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by

Daniel L. Gysling

Abstract
Dynamic control of rotating stall in an axial flow compressor has been implemented using
aeromechanical feedback. The control strategy developed used an array of wall jets
upstream of a single stage compressor which were regulated by locally reacting reed
valves. These reed valves responded to pressure perturbations in the flow that were
associated with small amplitude perturbations that precede rotating stall. The control
strategy was designed such that the combined system of compressor plus the reed valve
controller was stable in previously unstable operating conditions. A 10% decrease in the
the stalling flow coefficient was achieved using this dynamic feedback control strategy, and
the stable flow range was extended with no noticeable change in the steady state
performance of the compression system.

The experimental demonstration is the first use of aeromechanical feedback to extend the
stable operating range of an axial flow compressor, as well as the first use of locally
reacting feedback and dynamic compensation techniques to stabilize rotating stall in an axial
flow compressor.

The design of the experiment was based on a two-dimensional model of the rotating stall
dynamics which incorporated the effect of aeromechanical feedback. The physical
mechanism responsible for rotating stall in axial flow compressors was examined with
focus on the role of dynamic feedback in stabilizing compression system instability. The
effectiveness of the aeromechanical control strategy was predicted, and experimentally
demonstrated, to be a function of a set of non-dimensional control parameters that
determine the interaction of the control strategy and the rotating stall dynamics. Predictions
based on linear stability analyses and non-linear numerical simulations agreed qualitatively
with the steady state and time resolved experimental data.

During the experimental investigations, large amplitude, one-dimensional acoustic
oscillations were observed in the compression system with aeromechanical feedback
stabilization. Based on these observations, the role of the compression system parameters
in the acoustic oscillations was examined analytically and a method was developed to
reduce these oscillations. The mechanism responsible for the generation of self-excited
acoustic oscillations, and the implications for dynamic control of compression system
instabilities was also examined.
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Chapter 1: Introduction

1.1 Description of the Problem

The operating range of turbomachinery compression systems is generally limited at low

mass flow rates by the onset of fluid dynamic instability. As the flow rate is reduced, the

pressure rise across the compressor typically increases monotomically until a

performance limiting, fluid dynamic instability is encountered at which the steady,

axisymmetric flow through the compression system transitions to an unsteady flow field

with large amplitude oscillations. At these operating conditions, the annulus averaged

pressure rise and mass flow through the compression system are reduced from the values

that occur when the compression system operates with a steady, axisymmetric flow field.

The specific structure of the instability can take many forms [1], depending on the

parameters of the compression system, but the instabilities are generally categorized in

one of two broad classes of instabilities: surge or rotating stall. Figure 1.1 shows a

schematic of the surge and rotating stall in an axial flow compression system. Surge is an

essentially one-dimensional instability characterized by oscillations in compressor,

annulus averaged mass flow and pressure rise that extend through the entire compression

system. Rotating stall is a two- or three-dimensional disturbance in which regions of low,

or reversed, mass flow (termed stall cells), rotate about the annulus of the compressor.

Although the axial extent of the non-axisymmetric disturbances associated with rotating

stall is localized to the compressor, the result of operating in rotating stall is usually

reduced annulus averaged pressure rise and mass flow.

Once a compression system enters large amplitude rotating stall, the compression system

can also exhibit significant hysterisis [4]. If so, the flow coefficient through the

compressor has to be increased to well above the flow coefficient at which the rotating
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stall developed before axisymmetric flow is reestablished. Figure 1.2 shows a schematic

of a pressure rise versus mass flow coefficient performance characteristic for an axial

flow compressor (operating at constant rotational speed) showing the axisymmetric flow

region and the annulus averaged compressor performance in large amplitude, rotating

stall. The compressor performance remains on the axisymmetric characteristic until the

flow rate is reduced below the stalling flow coefficient (Point A). At this point, the flow

transitions into rotating stall, moving to Point B. Once in rotating stall, the compressor

remains in rotating stall until the mass flow is increased to the mass flow coefficient at

which the flow field reverts to axisymmetric flow (Point C).

The operating point of the compressor on the pressure rise versus mass flow performance

map at which the essentially steady, axisymmetric flow through the compressor

transitions into performance limiting, large amplitude, oscillatory flow is denoted by the

stall, or surge, line. In practice, the stall, or surge, line for a given compression system

must be determined experimentally, but it generally occurs near the peak of the

compressor constant speed pressure rise versus mass flow performance characteristic.

Which form the instability takes in the mature state (rotating stall or surge) has been

shown to be related to a non-dimensional compression system stability parameter by

Greitzer [2,3]. However, both forms of instability can occur concurrently and interact

through non-linearities as the general transient evolves to its final state [5].

Both forms of instability degrade compression system performance and durability and are

thus to be avoided. To do this, the compression system must be operated at a safe margin

from the stall (or surge) line at all times. Since the stall line (or surge line ) can be near

operating points with the greatest pressure rise and efficiency, this constraint is often

observed at the cost of overall compression system efficiency.
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The goal of this research is to use aeromechanical feedback to reduce the flow rate at

which axisymmetric flow becomes unstable, thereby extending the useful flow range of

compression systems.

1.2 Previous Work on Dynamic Feedback Stabilization

Although rotating stall and surge in compression systems have been extensively studied

by numerous researchers [1], dynamic feedback stabilization of rotating stall in axial flow

compressors is a relatively new field. The review of previous work presented in this

thesis is limited to research that has directly lead to the present investigation. For a

review of work on rotating stall and surge in compression systems, the reader is referred

to review papers on the subject [1, 5].

In 1976, Greitzer [2,3] identified a non-dimensional compression system stability

parameter which parameterized the resultant form of instability encountered at low flow

rates in axial flow compression systems. This work illuminated the distinct differences

between rotating stall and surge, and provided a predictive technique to isolate the two

types of instabilities in axial flow compressors. This parameter, known as the B-

parameter, was defined as:

B UR
2 wo Lc (1.1)

where: UR = compressor wheel speed

oH = Helmholtz frequency of compression system

Lc = Equivalent length of inlet ducting

Compression systems with low B-parameters were shown to exhibit rotating stall in the

absence of surge, while compression systems with large B parameters were subject to
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surge. By studying compression systems with low B-parameters, rotating stall could be

examined independently from surge.

In 1986, Moore and Greitzer [6,7] published a model for general compression system

instabilities. The papers presented the idea that fully developed rotating stall and surge

were actually large amplitude, limit cycle oscillations of initially small amplitude,

essentially linear, instabilities. A schematic of the rotating stall inception process

predicted by the model is shown in Figure 1.3, which presents the axially velocity

through the compressor at a fixed circumferential position during stall inception. The

flow is predicted to evolve from axisymmetric flow into fully developed rotating stall via

smoothly growing, traveling wave disturbances. The stall inception process shown in

Figure 1.3 represents the transition from Point A to Point B on the steady state

compression system performance map shown in Figure 1.2. A schematic showing the

circumferential variations of the small amplitude, essentially linear, traveling

disturbances modeled by the Moore-Greitzer model, and a flow field experiencing fully

developed, rotating stall is shown in Figure 1.4.

In 1989, Epstein et al [8], proposed that compression system instabilities such as rotating

stall and surge could be suppressed using feedback control. The growth rate of the initial

disturbances, and hence the stability of the compression system, was viewed as

determined by the small amplitude, unsteady dynamics. Since the control of instabilities

could be enacted while the perturbations were small, little steady state power would be

required to stabilize the compression system (several orders of magnitudes below the

steady state power of the compression system). Calculations of rotating stall and surge

predicted that substantial stable flow range extension due to feedback control could be

achieved.
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Under the influence of feedback control as proposed by Epstein et al. [8], the steady state

performance of the compression system is determined by the axisymmetric performance

of the compression system. By allowing the flow field to remain essentially steady and

axisymmetric, dynamic feedback can extend the stable operating range of the

compression system as illustrated in Figure 1.5.

Since this concept was first presented, several authors have used feedback control to

stabilize the one-dimensional instability, surge, in compression systems [9,10,11],

validating the basic concept presented by Epstein et al. [8]. Much less work has been

done, however, in applying dynamic feedback stabilization to rotating stall in axial flow

compressors.

Stability models of the compression system predict the existence of small amplitude, non-

axisymmetric, disturbances to exist prior to large amplitude, performance limiting,

rotating stall. The first evidence that small amplitude, traveling waves existed before the

onset of large amplitude rotating stall was presented by MacDougal [12] in a single stage

compressor. Subsequently, similar waves were also observed in multi-stage compressors

by Gamier [13] and by Longley [14]. Analysis of the traveling waves showed that the

rotating stall dynamics of the compression systems investigated were adequately modeled

by the Moore-Greitzer model.

Although these results gave confidence in the model, several other studies of rotating stall

inception demonstrated that there was also a different mechanism that lead to rotating

stall [15]. For a number of compressors, rotating stall appeared to emerge from a

localized, but finite amplitude, three-dimensional disturbance which contained significant

span-wise non-uniformity. The formation of the localized disturbance was not captured
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by the two-dimensional stall inception process described in the Moore-Greitzer model

[6,7].

At present, the parameters of the compression system which determine the nature of the

stall inception process, i.e. two-dimensional or three-dimensional inception, of a given

compression system are not known. For a given compression system the process must,

therefore, be determined experimentally. The experiments show, however, that there

exists a broad class of compressors for which two-dimensional stability models

adequately model the stall inception process.

The first successful attempt to extend the stable flow range of an axial flow compressor

using feedback was carried out by Day [16] on a low-speed, multi-stage compressor. The

control strategy extended the stable flow range by sensing small amplitude perturbations

in axial velocity and, when the perturbations reached a pre-determined amplitude,

actuating the flow field via an array of injection valves that injected high pressure fluid

into the tip region of the rotor. Although the control strategy used by Day does not

appear to function by modifying the linearized unsteady dynamics of the compression

system, as proposed by Epstein et al. [8], the results gave the first experimental evidence

that introducing disturbances linked to the oscillations of the compression system prior to

the onset of rotating stall could significantly change the stalling flow coefficient.

In 1993, Paduano et al. [17], working with a single stage compressor which exhibited

small amplitude, traveling waves prior to stall, extended the stable flow range of an axial

flow compressor using feedback control to modify the linearized, small amplitude

rotating stall dynamics of the compression system. A spatial array of twelve movable

inlet guide vanes, located around the annulus at the face of the compressor were used to

actuate the flow field. The control strategy was based on viewing the flow field as a
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summation of spatial Fourier harmonics. The array of movable inlet guide vanes actuated

individual spatial harmonics based on the magnitude and spatial phase of the harmonics

of the axial velocity perturbation sensed by a spatial array of hot-wires. To implement

the feedback, a high-speed digital computer was used to perform real-time, spatial Fourier

decomposition of the flow field.

Paduano's experimental results, followed by similar results of Haynes [18] on a

multistage compressor, demonstrated that control strategies designed to modified the

small amplitude, two-dimensional dynamics could extend the stable flow range, directly

validated the concepts presented by Epstein et al.

1.3 Objectives of Present Study

The experiments of Day [16], Paduano [17], and Haynes [18] were successful proof-of-

concept demonstrations of active stabilization of rotating stall in axial flow compressors.

However, many issues remain unresolved, concerning not only the control, but also the

basic fluid dynamic issues of compression system instabilities. This work is directed at

developing a better understanding of the role that dynamic feedback plays in the

compression system dynamics and developing an alternative approach to implement

dynamic feedback.

Previous control strategies have been based on electro-mechanical implementation of

feedback. These required extensive real time computation and high bandwidth sensors

and actuators. One can also devise control strategies that employ aeromechanical

feedback These have several potential advantages, including stabilization without

external input, and the elimination of the need for high bandwidth sensors and actuators.

The constraints inherent to aeromechanical feedback stabilization, however, require a

different approach than the modal based control strategies used by previous researchers.
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The primary objective of this research was to develop, and experimentally demonstrate, a

strategy to stabilize rotating stall in axial flow compressors using aeromechanical

feedback. The research to be described can be classified into two main phases, analytical

and experimental. The goals of the analytical phase were:

1) Define the physical mechanism of instability onset in axial flow compressors in

sufficient detail to interpret the role of dynamic feedback in enhancing stability.

2) Based on analytic models, develop a strategy to implement aeromechanical feedback

stabilization of rotating stall.

The goals of the experimental phase were:

1) Demonstrate aeromechanical feedback stabilization of rotating stall

2) Evaluate the analytical model of the flow field through the compressor

Since aeromechanical feedback is a subset of the general subject of feedback

stabilization, the results of this research contribute to the knowledge base in the field of

dynamic control of compression system instabilities.

1.4 Scope of Present Research

The scope of this work was limited to the study of the small amplitude, unsteady

compression system behavior associated with rotating stall inception in axial flow

compressors, and the influence of dynamic feedback on the compression system

dynamics and stability. Detailed study of the steady state compression system

performance and large amplitude (post stall inception) rotating stall was not performed.
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1.5 Overview of Present Study

The thesis is organized in the following manner:

Chapter 1: Introduction - The general problem of rotating stall in axial flow compressors

is introduced and the concept of feedback stabilization of rotating stall is developed.

Previous work in the field is reviewed and the motivation and objectives of the present

study are presented.

Chapter 2: Modeling Rotating Stall Dynamics - The basic model of the rotating stall

dynamics is presented and the'physical mechanism behind rotating stall is discussed. The

role of dynamic feedback in stabilizing the compression system is addressed and the

present aeromechanical feedback strategy is motivated. The effect of aeromechanical

feedback is modeled and a parameter optimization study is performed to determine a

design configuration for the experimental phase of the research.

Chapter 3: Experimental Facility - The experimental facility is described.

Chapter 4: Experimental Results and Comparison with Theory - The results of the

experimental investigation are presented and the results are compared with the analytical

model.

Chapter 5: One-Dimensional Acoustic Oscillations in Compression Systems - During the

experimental phase of the research, large amplitude acoustic oscillations were observed

near the stalling flow coefficient for the compression system with aeromechanical

feedback. This chapter presents an analysis of the acoustic oscillations in a compression

system and discusses the implications of such oscillations on dynamic control of

compression system instabilities.
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Chapter 6 Discussion - This chapter discusses the experimental results. Attention is

given to the implications of the results for the general problem of extending the stable

flow range of compression systems.

Chapter 7: Summary, Conclusions and Recommendations - Results and conclusions of

this research are summarized. Recommendations for future work on understanding, and

enhancing, the stability of compressor flow fields are presented.
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Chapter 2: Modeling Rotating Stall Dynamics

In this Chapter, the stability model for the basic compression system is presented and the

mechanism responsible for rotating stall is discussed. The present aeromechanical

control strategy is proposed and the stability model is modified to incorporate the effect

of this control strategy. The effect of aeromechanical feedback on the compression

system is assessed using linearized stability analyses and non-linear numerical

simulations.

2.1 Introduction to Model

The basic form of the model used to predict the behavior of linearized, small amplitude

perturbations about a steady, uniform flow field was first developed by Moore [19] with

additional contributions to the model presented by Moore and Greitzer [6,7] and Hynes

and Greitzer [20]. The model assumes that fully developed rotating stall is a large

amplitude, limit cycle oscillation of an initially linear instability. The stability of the flow

field is governed by the linearized compression system dynamics. The model predicts

that small disturbances in an unstable flow field will grow (initially exponentially) with

time into large amplitude, performance limiting, rotating stall. The model describes the

stability of the axisymmetric flow field as well as the structure of the rotating stall

inception process.

2.1.1 Assumptions and Limitations of the Model

Before developing the details of the fluid dynamic model, its inherent assumption and

limitations will be discussed. The results are intended to be applicable only to

compression systems in which the follow assumptions are valid.
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1) The flow is incompressible. This assumption is justified since this work focuses on

rotating stall in compressors with tip speeds well below Mach 1. Since the effect of

compressibility scales with the square of the compressor Mach number, the assumption of

incompressible flow is valid throughout the flow field.

2) The flow is inviscid outside of the blade rows. This assumption is justified since

Reynolds numbers based on disturbance length scales are large, and the behavior outside

the blade rows can be reasonably approximated as inviscid. The Reynolds number for the

disturbance flow field based on the length scale of the disturbance is on the order of:

Re =106
n

where: n = spatial harmonic number of

disturbances

3) The flow field is two-dimensional in the circumferential and axial directions. This

assumption limits the applicability of the model to compressors that exhibit little span-

wise variation in mean flow and in perturbation quantities, and constrains the analysis to

compressors with hub to tip radius ratios approaching unity. It should be pointed out that

requiring the compression system to have a near unity hub to tip radius ratio is a

necessary but not sufficient condition for determining the applicability of the two-

dimensional model to a given compression system. As stated previously, there is

substantial evidence that a two-dimensional model of the stall inception process is not

adequate for some compressors, independent of hub to tip radius ratio. However, as

experimentally demonstrated, there do exist many compressors for which the two-

dimensional model is adequate; this research is focused on that class of compressors.
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4) Long ducts exist upstream and downstream of the compressor. This assumption

requires that constant area, annular ducts extend several compressor radii upstream and

downstream from the compressor. This is not, in any sense, a fundamental restriction to

the model, but, long ducts are necessary to study the stability of the compressor in

isolation from any other flow elements.

5) The compressor can be modeled as a semi-actuator disk. The assumption that the

compressor can be modeled as an actuator (or semi-actuator) disk requires that the inter-

blade phase angle for the rotating stall disturbances is small, and therefore, the effect of

the blade to blade variations within the compression system do not significantly affect the

long wave length compression system dynamics. The term semi-actuator disk is used

because the model of the compressor accounts for the finite length of the compressor by

modeling the inertia of the fluid within the blade rows.

6) The mean flow field is uniform. The uniform flow field assumption implies that there

are no circumferential non-uniformities in the annulus averaged quantities entering the

compressor. Thus, this analysis is not applicable to compressor operation with inlet

distortion.

7) Surge dynamics can be neglected. This model considers only zero-mean non-

axisymmetric disturbances. It is thus suitable only for compression systems in which

zero order, annulus averaged disturbances can be neglected, i.e. compression systems

with a low B parameters.
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2.1.2 Perturbation Variables

The model will be presented in non-dimensional form. The steady state and perturbation

quantities are non-dimensionalized by the follow quantities specific to each compression

system:

R

UR

2P OR

Mid-Span Radius of Compressor

= Mid-Span Wheel Speed of Compressor

= Dynamic Head based on wheel speed

The independent variables of the flow field are non-dimensional axial position,

circumferential position, and time:

x = axial distance / mid-span radius

0 = circumferential position around the annulus

S = ( time ) x (U / R ) (non-dimensional time)

The non-dimensional perturbation variables of the disturbance flow fields are functions of

non-dimensional temporal and spatial coordinates.

5ps (x, 0, t)

5pt (x, 0, T)

8'P (x, 0, 1)

8 (x, 0, 1)

8v (x, e, 1)

= ( P) / (L P OR) = Static pressure perturbations

S (6 P)/ (L p U) = Total pressure perturbations

= (6 Psd -6 P / p U ) = Perturbation in total to static

pressure rise coefficient

= 6 Cx / UR = Axial velocity perturbations

= 6 Ce / UR = Circumferential velocity perturbations
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2.1.3 Compression System Parameters

The mean compression system operating parameters are assumed to be uniform in time

and space. The parameters that determine the linearized compression system dynamics,

and hence, the stability of the flow field to non-axisymmetric disturbances, are given by:

a = Slope of the steady state, inlet total to exit static

compressor characteristic

X = Inertia of fluid within Rotating blade rows [20]

X=2 1 c/R
Rotor cos T (2.1)

p = Inertia of fluid within all blade rows [20]
p=),+2 Ic/R

Stator cos Ys (2.2)

The mass flow coefficient, defined as,:

rh
-= p A UR = Cx / UR (2.3)

enters the stability analysis implicitly. The mass flow coefficient and the slope of the

steady state compressor characteristic are related through the steady state, constant speed,

compressor performance characteristic, in which the inlet total to exit static pressure rise

coefficient across the compressor is assumed to be a pure function of the mass flow

coefficient.

T = ((<b )= Psd - Ptu
'F='P(4) P 1)

p U2 (2.4)
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2.2 Components of Stability Model

An unwrapped schematic of the two-dimensional model of the compressor flow field is

shown in Figure 2.1. The coordinates are the circumferential and axial directions. The

model consists of three components:

1) an incompressible, irrotational upstream flow field

2) the compressor, modeled as a semi-actuator disk

3) an incompressible, vortical flow field downstream of the compressor

The stability problem is posed as an eigenvalue problem. As such, the equations of

motion governing the behavior of the small amplitude, non-axisymmetric perturbations

are derived and natural modes of the system are determined by solving for non-trivial

solutions to the homogeneous equations of motion. The details of the stability model are

derived in Appendix A, but, an outline of the model is given below.

The axial and circumferential structure of the disturbances satisfy the governing

equations in the upstream and downstream flow fields. The solutions are expressed in the

form of traveling waves, decomposed into spatial harmonics. The perturbations in the

upstream and downstream flow fields are matched across the compressor, modeled as a

semi- actuator disk, by appropriate kinematic and dynamic boundary conditions. For the

problem as posed, the stability of the individual spatial harmonics of the compression

system are uncoupled and therefore, stability can be assessed on a harmonic by harmonic

basis.

2.2.1 Upstream Flow Field

For simplicity, the mean upstream flow field is assumed to be uniform and axial,

although the model can be modified to include an upstream flow field with mean swirl.
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The analysis is performed using a non-dimensional, two-dimensional streamfunction (I)

defined by:

5 a and 5 V= ---T
Do ex (2.5) and (2.6)

where: &$ is normalized axial velocity perturbation and 8v is normalized circumferential

velocity perturbation

The disturbance streamfunction for the incompressible, irrotational upstream flow field

must satisfy the Laplace equation and the disturbances must be bounded far upstream of

the compressor. This leads to the following form for traveling wave solutions for the

perturbation streamfunction in the upstream flow field:

Tu= 1 Anein(O-ar)+nx
n=1 (2.7)

where: An is the Complex spatial Fourier component of the nth harmonic of upstream

streamfunction, and a is the complex, temporal eigenvalue

2.2.2 Downstream Flow Field

The mean flow in the downstream flow field is also assumed to be uniform and axial.

This assumption does not affect the basic form of the model, and can be modified to

include mean swirl, as has been done by many previous authors. However, assuming

axial flow simplifies the results of the stability analysis and allows the physics of

compression system instabilities to be more easily interpreted.

In the rotational, incompressible downstream flow field, the perturbation streamfunction

must obey a Poisson equation as developed in Appendix A. The perturbations in the

downstream flow field must be of the same temporal and circumferential structure of the
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upstream flow field at the actuator disk. The downstream streamfunction is expressed as

a superposition of a potential and a vortical flow field:

+00 +00e

Td= 1 Bn ei"n(0 -ar)- n x+ I Cn eD
n=1 n=1 (2.8)

where: Bn is the Complex spatial Fourier component of the nth harmonic of downstream

potential streamfunction, and Cn is the Complex spatial Fourier component of the nth

harmonic of downstream vortical streamfunction.

2.2.3 Matching Conditions across the Compressor

The homogeneous equations of motion governing the small amplitude disturbances are

defined by matching the upstream and downstream flow fields across the compressor.

The three matching conditions imposed on the upstream and downstream flow fields are:

1) mass flow is continuous across the compressor

2) pressure rise across the compressor is a specified function of flow

3) angle of the flow exiting the compressor is fixed by blade exit angle

Mass conservation across the compressor

The flow through the compressor is assumed to be incompressible, and the axial flow

perturbations are assumed to extend through the compressor. The axial velocity

perturbations must therefore be continuous across the compressor at a given

circumferential location.

5u= 8 (2.9)
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Pressure rise across the compressor

The expression for the pressure rise across the compressor is derived by assuming that the

compressor performance follows its linearized steady state performance characteristic

except for the inertial effects due to the fluid within the blade rows of the compressor.

The local pressure rise is assumed to be a pure function of the local mass flow coefficient,

i.e. the compressor is taken to be insensitive to inlet swirl disturbances.

The compressor performance model requires that the reduced frequency of the

disturbances is small. The reduced frequency is defined as:

fred = Cx (2.10)

For harmonic, traveling waves the reduced frequency for the rotor and stator are given

by:

fred = ( 1 - (Ors ) C 1 (for Rotor)
R (D (2.11)

fred = ((Ors ) (for Stator)
R (D (2.12)

where (ors = Real( n a ) is the temporal frequency associated with the traveling wave

disturbances as observed at a fixed circumferential position. For the first three spatial

harmonics, the reduced frequencies for the rotor and stator are both well below unity.

