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Abstract
Because most data processing systems are distributed in nature, data must be transferred
between machines. Currently, Spark, a prominent such system, predetermines the strategies
for shuffling this data, but in certain situations, different shuffle strategies would improve
performance. We add functionality to track metrics about the data during the job and appro-
priately adapt the shuffle strategy. We show improvements in ShuffledRDD performance,
joins using Spark’s RDD interface, and joins in Spark SQL.
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Chapter 1

Introduction

1.1 Spark and MapReduce

New data processing systems such as Spark and MapReduce have been designed to help

process the increasing amount of data [2] [5]. Instead of relying on just one powerful

computer, these systems use many computers due to lower costs, increased scalability, and

improved fault tolerance. Because these systems are distributed in nature, they have stages

(shuffle stages) where they transfer information between computers.

1.2 Shuffle

We will use MapReduce to explain the shuffle in more detail, but the main concepts still

apply to Spark.

1.2.1 Shuffle Introduction

In the first stage of MapReduce, the map phase, the data is loaded onto different computers

and computation is performed on this data that results in a group of key-value pairs. The

final phase of MapReduce, the reduce phase, assumes that all key-value pairs with the

same key are grouped together onto the same machine. We call this property the shuffle

guarentee. Thus, the shuffle phase, an intermediate phase that the system handles internally,
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transfers key-value pairs between machines to satisfy the shuffle guarentee.

Figure 1-1 display the inner workings of the shuffle phase. For instance, a programmer

may want to count the number of letters in a distributed file. The mappers will each load

part of the distributed file and count the number of letters in their part. However, the

systems needs to aggregate the count for each letter and thus all the counts for letter A

will be sent to Reducer 1, letter B will be sent to Reducer 2, and letter C will be sent to

Reducer 3. These reducers will then promptly aggregate the counts that they receive from

the mappers.

Figure 1-1: Shuffle for Letter Count in MapReduce

This figures demonstrates a basic shuffle in MapReduce. Each mapper sends its letter
counts to different reducers such that each reducer gets the total letter count for a specific
letter.

Due to the huge amounts of keys, these systems do not transfer data on the granurality

of keys. Instead, they use partitions, which contain key-value pairs with different keys.

Programmers can pick different partitioning functions such as hash partitiong and range

partitiong to map keys to partitions. Two identical keys are guarenteed to be in the same

partition. As long as all the mappers partition their data in the same way and send each

partition with the same index to the same reducer, the system satisfies the shuffle guarentee.
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1.2.2 Shuffle Analysis

MapReduce is constrained by the slowest worker; therefore, minimizing the latency of the

slowest worker should improve performance. Balancing the amount of data sent to each

reducer helps achieve this by reducing both network latency and also the execution time

for the slowest worker. Figure 1-2, depicts a shuffle scenario that results in unbalanced

paritions. A basic heuristic is used with each reducer getting half of the mapper output

partitions. Generally, this protocol should result in balanced reducers, but as seen, Reducer

2 receives twice the amount of data as Reducer 1. However, if the system knew the sizes

of the map output partitions, it could more intelligently balance the reducers. As seen in

Figure 1-3, with the same map output partitions, the system could attain complete balance

of 60MB for each reducer.

1.3 Adaptive Scheduling of Joins

1.3.1 Join Basics

A common operation in these data processing environments is a join [3]. A join basically

combines two tables by finding intersections between keys in respective columns. For in-

stance, if we have Table 1.1 and Table 1.2 that we are trying to join based on the intersection

of Key1 and Key2, the resulting output is Table 1.3

Key1 Value1
A 1
A 1
B 3
C 4

Table 1.1: Table for Dataset 1

Key2 Value2
A 5
C 7

Table 1.2: Table for Dataset 2

15



Figure 1-2: Unbalanced Shuffle

Reducer 1 requests partitions 1 and 2 while Reducer 2 requests partitions 3 and 4. This
results in Reducer 2 receiving 80MB of data while Reducer 1 receives only 40MB of data.

Key1 Value1 Value2
A 1 5
A 2 5
C 4 7

Table 1.3: Table for Joined Data

1.3.2 Shuffle Join

The actual implementation of joins in MapReduce is very similar to the shuffle scenario

presented above. Instead of having output partitions for just one dataset, the mappers have

output partitions for two datasets and ensure that all partitions for both datasets with the

same index are sent to the same reducer. Figure 1-4 details a shuffle join. For both datasets,

all of the keys that mapped to partition 1 were sent to Reducer 1 and this happens respec-
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Figure 1-3: Balanced Shuffle

Reducer 1 requests partition 1,2, and 3 while Reducer 2 requests partition 4. This results in
both Reducer 1 and Reducer 2 receiving 60MB of data.

tively for the rest of the partitions. Because all identical keys are in the same partition and

each partition with the same index is sent to the same reducer, the system is guarenteed to

find all intersections required for the join.

