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Abstract

This paper presents the results from a set of experiments on stall inception in

multistage axial flow compressors. The experiments were tailored to investigate

phenomena having a wide range of time and length scales. This range of scales was

motivated by two previously observed paths to stall. Parametric changes such as tip

clearance, inlet distortion and mismatch were carried out to demonstrate the importance of

component coupling in the stall inception process. Evidence is presented for the

importance of the local compressor characteristic in determining where and when the

initiation of the stall inception process will occur. Although the stall inception process may

begin as a localized event, its growth into rotating stall is governed by the environment

established by the coupling of the various compression system components. Finally, the tip

flow field, specifically the rotor tip leakage jet, is shown to be a key feature in the stall

inception process.
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Introduction

Recent studies of rotating stall inception have led to the definition of two different

paths from the essentially axisymmetric flow in the pre-stall state to fully developed

rotating stall. The first path involves the growth of a small amplitude long circumferential

length scale (0-1 circumference) traveling wave into a mature rotating stall cell. The

initial propagation speed of this traveling wave is equal to or slightly less then the mature

stall cell speed. Furthermore, this small amplitude traveling wave can exist for a long time

(tens of rotor revs.) before becoming a stall cell. This scenario agrees well with several

models which predict the growth of traveling waves at the peak of the total to static

characteristic. These long length scale traveling waves are referred to as modes [1].

A different scenario has been observed which involves the growth and deceleration

of a short circumferential (few blade pitches) fast moving disturbance into a mature stall

cell in only a few rotor revolutions. These short length scale phenomena are referred to

here as pips. An important factor in the design of this experiment was the desire to focus

on these different time and length scales associated with the pips and modes. This

influence is seen in the circumferential distribution of the testing probes, first over the

entire circumference and then more closely spaced over three blade pitches. Furthermore,

the axial locations of probes well upstream of the rotor were intended to filter out any short

length scale disturbances (pips) and make longer length scale disturbances (modes) clearer.

Finally, several rig modifications were used as tools to focus on specific time and length

scales. These included mismatch, (restaggering the rear three stages of the four stage
compressor to a lower design p), asymmetric tip clearance, and a distortion screen.

Six main questions to be addressed are:

1) What are the mechanisms of rotating stall inception?

2) Is there a repeatable prestall event, and if so, is it a long wavelength disturbance

(mode), short wavelength disturbance (pip), or some combination of the two,

coupling?

3) At the blade passage length scale how do the various fluid dynamic structures

(tip vortex/leakage jet, blade wakes, and endwall boundary layers) behave with
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changing operating point and what role do these structures play in the stall inception

process?

4) How do inlet distortion and changes in tip clearance affect the stall inception

process?

5) What is the overall machine and local flow field behavior in the first stage

operated below its normal stall flow when stabilized by mismatching the rear three

stages?

6) What role does component coupling play in stall inception?

Experimental Facilities

This project was a collaborative effort between academia and industry. The three

groups involved were MIT, GE Cincinnati, and The Whittle Lab, Cambridge England. The

experiments were carried out at the General Electric Aerodynamics Research Laboratory,

with the cooperation of Dr. D.C. Wisler's group. This facility has a low speed research

compressor that duplicates high speed compressor flow fields in a large low speed machine

(60" diameter). This large size minimizes probe blockage and allows for easier access and

instrumentation whilst giving correct Reynolds number at low operating speed.

Furthermore, this rig is very flexible and changing tip clearance, blade stagger, or adding

unsteady distortion can all be achieved with relative ease. The compressor has four

repeating stages and the NASA/GE E3 blading was used to represent a current high

performance multistage machine (see fig. 1). For further information on this facility or the

blading see reference [2].

In addition to the standard instrumentation for steady state pressure rise and flow

rate, high response pressure transducers and hot wires were used. A radially traversable

slant wire, to give three components of velocity, and a total pressure probe were also used

at several operating points at rotor inlet and rotor exit of various builds. The slant wire and

the total pressure probe signals were phase locked to the rotor. Several steady state

experiments were conducted at each radial location, and the results ensemble averaged to

create a picture of rotor locked phenomena (blade wakes, tip vortex, etc.).
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The bulk of the experiments were carried out with fixed arrays of 40 probes,

consisting of 20 hot wires and 20 pressure transducers. At IGV exit there were 10 reference

hot wires at midspan and 10 corresponding pressure transducers in the casing. These 10

reference locations were circumferentially distributed in the following manner:
00,450,900,1350,1800,2250,2700,315'. These eight equally spaced locations would allow

spatial Fourier analysis. In addition to these locations, the remaining two pressure
transducers were placed at 2000, 2100 and the two remaining hot wires were at 15', 250.

The purpose of these extra offset probes was to allow crosscorrelations over various

distances, to combat spatial aliasing (see fig. 2). With all the dynamic instrumentation

appropriate logging and filtering rates were used to insure temporal resolution and to

prevent temporal aliasing. Specifically, most of the unsteady data was sampled at 10 kHz

and low pass filtered at 3 kHz, with a few cases sampled at 1 kHz and low pass filtered at

300 Hz.

Complementing the reference probes there were 10 testing hot wires and 10 testing

pressure transducers. The circumferential distribution of these testing probes is identical to

the reference probes referred to above. However, whereas the reference probes are fixed at

their locations for all runs as a control, allowing comparisons between various runs, the test

probes were moved to various axial-radial positions. The testing probes were used at four

axial locations: one half of a radius and one quarter of a radius upstream of rotor inlet, also

at rotor inlet, and rotor exit, which were at locations roughly 0.2 chord upstream and

downstream of the rotor respectively. In all cases the testing pressure transducers were in

the casing. When at R/2 or R/4 upstream the testing hot wires were at midspan. At rotor

inlet and rotor exit the testing hot wires were usually at 20% and then at 80% immersion

(tip and hub) (see fig. 3), but other immersions were investigated. To focus on small length

scale events, experiments were also performed with testing probes at the rotor inlet and

rotor exit locations, but with eight testing probes equally spaced over three blade pitches.