The unsteady effects due to the inertia within the blade rows is included in the model

because it adds an essential feature, as developed below. Accounting for the inertia of the

fluid within the stationary and rotating blade rows [20] leads to the following expression

for the pressure rise across the compressor:
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Pp t -x a (2.13)

Exit Flow Angle

The flow angle of the fluid exiting the stator into the downstream duct is assumed to be

fixed by the angle of trailing edge of the blade row. This assumption is reasonable for

compressors with high solidity blading in the last blade row. For the case of interest here,

the flow in the downstream duct is axial, so the circumferential component of velocity

entering the downstream flow field is zero.

8Vd = 0 (2.14)

The matching conditions across the compressor can be modified without changing the

basic structure of the stability model. As examples, several authors have investigated the

effects of introducing unsteady compressor performance [15, 31], swirl sensitivity [14],

unsteady deviation [15] and other effects. The assumptions listed above, however,

suffice to yield a useful representation of the rotating stall inception process in the class

of axial flow compressors considered.

2.3 Stability Analysis for Basic Compression System

As developed in Appendix A, the homogeneous equation for the nth spatial harmonic of

the upstream streamfunction is given by:

Yia(4+n o+ ) - -inX An=O
LD] (2.15)
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For non-trivial solutions to exist for Eq. 2.15, the term in the square bracket must be zero.

The eigenvalues are given by:

i al +nX

4 + n (2.16)

The imaginary part of the eigenvalue, a, determines the growth rate of the disturbances

and the real part of the eigenvalue determines the rotation rate of the disturbances.

The growth rate of the disturbances is given by:

growth rate = e 4!n )

Thus, the stability boundary of the compression system occurs at the peak of the total to
= 0

static pressure rise characteristic, i.e. o . At neutral stability, the perturbations rotate

in a traveling wave form at a frequency given by the real part of a:

Rotation rate n I
4 + n (2.17)

The non-dimensional frequencies associated with the traveling spatial harmonics

observed at a fixed circumferential location are given by:

(Ors n2 X
4+ n (2.17a)

The stability analysis was used to predict the eigenvalues of a given compression system

as a function of mass flow coefficient. The compressor pressure rise versus mass flow

performance characteristic shown in Figure 2.2 is representative of a low speed
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compressor and was used in the analysis. For the initial calculations the inertial

parameter for the fluid in the rotating blade rows was taken to be ( X = 1.0) and the

inertial parameter for the fluid within all the blade rows was taken to be (g =2.0). This

corresponds to a compressor with fluid inertia equally distributed between the rotating

and stationary blade rows.

Figure 2.3 shows the behavior of the eigenvalues of the basic compression system

parameterized by the mass flow coefficient for the three lowest spatial harmonics. The

rotation rate for the first, second and third spatial harmonics is 17%, 25%, and 30% of

rotor frequency, respectively, independent of mass flow coefficient, and hence slope of

the compressor characteristic. However, as the mass flow coefficient is decreased,

corresponding to increasing the slope of the compressor characteristic, the temporal decay

rate, or damping rate, of the disturbances decreases until the axisymmetric flow field

becomes unstable when the mass flow coefficient is reduced below the value at which the

characteristic peaks. At the peak of the total to static characteristic ((D = 0.528), all

spatial harmonics are predicted to become unstable simultaneously.

In summary, the individual compression system parameters play the following role in the

predicted behavior of the non-axisymmetric disturbances.

1) The slope of the compressor characteristic, a, determines the stability of the

compression system.

2) The inertial parameters affect the growth (or decay) rate and the rotation rate of the

perturbations, but have no direct influence on system stability.
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2.4 Unsteady Energy Considerations

The transition of the axisymmetric flow field into large amplitude rotating stall is a self-

excited oscillation. In this section, the rotating stall dynamics will be discussed in terms

of the energy balances needed to maintain this oscillation. The destabilizing mechanism

associated with a positive compressor slope can be interpreted using energy balances for

the unsteady perturbations. For an given oscillatory disturbance, if the system generates a

net positive amount of unsteady energy (averaged over a cycle), the disturbance will

grow. Whereas, if the system generates a negative amount of unsteady energy over a

cycle (i.e. dissipates), the disturbance will decay [21].

2.4.1 Unsteady Energy Production

The rate at which the compressor performs work for a perturbation in volume flow

around the annulus of the compressor can be defined as the product of the pressure rise

perturbation and the axial velocity perturbation integrated over the annulus.

fE =6'P p dA
= - (2.18)

where, 5T is the perturbation in total to static pressure rise coefficient across the

compressor and &$ is the perturbation in flow coefficient through the compressor. The

above definition of the unsteady energy is not a rigorous definition of unsteady energy,

and is somewhat arbitrary. However, the quantity defined in Equation (2.18) does

represent a useful quantity that scales with the square of the perturbation quantities and

has the units of non-dimensional energy production.

The pressure rise across the compressor is related to the mass flow perturbation by the

compressor pressure rise boundary condition described in section 2.2.3. The relation
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between pressure rise across and mass flow oscillations through the compressor can be

expressed in terms of a compressor transfer function.

M(s)= = Real(M(s)) + i Imag(M(s))
5$(s) (2.19)

For a disturbance in axial velocity, the unsteady energy production, by the compressor, as

defined in Eq. (2.18), is given by integrating the product of the pressure rise perturbation

and the axial velocity perturbation over the annulus of the compressor. A harmonic

perturbation in axial velocity can be represented by:

5p=Real( e in )= Real( $ cos (n 0 )Imag ( sin (n 0) (2.20)

where is complex amplitude of the velocity disturbance of the nth spatial harmonic.

Using Eq. 2.19, the corresponding perturbation in pressure rise across the compressor is

given by:

6'P=Real(M(s) $ eine)= Real (M(s)) [Real(O)cos (n 0) - Imag(O sin (n 0)]

- Imag (M(s)) [Imag ( ) cos (n 0 ) + Real(P sin ( n 0 )] (2.21)

Integrating the product of the axial velocity perturbation and the pressure rise

perturbation shows that only the component of pressure rise in phase with the axial

velocity perturbation, i.e. the component determined by the real part of the compressor

transfer function, affects the unsteady energy production, and hence, the stability of
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system. The unsteady energy produced by the compressor for a harmonic disturbance is

given by:

8E = Real ( M(s)) 7t ((Real(o+ (Imag(o) = Real (M(s)) (2.22)

Thus, the sign of the real part of the compressor pressure rise versus mass flow transfer

function determines whether the compressor produces or dissipates unsteady energy.

Using Equation (2.13) to evaluate the compressor pressure rise versus mass flow

coefficient transfer function for a harmonic perturbation in axial velocity in the form of a

traveling wave leads to:

M s)~ ) 7M (s )a~ s = -+ in (a-
5$(s) (s=in(G -r)) (2.23)

where a is purely real

In this model, the slope of the steady state compressor characteristic determines the real

part of the compressor transfer function, independent of temporal and spatial frequency.

At neutral stability, the slope of the compressor characteristic determines the component

of pressure rise in phase with the mass flow perturbations.

Real ( M(s)) = -
3 (at neutral stability) (2.24)

For a harmonic disturbance in axial velocity through the compressor, the unsteady energy

produced by the compressor is determined solely by the slope of the compressor

characteristic:
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5E = DT7E |1
E=D (2.25)

Thus, for positive slopes, the compressor produces unsteady energy and the disturbances

are predicted to grow. For negative slopes, the compressor dissipates unsteady energy

and the disturbances decay, consistent with the results from the eigenvalue analysis.

Energy arguments also offer a physical interpretation of the result, from linear analysis,

that the inertial terms do not directly affect the stability of the compression system. At

neutral stability, the inertia of the fluid within the blade rows produces a component of

pressure rise out of phase with the mass flow perturbations. It therefore does not directly

effect the stability of the system.

Imag ( M(s)) = n ( a g-) (2.26)

2.4.2 Definition of a Conserved Quantity

The unsteady energy analysis presented in section 2.4.1 gives a useful interpretation of

the roles of the compression system parameters in determining the stability of the flow

field. However, if one evaluates the mechanical work performed by the compressor on a

harmonic mass flow perturbation, one finds that the mechanical work produced by the

compressor is determined by the product of the axial velocity perturbations and the

change in total pressure across the compressor. The compressor is thus energetically

neutral when the slope of the inlet total to exit total pressure rise characteristic is zero.

The total to total pressure rise characteristic is defined as:

SPtd - ptu

2 PR (2.26a)
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The stability analysis predicts, however, that the axisymmetric flow becomes neutrally

stable when the slope of the total to static characteristic is zero. The slope of the total to

total compressor characteristic is related to the slope of the total to static compressor

characteristic by:

d 0 a((2.27)

When the slope of the total to static characteristic is zero, the slope of the total to total
a'Ft t 2(

characteristic is positive, 0 , indicating that the compressor is adding energy to

disturbances at neutral stability.

To reconcile these two results, we can examine the linearized equations of motion to

define a second order quantity that is conserved in an inviscid, incompressible flow.

Equation (2.28) is a statement of such a quantity (in dimensional form) derived from the

linearized momentum and continuity equations. The details of the analysis are given in

Appendix D.

8U2+5v - 2 2-

p 2 + -vp)u +Sv U+5ps(ui+5vj) =0
at 2 - (2.28)

The above expression represents a conservation equation for the vector field, F ,in the

square brackets.

2 2(
Fa ~u+5v U+8Ps(5ui+vj)F-bu2 .v (2.29)
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The role that F (termed the perturbation intensity) plays in a two dimensional, linearized,

incompressible, inviscid flow is similar to the role that acoustic intensity plays in an

acoustic flow field in the absence of mean velocity [22].

Using the result that the perturbation intensity is conserved in the upstream and

downstream flow fields, the role of the compressor at neutral stability can be examined.

Applying the Divergence Theorem to evaluate the time averaged value of the perturbation

intensity for harmonic disturbances within a volume of fluid in which the linearized

momentum and continuity equations apply, shows that the time averaged flux of the

perturbation intensity, F, through a closed surface that surrounds the volume is equal to

zero. The contribution to the annulus averaged, or equivalently the time averaged, flux of

perturbation intensity across a control surface from regions of the flow field in which the

flow is not governed by the linearized equations of motions used to derive the

conservation principle can be expressed as a source term.

+5v J+5Ps(8uI+ v i) -dS = Source Term
s- _P(2.30)

For the rotating stall analysis, the only region in which the source term can be non-zero is

the compressor, or semi-actuator disk, so the net flux of F is zero for any closed surface

not containing the compressor.

The results of perturbation intensity audit for the compression system at neutral stability,

presented in Appendix D, yield three main points concerning the interpretation of

unsteady energy production, or more rigorously, the perturbation intensity, of the

compressor at neutral stability. These conclusions are useful in understanding the

mechanism responsible for rotating stall in axial flow compressors.
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1) The slope of the quasi-steady total to total ( or equivalently the slope of

the static to static ) pressure rise characteristic determines unsteady mechanical energy

production by the compressor for a perturbation in mass flow.

2) The vortical flow downstream of the compressor provides a mechanism

for the compression system to convect unsteady energy downstream in the form of kinetic

energy associated with the vortical perturbations. As shown in Appendix D, at neutral

stability, the compressor is acting as a source for the perturbation intensity, which is

convected downstream by the.vortical mode of the downstream flow field. The

magnitude of the vortical mode for a given mass flow perturbation through the

compressor is governed by the exit flow angle condition.

3) The condition at which the compressor generates more perturbation

intensity than the vortical mode can convect downstream corresponds to the condition for

instability. For the compression system modeled ( axial flow, constant leaving angle),

this condition is satisfied when the slope of the total to static compressor characteristic

becomes zero.

2.5 Aeromechanical Feedback

In this section, the conclusions from the above analyses are used to motivate the

aeromechanical feedback control strategy. Following a qualitative discussion of the

stabilizing effect of the control strategy, a model for the actuation and feedback

associated with the aeromechanical control strategy is developed.
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2.5.1 Role of Aeromechanical Feedback

From either an energy balance or a linear stability analysis, it is evident that the

component compressor pressure rise perturbation which is in phase with the mass flow

perturbation plays a dominant role in compression system stability. Said another way, it

is the real part of the compressor pressure rise versus mass flow transfer function that

determines system stability. Using feedback, the real part of the transfer function can be

modified so that the steady state compressor characteristic slope will no longer solely

determine its real part. The stability of the system can thus be modified, while the steady,

axisymmetric performance remains unaltered.

From this point of view, the role of an effective feedback control strategy is to modify the

(unsteady, non-axisymmetric) pressure rise versus mass flow transfer function. To

illustrate this concept and motivate the present aeromechanical control strategy, consider

the control strategy in Figure 2.4. In this strategy, termed dynamic mass / momentum

injection, high momentum fluid is injected upstream of the compressor. The amount of

high momentum fluid injected at a given circumferential position is governed by a

circumferential array of reed valves which react locally to perturbations in the static

pressure upstream of the compressor.

The stabilizing mechanism introduced by the proposed aeromechanical control strategy

can be qualitatively understood as follows. For an initially steady, axisymmetric flow

through the compressor, consider a disturbance which causes a small decrease in axial

velocity in one region of the annulus. In this region, the static pressure in the potential

flow field upstream of the compressor will increase (neglecting the unsteady effects).

The increase in static pressure deflects the reed valves in that region which increases the

amount of high momentum fluid injected, and hence, the local mass flow and pressure

rise across the compressor. The net result is that the feedback increases the local pressure
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rise across the compressor in the region of decreased axial velocity. In terms of the

compressor pressure rise versus mass flow transfer function, the feedback serves to add a

negative component to the real part of the compressor transfer function.

The effect of the aeromechanical feedback on compressor pressure rise versus mass flow

performance is shown schematically in Figure 2.5. For unsteady perturbations, the

effective slope of the compression system no longer follows the quasi-steady compressor

characteristic, but rather is determined by the combined influence of compressor

performance and of the feedback. To assess whether these qualitative ideas can be

translated into a useful strategy, a more detailed, quantitative analysis is necessary.

2.5.2 Modeling of Aeromechanical Feedback

The structure of the present control scheme is based on locally reacting feedback control.

The sensors and actuators are co-located, modifying the local unsteady pressure rise

versus mass flow performance of the compression system. Although this approach

differs from previous efforts to stabilize rotating stall based on independent control of the

different spatial harmonics [17, 18], the use of aeromechanical feedback lends itself to

such locally reacting control strategies. An outline of the stability analysis is presented

below, and the details of the analysis are given in Appendix B.

2.5.2.1 Injection

Modeling the effect of injecting high momentum fluid into the upstream flow field on

compressor performance is a complex problem. In the model presented below, the jets

are assumed to mix out over the span of the annulus before entering the compressor.

Another model of the injection process, which assumes that the jets influence the tip

region, and therefore, effect the compressor by modifying the flow at the tip of the rotor,
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is presented in Appendix C. It is to be noted, however, that both models produce the

same qualitative effect, i.e. the local pressure rise increases with increasing injection.

The jets are injected from the outer casing, upstream of the compressor. Data implies that

turbulent wall jets generally spread in the transverse direction at an angle of

approximately 7.5 degrees [23], so the validity of the mixed out assumption will depend

on the specific configuration. The analysis also assumes that negligible mixing occurs

along the circumferential length scale before the fluid enters the compressor. A

schematic of the model used to analyze the injection process is shown in Figure 2.6.

As modeled the effect of the jets is to create a change in the span-wise averaged static

pressure, total pressure, and mass flow across the injection region as a function of the

local reed valve area. Thus, the injection region can be modeled as a two-dimensional

actuator disk. Pressure rise and mass flow boundary conditions across the injection

region are derived by conserving mass and momentum across the injection region. The

span-wise uniform, non-dimensional static pressure and axial velocity are related across

the injection region by the following expressions which result from conserving axial

momentum and mass flow:

p',+ (<b)2 1 q)+ D2(1-2q) =pS+ 2 b
(1 -qF (2.31)

(% + Di q = b (2.32)

where: q is the local reed valve opening normalized by the annulus height, Ii is the

injection velocity normalized by wheel speed, and b is the axial station downstream of

injection region

Making additional assumptions that:
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1) the nominal reed valve area opening is small compared to the annulus height, ( q << 1)

and,

2) the non-dimensional steady state mass flow injected by the reed valves is small

Sq << 1
compared to the mass flow through the compressor, D , and,

3) the total pressure supplying the jets is constant, ( Oi = constant ), the following

linearized relations for the change in the span-wise uniform total pressure and axial

velocity across the injection region can be derived:

6 ptb- 5ptu= 2 (DI ( DI - Du) 54 (2.33)

80b 5 0)u -(D~i5 (2.34)

By assuming the reed valves are only a short distance upstream of the compressor

(compared to the length scale of the disturbances), the description of the effect of

injection on the compression system dynamics can be further simplified by combining the

two actuator disks, for the compressor and for the injection region, into one actuator disk.

Thus, the model for the rotating stall dynamics with aeromechanical feedback retains the

same structure as the model for the original system, with an irrotational upstream flow

field and a vortical downstream flow field matched across a semi-actuator disk.

Combining the boundary conditions across the two individual actuator disks leads to the

matching conditions across the modified disk which relate perturbation variables in the

upstream and downstream flow fields:

Continuity:

S+ (Di 5q = 50d (2.35)
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Pressure Rise:
aTa ( Dd i~~4u

8 T = P sd - P t.= D - 0 - p + 2 i ( i -u D(
35 39 a(2.36)

Exit Flow Angle:

8Vd = 0 (2.14)

2.5.2.2 Structural Feedback

In this aeromechanical feedback control strategy, the response of the reed valves to the

static pressure perturbations in the upstream flow field provides the feedback. The reed

valves are modeled in their first cantilevered bending mode as single degree of freedom,

mass-spring-damper systems, responding to perturbations in static pressure in the

upstream flow field. A schematic of the reed valve dynamics is shown in Figure 2.7.

The following non-dimensional, second order equation of motion governing the locally

reacting reed valve dynamics is derived in Appendix B.

+ 2 Q C +Q2 = W p
a'2 at 6 (2.37)

where: Q is the reed natural frequency normalized by rotor frequency, is the critical

damping ratio of reed valves, and W is non-dimensional reed mass parameter

Equation (2.37) is based on the assumptions that the back pressure behind the reeds is

independent of the perturbation flow field and reed displacement and that the reed motion

does not directly effect the pressure field acting on the reeds.

The static pressure acting on the reed valves is assumed to be the static pressure in the

flow field upstream of the injection region, i.e. the reed valves are modeled as short in

axial length compared to the length scale of the disturbances. The pressure at the semi-

actuator disk ( x = 0 ) thus acts over the entire length of the reed valve.
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The static pressure in the upstream potential flow field is related to the axial velocity

perturbations via the linearized, unsteady, Bernoulli equation:

5psu=(- 2 <bu - 1 a ) 5OUn at (2.38)

The relationship between the static pressure and axial velocity perturbations is a function

of the mean flow coefficient, temporal frequency and length scale ( or harmonic number,

n) of the disturbance.

2.6 Stability Analysis with Aeromechanical Feedback

Assuming solutions of the traveling wave form consistent with the governing equations

of the flow fields, and matching the dynamic and kinematic boundary condition across

the actuator disk, as developed in Appendix B, leads to the following third order,

generalized, complex eigenvalue problem determining the stability of the flow field for

each spatial harmonic.

An

[A - a B] q =0

zn 1 (2.39)
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In Equation (2.39), the A matrix is given by:

-- inX A 1 2  0
a<D

A= -LWn24D inQ 2  in2Q;3

0 0 1

Al 2 X 01 i<Di aT (I-(

where: n aD

and the B matrix is given by:

-i(4+np) -(!+p)<Di 0

-iwn2 0 -n2

0Bn -in 0

The stability matrices retain terms associated with the individual fluid dynamic and

structural dynamics systems, however, the two systems are now coupled

aeromechanically. With aeromechanical feedback, there are three natural modes of

oscillation per spatial harmonic. The two additional modes per spatial harmonic

compared to the basic compression system model ( presented in section 2.3 ) are due to

the second order reed dynamics introduced by the feedback. All modes for any harmonic

are independent and stability can still be assessed on a harmonic by harmonic basis.
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2.6.1 Aeromechanical Feedback Control Parameters

Stability is now a function of not only the original system parameters but also of an

additional set of non-dimensional control parameters which determine the interaction

between the reed valves and the fluid dynamic flow field. The control parameters defined

below are derived in Appendix B.

Q OUR frequency parameter (2.40)
( b
2 M con critical damping ratio (2.41)

W= pR2 L
M mass parameter (2.42)

UR injection velocity parameter (2.43)
Cx

UR mass flow coefficient (2.3)

The amount of steady state mass flow injected does not directly influence stability, it is

the velocity (or equivalently, the total pressure) of the injection fluid which is an explicit

stability parameter. The steady state mass flow coefficient is now an explicit parameter

in the stability model with aeromechanical feedback, although it did not appear explicitly

in the basic compression system. The steady state mass flow coefficient enters because it

influences the relation between axial velocity and static pressure perturbations ( equation

2.38) in the upstream flow field and, thus, the feedback.

2.6.2 Parameter Optimization

One of the objectives of this research was to experimentally demonstrate aeromechanical

feedback stabilization of rotating stall. To guide in the design of an experimental facility

and to determine the effect of the control parameters on system stability, a parameter

optimization study, based on the linearized stability analysis, was performed.

Compressor parameters representative of the MIT low speed, single stage, research

61



compressor (described in Chapter 3) were selected, and the pressure rise versus mass flow

characteristic shown in Figure 2.2 was used. The inertial parameters used in the basic

compression system analysis were retained, i.e. (% =1.0) and (p =2.0), for the analysis of

the compression system with aeromechanical feedback. With the compression system

parameters defined, the control parameters were systematically varied to determine the

influence on stability.

Initial results from the parameter study indicated that for properly tuned control systems,

high injection parameters, (Di, and mass parameters, W, were desired. In order to design

a physically realizable experimental apparatus, however, some practical constraints were

imposed on the values of the control parameters. Based on the idea that, for practical

compression systems, the high pressure injection source could be taken from behind the

compressor, the injection pressure was restricted to be of the order of the dynamic head of

the compressor based on wheel speed. The mass and frequency parameters of the reed

valves used in the parameter study were restricted to physical realizable values for reed

valves sized to fit the MIT low speed compressor and constructed from readily obtainable

materials. These constraints restricted the injection parameter to (Di= 1, and the mass

parameter to W = 3.5.

Table 2.1 lists the control parameters optimized for each of the three lowest spatial

harmonics. As shown, the optimized stability parameters vary for each spatial harmonic.

Design Configuration

It was desired to investigate the effect of one set of reed valves on compressor stability,

i.e. one set of control parameters, and a parameter optimization study was performed to

determine one set of control parameters that optimized the stability of only the two lowest
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spatial harmonics. The justification for neglecting higher spatial harmonics was based on

the following:

1) Experimental and analytical results indicate that the higher

harmonics of compression system are stabilized, relative to lower spatial harmonics, due

to unsteady aerodynamics within the compressor. This effect is not explicitly contained

within the model used in this thesis.

2) The rate at which the disturbances decay exponentially (in the

axial direction upstream of the compressor) scales with the length scale of the

disturbances and hence the spatial harmonic number. The assumption that the reed valves

are placed immediately upstream of the compressor thus becomes increasingly unrealistic

for the higher harmonics for reed valves placed a finite distance upstream of the rotor.

The design configuration, resulting from the parameter study, is defined by the following

control parameters:

(DI = 1.0 ; W = 3.5; Q = 0.9; =.7

Figure 2.8 shows the predicted behavior of the eigenvalues for the first two harmonics as

the compressor mass flow coefficient is reduced. For the optimized system, the first and

second harmonics are predicted to become unstable at roughly the same mass flow

coefficient. As shown, a mode associated with the second spatial harmonic of the

compression system is predicted to be the mode that become unstable first as the flow

coefficient through the compression system is reduced (D = 0.43). The first mode

associated with the first spatial harmonic is predicted to become unstable at a slightly

lower flow coefficient ( (D= 0.40).

Assuming that the neutral stability point of the least stable mode associated with the

second spatial harmonic determines the stability of the compression system, the
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optimized aeromechanical feedback is predicted to reduce the stalling mass flow

coefficient of the compression system by 19%, compared to the stalling flow coefficient

predicted for the basic compression system. The compressor slope at which instability

= 1.2
occurs is predicted to be D .

