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Abstract

Communication is the key to effective teamwork regardless of whether the team mem-
bers are humans or machines. Much of the communication that makes human teams
so effective is non-verbal; they are able to recognize the actions that the other team
members are performing and take their own actions in order to assist. A robotic
team member should be able to make the same inferences, observing the state of the
environment and inferring what actions are being taken.

In this thesis I introduce a novel approach to the combined problem of activity
recognition and propositional monitoring. This approach breaks down the problem
into smaller sub-tasks. First, the raw sensor input is parsed into simple, easy to
understand primitive semantic relationships known as qualitative spatial relations
(QSRs). These primitives are then combined to estimate the state of the world in the
same language used by most planners, planning domain definition language (PDDL)
propositions. Both the primitives and propositions are combined to infer the status
of the actions that the human is taking. I describe an algorithm for solving each of
these smaller problems and describe the modeling process for a variety of tasks from
an abstracted electronic component assembly (ECA) scenario. I implemented this
scenario on a robotic testbed and collected data of a human performing the example
actions.
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Chapter 1

Introduction

Processes in manufacturing tend to involve either groups of skilled workers or groups

of machines. Even when more advanced robots are used on an assembly line, they

tend to be cordoned off from humans. In recent years, there has been a push to

facilitate teams of men and machines working in tandem. Communication between

the two agents is key to ensure that these teams are effective. The robot needs to be

able to observe the environment and the human, infer what is going on and how the

current state reflects the human’s goals, and choose actions that advance these goals.

In human teams, a large amount of this communication is non-verbal. One person

sees that the other is reaching towards a hammer and infers that they are going to

pick it up. This thesis explores ways to replicate this non-verbal communication.

1.1 Domain Example

We define a simple example manufacturing scenario that will be used throughout this

work to illustrate various points. In this scenario, a human and robot work together

to perform electronic component assembly (ECA). To complete this task, four com-

ponents must be placed, cleaned and then soldered into place. Each component starts

in its designated bin and must be placed at its designated target. Two tools are used

to facilitate the assembly process: a cleaner and a solderer. These both start in their

designated bins. We label the components generically as red, blue, yellow, and green
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rather than specifying what part they represent. We label each of the bins and targets

with the component or tool it is associated with.

Five actions are available to the team: pick, place, clean, solder, and pass. In

the pick action, one of the agents picks up an object from a designated location. In

the place action, one of the agents places the object it is currently holding at the

designated location. In the clean action, one of the agents uses the cleaner tool to

clean the specified location. In the solder action, the human uses the solder tool to

solder the component in the specified location. We decided that the robot could not

solder, in order to give the human a specialized job. Finally, in the pass action, the

robot holds out an object for the human to take and the human collects it from them.

Using this domain, we can illustrate the kinds of inferences used in this thesis for

monitoring propositions and activities. We observe that the hand and the cleaner are

in the same area and are moving together and from this we infer that the hand is

holding the cleaner. We also observe that no objects are overlapping the red target

and from this we observe that the red target is accessible. Given that the hand

is holding the cleaner and the red target is accessible, we infer that the conditions

required for the clean action to start have been met, however we have not observed

any additional behaviors that lead us to believe that the clean action is starting. Later

we observe that the hand and the cleaner are now moving towards the red target and

are close to it. This additional behavior in conjunction with the conditions being

observed, leads us to infer that the human has started cleaning the red target.

1.2 Problem Overview

In this work, we define and develop the Logical Activity Recognition System (LCARS)

which is designed to recognize human actions and determine the state of certain

features of the environment based on continuous sensor data. We split this problem

into two sub-problems:

∙ Estimate discrete primitives from continuous sensor data

16



∙ Estimate predicates and actions from discrete primitives

Discrete primitives refer to finite domain discrete relations between two objects

such as “the block is above the table” or “the tool is in the target area” They are

intended as relations that are simple to calculate given perfect information, such as

whether two regions overlap, and are meant to be combined to build other, more

complicated relationships. This broad definition allows for the creation of domain

specific primitives but LCARS is primarily designed to operate on a general set of

primitives known as qualitative spatial relations (QSRs). Discrete primitives and

QSRs are discussed in more detail in Chapter 3.

Predicates and actions are defined by a planning domain definition language

(PDDL) model [16]. A PDDL model consists of a domain file and a problem file.

The domain file defines the set predicates and actions for your system. The problem

file gives an initial set of grounded predicates and an intended goal state.

The predicates that LCARS uses must either be in the form of discrete primitives,

second order predicates (which can be defined in terms combinations of discrete prim-

itives), or they can be predicates that are the results of an action. An example second

order proposition is (holding cleaner hand). This proposition can be inferred by

the state of the discrete primitives, specifically “the cleaner is partially overlapping

the hand” and “the cleaner and the hand are stable” meaning that they are in the

same area and moving together.

For the purposes of monitoring PDDL actions, we first impose the restriction that

the actions we wish to monitor must be defined as durative actions as defined in

PDDL 2.1 [16]. Version 2.1 was specifically selected as it was the first version of

PDDL to include actions with durations and it is still supported by many off the

shelf planners. There is nothing in LCARS that would prevent using a later version

of PDDL. Predicates and actions are discussed in detail in Chapter 4.
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1.3 Approach Overview

This section discusses the architecture of LCARS and then describes our approach to

solving the two main estimation problems. It also introduces our approach to learning

some of the models required for estimation.

1.3.1 Architecture

LCARS consists of two key pieces: the discrete primitive monitor and the predicate

and action monitor. Each of these serves a different and necessary role in the over-

all LCARS system. The system architecture is shown in Figure 1-1. The discrete

primitive monitor is responsible for estimating the state of the discrete primitives. It

requires a model of each of the primitive relations that it is responsible for monitor-

ing. These models take the form of probabilistic hybrid automata (PHAs) which are

combined into one overall concurrent probabilistic hybrid automaton (cPHA). At run

time, the discrete primitive monitor takes as input the continuous sensor data that

serves as the observations for each of the discrete primitives and outputs the belief

state for each of the discrete primitives. This belief state is then fed as input to the

predicate and action monitor.

The predicate and action monitor takes the belief state of each of the discrete

primitives as input and outputs the belief state of the propositions and actions for

the particular scenario at hand. In order to do this, LCARS requires a PDDL domain

file, a PDDL problem file and a timed probabilistic concurrent constraint automata

(tPCCA) that represents the overall action and predicate structure. At run time, the

predicate and activity monitor takes as input the belief state of each of the discrete

primitives and the status of any actions it is not monitoring but are still relevent to

the predicates and actions that it is monitoring. In the ECA scenario, these actions

are the actions that the robot is taking. LCARS does not monitor their status directly

but still needs to update its representation of any predicates that depend on those

actions. The predicate and action monitor outputs the belief state of the propositions

and actions. These are given to an external executive which also supplies the status

18



of the external actions. The external executive manages the execution of actions by

the robotic partner and as such needs to be informed of the state of the world and of

the state of the human actions.

Figure 1-1: LCARS System Architecture

LCARS does not exist in a vacuum. It is designed to be integrated with a larger

system and serves as the perceptual bridge between the human and the rest of the

system. The predicate and action status is passed to an executive, which uses that

information to dispatch actions on a robotic system that assist the human. One such

executive is Pike [24]. Pike performs plan level monitoring and plan execution. It

takes the proposition status as input, which LCARS can provide. It also issues com-

mands to the robot and tracks the status of those actions, providing that information

to LCARS.

1.3.2 Discrete Primitive Monitor

In order to intuitively model relationships between objects, we use discrete primitives.

Discrete Primitives are intended to be simple, easy to express and easy to understand

qualitative relationships between objects. For example, the hand is moving with a

component or the hand is overlapping a component. These are built up into more

complex relationships, specifically grounded propositions. As an example, when the

hand is moving with an object and is overlapping it, it can be inferred that the hand

is holding that object.
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These primitives take the form of QSRs but we also allow for domain specific

primitives to be defined. QSRs allow for an expressive ontology of semantic relation-

ships that also have well defined rules for transition and commutation. The QSRs

used in this thesis pull from the Region Connection Calculus (RCC) [14] and from

the Qualitative Trajectory Calculus (QTC) [40]. Using the example above, the hand

moving with the component becomes the hand and the component are stable and

the hand is overlapping the component becomes the hand is partially occluding the

component. We enhance this set by defining our own QSRs based on relative position

and orientation.

We model primitives using a cPHA representation. cPHAs allow modeling both

the continuous and discrete behavior of a system. In this case, the discrete portion

consists of modes that represent the values that a particular primitive holds. For ex-

ample, in the version of RCC used here, two objects can either be discrete from (DF),

partially occluding (PO), proper part of (PPO) or inverse proper part of (iPPO) each

other. Roughly, these correspond to the two regions being completely separate (DF),

overlapping (PO), and one being completely contained within the other (PPO/iPPO).

The cPHA model of an RCC relationship contains one discrete mode for each of these

possible statuses. The continuous portion of the cPHA consists of the positions and

orientations of each of the objects. Discrete primitives are discussed in more detail

in Chapter 3.

1.3.3 Predicate and Action Monitor

In order to model predicates and actions, we use a model formalism called timed

probabilistic concurrent constraint automata (tPCCA). tPCCAs are a class of models

derived from work in probabilistic automata and timed automata [22]. They are a

direct extension of probabilistic concurrent constraint automata (PCCA) [43, 44] with

the added inclusion of clock variables. They are designed to allow a rich expression of

durative actions and discrete predicates. tPCCA models are similar to cPHA models

but differ in several ways. First, TCCA models do not allow for continuous variables.

Second, they do not model the evolution of the state variables over time, with the
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exception of a mode variable. Thirdly, they include a clock variable through which

the mode transitions can depend on time.

Not all propositions can be directly observed through sensor readings. For in-

stance, there is no way to directly infer whether a location is clean from the position

of the cleaner and the targets. This contrasts with other propositions that can be

inferred from the sensor data, such as whether or not a particular component is at

a location. The status of the propositions that are not directly inferred from the

sensors are instead inferred from the actions that have been executed. A location is

considered to be clean after a clean action has been taken at that location.

We model the predicates by enumerating the grounded propositions that can be

observed for a particular problem and indicating which of these can be observed and

which are only the results of actions. We group those that can be observed into sets

of propositions in which only one can hold at any time. For example, only one object

can be at a particular location at one time and if no objects are at that location, it is

considered empty. Because only one of the at predicates can hold at once, they would

be grouped together. We then define one tPCA for each of these mutually exclusive

sets with the mode variables in each case being one of the propositions. For those

propositions that cannot be lumped into a group, we define a tPCA model where the

discrete modes are true and false.

