policy = default_policy;
14 policy.insn_type = PTAXI_INSN_TYPE_JAL;
15 policy.action = PTAXI_ACTION_DEBUG_LINE;
16 ptaxi_add_policy(policy);
17

99

18 policy = default_policy;
19 policy.insn_type = PTAXI_INSN_TYPE_JALR;
20 policy.action = PTAXI_ACTION_DEBUG_LINE;
21 ptaxi_add_policy(policy);
22

23 policy = default_policy;
24 policy.insn_type = PTAXI_INSN_TYPE_RETURN;
25 policy.action = PTAXI_ACTION_DEBUG_LINE;
26 ptaxi_add_policy(policy);
27 }
28

29 #endif

Listing B.5: ptaxi_policy_debug_call.h

B.2 Test Cases

B.2.1 Return Address Protection

1 #include <stdio.h>
2 #include "ptaxi.h"
3

4 #define TAG_RETURNADDRESS 1
5

6 void __attribute__ ((constructor)) ptaxi_app_policy () {
7 ptaxi_policy_return_address(TAG_RETURNADDRESS);
8 ptaxi_enforce_policy ();
9 }

10

11 int i;
12 int limit = 20;
13 int g(int x) {
14 return x * 27 % 13; // To prevent compiler optimizations
15 }
16

17 int f() {
18 uint64_t a[2];
19 a[i] = 0xDEADBEEF;
20 for (i = 1; i < limit; i++) {
21 a[i] = a[i - 1] + g(i);
22 }
23 return 7;
24 }
25 int main(int argc , char** argv) {
26 if (argc > 1) {
27 printf("Should pass instead of fail.\n");
28 limit = 2;
29 }
30 f();
31 return 0;

100

32 }

Listing B.6: test_return_address.c

B.2.2 Get and Set Tags

1 #include <stdio.h>
2 #include <unistd.h>
3

4 #include "ptaxi.h"
5

6 #define TAGBIT 1
7

8 void __attribute__ ((constructor)) ptaxi_app_policy () {
9 ptaxi_policy_privilege_init(TAGBIT);

10 ptaxi_enforce_policy ();
11 }
12

13 int main(int argc , char** argv) {
14 uint64_t a = 5;
15 printf("A is at %p\n", &a);
16 printf ("A = %lu , TAG(A) = %d (should be 0)\n", a, (int)

ptaxi_base_policy_gettag(TAGBIT , &a));
17 ptaxi_base_policy_settag(TAGBIT , &a, 1);
18 printf ("A = %lu , TAG(A) = %d (should be 1)\n", a, (int)

ptaxi_base_policy_gettag(TAGBIT , &a));
19 ptaxi_base_policy_settag(TAGBIT , &a, 1);
20 printf ("A = %lu , TAG(A) = %d (should be 1)\n", a, (int)

ptaxi_base_policy_gettag(TAGBIT , &a));
21 ptaxi_base_policy_settag(TAGBIT , &a, 0);
22 printf ("A = %lu , TAG(A) = %d (should be 0)\n", a, (int)

ptaxi_base_policy_gettag(TAGBIT , &a));
23 return 0;
24 }

Listing B.7: test_getsettag.c

B.2.3 Malloc with Memory Compartmentalization

1 #include <stdio.h>
2 #include <unistd.h>
3

4 #include "ptaxi.h"
5

6 #define MALLOC_TAGBIT 4
7

8 typedef struct malloc_ll {
9 size_t size;

10 struct malloc_ll *back;
11 struct malloc_ll *next;
12 } malloc_ll;

101

13

14 malloc_ll *malloc_root;
15

16 void __attribute__ ((constructor)) ptaxi_app_policy () {
17 ptaxi_policy_privilege_protect_data(MALLOC_TAGBIT);
18 ptaxi_policy_privilege_init(MALLOC_TAGBIT);
19 ptaxi_enforce_policy ();
20 }
21

22 void *pmalloc_internal(size_t size) {
23 malloc_ll *node = sbrk(sizeof(malloc_ll) + size);
24 node ->size = size;
25 node ->back = NULL;
26 node ->next = malloc_root;
27 if (malloc_root != NULL) {
28 malloc_root ->back = node;
29 }
30 ptaxi_base_policy_settag_multi(MALLOC_TAGBIT , node , sizeof(

malloc_ll), 1);
31 malloc_root = node;
32 void *res = ((void *) node) + sizeof(malloc_ll);
33 return res;
34 }
35