The least damped mode associated with the first spatial harmonic is predicted to rotate at

9% of the rotor speed and the least damped mode associated with the second spatial

harmonic is predicted to rotate at 38% of the rotor speed. Comparing these rotation rates

to those for the basic compression system, (17% and 25% of rotor speed for the first and

second spatial harmonics) demonstrates that the aeromechanical feedback is predicted to

change the rotation rates of the disturbances in addition to the stalling flow coefficient.

2.6.3 Robustness of Aeromechanical Feedback

The model is a simple model of a complex problem and, therefore contains uncertainties.

To assess the sensitivity of the performance of the control strategy to variations in control

parameters, the predicted stability boundary was determined by fixing all but one of the

control parameters of the design configuration and systematically varying the free control

parameter. Figure 2.9 shows the mass flow coefficient at which the least stable mode

associated with the first and second spatial harmonics is predicted to become unstable as

a function of the individual control parameters Di , W , Q , and for the design

optimized configuration. A local maximum degree of stabilization exists for variations of

each of the control parameters. The discontinuities in the curve of predicted flow

coefficient at instability versus the individual control parameters is because each spatial

harmonic contains three eigenmodes, any one of which can become unstable.

Figure 2.9 represents the behavior for a specific set of control parameters. In general, a

significant increase in the injection parameter and / or the mass parameter would serve to
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increase the stabilizing effect of the aeromechanical feedback. However, increasing

4bi and W will result in increased stability enhancement only when the other control

parameters, i.e. ( and Q, are optimized for the system with the higher values of

(bi and W.

2.7 Effect of Non-Linearities and Random Excitation

The linear model predicts significant stabilization can be achieved due to aeromechanical

feedback. To assess the effect of non-linearities and random excitation, i.e. noise, on the

compression system dynamics, a non-linear, numerical simulation was developed to

predict the time resolved compression system behavior. The simulation technique used

was a Galerkin-based [24] approximation to the first two spatial harmonics of the

compression system to yield a non-linear, state space description of the compression

system dynamics. The formulation of the non-linear simulation was based on the two-

dimensional stability model developed in Appendix A, with the only non-linear term

included being the non-linearity in the compressor pressure rise versus mass flow

performance characteristic. The model thus retains the linearized description of the

upstream and downstream flow fields. The time resolved system response was simulated

numerically using a 4th order Runge-Kutta procedure. The details of the procedure are

developed in Appendix E.

A noise model was also incorporated into the simulation procedure to assess the effect of

random excitation on the compression system. The source of noise in compression

systems is not well understood, and a random static pressure disturbance at the face of the

compressor was used. The noise level was characterized by the rms level of the random

perturbations. The details of the noise model are also developed in Appendix E.
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The numerical simulation was developed for the compression system with

aeromechanical feedback. The dynamics of the basic compression system were simulated

by reducing the injection parameters to zero, thus decoupling the rotating stall dynamics

from the reed valve dynamics.

2.7.1 Stall Inception of Basic Compression System

The non-linear simulation was carried out for the basic compression system operating

near the stalling flow coefficient (within 0.5% ) predicted by the linearized analysis. The

characteristic shown in Figure 2.2, used for the linear analysis, was also used in the

simulation.

Figure 2.10 shows the computed axial velocity perturbations through the compressor at

eight equally spaced positions around the annulus during stall inception. The input

parameters to the simulation are given in Table 2.2. Although the compression system is

operating at a linearly stable flow coefficient, the non-linear calculation with finite

amplitude, random excitation ( 2.5% of the dynamic head based on wheel speed), predicts

that the initially axisymmetric flow field will transition to a large amplitude, non-

axisymmetric flow field, indicating rotating stall.

The time resolved axial velocity perturbations at the various circumferential positions can

be decomposed into spatial harmonics. The method used to decompose the velocity

perturbations into the spatial Fourier harmonics, developed by other authors [13, 25] is

given in Appendix F. The magnitude and phase of the first and second spatial harmonics,

which are shown in Figure 2.11, grow in time as the flow field transitions to rotating stall.

The magnitudes of the first two spatial harmonics are comparable during the stall

inception process, indicating that both harmonics have roughly the same damping,

consistent with the linear stability analysis.
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The plot of unwrapped phase of the first and second spatial harmonics versus time

indicates coherent traveling waves for both harmonics before the onset of large amplitude

rotating stall. The rotation rates of the first two spatial harmonics (17% and 25% of rotor

frequency, respectively) predicted by the simulation differ little from the values given by

the linearized analysis.

The growth rate of the finite amplitude disturbances during stall inception, is strongly

dependent on the shape of the compressor characteristic. As developed in Appendix F,

the influence of the shape of the characteristic is primarily determined by whether the

weighted average, over the annulus, of the compressor slope increases or decreases with

the disturbance amplitude. For compressor characteristics in which the annulus averaged

slope increases with disturbance size, finite amplitude disturbances can cause the system

to transition to rotating stall while operating in a linearly stable region. For

characteristics in which the annulus averaged slope decreases with disturbance size, the

simulation predicts that small amplitude limit cycles can develop prior to the onset large

amplitude rotating stall in linearly unstable regions. For a more detailed discussion of the

effects of the non-linearity of the compressor characteristic on the stall inception process,

the reader is referred to Paduano and Gysling [25].

2.7.2 Response of Compression System with Feedback

The simulation also was performed for the design configuration with aeromechanical

feedback. The same noise level was used. The input parameters to the simulation are

listed in Table 2.2. Figure 2.12 shows the simulated response of the axial velocity

through the compressor at eight equally spaced circumferential position around the

annulus for the compression system, with the design aeromechanical feedback parameters
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and in operation near the neutral stability point ( (D = 0.43 ) predicted by the linearized

analysis.

The simulation predicts that the flow field does not transition into large amplitude,

performance limiting rotating stall, consistent with the increase in stable flow range

predicted by the linearized analysis. Figure 2.13 shows the spatial Fourier decomposition

of the velocity disturbances into the first and second harmonics and demonstrates that

system response is dominated by the second spatial harmonic. This is consistent with the

linearized analysis which predicted that the a mode associated with the second spatial

harmonic became unstable at a higher flow coefficient than the least stable mode

associated with the first harmonic.

The plot of the unwrapped phase indicates that the second harmonic is traveling in a

coherent manner for finite intervals prior to stall inception, while no such behavior exists

for the first harmonic. If one associates coherent traveling waves with under damped

modes, this result is also consistent with the results from the linear analysis. The rotation

rate of the second harmonic agrees with the predicted rotation rate (38%) for the least

damped mode associated with the second harmonic.

The corresponding reed valve deflections at 4 equally spaced circumferential position

predicted by the simulation are shown in Figure 2.14. The rms of the oscillations in flow

coefficient resulting from the random excitation in the simulation are roughly 2% of the

mean mass flow coefficient through the compression system. The rms of the reed valve

deflections corresponding the system oscillations are roughly 1% of the annulus height.

If one assumes that a rms noise level 2.5% (oft p U is reasonable, the results from the

non-linear simulation indicate that a nominal reed valve opening area of roughly 1- 3 %

of the annulus height is required to prevent the reeds from becoming saturated, i.e.
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becoming fully closed, or fully opened, prior to the compression system becoming

linearly unstable.

2.8 Summary of Analysis

This section summarizes the results of the analytical investigation of the rotating stall

onset in a compression system with aeromechanical feedback. First, using a simple

stability model, the physical mechanism behind rotating stall was described and the role

of feedback stabilization in the unsteady compression system dynamics was interpreted.

The model was extended to include the effect of the aeromechanical feedback introduced

by the dynamic mass / momentum injection on stability. The results showed that

significant stabilization of the rotating stall dynamics can be achieved with properly

tuned reed valve dynamics. In addition, a set of non-dimensional control parameters that

determine the degree of stabilization due to dynamic mass / momentum injection were

identified. A parameter optimization study was then performed to determine a set of

physical realistic control parameters to stabilize rotating stall on a single stage

compressor. A Galerkin-based non-linear simulation was carried out to examine the

effects of a non-linear compressor characteristic and finite amplitude disturbances.
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Results from Parameter Optimization Studyl

...

Note: 1) Compressor characteristic given by:

' ( (D) = 5.75 e -14.4 + 10.4 D - 1.94

and X = 1.0 and = 2.0

2) Flow coefficient at which a mode associated with
the spatial harmonics considered becomes unstable

Configuration Freq. Parameter Damping Parameter Mass Parameter Inj. Parameter Flow Coef. at
Optimized for (Q) (() (W) ((I) NuetralStability 2

Optimized for
First Spatial 0.7 1.25 3.5 1.0 0.29
Harmonic

Optimized for
SecondSpatial 0.7 0.6 3.5 1.0 0.40

Harmonic

Optimized for
ThirdSpatial 1.25 0.4 3.5 1.0 0.43

Harmonic

Design Optimized
for 0.9 0.7 3.5 1.0 0.43

First and Second
Spatial Harmonic

Table 2.1:



Table 2.2: Input Parameters for Non-Linear Simulations
Presented in Chapter 2

Note: Characteristic Used in Simulations:

T ( (D ) = 5.75 e - 14.4 4D2 +10.4 (D - 1.94
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Simulation of Simulation of
Stall Inception of Design Configuration

Basic Compression System in Stabilized Region
Parameter ______________

<D 0.53 0.43

-0.02 1.07
0 '(Linear

1.0 1.0
2.0 2.0

(Di 0.000 1.0
W 3.5 3.5
Q 1.0 0.9

1.0 0.7
Noise Level 2.5% 2.5%
Based on LpU)

Time Step 26.67 Times 26.67 Times
Frequency Rotor Frequency Rotor Frequency
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Eigenvalues for Basic Compression System
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Eigenvalues for Design Configuration
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1st and 2nd Spatial Fourier Coefficients, Basic Compression System
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Figure 2.11 Spatial Fourier Decomposition of Normalized Axial Velocity Perturbations
Through Compressor During Simulated Stall Inception of Basic
Compression System ( First and Second Spatial Harmonics)

83

0.08

0.06

0.04

1st SFC

-------- 2nd SFC

- -4

0
5

- -

En

40

20

0

0 5

.0



5

Design Configuration, Near Stall Simulation
1.6

1.4

1.2

0.

0.

0.

0.

-0.
0 10 15 20 25 30 35

Time, rotor revs
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Chapter 3: Experimental Facility

The experimental facility and instrumentation used in this research is described in this

chapter, including the design and construction of the hardware necessary to implement

the dynamic mass / momentum strategy developed in Chapter 2. Design of the dynamic

mass / momentum injection facility was based on the results of the parameter

optimization study presented there.

3.1 Compression System

The experimental phase of this research was conducted on a low speed, single stage

compressor facility. A schematic of the MIT low speed, single stage compression system

is shown in Figure 3.1. The compression system has a low B-parameter

(B < 0.1 ), allowing the rotating stall dynamics to be studied in isolation from surge.

As shown, air is drawn into the compression system through a bell mouth inlet where it

passes through a honeycomb flow straightener (not shown), and then travels through

constant area, annular inlet duct into the single stage compressor. Downstream of the

compressor, the air travels through another constant area, annular duct that leads to a

conical throttle, which discharges into an exit plenum. The constant area ducts serve to

isolate the rotating stall dynamics of the compressor from the other flow elements. Both

the upstream and downstream ducts are roughly three compressor radii in length.

The exit plenum is connected to large diameter ducting which leads to an exhaust fan.

With the exhaust fan running, the pressure in the exit plenum is drawn to below ambient

pressure. The exhaust fan provides suction to overcome the flow resistance through the

system to allow the compressor to operate over a larger range of conditions.
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3.2 Single Stage Compressor

The compressor consisted of a rotor and stator, with no inlet guide vanes. The

compressor has a hub to tip radius ratio of 0.75. The solidity of the blading in both the

rotor and stator was 1. The degree of reaction based on the velocity triangles at mid-span

was approximately 60%. In the experiments, the compressor was run at 2250 rpm,

corresponding to a tip Mach number of 0.2, so that the flow can be considered

incompressible.

The compressor geometry is defined in Figure 3.2, with details shown in Table 3.1. The

mean compressor geometry was selected to be similar to a compressor build which was

demonstrated to exhibit full span stall inception [25].

The aerodynamic design of this compressor build was not optimized for steady state

aerodynamic performance. As an example, the predicted incidence angles for the rotor

and stator are shown in Figure 3.3 as a function of span for a flow coefficient near the

experimentally determined stalling flow coefficient of the compressor. The flow angles

were calculated assuming uniform inlet flow and zero deviation. The results of this

simplified velocity triangle analysis indicate that the incidence, and, hence, aerodynamic

loading, of the rotor is highly non-uniform in the span-wise direction, with the hub more

highly loaded than the tip.

The rotor blades used in this experimental investigation had extended chords at the hub

and tip regions, as illustrated in Figure 3.4. These blades were used in an attempt to

reduce the effect of the high incidence angle at the hub of the rotor. A detailed study of

the aerodynamic characteristics of the rotor blades is given by Gopalakrishnan [27].
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Paduano [25] and the author have independently investigated other geometries on the

MIT single stage compressor which had more "conventional" span-wise loading and,

therefore, better aerodynamic performance. However, these builds were found to exhibit

part span stall inception and / or fully developed part span stall, and hence, were not

suitable for the present study. Paduano [25] documented the steady state performance

and time resolved stall inception behavior of the MIT single stage compressor for several

compressor geometries.

Empirical evidence demonstrates that single stage compressors have a tendency to exhibit

part-span rotating stall; whereas multistage compressors are more likely to exhibit full-

span rotating stall [4]. A theoretical framework explaining these experimentally observed

trends has yet to be developed.

Because the design was based on a model of the two-dimensional, compression system

dynamics associated with full span stall inception, the sole criteria for selecting the

compressor geometry used in this research was that the build exhibited full-span stall

inception. The unconventional aerodynamic loading of the compressor used in this

research should not be viewed as a requirement for compressors to exhibit full span, stall

inception. Several researchers have independently verified full span stall inception in

different compressors [12, 13, 18]. For example, a well documented investigation by

Haynes [18] demonstrates full-span stall inception in a three-stage compressor designed

by an aero-engine company.

3.3 Dynamic Mass / Momentum Injection System

The mechanical design of the dynamic mass / momentum injection system represents a

first attempt to implement aeromechanical feedback stabilization of rotating stall in axial

flow compressors. The design was intended to be as simple as possible to demonstrate

89



the concept. As discussed in Chapter 2, the design of the dynamic mass / momentum

injection strategy was constrained to control parameters that were physically realistic for

the present study and thus was not a globally optimized configuration.

3.3.1 Reed Valve Housing

The annular structure designed and constructed to house the reed valves is shown in

Figure 3.5. The reed valve housing contained 24 discrete reed valves which regulated the

amount of high pressure air injected axially in the face of the compressor as a function of

the local reed valve area opening.

The length of the reed valve housing was primarily determined by the axial location of

the injection. Turbulent wall jets spread at an angle of approximately 7.5 degrees [23],

and to have the injected flow mix out over the span before entering the compressor

requires that the axial distance between the face of the rotor and the location of the

injection (termed injection / rotor gap) be large compared to the annulus height. The

assumption that the reed valves are closed coupled to the flow through the compressor,

however, requires that the injection / rotor gap be small compared to radius of the

compression system. In the limit of high hub / tip radius ratios, these two constraints can

be met, but, for the present compression system the axial location of injection was

selected based on a compromise between two conflicting criteria.

In the present investigation, an injection /rotor gap of 5 inches was selected. The reed

valves thus formed the outer casing wall of the upstream duct in a region between 1.5

inches and 5.0 inches upstream of the compressor. In this region, the 24 planar reed

valves formed a 24 sided polygon, approximating the original circular outer casing wall.

The axial position selected corresponds to the injection location being 1.5 annulus

heights, or approximately 0.5 compressor mean radii, upstream of the rotor.
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An important parameter for the aeromechanical feedback control strategy is the axial

distance between the center of pressure ( from disturbances in the upstream flow field)

acting on the reed valves and the entrance to the rotor. For the present design, the center

of pressure of the reed was 0.35 compressor radii upstream of the rotor closer to the face

of the compressor than the injection location.

The reed valves consisted of reeds cantilevered from their downstream side (Figure 3.5).

The radial distance between the free end of the cantilever and the rigidly mounted

injection lip formed the variable injection area. The analytical model developed in

Chapter 2 assumes a continuous, locally reacting array of reed valves, but 24 reeds was

considered to be a good compromise between complexity and spatial resolution.

The reed valve housing also contains a continuous, annular injection plenum designed to

maintain a constant total pressure air supply to the array of reed valves, uniform around

the circumference. The volume of the injection plenum was approximately 150 cubic

inches ( 0.0024 cubic meters). The design injection mass flow was roughly 0.1 kg/s,

corresponding to a mean flow velocity on the order of 1 m/s within the injection plenum.

This velocity is well below the injection velocity (roughly 60 m/s), so the static pressure

around the circumference of the annular injection plenum was taken as uniform.

To minimize any steady state pressure differences across the reed valves, a

circumferentially continuous annular cavity was used to provide a circumferentially

uniform back pressure to the reed valves. The back pressure cavity is shown in Figure

3.5. The steady state pressure in the back pressure cavity was equalized, via leakage gaps

between the discrete reed valves, with the free stream pressure in the duct upstream of the

compressor. Note that for zero annulus averaged reed valve deflections, the volume of
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the back pressure cavity remains constant to first order. The back pressure cavity thus

provides no restoring force on the reed valve dynamics for the zero annulus averaged,

non-axisymmetric disturbances of interest here.

3.3.2 Reeds

The reeds in the reed valves were fabricated from AW-193-PW graphite weave / 3501-6

epoxy composite material. The composite laminate contained two layers of 0-90 degree

cross weave fabric. A schematic of a typical reed is shown in Figure 3.6, and the detailed

properties are given in Table 3.2. The reeds were mounted individually to the housing by

clamping the base of the reed between to steel plates. A thin layer (0.01 inches) of visco-

elastic damping material was installed on both sides of each reed valve between the reed

and the steel mounting plates. The forward facing edge of the mounting hardware was

chamfered at a 45 degree angle to minimize the disruption to the flow field due to the

mounting hardware.

As discussed in Chapter 2, the stability of the compression system was predicted to be a

function of several parameters, including the geometry of the reed valves, the reed valve

dynamics, and the injection pressure. The guideline used in selecting the reed valve

design was to obtain reed valves with the least mass that could be constructed consistent

with the constraints on the geometry and dynamic characteristics. Other materials for the

reed valves were considered including steel, aluminum, and several conventional plastics.

Of the materials considered, however, the graphite epoxy weave possessed dynamic

characteristics that were predicted to have the largest stabilizing influence on the

compression system.

In the consideration of design of the reed valves, the geometry of the reeds was restricted

to flat plates, based on ease of construction considerations. By considering more
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optimized reed geometries, it is reasonable to assume that a more optimized dynamic

mass / momentum injection facility could be designed.

3.3.3 Pneumatic Dashpots

The optimized design parameters were based on representing the reed valve behavior as

second order dynamic oscillators with a critical damping ratio roughly equal to unity.

Although attempts were made to achieve these high levels of damping using several

methods to introduce damping, including visco-elastic damping materials and auxiliary

pneumatic damping cavities, auxiliary dashpots were deemed the most practical method.

Thus, to provide additional damping in the reed valve dynamics, low friction, low mass,

adjustable, pneumatic dashpots were installed on each reed valve.

A schematic of a typical pneumatic dashpot is shown in Figure 3.7. Each dashpot

consisted of a low friction piston and cylinder configuration, with damping controlled by

an adjustable orifice on the cylinder. The cylinders of the dashpots were mounted to the

reed valve housing and the linkage attached to the piston was attached to the centerline of

each reed valve near the tip of the cantilevered reed valve as shown in Figure 3.7. The

properties of the commercially available dashpots are listed in Table 3.3.

3.3.4 Reed Valve Seals

Design of the reed valves required a sealing mechanism to isolate the high pressure air in

the injection plenum from the back pressure cavity behind the reeds. The seals had to

withstand steady state pressure loading, on the order of 1 psi, yet remain flexible in the

transverse direction to minimize their effect on the reed valve dynamics. The seals were

also designed to minimize aeroelastic interaction between reed valve deflection and the

injection flow.
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The final seal configuration, which was the result of experimentally testing several seal

designs, used several materials including Dacron tape, Teflon tape, and Capton tape.

Two copper stiffeners were also incorporated in each seal. A schematic of a typical seal

is shown in Figure 3.8. The seals were assembled and installed in the reed valves using

pressure sensitive adhesives on the tapes.

To minimize leakage of high pressure air from the injection plenum into the back

pressure cavity, the inter-reed gap between two adjacent reed valves exposed to the high

static pressure the injection region was covered using loose fitting strips of flexible

rubber also shown in Figure 3.8. The rubber strips were attached to the inner wall of the

injection plenum and to the reed valves approximately 0.75 inches downstream of the

axial location of the injection. The loose fitting inter-reed seals allowed each reed to

react independently of the adjacent reeds.

The flow deflectors shown in Figure 3.8 were installed within the injection plenum to

minimize the effect of the jets associated with the discrete injection supply ports within

the injection plenum impinging on the seals.

3.3.5 Injection Supply

Although, in principle, the high pressure air injected in front of the compressor could be

bled from the compressor exit, an external source for the compressed air was used to

allow greater flexibility in the injection parameters and reduced the complexity of the

experiment. The oil-free shop air supply at the Gas Turbine Lab was used as the source

for the injection air (up to 750 scfm (0.4 kg/s) at 100 psig). A schematic of the injection

supply system is shown in Figure 3.9. Because the desired design injection pressure

range was limited to 1 psig, the supply source was throttled with a choked butterfly

valve. After this valve, the air passed through a Venturi flow metering device, through an
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adjustable ball valve, into a distribution plenum. From the distribution plenum, the air

was supplied to the annular injection plenum via ten, 1 - 1/2 inch diameter hoses.

Immediately upstream of the injection plenum, each hose branched into two, so the air

was delivered to the injection plenum at low velocity (roughly 10 m/s) via twenty ports

distributed around the annulus. The amount of high pressure air injected into the

compressor was regulated as a function of circumferential position by the displacement of

the reed valves. Throughout the injection supply system, several safety blow-off valves

were installed at various pressure ratings to prevent accidental over-pressurization of the

injection system.

For non-axisymmetric, zero annulus-averaged, flow disturbances, the time resolved level

of injection mass flow should be constant to first order. Therefore, the injection supply

system dynamics were assumed to not interact with the injection dynamics.

3.4 Instrumentation

Time averaged compressor performance and injection parameters were measured in

addition to time resolved pressure, velocity, and reed deflection perturbations. A

schematic of the instrumentation layout is shown in Figure 3.10.

3.4.1 Steady State Measurements

Steady state compressor performance was measured using instrumentation of the existing

facility. The instrumentation used to measure the steady state compressor performance is

outlined in this thesis, and further details are presented by Paduano [25]. The compressor

inlet mass flow calculated based on the annulus averaged total and static pressure. The

total and static pressures were each measured at eight equally spaced angular positions

around the annulus. The total pressure was measured using eight, axial Kiel probes

mounted at mid-span, and the static pressure was measured using wall taps on the outer
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casing. The pressures were measured at an axial station approximately one compressor

radius upstream of the compressor as shown in Figure 3.10, upstream of the injection

region. The annulus averaged total to static pressure rise was measured using annulus

averaged upstream total pressure measurement described above and eight downstream

static pressure measurements.

Time averaged pressure measurements were connected to a remote scanivalve via

approximately 50 feet of flexible tubing. The pressures were measured using a 2.5 psi

Spectra strain gauge type transducer.

Compressor wheel speed was monitored using a Hewlett Packard model 5300B

frequency counter. Compressor wheel speed was maintained constant using manual

control of a 250 HP DC drive motor.

Ambient temperature was measured using an Omega thermocouple, ambient pressure was

taken as atmospheric pressure recorded at Logan airport

Time averaged injection mass flow was measured using a B.I.F. Inc.(model UVT-PI-

0182-02223 1) Venturi flow meter. The pressures were measured using a 0-5 psi

Magnehelic differential pressure gauge and a Marshalltown 0-100 psig pressure gauge.

The pressure within the injection plenum was measured relative to the free stream static

pressure using a 0-2 psi Magnehelic differential pressure gauge. The details of the

measurement of the mass flow and momentum injected through the reed valves are given

in Appendix G. The steady state valve area was not monitored during the experiments.