Actions are modeled using tPCAs as well with one tPCA per grounded action

that LCARS is going to monitor. The tPCA for each of the actions is in fact time,

with the timer being used to monitor the time bounds of the durative action. The

modes in the action tPCA are used to indicate its status with the complete list of

modes being: ready, executing, finished, failed, and stopped. The ready, executing, and

finished are used to indicate the nominal stages of an action executing. The failed

mode is used when certain failure conditions are met, notably when the time bound

is exceeded. The stopped mode is triggered by the executive and is not normally

used. The transitions in the action tPCA are based on the conditions defined in the

PDDL domain and additional signaling behaviors. The signaling behaviors are what

indicate that the action has actually started instead of it simply being able to start.
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These are defined as a logical formula over predicates and discrete primitives. As an

example, the clean action can when the hand is holding the cleaner and the target

location is accessible but that alone does not indicate that it has actually started.

Instead, the clean action starts when we observe that the hand and cleaner are moving

towards and arriving at a particular target area. These are encoded as part of the

guard condition on the transition between the ready and executing modes. Note that

the construction of the tPCCA is currently performed manually though most of it

could be learned and automated. Belief state update is then performed for the overall

tPCCA that covers both the predicates and actions for a system.

1.3.4 Model Learning

In this thesis, we also show that it is possible to learn cPHA models with a models

with a slightly limited formulation, allowing us to learn the discrete primitive models

from data. We use an algorithm first introduced in [34] which learns guard condi-

tions using multi-class classifiers from machine learning literature. Guard conditions

describe regions within the continuous state space where a transition from one mode

to another is likely. We found that the unsupervised methods presented in that work

do not always work well in practice, particularly when the composition of the modes

is important. We extend the method to several forms of supervised learning and use

this to learn models for several of the discrete primitives used in this work.

1.4 Previous Work

1.4.1 Qualitative Spatial Reasoning

Qualitative spatial reasoning is a subfield of qualitative reasoning that specifically

examines relations between objects in space. Much of the work has been on devel-

oping calculi that allow for rich representation and robust reasoning. This sort of

reasoning has been applied in a wide range of application areas including Geographic

Information Systems [12], biology [13] and robotic navigation [23, 25].
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There are a large number of calculi that exist and many have different representa-

tion systems. Most of these focus on one particular aspect of spatial relations such as

topology, direction, position, or shape. In this thesis, we wanted to use a set of calculi

that together reflect several of these aspects and allow for reasoning in 3D space. We

started with two of the more influential QSR sets, namely the Region Connection

Calculus (RCC) [14] and Qualitative Trajectory Calculus (QTC) [40]. From there,

we investigated representations for orientations and positions.

One of the earliest representations of relative orientation was developed by Schlieder

[35]. This represents the relative orientation of line segments as clockwise, counter-

clockwise and co-linear (parallel) and builds from there. This representation was

extended into the STAR calculus which extended this to an arbitrary number of sec-

tors [33]. Another representation is the Rectangle Algebra (RA) [2] which represents

objects as bounding rectangles and describes relative rotations. Cardinal Direction

Calculus (CDC) [19, 37] is similar to RA except that only the reference object is rep-

resented by a bounding rectangle. These two representations are complicated though,

consisting of 169 and 511 basic relations respectively. All of these relations represent

space as two dimensional so we could not use them directly.

Reasoning about QSRs has typically taken the form of a constraint satisfaction

problem (CSP). A particular calculus provides a set of algebraic constraints and the

current known state of the world can then be input and any hidden states inferred

[4, 5]. In practice, it is necessary to assume that the knowledge of the world is

imprecise and that the QSRs need to be estimated instead. This has been performed in

a number of ways. RCC has been monitored using Hidden Markhov Models (HMMs)

[38], probabilistic latent semantic analysis [3].

1.4.2 Activity Recognition and Propositional Monitoring

There are a wide variety of approaches to activity recognition and propositional mon-

itoring. On the activity recognition side, there are many approaches to go from sensor

data to activity recognition. These include using simple machine learning classifiers

[32, 42], Bayesian networks [46], and recognizing temporal patterns [29, 45]. Another
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recent approach combines the temporal pattern recognition and machine learning

approaches and achieves more accurate recognition than either of those alone [26].

However, all of these approaches go directly from sensor inputs to activity status and

do not utilize any of the plan level knowledge available based on what actions were

available to execute at any given time.

A subfield of activity monitoring, known as workflow monitoring, uses sensor data

to estimate what action is being performed, but knowledge of the sequence is also

incorporated. Pody et al. use hierarchical-HMMs for monitoring operating rooms [28].

Pinhanez and Bobick use Past-Now-Future networks [31] which use Allen’s temporal

relations [1] to express ordering and allowed parallelism between events. Behera,

Cohn, and Hogg combine QSR monitoring with workflow monitoring, estimating the

status of spatial relations, using those to estimate the status of simple events, and

using those to estimate the status of more complex events. They use probabilistic

latent semantic analysis (pLSA) to estimate the QSRs and HMMs to estimate the

activities [3]. These approaches tend to enforce a somewhat strict sequence on the

activities, limiting the order in which they can be performed.

1.5 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 provides formal definitions

of the problem that LCARS is solving as well as the models that are used throughout

the rest of the work. Chapter 3 discusses discrete relations in more detail. Chapter

4 discusses the implementation of propositional and activity monitoring. Chapter

5 discusses how some of the models used can be learned. Chapter 6 discusses the

implementation of the test system, the testbed that was used to assess it, and the

experimentation that was performed as well as presenting and discussing the results

of the experiments. Finally, Chapter 7 summarizes the contributions of this work and

presents avenues for future work.
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Chapter 2

Problem Statement

In this chapter, we formally define the inputs and outputs to LCARS, as introduced

in Section 1.3. We begin by giving a formal definition of the problem that LCARS is

solving and then define the model types that LCARS takes as input.

2.1 Problem Definition

As illustrated in the system architecture shown in Figure 1-1, LCARS consists of two

main parts: the discrete primitive monitor and the predicate and activity monitor.

Let us define the behavior of these in turn.

2.1.1 Discrete Primitive Monitor

The discrete primitive monitor is designed to estimate the current status of the dis-

crete primitives for a particular scenario. It operates on a cPHA model of the entire

set of relations for a particular run. Formally, the problem that the discrete primitive

monitor is designed to solve is as follows:

Definition 2.1 (Discrete Primitive Monitor Problem). Given a set of discrete prim-

itives modeled as a cPHA 𝒞𝒜, an a priori distribution of the system state (continuous

and discrete) 𝑝(x), and the observations of the system y𝑐, estimate the hybrid state

of the system x̂.
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The cPHA formalism is defined in Section 2.2. In our case, the observations of

the system are the continuous sensor readings. The specific sensor readings depend

on the set of primitives being monitored.

2.1.2 Predicate and Activity Monitor

The predicate and activity monitor is designed to estimate the current status of the

grounded PDDL propositions and the grounded actions. It operates on a tPCCA

model of the set of propositions and actions that are possible for a particular PDDL

domain and problem. Formally, the problem that the monitor is designed to solve is

as follows:

Definition 2.2 (Predicate and Activity Monitor Problem). Given a set of proposi-

tions and actions defined as a tPCCA, an a priori distribution of the system state

𝑝(x0), the observations of the system 𝑦<0,𝑡>, and the commands from the executive

𝜇<0,𝑡>, iteratively calculate the belief state 𝑃 (𝑥𝑡+1
𝑖 |𝑦<0,𝑡>, 𝜇<0,𝑡>).

Where the state 𝑥𝑖 is a full assignment to the mode variables 𝑥𝑖 ∈ Σ𝑚, 𝑦<0,𝑡> is

the series of observations from time 0 to time t and 𝜇<0,𝑡> is the series of commands

from time 0 to time t. In this case, the modes are the predicate and action statuses,

the observations are the discrete primitive statuses and the commands are the robot

action statuses and stop commands from the executive.

2.2 Concurrent Probabilistic Hybrid Automata

2.2.1 PHA Formalism

A cPHA model is made up of several PHA models. Each PHA contains several

discrete-time difference equations for each of several discrete modes. It also includes

probabilistic transitions and constraints as to when those transitions can occur. The

definition given here is based on the original definition by The definition of PHAs used

in this work is the original definition by Hofbaur and Williams [21]. Formally, a prob-

abilistic hybrid automaton 𝐴 is defined as the tuple 𝐴𝑎 = ⟨𝑥𝑎, 𝑤𝑎, 𝐹𝑎, 𝑇𝑎, 𝑋
𝑑
𝑎 , 𝑈𝑑

𝑎 , 𝑇 𝑠
𝑎 ⟩.
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∙ 𝑥𝑎 denotes the hybrid state, 𝑥𝑎 = {𝑥𝑑
𝑎} ∪ 𝑥𝑐

𝑎. 𝑥𝑑
𝑎 is the finite domain discrete

mode variable with the domain of 𝑋𝑑
𝑎 . 𝑥𝑐 is the set of continuous state variables

𝑥𝑐
𝑎 = {𝑥𝑐1

𝑎 , . . . , 𝑥𝑐𝑛
𝑎 } with the domain 𝑅𝑛.

∙ 𝑤𝑎 is the set of input output variables 𝑤𝑎 = 𝑢𝑑
𝑎∪𝑢𝑐

𝑎∪𝑦𝑐
𝑎. 𝑢𝑑

𝑎 refers to the discrete

input variables 𝑢𝑑
𝑎 = {𝑢𝑑1

𝑎 , . . . , 𝑢𝑑𝑚𝑑
𝑎 } which has a domain of 𝑈𝑑

𝑎 . 𝑢𝑐
𝑎 refers to

the set of continuous input variables 𝑢𝑐
𝑎 = {𝑢𝑐1

𝑎 , . . . , 𝑢𝑐𝑚𝑐
𝑎 } which has a domain

of 𝑅𝑚𝑐 . Finally, the continuous output variables are 𝑦𝑐
𝑎 = {𝑦𝑐1

𝑎 , . . . , 𝑦
𝑐𝑚𝑦
𝑎 }. This

has a domain of 𝑅𝑚𝑦 .

∙ 𝐹𝑎 : 𝑋𝑑
𝑎 → 𝐹𝐷𝐸

𝑎 ∪𝐹𝐴𝐸
𝑎 defines the continuous evolution in terms of discrete dif-

ference equations 𝐹𝐷𝐸
𝑎 and algebraic equations 𝐹𝐴𝐸

𝑎 . 𝑇𝑠 indicates the sampling

period for the equations.

∙ The finite set of transitions 𝑇𝑎 models the probabilistic changes in the discrete

mode. Each transition is written in the form of a tuple ⟨𝜏 𝑖
𝑎, 𝑔

𝑖
𝑎⟩ ∈ 𝑇𝑎. Each of

these functions is associated with the guard condition 𝑔𝑖
𝑎 and a probability mass

function over the modes.