36 void *pmalloc(size_t size) {
37 ptaxi_policy_privilege_enter(MALLOC_TAGBIT);
38 void *res = pmalloc_internal(size);
39 ptaxi_policy_privilege_leave(MALLOC_TAGBIT);
40 return res;
41 }
42

43 void read_size(char *a) {
44 malloc_ll *m = (malloc_ll *) (a - sizeof(malloc_ll));
45 size_t size = m->size; // Should trap here!
46 printf("Malloc Size = %d \n", size);
47 }
48

49 int main(int argc , char** argv) {
50

51 char *a = (char *) pmalloc (48);
52 a[0] = ’H’;
53 a[1] = ’E’;
54 a[2] = ’L’;
55 a[3] = ’L’;
56 a[4] = ’O’;
57 a[5] = ’\0’;
58

59 printf("String = %s\n", a);
60 if (argc > 1) {
61 // Should pass instead of fail.
62 } else {
63 read_size(a);
64 }

102

65 return 0;
66 }

Listing B.8: test_simple_malloc.c

B.2.4 Basic Taint Tracking

1 #include <stdio.h>
2 #include <unistd.h>
3

4 #include "ptaxi.h"
5

6 #define TAINT_TAGBIT 1
7

8 void __attribute__ ((constructor)) ptaxi_app_policy () {
9 ptaxi_policy_privilege_init(TAINT_TAGBIT);

10 ptaxi_base_policy_propatgate_by_type(TAINT_TAGBIT ,
PTAXI_INSN_TYPE_OP , 1, 1);

11 ptaxi_base_policy_propatgate_by_type(TAINT_TAGBIT ,
PTAXI_INSN_TYPE_OPIMM , 1, 0);

12 ptaxi_enforce_policy ();
13 }
14

15 uint64_t get_unfiltered_input () {
16 uint64_t input = 42;
17 ptaxi_base_policy_settag(TAINT_TAGBIT , (void *) (& input), 1);
18 printf("DEBUGE: %d\n", (int) ptaxi_base_policy_gettag(TAINT_TAGBIT

, (void *) (& input)));
19 return input;
20 }
21

22 int main(int argc , char** argv) {
23 uint64_t a = get_unfiltered_input ();
24 uint64_t b = 4;
25 uint64_t c = b * 20;
26 uint64_t d = a + 5;
27

28 int s1 = ptaxi_base_policy_gettag(TAINT_TAGBIT , (void *) (&c));
29 int s2 = ptaxi_base_policy_gettag(TAINT_TAGBIT , (void *) (&d));
30 printf("TAG(C) = %d (should be 0), TAG(D) = %d (should be 1)\n",

s1, s2);
31

32 return 0;
33 }

Listing B.9: test_taint_tracking.c

B.2.5 Stack Garbage Collection

1 #include <stdio.h>
2 #include "ptaxi.h"

103

3

4 uint64_t *gsecretnumberptr = NULL;
5

6 int i;
7

8 int g(int x) {
9 return x * 2 + 9;

10 }
11

12 int f() {
13 ptaxi_tag_command (123);
14 uint64_t secretnumber = 0xDEADBEEF;
15 gsecretnumberptr = &secretnumber;
16 int i, s = 0;
17 for (i = 0; i < 20; i++) {
18 s += g(i) + secretnumber;
19 }
20 ptaxi_tag_command (456);
21 return s;
22 }
23

24 int main(int argc , char** argv) {
25 if (!(argc > 1)) {
26 ptaxi_policy_gc ();
27 ptaxi_enforce_policy ();
28 } else {
29 printf("Should show deadbeef\n");
30 }
31 ptaxi_tag_command (7);
32 f();
33 ptaxi_tag_command (8);
34 printf("Secret = %x at %p\n", *gsecretnumberptr , (void *)

gsecretnumberptr);
35

36 return 0;
37 }

Listing B.10: test_gc.c

104

Bibliography

[1] I. Evans, “Analysis of defenses against code reuse attacks on modern and new
architectures,” PhD thesis, Department of Electrical Engineering et al., 2015.
[Online]. Available: http://people.csail.mit.edu/hes/ROP/Publications/
Isaac-thesis.pdf (visited on 05/06/2016).