1.3.3 Broadcast Join

The diagram above may seem to imply that mappers and reducers are different machines.

However, this distinction is artificial and there are no seperate machines for mappers and

reducers. Therefore, not all data in the shuffle stage is transferred over the network. In

Figure 1-1, if Mapper 1 and Reducer 1 were the same machine, the key-value pair A=7

would be read locally and not have to be received over the network.

17



Figure 1-4: Typical Shuffle Join

This figure depicts a typical shuffle join. The mappers have output partitions for two dif-
ferent datasets. They ensure that all the partitions with the same index get sent to the same
reducer. Reducer 1 received partition 1, Reducer 2 received partition 2, and Reducer 3
received partition 3.

Because transferring data over the network could be a bottleneck [4], the broadcast join

tries to increase the amount of data being read locally. For instance, in Figure 1-4, Dataset

1 is drastically bigger than Dataset 2. As seen in Figure 1-5, the broadcast join keeps the

bigger dataset in place and sends the entirety of Dataset 2 to every reducer. Even though all

of Dataset 1 stays in place, this method will still find all intersections beteen the datasets

because all partitions of Dataset 2 are sent to every reducer. The diagram shows that only

Dataset 2 is transferred and thus the network traffic is reduced from megabytes to kilobytes.

Broadcast Join is not always the optimal strategy. Because the entirety of the smaller

dataset is sent to every partition, the amount of total computation time increases. Addition-

ally, if the datasets are approximately the same size, network traffic will actually increase.

Each join strategy is the optimal strategy in different situations. Thus, it becomes impera-

tive to pick the strategy after the mappers have run and the size of the map output partitions

18



is known.

Figure 1-5: Broadcast Join

This figure depicts a Broadcast Join. As evidenced, the bigger dataset stays entirely in
place but the entirety of the smaller dataset is sent to the each reducer. This cuts network
traffic from megabytes to kilobytes.
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Chapter 2

Implementation

2.1 Spark

All of the code was implemented in Spark but could also be implemented in MapReduce

to achieve similar performance improvements. The Resilient Distributed Dataset(RDD) is

the main programming interface within Spark. An RDD can be created from data or from

another RDD. The key attributes of an RDD are its inputs, the number of partitions, and

how each of its partitions is computed based on its inputs.

Profressor Matei Zaharia added code that allowed the tracking of sizes of map output

partitions.

2.2 ShuffledRDD

The RDD we developed is a new version of ShuffledRDD, ShuffledRDD2. Its inputs are

first a shuffle dependency, which is basically a bunch of map output partitions, and second,

a number of reducers, or equivalentally the number of partitions for ShuffledRDD2. In the

regular ShuffledRDD, each of its partition naively requests a segment of map output parti-

tions as depicted in Figure 1-2. ShuffledRDD2 implements the more complicated scheme

seen in Figure 1-3. The current Spark API only allows reducer partitions to request consec-

utive map partitions. In other words, it is impossible for a ShuffledRDD2 partition to have

map output partitions 1 and 3, without having 2. For this constraint and the given number
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of reducer partitions, ShuffleRDD2 assigns map output partitions to optimally balance the

number of bytes received by each of its reduce partitions.

2.3 Joins

2.3.1 ShuffleReader Changes

In the broadcast join, the bigger RDD must stay in place. The current interface only allows

a reducer to request a specific map output partition from all of the mappers. For the bigger

RDD, the system would then have to request map output partitions from other machines,

which defeats the purpose of the broadcast join. Thus, we added the capability of requesting

a specific partition from just one mapper.

2.3.2 ShuffledJoinRDD and BroadcastJoin RDD

We implement two different type of RDDs, the ShuffledJoinRDD and the BroadcastJoin-

RDD. Both of these RDD’s take two shuffle dependencies, which remember are basically

the outputs of map stages, partitioned in a certain way. These dependencies must be parti-

tioned in the same way; otherwise, two identical keys would not map to the same partition

index.

The ShuffledJoinRDD implementation is very similar to ShuffledRDD. Instead of fetch-

ing map output partitions from just one dependency, it fetches the corresponding map out-

put partitions from both dependencies. The user specificies the number of ShuffledJoin-

RDD partitions and each paritition requests a corresponding fraction of the map output

partitions. For instance, ShuffledJoinRDD partition 1 will fetch Dataset1 Partition 1 and

Dataset2 Partition 1 from all of the workers. Once these partitions are fetched, it creates

a map with the key-value pairs of the smaller partition. Subsequently, it iterates through

the keys of the bigger partition, seeing if they are present in this map, and if so, adding the

intersection to the output.