One of the key features of this facility is the relative ease with which major

modifications to the rig can be made. This ability was used to investigate three variations

from the baseline build. The baseline build's overall speedline and stall hysteresis loop are

displayed in Figure 4. Figure 5 is the performance of the first stage only and several points

are labeled for future reference. Point A is design and point E is just before stall. Figure 6

displays the individual static pressure rise characteristics for all four stages.

The first variant from the baseline build was the mismatch. The purpose of the

mismatch was to extend the stable operating region of the first stage and to provide a

clearer view of any pips by suppressing any long length scale disturbances, thus preventing
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modal stall. This mismatch was achieved by closing the rear three rotors by 100. Figure 7

shows the result of the mismatch on the overall characteristic. The stalling flow coefficient

was changed from 0.345 to 0.308. Note the abrupt change in slope of the overall
mismatched characteristic at the stalling p of the baseline build. Figure 8 is the

characteristic complete with hysteresis loop for the mismatched compressor. Figures 9 and

10 display the first stage characteristics for the baseline and mismatch builds. Figure 10

has specific operating points labeled for future reference. Note that the extended operating

region of the first stage characteristic is positively sloped. Figure 11 shows the four

individual stages in and out of stall for the mismatch build. Finally, figure 12 shows the

first stage of the mismatch build broken down by direction of throttle motion. The standard

stability analysis predicts that positive slope is unstable, negative slope is stable. However,

the rear three stages are negatively sloped and the overall compressor is negatively sloped

and stable. This shows the importance of both the local characteristic and the overall steady

state characteristic.

The second variation from the baseline build was to open the first stage rotor

clearance from gap/span=1.3% to 3.1% on the matched compressor. This was done in

both a symmetric and an asymmetric fashion, the latter by only opening the clearance over
a 1200 section of the annulus. The clearance was opened to examine its effect on the stall

inception process. The asymmetric clearance was used in an attempt to fix the

circumferential location of the beginning of stall inception.

The final variation from the baseline that was investigated consisted of the matched
build and a 120' circumferential distortion screen 1.5 radii upstream of rotor inlet [3].

Experiments were conducted both with the distortion screen fixed and with it rotating. As

with the variable tip clearance, these experiments were carried out to investigate the effect

of inlet distortion on the stall inception process, to try to force a time and length scale into

the machine, and to try to circumferentially fix the starting point of stall inception. Figure

13 displays the various changes in the first stage characteristic associated with these rig
changes.

Results

Steady State Data

The following set of data was taken with a slant wire. The sampling rate was 50
kHz. For the baseline build data were taken at 16 immersions from 2% to 95% and for the
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larger clearance data were taken at 19 immersions from 2% to 50%. The data were phase

locked to the rotor. At each location and wire orientation 300 data sets were taken and then

ensemble averaged resulting in the steady state results displayed here. The data are

presented in two basic formats. The first format is a radial profile created by mass

averaging the given quantity at the given radius over one circumferential pitch. The second

format is to display the data in contour or vector format over roughly 1.5 pitch.

Discrepancies in the tip flow field for runs at different operating points can clearly

be seen by examining radial velocity profiles. Figure 14 shows radial profiles of radial

velocity for various fixed operating points. (The radial velocity should be nearly equal to

zero everywhere.) The flow field in the tip region at rotor inlet for the extended operating

region of the mismatch build was out of the calibration range for the slant wire and, as a

consequence of this, the measured velocities in that region are incorrect. However, useful

information can still be obtained from this data. The plot shows that the tip flow field does

not deviate far enough from the expected direction (ie. radial velocity small) to be out of

range until operating at point J of the mismatch build, which is the baseline stalling flow

coefficient. As the flow coefficient decreases further, an increasingly large portion of the

tip flow field is out of range for the slant wire and physically impossible radial velocities

are shown. It should be noted that at rotor exit the flow field was not out of range of the

slant wire.

The effect of changing operating point on specific flow structures, such as the tip

vortex, blade wakes, and endwall boundary layers can be seen by viewing the data in a

direction aligned with the relative flow. To display all three components of velocity, the

results will be presented, first in vector format, and then in contour format. Three

operating points will be examined. Figure 15 is a display of the slant wire data at rotor exit.

The data has been converted to the relative frame and is viewed at a yaw of 550 from axial.

This viewing angle is aligned with the bulk through flow and figure 15 thus represents the

secondary flow. The scale vector at the top shows the direction of rotor rotation and the

magnitude of tip speed. The blade wakes and tip vortex/jet flows are clearly visible. This

figure is representative of the baseline operating points away from stall. Figure 16 is a

similar plot at the last stable operating point before stall in the baseline build. Note the

difference in the tip jet/vortex flow from the previous plot, with the tip leakage jet now

extending to a lower radial immersion. Figure 17 shows the flow in the extended operating

region of the mismatch build, at a lower flow coefficient than the baseline stall, but well

above the mismatch stall point. Figure 17 is representative of other operating points in this

flow regime; it is also very similar to figure 15. Thus the steady state, rotor locked,
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secondary flow field at rotor exit is relatively unchanged with operating point, except
immediately before stall (as in figure 16).

The through flow velocity corresponding to the secondary fields of figures 15, 16,
and 17 is displayed in figures 18, 19, and 20 in contour format. The low velocity region
inside the constant contour of v/Utip <.45 has been shaded in the three figures and the

pronounced change in the tip region between points D and K is revealed.

Similarly, the effect of changing operating point on the axial velocity field is
examined by first looking at circumferential and then radial profiles of axial velocity.