Velocity profiles at the face of the compressor were recorded using a linear traverse, a

Dantec hot-wire, and a Fluke 8062A true rms volt meter.
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3.4.2 Time Resolved Measurements

The time resolved instrumentation consisted of ten hot-wires, two pressure transducers

and four reed valves instrumented with strain gauges. The time resolved pressure and

axial velocity measurements presented were recorded at various circumferential and span-

wise locations at an axial station 1/3 chord (0.5 inches) upstream of the rotor (4.5 inches

downstream of the injection location). The cutoff frequency of all the unsteady data was

set at 100 Hz so that the effect of the filters on the phase relationship between time

resolved signals would be minimized.

Dantec type 55-P1 1 hot-wire probes were used to measure time resolved axial velocity

perturbations. The hot-wires were aligned perpendicular to the axis of the compression

system. The hot-wires were driven by Dantec type 56C17 CTA bridge anemometers,

Of the ten hot-wires, eight were placed at equal circumferential intervals, at mid span,

approximately 1/3 chord upstream of the rotor. This spatial array of hot wires was

capable of resolving the magnitude and phase of the three lowest spatial harmonics

around the annulus. The remaining two hot-wires were placed at various locations to

examine axial and radial variations in the flow field.

Calibration of the hot-wires was performed by recording the annulus averaged mass flow

coefficient measured via the scani-valve to the rms of the hot-wire voltage. During

calibration, the compressor was run at different speeds to allow a greater mass flow range

for calibration. The hot-wires were calibrated using a specific form of the generalized

King's Law for hot-wire anemometers:

(Volts)2 = A + B (C) 2  (3.1)

A typical hot-wire calibration is shown in Figure 3.11. The velocity perturbations were

calculated for the hot-wire data based on the calibration linearized about the mean flow.
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Time resolved pressure measurements were recorded with Druck model PDCR 820 ( 0-1

psig) pressure transducers. The high frequency response pressure transducers were

mounted in a close-coupled manner to static pressure ports in the outer casing at various

axial locations. The Druck pressure transducers were driven by Pacific Scientific 8650

signal conditioning amplifiers. The amplifiers contained built-in, low-pass filters which

filtered the pressure signals at 100 Hz. The Druck pressure transducers were calibrated

using a MKS Barotron. A typical calibration is shown in Figure 3.12.

Reed deflections were obtained using a strain gauge bridge designed to measure the

bending strain at the root of the cantilevered reed valve. A schematic of the strain gauge

bridge is shown in Figure 3.13. The strain gauge bridge consisted of two, type CEA-06-

125UT-350, Micro-Measurement 90 degree "T" rosettes. As shown in Figure 3.13, two

of the strain gauges were aligned with the axis of the cantilevered reed valves, and two

were aligned perpendicular to the axis of the reed valves. The strain gauges were

mounted on the side of the reed valves exposed to the back pressure cavity. Every other

reed valve was instrumented with strain gauges, however, only 4 reeds, equally spaced

around the annulus, were monitored during the experiments. The strain gauge bridges

were driven by the same type of Pacific Scientific amplifiers used for the unsteady

pressure measurements. The reed signals were low pass filtered at 100 Hz.

A static calibration of the reed valve strain gauges was performed using a dial indicator to

measure the tip deflection of the reed valve. A typical calibration of tip deflection versus

strain gauge amplifier output is shown in Figure 3.14. This calibration technique assumes

that the mode shape of the dynamic reed deflection is similar to the static mode shape for

a point load applied at the tip of the reed valve, along the centerline of the reed valve.

For a uniform cantilevered beam, the second cantilevered bending mode occurs at a
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frequency approximately six times that for the first bending mode, and the assumption

that the reed motion is dominated by the first bending mode is reasonable. Because the

shape of the first bending mode is similar to the static deflection shape of a uniform

cantilevered beam, the calibration techniques was deemed adequate.

3.5 Data Acquisition

In addition to the manually recorded values, two computers were used to record data: a

VAXStation II for steady state performance data and a HP 486 Vectra for time resolved

data. The two computerized, data acquisition systems were operated independently.

3.5.1 Steady State Data

The VAX workstation operated and monitored the scanivalve to measure pressure signals

used to calculate steady state performance of the compressor. The VAX used a Data

Translations DT3382 A/D system to monitor the scanivalve. The A/D system averaged

each pressure reading for 0.1 seconds operating at 1000 Hz. This system allowed for low

frequency response, annulus averaged pressure rise and mass flow measurements to be

recorded every ten seconds. During the experiment, the compressor total-to-static

pressure rise coefficient versus mass flow coefficient performance characteristic was

displayed graphically.

3.5.2 Time Resolved Data

Time resolved data was sampled using a HP 486 Vectra computer using a sixteen bit

Analogic analog to digital converter. The computer recorded sixteen channels of data at

1000 Hz for five second intervals on command. The cutoff frequency of the filters used

to filter time resolved measurements was set at 100 Hz, so the anti-aliasing Nyquist

frequency requirement was satisfied. The A/D data sets were recorded on the hard drive
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in the HP computer, and a 120 MB tape drive was used to store the data for off line

processing.
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Table 3.1: Compressor Geometry

Number of stages 1
Tip diameter 0.591 m
Hub diameter 0.445 m

Hub / tip radius ratio 0.75
Mean radius 0.259 m

Rotor / stator gap 48 mm

Notes: 1) Rotor chord distribution is shown in Figure 3.4.
2) Rotor camber varies with span
3) Twist is linear function of span defined as (tip stagger - hub

stagger)
4) Solidity is defined using the mid-span chord for the rotor

0

Blade Row Number of Chord I Camber2  Stagger Twisi QliditvA
Blades (mm) (deg) (deg) (deg)

Rotor 44 38 25 35 30 1.03
(midspan) (midspan) (midspan)

Stator 45 38 30 22.5 -5 1.08
(midspan) I I _I



Table 3.2: Reed Properties

Material [0 / 90] Graphite / Epoxy
cross weave laminate

Elastic Modulus 9.0 Mpsi

Density 1500 kg/m3

Length 4.0 in

Width 3.1 in

Thickness 0.015 in

Table 3.3:- Pneumatic Dashpot Properties

Manufacturer Airpot Corporation
Norwalk, CT

Specification S160A100F175

Piston Material Graphite / Carbon

Cylinder Material Pyrex

Damping Range1  0 -10 lbs/in/sec

Frictioni less than 1 gram

Mass of Piston Assembly2  4.7 grams

Cylinder Bore Diameterl 0.627 in

Cylinder Length1  1.00 in

Piston Length1 0.51 in

notes: 1) Supplied by manufacturer
2) Measured value
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Pressure Transducer Calibration (Typical)
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Chapter 4: Experimental Results and Comparison with Theory

4.1 Introduction

Experiments were carried out to assess the effect of aeromechanical feedback introduced by

dynamic mass / momentum injection on the steady state and time resolved performance of a

low speed, single stage, axial flow compressor. The objective of the experimental program

was to:

1) demonstrate aeromechanical feedback stabilization of rotating stall

2) determine the effect of the control parameters on system stability

3) evaluate the conceptual framework of the dynamic model of the compression system

The behavior of the baseline compression system and of the reed valve dynamics were

characterized independently. The effects of steady state injection and of aeromechanical

feedback were then investigated and the experimental results compared to predictions of

both a linearized stability model and a non-linear simulation.

4.2 Baseline Compression System Dynamics

The baseline compression system is defined here as the compressor operating with the reed

valves installed upstream of the compressor, but with no time mean mass flow injected

through the valves. All performance data presented in this thesis is for the compressor

build described in Chapter 3, operating at 2250 rpm, with varying amounts of injection and

reed valve dynamics.

4.2.1 Steady State Performance

Figure 4.1 shows the inlet total to exit static pressure rise coefficient,

[Psd - Pt] / [ P UR , versus mass flow coefficient, <D _ C. / UR, for the baseline

compressor operating at constant speed. The speedline was recorded by slowly closing the
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throttle while manually maintaining constant compressor speed at 2250 +/- 2 RPM. The

solid line Figure 4.1 is a third order fit of the performance curve data.

The stalling flow coefficient of the compression system was determined by slowly closing

the throttle until the compressor exhibited large amplitude rotating stall. The baseline

compression system encountered rotating stall at (>= 0.435. The slope of the compressor

annulus averaged total to static pressure rise versus mass flow characteristic was slightly

positive when the compressor stalled.

Once large amplitude stall was detected via an oscilloscope, the throttle was opened

immediately to minimize fatigue of the reed valves. Instrumentation was not set up to

accurately record the performance of the compression system operating in rotating stall.

4.2.2 Time Resolved Performance

Axial velocity and static pressure perturbations at a station 1/3 chord upstream of the rotor

are shown in Figure 4.2 for three flow coefficients; 4 = 0.59, 0.50, and 0.44, indicated on

the compressor speedline in Figure 4.1 by points A, B, and C, respectively. The axial

velocity traces were recorded at mid-span at 0 = 90 degrees and the static pressure was

recorded from a wall static tap at 0 =75 degrees, where 0 is the circumferential position

defined in Figure 3.10. In Figure 4.2, the pressure perturbation, normalized by the

dynamic head based on compressor wheel speed, 2 UR, and the axial velocity

perturbations, normalized by compressor wheel speed, UR, are plotted versus time,

normalized by rotor revolutions.

Well away from stall, at (D = 0.59 (Pt. A) , small amplitude perturbations exist about the

essentially axisymmetric flow field. As the flow coefficient is reduced, the magnitude of
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the perturbations increases and the perturbations appear to develop harmonic content at

specific frequencies.

Figure 4.3 shows spatial Fourier decomposition (magnitude and unwrapped phase) of axial

velocity perturbations plotted versus time for the basic compression system operating away

from stall at 4D = 0.59 (Pt. A). The velocity perturbations were recorded with a

circumferential array of eight hot-wires, equally spaced around the annulus at mid span, 1/3

chord upstream of the rotor. The method used to decompose the axial velocity

perturbations into the spatial Fourier components is developed in Appendix F. At this flow

coefficient, the magnitudes of the first three spatial harmonics appear to exhibit random

growth and decay with time. The plot of the unwrapped phase indicates that no coherent

traveling wave are observed in the flow field.

Figure 4.4 shows similar data for operation at 4D = 0.44 (Pt. C), near the stalling flow

coefficient. The magnitudes of the spatial harmonics continue to fluctuate with time,

however, the magnitudes of the first and second spatial harmonics are considerably larger

than those seen in Figure 4.3, for the condition away from stall. The unwrapped phase,

plotted as a function of time, for each of the spatial harmonics is also given in Figure 4.4;

this shows that all three of the spatial harmonics exhibit intermittent periods in which

coherent traveling waves are seen, but, the first and second spatial harmonics exhibit

traveling waves for longer intervals than does the third harmonic. The phase speed of the

three harmonics, indicated by the slope of the linear segments on the phase versus time

plot, is 26%, 33% and 34% for the first, second, and third spatial harmonics, respectively.

Temporal power spectral density functions (PSD's) of the static pressure and axial velocity

perturbations recorded for the three operating conditions of Figure 4.2 are shown in Figure

4.5. The PSD's were averaged using over five seconds of data, discretely sampled at 1000
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Hz. Thus, the PSD's shown represent an average of the frequency content over

approximately 200 rotor revolutions. The details of the PSD analysis are developed in

Appendix F.

For the operating point well away from stall (<D =0.59, Pt. A), disturbances associated

with once and twice rotor revolution frequency have the largest frequency content.

However, as the flow coefficient is reduced, disturbances with temporal frequencies of

26% and 66% increase in magnitude, while the once and twice-per rotor revolution

disturbances remain at essentially the same level. Near stall, at <D = 0.44 (Pt. C), the

disturbance flow field is dominated by disturbances at 26% and 66% of rotor frequency.

Data from single circumferential positions do not allow resolution of the spatial content of

the disturbances. However, comparing the PSD's of the pressure and axial velocity

perturbations for the operating point close to stall (b = 0.44 ) with the spatial Fourier

components obtained from the circumferential array of hot-wires confirms that the peaks in

the power spectra are associated with traveling waves corresponding to the first and second

spatial harmonics. Because the third harmonic only exhibited coherent traveling wave

structure for intermittent periods, there is no significant peak in the power spectra at a

temporal frequency ( approximately 100% percent of the rotor frequency ) which would

correspond to a traveling third spatial harmonic. The PSD's of the pressure and velocity

indicate that oscillations in the flow field near stall are dominated by traveling disturbances

associated with the first and second spatial harmonics of the rotating stall dynamics for

frequencies below 2.5 times the rotor frequency.

4.2.2.1 Stall Inception

A primary assumption in the modeling presented in Chapter 2 is that the compressor

exhibits long wave length, full-span, stall inception. The compressor build was selected to
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be similar to a compressor build that Paduano [25] demonstrated to exhibit this behavior.

Figure 4.6 shows the axial velocity perturbations recorded during a stall inception event by

eight equally spaced hot-wires around the annulus, 1/3 chord upstream of the rotor, at mid-

span and aligned perpendicular to the axis of the compression system. The stall inception

event was recorded by operating the compressor within 1% of the stalling flow coefficient

and then closing the throttle at a rate of approximately 0.1% of the stalling flow coefficient

per rotor revolution. The compressor transitions from essentially axisymmetric flow into

fully developed rotating stall via the smooth growth of initially small amplitude, traveling

waves, consistent with the predictions of the model.

Figure 4.7 shows the spatial Fourier decomposition of the velocity perturbations shown in

Figure 4.6. The magnitude of the second spatial harmonic is the largest of the three prior to

large amplitude rotating stall and appears to initiate the stall inception process. The

unwrapped spatial phase of each of the first three spatial harmonics, plotted versus time

during the stall inception process, shows that each of the three harmonics appear to travel in

a coherent wave for intermittent periods prior to stall inception. However, the second

harmonic exhibits a traveling wave pattern for the longest interval prior to large amplitude

stall. During the intermittent periods prior to stall, the first three harmonics travel at 25%,

32%, and 35% of the rotor frequency, respectively. These rotation rates are similar to

those observed at CD =0.44 in the stable operating range near the stalling flow coefficient.

Thus, the oscillations that develop into large amplitude rotating stall appear to be directly

associated with the oscillations that exist in the compression system over a finite mass flow

range prior to stall.

4.2.2.2 Radial Variations

Data were also recorded to determine the radial variation of the velocity perturbations

during the stall inception process. Figure 4.8 shows the axial velocity perturbations
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recorded by 3 hot-wires, closely spaced in the circumferential direction, at 85% (hub),

50% (mid-span), and 15 % (tip) immersion from the tip. The hot wires were located 1/3 of

the rotor chord upstream of the rotor at 9= 85 degrees (hub), 90 degrees (mid-span) and

80 degrees (tip). Although there is some span-wise non-uniformity, the stall inception

process appears to occur on a full-span basis. The rotating stall dynamics are thus

predominately full span events, indicating that a two dimensional model of the fluid

dynamics should be adequate.

4.3 Reed Valve Dynamics

The reed valves were modeled as locally reacting, second order, dynamic systems with a

critical damping ratio determined by the adjustable pneumatic dashpots. To assess the

model and to determine the influence of any unmodeled aeroelastic interaction with the flow

field, the reed valve dynamics were identified and the effect of the injection flow on their

behavior was assessed.

4.3.1 Initial Condition Response

It was desirable to quantify the reed valve dynamics independent of the flow field through

the compressor and the injection flow. The response of the reed valves to an initial

condition was thus recorded for various pneumatic dashpot settings in the absence of flow

through the compressor and in the absence of injection. The initial condition response was

recorded with the reeds in place in the housing, complete with seals, by displacing and

impulsively releasing a single reed valve. Data on reed valve dynamic response are

displayed in Figure 4.9. The solid lines show the time resolved displacement of a reed

valve, as recorded by the root bending strain gauges, for four dashpot settings that span the

range of dashpots settings from fully closed to fully opened. In the experiment, the

dashpot setting was characterized by the number of turns that the adjusting screw was

opened from the fully closed position; ten turns corresponds to the adjusting screw

122



removed. Figure 4.9 shows that oscillatory frequency of the reed valves changes

significantly as a function of the dashpot setting. For the dashpot setting near, or at totally,

closed (high damping constants), the reed exhibited a lightly damped oscillation at 125 Hz,

whereas, for more opened settings (lower damping constants), the frequency of the

oscillations was approximately 55 Hz. The change in frequency with dashpot setting

indicates that a second order system with a variable damping ratio is not adequate to

capture the essential features of the reed dynamics over the range of dashpot settings tested.

4.3.2 Visco-Elastic Dashpot Model

The transient response of the reed valves can be understood by considering the visco-elastic

nature of the pneumatic dashpots. In the low frequency limit, the behavior of a pneumatic

dashpot approaches that of a viscous dashpot, but, in the high frequency limit, the behavior

approaches that of a spring. This effect can be incorporated into the description of the reed

dynamics by modeling the pneumatic dashpot as a visco-elastic dashpot. Details of the

model and analysis are given in Appendix H.

Modeling the pneumatic dashpot as a visco elastic dashpot adds an additional degree of

freedom to the reed dynamics, compared to the second order model with a viscous dashpot,

and an additional parameter is required to characterize the reed valve dynamics. The

additional parameter is defined as the ratio between the spring constant of the visco-elastic

dashpot and the spring constant of the reed valve.

- KDashpot
K (4.1)

Using this model, the dashed lines in Figure 4.9 show the simulated initial condition

response of the reed valves matched to the experimental data as a function of the damping

constant in the visco-elastic model. The values for spring stiffness ratio parameter (a =
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5.0) and the natural frequency parameter (Q = 1.5) for which the simulation best matched

the data over the range of dashpots setting tested were held constant for the simulations

shown in Figure 4.8. The initial condition of the additional state variable in the reed valve

dynamics introduced by the visco-elastic model was not monitored in the experiments and

was estimated for the analytically predicted initial condition responses. Using this

procedure, the visco-elastic model was found to well simulate the oscillatory frequency and

decay rate of the reed valve response over the full range of dashpot settings, from fully

closed to fully open.

The influence of the visco-elastic behavior of the dashpot on the reed valve dynamics is

characterized by the following non-dimensional quantity, derived in Appendix H.

For low values of the product of this parameter ( x ) and the normalized (by rotor

frequency) frequency, ( co), compared to unity, i.e.( oX << 1), the behavior of the visco-

elastic system approaches that of the original, second order model of the reed valve

dynamics. For low damping constants ( (=0.3 ), obtained by removing the adjusting

screw in the pneumatic dashpots, the natural frequency of the reeds was determined to be

55 Hz. For the compressor operating at 2250 RPM (37.5 Hz.), this corresponds to a

frequency parameter of Q=1.5, approximately 67% higher that the design value ( Q = 0.9).

The higher frequency parameter obtained in the experiment can be attributed to the

additional stiffness introduced by the seals, i.e., the seals added more stiffness in the

transverse direction than anticipated in the original design.
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Figure 4.10 represents the damping constant of the pneumatic dashpots, defined in

equation 2.41, versus dashpot setting. This was determined by matching the experimental

and simulated initial condition response.

4.3.3 Effect of Injection on Reed Valve Dynamics

The nature of the control strategy requires that the reeds (aeroelastically) interact with the

flow field. A model of the interaction was developed in Chapter 2. In this description, the

reeds were assumed to respond to static pressure perturbations in the two-dimensional

upstream flow field, and not to be directly influenced by the injection process. However,

since the reduced frequency (based on the natural frequency of the reed valves, the length

of the reed valves, and the nominal injection velocity) was on the order of unity, the reed

valves were considered susceptible to unmodeled aeroelastic interaction with the injection.

To determine the extent of any such interaction, the effect of the high pressure injection

flow over the reeds on the reed valve dynamics was assessed by recording the initial

condition response of the reeds for the range of injection pressures used, with the

compressor not operating.

4.3.3.1 Dynamic Interaction

The initial condition response for the reeds with the maximum injection rate used, injection

pressure = 0.5 psi, is shown in Figure 4.11 for two dashpots settings: fully closed and

fully open. Comparing these responses to those for the same dashpots setting without

injection, also shown in Figure 4.11, shows that the injection does have a slight effect on

the reed dynamics. Injection decreases the frequency slightly and decreases the decay rate

(damping), but, the behavior of the reeds as a function of dashpot setting is not

significantly affected. The reed dynamics were, therefore, assumed to be independent of

injection rate.
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4.3.3.2 Static Interaction

Although injection had negligible effect on the dynamic response of the reed valves, it did

change the nominal valve opening area. Figure 4.12 shows the static reed valve opening

area as a function of injection pressure with the compressor was not operating. The

nominal valve opening area increased with increasing injection pressures, and the steady

state reed valve opening increased approximately 1.6% of the annulus height over the range

of injection pressures tested (0 to 0.5 psi). This static interaction was presumably due to

the aerodynamic loading around the seal. Since the effect of steady state injection was

removed in the experimental procedure, this steady state interaction was considered

acceptable.

4.4 Axial Velocity Profiles

Figure 4.13 shows axial velocity profiles recorded by a hot-wire located 1/3 chord

upstream of the rotor ( approximately 4.5 inches downstream of the injection region ) for

the range of injection levels tested in this research. The throttle position was held constant

for the various injection rates. The velocity profiles were recorded at a fixed

circumferential location (0= 15 degrees) along the centerline of a reed valve with the

compressor operating at 0-=.45 (2250 RPM), near the stalling flow coefficient for the

baseline compression system.

The parameters of the injection associated with the velocity profiles shown in Figure 4.12

are given in Table 4.1. The injection paramete(i was calculated using the static

pressure measured in the injection plenum, referenced to the static pressure of the upstream

flow field at the entrance to the compressor. Injected mass flow was measured using the

Venturi flow meter and the momentum of the injected fluid was calculated using the

injection plenum pressure and the injection mass flow. The details are developed in

Appendix G.
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With the lower injection levels ( 4bi < 1), the injection of fluid fills in the axial casing

boundary layer. For higher injection rates, an axial jet persists into the face of the

compressor. The fluid mechanic effects of the axially boundary layer and/or jet entering the

compressor on compressor performance is not addressed in this thesis. However, for the

lower injection rates, the assumption that the jet mixes outs, i.e., there is no high total

pressure region associated with the injection entering the compressor, appears to be

reasonable, although the details of the interaction between the injected fluid and the free

stream are somewhat different than the process modeled in Chapter 2.

The axial momentum deficit of the casing boundary layer for the compressor operating

without injection can be quantified by comparing the momentum in the measured axial

velocity profile to the momentum of a span-wise uniform flow. Defining the axial velocity

of the span-wise uniform flow as Cx, the normalized difference in axial momentum of the

measured velocity profile and a span-wise uniform flow is given by:

H

p [ - C2 (h)] d h

normalized momentum difference =
p H i (4.2)

Using a simple linear approximation to the velocity profile for the baseline compressor,

shown as the dashed line in Figure 4.13, the momentum deficit associated with the casing

boundary layer is roughly 6% of the axial momentum associated with uniform flow. As

shown, a wall jet is apparent in the velocity profiles for the highest injection rate
rhi CX.

investigated, Cxi ai 1 = 11.6%
netgtd i =-g=l.12, orsodn to p A <2 Uj,where 4j andUR corsodnR

ai where calculated based on annulus averaged quantities. However, the velocity profile

for (Di =0.96 , corresponding to xi = 6.6%, is essentially flat. Thus, the effect of the
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injection on the local casing boundary layer is consistent with that anticipated from the

annulus-averaged injection parameters.

The velocity profiles shown in Figure 4.12 indicated that the extent of the mixed region at

4.5 inches downstream of the injection region is 20% of the span. The jets are shown to

spread at an angle of approximately 7 degrees.

4.5 Steady State Performance with Injection

The effects of injection and of aeromechanical feedback on the steady state compression

system performance are described in this section. In the experiments, two non-dimensional

control parameters were systematically varied: reed dashpot setting ( or damping ratio, ( )

and injection pressure, ( or injection parameter, Di ). The reed mass parameter, W, and

frequency parameter, Q, were maintained at fixed values as were compressor geometry and

rotational speed.

4.5.1 Procedure

As implemented here, the dynamic mass / momentum injection results in a non-zero

temporal and annulus averaged component of mass and momentum into the compressor.

The steady state performance, and hence, the stability boundary of the compression

system, is a function of this steady state injection. It is emphasized that the scope of the

research here is not to analyze quantitatively the effect of steady-state injection on

compressor performance, but rather, the impact of aeromechanical feedback on

compression system stability. The effect of the injection on the steady state performance

was therefore experimentally determined and used as a benchmark in evaluating the stability

gain due to aeromechanical feedback.
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To isolate the effect of the unsteady aeromechanical feedback from that of steady state

injection, the change in stalling flow coefficient was determined as a function of damping

ratio (dashpot setting) for fixed levels of steady state injection. This directly assesses the

change in stalling flow coefficient due to changes in reed dynamics, in other words, due to

aeromechanical feedback.

