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ABSTRACT

This paper considers the problem of maximizing the energy or
average power transfer from a nonlinear dynamic n-port source.
The main theorem includes as special cases the standard
linear result Yload = Y*source and a recent finding for non-
linear resistive networks. An operator equation for the optimal
output voltage 9(.) is derived, and a numerical method for
solving it is given.
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I. Introduction

This paper addresses the problem of extracting the maximum energy or

average power from a source with the topology shown in Fig. 1. As in1

[1], the problem is formulated as finding the optimal output voltage

v(-) for each current source waveform is(-) rather than finding a load

that maximizes the power.

The central result is the operator equation (6) for v(.). Theorem 1

gives conditions that guarantee uniqueness and global optimality of the

solution: the standard result for linear systems [1] and recent work

on resistive nonlinear systems [2] follow as special cases. Equation (11)

defines a practical algorithm for solving (6), and Theorem 2 gives conditions

that guarantee convergence.

The solution v(o) can be of engineering value in two ways. First, the

average power P(v) tells us the optimal performance that is possible in

principle. Second, v(-) itself is a concrete design goal. If the source

admittance operator F is continuous, a load for which the output

approximates v(.) (in the Hilbert space norm used in this work) will absorb

an average power that approximates P(v).

1. Referenced[l] actually deals with the dual network, where the source
appears in Thevenin form.
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II. Results

2.1) Notation and Definitions

Let L be any real inner product space and L any linear subspace of L.

An operator F: L - L is said to be

a) strictly increasing if

<F(y) - F(x), y-x) > 0, Vx f y C L, (1)

b) uniformly increasing if for some 6 > 0,

<F(y) - F(x), y-x) > 611y-x1 2, Vx,y e L, (2)

c) Lipschitz continuous if for some K > 0,

II F(y) - F(x) l < KI y-xlJ , Vx,y E L. (3)

Let L, L' be any real inner product spaces and L(L,L') denote the space

of continuous linear maps from L to L', with the operator norm [3, p.531.

For AeL(L,L'), let Aadj denote the adjoint of A.

Given an operator F: L - L' and x,hEL, suppose there exists an element

denoted 6F(x,h) of L' such that

lim i F(x+th) - F(x) - 6F(x,h) | = O
t-+ t L'

Then 6F(x,h) is called the Gateaux variation of F at x for the increment h

[4,p.251]. If 6F(x,h) exists for all x,h L, and if for each xELthe map

h - 6F(x,h) is an element of L(L,L'), then F is said to be Gateaux

differentiable on L. In this case the map x - 6F(x,.) is called the Gateaux

derivative of F and denoted DF: L - L(L,L') [4,pp.255-256]. Similarly
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6F(x,.) is denoted DF(x)eL(L,L'), and 6F(x,h) is denoted (DF(x))heL'. The

value of using the Gateaux derivative rather than the more restrictive

Frechet derivative [4,Chap.3] will become apparent in section 3.1.

The Hilbert space L is the set of all measurable functions x: IR+ ]Rn
n

such that the integral of x2(.) over IR is finite, j=l,...,n, equipped

with the usual inner product <.,-) and norm, lixll A(x,x>l/2.

For each T > , L2 is the set of all periodic measurable functions
n,T

x: IR - R n with period T such that the integral over one period of x2(.) is

finite, j=l,...,n. It is a Hilbert space with the "average power" inner

product

1 T

x'Y~T -- Tj Jx(t)oy(t) dt, (4)
0

where x y is the Euclidean inner product on R The norm on L2 is denotedn,T
AIxT 1/2

1l -x1l T = 'x > T °

2.2) Main Theorem

Theorem 1 (Maximum Average Power in the Periodic Steady State)

Fix T > 0 and let the n-port N1 in Fig. 1 be characterized by an

admittance operator F: L - LT LT where2 LT is any linear subspace of L2aT ' w n,T'

Suppose F is Gateaux differentiable on LT and that the associated operator

H: LT + LT, given by

adj
H: v t+ F(v) + (DF(v)) v (5)

2. Thus, if y(-) has period T and lies in Ln T, the response i(o) of N
cannot have subharmonics. ' 



-4-

is strictly increasing.