The full concurrent probabilistic hybrid automaton is written as a set of PHAs.

It also defines the noise function in the form of additive Gaussian processes. These

disturbances are used to model both process noise and sensor noise.

2.2.2 cPHA Formalism

A cPHA is formally defined by the tuple ⟨𝐴, 𝑢, 𝑦𝑐, 𝑆⟩.

∙ 𝐴 = {𝐴1, 𝐴2, . . . 𝐴𝑛} is the set of 𝑛 PHAs that are contained within the overall

cPHA.

∙ 𝑢 = 𝑢𝑑 ∪ 𝑢𝑐 is the set of inputs and command variables respectively. Note that

this is for the overall automaton and not each individual PHA. Because the

PHAs can be interconnected, the output of one PHA might be the input of

another PHA. Those variables are not included in this set.
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∙ 𝑦𝑐 ⊆ 𝑦𝑐1 ∪ 𝑦𝑐2 ∪ . . . ∪ 𝑦𝑐𝑛 is the set of outputs of the overall cPHA.

∙ 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} is a series of constraints that indicate how the set of PHAs

in 𝐴 are connected.

2.3 Timed Probabilistic Concurrent Constraint Au-

tomata

2.3.1 tPCA Formalism

tPCCA models are made up of a set of timed probabilistic constraint automata

(tPCA) operating concurrently. We first describe a single automaton and then

the combination of multiple. A tPCA for a component “a” is defined by the tuple

𝐴𝑎 = ⟨Π𝑎, 𝑀𝑎, 𝑇𝑎, 𝑃𝑇𝑎⟩:

∙ Π𝑎 = Π𝑚
𝑎 ∪ Π𝑡

𝑎 ∪ Π𝑟
𝑎 is a set of discrete variables describing component “a”. Π𝑚

𝑎

is a singleton set containing the mode variable 𝑥𝑎 = Π𝑚
𝑎 whose domain 𝐷(𝑥𝑎)

is the finite set of discrete modes for 𝐴𝑎. Π𝑡
𝑎 is the unique clock variable 𝑡𝑎 for

𝐴𝑎 whose domain 𝐷(𝑡𝑎) is the set of positive integers. Π𝑟
𝑎 is the set of attribute

variables which includes any inputs, outputs, guard variables, control variables,

and any other discrete variables that define the behavior of the component.

The attribute variable set has a finite domain 𝐷(𝜋𝑟
𝑎). Σ𝑎 is the set of all partial

assignments over Π𝑎 which represents a full assignment to Π𝑚
𝑎 ∪ Π𝑟

𝑎 and the

state space Σ𝑥𝑎
𝑎 = Σ𝑎 ⇓𝑥𝑎 is the projection of Σ𝑎 onto the mode variable 𝑥𝑎.

∙ 𝑀𝑎 : 𝜎𝑥𝑎
𝑎 → 𝐶(Σ𝑟

𝑎) is a mapping of each mode assignment to a finite domain

constraint 𝑐(𝑥𝑎 = 𝑣𝑎) ∈ 𝐶(Σ𝑟
𝑎, Π𝑡

𝑎), where 𝐶(Π𝑟
𝑎, Π𝑡

𝑎) is a set of constraints over

Π𝑡
𝑎∪Π𝑟

𝑎. These are known as modal constraints. These constraints are expressed

in terms of propositions with equality, 𝜆 ::= 𝑡𝑟𝑢𝑒|𝑓𝑎𝑙𝑠𝑒|(𝑙0 = 𝑣)|(𝑢 = 𝑣)|(𝑡 op
𝑟)|¬𝜆1|𝜆1 ∧ 𝜆2|𝜆1 ∨ 𝜆2. The allowed clock operations (𝑡 op 𝑟) are 𝑐 < 𝑟, 𝑐 ≤ 𝑟,

𝑐 > 𝑟 and 𝑐 ≥ 𝑟.
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∙ 𝑇𝑎 : Σ𝑥𝑎
𝑎 × 𝐶(Π𝑥𝑎

𝑎 → Σ𝑥𝑎
𝑎 ) defines the set of transition functions. For each

transition function 𝜏𝑎 ∈ 𝑇𝑎 we define a guard condition 𝑔𝑎 ∈ 𝐶(Σ𝑟
𝑎). The

transition functions therefore specify a mode assignment (𝑥𝑎 = 𝑣′𝑎) ∈ Σ𝑥𝑎
𝑎 that

could be reached at time 𝑡 + 1.

∙ 𝑃𝑇𝑎 : 𝑇𝑎(𝑥𝑎 = 𝑣𝑎, 𝑔𝑎) → 𝑅[0, 1] is the transition probability distribution. It

defines a probability distribution across all the transitions into the possible

target modes. The target modes are defined by the transition functions 𝑇𝑎(𝑥𝑎 =

𝑣𝑎, 𝑔𝑎). A probability distribution must be defined for each mode assignment

and each guard.

2.3.2 tPCCA Formalism

An entire plant 𝑃 is a set of tPCA models, formally defined by the tuple 𝑃 =

⟨𝐴, Π, 𝑄⟩:

∙ 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} is the set of tPCA that make up the 𝑛 components of the

plant.

∙ Π = ∪𝑎=1...𝑛Π𝑎 is the set of all variables. The variables are partitioned into

various smaller sets. These are mode variables Σ𝑚 = ∪𝑎=1...𝑛Π𝑚
𝑎 , clock variables

Σ𝑚 = ∪𝑎=1...𝑛Π𝑚
𝑎 , control variables, Σ𝑚 = ∪𝑎=1...𝑛Π𝑚

𝑎 , observation variables

Σ𝑚 = ∪𝑎=1...𝑛Π𝑚
𝑎 , and dependent variables Σ𝑚 = ∪𝑎=1...𝑛Π𝑚

𝑎 . We also define

a set of full assignments over the different types of variables Σ𝑢, Σ𝑜, and Σ𝑑

mapping to Π𝑢, Π𝑜 and Π𝑑 respectively.

∙ 𝑄 ⊂ 𝐶(Π) is the set of finite domain constraints that capture the interconnec-

tions between the various automata.
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Chapter 3

Monitoring Discrete Primitives

In the previous chapter, we examined the overall structure of LCARS and gave a

formal definition of the various components. In this chapter, we give more detail

on how the discrete primitives are modeled. Discrete primitives are simple discrete

relationships between objects that express part of the state of the two objects in a

semantically significant way. For instance “The cleaner is above the red target”. These

relationships primarily take the form of Qualitative Spatial Relations (QSRs), though

other kinds of relationships could be integrated into LCARS.

QSRs are often, though far from always, modeled using HMMs [38]. We instead

use a PHA representation. This allows us to directly map the continuous inequality

constraints that define each discrete primitive to the transition guards of the PHA.

We then perform belief state update over the entire cPHA to estimate the current

status of each of the primitives.

This chapter defines the set of QSRs used in this thesis. Each of the QSRs are

defined in terms of their continuous inequality constraints. The mapping of these

inequality constraints to a PHA definition is then discussed. It also discusses the axis

conventions used throughout this work.

31



3.1 Axis Conventions

In this work, we use the axis conventions and colorations used in the Robot Operating

System (ROS) which is similar to the conventions used in other robotics sources. The

X axis is defined as pointing forward and is always depicted in red. The Y axis is

defined as pointing left and is always depicted in green. The Z axis, in order to

maintain a right hand coordinate system, is defined as pointing up and is always

depicted in blue. An example coordinate system is shown in Figure 3-1.

Figure 3-1: Labeled Axes

3.2 Qualitative Spatial Relations (QSRs)

Qualitative Spatial Relations (QSRs) are meant as a way to represent problems in-

tuitively and reason about them in a manner that is intuitive to humans. When

describing the location of an object in space, people do not give a precise numerical

description but rather use qualitative relations such as “the chair is in front of the

desk” or “the table is in the kitchen.” Because humans naturally use these sorts of

descriptions, it can be useful to reason on this level and recognize the current status

of the various relations.
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There are many different kinds of relations and many different formalisms for

expressing them. It is important to be able to express a wide variety of different

situations while still maintaining the ability to observe the relations and their semantic

significance. Many of the calculi that have been developed have a rich set of relations

but are not able to easily be described with words.

For this work, we have defined a set of qualitative spatial relations that we believe

are able to be monitored and cover a wide range of possible applications. These are

three-dimensional relations and fall under the broad categories of Cartesian relations

and rotational relations. Cartesian relations deal with relative positions and rotational

relations deal with relative orientations.

3.2.1 Cartesian Relations

Region Connection Calculus

Region Connection Calculus (RCC) is used to describe how two regions of space

overlap. For this work we are using RCC5 [14] which contains 5 relations: discrete

from (DF), partially occluding (PO), proper part (PP), inverse proper part (iPP), and

equals (EQ). For the purposes of monitoring, PP and iPP are equivalent, as region

a being a proper part of region b implies that region b is an inverse proper part of

region a. They thus identical, monitoring for region a being a proper part of region

b implies monitoring b being an inverse proper part of a. given the very specific

nature of EQ and the relative difficulty of estimating it using noisy sensors, we have

removed it. Excepting the trivial solution of region a equaling region b, two regions

being equal requires a very specific set of circumstances. The two regions must be

precisely the same size and shape, they must be in precisely the position, and their

orientations must be aligned in some way. With noisy sensors, it is challenging to

state with certainty that the positions and orientations of two regions match in that

way. The set of relations that we are monitoring (DF, PO, PP, and iPP) are shown

in Figure 3-2.

This can be defined as a set of inequality constraints over the relative distance.
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(a) Discrete From (b) Partially Occluding

(c) Proper Part Of or In-

verse Proper Part Of

Figure 3-2: The three relations from Region Connection Calculus (RCC) that we are
using

We can define a few key distances between the objects such that we result in this set

of constraints. When the distance is larger than the first key distance, the two objects

are discrete from each other. When the distance is between the two key distances, the

two objects are partially overlapping. When the distance is less than the second key

distance, the two regions are partially overlapping. Note that the actual distances

depend on the orientation of the objects. This is why the probabilistic transitions are

important in this formulation. Also note that some objects may not be able to be

a proper part of the other. For example, the cleaner cannot be a proper part of the

cleaner as the two are solid objects. In this case, we still define two key distances. The

first is one at which they are likely partially occluding and the second is a distance

at which they are almost certainly partially occluding.

Qualitative Trajectory Calculus

Qualitative Trajectory Calculus (QTC) is used to describe the relative motion of two

points in space, such as moving together or apart [40]. It extends simply to three

dimensions. In this work we use a subset of the relations: attract (AT), repel (RE)
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and stable (ST). Attract corresponds to a decrease in the relative distance. Repel

corresponds to an increase in the relative distance. Stable corresponds to a state

where the relative distance remains the same. The set of relations that we are using

is shown in Figure 3-3.