In all the experiments, the amount of steady state mass flow injected was approximately 4%

i q«1<< 1
of the steady state mass flow, .Therefore, based on the linearized analysis, the

amount of mass flow injected was predicted to have a negligible effect on the

aeromechanical feedback. Only the non-dimensional total pressure of the injection fluid,

which determines the injection parameter ,4i, is predicted to influence the aeromechanical

feedback.

The relationship between injected mass flow and total ( or equivalently, static) pressure in

the injection plenum is a function of the nominal reed valve area opening. To minimize

steady state injected mass flow for a given injection pressure, the nominal reed valve area

was designed to be as small as possible, constrained principally by the mechanical

tolerances of the reed valves. However, because the steady state injection pressure affected

the nominal reed valve opening area (as shown in Figure 4.11), more mass flow was

injected at a given injection pressure than was intended in the design. To compensate,

small vents in the back pressure cavity behind the reed valves were opened to ambient

pressure. The vents were three 0.25 square inch holes equally spaced around the annular

back pressure cavity. These served to slightly increase the mean pressure in the back

cavity, with respect to the static pressure in the upstream duct, which reduced the nominal

valve area opening.
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Because the mean static pressure in the upstream flow field, relative to atmospheric

pressure, changed with flow coefficient, opening the vents caused the nominal reed valve

area to vary weakly with flow coefficient. Figure 4.14 shows the injection parameter, 'i,

for constant levels of injected mass flow as a function of flow coefficient for the injection

levels investigated. As shown, the injection parameter, Oi , decreases with the mass flow

constant 
1

a injected
coefficient for fixed level of mass flow injected at approximately mass flow

To be conservative in accounting for this effect in the experiments, the injection mass flow

was held constant for the assessment of the aeromechanical feedback on the stalling flow

coefficient. The injection pressure was thus reduced with decreasing mass flow

coefficient. Since the stalling flow coefficient was experimentally determined to

monotonically increase with decreasing injection pressures (over the range of injection

pressures tested), this approach yielded an underestimation of the decrease in stalling flow

coefficient due to aeromechanical feedback.

4.5.2 Injection without Feedback

Figure 4.15 shows compressor speedlines for the various levels of constant steady state

injection mass flow tested. The scale is expanded to show details. The speedline for the

baseline compressor with no injection is also shown for reference. The mass flow

coefficient is based on the mass flow through the compressor, which is the sum of the

mass flow measured far upstream of the injection region and the injected mass flow. The

inlet total to exit static pressure rise coefficient in Figure 4.15 is based on the difference in

pressures measured upstream of the injection region and downstream of the compressor.

For the data set in Figure 4.15, the reed valve dashpots were closed, so that the reed

dynamic behavior approached that of rigid reeds. Although the reed valves are not
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completely rigid with the dashpots closed, this configuration was used as a benchmark for

assessing the effect of the aeromechanical feedback.

Figure 4.15 shows that increasing levels of steady state injection decreased the stalling

mass flow coefficient and increased the overall pressure rise. The only exception was at

the lowest injection level, <Di = 0.80, where the pressure rise remained essentially the same

as the baseline compressor. The stalling flow coefficients for the rigid reed valve

configuration with the various injection levels are denoted by large X's in Figure 4.15.

The steady state performance is a function of the injection parameter, but the shape of the

speedlines are similar to that with no injection.

p A Cxi q (D

Figure 4.16 shows the percentage of the mass flow injected, p H Cx ~Dc , as a function

of the nominal injection parameter ((Di ) based on total mass flow through the compressor

at the stalling flow coefficient for the rigid reed configuration The percentage of the axial

momentum injected into the compressor, normalized by the axial momentum of a uniform
2

q (V1
2

flow entering the compressor operating at the stalling flow coefficient, < ,is also

shown in Figure 4.16. It should be noted that the mass flow and axial momentum injected

were measured based on the pressure in the injection plenum and the injection mass flow

meter; the steady reed valve opening was not monitored in the experiments.
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4.5.3 Injection with Aeromechanical Feedback

Once the stalling flow coefficient of the compression system for the rigid reed valve

configuration was determined, the effect of aeromechanical feedback on the stalling flow

coefficient was assessed as a function of reed dashpot setting for various injection levels.

The stalling flow coefficients for the various compression system configurations are

tabulated in Table 4.3. Figure 4.17 shows the percentage decrease in stalling flow

coefficient obtained for various injection levels and dashpot settings. The stalling flow

coefficient is defined as the flow coefficient at which the compressor transitioned to large

amplitude rotating stall. The decrease in stalling mass flow is given as a percentage of the

stalling mass flow coefficient for the rigid reed valve configuration at the same injection

level.

A (D = (rigid - OW/ feedback

S drigid )const. inj. (4.3)

Figure 4.17 shows that the amount of stabilization is a function of injection parameter and

dashpot setting. At each injection level tested, the rigid reed valve configuration stalled at

the highest mass flow coefficient over the range of dashpot settings, i.e. opening the

dashpots from the closed position was never destabilizing. A 10% decrease in stalling flow

coefficient due to aeromechanical feedback was demonstrated at (Di= 1.0 with the screw

removed from the dashpots ((=0.3). At these conditions, the amount of flow injected was

4% of the compressor mass flow and the amount of momentum injected was 6% of the

axial momentum entering the compressor.

Figure 4.18 shows compressor characteristics for the compressor operating with optimized

aeromechanical feedback, for the compressor with rigid reeds at the same injection level,
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and for the baseline compression system are also shown. The stalling flow coefficient for

the optimized configuration was (D = 0.369 and the stalling flow coefficient for the rigid

reed valve configuration with the same injection mass flow was (D = 0.409. In the regions

of the compressor characteristic that are stable without feedback, the aeromechanical

feedback has no apparent effect on steady state compressor performance. At flow

coefficients below the rigid reed valve compression system stalling flow coefficient, the

aeromechanical feedback smoothly extends the stable operating region of the compressor.

Comparing the stalling flow coefficient of the optimized aeromechanical feedback

configuration to the baseline compressor, the overall effect of the injection reduced the

stalling flow coefficient by 15%. Steady state injection, i.e. injection with the rigid reed

valves, reduced the stalling flow coefficient by 6%, and aeromechanical feedback reduced

the stalling flow coefficient an additional 9% of the stalling flow coefficient of the baseline

compression system.

Figure 4.19 shows the effect of aeromechanical feedback on compressor performance for

the range of injection levels tested. As with Figure 4.15, the scales are expanded to show

the region near the stalling flow coefficient. The data shown represent configurations with

dashpot settings which achieved the largest amount of range extension for a given injection

level (shown in Figure 4.17). The stalling flow coefficients for the optimized configuration

are denoted with large "O's", and the stalling flow coefficients for the rigid reed valve

configurations are denoted with large "X's". As shown, the amount of stabilization is

dependent on the injection rate, but in all cases, aeromechanical feedback extended the

stable flow range.
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4.6 Time Resolved Performance with Injection

Data presented in this section show time resolved behavior with various aeromechanical

control parameters at different flow coefficients. Stall inception transients and transients

showing radial variations of axial velocity perturbations prior to stall are also presented.

4.6.1 Behavior in Stable Flow Range

Time resolved measurements of flow perturbations within the compression system were

used to qualitatively assess the effect of aeromechanical feedback. Time resolved traces

presented in this section are limited to two configurations: that which demonstrated

optimized stabilization and the rigid reed valve configuration at the same injection level.

4.6.1.1 Rigid Reed Configuration

Figure 4.20 shows the time resolved normalized pressure (5p) and axial velocity (&$)

perturbations recorded 1/3 chord upstream of the rotor, at 0 =75 and 90 degrees

respectively, for the rigid wall configuration with the optimal injection parameter (<bi

=1.0). Data are shown for two mass flow coefficients. The first flow coefficient, <D =

0.52, is well away from stall and the second, (D =0.41, is near stall. The operating points

corresponding to the two time resolved data sets are shown on Figure 4.18 as points D and

E. Pressure and velocity perturbations exist well away from stall, but the magnitude of the

perturbations increases as the flow coefficient is reduced.
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Figure 4.21 shows the time resolved reed valve deflections (8q) corresponding to the data

shown in Figure 4.20. Comparing the time resolved static pressure signal with the reed

deflection indicates that the reeds are not completely rigid and respond to the static pressure

perturbations in the flow field. From the data, it is evident that even though the pneumatic

dashpots are closed, the reed valves are introducing some degree of aeromechanical

feedback.

The spatial Fourier decomposition of the axial velocity perturbations, measured 1/3 chord

upstream of the rotor at mid-span, for the two operating points, Points D and E, for which

the time resolved data were shown in Figure 4.20, is given in Figures 4.22 and 4.23,

respectively. In Figure 4.22, the magnitude of the first three spatial harmonics, for the

compression system operating well away from stall ( 0= 0.52), appear to grow and decay

in time in a random manner. No coherent traveling waves are seen in the plot of the

unwrapped phase versus time.

For the compression system operating at CD = 0.41, near the stalling flow coefficient, the

disturbance flow field is much different. Spatial Fourier decomposition of the velocity

perturbations shown in Figure 4.23 indicate that the magnitude of the first and second

spatial harmonics have increased an order of magnitude from those at (D = 0.52. The

unwrapped phase indicates that the first and second spatial harmonics exhibit substantial

periods ( 10's of rotor revolutions ) of coherent traveling wave structure. Although the

third harmonic also exhibits periods of coherent traveling wave structure, these are more

intermittent than the first two spatial harmonics. The phase speeds of the first, second and
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third traveling spatial harmonics are 26%, 30%, and 37% of the rotor frequency,

respectively. In summary, the spatial Fourier decomposition of the disturbance flow field

for the rigid reed configuration, both away from and near stall, shows features very similar

to those of the baseline compression system.

The PSD's of pressure and velocity perturbations recorded for the operating conditions of

Figure 4.20 are shown in Figure 4.24. Away from stall, the temporal frequency content of

the disturbances exhibits no peaks larger than those associated with the once and twice per

rotor revolution disturbances, similar to the behavior of the baseline compression system

operating away from stall shown in Figure 4.5. Near stall, the PSD's indicate that

disturbances with temporal frequency of 25% and 60% of the rotor frequency, associated

with the traveling first and second spatial harmonics, have the largest power spectra

densities. Thus, the temporal frequency content of the disturbances behave similarly to the

baseline compression system, but, disturbances with a temporal frequency associated with

a traveling second spatial harmonic appear to play a larger role in the rigid reed valve

configuration disturbance flow field with injection than in the baseline compression system.

4.6.1.2 Optimized Aeromechanical Feedback

Figure 4.25 shows time resolved, normalized, pressure (8p) and axial velocity (5$)

perturbations recorded for the compression system with the experimentally optimized

control parameters at three mass flow coefficients, ((D = 0.52, 0.41, and 0.37). The steady

state operating points corresponding to the time resolved data are indicated by points F, G,

and H, respectively, on the compressor characteristic in Figure 4.18. The data were
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recorded at the same axial and circumferential locations as those of Figure 4.20 for the rigid

reed valve configuration.

Comparing Figure 4.25 with Figure 4.20 shows that the pressure and axial velocity

perturbations for the two systems away from stall (Point F and Point D) are similar.

Comparing data from Point G to that from Point E shows that the amplitude of the

oscillations are reduced in the optimized configuration compared to the rigid valve

configuration at a given mass flow coefficient near stall. Comparing data from Points G

and H indicates that the time resolved behavior of the aeromechanically stabilized

configuration exhibits no distinct change in behavior in the stabilized region below the rigid

wall stalling flow coefficient.

Figure 4.26 shows the time resolved reed valve deflections corresponding to the data

presented in Figure 4.25. In the stabilized region, Point H, the reed valves are modulating

+/- 1% of the height of the annulus.

The spatial Fourier decomposition of the axial velocity perturbations at the face of the

compressor for the optimized configuration operating at conditions away from and close to

stall are shown in Figures 4.27 and 4.28, respectively. In Figure 4.27, at <D = 0.52 (away

from stall), the magnitude of the spatial harmonics appear to grow and decay randomly

with time. The plot of the unwrapped phase indicates that no coherent traveling waves are

present. In Figure 4.28, close to stall, the magnitude of the spatial harmonics are

significantly larger, similar to the behavior with rigid reeds. The plot of the unwrapped
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phase indicates that the first, second and third spatial harmonics all exhibit periods of

coherent traveling waves. The rotation rate of the traveling waves associated with the three

lowest spatial harmonics is 25%, 29%, and 33% of the rotor frequency, respectively.

The PSD's of the axial velocity and pressure perturbations for the optimized configuration

at operating points corresponding to the time traces shown in Figure 4.25 are shown in

Figure 4.29. Away from stall, the disturbance flow field is characterized by perturbations

with magnitudes similar to the once and twice per rotor revolution disturbances seen in

Figure 4.24. As the flow coefficient is reduced, peaks in the PSD's corresponding to the

first and second harmonic traveling waves associated with rotating stall develop and

dominate the disturbance flow field. This trend is similar to that observed for the rigid reed

configuration with the same steady state injection, as well as that for the baseline

compression system.

For comparison, the rms amplitude of the normalized axial velocity perturbations recorded

at a station 1/3 chord upstream of the rotor is shown in Figure 4.30 as a function of flow

coefficient for three configurations: (1) baseline compressor, (2) rigid reed valve

configuration and, (3) optimized configuration. The level of unsteadiness is seen to

increase as the configurations approach their respective stalling flow coefficients. The

functional dependence of the level of unsteadiness on flow coefficient in the three systems

roughly scales with the difference between the flow coefficient and the stalling flow

coefficient. Away from stall ( at, say, D > 0.50), the level of unsteadiness in the three
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configurations is similar ( rms of the normalized axial velocity perturbations is roughly

0.01), indicating that the level of unsteadiness in the compression system operating away

from stall is not significantly influenced by aeromechanical feedback or steady state

injection.

4.6.2 Stall Inception

Figures 4.31 shows axial velocity perturbations recorded during stall inception for the rigid

wall. An array of eight equally spaced hot-wires, placed 1/3 chord upstream of the rotor at

mid-span, was used. The spatial Fourier decomposition of the velocity perturbations

during the stall inception event'is shown in Figure 4.32. Similar data are presented in

Figures 4.33 and 4.34, respectively, for the configuration with optimized aeromechanical

feedback With both configurations, a smooth transition from axisymmetric flow into fully

developed rotating stall is exhibited, indicating long wave length stall inception consistent

with the two-dimensional model. The spatial Fourier decomposition of the axial velocity

shows that the second spatial harmonic dominates the rigid reed valve stall inception,

similar to the baseline stall inception process shown in Figures 4.6 and 4.7. For the

optimized configuration, however, the first spatial harmonic appears to play a larger role in

the stall inception process.

The reed valve deflections at four locations, equally spaced around the annulus, are shown

in Figures 4.35 and 4.36 for the rigid reed and for the optimized configuration. The data

corresponds to the same stall inception events shown in Figures 4.31 and 4.33,

respectively. The reeds can be seen to participate in the stall inception event for both

configurations.
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4.6.3 Radial Variations

Figure 4.37 shows span-wise variations of the velocity perturbations at the face of the rotor

during the stall inception transients for the rigid reed valve configuration as recorded by 3

closely circumferentially spaced hot-wires at 15%, 50% and 85% immersion. Similar data

are presented for the optimized configuration in Figure 4.38. Both configurations

demonstrated essentially full-span stall inception, similar to the basic compression system

and consistent with the two-dimensional model.

4.6.4 Effect of Feedback on Dynamics

Steady state data showed that the stalling flow coefficient was a function of dashpot setting

for a given injection pressure. In this section we address the effect of dashpot setting

(damping ratio) on system oscillations at operating points slightly above stall for

configurations with the optimized injection level (<bi=1.0).

Figures 4.39a and 4.39b show the PSD of a single normalized axial velocity measurement

(&p) and that of a single normalized pressure measurement (8p) for the compression

system operating at a fixed injection level near stall for six dashpot settings which span the

range of dashpot settings investigated. For each data set, the compressor was operating

within 1% of the stalling mass flow coefficient. The PSD's were averaged over 5 seconds

(approximately 200 rotor revolutions) of time resolved data, sampled at 1000 Hz. If we

assume that the temporal frequencies correspond to traveling spatial harmonics, we can

infer that the relative amplitude of the spatial harmonics is affected by the dynamic behavior

of the reed valves.

Although the time traces are not completely stationary signals over the sampling interval, a

trend in the frequency content of the disturbance flow field is evident. With the dashpot

setting at 1.5 turns (high damping), the magnitude of the PSD's at the temporal frequency
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corresponding to a traveling second spatial harmonic (60% of rotor frequency) is larger

than that associated with the first spatial harmonic (25% of rotor frequency). However, as

the damping constant is reduced, the magnitude of the PSD at the frequency associated with

the first harmonic becomes larger relative to that associated with the second. The

aeromechanical feedback thus modifies the pre-stall system dynamics in addition to the

stalling flow coefficient.

4.7 Component Performance

Time resolved data recorded from the compression system can be used to estimate the

frequency domain transfer functions between two flow variables. These transfer functions

not only give information on system dynamic properties, but they also can be compared to

transfer functions predicted by the analytical model. The following relationships were

examined:

1) reed displacement and pressure perturbations in the upstream flow field,(&l / 5p)

2) static pressure and axial velocity perturbations in the upstream flow field,( P / 84

3) reed displacement and axial velocity perturbations in the upstream flow field,(&l /5

The transfer functions were estimated based on time resolved measurements at two, closely

spaced circumferential positions. Input was generated by the naturally occurring

unsteadiness within the compression system; no external excitation was used. The transfer

function between two time resolved signals (an input and output signal) can be estimated

using the ratio of the cross power spectrum between the input and output signals and the

power spectrum of the input signal [28]. For high coherence levels (close to unity), this

ratio represents a transfer function between the two signals. The transfer function estimates

were calculated by averaging the power spectra over approximately five 1024 point (

approximately 1 second or 37.5 rotor revolutions) segments of data. The method used to
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estimate the transfer functions is developed in Appendix F. The cutoff frequency of the

time resolved measurements was set at 100 Hz, or 2.67 times the rotor frequency.

4.7.1 Reed Deflection / Pressure Transfer Functions

Figure 4.40 shows the magnitude and phase of the measure transfer function between time

resolved reed deflections and static pressure perturbations for the optimized configuration

operating near stall. The transfer function is presented as a function of frequency,

normalized by the rotor frequency, in non-dimensional form, with the reed deflection

normalized by annulus height and the static pressure perturbations normalized by the

dynamic head based on compressor wheel speed. The pressure was recorded 1/3 chord

upstream of the rotor and both the pressure and reed deflection signals were recorded at the

same circumferential position, 0 =75 degrees. The coherence function is also shown in

Figure 4.40. The coherence between the two signals approaches unity at the frequencies

associated with the first (25%), second (60%) and third harmonics (105%), indicating a

good estimate of the transfer function at these frequencies.

The transfer function between the reed deflection and the static pressure predicted using the

model developed in Chapter 2 is given by:

q (o) W

p (o) (Q2-)+2 Q (ico) (4.4)

where co is the temporal frequency normalized by rotor frequency.

In section 4.3.1, the natural frequency and damping ratio of the reeds for the optimized

dashpot setting (in the absence of mean flow) were determined to be (Q=1.5 and =0.3).

Using these values, a transfer function can be computed for an arbitrary mass parameter

(W).
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There is one addition to the prediction that should be made; Equation 4.4 predicts the

transfer function between reed deflection and static pressure perturbations that occur at the

same spatial position. However, the center of pressure of the reed valves is approximately

0.35 compressor radii upstream of the axial location of the static pressure measurement.

Since the static pressure field is predicted to decay exponentially (as e - n x , where: n is the

spatial harmonic number and x is the axial distance upstream of the compressor), the axial

spacing between the measurements will effect the magnitude of the measured transfer

function. From spatial Fourier decomposition of the disturbance flow field, the first,

second, and third harmonics are associated with temporal frequencies, as recorded by a

single transducer, of approximately 25%, 60%, and 105% of rotor frequency. If one

assumes that disturbances at these frequencies are primarily traveling waves, the

analytically predicted transfer function (eq. 4.4) can be "corrected" for the effect of axial

spacing by multiplying the magnitude of the predicted transfer function by: e - ( * .35) for n

= 1, 2, 3 at the temporal frequencies associated with the spatial harmonics. The temporal

phase between the two signals should not be affected by the axial spacing.

Matching the amplitude of the transfer function for the frequencies with high coherence and

accounting for the exponential decay of the pressure field, the mass parameter (W) can be

estimated. The dashed lines shown in Figure 4.40 shows the analytically predicted transfer

function using Equation 4.4 corresponding to a value of W= 3.5. The symbols (®) on the

plot of the magnitude of the transfer function indicate the calculated transfer function,

corrected for the exponential decay, for the first three harmonics. The good agreement

between the calculated and the experimentally determined phase of the transfer functions

indicates that natural frequency and damping ratio determined from the initial condition

response are consistent with the dynamic performance of the reed valves. Thus, modeling
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the reeds valves as a second order systems which respond to pressure perturbations in the

upstream flow field appears to be reasonable for the optimized configuration.

Figure 4.41 shows the reed / pressure transfer function for the rigid reed configuration with

the optimized injection level operating near stall. As with Figure 4.40, the transfer function

is presented in non-dimensional form. The model for the visco-elastic reed valve

dynamics, developed in Appendix H, predicts that the reed valve / pressure transfer

function is given by:

Sq (co) 1W5q(@ 6
5 pu(o) ( 4)+2Q Co(i+XWO)

+(X cof (4.5)

2 (
where: X a Q

The transfer function predicted for the rigid reed configuration using the visco-elastic model

for the reed dynamics using the control parameters determined from the initial condition

response, ( Q = 1.5, ( =3.0 and a = 5.0 ) and the mass parameter determined above (W =

3.5 ), is shown on Figure 4.41 as a dashed line. The symbols (C) on the plot of the

magnitude of the transfer function represent the analytical model corrected for the axial

decay, as developed above. The model yields a reasonable representation of the reed

dynamics with the pneumatic dashpots closed.

As indicated by Figure 4.41, and by time resolved data in Figures 4.21 and 4.35, the reeds

are not completely rigid with the pneumatic dashpots closed, and the reeds respond to the

pressure fluctuations. Comparing Figures 4.40 and 4.41 shows that the magnitude of the

reed deflection / pressure transfer function for the "rigid" reeds is roughly half that of the

optimized configuration at the frequencies associated with the first three harmonics.
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4.7.2 Pressure / Velocity Transfer Function

The flow field upstream of the compressor was assumed to be two-dimensional

incompressible and irrotational. Based on this idea, in the region downstream of the reeds,

but before the injected flow mixes out, the static pressure acting on the reeds is that

corresponding to the incompressible and irrotational upstream flow. The transfer function

between static pressure and axial velocity perturbations is given by:

5 C)= - 2 (D - - (wo)
6t(w) n(4.6)

where: n is the spatial harmonic number

Figure 4.42 shows the experimentally determined, non-dimensional pressure / velocity

transfer function in the stabilized flow regime for the compression system with optimized

aeromechanical feedback. Both pressure and velocity were recorded at 1/3 chord

upstream of the rotor. The velocity signal was recorded at mid span at ( 0 = 90 degrees)

and the pressure was recorded at ( 0 =75 degrees). The coherence between the two

signals is also shown.

The transfer function predicted by the linearized unsteady Bernoulli's equation is a function

of the disturbance harmonic number (n). Using (D = 0.39, the predicted transfer function

for the first three spatial harmonics (n = 1, 2 and 3) is shown on Figure 4.43.

Equation 4.6 assumes colocated measurements, however, the measurements were recorded

with a finite circumferential spacing (AO = 15 degrees). For constant amplitude, traveling

wave disturbances, the circumferential spacing introduces a temporal phase shift between

the measurements that depends on the length scale of the disturbances which is given by
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(n AO where: n is the spatial harmonic number). Using information derived from the

array of eight equally spaced hot wires, the symbols (@) on the phase versus frequency

plot in Figure 4.43 represent the phase of the predicted transfer function for the nth

harmonic corrected (at the temporal frequency associated with that harmonic) for the

temporal phase shift introduced by the circumferential spacing between the measurements.