Figures 21 and 22 show the axial velocity distribution at 50% immersion (mid-span) at

rotor exit for roughly 1.5 pitch. It is seen that the rotor wakes do not grow very much
circumferentially in 8 as $ decreases. The radial profiles of axial velocity also reveal the

changes in the tip flow field due to the change in stage 1 tip clearance. Figures 23 and 24
display the axial velocity profiles for three operating points at rotor inlet and rotor exit for

the baseline and larger first stage tip clearance cases. There is an increase of axial flow

deficit in the 20% of span nearest the tip with the larger clearance.
To summarize the steady state data, as $ decreases the tip vortex/jet structure and

rotor wakes do not change appreciably. However, just before stall the rotor leakage jet does

become larger. Furthermore, for the mismatched case, starting at the baseline stall flow

coefficient, a region of tip flow that deviates from design, grows radially in a monotonic

fashion with decreasing flow coefficient at first rotor inlet. Finally, the larger tip clearance

build had a larger axial velocity deficit in the tip region, than the baseline build.

Unsteady Data

Baseline Build

This data was taken with the array of hot wires and pressure transducers discussed
earlier and displayed in figures 2 and 3. Unless specifically noted, the hot wires are aligned
perpendicular to the axial direction. The hot wires were always perpendicular to the radial
direction.

This first section will examine the stalling process in the baseline build. To
document this process as completely as possible, a represenative experiment at both the
rotor inlet and rotor exit are presented. Figure 25 shows time traces for the eight equally
spaced casing pressure transducers at rotor inlet, while figure 25b is at rotor exit. The probe
numbers increase in the direction of increasing 0 in the rotor rotation direction. The probe
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numbers of the ordinate locate the zero level for each probe. The time is in units of rotor

revolutions. The data has been normalized, i.e. the mean removed and rms standardized to

1. All pressure transducer measurements are guage, relative to ambient. Figure 26 is the

time histories of the testing hot wires at rotor inlet and 20% immersion corresponding to

figure 25. Figures 25 and 26 are for the same stall event. (Figures 25b and 26b, both at

rotor exit, are for the same stall event, which is similar to that of Figures 25 and 26.) The

compressor was set at a stable operating point close to stall. The throttle was then slowly

closed until the machine went into stall. The pip is first visible at t-76.5 on pressure

transducer number 5 in Figure 25. The growth of this pip in amplitude and 0 is clearly seen

over the next few rotor revolutions, resulting in a mature stall cell by t-82. In these two

figures (25 and 26) there are no apparent propagating disturbances prior to time-76.5.

Additional analysis of the pressure transducer data at rotor inlet shown in figure 25

is presented in figures 27 through 30. Figure 27 again displays the time traces of figure 25,

but without the data being normalized. The negative mean values are explained by the fact

that the probes are measuring gauge pressure and the flow has already accelerated through

the IGV row. The coarser nature of figure 27 is due to the fact that only every twelfth data

point was plotted. This technique of plotting every nth point was used for most figures to

speed up the process of obtaining hard copies. In all cases there is no major difference

between plots with every single point and those with only an integer fraction of points.

Guidelines have been drawn in figure 27 and the slope of these lines represents the speed of

propagation of the disturbance around the annulus. The change in slope of these lines

displays the change in the speed of propagation of the disturbance as it decelerates from

70% of rotor speed at inception to 45% as a mature stall cell. The direction of propagation

is in rotor direction. As stated earlier, prior to time-76.5 there is no sign of any

disturbance, propagating or fixed. Various tools for data analysis such as FFTs, cross

correlations, and filtering techniques, both with software and physically, (by looking at

signals "far" upstream from rotor inlet), could not find evidence of any waves traveling at

other than 70% speed prior to stall. More specifically, no modal disturbances above the

perturbation levels of v'/U=0.5% p'/pU2 =1% could be found. Furthermore, these

techniques confirmed the pip's 70% initial speed and subsequent deceleration to 45% as it

grew in magnitude and circumferential extent.

An example of the spatial Fourier technique is shown in figures 28 and 29. At each

time in figure 27 the data from the eight equally spaced probes was Fourier transformed and

the resulting magnitudes and phases for the various harmonics are displayed. The size of

the symbols in figure 29 are scaled by the magnitudes of figure 28. The phase in figure 29
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is calculated using 0=arctan(Im(Cn)/Re(Cn))/n and thus the range for each harmonic

decreases. This also gives a positive slope for motion in the direction of rotor rotation. In

figures 28 and 29 the zeros for the various harmonics are offset for clarity. These figures

confirm that there is nothing visible prior to time=77, at which point the disturbance grows

and matures within roughly five rotor revolutions. Furthermore, the continuous change in

slope of the first harmonic phase indicates the deceleration of the pip. The regular pattern

seen for time<77 in harmonic one is attributed to a rotor asymmetry.

The data from figures 25 and 27 were also examined using correlations. Figure 30

is an autocorrelation of the first probe from figure 25 taken over the time period 65<t<75.

This correlation clearly shows the strong once-per-revolution signal seen in the first

harmonic of figure 29 and the 54 overtones of the rotor blade passing. However, there is no

sign of any other traveling disturbance.

Some experiments were conducted with the eight equally spaced test wires

alternating between hub and tip, 80% and 20% immersion. Figure 31 displays the results

from one of these tests conducted at rotor inlet. This plot allows the three dimensional

nature of the pip to be seen. Between t-77 and t-78 the pip is seen as an axial deficit

traveling in the tip region, with no disturbance visible in the hub wires. Only when the tip

deficit disturbance has grown to an appreciable extent is any disturbance visible at the hub,

t-78.5. This hub disturbance is first seen as a flow increase, to compensate for the tip
blockage, but as the pin grows into a stall there is eventually a full span deficit.