[2] S. Fingeret, “Defeating code reuse attacks with minimal tagged architecture,”
PhD thesis, Massachusetts Institute of Technology, 2015. [Online]. Available:
http://people.csail.mit.edu/hes/ROP/Publications/sam-thesis.pdf
(visited on 04/20/2016).

[3] J. A. González, “Taxi: Defeating code reuse attacks with tagged memory,” PhD
thesis, Massachusetts Institute of Technology, 2015. [Online]. Available: http:
//people.csail.mit.edu/hes/ROP/Publications/Julian-thesis.pdf
(visited on 04/20/2016).

[4] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith, T. F.
Knight Jr., B. C. Pierce, and A. DeHon, “Architectural support for software-
defined metadata processing,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’15, New York, NY, USA: ACM, 2015, pp. 487–502, isbn:
978-1-4503-2835-7. doi: 10.1145/2694344.2694383.

[5] J. P. Anderson, “Computer security technology planning study. volume 2,” Oct.
1972. [Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord&
metadataPrefix=html&identifier=AD0772806 (visited on 05/01/2015).

[6] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011 CWE/SANS
top 25 most dangerous software errors,” Common Weakness Enumeration, vol.
7515, 2011. [Online]. Available: http://cwe.mitre.org/top25/archive/2010/
2010_cwe_sans_top25.pdf (visited on 05/01/2015).

[7] Aleph One, “Smashing the stack for fun and profit,” Phrack magazine, vol. 7, no.
49, pp. 14–16, Aug. 11, 1996. [Online]. Available: http://phrack.org/issues/
49/14.html (visited on 04/20/2016).

[8] S. Friedl. (2004). Intel x86 function-call conventions - assembly view, Unixwiz.net,
[Online]. Available: http://unixwiz.net/techtips/win32-callconv-asm.
html (visited on 04/27/2016).

105

http://people.csail.mit.edu/hes/ROP/Publications/Isaac-thesis.pdf
http://people.csail.mit.edu/hes/ROP/Publications/Isaac-thesis.pdf
http://people.csail.mit.edu/hes/ROP/Publications/sam-thesis.pdf
http://people.csail.mit.edu/hes/ROP/Publications/Julian-thesis.pdf
http://people.csail.mit.edu/hes/ROP/Publications/Julian-thesis.pdf
http://dx.doi.org/10.1145/2694344.2694383
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0772806
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0772806
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html
http://unixwiz.net/techtips/win32-callconv-asm.html
http://unixwiz.net/techtips/win32-callconv-asm.html

[9] Microsoft. (Dec. 2010). Windows ISV software security defenses, [Online]. Avail-
able: https://msdn.microsoft.com/en-us/library/bb430720.aspx (visited
on 05/01/2015).

[10] Oracle. (2013). Configuring and using kernel security mechanisms, [Online].
Available: https://docs.oracle.com/cd/E37670_01/E36387/html/ol_
kernel_sec.html (visited on 05/01/2015).

[11] Apple. (2014). OS x - security, Apple, [Online]. Available: https://www.apple.
com/osx/what-is/security/ (visited on 04/27/2016).

[12] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A.
Grier, P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks,” in Proceedings of the 7th Conference on
USENIX Security Symposium - Volume 7, ser. SSYM’98, Berkeley, CA, USA:
USENIX Association, 1998, pp. 5–5. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1267549.1267554.

[13] Free Software Foundation. (Jan. 30, 2016). GCC 4.1 release series changes,
new features, and fixes - GNU project - free software foundation (FSF), [On-
line]. Available: https://gcc.gnu.org/gcc-4.1/changes.html (visited on
04/26/2016).

[14] G. Richarte, “Four different tricks to bypass stackshield and stackguard pro-
tection,” Core Security Technologies, 2002. [Online]. Available: http://www.
coresecurity.com/system/files/StackguardPaper.pdf (visited on 04/26/2016).

[15] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming:
A new class of code-reuse attack,” in Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, ser. ASIACCS ’11,
New York, NY, USA: ACM, 2011, pp. 30–40, isbn: 978-1-4503-0564-8. doi:
10.1145/1966913.1966919.