(a) Stable (ST)

(b) Attract (AT)

(c) Repel (RE)

Figure 3-3: The three relations from Qualitative Trajectory Calculus that we are
using

Positional Relations

We also define several other relationships based on the relative position and orien-

tation of two objects. The relations are: in-front or behind, which correspond to

the x-axis; left or right, which correspond to the y-axis; and above and below, which

correspond to the z-axis. These conventions are shown in Figure 3-4 and an example
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is shown in Figure 3-5. These relations are intended to be written semantically as

“Foo is {left,right} and {above,below} bar, relative to baz.” This defines a coordinate

system whose origin is centered at bar and whose orientation is that of baz. If no

relative frame is defined, the coordinate system has the same orientation as bar.

This allows for relations to be written with a variety of coordinate systems. For

example, “The red component is in-front of the target, relative to the robot” is very

descriptive of where the red component is in space.

Figure 3-4: Relative Position Relations. Forward and backward correspond to the
x-axis; left and right correspond to the y axis; above and below correspond to the
z-axis

These can be expressed through a series of inequality constraints. The continuous

variable is the position of the first object in the reference frame defined by the rest

of the relationship. The constraints are then based on the sign of the particular

coordinate. For example, if the x coordinate is positive, then the object is in-front

and if it is negative or zero, it is behind. Likewise we can map positive to left and

above on the y and z axes respectively. We can also map right and below to negative

or zero in the y and z coordinates respectively.
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Figure 3-5: An example of the position relationships, the cube is in-front of, left of
and above the reference

3.2.2 Rotational Relations

We also define a set of relationships based on the relative rotations of two objects.

In each of the axes, we define several relations: aligned, anti-aligned, perpendicu-

lar clockwise, perpendicular counter clockwise, rotated clockwise and rotated counter

clockwise. Each of these relations is defined for rotations around each of the three

axes with rotations around the x, y, and z axis being known as roll, pitch, and yaw

respectively.

(a) Rolled Clockwise (b) Rolled Counter Clockwise

Figure 3-6: Roll rotation relations

37



(a) Pitched Clockwise (b) Pitched Counter Clockwise

Figure 3-7: Pitch rotation relations

(a) Yawed Clockwise (b) Yawed Counter Clockwise

Figure 3-8: Yaw rotation relations

We can define these relations as inequality constraints over the angles of rotation.

We define our continuous variables as the Euler angles representing roll, pitch and

yaw. We limit these to [−𝜋, 𝜋) and wrap when those bounds are exceeded. The

aligned, anti-aligned and the two perpendicular relations are most obviously defined as

equality constraints, however, strict equality constraints are not conducive to accurate

monitoring. We therefore relax the equality constraints and define the inequality

constraints in each axis as:
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𝑐 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aligned, if − 𝜖 < 𝜃 < 𝜖

anti-aligned, if 𝜋 − 𝜖 < 𝜃 and 𝜃 < −𝜋 + 𝜖

perpendicular-clockwise, if 𝜋/2− 𝜖 < 𝜃 < 𝜋/2 + 𝜖

perpendicular-counter-clockwise, if − 𝜋/2− 𝜖 < 𝜃 < −𝜋/2 + 𝜖

rotated-clockwise, if 𝜖 < 𝜃 < 𝜋/2− 𝜖 and 𝜋/2 + 𝜖 < 𝜃 < 𝜋 − 𝜖

rotated-counter-clockwise, if − 𝜋/2 + 𝜖 < 𝜃 < −𝜖 and − 𝜋/2 + 𝜖 < 𝜃 < −𝜋/2− 𝜖

(3.1)

Where c is the active constraint, 𝜃 is the angle of rotation in that axis, and 𝜖 is

the relaxation factor.

3.2.3 Modeling QSRs as PHAs

Let us now examine how we map the series of inequality constraints to a PHA. First,

we will look at the RCC relations. In this PHA, the continuous state variable is

used to represent relative distance and the guard dynamics describe the magnitude

of the relative distance. These guards depend on the pair of objects being compared

but roughly correspond to the blocks being “far,” “near,” “very near,” and “almost

identical.” The relative distances are measured from the center of the regions being

compared. The transition structure of this model is shown in Figure 3-9. This is used

to illustrate the most likely transitions given the guards being active.

Figure 3-9: PHA model of RCC5

QTC is modeled using a similar method. The continuous state variable is the rate
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of change of the relative distance between the two objects. The guard functions are

based on the sign of the continuous state. The structure of the most likely transitions

based on the current guard conditions is shown in Figure 3-10.

Figure 3-10: PHA model of QTC relations

While we are not expecting a significant performance increase from switching

from HMMs to PHAs, PHAs do provide a significant advantage in terms of model

expressiveness. They allow us to encode hard and soft state constraints in a relatively

natural manner. In particular, each of the calculi discussed here defines various

algebraic constraints. For example, the positional calculus defined in Section 3.2.1

and given the same reference frame, if A is above B and B is above C, then we can

infer that A is above C. Similarly in RCC, if A is a proper part of B and B is a

proper part of C, then A must be a proper part of C. While these algebraic rules

can be encoded as part of the observation function within an HMM, it is natural to

encode them as part of the transition guards within a cPHA. This application of a

cPHA is not yet implemented as part of LCARS but is a large space for potential

improvement. This would bring the PHA approach in line with other approaches to

monitoring QSRs such as latent semantic analysis which encodes these constraints as

part of logical programs [3].

3.3 Other Discrete Primitives

The formulation of discrete primitives as PHAs also allows for defining domain spe-

cific discrete primitives. In general, domain specific primitives are used to describe

behavior that is important to a domain that cannot be written in terms of the QSRs
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described here. The exact format of a domain specific primitive will depend on the

specific behavior or relation being represented. In order for LCARS to monitor one

of these primitives, a PHA model of it must be provided by the user. We will discuss

the hand-off task that is part of the pass action in the ECA scenario.

The pass action involves the robot handing an object to a human by extending

its arm towards the human and releasing the object when it detects that the human

is holding it. If we simply had the robot release the object when it observed that the

human was holding the object, there is a chance that the human will not have a very

firm grip and will instead drop the object. If the object that was being handed off

was delicate, this could be disastrous and regardless, an object being dropped lowers

team efficiency. Instead, we define a new discrete primitive with two states gripped

and not gripped. The use of PHAs for this purpose was previously demonstrated by

Lars Blackmore and Steve Block [9].

We learned the PHA model for this primitive using the method discussed in Chap-

ter 5. We examined the angle and angular velocity of the wrist joint of the robot

during the hand-off task and observed a sharp difference between the gripped and

not gripped states. Using supervised learning, we were able to learn a PHA model

that allowed us to differentiate between gripped and not gripped with the arm at a

particular configuration. This model worked for all of the objects we tested without

making any modifications.

Other domain specific discrete primitives could be either modeled by hand or

learned as this one was. Modeling relations by hand is time consuming but accurate.

The limitations of the currently implemented model learning algorithm are discussed

in detail in Chapter 5 but the primary drawback is that it is currently limited to a

PHA model with a specific formulation which requires the continuous dynamics to

be linear. This can be overcome in the long run but it limits what can be learned at

present.
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3.4 Chapter Summary

In this chapter we presented a strategy for modeling and monitoring discrete prim-

itives. We took the continuous inequality constraints imposed by a particular QSR

and mapped that to the transitions within a PHA. One PHA is defined for each pair-

wise relation for a particular model and at run time belief state update is run on the

overall system of PHAs, in order to estimate the probability of each of these holding

true.

We described a set of QSRs that are useful for modeling a wide variety of relations

between two objects in 3D space. We started with the existing RCC and QTC calculi

and supplemented them with additional relationships, relating to relative position

and orientation. We first described the inequality constraints for each of these calculi

and then described how to map these onto a PHA. We also described a process for

adding additional discrete primitives and used the pass action as an example.

In the next chapter we describe the monitoring of PDDL predicates and actions,

completing the detailed description of the core components of LCARS.
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Chapter 4

Monitoring Actions and Predicates

Expressed in PDDL

The Planning Domain Definition Language (PDDL) was developed as a standard

language for defining planning problems and is widely used across the planning com-

munity. It has gone through many incarnations and is currently on version 3.1. In

this thesis, we work with PDDL 2.1 [16].

Similarly to monitoring the discrete primitives, the strategy for monitoring pred-

icates and actions is to map each to a probabilistic transition system, specifically a

tPCCA. The predicates are grouped into sets where only one proposition may hold

at a time. The transitions in those models are conditioned on the belief state of the

discrete primitives. The actions are set up so that there is one tPCA per possible

action that could occur for a particular PDDL problem. The timed component is

used to monitor the duration of the durative actions. An action cannot finish until

the lower bound on time is met and an action has failed if the upper bound has been

violated. The transitions in the action models are conditioned on the belief state of

the predicates that appear in that actions conditions, effects and additional signaling

behaviors. The automota for each of the predicates and actions are combined into one

overal tPCCA. Belief state update is then performed over that concurrent automaton.

In this chapter, we discuss PDDL representations, show an example as applied to

the electronic component assembly problem and then talk about converting PDDL
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propositions and actions into tPCCA format.

4.1 PDDL Representations

PDDL Models are split into two parts, the domain and the problem. Domain files

define the types of predicates and actions that can occur for a particular class of

problem, and problem files define a start state and goal for a particular instance of a

domain.

In this work, we only consider predicates and domains that do not contain numeric

fluents. LCARS could in principle be extended to include numeric fluents, PHA

models would be well suited to this task, however that is outside the scope of this

work. We also only consider durative actions. Other actions in PDDL are atomic

and instantaneous. Because they do not have any duration, atomic actions are not

well suited to the action structure defined here. Again, a modification to LCARS to

include atomic actions could be devised but it is outside the scope of this work.

4.1.1 Predicates and Propositions

The predicates for a particular domain are defined at the begining of the domain file.

Each predicate takes arguments which can be generic or typed. A predicate with

these arguments filled in is known as a proposition or a grounded proposition. Each

proposition has an associated truth assignment for each point in time. A proposition’s

mapping from time to truth assignment is called a fluent.

To further elaborate, let us examine the holding predicate which is defined as:

(holding ?obj - object ?manip - manipulator). The holding predicate takes

two arguments, obj and manip. Both of the arguments are typed with their types be-

ing object and manipulator respectively. A grounded proposition could be (holding

redcomponent hand) which corresponds to the hand holding the red component.
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4.1.2 Durative Actions

PDDL Durative Actions are an extension of basic PDDL actions such that they

take some amount of time to occur. Basic PDDL actions simply have parameters,

preconditions, and effects, where the preconditions and effects are defined as logi-

cal combinations of predicates, i.e. propositional formulae, written in terms of the

parameters. Durative actions simply add a duration and modify the format of the

preconditions and effects.