To obtain information about the flow direction within the pip an experiment was

conducted with seven testing wires distributed over a three-pitch circumferential region at

the rotor inlet tip, 20% immersion. (The eighth wire malfunctioned.) These seven wires
were oriented at various angles between 0' and 1800 in the x-O plane, as displayed in a

schematic in figure 32. Wire 1 is aligned to measure axial flow, while wire 4 is aligned to

measure circumferential flow. Again, the zero level for each trace corresponds to the probe

number on the ordinate. The following observations are consistent with the turning of the
flow in the counter rotor direction due to a flow perturbation in the -x,-O direction. First,

the increase in the signal of wire 4 and the decrease in the signal of wire 1 indicate a flow

turning, or an axial deficit and circumferential increase. The stronger deficit on wires 5-7

than 2 and 3 implies that the flow is turned so as to be more parallel with wires 5-7. An

increased tip leakage jet would be a perturbation having components in both the negative

axial and circumferential directions.

The unsteady measurements with the baseline build show that this machine stalled

via radial and circumferential growth of an initially small length scale disturbance. The
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growth occurred in less than five rotor revolutions and no modal signals or any other type

of precursors could be found. The disturbance's initial speed of 70% decelerates to 45% as

it grows into a mature stall cell. This disturbance begins as a tip deficit and as it grows has

a corresponding hub increase in local flow, before becoming a full span deficit at stall. At

20% immersion at rotor inlet the disturbance appears as a turning of the flow in the anti-

rotor direction.

Unsteady Data

Mismatched Build

Starting at the baseline stall flow coefficient, a set of experiments conducted in the

mismatched build at fixed operating points of decreasing flow coefficient are now

presented. As the throttle was closed for the mismatched build, the following sequence of

events occurred. When the flow coefficient had decreased to the level of the baseline stall,

pips would appear and disappear sporadically. Figure 33 displays the normalized traces

from eight equally spaced hot wires at 20% immersion at rotor inlet obtained for the fixed

throttle setting, J, baseline stall. Note that for most of the time the wires are relatively clear.

However at time-37, wires 6 and 7 display a pip. Figure 34 is another experiment under

these same conditions and the presence of a disturbance is seen between time =20 and

time=25. Figure 35 is an expanded view of probe #2 from figure 34 showing the pip over

about 2-3 blade pitches. For comparison, figure 35b is a similar plot for fixed operating

point M. There are now more pip disturbances, the mean velocity has decreased, and the

pip width is now 3-4 pitches.

As the flow coefficient continues to decrease from J, the pip disturbances become

more regular and do not decay after a short appearance, but persist. Time traces, FFTs, and

correlations all show that the disturbance signal becomes regular, and travels at roughly

70%. For example, figure 36 again represents the time traces from the eight equally spaced

testing hot wires at rotor inlet at 20% immersion. The steady state operating point is L.

Note that there are 5 pips, not equally spaced about the circumference, traveling around the

annulus at 70% speed. As the flow coefficient is reduced further more and more pips

appear around the annulus, all traveling at roughly 70% speed. Eventually, at operating

point N there are 12 pips traveling about the annulus at 70% as shown in figure 37. Any
further decrease in p and one of these 12 pips grows into rotating stall in the same fashion
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as the baseline case. These disturbances in the extended first stage region may be part span

stall cells rather than precursor pips.

The signal at roughly nine times rotor speed established by the twelve disturbances

travelling at approximately 75% speed is clearly displayed by the twelve signals between

t=22 and t=23.4 and the nine signals between t=22 and t=23 in figure 37. Figure 37b is an

autocorrelation of probe#1 in figure 37, showing a correlation at roughly 70% speed.

Furthermore, the 12 coherent disturbances that are travelling about the annulus are seen as

the 12 peaks between 0 and the 70% speed marker. The 9 peaks between 0 and delay

time=1, lead to a perceived 9 times rotor speed signal. Figure 37c is a temporal FFT of

probe #1 from Figure 37, which also shows the resultant nine times rotor speed signal. A

comparison of Figure 2-9 from [4] with temporal FFTs such as Figrue 37c and others at

fixed operating points between J and N, suggest that perhaps a similar situation of several

disturbances travelling about the annulus also existed in [4].

To obtain some radial information, experiments were conducted with the testing hot

wires at rotor exit, in the hub/tip (80% and 20% immersion) configuration. Figures 38 and

39 show different time periods from the same experiment of the mismatched compressor.

Crosscorrelations show that the pip speed was roughly 73% and appropriate guidelines

have been sketched. The compressor was set close to stall, and the throttle slowly closed

until the machine stalled at about time-74. From these figures it is seen that as in the

baseline case, the pip disturbance gives a deficit in tip axial velocity and hub increase in

axial velocity until the disturbance becomes full span at rotating stall onset. Furthermore,

the time traces from the hub wires clearly show the blade passing signal even during pips.

Using these blade wakes as a reference, and remembering that the disturbance is traveling

at 30% speed relative to the rotor, it can be seen that the pip disturbance's circumferential

size at the hub is on the order of one or two pitches.

More information about the travelling disturbances is presented in the flollowing

three experiments that were carried out at operating point K of the mismatch build. Figure

40 is the time trace from a testing wire at rotor exit at the hub for fixed operating point K.

This again shows that the pip disturbance takes the form of a flow increase at the hub, and

that it is only one or two blade pitches wide. Finally figures 41 and 42 show hot wire traces

from rotor inlet at 5% and 30% immersion respectively for the fixed operating point K. For

these two runs the hot wires were packed over a 3 pitch region, and they alternated between

their standard orientation, perpendicular to axial, and parallel to axial. The hot wire

orientations are displayed in the right margin of the figures . Looking, for example, at the

traces from probes 1 and 2 it is observed that the pip disturbance appears as an axial flow
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deficit and a circumferential flow increase. Figure 42 shows that the disturbances are less

visible at 30% immersion.

The mismatch does extend the stable operating region of the first stage. At the
matched baseline stall flow coefficient sporadic pips intermittently appear. As p is

continuously decreased from this point, the pips stay and travel at roughly 70% speed.