The BroadcastJoinRDD implements the broadcast shuffle. Each BroadcastJoinRDD

partition requests one local map output partition from the bigger RDD using the new request
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capability and all of the paritions from the smaller RDD. The number of partitions is equal

to the number of partitions of the bigger input RDD. We use the location preferences api

of the RDD to ensure that the reducer partitions are placed on the same machines that

the mapper partition it is requesting was originally on, to ensure data is requested locally

instead of over the network. The system use the same strategy with the map and the iteration

as the ShuffledJoinRDD to then find the intersections.

2.3.3 Joins in Spark SQL

Many programmers and data analysts prefer not to use the RDD interface and are more

familiar with SQL; thus, Spark offers a SQL like interface or SparkSQL [1]. One popular

operation within SQL is join [2]. Although the user still writes in SQL, Spark still executes

the code using RDDs.

Because we are not just using the RDD interface and Spark automatically converts the

SQL query into a query plan, the implementation is much more complicated and thus we

only implement our optimization for sort-merge join. Although the exact semantics for how

a sort-merge join can be found here[6], the sort-merge join still must shuffle data around

as it requires that every key that could intersect should be sent to the same reducer. To

help achieve this, the sort-merge join applies an exchange operator on each of the map

outputs. These exchange operators produce ShuffleRowRDDS, which for our purposes are

equivalent to ShuffledRDDs. In the next stage, each partition in the first ShuffledRowRDD

is compared to the partition with the same index in the second ShuffledRowRDD. The only

difference between this and how the join RDDs work is pretty semantic in that instead of

one RDD requesting partitions from multiple mappers, two RDD’s repartition their data

and then another one compares them partition by partition. By default, the code performs

a shuffle join almost exactly in a manner with how the ShuffledJoinRDD works. One

ShuffleRowRDD requests the corresponding partitions from its mappers just like Figure 1-2

and the other ShuffleRowRDD does the exact same but with its dataset.

However, if only one input RDD is smaller then a user-configured threshold, the sys-

tem uses the broadcast join optimization. The bigger ShuffledRowRDD will be exactly
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like its parent. We achieve this by setting number of partitions for the ShuffledRowRDD

to be equal to its parent and then having each partition request a specific partition from

the parent using the new request api and set its location preference accordingly. The other

ShuffledRowRDD will have the same number of partitions as the bigger ShuffledRowRDD

with each partition containing the entirety of the smaller input RDD. The correctness guar-

entees are the same as the BroadcastJoinRDDs.
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Chapter 3

Experiments

3.1 Setup

All jobs were run using the Spark interactive shell. All jobs were run ten times, with the

last five times being averaged. All local jobs were run on a 2013 MacbookPro with 8GB of

RAM and 2 cores. All distributed jobs were run using the spark-ec2 launch scripts. They

were run on four AWS m1.large machines in the us west zone.

3.2 Regular Shuffle

We compared the performance of ShuffledRDD vs ShuffledRDD2 both on a local machine

and on a distributed cluster.

For the local machine test, we created four mapper partitions. One mapper partition

was three times the size of the other mapper partitions. We created two reducer partitions.

For the the regular ShuffledRDD, each reducer got two mapper patitions, which results in

one reducer partition having twice the amount of data. For the ShuffledRDD2, one reducer

requests the three smaller map partitions while the other received just the bigger partition,

resulting in balanced partitions. As seen in Figure 3-1, the ShuffledRDD2 performs better

as it has more balanced reducers.

For the distributed test, we created 64 mapper partitions. One mapper patition was

significantly bigger and equal to 8 regular mapper partitions. We had 8 reducers. In the
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Figure 3-1: ShuffledRDD vs ShuffledRDD2

This figure measures the local machine performance of joins completed using the Shuffle-
dRDD versus the ShuffledRDD2. The ShuffledRDD is in red while the ShuffledRDD2 is
in blue. In the ShuffledRDD, Reducer 1 gets twice the amount of data as Reducer 2, but in
the ShuffledRDD2, Reducer 2 receives the same amount of data. The x axis indicates how
much data was shuffled.

ShuffledRDD, one of these reducers approximately had twice the amount of data as the

others, but in the ShuffledRDD2 they were all balanced. Figure 3-2 shows that just like in

the local tests, ShuffledRDD2 performs better in the distributed tests.