Preconditions or, in the case of durative actions, conditions are requirements that

must be met at certain stages throughout an action. For instance, in order for the

hand to pick up an object, the object must not be held by anything and the hand

must not be holding anything. Effects are simply the results of the different stages

of an action. For example, when the solder action finishes, the object that was being

soldered is now soldered into place.

Each predicate within the conditions of a durative action has a temporal annota-

tion. These are used to indicate when the condition is in effect and can take one of

three forms: (at start (predicate)), (at end (predicate)), or (over all (predicate)). The

at start conditions must hold at the beginning of the action and the at end condi-

tions must hold at the end of the action. For example, the hand must be holding the

cleaner in order for the clean action to start and both the human must have a firm

grip on the object in order for the pass action to complete. The over all conditions

on the other hand must hold from the time immediately following the start of an

action until the point immediately preceding the end of the action. For example, the

cleaner must be held throughout the clean action. If for some reason the cleaner is no

longer held, something has gone wrong. Overall conditions are also sometimes known

as invariant conditions.

The effects of an action are likewise temporally annotated. The predicates that

are applied as part of effects are labeled as either (at start (predicate)) or (at end

(predicate)). As an example, the location being cleaned will become blocked at the

start of the clean action and the hand will be holding an object at the end of a pick
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action. It is worth noting that effects applied at the start of an action can achieve

an overall condition and effects applied at the end of an action and violate an overall

condition.

The duration of durative actions is expressed as equality constraints or as inequal-

ities. In the case of monitoring, it is preferable to have inequalities, as in any actual

application, it is very unlikely for an action to take an exact and specific amount of

time. Instead, we want to define a lower and upper bound for the duration of each

action. As an example of a duration, the clean action takes at minimum 3 seconds,

because that is how long it takes to thoroughly clean a location, and at most 15

seconds. If the action goes any longer than 15 seconds, something has gone wrong.

4.2 Electronic Component Assembly Example

For illustrative purposes, let us examine part of the ECA domain definition:

(empty ?manip - manipulator)

(holding ?obj - object ?manip - manipulator)

(iscleaner ?obj - object)

(reachable ?loc - location ?manip - manipulator)

(isclean ?loc - location)

(:durative-action clean

:parameters (?loc - location ?manip - manipulator ?obj - object)

:duration :duration (and (< ?duration 15) (> ?duration 3)

:condition (and

(at start (reachable ?loc ?manip))

(at start (holding ?obj ?manip))

(at start (isCleaner ?obj))

(over all (holding ?obj ?manip)))

:effect (and

(at end (isclean ?loc)))

)
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(iscleaner ?obj - object) exists only to label one of the objects, specifically

a tool, as being the cleaner object. It is defined as an initial condition within the

problem file and cannot change during execution, and for the purposes of estimation,

it cannot be sensed.

(reachable ?loc - location ?manip - manipulator) is used to indicate whether

a particular location is reachable by a particular manipulator. This is also set in the

problem file and cannot change during runtime. The human is assumed to be able

to reach all of the locations, it is primarily used for the robot which cannot reach all

locations with both of its manipulators.

(isclean ?loc - location) is only used as an effect of the clean action. It

cannot be sensed and is exclusively a result of the clean action finishing.

This leaves (empty ?manip - manipulator) and (holding ?obj - object ?manip

- manipulator) which change during runtime and can be estimated. We will use

these predicates as examples in Section 4.3.1.

4.3 Constructing tPCCA Models from PDDL Rep-

resentations

We build off of the work of David Wang who converted PDDL representations to

Timed Constraint Automota (TCA) representations for the purposes of solving plan-

ning problems [41]. We augment Wang’s TCA encoding by adding structures to

facilitate recognition and by adding control variables to the actions to facilitate reset-

ting during the monitoring process, allowing the system to restart after an action has

failed. In this section, we discuss the construction of tPCCA models from the PDDL

representation for a particular problem. We discuss both propositions and durative

actions.
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4.3.1 Propositions

When defining the set of proposition models for a particular problem, the list of

predicates must first be split into two groups, those that are simply the results of

actions, and those that can be monitored from sensing input. The split is done to

separate predicates that can be monitored by LCARS from predicates that cannot.

Note that the structure of two propositions with the same predicate but different

arguments will have the same structure with different variables. Proposition models

do not require clock variables and are therefore simply PCA.

Let us use the (isclean ?loc - location) predicate as an example of the first

group. This action is the result of a clean action being performed and for a particular

location can only be achieved by one of three actions:

∙ (clean ?loc hand cleaner)

∙ (clean ?loc baxterleft cleaner)

∙ (clean ?loc bexterright cleaner)

Of these actions, only (clean ?loc human cleaner) is monitored directly by

LCARS; the other two actions are performed by the robot and are thus handled by

an external executive. In order to model the state the isclean predicate, we define a

PCA with two states: true and false. We also define three attribute variables that

correspond to the state of the three actions that can achieve this predicate. The state

of the action performed by the human is read from the tPCA model defined for it in

LCARS. The state of the robot actions must be passed in from an external executive.

Three transitions are then defined. The first one has a guard condition corresponding

to one of the three actions having finished. This causes a transition from false to

true with 100% probability. The two are a self transition from false to false if that

condition is not met and a self transition from true to true in all cases. This structure

is shown in Figure 4-1.

Other predicates that are results of actions will have a similar structure, though

some may have an additional transition from true to false. The structure could be
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Figure 4-1: Structure of the PCA for the isclean predicate

inferred from the available actions, however, the models are currently constructed by

hand. Note that one of these PCAs must be constructed per location that can be

cleaned for a particular problem. For the specific ECA problem used here, there are

four isclean PCAs, one for each target.

Additional work must be done for the predicates that can be monitored based on

sensing information. These predicates are grouped into sets where only one propo-

sition can be true at a time. For example, a manipulator can either be empty or

holding a single object. Those that cannot be grouped into mutually exclusive sets of

this form are built using a PCA with true and false modes, similar to isclean above.

The grouping is currently performed by hand, though invariant synthesis could also

be used to discover these sets [6]. This grouping is performed only for the predicates

monitored based on sensed data because the other predicate models are handled as

described above. The guard conditions here are built in terms of discrete primi-

tives rather than action statuses and the transitions will be probabilistic rather than

deterministic as above.

Those that can be grouped into mutually exclusive sets are more complicated.

They obviously have more states and transitions than the standard true/false model

and the transition themselves tend to be more complicated. The structure of the

transition function depends is quite domain specific. We will examine the (empty

?manip - manipulator) and (holding ?obj - object ?manip - manipulator) set as an

example of the structure.

Intuitively, for a manipulator, in this case a hand, to be holding something, it must

overlap that object and move with it. This translates to partially occluding or proper

part and stable when written in terms of RCC and QTC. The orientation and relative

position of the object and the hand does not matter as long as these two relations

49



hold, so the rotational primitives do not apply, nor do the other Cartesian relations.

Thus formally, (holding ?obj - object hand) maps to ((PO hand ?obj) ∨ (iPP

hand ?obj)) ∧ (ST hand ?obj)

In constructing the overall structure of the PCA, we exploit knowledge of how

spatial relations evolve over time. For example, the hand cannot go from holding an

object to holding another object without putting the first object down. Thus we set

up the structure such that from one of the holding states, the only two transitions

available are to empty or back to the same holding state. From empty, it is possible

to transition to any of the holding states. A transition to a particular holding state

is more likely when the specific conditions are met: ((PO hand ?obj) ∨ (iPP hand

?obj)) ∧ (ST hand ?obj). If multiple conditions are met, a transition to either of

the relevant states is equally likely. In all cases, we keep the probability of a self

transition reasonably high to help combat noisy sensors. This structure is shown in

Figure 4-2.

Figure 4-2: Example of a group of mutually exclusive predicates, the hand can only
hold one of the components at a time
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4.3.2 Durative Actions

Each durative action has the same basic structure with five modes: ready, executing,

finished, failed, and stopped. There is one tPCA model for each grounded action. The

structure of the action models is shown in Figure 4-3. In addition to these modes,

each action has a clock variable and a single control variable, stop, with a domain of

{True, False}. The stop variable is the same for each action and is used to stop and

start monitoring.

Figure 4-3: Generic Action tPCA structure, pictured without self transitions

In order to determine when an action has started or ended, we at the state of the

conditions and certain additional behaviors. The additional behaviors are separate

from the conditions and are not defined in the PDDL domain. Instead, these behaviors

signal a particular action starting or ending. For instance, before cleaning a particular

location, the hand and cleaner will move towards that area and eventually be in the

vicinity of that area. When the cleaning has finished, the hand and the cleaner will

move out of that area and towards the next location.

The ready mode is the default mode while monitoring is in progress. From it, tran-
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sitions are possible to the executing and stopped modes. The transition to executing

occurs when the at start conditions are met and the starting additional behaviors are

observed. The transition to stopped occurs when the stop control variable is set to

True.

The executing mode is used to indicate that an action is in progress. From it,

transitions are possible to the failed, finished and stopped modes.

The finished mode is simply used for the application of at end effects. From this

mode, a transition to the ready mode will occur with 100% probability if the stop

variable is not true and to the stopped mode if a stop signal is received.

Standard PDDL problems do not consider actions able to fail but in a real world

application where actions are not directly controllable, as is the case with systems

that involve humans, failures can happen. In order to be able to monitor for this,

we created the failed mode. The system can only enter failed from the executing

mode. We define failure here as violating the overall constraints, or violating the

time duration. If the action is not observed to have finished and the clock variable

exceeds the upper bound of the duration, the action is assumed to have failed. We

thus define the guard condition for transitioning into this mode as the current time

being greater than the upper bound and the conditions marked as over all not holding.

The application of effects is handled by the proposition models and is therefore

discussed in Section 4.3.1.

4.4 Chapter Summary

In this chapter, we discussed the process of monitoring PDDL propositions and ac-

tions. We define a PCA or tPCA for each proposition and action that could occur for

a given problem, and then perform belief state update on the overall set of models, in

order to infer the current status of the predicates and actions. The propositions are

grouped into mutually exclusive sets where only one can hold at a time. One mode of

the PCA is assigned to each possible proposition being true. The transitions between

the modes depend on the state of the discrete primitives.
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The actions on the other hand have the same transition structure. The only differ-

ence between the actions are the transitions thta are defined as a combination of their

conditions and additional signaling behaviors. The modes in the action tPCA are:

ready, executing, finished, failed, and stopped. This structure captures the nominal

flow of an action as well as two anomalous modes. The failed mode captures a limited

but still useful form of failure. It is entered when the overall condition is violated or

when the upper time bound is violated.