These disturbances are a few blade pitches wide, and are not necessarily equally spaced

about the annulus. More disturbances appear around the annulus until prior to stall there

are 12 around the circumference. Eventually one of these grows into stall in a similar

fashion to the baseline case.

These disturbances in the stabilized first stage of the mismatch build have four

similar features with the transient pips that grow to stall in less than five rotor revolutions

for the same rotor in the baseline build. Both disturbances appear first at point J and travel

at a speed of roughly 70%. Both disturbances have a radial profile of a tip deficit and a hub

increment in flow. Finally, the circumferential size (few pitches) of the stabilized

disturbances of the mismatch build is comparable to the size of the pip disturbance of the

matched baseline build, early in its growth towards stall. That is, the stabilized disturbance

of the mismatch build resembles the baseline transient pip at some time during its five rotor

revolution growth period. Based on these similarities, the stabilized disturbances of the

mismatch build and the transient disturbance of the baseline build appear to be the same

phenomena, although this has not been proven conclusively.

In the artificially stabilized region, the local first stage characteristic is positively

sloped, and the flow in the first stage becomes unstable at about the condition where pips

first appear. The pips left to their own accord, would quickly grow into rotating stall. The

pips are a local flow phenomena of small scale and for them it is this local characteristic

which is important. However, the pips only grow a certain amount (few pitches) until they

are at an appropriate length scale to feel the influence of the downstream stages (negatively

sloped characteristic), and their size is effectively held in check. Hence above a certain

size, the overall global characteristic becomes important. For this machine, this threshold

length scale was a few pitches.
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Unsteady Data

Variable First Rotor Clearance

The first rotor tip clearance was opened around the whole circumference from 1.3%
to 3.1% to asses the effect of tip clearance on the stall inception process, and as an attempt
to change the stall inception process to a modal type. This has been done in the past by
Day [1]. Opening the first rotor clearance shifted the stalling $ from .345 to .352. This is

seen in Figure 43 of the first stage characteristics. The stall inception process was the same
as the baseline except that the initial pip speed was 62% based on correlations. As before,

there is no evidence of any long length scale or slower traveling disturbances prior to stall.

To fix the starting point of stall inception and to examine local behavior around the
annulus, the tip clearance over a 120' sector of the first stage was opened to 3.1% while

keeping the remaining 2400 at the baseline 1.3%. Figures 44 and 45 show that around the
end of the large clearance region is where the steady pressure and local $ are minima.

Figure 46 shows that this region is where the signal is the noisiest. The data was taken with
the 10 testing probes and was averaged over 10 rotor revolutions. (The instantaneous
results are similar) Viewing the two circumferential sections as two parallel compressors,
operating on the respective speed lines of figure 43, it is clear that as $ is decreased the

larger clearance section of the annulus (the notch) will reach its stability limit first.
Therefore, it is expected that disturbances which are small in circumferential extent will

begin and grow first in the larger clearance area and that this region should be the noisiest.
As a result of this, even though the disturbances may be "born" in the high clearance region,
they may not grow to an observable size until after passing through the low $ region at the

end of the notch. This is indeed what is observed for example in figures 47 and 48. The
disturbance labled X in figure 47, is first seen after being "born" in the 3.1% clearance
region and growing through the high rms low $ region at the end of the notch. The

disturbance is then damped in the baseline clearance region as this flow is operating at a
relatively more stable point on its respective characteristic. A subsequent disturbance, Z,
persists longer and travels at roughly 70% rotor speed.

Figure 49 displays the speed of propagation of the pip at various points about the
annulus. The figure was created by crosscorrelating adjacent probes and plotting the result
at a circumferential location half way between the two probes. The fact that the speed of
propagation in the large clearance region is about 60% ,which is roughly equal to the speed
for the symmetric large clearance, and that the speed in the tight clearance is roughly 70%,
which is about the speed for the symmetric small clearance, confirms that, since the pip's
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length scale is small compared to the circumferential extent of each of the clearance

regions, in each of these respective regions the pip behaves as if it was in a uniform

clearance machine.

Unsteady Data

Distortion Screen

The distortion screen was used as a tool to force a length scale, to fix the starting

location of stall inception, (similar to the notch tip clearance experiment), and to force a
time scale (when the screen was rotated). The distortion screen covered a 1200 sector and

was 1.5 radii upstream of the rotor inlet [3]. At rotor inlet the shape of the velocity profile,
Figure 50, is consistent with [4] and [5]. The lowest local $ occurs at the end of the screen

and this corresponds with the highest velocity rms, Figure 51. Similar to the non-uniform
tip clearance build, the pips are believed to be "born" and to grow in the low $ region at the

edge of the screen. Then they are attenuated through the clean flow region as the local $

increases (Figures 52 and 53). (This agrees with [5] which states that the end of screen has

the highest growth rate for propagating 2-D disturbances.)

The stall inception process is again the same as the other builds, and is displayed in

figure 54. A short length scale disturbance traveling at roughly 70% speed grows and

decelerates into a mature stall cell. There are no signs of long length scale, slower traveling
modes. Note that the mature stall cell attenuates in the higher local $ of the clean region.

A final attempt to force modal stall was made by rotating the inlet distortion screen.
Figure 55 displays stalling $ vs. screen speed. Counter rotation gives an increase in stall

margin, ie. stall at a lower flow coefficient. There are two resonant speeds, at 20% and

70%, which decrease the stall margin. The 70% speed is the strongest resonant speed and

corresponds to the pip speed. The 20% speed is similar to the predicted modal speed based

on 2-D semi-actuator disc analysis.

The experiments seem to suggest the existence of two resonant speeds in a machine.