Since the measurement were recorded at the same axial station, the magnitude of the

transfer function is not affected. The relationship between static pressure and axial velocity

perturbations in the upstream flow field appears to be modeled reasonably well by a two-

dimensional potential flow field description.

4.7.3 Reed Deflection / Velocity Transfer Functions

Figure 4.43 shows the magnitude and phase of the reed deflection / axial velocity transfer

function for the optimized configuration near stall. The transfer function is presented in

non-dimensional form. The coherence between the two signals is also shown. The axial

velocity measurements were recorded 1/3 chord upstream of the rotor at e = 90 degrees.

The centerline of the reed valve was located at e = 75 degrees.

The predicted reed deflection / axial velocity transfer function, for colocated measurements,

is given by:

6q ( ) -1W (2 4 + 1 ( i o))

S $ m) Q2 _49)2 Q ( io )(4.7)

The analytical transfer functions for the first three spatial harmonics, using the

experimentally determined reed parameters in the viscous, second order, dashpot model for

the reed dynamics, are also shown in Figure 4.43. The input parameters were: W=3.5,

Q=1.5, ( = 0.3 and D = 0.39 for n = 1, 2 and 3. The symbols (&) on the plot of the

magnitude of the transfer function represent the analytical model corrected for the
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exponential decay of the axial velocity perturbations due to the axial spacing between the

measurements ( 0.35 compressor radii) and the symbols (()) on the phase plot represent

the analytical model corrected for the temporal phase shift introduced by the circumferential

spacing ( AO = 15 degrees) between the two measurements, as developed above. The

model agrees well with the experimental estimate of the transfer function.

Figure 4.44 shows the non-dimensional reed deflection / axial velocity transfer function

recorded for the rigid reed configuration operating near the stalling flow coefficient. The

coherence between the two signals is also shown.

Using the visco-elastic model of the reed valve dynamics, the predicted transfer function is

given by:

S q o) -W ( 2 (D + 1 (i co))6q(co) 6 n_________

S$u (co) 2 +2 Q Q o ( i + X co)

1+(X o (4.8)

where: X a Q

The transfer function predicted by equation 4.8 is shown in Figure 4.44 using W=3.5,

Q=1.5, =3.0, a = 5.0, D = 0.41 for n = 1, 2 ,and 3. The symbols (0) on Figure 4.44

indicate the analytical model corrected for the axial and circumferential spacing as described

above. As shown the combination of the two-dimensional model of the upstream flow

field and the visco-elastic model of the reed valve dynamics yields a fairly good

representation for the reed deflection / axial velocity transfer function measured for the rigid

reed configuration.
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4.8 Comparison to Theory

We have examined so far the components that make up the overall model description of the

dynamic system. In this section the general predictions of the compression system

behavior are compared to the experimental results. The primary object of the comparison is

to determine if the simple model yields a useful description of the compression system

dynamics. Specifically, this section assesses calculated versus experimentally determined:

1) phase speed of the spatial harmonics

2) stalling flow coefficient as a function of control parameters

3) relative stability of the spatial harmonics as a function of control parameters

4.8.1 Phase Speed of the Spatial Harmonics

The linearized stability analysis developed in Chapter 2 for the basic compression system

predicts that the spatial harmonics travel around the annulus at a phase speed dependent on

the spatial harmonic number. For the simple model of compressor performance used, the

inertial parameters determine the rotational frequency of the disturbances, given by:

real ( (Y)=- n X
4 + n p (2.17)

The inertial parameters, defined in equations (2.1) and (2.2), for the compressor based on

geometry are ( = 0.4 and g = 0.7). Using these values in the model predicts rotation

rates of 9%, 15%, and 20% of the rotor frequency for the first three harmonics

respectively. For the basic compression system the first three harmonics were measured to

travel at 25%, 32%, and 35% of the rotor frequency, respectively. Thus, the predictions of

the rotation rates of the disturbances using this simple model are poor. The poor prediction

of the rotation speeds can primarily be attributed to the simplicity of the model, which does

not account unsteady aerodynamics, inter blade row gaps, and sensitivity of the rotor to

swirl in the upstream flow field. As developed by other authors, and presented in
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Appendix A, accounting for swirl sensitivity of the rotor would serve to increase the

rotation rate of the disturbances.

Although the model does not accurately predict the rotation rate of the disturbances, it does

predict the qualitative features of the flow field. The model can be modified to yield a more

accurate description of the flow field, while maintaining the same structure, by modifying

the inertial parameters of the fluid within the compressor. It is emphasized that using a

more accurate model, specifically, modeling the swirl sensitivity of the rotor, could be

expected to yield more accurate predictions of the rotation frequencies of the disturbances.

The inertial parameters of ( X = 1.0 and . = 2.0) were selected to yield a qualitative

representation of the rotating stall dynamics and were lQLbased on the geometry of the

compressor. Moore [19] found that using inertial parameters that are roughly twice the

values corresponding to those based on geometry resulted in good agreement between the

rotation rates calculated using the theory and those observed experimentally. Using these

values for the inertial parameters results in predictions of 17%, 25%, and 30% of the rotor

frequency for the first three spatial harmonics, respectively. Thus, the quantitative

rotational frequencies were reasonably represented.

To compare the rotation rates of the disturbances for the compression system with

aeromechanical feedback, the linear analysis was modified to include a visco-elastic model

of the pneumatic dashpot, which the initial condition response indicated was required to

adequately characterize the reed dynamics over the range of dashpot setting investigated.

Details of the analysis are given in Appendix H.

A fourth order fit of the performance data recorded for the baseline compressor (pressure

rise coefficient versus mass flow coefficient )was used in the analysis. The experimental

data and the fourth order curve fit are shown in Figure 4.45, as is the slope ( of the curve
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fit representing the speedline),as a function of flow coefficient. The inertial parameters of

X = 1.0 and p=2.0 were used in the analysis.

Figure 4.46 shows the behavior of the eigenvalues of the model of the compression system

as the flow coefficient is reduced for the optimized configuration, W =3.5, Q = 1.5, C =

0.3, a = 5.0, and <i = 1.0. The rotation rate of least stable modes associated with the first

and second spatial harmonics for the compression system with optimized aeromechanical

feedback are seen to be 13% and 20% of the rotor frequency. The time resolved data

indicated that the first and second spatial harmonics rotate at 25% and 29% of the rotor

frequency. Again, only the qualitative trend is consistent.

4.8.2 Prediction of Change in Stalling Flow Coefficient

Two control parameters, the injection parameter ( 4i ) and the damping parameter ( (),

were varied systematically in the experimental phase of this research. The experimentally

determined effect of each control parameter on the stalling flow coefficient can be compared

to the effect predicted by the analysis.

Figure 4.47a shows the predicted stability boundary for the first two harmonics as a

function of the damping in the visco-elastic dashpot. The other control parameters were

held constant at W = 3.5, Q = 1.5, a = 5.0 and (i = 1.0. Figure 4.47b shows the stability

boundary for the first two harmonics as a function of the injection parameter,Di, with the

other control parameters held constant at W = 3.5, Q = 1.5, a =5.0, and ( = 0.3. Figures

4.48a and 4.48b show similar predictions using a viscous dashpot model. There is little

difference in the stability boundaries predicted by the two models, and one can infer that the

visco-elastic behavior of the dashpot has little effect on predicted system stability over the

range of parameters tested.
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It can be remarked that this result is not at all obvious from the initial condition response,

where the visco-elastic dashpot added features to the reed dynamics not predicted by the

viscous dashpot model. The lack of influence of the visco-elastic dashpot behavior on the

system stability can be interpreted by considering that, for damping ratios in which the

visco-elastic behavior becomes important, the reeds are de-tuned from the system

dynamics, and thus, have little effect on system stability. However, it is emphasized that

this conclusion is specific to the experimentally determined control parameters and is not

universal.

Data, such as that shown in Figure 4.41, demonstrated that reed dynamics with the

pneumatic dashpots closed were not completely rigid, and that the reeds were responding to

static pressure perturbations in the upstream flow field. To estimate the effect of the

feedback introduced by the "rigid reed " configuration (dashpots closed), stability was

assessed as a function of injection parameter for the "rigid reed" configuration, i.e. W=3.5,

Q=1.5, cx=5.0, and ( = 3.0. Figure 4.49 shows the flow coefficient at which the linear

model with the visco-elastic dashpot predicts the first and second harmonic to become

unstable is plotted as a function of the injection parameter for the "rigid reed" parameters.

For the injection parameters tested, the stalling flow coefficient predicted for the

configuration with the dashpots closed occurs at a lower flow coefficient than the stalling

flow coefficient predicted for the configuration with infinitely rigid reed valves. Thus,

using the experimentally determined stalling flow coefficient for the rigid reed valve

configuration, i.e. the closed dashpots, as a benchmark to assess the aeromechanical

feedback, is predicted to underestimate of the amount of stabilization due to the

aeromechanical feedback.
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4.8.2.1 Damping Ratio

In Figure 4.17, the decrease in stalling flow coefficient for the experimentally optimized

injection rate (<Di =1.0 ) was shown to increase with decreasing damping ratio. Figure

4.50 shows the measured change in stalling flow coefficient and the analytically predicted

change in flow coefficient at instability for the first two harmonics as a function of damping

constant in the visco-elastic reed valve model. The changes in stalling flow coefficient

were referenced to the corresponding values (experimentally determined and analytically

predicted) for the rigid reed configuration. According to the linear model, the behavior of

the first harmonic should limit the increase in stable flow range, but, the data is more

consistent with the change in stalling flow coefficient predicted for the second harmonic.

4.8.2.2 Injection Parameter

The injection pressure was also varied parametrically to determine its influence on

compression system dynamics. Figure 4.51 shows the predicted change in flow coefficient

at instability between the closed dashpot configuration (( =3.0 ) and the optimized dashpot

setting configuration ( ( =0.3) as a function of injection parameter. This is shown for the

first and second spatial harmonics. The visco-elastic dashpot model was included in the

analysis. The experimentally determined reduction in stalling mass flow coefficient is also

given in Figure 4.51. The results are similar to the results shown in Figure 4.50 for the

effect of damping parameter, the prediction is that the change in stability associated with the

first harmonic should determine the measured change in stalling mass flow coefficient, but,

the data appears to be somewhat more consistent with the change in stability of the second

harmonic.

4.8.3 Relative Stability of the First and Second Spatial Harmonics

The linear analysis predicts that the effect of aeromechanical feedback depends on the

spatial harmonic number of the disturbances, and that relative stability of the spatial
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harmonic is a function of damping ratio. Figure 4.47a showed the mass flow coefficient at

instability for the first two harmonics predicted by the visco-elastic stability analysis as a

function of the damping ratio for the optimized injection level. At high damping ratios

(above C = 1.25), the second harmonic is predicted to be less damped than the first at a

given stable operating point, but at low damping ratios (below =1.25), the converse is

true.

For under-damped, linear systems operating with white noise, random excitation, the shape

of the peak of the PSD is indicative of the damping, and hence the stability, of a given

mode of oscillation. Using this idea, we can compare the relative stability of the spatial

harmonics. PSD's of a single pressure and axial velocity measurement recorded for

configurations operating near stall with the optimized injection level and several dashpot

settings were presented in Figures 4.39a and 4.39b. The relative magnitude of the PSD's

of the oscillations for frequencies associated with the first and second harmonics are found

to be influenced by the damping ratio. As shown in Figures 4.39a and 4.39b, the

magnitude of the PSD at the frequency associated with the first harmonic increases relative

to that of the second harmonic as the damping ratio is decreased. This trend agrees with

that predicted by the model, as described above.

4.9 Non-Linear Numerical Simulations

The linear model assumes that the slope of the compressor characteristic is set by

conditions A the mean mass flow coefficient. For finite amplitude oscillations, however,

the compressor performance at any given point around the annulus may differ significantly

from compressor performance at the mean flow. The amplitude of the coherent oscillations

found prior to large amplitude rotating stall were on the order of 10-20% of the mean flow

coefficient. Although these oscillations are small enough that many features can be

represented with a linearized description of the upstream and downstream flow fields, the
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influence of the non-linearity in the compressor characteristic could be significant for

disturbances of this magnitude.

To assess the predictions of the model with finite amplitude disturbances, the two spatial

harmonic Galerkin, non-linear simulation with the random noise modeled, described in

Chapter 2 was used to numerically simulate the compression system dynamics with

aeromechanical feedback. The annulus averaged mass flow coefficient was held constant.

The fourth order curve fit of the experimentally determined annulus average compressor

characteristic shown in Figure 4.45 was used to represent the compressor behavior. Since

finite amplitude oscillations existed and the flow through the compressor was transiently

accessing the nominally unstable region of the compressor characteristic, the axisymmetric

characteristic was smoothly extended into the nominally unstable region, as shown. The

shape of the characteristic in the nominally unstable region has a large effect on the

predicted compression system dynamics for compression systems operating near the linear

stability limit, and time resolved data can be used to estimate the shape of the compressor

characteristic in this region [26] In this thesis, however, no attempt was made to fit the

detailed shape of the characteristic in the unstable region to match the experimental data,

and the characteristic was extended such that the characteristic was approximately

symmetric about the peak of the characteristic.

Noise was introduced in the simulation as a random static pressure disturbance at the face

of the compressor. The details of the noise model are developed in Appendix E.

Figure 4.52 shows the predicted rms of the compressor inlet axial velocity perturbations

(normalized by mid-span compressor wheel speed) as a function of mass flow coefficient

for the baseline compression system and the optimized compression system. The rms of

noise level is 2.5% of the dynamic head based on the mid-span compressor wheel speed
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and the input parameters to the calculation are listed in Table 4.4. The amplitude of the

velocity perturbations increase for the fixed noise level as the compression systems

approach their respective stalling flow coefficients. The simulated behavior of the

compression systems is similar to the experimental data shown in Figure 4.30.

It should be emphasized that the behavior of the compression system operating in regions

where the non-linearity of the compressor characteristic becomes important is strongly

dependent on the shape of the characteristic assumed in the nominally unstable region.

Thus, the level of unsteadiness occurring in the compression system is not directly related

to noise levels in regions where the non-linearity of the compressor characteristic is

important. Comparing the numerical results shown in Figure 4.51 with experimental data

shown in Figure 4.30 for flow coefficients well away from stall indicates that the

simulation with a noise level on the order of 2.5% of the mean dynamic head based on

wheel speed yields a useful description of the effect of noise on the compression system.

Figure 4.53 shows the simulated normalized axial velocity perturbations (5$) at eight

equally spaced locations around the annulus. The spatial Fourier decomposition of the

axial velocity perturbations are shown in Figure 4.54. The reed valve deflections at four

equally spaced positions around the annulus corresponding to the velocity perturbations

shown in Figure 4.53 are shown in Figure 4.55. The axial velocity perturbations were

calculated assuming that the injection mixes out in the span-wise direction before entering

the compressor. Spatial Fourier decomposition of the numerical results predict that the

oscillations associated with the first and second spatial harmonics grow and decay in a

random manner for the compression system operating near the linear stability boundary. In

the periods in which there is significant harmonic content, the simulation predicts that the

harmonics form coherent waves traveling around the compressor. The phase speed of the

coherent traveling waves predicted by the simulation is 13% and 20% of the rotor
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frequency for the first two spatial harmonics. This is consistent with the results of the

linear stability analysis for the least stable modes associated with the first and second spatial

harmonics.

The spatial Fourier decomposition of the simulated velocity perturbations can be compared

to the experimental data presented in Figure 4.28. Although the third spatial harmonic is

not modeled in the simulation, the qualitative behavior of the first and second spatial

harmonics is captured. Based on these comparisons, the two spatial mode Galerkin

procedure appears to offer a description of the flow field with aeromechanical feedback

which captures the basic structure of the system dynamics.

4.10 Summary of Experimental Results

The results of the experimental phase of the research and the evaluation of the analytical

model are summarized below:

1) 10% decrease in stable flow coefficient was achieved due to aeromechanical feedback.

2) Control effectiveness was shown to be a function of control parameters tested.

3) Control smoothly extended the compressor speedline into previously unstable region.

4) The rotating stall dynamics remained essentially full-span.

5) The reed valves responded to the static pressure perturbations in the upstream flow field

essentially as modeled

6) The experiment did not achieve the design control parameters.
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7) The model predicted trends stalling flow coefficient versus control parameters and the

relative stability of spatial harmonics. The model did not, however, accurately

predict the rotation rate of the disturbances. This was attributed to the simplicity of

the model.

8) The noise level in the compression system was estimated.

9) The non-linear, two spatial harmonic Galerkin simulation captured the qualitative

behavior of the compression system both with and without aeromechanical

feedback.
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Injection Quantities for Velocity Profiles shown in Figure 4.13

Injection Injection Change in Flow % of Flow % of Axial
Pressure Paramter Coefficient due Injected Momentum

(psi) (Di) to Injection (Dc = 0.45) Injected

( (Dc = 0.45)
0 0 0 0 0

0.2 0.79 0.008 1.8% 3.1%
0.3 0.96 0.014 3.1% 6.6%
0.4 1.12 0.021 4.7% 11.6%

Table 4.2: Injection Quantities Tested

Injection Injection Mass Flow % of Flow % of Axial
Pressure Paramter Injected Injected Momentum

(psi) (DGi) (kg/s) (Dc = 0.40) Injected
(Dc = 0.40)

0 0 0 0 0
0.21 0.81 0.07 2.0% 4.1%
0.28 0.93 0.11 3.0% 7.0%
0.34 1.03 0.14 4.0% 10.3%
0.38 1.08 0.18 5.0% 13.5%
0.42 1.14 0.21 6.0% 17.1%
0.48 1.22 0.24 7.0% 21.4%
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Table 4.3: Stalling Flow Coefficients For Various Control Parameters 1

Nominal Mass Flow Dashpot Stalling Flow % Change in
Injection Coefficient Setting Coefficient Stalling Flow
Parameter Injected (# of Turns Coefficient

( (D) (rui / P Ac UR) From Closed2 )

0.81 0.008 0 0.426 -
0.81 0.008 1.5 0.421 1.2
0.81 0.008 3.0 0.418 1.9
0.81 0.008 4.5 0.417 2.1
0.81 0.008 6.0 0.417 2.1
0.81 0.008 10.0 0.419 1.6

0.93 0.012 0 0.420 ---
0.93 0.012 1.5 0.410 2.4
0.93 0.012. 3.0 0.402 4.3
0.93 0.012 4.5 0.397 5.5
0.93 0.012 6.0 0.400 4.8
0.93 0.012 10.0 0.394 6.2

1.03 0.016 0 0.409 ---
1.03 0.016 1.5 0.394 3.7
1.03 0.016 3.0 0.378 7.6
1.03 0.016 4.5 0.378 7.6
1.03 0.016 6.0 0.376 8.1
1.03 0.016 7.5 0.374 8.6
1.03 0.016 10.0 0.369 9.8

1.08 0.020 0 0.395 ---
1.08 0.020 1.5 0.378 4.3
1.08 0.020 3.0 0.375 5.1
1.08 0.020 4.5 0.368 6.8
1.08 0.020 6.0 0.365 7.6
1.08 0.020 7.5 0.366 7.3
1.08 0.020 10.0 0.366 7.3

1.22 0.028 0 0.373 ---
1.22 0.028 3.0 0.349 6.4
1.22 0.028 6.0 0.357 4.3
1.22 0.028 10.0 0.355 4.8

1)
2)

All data recorded at 2250 RPM and Q =1.5, W =3.5
0 turns = adjusting screw closed
10 turns = adjusting screw removed
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Table 4.4: Input Parameters for Non-Linear Simulation
Presented in Chapter 4

Note: Characteristic Used in Simulations:

'P(D) = -18.7 e + 35.5 D3 - 27.1 <D2 + 9.84 (D - 1.05

160

Parameter Simulation of Simulation of
Basic Compression System Optimized Configuration

1.0 1.0
2.0 2.0

<Di 0.00 1.0
W 3.5 3.5
Q 1.0 1.5
_; _1.0 0.3

Noise Level 2.5% 2.5%

Time Step 26.67 Times 26.67 Times
Frequency Rotor Frequency Rotor Frequency



Baseline Compressor Speedline
b0
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PT C PT A

- 0 --- ----

0
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3Rd order fit

* 0

0.55 0.6 0.65 0.7 0.75

Mass Flow Coefficient

Figure 4.1 Inlet Total to Exit Static Pressure Rise Coefficient (Ps - 2t" P U e

Flow Coefficient (rih/ p A UR) Constant Speed Performance Characteristic
for Baseline Compressor (2250 RPM) with Third Order Curve Fit also
shown
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basic compression system phi=.59 (PT A)
Velocity

- -----. Pressure

) 2 4 6 8 10 12 14 16

time (rotor revolutions)

basic compression system phi=.50 (PT B)

0 2 4 6 8 10 12 14 16
time (rotor revolutions)

basic compression system phi=.44 (PT C)

2 4 6 . 8 10 12 14 16

time (rotor revolutions)

Figure 4.2 (8p / -p U2Time Resolved, Normalized Static Pressure p2 u) and Axial

Velocity Perturbations (5 Cx / UR) for Basic Compression System at
Entrance to Compressor for Three Flow Coefficients

((D = 0.59, 0.50, and 0.44)
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1st, 2nd, and 3rd Spatial Fourier Coefficient phi=.59 (PTA)

1st SFC
-------- 2nd SFC
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Time, rotor revs
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Figure 4.3 Spatial Fourier Decompostion of Normalized Axial Velocity Perturbations
for Basic Compression System Operating Away From Stall (4 = 0.59)
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1st, 2nd, and 3rd Spatial Fourier Coefficient phi=.44 (PT C)

1st SFC
- ------- 2nd SFC

--.. 3rd SFC

j 1.

5 10 15 20 25 30 35

Time, rotor revs

10 15 20 25 30 35

Time, rotor revs

Figure 4.4 Spatial Fourier Decompostion of Normalized Axial Velocity Perturbations
for Basic Compression System Operating Near Stall (4D = 0.44)
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PSD of Velocity and Pressure phi=.59 (PT A)
0.01 I

Velocity
0.008 -- - -- -- - - - ----- -

------ Pressure
.. .. . .. . . .. . .. . . . . .. . . .. . .. . . ..

2 0.006 -
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freq, rotor revs

PSD of Velocity and Pressure phi=.50 (PT B)
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freq, rotor revs

2 2.5 3

PSD of Velocity and Pressure phi=.44 (PT C

0.5 1 1.5

freq, rotor revs

2 2.5 3

Figure 4.5 PSD's of Normalized Static Pressure and Axial Velocity Perturbations for
Basic Compression System Operating at Three Mass Flow Coefficients

(<D = 0.59, 0.50, and 0.44)
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Figure 4.6 Normalized Axial Velocity Perturbations (s Cx / UR) During the Stall
Inception Process of Basic Compression System
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1st, 2nd, and 3rd Spatial Fourier Coefficients, Basic Compression System
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Figure 4.7 Spatial Fourier Decompostion of Normalized Axial Velocity Perturbations
During Stall Inception of Basic Compression System
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Stall Inception at Three Span-wise Locations
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Figure 4.8 Normalized Axial Velocity Perturbations (5 Cx / UR) from Three Closely
Spaced Hot-Wires at 15%, 50%, and 85% Spanwise Imersion During Stall
Inception of Basic Compression System
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Figure 4.9 Initial Condition Response of Typical Reed Valve for Four Pneumatic
Dashpot Settings without Injection,

169

0.04

0.02

0
0

-0.02

0.
-0.04

0.02

" 0

-0.02

-0.04

-0.06

-0.05

- ....-.--.. ..

- - -.

.~~ ~ ~ .- ~ ....

-

-



Calibration of Dashpot Setting to Damping Ratio

0 1 2 3 4 5 6 7 8 9 10

Dashpot Setting (Number of Turns from Closed)

Figure 4.10 Calibration of Pneumatic Dashpot Damping Ratio ( C ) versus Dashpot
Setting (Number of Turns from Closed) Based on Initial Condition
Response
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Dashpots Closed
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Initial Condition Response of Reed Valves at Two Dashpot Settings with
and without Injection
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Reed Valve Deflection vs. 1njection Pressure
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Figure 4.13 Velocity Profiles at Entrance to Compressor for Four Injection Levels with
the Compression Operating at <D = 0.45.(2250 RPM)
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Mass and Momentum Injected vs. Injection Parameter8
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Figure 4.16 Percentage of Mass Flow and Momentum Injected Based on Stalling Flow
Coefficient for the Rigid Reed Valve Configuration as a Fuction of Injection
Parameter
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Figure 4.17 Change in Stalling Flow Coefficient as a Function of Dashpot Setting for
Five Injection Levels
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Speedlines for Baseline, Rigid Reed and Optimized

PT G PT F

PT H*

PTED

o = Baseline
x = RigidReed

0.4 0.45 0.5 0.55 0.6

Mass Flow Coefficient ( (D )

Figure 4.18 Compressor Speedlines for Basic Compression System, Rigid Reed Valve
Configuration with Injection, and the Experimental Optimized
Configuration with Injection (2250 RPM)
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Speedlines with and without Aeromechanical Feedback
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Figure 4.19 Compressor Speedlines for Several Injection Levels with Dashpot Settings
Optimized for Each Injection Level (2250 RPM)
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Rigid Reed Configuration, <b =.52 (PT D).