3.3 Broadcast and ShuffleJoinRDD

For this test, we created a bigger RDD with key-value pairs of (x, 2 * x) with x ranging

from 1 to 100 milllion. As seen in the Figure 3-3, we then then manipulated the number of

key-value pairs of the smaller RDD, with each key value pairs being (x,x). We measured the

performance for the ShuffleJoinRDD and BroadcastJoinRDD on a the distributed cluster.

As expected, initially the BroadcastJoinRDD performs better as it requires significantly

less network traffic. However, it soon becomes slower than the ShuffleJoinRDD as the
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Figure 3-2: ShuffledRDD vs ShuffledRDD2

This figure measures the performance of joins completed using the ShuffledRDD versus
the ShuffledRDD2. The ShuffledRDD is in red while the ShuffledRDD2 is in blue. We had
eight reducers. In the ShuffledRDD, one reducer gets twice the amount of data as the other
reducers, but in the ShuffledRDD2 they all receive the same amount of data. The x axis
indicates how much data was shuffled.

smaller input RDD increases. Increasing the smaller RDD does not dramatically influence

the ShuffleJoinRDD as it is more bottlenecked by the bigger RDD and just sends pieces

of the smaller RDD to each partition. However, this increase significantly influences the

BroadcastJoinRDD because it transmits the entirety of the smaller RDD to every partition.

3.4 Spark SQL Join

We evaluated the performance of the sort-merge join using the broadcast strategy and the

shuffle strategy in Spark SQL on a distributed cluster. For this test, we created a bigger

RDD with key-value pairs of (x, 2 * x) with x ranging from 1 to billlion. As seen in the

Figure 3-4, we then then manipulated the number of key-value pairs of the smaller RDD,

with each key value pairs being (x,x). We then converted these into dataframes, the main
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Figure 3-3: BroadcastJoinRDD vs ShuffleJoinRDD

This figure measures the performance of joins completed using the BroadcastJoinRDD
versus the ShuffleJoinRDD. The BroadcastJoinRDD is in blue while the ShuffleJoinRDD
is in red. The bigger RDD is fixed with 100 million key-value pairs, but the number of
key-value pairs of the small RDD is manipulated along the x axis.

interface for Spark SQL, and then used Spark SQL to join them. We used 30 partitions for

both the shufle and the broadcast tests and turned off map output compression. Initially,

the broadcast performs better as it requires significantly less network traffic. However, it

soon becomes slower then the shuffle as the smaller input RDD increases just like what

happened with the join RDDs. Increasing the smaller input dataset is way worse in the

broadcast than the shuffle because the broadcast sends its entirety to each partition while

the shuffle does not. Thus, if the input dataset is sufficiently small, the shuffle performs

better, but otherwise the broadcast performs better.
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Figure 3-4: Broadcast vs Shuffle in Spark SQL

This figure measures the performance of sort-merge join in Spark SQL. The broadcast
strategy is in blue while the shuffle join is in red. The bigger RDD is fixed with 1 billion
key-value pairs, but the number of key-value pairs of the small RDD is manipulated along
the x axis.
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Chapter 4

Future Research and Conclusion

4.1 Future Research

4.1.1 Extensions of Shuffle

ShuffledRDD2 is limited in a couple ways. First, each reducer can fetch multiple partitions,

but these partitions are internally fetched individually. Batching these partition requests

together could help reduce overhead. Second, the current version only supports inputing the

number of reducers. Users could prefer an interface where they input the maximum number

of bytes a reducer can have and then the system automatically determines the number of

reducers.

4.1.2 Extensions of Join

First, we implement our changes in the exchange framework to make the easiest possible

change to allow for our optmization, but we could conceivably do this in a cleaner manner.

Second, users have to statically pass in thresholds that determine when to switch be-

tween broadcast and shuffle joins. The system should automatically determine this based

on factors such as the size of the input RDDs, the network bandwith, and the memory of

each machine.

Third, we either broadcast an entire RDD or default to the shuffle pattern. However, if

RDD1 has a big partition 1 and a small partition 2 and RDD2 has a small partition 1 and
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big partition 2, the systems performs a shuffle. However, the system could save time by

having RDD1 broadcast its partition 1 and RDD2 broadcast its partition 2.

Fourth, in the broadcast join in Spark SQL, each reducer partition requests the entirety

of its input. This request is made over the network for each partition, but generally multiple

reducer partitions are on the same machine. Thus, a request should be made once per

machine and stored in memory for the other partitions to use.

4.2 Conclusion

In conclusion, we show that improvements can be made to the shuffle stage of Spark. In-

stead of predetermining our shuffle strategy, we can adapt it based on the output of the

mappers. We show that these stategies improve the regular shuffle RDD, joins with RDDs,

and joins in Spark SQL. Although we have shown improvements, the work can be extended

with simple changes to further improve performance.
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