The first speed, 20% corresponding to long length scale modes, and the second resonant

speed, 70% corresponding to short length scale pips. The final mature stall cell speed is
45%. In light of the importance of these three speeds, 20%, 45%, and 70%, experiments

were repeated with the full array of dynamic instrumentation and the screen moving at these

key speeds. An example is shown in figure 56 where the screen is rotating at 20% speed in

an attempt to force the long length scale modal path to stall. The screen's propagation is
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clearly visible. A pip begins at the screen border. The pip's speed is not 20%, but 70%
(displayed by the difference in the slopes of the guide lines) which then decelerate to the

45% speed mature stall cell as it grows, following the baseline scenario. Similar results

were obtained with the screen at 45% and 70% speed. That is, no modal stalls were

observed, the pip would start at the screen border, the pip propagation speed was not

effected by the screen speed, and the pip would grow into a mature stall cell in the same

fashion as the baseline case.

Summary

This work has shown repeatedly that short length scale "pip" disturbances can play

a key role in stall inception, independent of the longer length scale, slower traveling modes.
For the pip-type of stall inception, the initial pip size is on the order of a few pitches and

grows to full rotating stall within five rotor revolutions. The tip flow field has been shown

to experience changes that grow monotonically in the radial direction as stall is approached.

The pip flow structure in the tip region at rotor inlet manifests itself as a turning of the flow

away from axial in the counter rotor direction. The rotor wakes and other secondary flow

structures do not show any significant changes with operating point, except prior to stall.

At the small length scale of the initial pip, potential fields from various components

of the machine are weakly coupled and as a result the stall inception and pip are influenced
mainly by the local environment. However, once the pip grows past a threshold length
scale, (few pitch), component coupling becomes more important and the overall
environment thus ultimately determines whether the pip grows or decays. Coupling can

thus be used as a tool to display the importance of the local environment and to filter out

disturbances of different wavelength. These points were demonstrated with the mismatch,

asymmetric tip clearance, and fixed distortion screen builds.

Finally, the pips were shown to be essentially 3-D, consisting of a region of
circumferential size (at inception) on the order of a blade pitch, with a tip flow deficit. A
hub increment in flow had to occur to satisfy continuity. A 2-D semi-actuator disc analysis
for this geometry predicts modal propagation at roughly 20% of rotor speed. However, the
pips are strongly 3-D, being of small radial and circumferential extent, and rotate at 70% of
rotor speed. There is some empirical evidence to support the idea that axial flow
compressors may have two natural frequencies, one near 20% speed, corresponding to the
modes predicted by 2-D models, and a second at 70% speed, corresponding to the 3-D pips,
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and the particular type of stall inception is determined by which natural frequency

dominates.

Future Work

Some evidence has been presented for the tip leakage jet as having a key role in the

stall inception process. Real time directional data of the tip jet at rotor inlet is needed for a

clearer and time accurate presentation of this tip jet flow. Instantaneous three component of

velocity could be measured with a multi-sensor probe or with several single sensor probes

arranged at various orientations and with restrictor shields to help clarify the direction of

the flow.

A second experimental avenue to pursue is to measure the instantaneous local

characteristic with hot wires and pressure transducers simultaneously at rotor inlet and exit
at corresponding 6 locations. With this technique, employed for example simultaneously in

the notch and clean flow regions of the notched tip clearance build, a true instantaneous

view of Figure 43 may be measured experimentally. Also, the instrumentation could be

continued through the rig to determine the axial extent of the disturbances.

A third area that requires more investigation is the apparent presence of two natural

frequencies in machines, their connection to the two paths to stall, (pips and modes), and
determining which of these is dominant. A matrix of relevant parameters such as tip

clearance, aspect ratio, spanwise loading, etc. should be assembled for various modal and

pip machines. Any trends observed in this parameter space (such as going from baseline

clearance to a larger clearance on all stages) should then be employed to convert a machine

from pip to modal, or vice versa. Once this is achieved, the resonance experiment with the

moving distortion screen should be repeated to determine if indeed the dominant frequency

changes between the two natural frequencies as the rig and corresponding stall inception

changes are carried out.

Finally, taking note of the three dimensionality of the flow as displayed in figure 31,
future modeling of the stall inception process should incorporate the presence of radial
harmonics, radial distributions.
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Schematic of Fig. 10
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Figure 14: Radial profiles of circumferentially mass averaged radial
velocity at rotor inlet. The operating points, A-L, correspond to
those labeled in figure 10. The flow direction in the tip region for

operating points J,K, and L deviated enough from the expected flow
direction to be out of calibration range for the slant wire.
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Figure 15: Secondary flow at rotor 1 exit in the relative frame. This
is at a yaw of 55 ' from axial. Roughly 1.5 rotor pitches are
displayed. Rotor blade wakes and tip vortices are visible. A
reference vector, indicating tip speed and direction is included.
Operating point B of figure 10.
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Schematic of Fig. 10

Figure 16: Secondary flow at rotor 1 exit in the relative frame. This
is at a yaw of 55 ' from axial. Roughly 1.5 rotor pitches are
displayed. Rotor blade wakes and tip vortices are visible. A
reference vector, indicating tip speed and direction is included.
Operating point D of figure 10, baseline build near stall.
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Schematic of Fig. 10

Figure 17: Secondary flow at rotor 1 exit in the relative frame. This
is at a yaw of 55 " from axial. Roughly 1.5 rotor pitches are

displayed. Rotor blade wakes and tip vortices are visible. A
reference vector, indicating tip speed and direction is included.