[16] R. Wojtczuk, “The advanced return-into-lib (c) exploits: PaX case study,” Phrack
magazine, vol. 11, no. 58, p. 4, Dec. 28, 2001. [Online]. Available: http://phrack.
org/issues/58/4.html.

[17] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86),” in Proceedings of the 14th ACM Conference
on Computer and Communications Security, ser. CCS ’07, New York, NY, USA:
ACM, 2007, pp. 552–561, isbn: 978-1-59593-703-2. doi: 10.1145/1315245.
1315313.

[18] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M.
Winandy, “Return-oriented programming without returns,” in Proceedings of the
17th ACM Conference on Computer and Communications Security, ser. CCS
’10, New York, NY, USA: ACM, 2010, pp. 559–572, isbn: 978-1-4503-0245-6.
doi: 10.1145/1866307.1866370.

106

https://msdn.microsoft.com/en-us/library/bb430720.aspx
https://docs.oracle.com/cd/E37670_01/E36387/html/ol_kernel_sec.html
https://docs.oracle.com/cd/E37670_01/E36387/html/ol_kernel_sec.html
https://www.apple.com/osx/what-is/security/
https://www.apple.com/osx/what-is/security/
http://dl.acm.org/citation.cfm?id=1267549.1267554
http://dl.acm.org/citation.cfm?id=1267549.1267554
https://gcc.gnu.org/gcc-4.1/changes.html
http://www.coresecurity.com/system/files/StackguardPaper.pdf
http://www.coresecurity.com/system/files/StackguardPaper.pdf
http://dx.doi.org/10.1145/1966913.1966919
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1145/1866307.1866370

[19] L. Davi, A.-R. Sadeghi, and M. Winandy, “Ropdefender: A detection tool to
defend against return-oriented programming attacks,” in Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security,
ser. ASIACCS ’11, New York, NY, USA: ACM, 2011, pp. 40–51, isbn: 978-
1-4503-0564-8. doi: 10.1145/1966913.1966920.

[20] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP exploit
mitigation using indirect branch tracing,” in Proceedings of the 22Nd USENIX
Conference on Security, ser. SEC’13, Berkeley, CA, USA: USENIX Association,
2013, pp. 447–462, isbn: 978-1-931971-03-4. [Online]. Available: http://dl.
acm.org/citation.cfm?id=2534766.2534805.

[21] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng, “Ropecker: A generic and
practical approach for defending against ROP attacks,” Internet Society, 2014,
isbn: 978-1-891562-35-8. doi: 10.14722/ndss.2014.23156.

[22] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern defenses,”
in Proceedings of the 23rd USENIX Conference on Security Symposium, ser.
SEC’14, Berkeley, CA, USA: USENIX Association, 2014, pp. 385–399, isbn:
978-1-931971-15-7. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2671225.2671250.

[23] F. Schuster, T. Tendyck, J. Pewny, A. MaaSS, M. Steegmanns, M. Contag, and
T. Holz, “Evaluating the effectiveness of current anti-ROP defenses,” in Research
in Attacks, Intrusions and Defenses, A. Stavrou, H. Bos, and G. Portokalidis,
Eds., vol. 8688, Cham: Springer International Publishing, 2014, pp. 88–108,
isbn: 978-3-319-11378-4 978-3-319-11379-1. [Online]. Available: http://link.
springer.com/10.1007/978-3-319-11379-1_5 (visited on 04/20/2016).

[24] PaX Team. (2003). PaX address space layout randomization (ASLR), [On-
line]. Available: https://pax.grsecurity.net/docs/aslr.txt (visited on
05/01/2015).

[25] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout permu-
tation (ASLP): Towards fine-grained randomization of commodity software,”
in 2006 22nd Annual Computer Security Applications Conference (ACSAC’06),
Dec. 2006, pp. 339–348. doi: 10.1109/ACSAC.2006.9.

[26] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “Ilr: Where’d
my gadgets go?” In 2012 IEEE Symposium on Security and Privacy, May 2012,
pp. 571–585. doi: 10.1109/SP.2012.39.