Then for each s H(LT) there is a unique solution v(is)ELT to

i s = H(v), (6)

and the average power3 absorbed by the load,

P(v) <-o'V)T s - F(V)V)T, (7)

has a unique global maximum over LT, which is attained at v = v(is).

Corollary (Maximum Total Energy for Transients)

Let L be a linear subspace of L2, and substitute L for LT in the assumptions

of Theorem 1. Then the same conclusions4 hold, but with v(i )L maximizing

the total energy E(v) - !- i - F(v), v> over L.

Note that in general F can be nonlinear and time-varying.

In applications one might wish to restrict attention to currents and

voltages in L2 with additional properties such as continuity or boundedness.

This is the reason for introducing LT C L T in the formulation of Theorem 1.

The essential idea behind the theorem is that a solution v(-) of (6)

is a stationary point of P: LT + IR, and the monotonicity assumption on H

guarantees that P is strictly concave. Details follow.

3. A more explicit, but cumbersome, notation would be P(v,is. Using it,
Theorem 1 states that Vv,iscLT, P(v,is) < P('(is),is) if v ~ V(is) 

4. For the Coroll ry, the adjoint is of course taken with respect to the
inner product on Ln rather than < , .
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Proof of Theorem 1

Uniqueness of the solution to (6) follows from the fact that H is

strictly increasing. By the chain rule for the composition of Frechet-

and Gateaux-differentiable functions [4,p.253] P is Gateaux differentiable

and for all x,h LT,

(DP(x))h =(s - F(x),hT - ((DF(x))hxT =

(is - F(x)- (DF(x))a dj x,h>T

(is - H(x),h)T. (8)

Thus if i SH(LT),

a) DP(v(is)) = O L(LTLT),

b) given any x,y EL£,the map x -[Thx+x(y-x)] is differentiable at

each xAIR, and

) d P[x+X(y-x)] = <is - H[x+X(y-x)], (y-x)>T

To show that v(is) globally optimizes P, fix is£H(LT), let v = v(i ),

and choose any veLT, v v. Then

P(v - P(v) -

T[V+X(V-V~l)h1 - Piv+X(v-v) =

{dP [v+x(v-v)]} dx. (9)

Using c), the integrand above is

Using c), the integrand above is
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(Is - H[V+X(V-)] , V-VT

(since i = H(v))

X<H[v+k(v-v)] - H(v), [v+X(v-v-)] - [V])T >0

and the integrand vanishes at x=O. The inner product above is strictly

positive for xfO since H is strictly increasing by assumption. Thus the

integrand in (9) is negative for x>0 and zero for x=O, so P(v) < P(v) as

claimed. /

The proof of the Corollary is essentially identical and will be omitted.

2.3) Relation to "Impedance Matching" Ideas

The emphasis in this paper is on finding the optimal output voltage

v(.), not the optimal load. But the relation to impedance matching ideas

deserves comment.

If the load in Fig. 1 is taken to be the (generally noncausal) admittance

Gopt: LT - LT, defined by

adj
Gopt: V L (DF(v)) v , (10)

then the network is uniquely solvable given any is £ H(LT), and the output voltage

v(o), which necessarily equals v(is), globally optimizes P. This generally

noncausal load is "matched" to the source for all inputs is£H(LT), and this

result holds generally for a nonlinear, time-varying, even noncausal source

admittance F. The reader can easily verify that in the LTI case (10) reduces

to the standard linear theorem Yload(Jw) = Y*ourceMore detail for

the linear 1-port case is given in Section 3.1.
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Of course in practice one has a causal load, usually predetermined, and

wishes to couple it to the source through a lossless matching network designed

to maximize the absorbed power over a range of inputs. In the linear case

this important problem is called "broadband matching" [5-8]. We note that

in both the linear and nonlinear cases the problem can be viewed as

compensating or coupling to a predetermined load using lossless elements in

such a way that the response approximates that of the noncausal exact match

Gopt over the input range of interest.