Operating point K of figure 10, mismatch build in the extended
operating region.
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Figure 18: Through flow at rotor 1 exit in the relative frame. This
is at a yaw of 55 ' from axial. Roughly 1.5 rotor pitches are
displayed. Rotor blade wakes are visible. Operating point B of
figure 10. Shaded region is low through flow region of v/Utip < .45
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Figure 19: Through flow at rotor 1 exit in the relative frame. This
is at a yaw of 55 * from axial. Roughly 1.5 rotor pitches are
displayed. Rotor blade wakes are visible. Operating point D of
figure 10, baseline build near stall. Shaded region is low through
flow region of v/Utip <.45
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Figure 20: Through flow at rotor 1 exit in the relative frame. This
is at a yaw of 55 ' from axial. Roughly 1.5 rotor pitches are
displayed. Operating point K of figure 10, mismatch build in the
extended operating region. Shaded region is low through flow region
of v/Utip < .45
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Figure 21: Circumferential profiles of axial velocity at midspan of
rotor exit for the baseline build. Roughly 1.5 rotor pitches are
displayed. Operating points correspond to those labeled in
figure 10.
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Figure 22: Circumferential profiles of axial velocity at midspan of
rotor exit for the mismatch build. Roughly 1.5 rotor pitches are
displayed. Operating points correspond to those labeled in
figure 10.
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TIME (ROTOR REVS)
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Figure 25: Pressure at rotor inlet vs. time as the compressor is
throttled down into stall. 8 equally circumferentially spaced casing
transducers, normalized data, baseline build. The probe numbers of
the ordinate locate the zero level for each probe. Probe numbers
increase in the direction of rotor rotation and increasing theta.
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Figure 25b: Pressure at rotor exit vs. time as the compressor is
throttled down into stall. 8 equally circumferentially spaced casing
transducers, normalized data, baseline build. This is for a stall
event similar to that of figure 25.
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TIME (ROTOR REVS)

Figure 26: Velocity at rotor inlet vs. time as the compressor is
throttled down into stall. 8 equally circumferentially spaced hot
wires at 20% immersion, normalized data for the same case as
figure 25, baseline build.
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Figure 26b: Velocity at rotor exit vs. time as the compressor is
throttled down into stall. 8 equally circumferentially spaced hot
wires at 20% immersion, normalized data for the same case as
figure 25b, baseline build.
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Figure 27: Raw data from figure 25. Pressure at rotor inlet vs. time
as the compressor is throttled down into stall. 8 equally
circumferentially spaced casing transducers. Guidelines have been
drawn to display the change in circumferential propagation speed of
the disturbance.
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Figure 28: Magnitudes of spatial Fourier analysis of figure 27,
pressure at rotor inlet, at each time. The zeros for the various
harmonics are offset for clarity. No disturbances are visible prior
to t-77, when the pip is first seen, (see figs. 25,26,27).
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Figure 29: Phase of spatial Fourier analysis of figure 27. Symbol
size is scaled by the magnitude of each harmonic, figure 28. The
zeros for the various harmonics are offset for clarity. Guidelines
show the change in circumferential propagation speed of the
disturbance from the pip's 70% speed to the stall cell's 45% speed.
Once per revolution signal seen in first harmonic is attributed
to a rotor asymmetry.
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54 Rotor Blade Passings
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Figure 30: Autocorrelation of first pressure transducer from
figure 25, taken over the time period 65 <t< 75. Clearly seen are the
once per revolution signal from the first harmonic of figure 29 and
the 54 overtones of rotor blade passing. No evidence of any
other propagating disturbances.
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Figure 31: Alternating hub/tip velocity at rotor inlet vs. time as the
compressor is throttled down into stall. 8 equally circumferentially
spaced hot wires, normalized data, baseline build. Note disturbance
is first visible as a deficit in the tip region at t~77.
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turned flow inside pip0
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Figure 32: Velocity from hot wires at different inclinations. Rotor inlet, 20%
immersion, 8 equally circumferentially spaced hot wires over a 3 pitch region as the
compressor is stalled, baseline build. The sketched flow turning due to the proposed
flow perturbation is consistent with the observed velocity deficits and increments
on the various wires.
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Schematic of Fig. 10
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Figure 33: Velocity at rotor inlet vs. time for fixed operating
point J, see fig. 10. 8 equally circumferentially spaced hot wires,
normalized data, 20% immersion, mismatch build, baseline stall point.
Short lived pips appear and disappear sporadically.
An example of this is seen on wire 7 at t=38.
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Schematic of Fig. 10
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Figure 34: Velocity at rotor inlet vs. time for fixed operating
point J, see fig. 10. 8 equally circumferentially spaced hot wires,
normalized data, 20% immersion, mismatch build, baseline stall point.
A guideline has been included to track a particular pip.
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Figure 35: Velocity at rotor inlet vs. time for fixed operating
point J, see fig. 10. 20% immersion, mismatch build, baseline stall
point. This is an expanded view of probe #2 from figure 34. The pip
is roughly 3 pitches wide.
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Figure 35b: Velocity at rotor inlet vs. time for fixed operating
point M, see fig. 10. 20% immersion, mismatch build. Note that there
are now more pips, and they appear fuller than in figure 35, operatingpoint J.
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Figure 36: Velocity at rotor inlet vs. time for fixed operating
point L, see fig. 10. 8 equally circumferentially spaced hot wires,
normalized data, 20% immersion, mismatch build. Note that the
disturbances, roughly 5 of them, travel at 70% speed and are not
equally spaced about the annulus.

60



---- Baseline stall
D

K B

L A

M

Schematic of Fig. 10
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Figure 37: Velocity at rotor inlet vs. time for fixed operating
point N, see fig. 10. 8 equally circumferentially spaced hot wires,
normalized data, 20% immersion, mismatch build.
Note 12 pips/circumference travelling at roughly 70% speed causing
a 9/rev signal.
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Figure 37b: Autocorrelation of velocity at rotor inlet vs. time for
fixed operating point N, 20% immersion, mismatch build, see fig. 10.
Specifically, probe #1 from figure 37 was used. Note the confirmation
of 12 disturbances travelling at roughly 70% speed, giving rise to an
apparent signal at 9 X rotor speed.
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Figure 37c: Temporal FFT of velocity at rotor inlet vs. time for fixed
operating point N, 20% immersion, mismatch build, see fig. 10.
Specifically, probe #1 form figure 37 was used. The apparent signal
at 9 X rotor speed is clearly visible.
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Figure 38: Alternating hub/tip hot wires at rotor exit vs. time as the
mismatched compressor is throttled down into stall. 8 equally
circumferentially spaced hot wires at 80%/20% immersion. Guideline
show signal at 73% speed, based on crosscorrelation.
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Figure 39: Alternating hub/tip hot wires at rotor exit vs. time as the mismatched
compressor is throttled down into stall. 8 equally circumferentially spaced hot
wires at 80%/20% immersion. Guideline shows signal at 73% speed, based on
crosscorrelation. This is for the same event as figure 38, but later in time.
Radial variation of disturbance continues until stall begins.