Axial Velocity
---- Static Pressure

I- tIk# i o
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time (normalized by rotor revs)

Rigid Reed Configuration, <D =.41 (PT E)
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it I.... I ... ..... .. '...........

A.t T I I

It ",tt IIt

- -

-t Sie i'

8 10 12 14 16
time (rot revs)

Figure 4.20 Time Resolved, Normalized Static (5 p / L p Ua l
Pressure( 2 R) and Axial

Velocity Perturbations (s Cx / UR) for Rigid Reed Valve Configuration
with the Experimentally Optimized Injection Level (Di = 1.0) Operating at
(D = 0.52 (PT D) and (D = 0.41 (PT E).
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Rigid Reed Configuration, (D =.52 (PT D)

) 2 4 6 8 10 12 14 16
time (rot revs)

Rigid Reed Configuration, (D =.41 (PT E)
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time (rot revs)

Figure 4.21 Time Resolved, Normalized Reed Valve Deflections ( 8A / H) for Rigid
Reed Configuration Operating at <b = 0.52 (PT D) and b = 0.41 (PT E)
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1st, 2nd, and 3rd Spatial Fourier Coefficients, Rigid Reed, (=.52 (PT D)

1st SFC
------- 2nd SFC
.-.. ..... 3rd SFC

- .

5 10 15 20 25 30 35
Time, rotor revs

5 10 15 20 25 30 35
Time, rotor revs

Figure 4.22 Spatial Fourier Decomposition of Normalized Axial Velocity Perturbations
for the Rigid Reed Valve Configuration Operating Away from Stall
at <D = 0.52 (PT D)

182

-e 0.1

0

U

0.08

0.06

0.04

0.02

0

N

C-,

1-4

U

U

60

40

20

0
0



1st, 2nd, and 3rd Spatial Fourier Coefficients, Rigid Reed, (D=.41 (PT E)

1st SFC
------- 2nd SFC

......... 3rd SFC
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Time, rotor revs

Figure 4.23 Spatial Fourier Decomposition of Normalized Axial Velocity Perturbations
for the Rigid Reed Valve Configuration Operating Near Stall
at <D = 0.41 (PT E)
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PSD of Velocity and Pressure, phi=.516 (PT D)
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--------- Static Pressure
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Figure 4.24 PSD's of Normalized Static Pressure and Axial Velocity Perturbations for
the Rigid Reed Valve Configuration Operating at (D = 0.52 (PT D)
and <D =0.41 (PT E)
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opt aeromech phi=.519 (PT F)
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Figure 4.25 Time Resolved, Normalized Static Pressure 2 ) and Axial

Velocity Perturbations (5 Cx / UR) for Optimized Configuration Operating
at Three Flow Coefficients ((D = 0.52, 0.41, and 0.37)
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opt aeromech phi=.519 (PT F)
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Figure 4.26 Time Resolved, Normalized Reed Deflections ( 5A / H) for Optimized
Configuration Operating at Three Flow Coefficients

(<D = 0.52, 0.41, and 0.37)
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1st, 2nd, and 3rd Spatial Fourier Coefficient opt. aero. phi=.519 (PT F)

1st SFC
-------- 2nd SFC

.............. 3rd SFC
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Time, rotor revs

5 10 15 20 25 30 35
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Figure 4.27 Spatial Fourier Decomposition of Normalized Axial Velocity Perturbations
for Optimized Configuration Operating Away from Stall at <D = 0.52(PT F)
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1st, 2nd, and 3rd Spatial Fourier Coefficient opt. aero. phi=.372 PT H

lst SFC
------- 2nd SFC
..- ---.. 3rd SFC

-.
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Time, rotor revs
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Figure 4.28 Spatial Fourier Decomposition of Normalized Axial Velocity Perturbations
for Optimized Configuration Operating Near Stall at <D = 0.37 (PT H)
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Figure 4.29 PSD's of Normalized Static Pressure and Axial Velocity Perturbations for
Optimized Configuration Operating at Three Flow Coefficients,

(<D = 0.52, 0.41, and 0.37)
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Unsteadiness vs. Flow Coefficient

0.45 0.5

Flow Coefficient

Figure 4.30 RMS of Normalized Axial Velocity Perturbations (6 Cx / UR) as a Function
of Mean Flow Coefficient ( (D )for the Baseline, Rigid Reed Valve, and
Optimized Configurations
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Rigid Reed Compression System
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Figure 4.31 Normalized Axial Velocity Perturbations (5 Cx /UR)During Stall Inception
Process of Rigid Reed Valve Configuration with Optimized Injection Level
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Figure 4.32 Spatial Fourier Decompositon of Normalized Axial Velocity Perturbations
During Stall Inception Process of Rigid Reed Valve Configuration with
Optimized Injection Level
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Figure 4.33 Normalized Axial Velocity Perturbations (8 Cx / UR) During the Stall
Inception Process of Optimized Configuration
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1st, 2nd, and 3rd Spatial Fourier Coefficients, Optimized Config., Stall Inception
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Figure 4.34 Spatial Fourier Decompositon of Normalized Axial Velocity Perturbations
During the Stall Inception Process of Optimized Configuration
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Rigid Reed Compression System
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Figure 4.35 Time Resolved, Normalized Reed Valve Deflections ( 5A / H) for the Rigid
Reed Valve Configuration with Optimized Injection Level During Stall
Inception
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Figure 4.36 Time Resolved, Normalized Reed Valve Deflections ( 5A / H) for the
Optimized Configuration During Stall Inception
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Stall Inception at Three Span-wise Locations

Tip (6=80) - .- -
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Figure 4.37 Normalized Axial Velocity Perturbations (5 Cx / UR) From Three Closely
Spaced Hot-Wires at 15%, 50%, and 85% Span-wise Immersion During
Stall Inception of the Rigid Reed Valve Configuration with Optimized
Injection Level
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Stall Inception at Three Span-wise Locations
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Figure 4.38 Normalized Axial Velocity Perturbations (5 Cx / UR) From Three Closely
Spaced Hot-Wires at 15%, 50%, and 85% Span-wise Immersion During
Stall Inception of Near Optimized Configuration (4bi=1.0, = 0.35)
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Figure 4.39a PSD's of Normalized Static Pressure and Axial Velocity Perturbations for
the Compression System with the Optimized Injection Levels for Three
Dashpot Settings Operating Near the Stalling Flow Coefficient
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Figure 4.39b PSD's of Normalized Static Pressure and Axial Velocity Perturbations for
the Compression System with the Optimized Injection Levels for Three
Dashpot Settings Operating Near the Stalling Flow Coefficient
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Figure 4.40 Magnitude and Phase of Normalized Reed Valve Deflection / Static Pressure

Transfer Function (q q / 8 P) with Coherence Function for the Optimized
Configuration Operating Near Stall
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Figure 4.41 Magnitude and Phase of Normalized Reed Valve Deflection / Static Pressure

Transfer Function (5q / 5 P) with Coherence Function for the Rigid Reed
Configuration with Optimized Injection Level Operating Near Stall
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Figure 4.46 Eigenvalues of First and Second Spatial Harmonics Parameterized by Flow
Coefficient for the Compression System with the Experimentally
Determined, Optimized Control Parameters
(W = 3.5, Q = 1.5, C = 0.3, (i = 1.0) with ( X =1.0 and g = 2.0)
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4.47a Stability versus Damping Parameter (V-E MODEL)
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Figure 4.47 Predicted Flow Coefficient at Neutral Stability for the First and Second
Spatial Harmonics of the Experimentally Optimized Configuration as a
Function of (a) Damping Ratio Parameter and (b) Injection Parameter Using
Visco-Elastic Dashpot Model
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Figure 4.48 Predicted Flow Coefficient at Neutral Stability for the First and Second
Spatial Harmonics of the Experimentally Optimized Configuration as a
Function of (a) Damping Ratio Parameter and (b) Injection Parameter Using
Viscous Dashpot Model

209

0.4

---- 1st Harmonic
-2nd Harmonic



Stability vs Injection Param for Closed Dashpot Config. (VE MODEL)
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Figure 4.49 Predicted Flow Coefficient at Neutral Stability for the First and Second
Spatial Harmonics of the Rigid Reed Valve Configuration with Injection as
a Function of the Injection Parameter in the Visco-Elastic Dashpot Model
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Change Based on Rigid Reed Case,( =1.0) VE MODEL
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Figure 4.50 Experimentally Determined Change in Stalling Flow Coefficient, as a
Function of Damping Parameter, based on Rigid Reed Configuration, for
<Di= 1.0 with the Predicted Change in Mass Flow Coefficient at Instability
for the First and Second Spatial Harmonics also Shown
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Change Between (Zsi =0.3) and Rigid Reed Case (VE MODEL)
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Figure 4.51 Experimentally Determined Change in Stalling Flow Coefficient as a
Function of the Injection Parameter between the Optimized Damping
Parameter (C=0.3) and the Rigid Reed Configuration (C=3.0) with the
Predicted Change in Mass Flow Coefficient at Instability for the First and
Second Spatial Harmonics also Shown
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Unsteadiness as a Function of Flow Coefficient
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Figure 4.52 RMS of Normalized Axial Velocity Perturbations (5 Cx / UR) Predicted by
Non-Linear Simulation as a Function of Mean Mass Flow Coefficient for
the Basic Compression System and the Optimized Configuration

213

0.05

0.045

0.04

t2

0-

).035 - -.

0.03

0.025 - -.---.

0 .02 - -.--.-.-.-.

0.0 15 - -.-.-.-.

0.01

0.005 ..

0.4 0.45 0.7

-.. . -. .................. -.. .... ...-..................7 .....

Optimized Baseline
..- ---.. ... ............. .....-. ......... ........-.--.-.-.-.-- ----.-.- -.-.-.- -.. ...... .....

- -..... ..... .........-. ........-. -. --. .-.-..- .-. .-.-

-................................-. ... .-.. -..-.-.--.---.-.-.-.-.- .-

n I



Exp. config Near stall simulation
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Figure 4.53 Simulated, Normalized Axial Velocity Perturbations (5 Cx / URfor the
Optimized Configuration Operating Near Stall at D = 0.44, with Noise
Model
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1st and 2nd Spatial Fourier Coefficients, Simulation of Optimized Config.
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Figure 4.54 Spatial Fourier Decomposition of Simulated, Normalized Axial Velocity

Perturbations (8 Cx / UR) for Optimized Configuration Operating Near Stall
at (D = 0.44 with Noise Model
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Eftxp. config Near stall simulation
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Figure 4.55 Simulated, Normalized Reed Valve Deflections ( 8A / H)for Optimized
Configuration Operating Near Stall at (D = 0.44 with Noise Model
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Chapter 5: One-Dimensional Acoustic Oscillations in

Compression Systems

5.1 Introduction

The primary focus of this research was on control of the multi-dimensional instability

associated with rotating stall. To avoid one-dimensional (annulus averaged) oscillations, a

compression system with a low B-parameter ( B < 0.1) was used in the experimental

investigation. One-dimensional, surge type oscillations were designed to be stable over all

operating conditions of interest. In spite of this, disturbances inconsistent with a multi-

dimensional, incompressible Model of the flow field were observed when the compression

system, as originally configured, was stabilized using aeromechanical feedback. No such

oscillations were observed in the compression system when operated away from the

stalling flow coefficient.

These disturbances are described in this chapter. They are shown to be associated with

one-dimensional acoustic oscillations within the compression system. An acoustic model

of the compression system is presented to identify the parameters that influence the acoustic

behavior. Based on conclusions drawn from the analytical model, the acoustic parameters

of the compression system were modified to effectively eliminate the acoustic oscillations

for the operating range of the compression system investigated.

5.2 Experimental Measurements

Figure 5.1 shows PSD's of the static pressure and axial velocity perturbations (recorded

simultaneously) for the original configuration of the compression system operating near the

stalling flow coefficient at (D =0.354. The aeromechanical control parameters were W =

3.5, Q = 1.5, C =0.35, and <i = 1.2. The hot-wire and wall static pressure transducer

were approximately 1/3 chord upstream of the rotor and were closely spaced in the
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circumferential direction. There is a peak in the PSD of the pressure signal at 75% of the

rotor frequency (28 Hz), but no correspondingly large peak at this frequency in the PSD of

the axial velocity disturbances.

The magnitude of the transfer function between the pressure and velocity measurements is

also shown in Figure 5.1. The predicted transfer function, based on the two-dimensional

incompressible flow field model (see Eq.4.6) for the first three spatial harmonics ( n = 1,2,

and 3 ), is shown in Figure 5.1. The magnitude of the predicted transfer function is

qualitatively consistent with the data except for frequencies near 75% of the rotor

frequency, where the magnitude of the transfer function is an order of magnitude larger

than that predicted by the two-dimensional, incompressible theory.

Further investigation revealed that the spatial mode shape, as well as the temporal

frequency, of the oscillations were both consistent with a one-dimensional acoustic

oscillation roughly corresponding to a quarter wave length organ pipe mode of the

compression system. The PSD of the pressure oscillations thus appeared to represent an

under-damped acoustic oscillation being excited by random noise.

5.3 Overview of Acoustic Model

To investigate these oscillations and to assess the role of compression system parameters

on their generation, a one-dimensional acoustic analysis of the compression system was

developed. In this section, an outline of the analytical model is presented with the details

given in Appendix I. More detailed discussion of analyses of this type is given in

references [29] and [30].

The acoustic behavior of the compression system was analyzed using acoustic transmission

matrices. Acoustic transmission matrices relate the acoustic state variables across a flow

218



element, and the matrices can be readily assembled to give a description of a complex

system. The format of the transmission matrices used in this thesis is given below.

Pi - [ T11 T12 ] P2
pcui [ T21 T22  p c u2 1 (5.1)

where: p = acoustic pressure perturbation, u = acoustic velocity perturbation, and

Tij = Element in Transmission Matrix

Figure 5.2 shows a schematic of the one-dimensional acoustic model of the compression

system. The analysis includes'models of four acoustic elements that comprise the

compression system:

1) the flow field in the upstream duct

2) the compressor, modeled an as actuator disk

3) the flow field in the downstream duct

4) the throttle, also modeled as an actuator disk.

The acoustic behavior of the overall compression system can be modeled by combining the

transmission matrices of the individual components to form a single, overall transmission

matrix which represents the entire compression system. The overall transmission matrix

relates the acoustic state variables upstream of the inlet to the acoustic state variables

downstream of the throttle, as a function of frequency and of compression system

parameters.
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5.3.1 Transmission Matrices of Components

The transmission matrices of the individual components are developed below.

5.3.1.1 Upstream and Downstream Ducts

Solving the one-dimensional convective wave equation in a subsonic, constant area duct

with axial flow, as developed in Appendix I, leads to the following transmission matrix for

a duct of length L:

1i(eikL+e-ikL) .(eikiLpe-ik2L)

p _ 2 2 p
P C U x-L 1(ei k, L - e- i k2L) .(ei k L + e- i k2L) P c U x=0

- 2 2 J (5.2)

ki C k2 CO-
where: c 1+M ' c 1-MX

5.3.1.2 The Compressor

The acoustic oscillations observed in the experiment were on the order of 30 Hz. This

corresponded to a reduced frequency based on the frequency of the oscillation, the chord of

the blading, and the rotor speed, of roughly 0.1. Therefore, the compressor was assumed

to respond to the acoustic oscillations in a quasi-steady manner. Since the single stage

compression system was operated at low speed, MR" 0.2, and since the compressor was

short in axial length compared to the upstream and downstream ducts, the flow through the

compressor was assumed to be incompressible.

The inertia of the fluid within the blade rows was neglected in the acoustic model. This

seems reasonable because the inertia of the fluid within the ducts participating in the

acoustic oscillations is far greater than the inertia of the fluid within the blade rows.
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The aeromechanical feedback could also influence the response of the compressor to

acoustic oscillations. However, both for simplicity and because data indicated that the reed

valves were insensitive to annulus averaged disturbances (compared to non-axisymmetric

disturbances), the aeromechanical feedback was taken to have negligible effect on the

response of the compressor to the acoustic oscillations.

Applying conservation of mass and assuming that the compressor responds as a quasi-

steady actuator disk, leads to the following transmission matrix across the compressor:

p _ 9 p
p C u u=[ 0 1 _ Ul (5.3)

where - MR-+ MX = Acoustic Compressor Slope

The acoustic compressor slope, ( ) is expressed in terms of the slope of the inlet total to

exit static pressure rise versus mass flow characteristic to be consistent with convention

used in bulk of this thesis. The acoustic compressor slope can also be expressed in terms

of the slope of the total to total compressor characteristic.

'(MR~t
2 D/ (5.4)

5.3.1.3 The Throttle

The flow through the throttle is assumed incompressible and quasi-steady. Applying

conservation of mass and momentum across the throttle leads to the following transmission

matrix across the throttle:
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pcuIu=[ 1 ]{PCUd (5.5)

K her--- t Mx= Acoustic Throttle Slopewhere: CY

G = A01i - Area Ratio of Orifice
Aduct

Mxt = Axial Mach Number of Flow through Orifice

5.3.2 Transmission Matrix for Overall Compression System

Combining the transmission matrices for the four acoustic elements of the compression

system leads to the overall system transmission matrix. This relates the acoustic flow

variables upstream of the inlet duct (x= - L) to those downstream of the throttle (x= aL).

(eikkicLL+ke- iak2L) L(eik eiLk-ae-i)k2L]
P 2 2 1

P C u Ix= -L 1(ei ki L _e- i k2L) 1 (ei ki L + e- i k2L) 0 1
-L 2. -

(ei k aL + e- i k2 UL) I ei ki aL - e- i k2 aL)

(ei k aL - e- i k2 aL) 1 (ei k, aL + e- i k2 aL)
-2 ~ 2J

X K K] p
0 1 J C U I x = + a L (5.6)

Defining Zi as the elements of the individual transmission matrices for the components

defined in equation (5.6), the overall system acoustic transmission matrix can be expressed

as:

Pi Zi Z2][ 1 Z3[Z4 Z5] 1 Z61 P2
pcul Ix=-L Z2 Zi J [ 0 1 JLZ5 4JO lj1 pcu2 Jx=aL (5.7)
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Defining 4i j as the elements in the overall system transmission matrix (Equation 5.7) can

be written as:

p 11 12 p
P C U x=-L [21 t2 Pcux=+aL (5.8)

5.4 Eigenvalue Stability Analysis

An eigenvalue problem can be defined by setting conditions on the acoustic field upstream

and downstream of the compressor. For the system of interest here, the acoustic pressure

perturbations in the free field regions upstream and downstream of the compression system

are taken to be zero. The relationship between the static pressure perturbations upstream of

the compression system and the acoustic state variables downstream of the compression

system can be determined by expanding equation (5.8):

P(x=- L)1= 411 P(x=+a L)+ 1 2 P C U(x=+ cL) (5.9)

Applying the pressure boundary conditions leads to:

0 = 12 P C U(x=+aL) (5.10)

For non-trivial solutions for equation (5.10) to exist, t 1 2 must be zero and this

determines the system eigenvalues. Using the elements of the transmission matrices for the

individual components (Equation 5.7), the eigenvalues of the acoustic oscillations are

solutions to the complex equation below:

t 1 2 =Z6 (ZlZ 4 +Z 5 (ZiZ 3 +Z 2))+Z 1Z5 +Z 4 (ZiZ 3 +Z 2 )=O (5.11)
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Solving Equation 5.11 for the complex time dependence, CO, determines the frequency and

decay (or growth) rate of the natural acoustic modes of the compression system. The

eigenvalues were found using an iterative technique.

There are several non-dimensional parameters which determine the acoustic behavior of the

compression system:

L = length of upstream duct

a = ratio of upstream and downstream ducts

= acoustic compressor slope

X = acoustic throttle slope

M x = axial Mach number in ducts

The analysis was used to determine the effect of the acoustic compressor slope ( $) and the

acoustic throttle slope ( Kc) on the acoustic oscillations in the compression system used in

the experimental phase of this research. The acoustic parameters of the MIT single stage

compression system were estimated to be the following:

L = length of upstream duct =1 meter

a = ratio of upstream and downstream ducts = 1.2

MR = Mach Number of Blades on Rotor = 0.2

The axial Mach number for the upstream and downstream duct is Mx = 0.07. Assuming

the mean flow is incompressible, the mean flow coefficient ( (D ) and the rotor Mach

number determine the relation between the throttle Mach number and the throttle area ratio:

DMR =Mx=aMXb (5.12)

To help interpret the behavior of the acoustic oscillations, the decay (or growth) rates

predicted by the eigenvalue analysis were related to the critical damping ratio of an
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equivalent second order system. The details are given in Appendix I. With this

terminology, positive damping ratios indicate a stable system and negative damping ratios

indicate an unstable system.

Figure 5.3 shows the predicted frequency and damping ratio of the lowest frequency

acoustic mode for the compression system as a function of the acoustic throttle slope. The
D- = -10, 0, and 10.three curves are for different compressor slopes, Do The model predicts

that both frequency and damping ratio of the acoustic mode are influenced by both the

acoustic compressor slope and the acoustic throttle slope. For low acoustic throttle slopes,

the frequency and damping ratio of the acoustic oscillations is insensitive to the slope of the

compressor-, the frequency remains near the half wave length frequency and the damping

ratio remains positive (stable) over the range of compressor slopes investigated. However,

for steep acoustic throttle slopes, the frequency approaches the quarter wave length

frequency. Instability is possible, and the stability of the acoustic mode is primarily

determined by the slope of the compressor.

5.5 Discussion of Results from Model

The acoustic stability analysis illustrates the roles of the compression system parameters in

determining the system behavior. The analysis predicts that compressors operating with

positive acoustic compressor slopes are capable of driving the one-dimensional acoustic

mode of the compression system unstable. For the range of compressor and throttle slopes

investigated, the acoustic mode is predicted to become unstable when the acoustic

compressor slope is positive and acoustic throttle slope is steep.

As shown in equation (5.4), the sign of the acoustic compressor slope is determined by the

sign of the slope of the total to total compressor characteristic. The mechanism responsible

for the acoustic instability, i.e. the compressor feeding energy into the disturbances, is thus
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similar to the mechanism responsible for rotating stall and surge. All three types of

instability can be viewed in the same general context.

Although the compressor is the only element capable of providing the mechanism for an

acoustic instability, the acoustic slope of the throttle has a large effect on the behavior of the

acoustic oscillations. This can be seen by comparing the results of the analysis for the

system with the compressor operating at the peak of the total to static characteristic, (small

acoustic compressor slope), to the results of a simple organ pipe analysis. For shallow

acoustic throttle slopes, the throttle approaches a pressure release, or open ended pipe. For

an organ pipe with two open ends, the natural frequency, corresponding to the half wave

length frequency, is

f=- = c
X 2L(l +a) (5.13)

This frequency agrees with the analysis in the limit of shallow acoustic throttle slopes.

For steep acoustic throttle slopes, the throttle appears as a closed end for the acoustic

perturbations. The natural frequency of an organ pipe with one closed and one opened end

corresponds to the quarter wavelength frequency, or:

f = =
X 4L(1+x) (5.14)

This frequency is also consistent with the analysis in the limit of steep throttle slopes. A

schematic of the organ pipe analogy is shown in Figure 5.4.

The analysis predicts that the damping ratio of the acoustic mode in the compression

operating near the peak of the total-to-static compressor characteristic is maximized for

acoustic throttle slopes between these two limits. The occurrence of a maximum in
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damping ratio, or equivalently a maximum in the dissipation across the throttle, as a

function of acoustic throttle slope can be interpreted as follows. At either of the two limits,

the throttle reflects all incident acoustic energy, and the unsteady energy dissipation across

the throttle approaches zero. At intermediate values of the acoustic throttle slope, the

throttle dissipates a portion of the incident acoustic energy, adding damping to the acoustic

oscillations.