For a particular drive is, the situation is somewhat different. The

optimal voltage v(.) is unique, but the optimal load is not: the only

requirement on G is that G(v) = Gopt(v). In the linear case where F and G

are respectively represented by admittance matrices Y (jw) and YL(jw), there

are in general infinitely many optimal, positive semidefinite choices of YL

at a given w for which the network is uniquely solvable [9]. The problem of

finding solutions in particular classes, such as the class of resistive

loads, is studied in [101.

2.4) Numerical Algorithm

Equation (8) shows that is - H(v) is the gradient [3,p.72], [4,p.196]

of P at v, V is,V C LT. This suggests that we attempt to maximize P by a

simple "hill-climbing" algorithm of the form

xj+l = (is - H(xj)) + x. - M(x.) (11)

for some x>O. Note that under the assumptions of Theorem 1, if x +- x LT

and H is continuous, then is = H(x) and x globally maximizes P. By tightening

the assumptions a little further, we can guarantee convergence for all



sufficiently small positive x.

Theorem 2

Strengthen the assumptions of Theorem 1 by supposing further that LT

is closed and H is uniformly increasing and Lipschitz continuous on LT.

(See (2), (3).) Then for any issLT, any initial guess xoLT, and any

Xs(O, 26/K2), the sequence generated by (11) converges to v(is).

Remark

Note that Theorem 2 also guarantees existence of a solution to (6) for

all is e LTi.e., H(LT) = LTO

Proof

Since LT L2 is closed and L2 is complete, LT is complete [11llSeT Ln,T Ln,T T

It remains to show that M is contractive, i.e., that for some C < 1,

II M(y) - M(x)IIT < C IIY-XIIT Vx,y LT (12)

to guarantee O xn - v(is)lIT + 0 by the contraction mapping theorem [3,p.102],

[12,p.28]. But

i M(y) - M(x)11 2

(y - x - x(H(y) - H(x)), y - x - (H(y) - H(x))>T =

IIy- xj - 2x(H(y) - H(x), y - xr +x2 11H(y) - H(x)2IT <
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(1 - 2xs + x2K2) 1jy-xl 2 =.C2(x) ily-x[2
~ T ~ T

and C2(X) < 1, VXE(0,26/K2).

III. Examples

3.1) Linear Operators and Memoryless Operators

2
Consider the time-invariant scalar case for simplicity, and let LT stand
2

for L1,T.

If FR is the convolution operator: v e a*b where a: R-+ IR is absolutely
9 2

integrable, then for each T > O,F, is a continuous linear operator: LT - LT

and therefore Gateaux (in fact, Frechet) differentiable. Since F, is linear

DF!(x) _ F., and the reader can easily verify that (DF (x))adi =

FQ : v(-) l a(--)*v(-), i.e., the adjoint operation turns the impulse response

around in time. Furthermore, H : v(-) [a(.) + a(-.)]*v(.) is strictly
2 9^

increasing on LT for each T > 0 iff Re {a(jw)} > 0 for all w, where a is the

Fourier transform of a. This follows from a slight modification of [12:pp.25,

174,235]. Similar results hold if a(-) contains impulse functions as well

[12:pp.246-247]. Thus Gopt: v(.) a(-.)*v(-), and Gopt is represented in theopt opt 1

frequency domain by the complex admittance a (jw). Therefore Theorem 1 and

equation (10) reduce to the standard result Yload(jw) = Ysource(j) if F9

is linear and time-invariant.