In the next chapter, we will discuss a machine learning technique that allows us

to acquire PHA models for discrete primitives from training data. This reduces the

amount of work required to implement new discrete primitives.
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Chapter 5

Model Learning

The structure of the PHCA and tPCCA models discussed thus far can be gener-

ated from the PDDL domain descriptions. The transition probabilities and guard

conditions however must be acquired either through machine learning or manual es-

timation. To reduce the amount of knowledge engineering required, we provide a

machine learning approach. Transition probabilities and guard conditions need to be

learned for both the PHCA models and tPCCA models. In this chapter we examine

PHCA learning rather than tPCCA; however, the approach to learning the guard

conditions and transition probabilities that is discussed here could be extended to

tPCCA models.

In order to reduce the work required to implement new models, we apply tech-

niques from machine learning to learn the unknown parts of a PHA model. In section

5.1 we discuss learning a specific form of PHA model, which is sufficient for modeling

the discrete primitives used in this thesis, in an unsupervised manner. Finally, in sec-

tion 5.2, we discuss learning specific PHA subsets using various levels of supervision.

5.1 Unsupervised Learning of PHA Models

Automated learning of PHCA models is a complicated process which grows more

complex as the number of components increases. Instead of solving the problem of

learning a large set of interconnecting models, we simplify the problem by isolating
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each individual component and focusing on learning each individual PHA separately.

This works well for learning models of discrete relations and QSRs as the overall

model for a given scenario will tend to have the same structure and similar parameters

repeated multiple times to account for all the necessary pairwise relations.

Several others, including Gil and Blackmore [17] [8], have addressed learning PHA

models automatically from data, but they did not address the problem of learning

PHA models with guarded transitions. We derived an algorithm for learning a sim-

plified form of PHA models that includes learning guard conditions [34].

We focused on learning models of the form:

𝑥𝑖 = 𝐴𝑚𝑖−1
𝑥𝑖−1 + 𝐵𝑚𝑖−1

𝑢𝑖−1 + 𝑤𝑖−1, (5.1)

𝑦𝑖 = 𝐶𝑚𝑖
𝑥𝑖 + 𝐷𝑚𝑖

𝑢𝑖 + 𝑣𝑖, (5.2)

𝑝(𝑚0:𝑛|𝑥0:𝑛, 𝑢1:𝑛) = 𝑝(𝑚0)
𝑛∏︁

𝑖=1

𝑝(𝑚𝑖|𝑚𝑖−1, 𝑔𝑚𝑖−1
(𝑥𝑖−1, 𝑢𝑖−1)) (5.3)

And further simplify the problem by assuming that the matrices in the observation

function 𝐶𝑚𝑖
and 𝐷𝑚𝑖

are already known and that we have data for the continuous

state and exogenous input (𝑥𝑖 and 𝑢𝑖)). Note that 𝐴𝑚𝑖
and 𝐵𝑚𝑖

model the linear

dynamics in discrete mode 𝑚𝑖, 𝑤𝑖−1∼𝑁(0, 𝑄𝑚𝑖−1
), 𝑣𝑖∼𝑁(0, 𝑅𝑚𝑖

) are uncorrelated,

white Gaussian noise, and 𝑔𝑚𝑖
(𝑥𝑖, 𝑢𝑖) ∈ M is the guard function for mode 𝑚𝑖. This

form is sufficient to model the discrete primitives used in this thesis but the use of

linear dynamics vastly simplifies several of the steps of the learning process.

We frame the learning problem as an optimization problem with the goal being

to find the optimal set of PHA parameters 𝜃* such that

𝜃* = arg max
𝜃′

𝑓(𝜃′) = log 𝑝(𝑦1:𝑛|𝑢1:𝑛; 𝜃′) (5.4)

It is not possible to directly optimize this function. Instead, we use Expectation

Maximization (EM) to maximize the lower bound:
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ℎ(𝜃′)=
∑︁
𝑚0:𝑛

∫︁
𝑥0:𝑛

𝑝(𝑥0:𝑛, 𝑚0:𝑛|𝑦1:𝑛, 𝑢1:𝑛)𝐿(𝜃′)𝑑𝑥0:𝑛 (5.5)

=𝐸𝑝(𝑥0:𝑛,𝑚0:𝑛|𝑦1:𝑛,𝑢1:𝑛)[𝐿(𝜃′)]. (5.6)

𝐿(𝜃′) = log 𝑝(𝑦1:𝑛, 𝑥0:𝑛, 𝑚0:𝑛|𝑢1:𝑛; 𝜃′) (5.7)

= log 𝑝(𝑥0, 𝑚0) +
𝑛∑︁

𝑖=1

log 𝑝(𝑦𝑖|𝑥𝑖, 𝑚𝑖, 𝑢𝑖; 𝜃
′)

+ log 𝑝(𝑥𝑖|𝑥𝑖−1, 𝑚𝑖−1, 𝑢𝑖−1; 𝜃
′)

+ log 𝑝(𝑚𝑖|𝑚𝑖−1, 𝑔𝑚𝑖−1
(𝑥𝑖−1, 𝑢𝑖−1); 𝜃

′)

EM splits the optimization into two steps which it repeats until convergence. This

method is guaranteed to converge to a local optimum. The two steps are:

1. Use parameters 𝜃𝑘 from the 𝑘-th iteration to compute posterior probabilities

𝑝𝑘+1(𝑥0:𝑛, 𝑚0:𝑛|𝑦1:𝑛, 𝑢1:𝑛). This is the E-step;

2. Use 𝑝𝑘+1(𝑥0:𝑛, 𝑚0:𝑛|𝑦1:𝑛, 𝑢1:𝑛) to find new parameters 𝜃𝑘+1 that maximize (5.6).

This is the M-step. Repeat until successive evaluations of (5.6) converge.

Because we are assuming that the continuous state vector can be measured di-

rectly, the only hidden state is the mode sequence. Because of this our final objective

function is:

𝑄(𝜃′)=
∑︁
𝑚0:𝑛

𝑝(𝑚0:𝑛|𝑥0:𝑛, 𝑢1:𝑛)𝐿̃(𝜃′) (5.8)

=𝐸𝑝(𝑚0:𝑛|𝑥0:𝑛,𝑢1:𝑛)[𝐿̃(𝜃′)]. (5.9)
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5.1.1 E Step

The log-likelihood of the data in 5.9 is:

𝐿̃(𝜃) = log 𝑝(𝑥0:𝑛, 𝑚0:𝑛|𝑢1:𝑛; 𝜃)

= log 𝑝(𝑥0, 𝑚0) +
𝑛∑︁

𝑖=1

log 𝑝(𝑥𝑖|𝑥𝑖−1, 𝑚𝑖−1, 𝑢𝑖−1; 𝜃)

+
𝑛∑︁

𝑖=1

log 𝑝(𝑚𝑖|𝑚𝑖−1, 𝑔𝑚𝑖−1
(𝑥𝑖−1, 𝑢𝑖−1); 𝜃) (5.10)

In order to estimate our objective function, we first define posterior marginal mode

probabilities, 𝛾(𝑚𝑖−1) and 𝜉(𝑚𝑖−1, 𝑚𝑖) as:

𝛾(𝑚𝑖−1) = 𝑝(𝑚𝑖−1|𝑥0:𝑛, 𝑢1:𝑛; 𝜃),

𝜉(𝑚𝑖−1, 𝑚𝑖) = 𝑝(𝑚𝑖−1, 𝑚𝑖|𝑥0:𝑛, 𝑢1:𝑛; 𝜃), (5.11)

We can use a forward-backward algorithm to compute these values. We define the

forward value, 𝛼𝑔(𝑚𝑖−1), and the backward value, 𝛽𝑔(𝑚𝑖−1), as

𝛼𝑔(𝑚𝑖−1) = 𝑝(𝑥1, . . . , 𝑥𝑖−1, 𝑚𝑖−1|𝑢1:𝑛; 𝜃),

𝛽𝑔(𝑚𝑖−1) = 𝑝(𝑥𝑛, . . . , 𝑥𝑖|𝑚𝑖−1, 𝑥𝑖−1, 𝑢1:𝑛; 𝜃). (5.12)

We also define a dynamics probability 𝑑(𝑥𝑖, 𝑚𝑖−1), which is computed from the

dynamics, and a transition probability, which is the probability of transitioning from

one mode to another. Formally these are:

𝑑(𝑥𝑖, 𝑚𝑖−1) = 𝑝(𝑥𝑖|𝑥𝑖−1, 𝑚𝑖−1, 𝑢𝑖−1),

𝑡(𝑚𝑖−1, 𝑚𝑖) = 𝑝(𝑚𝑖|𝑚𝑖−1, 𝑔𝑚𝑖−1
(𝑥𝑖−1, 𝑢𝑖−1)). (5.13)
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Alpha and beta can then be computed recursively as:

𝛼𝑔(𝑚𝑖−1) =
∑︁
𝑚𝑖−2

𝛼𝑔(𝑚𝑖−2)𝑑(𝑥𝑖−1, 𝑚𝑖−2)𝑡(𝑚𝑖−2, 𝑚𝑖−1), (5.14)

𝛽𝑔(𝑚𝑖−1) =
∑︁
𝑚𝑖

𝛽𝑔(𝑚𝑖)𝑑(𝑥𝑖, 𝑚𝑖−1)𝑡(𝑚𝑖−1, 𝑚𝑖), (5.15)

𝛼𝑔(𝑚0) = 𝑝(𝑥0, 𝑚0), 𝛽𝑔(𝑚𝑛) = 1. (given).

We can then write 𝛾(𝑚𝑖−1) and 𝜉(𝑚𝑖−1, 𝑚𝑖) as:

𝛾(𝑚𝑖−1)=
𝛼𝑔(𝑚𝑖−1)𝛽𝑔(𝑚𝑖−1)∑︀

𝑚′𝑖−1
𝛾(𝑚′

𝑖−1)
, (5.16)

𝜉(𝑚𝑖−1, 𝑚𝑖)=
𝛼𝑔(𝑚𝑖−1)𝑑(𝑥𝑖, 𝑚𝑖−1)𝑡(𝑚𝑖−1, 𝑚𝑖)𝛽𝑔(𝑚𝑖)∑︀

𝑚′𝑖−1,𝑚′𝑖
𝜉(𝑚′

𝑖−1, 𝑚
′
𝑖)

,

Our final objective function is then:

𝑄(𝜃)=𝐸𝑝(𝑚0:𝑛|𝑥0:𝑛,𝑢1:𝑛)[𝐿̃(𝜃)]

=
𝑛∑︁

𝑖=1

⎛⎝∑︁
𝑚𝑖−1

𝛾(𝑚𝑖−1) log 𝑝(𝑥𝑖|𝑥𝑖−1, 𝑚𝑖−1, 𝑢𝑖−1)+
∑︁

𝑚𝑖−1,𝑚𝑖

𝜉(𝑚𝑖−1, 𝑚𝑖) log 𝑝(𝑚𝑖|𝑚𝑖−1, 𝑔𝑚𝑖−1
(𝑥𝑖−1, 𝑢𝑖−1))

⎞⎠
+

∑︁
𝑚0

𝛾(𝑚0) log 𝑝(𝑥0, 𝑚0), (5.17)

5.1.2 M Step

In the M step, we then need to optimize the objective function, which was computed

in the E step. In this section we show the maximization process for each parameter.