[27] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-guard: Stopping
address space leakage for code reuse attacks,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’15,
New York, NY, USA: ACM, 2015, pp. 280–291, isbn: 978-1-4503-3832-5. doi:
10.1145/2810103.2813694.

107

http://dx.doi.org/10.1145/1966913.1966920
http://dl.acm.org/citation.cfm?id=2534766.2534805
http://dl.acm.org/citation.cfm?id=2534766.2534805
http://dx.doi.org/10.14722/ndss.2014.23156
http://dl.acm.org/citation.cfm?id=2671225.2671250
http://dl.acm.org/citation.cfm?id=2671225.2671250
http://link.springer.com/10.1007/978-3-319-11379-1_5
http://link.springer.com/10.1007/978-3-319-11379-1_5
https://pax.grsecurity.net/docs/aslr.txt
http://dx.doi.org/10.1109/ACSAC.2006.9
http://dx.doi.org/10.1109/SP.2012.39
http://dx.doi.org/10.1145/2810103.2813694

[28] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely reran-
domization for mitigating memory disclosures,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’15,
New York, NY, USA: ACM, 2015, pp. 268–279, isbn: 978-1-4503-3832-5. doi:
10.1145/2810103.2813691.

[29] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On
the effectiveness of address-space randomization,” in Proceedings of the 11th
ACM Conference on Computer and Communications Security, ser. CCS ’04,
New York, NY, USA: ACM, 2004, pp. 298–307, isbn: 978-1-58113-961-7. doi:
10.1145/1030083.1030124.

[30] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. R. Sadeghi,
“Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization,” in 2013 IEEE Symposium on Security and Privacy (SP), May
2013, pp. 574–588. doi: 10.1109/SP.2013.45.

[31] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh, “Hacking blind,”
in 2014 IEEE Symposium on Security and Privacy, May 2014, pp. 227–242. doi:
10.1109/SP.2014.22.

[32] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without memory
disclosures: Remote side channel attacks on diversified code,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14, New York, NY, USA: ACM, 2014, pp. 54–65, isbn: 978-1-4503-2957-6.
doi: 10.1145/2660267.2660309.

[33] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of c,” in Proceedings of the General Track of the Annual
Conference on USENIX Annual Technical Conference, ser. ATEC ’02, Berkeley,
CA, USA: USENIX Association, 2002, pp. 275–288, isbn: 978-1-880446-00-3.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647057.713871.

[34] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer, “Ccured:
Type-safe retrofitting of legacy software,” ACM Transactions on Programming
Languages and Systems, vol. 27, no. 3, pp. 477–526, May 2005, issn: 0164-0925.
doi: 10.1145/1065887.1065892. (visited on 04/20/2016).

[35] N. D. Matsakis and F. S. Klock II, “The rust language,” in Proceedings of the
2014 ACM SIGAda Annual Conference on High Integrity Language Technology,
ser. HILT ’14, New York, NY, USA: ACM, 2014, pp. 103–104, isbn: 978-
1-4503-3217-0. doi: 10.1145/2663171.2663188.

[36] Rust Project. (2016). The rust programming language, [Online]. Available:
https://doc.rust-lang.org/book/ (visited on 05/06/2016).

[37] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hardbound:
Architectural support for spatial safety of the c programming language,” in
Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XIII, New York,

108

http://dx.doi.org/10.1145/2810103.2813691
http://dx.doi.org/10.1145/1030083.1030124
http://dx.doi.org/10.1109/SP.2013.45
http://dx.doi.org/10.1109/SP.2014.22
http://dx.doi.org/10.1145/2660267.2660309
http://dl.acm.org/citation.cfm?id=647057.713871
http://dx.doi.org/10.1145/1065887.1065892
http://dx.doi.org/10.1145/2663171.2663188
https://doc.rust-lang.org/book/

NY, USA: ACM, 2008, pp. 103–114, isbn: 978-1-59593-958-6. doi: 10.1145/
1346281.1346295.

[38] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly
compatible and complete spatial memory safety for c,” in Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’09, New York, NY, USA: ACM, 2009, pp. 245–258, isbn:
978-1-60558-392-1. doi: 10.1145/1542476.1542504.

[39] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds errors,”
in Proceedings of the 18th Conference on USENIX Security Symposium, ser.
SSYM’09, Berkeley, CA, USA: USENIX Association, 2009, pp. 51–66. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855768.1855772.