Suppose Fm is memoryless but possibly nonlinear, i.e., N1 is a resistor

with the constitutive relation i=b(v). Assume that b: R+ IR is differentiable

and its derivative b'(-) is bounded. Then b is Lipschitz continuous on JR

and hence for each T > 0 the operator Fm: v(t) F> b(v(t)) maps L2 into L2

Using Prop. 13 of [13:p.85] and the Lebesgue Convergence Theorem [13:p.88],
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2 2
one can show that Fm is Gateaux differentiable on LT and that for all x,y C LT'

(DFm(x))y = y(.)b'(x(.))eL2. Furthermore if h: v p b(v)+vb'(v) is a

strictly increasing function on IR, then Hm: v(t) FH b(v(t)) + v(t)b'(v(t))

2 2
is a strictly increasing operator: LT + L 2T. Thus Theorem 1 reduces in this

case to the result in [2].
2 2 2

The reader can easily check that DFm: LT L(L,L ) is not continuous

unless b'(o) is constant. Thus if N1 is a resistor with any nonlinearity

(other than the trivial i=gv +i), Fm is not Frechet differentiable [4,Chap.3]

on LTo This is the reason Theorem 1 was formulated in terms of the weaker

Gateaux derivative.

3.2) Positive Linear Combinations of Operators

The (noncausal) matched load (10) for the source admittance F is related
adj

to F by a mapping Z, Z(F) = Gop t : v- (DF(v)) v . Note that z is linear;

i.e. 2(aF1 + bF) a +(F) + b(F 2). Given F1 and F2: LT LT, coid

F - aF1 + bF2. The reader can easily verify that if F1, F2 satisfy the

conditions of Theorem 1 (resp. Theorem 2), then F also satisfies Theorem 1

(resp. Theorem 2), provided a > O, b > O, a+b > 0.

For example, consider the source shown in Fig. 2, where N1 consists of the

parallel connection of an LTI 1-port and a nonlinear resistor. If Y and g

satisfy the conditions in section 3.1), then the (noncausal) matched load

has the form shown in Fig. 2.

3.3) Circuit Example

Suppose the source takes the specific form in Fig. 3, with the resistor

curves shown in Fig. 4. The convolution kernel a(t) = e t t > 0, for the



series connection of inductor and resistor satisfies the assumptions of

section 3.1. The resistor curves gK are differentiable everywhere and

hk(v) =gk(v) + vgk (v) (k+l)vvlk-1 , k = 1,2,3, (13)

with h1(O) = 0. All the assumptions of section 3.1 are satisfied except

that the derivatives 92'(') and g3'(' ) are unbounded. (Since they are bounded

on every bounded subset of IR, a more detailed argument, omitted here,

shows that the solutions obtained below maximize P over LT ) L , which is

certainly sufficient in practice.)

To find the optimal output v in the three cases, we carried out the

iterative procedure (11), which becomes in this instance

j+l(t) 

[ WI [e~tl~x(~) dl + · Xj (t) k = 1l,2,3.x 6 sin(t) - (k+l)xj(t)Mxj(t)Ikl - I e Ix()d- + xj(t)', k 1 2,3.L-0 (14)

Miss Pearl Yew of MIT has written a program in PASCAL to do the numerical

solution. It was run on the DEC20 in MIT's Research Laboratory of Electronics

with an initial guess of xo (-) - 0, and found to converge fairly rapidly

for small positive values of x. The results are shown in Fig. 5.

Since gl represents a linear resistor, it follows from the traditional

linear theorem that v(t) = 2sin(t) for k=l, in agreement with the numerical

solution. Note that the instantaneous current drained by the nonlinear source

resistor increases in magnitude with k for jvJ > 1 but decreases for

jvl < 1. Thus it is intuitively reasonable that the optimal output spends a

progressively greater percentage of time in the region JvJ < 1 as k increases.
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Figure Captions

Fig. 1 The solution of the operator equation (6), given a particular i (-),
is the optimal output voltage v(-). It can be achieved 
with a variety of loads.

Fig. 2 The optimal load admittance is obtained by a linear operator Q.
on the source admittance. Thus the optimal load for a parallel
connection of source admittances is the parallel connection of the
optimal loads for each source separately.

Fig. 3 Theorems 1 and 2 let us numerically determine the optimal output
voltage v(.) for this circuit when the resistor curves are as shown
in Fig. 4.

Fig. 4 The three resistor cXrves for the circuit in Fig. 3 are gk(v) 4A= vvlk-I,
k=1,2,3, with g1(O) = 0.

Fig. 5 One period of the optimal output voltages for the circuit in Fig. 3.
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