Baseline stall
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Schematic of Fig. 10
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Figure 40: Velocity at 80% immersion for the mismatch build at rotor
exit for fixed operating point K, see fig. 10. The disturbance
appears as a flow increase on the order of a few blade pitches wide in
the circumferential direction.

66

U?-

0

0
0

-J eC,wU

7

0.0 1.6



141 Baseline stall
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Schematic of Fig. 10 airotorI irection
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Figure 41: Velocity at 5% immersion for the mismatch build at rotor inlet for fixed
operating point K, see fig. 10. The hot wires are packed over 3 pitches, and their
orientation alternates as indicated. The pip appears as an axial decrease, and a
circumferential increase.
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Figure 42: Velocity at 30% immersion for the mismatch build at rotor inlet for fixed
operating point K, see fig. 10. The hot wires are packed over 3 pitches, and their
orientation alternates as indicated. The disturbances are less visible than they
were at 5% immersion, fig. 41.
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Figure 43: Stage 1 characteristics for baseline (1.3%) and large first
stage (3.1%) rotor tip clearance builds. Note the increase in
stalling flow coefficient.
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Figure 44: Mean velocity at rotor inlet, 20% immersion, near stall.
Asymmetric first rotor tip clearance build. 3.1% and 1.3% first rotor
tip clearance regions are indicated at the top. Each point is the
average over ten rotor revolutions. The mean velocity is lowest at
the exit of the large clearance region.
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Figure 45: Mean casing pressure at rotor inlet, near stall.
Asymmetric first rotor tip clearance build. 3.1 % and 1.3% first rotor
tip clearance regions are indicated at the top. Each point is the
average over ten rotor revolutions. The mean pressure is lowest at
the exit of the large clearance region. Same case as fig. 44.
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Figure 46: RMS of casing pressure at rotor inlet, near stall.
Asymmetric first rotor tip clearance build. 3.1% and 1.3% first rotor
tip clearance regions are indicated at the top. The noisiest signal
is at the exit of the large clearance region. Same case as fig. 45.
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Figure 47: Normalized velocity at 30% immersion at rotor exit, near stall as throttle
is closing. Asymmetric first rotor tip clearance build. Disturbances first seen
at the exit of the large clearance region, X and Z. Both disturbances decay in tight
clearance region. The clearance regions are defined on the side.
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Figure 48: Casing pressure at rotor exit, as compressor is throttled down into stall.
Asymmetric first rotor tip clearance build. Disturbances are visible at the exit of
the large clearance region. Disturbances decay in tight clearance region. The
clearance regions are defined on the side. Guideline drawn at 70% rotor speed.
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Figure 49: Calculated disturbance speeds of propagation from crosscorrelations of
casing pressure transducers at rotor exit of asymmetric first rotor tip clearance
build. The clearance regions are defined at the bottom. Disturbance behaves in each
region as if in a symmetric region of similar character. Disturbance speeds in
symmetric regions is displayed at the side.
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Figure 50: Mean velocity at rotor inlet, 30% immersion, near stall.
Fixed 120 * distortion screen 1.5 radii upstream of rotor. Each
point is the average over ten rotor revolutions.
The mean velocity is lowest at the exit of the distortion screen.

76

U~)
If)

6

0

Distorti

'x

on Screen

400.300. 350.



El

200. 250. 300.

- rotor rotation -

Distortion Screen

Ml

350. 400.

Figure 51: RMS of velocity at rotor inlet, near stall. Fixed 120 *
distortion screen 1.5 radii upstream of rotor. The RMS is highest at
the exit of the distortion screen. Same case as fig. 50.
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Figure 52: Velocity at rotor inlet, 30% immersion, near stall. Fixed 120 0
distortion screen 1.5 radii upstream of rotor. Disturbances are present at the end
of the distortion screen region. Some disturbances propagate into the clean flow
region and decay.
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Figure 53: Casing pressure at rotor inlet, near stall. Fixed 120 ' distortion
screen 1.5 radii upstream of rotor. Disturbances are present at the end of the
distortion screen region. Some disturbances propagate into the clean flow region and
decay. Same event as figure 52.
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Figure 54: Casing pressure at rotor inlet, as the compressor is throttled down into
stall. Fixed 120 * distortion screen 1.5 radii upstream of rotor. The stall cell
attenuates in the higher local flow of the clean flow region.
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Figure 55: Stalling flow coefficient vs. distortion screen rotation
rate. Note the two peaks, decreased stall margin, at roughly 20% and
70% speed.

81

d0-

(D
c,,
0-

0t
0

N
C,)

0
100.

I I



70%

0

20%

42.0 47.5 53.0 58.5 64.0 69.5 75.0 80.5 86.0
TIME (ROTOR REVS)

Figure 56: Normalized data from 8 equally circumferentially spaced
casing pressure transducers at rotor inlet vs. time as the compressor
is throttled down into stall. The 120 0 distortion screen is
1.5 radii upstream of the rotor, and rotating at 20% speed.
Guidelines show the distrubance travelling at 70% speed that grows
out of the 20% speed disturbance created by the screen.
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