[40] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-
pointer integrity,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14, Berkeley, CA, USA: USENIX
Association, 2014, pp. 147–163, isbn: 978-1-931971-16-4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2685048.2685061.

[41] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe, S.
Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the point(er): On the
effectiveness of code pointer integrity,” in 2015 IEEE Symposium on Security
and Privacy, May 2015, pp. 781–796. doi: 10.1109/SP.2015.53.

[42] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, and D. Song, “Poster: Getting
the point (er): On the feasibility of attacks on code-pointer integrity,” in IEEE
Symposium on Security and Privacy, 2015. [Online]. Available: http://www.
ieee-security.org/TC/SP2015/posters/paper_48.pdf.

[43] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity,” in
Proceedings of the 12th ACM Conference on Computer and Communications
Security, ser. CCS ’05, New York, NY, USA: ACM, 2005, pp. 340–353, isbn:
978-1-59593-226-6. doi: 10.1145/1102120.1102165.

[44] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W.
Zou, “Practical control flow integrity and randomization for binary executables,”
in 2013 IEEE Symposium on Security and Privacy (SP), May 2013, pp. 559–573.
doi: 10.1109/SP.2013.44.

[45] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” presented
at the Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 337–352, isbn: 978-1-931971-03-4. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/presentation/Zhang.

[46] ——, “Control flow and code integrity for COTS binaries: An effective defense
against real-world ROP attacks,” in Proceedings of the 31st Annual Computer
Security Applications Conference, ser. ACSAC 2015, New York, NY, USA: ACM,
2015, pp. 91–100, isbn: 978-1-4503-3682-6. doi: 10.1145/2818000.2818016.

109

http://dx.doi.org/10.1145/1346281.1346295
http://dx.doi.org/10.1145/1346281.1346295
http://dx.doi.org/10.1145/1542476.1542504
http://dl.acm.org/citation.cfm?id=1855768.1855772
http://dl.acm.org/citation.cfm?id=2685048.2685061
http://dx.doi.org/10.1109/SP.2015.53
http://www.ieee-security.org/TC/SP2015/posters/paper_48.pdf
http://www.ieee-security.org/TC/SP2015/posters/paper_48.pdf
http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1109/SP.2013.44
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
http://dx.doi.org/10.1145/2818000.2818016

[47] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi: Crypto-
graphically enforced control flow integrity,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’15,
New York, NY, USA: ACM, 2015, pp. 941–951, isbn: 978-1-4503-3832-5. doi:
10.1145/2810103.2813676.

[48] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz, “Opaque
control-flow integrity,” Internet Society, 2015, isbn: 978-1-891562-38-9. doi:
10.14722/ndss.2015.23271.

[49] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the gadgets: On
the ineffectiveness of coarse-grained control-flow integrity protection,” in Proceed-
ings of the 23rd USENIX Conference on Security Symposium, ser. SEC’14, Berke-
ley, CA, USA: USENIX Association, 2014, pp. 401–416, isbn: 978-1-931971-15-7.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2671225.2671251.

[50] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of control:
Overcoming control-flow integrity,” in 2014 IEEE Symposium on Security and
Privacy (SP), May 2014, pp. 575–589. doi: 10.1109/SP.2014.43.

[51] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. R. Sadeghi, and T. Holz,
“Counterfeit object-oriented programming: On the difficulty of preventing code
reuse attacks in c++ applications,” in 2015 IEEE Symposium on Security and
Privacy, May 2015, pp. 745–762. doi: 10.1109/SP.2015.51.

[52] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and
S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-grained
control flow integrity,” in Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’15, New York, NY, USA:
ACM, 2015, pp. 901–913, isbn: 978-1-4503-3832-5. doi: 10.1145/2810103.
2813646.

[53] E. A. Feustel, “On the advantages of tagged architecture,” IEEE Transactions
on Computers, vol. C-22, no. 7, pp. 644–656, Jul. 1973, issn: 0018-9340. doi:
10.1109/TC.1973.5009130.