Initial Mode Probability

This is simply:
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𝑝(𝑚0 = 𝑘) =
𝛾(𝑚0 = 𝑘)∑︀
𝑘′ 𝛾(𝑚0 = 𝑘′)

(5.18)

Transition Probabilities

The guarded transition probabilities are given by:

𝑝(𝑚𝑖=𝑘|𝑚𝑖−1=𝑘′, 𝑔𝑚𝑖−1=𝑘(𝑥𝑖−1, 𝑢𝑖−1)=𝑚)=∑︀
{𝑥𝑗−1,𝑢𝑗−1}:𝑔𝑚𝑗−1=𝑘(𝑥𝑗−1,𝑢𝑗−1)=𝑚

𝜉(𝑚𝑗−1=𝑘′, 𝑚𝑗=𝑘)∑︀
𝑚𝑗=𝑘′′

𝑝(𝑚𝑗=𝑘′′|𝑚𝑗−1=𝑘′, 𝑔𝑚𝑗−1=𝑘(𝑥𝑗−1, 𝑢𝑗−1)=𝑚)
(5.19)

Guard Functions

Learning the guard functions involves creating a function that maximizes the follow-

ing:

𝑚*=arg max
𝑚

∑︁
𝑚𝑖

𝜉(𝑚𝑖−1, 𝑚𝑖) log 𝑝(𝑚𝑖|𝑚𝑖−1, 𝑔𝑚𝑖−1
=𝑚). (5.20)

In order to do so, we first compute the mapping (𝑥𝑖−1, 𝑢𝑖−1) → 𝑚 ∈ M by means

of 5.20 and treat this as “labeled” data to use in training a multiclass classifier.

In this work we chose to use a multiclass support vector machine (SVM) as our

classifier. SVMs have many advantages but in particular they are useful because

they can represent an arbitrarily shaped transition functions. Additionally, they can

be optimized quickly for moderately sized data-sets. Further discussion of training

SVMs is out of the scope of this work but is widely available and extensive literature

is available on the subject. Useful resources include Burges [11] and Bishop. [7].

Linear Models

From the dynamics equations, we know that:
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𝑝(𝑥𝑖|𝑥𝑖−1,𝑚𝑖−1, 𝑢𝑖−1; 𝜃) =

𝑁(𝑥𝑖; 𝐴(𝑚𝑖−1)𝑥𝑖−1 + 𝐵(𝑚𝑖−1)𝑢𝑖−1, 𝑄) (5.21)

And because 𝑄 is fixed and uncorrelated, we have:

log 𝑝(𝑥𝑖|𝑥𝑖−1,𝑚𝑖−1, 𝑢𝑖−1; 𝜃) = − 1

2𝜎2
‖𝑥𝑖 − 𝜇𝑖−1‖2 + 𝑐, (5.22)

Where 𝜇𝑖−1 = 𝐴(𝑚𝑖−1)𝑥𝑖−1 + 𝐵(𝑚𝑖−1)𝑢𝑖−1. The parameters that we are trying to

learn are 𝐴𝑘 and 𝐵𝑘. Selecting their optimal value requires us to minimize:

(𝑌 − Φ𝑏(𝑘))𝑇 𝑊 (𝑘)(𝑌 − Φ𝑏(𝑘)), (5.23)

Φ=

⎡⎢⎢⎢⎣
𝑥𝑇

0 𝑢𝑇
0

...
...

𝑥𝑇
𝑛−1 𝑢𝑇

𝑛−1

⎤⎥⎥⎥⎦ , 𝑌 =

⎡⎢⎢⎢⎣
𝑥𝑇

1

...

𝑥𝑇
𝑛

⎤⎥⎥⎥⎦ , 𝑏(𝑘) =

⎡⎣𝐴𝑇
𝑘

𝐵𝑇
𝑘

⎤⎦
𝑊 (𝑘) = diag(𝛾(𝑚0)=𝑘, · · · , 𝛾(𝑚𝑛−1)=𝑘), (5.24)

Which is simply Weighted Least Squares (WLS). The closed form solution is then:

𝑏̂(𝑘) =

⎡⎣𝐴𝑇
𝑘

𝐵̂𝑇
𝑘

⎤⎦ = (Φ𝑇 𝑊 (𝑘)Φ)−1Φ𝑇 𝑊 (𝑘)𝑌. (5.25)
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5.2 Supervised Learning of PHA Models

In the previous section, we assumed that we had no knowledge of the parameters or the

forms of the equations but in practice, this is not always true. In most domains, there

is some structure that is assumed or some additional data that is collected. Using

the unsupervised approach described above as a starting point, we now examine how

the learning process is affected when certain parameters are known.

5.2.1 Dynamics Known

If the dynamics are known, the steps described in section 5.1.2 can be skipped. We

still require that the continuous state 𝑥𝑖 be observable but the form of the dynamics

is much more flexible. Assuming we do not wish to learn the parameters, we can use

the more general form:

𝑥𝑖 = 𝑓𝑚(𝑥𝑖−1, 𝑢𝑖−1) + 𝑣𝑖 (5.26)

With the noise term 𝑣𝑖 still assumed to be uncorrelated white Gaussian noise, the

calculation of 𝛼, 𝛽, 𝛾, and 𝜉 and the remaining optimizations in the M step remain

unchanged.

5.2.2 Guard Conditions and Transition Probabilities Known

If the Guard Conditions and Transition Probabilities are know, the only change is

that the steps described in sections 5.1.2 and 5.1.2 can be skipped.

5.2.3 Mode Labels Known

If the mode labels are known, there are no hidden states and the learning can be done

simply by running one iteration of the EM algorithm. The values of 𝛼, 𝛽, 𝛾, and 𝜉

will not be updated as the mode sequence in the training data is known with some
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accuracy. Simply computing each of the parameters as described in the M step will

arrive at the optimal values given the information that is known.

5.3 Chapter Summary

In this chapter we derived an algorithm for learning PHA models from data. The

approach uses expectation maximization to incrementally improve the fit of the model

until it converges at a local optima. We also discussed several modifications to the

basic EM algorithm that allow for a partially supervised approach. Together, this

allows us to learn PHA models for the discrete primitives with limited overhead,

reducing the engineering that goes into getting LCARS running on a new domain. In

the next chapter, we will validate the overall LCARS approach on the ECA scenario,

discussing the implementation, experimentation and results.

63



THIS PAGE INTENTIONALLY LEFT BLANK

64



Chapter 6

Experimental Design and Results

In this chapter, we validate the approach presented in this thesis, discussing the im-

plementation, experiments and results. In section 6.1, we discuss the implementation

of LCARS on the ECA scenario, describing the testbed and the implementations of

each of the filter components. In section 6.2 we discuss a set of experiments to vali-

date the learning algorithm introduced in Chapter 5. In section 6.3 we discuss a set

of experiments that validate the activity recognition and propositional monitoring

approaches that are central to this thesis. In sections 6.4 and 6.4.3 we present and

summarize the results of the experiments.

6.1 Implementation

6.1.1 Testbed

We designed a testbed on which the ECA scenario could be implemented. The robot

used is a Rethink Robotics Baxter which has two arms with 7 degrees of freedom.

The tools and objects were represented by foam blocks due to the limitations on

what the Baxter end effectors can reasonably pick up. Communication with the robot

was done using several libraries within the Robot Operating System (ROS). We put

fiducial tags [27] on each of the objects in order to track them and constructed a glove

with a fiducial tag on it in order to track the position of the hand. Web-cams were
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mounted on a frame over the testbed area in order to track the tags. The position

and orientation of the tags were estimated using the ROS wrapper for Alvar, an open

source library for fiducial tag tracking. The testbed configuration is shown in Figure

6-1.

Figure 6-1: Robotic Testbed

When all of the discrete primitives, predicates and actions are modeled for the

ECA scenario, there are a total of: 100 discrete primitives, 46 propositions and 80

possible actions.

6.2 PHA Learning Experiments

We implemented the learning algorithms using Python and the multi-class SVM’s

were trained using Scikit-learn [30]. Several test systems were used including several

examples relevant to activity recognition and several pedagogical examples. In this

section we discuss each of the test systems and discuss how data was collected for

each system.

6.2.1 Test Systems

The test systems described here were selected to show a variety of systems on which

the model learning algorithm can be applied. The first test systems directly relate to

LCARS with models for RCC, QTC and the handoff task being learned. The other
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two examples are pedagogical. The first is an RC circuit which was selected for its

simplicity and the second is a target tracking example which was selected because of

its use in the hybrid model literature.

QSRs

The third test system are the RCC and QTC relations for several of the objects used

in the ECA scenario. We set up the visual tracking system as described in Section

6.1.1. We collected training data by moving objects around the environment as we

would during an actual ECA run. We recorded the video as well as the outputs of the

sensing system and then labeled the data after the fact by watching the videos and

noting the various QSRs. We then partitioned the data in the various runs into cases

where there was at least one transition and grouped together the data for each type

of relation (RCC with a particular object class pairing or QTC). We ran our learning

algorithm on the collected data using the unsupervised case and the case where the

mode labels are known.

Handoff

Our final test system is the handoff task as described by the Pass action within

the ECA scenario. In this scenario, the Baxter arm begins holding an object at a

fixed position the human then reaches out and grabs the objects. The discrete state is

whether or not the human is holding the object and the continuous state is the torque

in the wrist joint of the Baxter’s arm. We collected data by repeatedly grabbing and

releasing the object while the Baxter sat at a fixed position. We used a button on the

Baxter to indicate moments where the object was grasped, pressing it when we were

holding the object and releasing it when we weren’t. We did this for several different

positions though the model learned is specific to one particular joint configuration.

We ran our learning algorithm on the collected data both in the unsupervised case and

the supervised case where the mode data was labeled. This is intended to illustrate

that it is possible to learn new domain specific discrete relations.
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Switched Resistor-Capacitor Circuit

The first test system is a simple resistor capacitor circuit, the layout of which is shown

in Figure 6-2. This is a clean and simple example of a hybrid system. The continuous

mode is the output voltage and the discrete mode is the switch status. The input to

the system is the input voltage.