[54] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis,
B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The CHERI capability
model: Revisiting RISC in an age of risk,” in Proceeding of the 41st Annual
International Symposium on Computer Architecuture, ser. ISCA ’14, Piscataway,
NJ, USA: IEEE Press, 2014, pp. 457–468, isbn: 978-1-4799-4394-4. [Online].
Available: http://dl.acm.org/citation.cfm?id=2665671.2665740.

[55] D. Chisnall, C. Rothwell, R. N. Watson, J. Woodruff, M. Vadera, S. W. Moore,
M. Roe, B. Davis, and P. G. Neumann, “Beyond the PDP-11: Architectural
support for a memory-safe c abstract machine,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’15, New York, NY, USA: ACM, 2015,
pp. 117–130, isbn: 978-1-4503-2835-7. doi: 10.1145/2694344.2694367.

110

http://dx.doi.org/10.1145/2810103.2813676
http://dx.doi.org/10.14722/ndss.2015.23271
http://dl.acm.org/citation.cfm?id=2671225.2671251
http://dx.doi.org/10.1109/SP.2014.43
http://dx.doi.org/10.1109/SP.2015.51
http://dx.doi.org/10.1145/2810103.2813646
http://dx.doi.org/10.1145/2810103.2813646
http://dx.doi.org/10.1109/TC.1973.5009130
http://dl.acm.org/citation.cfm?id=2665671.2665740
http://dx.doi.org/10.1145/2694344.2694367

[56] A. A. d. Amorim, M. Dénès, N. Giannarakis, C. Hritcu, B. C. Pierce, A. Spector-
Zabusky, and A. Tolmach, “Micro-policies: Formally verified, tag-based security
monitors,” in 2015 IEEE Symposium on Security and Privacy, May 2015, pp. 813–
830. doi: 10.1109/SP.2015.55.

[57] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The RISC-v instruction
set manual, volume i: User-level ISA, version 2.0,” EECS Department, University
of California, Berkeley, May 6, 2014. [Online]. Available: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html.

[58] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovi, “The
RISC-v instruction set manual volume II: Privileged architecture version 1.7,”
EECS Department, University of California, Berkeley, May 9, 2015. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-49.html.

[59] Q. Nguyen. (Mar. 21, 2013). The RISC-v linux user’s manual, [Online]. Available:
https://www.ocf.berkeley.edu/~qmn/linux/riscv.html (visited on
05/06/2016).

[60] A. Waterman and Y. Lee. (Jun. 19, 2011). RISC-v ISA simulator, RISC-V
Foundation, [Online]. Available: http://riscv.org/software-tools/risc-
v-isa-simulator/ (visited on 05/06/2016).

[61] University of California. (2013). Riscv/riscv-pk, GitHub, [Online]. Available:
https://github.com/riscv/riscv-pk (visited on 05/06/2016).

[62] R. Cielak. (Apr. 2, 2013). Dynamic linker tricks: Using LD_preload to cheat,
inject features and investigate programs, Rafa Cielak’s blog, [Online]. Avail-
able: https : / / rafalcieslak . wordpress . com / 2013 / 04 / 02 / dynamic -
linker- tricks- using- ld_preload- to- cheat- inject- features- and-
investigate-programs/ (visited on 05/12/2016).

[63] P. Saxena, R. Sekar, and V. Puranik, “Efficient fine-grained binary instru-
mentationwith applications to taint-tracking,” in Proceedings of the 6th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, ser.
CGO ’08, New York, NY, USA: ACM, 2008, pp. 74–83, isbn: 978-1-59593-978-4.
doi: 10.1145/1356058.1356069.

[64] M.-K. Yoon, N. Salajegheh, Y. Chen, and M. Christodorescu, “Pift: Predictive
information-flow tracking,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’16, New York, NY, USA: ACM, 2016, pp. 713–725, isbn:
978-1-4503-4091-5. doi: 10.1145/2872362.2872403.

[65] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, and P. Saxena, “Data-oriented program-
ming: On the expressiveness of non-control data attacks,” in 2016 IEEE Sympo-
sium on Security and Privacy, to be published, 2016. [Online]. Available: https:
//www.comp.nus.edu.sg/~shweta24/publications/dop_oakland16.pdf.

111

http://dx.doi.org/10.1109/SP.2015.55
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html
https://www.ocf.berkeley.edu/~qmn/linux/riscv.html
http://riscv.org/software-tools/risc-v-isa-simulator/
http://riscv.org/software-tools/risc-v-isa-simulator/
https://github.com/riscv/riscv-pk
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/
http://dx.doi.org/10.1145/1356058.1356069
http://dx.doi.org/10.1145/2872362.2872403
https://www.comp.nus.edu.sg/~shweta24/publications/dop_oakland16.pdf
https://www.comp.nus.edu.sg/~shweta24/publications/dop_oakland16.pdf

[66] A. Reece. (May 2, 2013). Introduction to format string exploits, Code Ar-
cana, [Online]. Available: http://codearcana.com/posts/2013/05/02/
introduction-to-format-string-exploits.html (visited on 05/12/2016).

112

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html

	Introduction
	Background
	Code-Injection Attacks
	Example
	Defenses
	Data Execution Prevention (DEP)
	StackGuard

	Code-Reuse Attack
	Return-To-Libc Attack
	Return-Oriented Programming

	Return-Oriented Programming
	Variants of ROP Attacks
	ROP Using pop and jmp Instructions
	Jump-Oriented Programming

	Detection-Based Defenses
	ROPdefender
	kBouncer
	ROPecker
	Circumvention

	Address Space Layout Randomization (ASLR)
	Variants of ASLR
	Address Space Layout Permutation (ASLP)
	Instruction Location Randomization (ILR)
	ASLR-Guard
	Timely Address Space Randomization (TASR)

	Circumvention
	Derandomization Attack
	Just-In-Time Code Reuse
	Blind ROP
	Side Channel Attacks

	Annotated Language
	Cyclone
	CCured
	Rust

	Bound-Based Defenses
	HardBound
	SoftBound
	Baggy Bound

	Code-Pointer Integrity (CPI)
	Circumvention

	Control-Flow Integrity (CFI)
	Variants of CFI
	Compact Control Flow Integrity and Randomization (CCFIR)
	Control Flow and Code Integrity (CFCI)
	Cryptographically-Enforced Control Flow Integrity (CCFI)
	Opaque Control-Flow Integrity (O-CFI)

	Circumvention
	Coarse-Grained CFI
	Problem with Static Analysis
	Counterfeit Object-Oriented Programming (COOP)
	Control Jujutsu

	Tagged Architecture
	Capability Hardware Enhanced RISC Instructions (CHERI)
	Programmable Unit for Metadata Processing (PUMP)
	Policies
	Implementation
	Policy Correctness

	RISC-V
	Instruction Set
	Registers
	Spike
	Proxy Kernel (PK)

	TAXI
	Tagged Architecture
	Tag Unit
	Tag Cache

	Policies
	Return Address Protection
	Linearity of Return Address
	Data Blacklisting

	Performance

	P-TAXI
	Contributions
	Threat Model
	Design
	Policy
	Filter
	RISC-V Instruction Classification
	Action

	Commands
	TAGCMD
	TAGPOLICY

	Privilege Bits

	Implementation
	Application-Specific Policies
	Policy Detection
	Policy Enforcement
	User-Level Libraries
	LD_PRELOAD Environment Variable

	Sets of Policies for P-TAXI
	Base Sets of Policies
	Return Address Protection
	Memory Compartmentalization
	Taint Tracking
	Stack Garbage Collection
	Instruction Counting and Debugging

	Evaluation of P-TAXI
	Effectiveness Against Attacks
	Code-Injection Attack
	Code-Reuse Attack
	Data-Oriented Programming
	Format String Attack

	Performance
	Future Works

	P-TAXI Source Code
	Policy Definition (ptaxi_common.h)
	P-TAXI Simulator
	Header File (ptaxisim.h)
	Source File (ptaxisim.cc)

	User-level Libraries
	Basic Interface (ptaxi_user.h)
	Header File for Inclusion by User-Level Applications (ptaxi.h)

	Policy Source Code and Test Cases
	Policies
	Base Policies
	Return Address Protection
	Memory Compartmentalization & Taint Tracking (Privilege)
	Stack Garbage Collection
	Call Debugging

	Test Cases
	Return Address Protection
	Get and Set Tags
	Malloc with Memory Compartmentalization
	Basic Taint Tracking
	Stack Garbage Collection