Figure 6-2: Switched RC circuit diagram.

We generated training data for this system by simulating several runs with the

minimum and maximum input voltages set to respectively and the input voltage set

to . We ran our learning algorithm on this generated data completely unsupervised

and with the mode labels known as described in section 5.2.

Airplane

The second test system is a target tracking problem, a classic benchmark problem

for hybrid filtering. Our models were based on the models of Seah and Hwang [36]

which describe an airplane that can travel forward, turn left and turn right, all at

constant rates. We generated data from these models using two types of flight paths,

a “lawnmower” pattern and a random path. In the lawnmower pattern, the vehicle

travels back and forth over a bounding box. This type of pattern is used in the real

world for crop dusting and some kinds of exploration [18, 10, 15]. An example of this

pattern is shown in Figure 6-3. This pattern is meant to illustrate how the learning

algorithm will learn patterns in the transitions such as the edges of the bounding box.
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Figure 6-3: Lawnmower Pattern

The random flight path was designed to show a more complex path that does

not follow any sort of pattern. In it the vehicle chooses one of the three actions

randomly with equal probability, performs that action for 50 time steps, and then

independently chooses another action and performs that for 50 time steps. This is

meant to illustrate transitions that do not happen with any pattern that would be

discernible by our learning process.

For each of these patterns we generated several test runs. We then ran our learning

algorithm on the generated data unsupervised and with the mode labels known as

described in section 5.2.

6.2.2 Performance Metrics

We used the implemented IMM filter to assess each of the test systems.We calculated

the following test statistics in each case:

∙ Percentage of misclassified modes

∙ Mean delay from mode change to estimated mode change

These were selected in order to showcase the accuracy and speed of the learned

PHA models. We focus on the discrete mode rather than the continuous state because

the mode is the more important factor for LCARS.
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6.3 Action and Predicate Recognition Experiments

In order to assess the action and predicate recognition capabilities, we implemented

the ECA scenario on the testbed described above. Since we wanted to evaluate how

well the system performs on human actions, we removed the pass action. The pass

action requires both robot and human action and is instantiated by the robot. We can

only monitor the end of the action and this is dependent on the gripped/not gripped

predicate. We describe how we tested the recognition of that predicate above. The

other four actions, pick, place, solder and clean were still used.

We generated several possible executions of the scenario using the Temporal Fast

Downward planner [20] and recorded them being performed. The position data was

recorded as well as the raw video. The video was used to determine and label the

ground truth for the QSRs, predicates and actions in each case.

6.3.1 Performance Metrics

We implemented the filters described above in order to assess performance. We

calculated the following test statistics:

∙ Number of correctly and incorrectly classified actions

∙ Mean delay from action start to estimated action start

∙ Mean delay from action end to estimated action end

These test statistics were selected to show the speed and accuracy of LCARS.

The status of the actions was selected over the status of the predicates because it was

easier to establish the ground truth.

6.4 Results

Note: All values are rounded to the nearest two decimal places.
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6.4.1 PHA Learning Experiments

Table 6.1: Unsupervised Learning Results

Misclassified Modes (%) Mean Mode Change Delay (# of Time Steps)
RC Circuit 1.23 9.63
Airplane 3.33 3.20
RCC 53.1 n/a
QTC 46.3 n/a
Handoff 64.2 n/a

Table 6.2: Supervised Learning Results, Mode Labels Known

Misclassified Modes (%) Mean Mode Change Delay (# of Time Steps)
RC Circuit 1.25 8.43
Airplane 1.15 2.32
RCC 9.34 7.51
QTC 8.32 6.44
Handoff 3.23 6.96

6.4.2 Action and Predicate Recognition Experiments

Table 6.3: Combined Results for all actions

Correctly Classified Actions (%) 84.8
Mean Action Start Delay (s) 0.54
Mean Action End Delay (s) 1.75

Table 6.4: Results for the pick actions

Correctly Classified Actions (%) 83.33
Mean Action Start Delay (s) 0.47
Mean Action End Delay (s) 1.57

Table 6.5: Results for the place action

Correctly Classified Actions (%) 84.61
Mean Action Start Delay (s) 0.43
Mean Action End Delay (s) 1.64
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Table 6.6: Results for the clean action

Correctly Classified Actions (%) 75
Mean Action Start Delay (s) 0.61
Mean Action End Delay (s) 1.92

Table 6.7: Results for the solder action

Correctly Classified Actions (%) 75
Mean Action Start Delay (s) 0.67
Mean Action End Delay (s) 1.86

6.4.3 Summary of Results

Tables 6.1 and 6.2 show the results for the learning experiments. The performance

on the monitoring related areas was poor for the unsupervised task. We believe that

this is because it was over-fitting to local optima where the learned mode had nothing

to do with the mode we wanted to learn. In the handoff task it particular, it was

observed that the model that was learned in the unsupervised mode classified an

increase in torque as mode 0 and a decrease in torque as mode 1. This is completely

unrelated to the gripped and not gripped modes we wanted it to learn. The mode

change delay for those tasks is listed as n/a because the performance was poor enough

that the test statistic could not be reliably calculated.

The performance of the learning task with the modes supplied supports this hy-

pothesis as the learned models showed a reasonable level of performance for all five

test systems. This shows that we are able to learn models that are useful for moni-

toring discrete primitives from data if a reference mode set is supplied.

Regarding the action and predicate monitoring, a direct comparison to other state

of the art monitors would be challenging to make given that each was implemented

on a different set of actions. Without implementing the other approaches on the ECA

scenario or implementing LCARS on other domains, we cannot directly compare the

results. That being said, we can make observations about the performance of LCARS

on the ECA scenario and examine the relative accuracy of approaches on their own

domains.

LCARS was often able to correctly classify the action that was being performed
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and it was able to do so with only a short delay. When it incorrectly classified an

action, it was generally confusing one action with another action of the same type.

For instance, it would sometime confuse picking up the red block and picking up

the blue block. In a large number of the incorrectly identified cases, the predicates

were soon correctly identified after the action was finished such that an inconsistent

state was soon detected by Pike. In these cases, the failure in action monitoring

was recoverable. This was not the case for the solder and clean actions that were

incorrectly identified.

With regards to the accuracy of the action monitoring, table 6.8 shows the clas-

sification accuracy of a number of different action recognition approaches including

LCARS. It is not useful to directly compare the percentages as the domains are wildly

different but we can make some overall observations as to the relative performance of

LCARS.

Table 6.8: Accuracy of Various Activity Recognition Approaches

Correctly Classified Actions (%)
LCARS 84.8
Ravi [32] 90.61
Patel [29] 82.13
Padoy [28] 93.5 - 99.6
Behera [3] 61.10

The Ravi paper used a machine learning classification scheme to recognize a set

of human actions in daily life from accelerometer data. They were able to distinguish

between a set of 8 possible actions with 90.61% accuracy.

The Patel paper uses a machine learning classification scheme to classify time se-

ries data as belonging to particular actions. They used two domains, the first being

recognizing gestures in American Sign Language and the second being recognizing

stages of Hepatitis treatment. Over both of these domains they showed 82.13% accu-

racy rate which is comparable in magnitude to LCARS. The ASL domain that they

used had a much larger number of possible actions than LCARS and the Hepatitis

dataset had a much smaller number of actions.

The Padoy paper used hierarchical HMMs to monitor actions in an operating
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room. They split their overall accuracy results between different phases of their

workflow and did not give an overall result. In their worst phase they had 93.5%

accuracy and in their best phase they had 99.6% accuracy. This certainly outshines

LCARS and shows a much higher level of reliability.

Of the approaches listed in this table, the Behera approach is the closest to LCARS

as it uses QSRs to perform workflow monitoring. In addition, their domain was a

human manufacturing task. Their relatively low percentage of correct recognition is

due to the way they calculated their test statistic. The other papers and LCARS all

had a binary for any given run, either the action was correctly classified or it wasn’t.

The Behera paper on the other hand looked at every moment during each of their

runs and determined if they had correctly classified the action. This resulted in a

much lower accuracy than many of the other papers.

Overall, LCARS performed reasonable well on the ECA domain but there is still

room for improvement. The current performance serves as a proof of concept that this

strategy can be applied to a real system but does not necessarily show any significant

improvement over the state of the art.
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Chapter 7

Results and Conclusions

7.1 Summary of Contributions

LCARS approaches the problem of predicate and action estimation. It splits this

into two key components: a discrete primitive monitor and a predicate and action

monitor. The first piece converts the raw sensor data into discrete primitives, simple,

semantically significant relationships between objects. The set of primitives for a par-

ticular problem is mapped into a cPHA upon which belief state update is performed.

The cPHA representation of the QSRs was introduced in this work and was shown

to be effective for recognizing RCC and QTC relationships.

The predicate and activity monitor uses the output of the discrete primitive filter

as input. It maps the status of the discrete primitives to the guard conditions of

the predicates and maps both the primitives and the predicates to the actions. A

PCA or tPCA is constructed for each predicate group and each possible action for a

particular PDDL problem and belief state update is performed over the entire tPCCA.

This belief state is given to an external executive. The tPCCA used for the actions

and predicates in this work builds on previous uses of tPCCAs to represent PDDL

problems by adding mechanisms for performing recognition [41]. LCARS also differs

from the state of the art in that it reasons about the state of the world and the state

of the actions using a representation that is also commonly used by planners.

We also derived and demonstrated an algorithm for learning PHA models from
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data. We expanded on an unsupervised EM based algorithm by adding several modi-

fications to facilitate a semi-supervised learning approach. This allowed the algorithm

to be applied to the domains required for discrete primitive monitoring.

7.2 Future Work

Though LCARS performed well on this problem, there are still many ways it can be

improved. First, rather than using an IMM filter, a modern approach to performing

cPHA estimation such as A* with Bounding Conflicts [39] should be used. Addi-

tionally, the performance of this approach should be evaluated using the full tPCCA

model rather than the HMM decomposition used for the experiments. This should

improve the accuracy.

Additionally, the tPCCA models take a lot of time to create by hand. Most of

the pieces of these models can likely be learned through demonstration data. The

guard conditions can likely be learned through a process similar to that described

in Chapter 5. The predicates for a particular problem can likely be grouped into

mutually exclusive sets using invariant synthesis [6]. Using these structures, a boot-

strapping algorithm could be derived that started with the PDDL domain, a set of

PDDL problems, and a set of demonstration actions and then learned the predicate

models and then learned the activity models. This algorithm would group the pred-

icates using invariant synthesis then learn the guard conditions and constraints to

build the predicate models. The predicate models and the existing discrete primitive

models would then be used as input to help learn the action models.
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