5.6 Experimental Results

Since the primary objective of the research addressed rotating stall, it was desired to

reduce, or eliminate, the apparent resonance of the acoustic oscillations. The observations

indicated that an acoustic mode resembling the quarter wave length organ pipe mode was

becoming under-damped. It was deduced, therefore, that the throttle was acting primarily

as velocity node ( i.e. the acoustic throttle slope was steep). For the compression system

operating with a steep acoustic throttle slope, the analysis showed that decreasing the

acoustic throttle slope would serve to increase the damping ratio of the acoustic mode, and

hence reduce the amplitude of the acoustic oscillations.

The acoustic throttle slope in the experimental facility was reduced by opening a vent,

approximately 1 square foot in area, in the exit plenum behind the throttle to ambient

pressure. Since the pressure in the exit plenum was below atmospheric pressure due to the

exhaust fan, opening the vent increased the exit back pressure from approximately -0.75

psig to -0.25 psig. This lead to a decrease in the Mach number through the throttle and, for

a given mass flow coefficient, an increase in the throttle area. Both of these effects reduced

the acoustic throttle slope.
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Although this change was predicted to have a negligible effect on the small amplitude surge

dynamics, and no effect on the small amplitude rotating stall dynamics, changing the

acoustic throttle slope effectively eliminated the acoustic oscillations observed near stall.

As evidence of this, the PSD's of a pressure signal and mass flow signal is shown in

Figure 5.5 for the same operating conditions as the PSD's shown in Figure 5.1, except for

the change in the throttle slope. No significant acoustic oscillations are detectable in the

compression system operating with the shallow acoustic throttle slope. Figure 5.5 also

shows the magnitude of the pressure / velocity transfer function. The transfer functions

predicted for the two-dimensional, incompressible flow field are also indicated and are seen

to be consistent with the data.

All of the experimental investigations of the rotating stall dynamics presented in this thesis

were recorded for the compression system operating with the shallow throttle slope, i.e. the

vent was open in the exit plenum downstream of the throttle. Over the range of operating

conditions, therefore, no acoustic oscillations of the order of the unsteadiness associated

with rotating stall were observed for the compression system operating with the shallow

acoustic throttle slope.

5.6 Conclusion from Acoustic Analysis

Several conclusions can be drawn from the experimental and analytical results presented in

this chapter.

1) Compressors operating with positive slopes can cause one-dimensional acoustic

oscillations to become unstable.

2) The one-dimensional acoustic oscillations are related to, but different than, the classical

surge dynamics of the compression system.
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3) Since the acoustic compressor slope is proportion to the product of the slope of the

compressor characteristic and the compressor Mach number, increasing the Mach number

of a compressor operating in a positively sloped region is predicted to be destabilizing to

the acoustic oscillations.

4) The acoustic throttle slope can play an important role in determining the behavior of

acoustic oscillations in compression systems.

5) The acoustic behavior of a compression system is dependent on the specific

compression geometry and operating parameters.
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Chapter 6: Discussion

Aeromechanical feedback control was demonstrated to extend the stable flow range of an

axial flow compressor by stabilizing the small amplitude, non-axisymmetric, compression

system dynamics, thus achieving the primary objective of the research. However, there are

several issues regarding interpretation and applicability of the results to the general

objective of increasing compression system stable operating range using feedback control

which warrant further discussion.

6.1 Implications of Non-Optimized Control Parameters

The theoretical model (of compression system dynamics with aeromechanical feedback

introduced by the dynamic mass / momentum injection strategy) developed in this research

predicts a greater degree of stabilization than achieved in the experimental phase of this

research. The design optimized control strategy ( W=3.5, Q=0.9, C=.7, Di=1.0), which

was restricted to control parameters considered achievable with a simple mechanical design,

-)T= 1.2
was predicted to stabilize the first two spatial harmonics to a slope of 5 . The

control parameters achieved in the experiment ( W=3.5, Q=1.5, C=0.3, Di=1.0)were

aT= 0.3
predicted to stabilize the compressor only to a slope of a .

The failure to achieve the design control parameters is attributed to the specific mechanical

implementation of the dynamic mass / momentum control strategy employed in this

research and does not represent a fundamental limit on the performance of future control

strategies. Using the experimentally detemined control parameters in the model of the

compression system with aeromechanical feedback, theoretical and predicted results for

compression stability qualitatively agreed (Chapter 4). Therefore, although it yet remains
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to be demonstrated, the control strategy developed in this research has the potential to

achieve a substantially greater degree of stabilization.

6.2 Dynamic Compensation

In this section, the role of the structural dynamics in the control strategy linked to other

(non-aeromechanical) forms of feedback stabilization of rotating stall. The conclusions

from this interpretation offer some unifying comments concerning dynamic control of

compressors and compression systems.

A number of potential sensing and actuating schemes for control of rotating stall in axial

flow compressors have been investigated by Hendricks and Gysling [31] who considered

several types of actuators, and three types of sensors: static pressure, total pressure, and

axial velocity. Only proportional control was included in the study. The results indicated

the most effective control strategies made use of axial velocity sensors and of actuators

which modify the local pressure rise across the compression system. A further conclusion

was that actuators with bandwidths at least three times the rotational frequency of the

compressor were required for effective control.

These results should be contrasted with those from the optimized aeromechanical control

system investigated in the present work. In this, static pressure was sensed and low

bandwidth (roughly equivalent to the rotational frequency of the compressor) actuators

were used to modify the pressure rise across the compressor. (The bandwidth of the

aeromechanical actuators is defined as the natural frequency of the structural dynamic

system.)

This apparent contradiction can be explained by considering the role of the reed dynamics

in the feedback process. The reeds respond to (or sense) static pressure perturbations in
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the upstream flow field. The reeds actuate the flow field by modifying the local pressure

rise across the compression system as a function of reed displacement. The relationship

between reed displacement and pressure perturbations is determined by the reed valve

structural dynamics. The reed valves thus constitute a second order (rather than

proportional) control law between the sensed variable (static pressure) and the actuation

(injection regulated by reed valve displacement), and there is a temporal phase difference

between the sensed variable and the actuation.

Let us now consider the motion of the reeds with respect to velocity perturbations in the

upstream flow field. The analytical and measured reed deflection / axial velocity

perturbation transfer functions were shown in Figure 4.43 for the compression system with

optimized aeromechanical feedback. The specific point to note is that the reed dynamics are

such as to compensate for the phase difference between the static pressure and axial

velocity perturbations in the upstream flow field. Because of this, the reed deflection

remains approximately 180 degrees out of phase with the velocity perturbations in the

upstream flow field, for frequencies up to approximately two times the rotor frequency.

To the compression system flow field, therefore, the reeds appear as if they are being

driven by high bandwidth actuators, commanded by a signal proportional to the velocity

perturbations in the upstream flow field. Assuming that the primary effect of the reed

displacement is to increase local pressure rise across the compressor, the feedback

introduced by the optimized aeromechanical control scheme in the present study is

essentially the same as the "best case" in the Hendricks and Gysling study [31].

Interpreting the role of the structural dynamics as providing dynamic compensation

suggests that other types of feedback control strategies, namely electromechanical systems,

can also use dynamic compensation to reduce sensing and actuation constraints.
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6.3 Modeling the Injection Process

The effect of the jet actuation on the compression system was modeled by assuming that the

high total pressure fluid was injected into a span-wise uniform flow field and that the

injected flow mixed out in the span-wise direction before entering the compressor. As

modeled, therefore, the compressor experienced a span-wise uniform flow field and the

compressor performance remained purely a function of the local mass flow coefficient.

The experimental data, however, demonstrated that a different process occurred. For the

experimentally optimized injection level, the high total pressure fluid basically filled in the

axial momentum deficit in the casing boundary layer, changing the velocity profile entering

the compressor. Viewing the injection process in this manner suggests that the local effect

of the injection may be analogous to that of casing treatment.

To estimate the influence that the details of mixing process have on the stability of the

compression system with feedback, the effect of the actuation can be modeled by assuming

the compressor performance is a function of both the span-wise averaged mass flow and

the shape of the axial velocity profile entering the compressor. The shape of the velocity

profile can be parameterized as a function of the percentage of axial momentum injected into

the upstream flow field.

T = T( 0, a4) (6.1)

The percentage of momentum injected into the upstream flow field can be calculated as a

function of the injection parameter and the nominal reed valve opening area:

-2
ai = q = Non-dimensional Momentum Injected

U (6.2)
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Thus, the quasi-steady, linearized change in pressure rise across the compressor

(neglecting the inertial terms) is given by:

8 T8DT f <bil 2
a<D () <c J (6.3)

Comparing the total to static pressure rise coefficient recorded near stall ( D = 0.42 ) for

two injection rates (bi = 0.93 ( ai = 0.07) and (Di = 1.08 ( ai = 0.14) ) shown in Figure

4.15, the change in compressor performance for a small change in momentum injected can

be estimated:

a - A P - 0.373 - 0.366 - 0.1
ai A cc, 0.14-0.07

The expression for aai obtained by assuming that the injected flow mixes out is given

by:

= 2 Dc- ( 1 - . )=2 (0.42)2 ( 1 . 0.42 )=0.2
aai (Di 1.0 (6.4)

Thus, the measured value of Sai is of (very crudely) the same size as that estimated by

assuming that the only effect of the injection was to transfer high momentum fluid into the

core flow through the compressor. This suggests that the mechanism that changes the

pressure rise across the compressor with the injection is reasonably modeled by assuming

that the flow mixes out before entering the compressor. As developed in Chapter 3, the tip

of the rotor is not highly loaded in the build used in this research, and, therefore, the

pressure rise is not very sensitive to changes in the tip region. For compressors in which
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the tip region of the rotor is highly loaded, the compressor performance could be expected

to be much more sensitive to modifying the flow in the tip region [32].

As developed in Appendix C, modeling the effect of the injection on compressor

performance assuming the flow does not mix out predicts the same qualitative results as the

fully mixed out model. From a system stability context, the detailed mechanism that

increases the local pressure rise across the compressor with increased injection area, is not

the central issue. The important effect is that the pressure rise across the compression

system increases with increasing amounts of high momentum fluid injected into the face of

the compressor, the degree of mixing of the injected fluid is not critical to the success of

injection based control schemes.

Whether complete mixing of the injected fluid is desirable is a compression system specific

question. For example, Day [16] extended the stable flow range of an axial flow

compressor using jets positioned to change the flow at the tip of the rotor. The jets used in

his control scheme were located near the tip clearance region, a fraction of a chord upstream

of the rotor. As such, the primary effect of the injection was to modify the detailed

structure of the flow near the tip of the rotor. His work demonstrates that the rotating stall

dynamics can be modifying employing a mechanism other than bulk momentum transfer

into the flow field upstream of the compressor.

6.4 Simplified Interpretation of Stabilizing Mechanism

By making the simplifying assumptions that the injection serves to increase the local

pressure rise across the compressor and that the reed valves respond proportionally, and

opposite, to the local mass flow perturbations, the stabilizing mechanism of the dynamic

control can be physically interpreted in a straightforward manner. The change in pressure
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rise coefficient in phase with a given change in axial flow coefficient upstream of the

compressor with feedback is given by:

DO Dq \a4D aq ao )( (6.5)

In Equation (6.5), 8q represents the actuation, aq is the effect of actuation on the local

= - K
pressure rise across the compressor, and a ) represents a proportional control law

between the perturbation in axial velocity and the actuation.

The effective slope with feedback can be expressed in terms of the slope of the steady state

compressor characteristic and the effect of the feedback.

effective slope = K
a( 1 (6.6)

The arguments concerning unsteady energy production (Chapter 2) imply that the flow

becomes unstable when the effective slope is becomes positive. For the compression

system with feedback, Equation (6.6) shows that this occurs at a lower flow coefficient

than the original compression system.

6.5 Acoustic Oscillations

For the compression system configuration originally investigated in this research, acoustic

oscillations were observed when operating in the region where the rotating stall dynamics

were stabilized with aeromechanical feedback. The analysis developed in this thesis offers

an explanation as to why the acoustic modes of compression systems are generally not

observed. The analysis predicts that the acoustic modes become progressively less damped

as the acoustic compressor slope is increased, as is the case as the mass flow is reduced.
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The analysis also predicts that the acoustic compressor slope must be positive for the

acoustic mode to become unstable.

In compression systems without dynamic feedback, rotating stall, or surge, is generally

encountered before the acoustic modes become under-damped or unstable. Dynamic

feedback allows the compressor to operate with axisymmetric flow in regions with positive

compressor slopes. The acoustic modes can thus become under-damped, and possibly

unstable. Although the acoustic behavior of compression systems is dependent on the

acoustic parameters of the system, the mechanism for an acoustic instability exists for any

compression system operating'with positive acoustic compressor slope. The model

developed for the one-dimensional acoustic oscillations of the compression system shows

that the stability of the organ pipe-type acoustic oscillations differs from the classical surge

dynamics of the compression system. Therefore, the stability of acoustic oscillations

should be considered for systems in which the rotating stall dynamics are stabilized using

feedback control.
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Chapter 7: Summary, Conclusions, and Recommendations

7.1 Summary and Conclusions

1) The onset of rotating stall in a low speed, single stage, axial flow compressor has been

suppressed using aeromechanical feedback. The aeromechanical feedback was provided by

an array of flexible reed valves that responded to static pressure perturbations in the

upstream flow field. The reeds, which were modeled as mass-spring-dampers, regulated

the amount of high pressure air injected into the face of the compressor. This research

appears to be the first demonstration of dynamic control of rotating stall in an axial flow

compressor using aeromechanical feedback.

2) Using a small amount of injection mass flow (4% of the mass flow through

compressor) with a total pressure of approximately one dynamic head based on

compressor wheel speed, the aeromechanical feedback reduced the stalling flow coefficient

of the compression system by 10% from the stalling flow coefficient with the same amount

of (steady state) injection without feedback.

3) The experimental apparatus designed and constructed for this research appears to be the

first scheme to employ a locally reacting feedback strategy to suppress rotating stall.

Locally reacting control schemes differ from the modal based control schemes, which have

been used by previous researchers to stabilize rotating stall. The latter require arrays of

sensors and actuators, as well as extensive real time computations, to stabilize the

individual modes of the compression system independently. Locally reacting control

strategies offer an alternative approach.

4) The control system design was based on a two-dimensional, linearized model of the

compression system which included the effect of aeromechanical feedback. The model
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predicted that the stability of the compression system is a function of several control

parameters in addition to the compression system parameters. The experimental facility

was designed to achieve values of the control parameters that were determined from a

parametric study.

5) The model was successful in predicting the overall features of the compression system

dynamics and the influence of the aeromechanical feedback.

6) The experimentally obtained control parameters differed from the optimal parameters

called out by the linear model.,Specifically, the reed frequency parameter obtained

experimentally (Q=1.5) was 67% above the optimal value (Q=0.9) predicted by the model.

Using the experimentally determined control parameters as inputs, the linear model

predicted the experimentally observed trends in stalling flow coefficient as functions of

damping ratio and injection parameter. Further, the model predicts that significant

additional stabilization could be achieved for an optimized set of control parameters.

7) The basic linearized model was extended to include the effect of non-linear compressor

characteristics and the effect of noise. The numerical simulation, based on a Galerkin

approximation for the two lowest harmonics, yielded reasonable prediction of the

compression system performance with aeromechanical feedback.

8) A physical interpretation was given for the role of the structural dynamics in the

aeromechanical control strategy. The reed dynamics were found to serve as a dynamic

compensators; the reed displacement, although driven by pressure perturbations, remained

roughly 180 degrees out of phase with velocity perturbations in the upstream flow field

over a large frequency range. This phase relation is similar to that found in the most

effective active control strategies investigated to date [31].
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9) Large amplitude acoustic oscillations were observed in the compression system in the

region of the compressor map where rotating stall was suppressed with aeromechanical

feedback. A one-dimensional acoustic analysis predicted that compressors operating on the

positively sloped portion of their characteristic can drive acoustic oscillation unstable. The

mechanism for the acoustic instability is similar to the mechanism responsible for surge and

rotating stall, namely, that the compressor feeds energy into unsteady disturbances.

10) The acoustic analysis predicted that the frequency and critical damping ratio of acoustic

disturbances was a function of several compression system parameters. Specifically, the

acoustic throttle slope had a large effect on the behavior of the acoustic oscillations in the

compression system studied. Based on the analysis, the acoustic oscillations were

essentially eliminated by changing the acoustic throttle slope.

7.2 Recommendations for Future Work

Dynamic control of aerodynamic instabilities in compression systems has been

demonstrated, by this work and other previous work, to be a valid concept. However,

work is required to develop more effective and robust dynamic control strategies and to

implement dynamic control in practical situations. Based on the results of this research,

several specific issues warrant further study.

1) Develop a comprehensive fluid dynamic model of instabilities in compression systems.

The feedback control scheme used in this work was shown to be effective for stabilizing

two-dimensional, long wave length, rotating stall dynamics. However, much is still

unknown about compression system instabilities. For axial flow compressors, instability

is typically encountered near the peak of the compressor characteristic. The form of the

instability is generally initially rotating stall, although surge can be "triggered" shortly
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thereafter [5]. The fluid mechanics of rotating stall onset are not well understood. Some

compressors exhibit short length scale disturbances with significant radial non-uniformity,

which grow circumferentially and radially into full span stall [15]. Others, such as the

compressor used in these experiments, develop small amplitude, full-span instabilities that

lead to fully developed rotating stall. No adequate model presently exists for the three

dimensional rotating stall inception process, and the parameters that determine the character

of the stall inception process for a given compression system also remain unknown.

The author suggests a unified view of compression system stability, one which recognizes

that a compression system contains many possible paths to performance limiting

instabilities. The form of instability that occurs at the highest mass flow coefficient will be

the one observed as the compression system is throttled. In some compressors, three

dimensional disturbances appear to become unstable before the long wave length, two-

dimensional waves, in other compressors, the converse is true. Moreover, as rotating stall

control strategies become more effective in suppressing the full-span instabilities, different

forms of instability may be encountered even for compressors that exhibit full-span stall

inception in the absence of feedback stabilization. To fully exploit the benefits of dynamic

control, understanding of the different forms of instability needs to be developed to define

all the parameters that determine stability.

To motivate this type of study, an analysis that assesses the stability of an axisymmetric,

span-wise non-uniform, velocity disturbance in an annular duct with uniform mean flow is

presented in Appendix K. The model is presented mainly to demonstrate the plausibility of

part-span disturbances influencing the breakdown of the uniform steady, axisymmetric

flow through the compressor, but it also identifies possible parameters which influence the

nature of the stall inception events. As shown in Appendix K, it is predicted that part-span,

circumferentially uniform, disturbances are more stable than full-span disturbances in
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compressors with span-wise uniform conditions. However, for some span-wise non-

uniform loading distributions, part-span disturbances are predicted to become unstable at

operating conditions where the full-span disturbances are stable. In compression systems

in which such conditions are met, this implies that part-span disturbances would participate

in the breakdown of the uniform, axisymmetric flow field. Disturbances of this type would

therefore need to be considered in the development of control strategies for extending the

stable flow range of the compression system.

2) Explore the use of dynamic compensation in other types of feedback control strategies.

The use dynamic compensation, via the reed dynamics, demonstrated that actuators with

bandwidths of roughly the rotation frequency of the compressor can stabilize compressor

rotating stall dynamics. This is of particular importance for control schemes designed for

high speed compressors, where actuator bandwidth has been predicted to be a significant

obstacle to developing effective control strategies based on proportional control laws [11,

31].

The use of dynamic compensation in this research also allowed an effective control strategy

to be developed based on sensing static pressure. Control strategies in which pressure is

the sensed variable are viewed as easier to implement in high speed machines than control

which require sensing of mass flow perturbations.

3) Consider locally reacting control strategies as possible alternatives to the modal based

control schemes used by previous researchers. Locally reacting control schemes may be

easier to implement, either aeromechanically or electromechanically, and these schemes

may also offer advantages in compression systems operating in distorted flow fields, where

the individual spatial harmonics no longer represent eigenmodes of the compression system

[20].
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Locally reacting control strategies offer the possibility of eliminating the mechanism for

instability in compression systems, independent of the structure of the disturbance. By

changing the real part of the local pressure rise versus mass flow transfer function across

the compressor, locally reacting control strategies can theoretically stabilize rotating stall,

surge, and acoustic instabilities with the same control strategy.

4) Explore the use of jet actuation in control strategies. The development of actuators that

effectively manipulate the flow field is critical to the continuing development of dynamic

control strategies. The analytical studies conducted to date show that high pressure

injection is a promising candidate. These studies, however, took a simplified view of the

injection process in which the jets are assumed to mix out over the span-wise direction

before entering the compressor [11, 31], and a more in-depth look at the fluid dynamics

should be carried out.

Span-wise locally acting jets, similar to those used by Day [16], which are concentrated on

specific span-wise regions of the compressor flow through also warrant further study. By

using injection to modify regions known to have a major influence on near stall

performance of some compressors, such as the hub and tip regions, (instead of mixing the

injection over the span ), dynamic injection may be made more effective. Injecting fluid

into the tip regions is similar, in principle, to casing treatment which has had marked

success in increasing compressor stable flow range [32]. Using feedback to modulate the

injection could offer improved performance over conventional casing treatment. Therefore,

the effect of injection in specific span-wise regions (such as near the tip ) on the fluid

mechanics of the flow through compressors warrants further study. These studies could be

carried out experimentally or computationally; it would seem that useful insight could be

gained from the use of some three-dimensional computation procedures that now exist.
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5) Investigate control strategies similar to the dynamic mass / momentum in-jection strategy

to further optimize performance. The theoretically predicted optimal configuration has not

been tested for this control scheme. The design configuration represents an optimization

carried out under mechanical constraints. These constraints are not fundamental to the

control strategy, but rather, to the specific experiment. Despite the mechanical constraints,

the design configuration was predicted to be significantly more effective than the

experimentally achieved system tested in this research. Although the theory predicts

additional stabilization, extrapolation of the experimental results to those theoretically

achievable with the design configuration would be unjustified at this point due to the issue

raised above. An experimental device that could achieve a more optimized set of control

parameters would be useful in evaluating the applicability of dynamic mass / momentum

injection in other compression systems.

A variation of the present control strategy, in which the mass flow injected is drawn from

downstream of the compression, is presented in Appendix J. In this control strategy,

termed dynamic mass / momentum recirculation, injection upstream of the compressor is

close-coupled to suction downstream of the compressor. The close-coupled suction

downstream of the compressor is predicted to augment the stabilizing effect of the dynamic

injection. Further development of the control strategy investigated in this research should

consider this variation.
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APPENDIX A: Rotating Stall Analysis

The following derivation of the stability model is based the work of other authors. The

assumptions have been developed in Chapter 2. The linearized analysis describes

incompressible, two-dimensional, small amplitude, non-axisymmetric disturbances about a

uniform flow field. The structure of the model consists of descriptions of the flow fields

upstream and downstream of the compressor, which are matched across the compressor,

modeled as a semi-actuator disk. A schematic of the flow field is shown in Figure 2.1 in

Chapter 2.

Description of the Upstream Disturbance Flow Field:

The perturbation flow field in the upstream region is assumed to be two-dimensional,

incompressible and irrotational, and it is convenient to use a streanfunction for its

description. The non-dimensional perturbation streamfunction is defined by:

ax (A.1) and (A.2)

where: = axial velocity perturbation normalized by the

compressor wheel speed

5v = circumferential velocity perturbation normalized by

the compressor wheel speed

The streamfunction for the upstream flow field satisfies the two dimensional Laplace

equation.

2V TP=O (A.3)
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Since the flow field is in an annular region, the disturbances must be spatially periodic

around the annulus of the compressor. Therefore, the circumferential dependence of the

disturbance can be expressed in terms of spatial Fourier components.

+00

TU= 1 Anein o
n-*" (A.4)

Allowing for the disturbances to rotate, or travel around the annulus, with an amplitude that

is time varying, i.e. growing or decaying, leads to the following form for the

circumferential and temporal dependence of the upstream streamfunction:

Tu= ein(o-aT)g(x) (A.5)

The axial dependence is found from solving the Laplace equation using separation of

variables. There are two solutions for the axial dependence, one that grows and one that

decays exponentially upstream of the compressor.

g (x)= e + n x ; e -n x (A.6)

Applying the condition that the disturbances must vanish far upstream of the compressor,

i.e. the flow is uniform far upstream of the compressor, leads to the following general form

for the disturbance stream function for the upstream flow field:

+00

TU=J Anein(O-ac)+nx
n=1 (A.7)
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Description of the Downstream Flow Field:

The downstream flow field may be rotational due to vorticity shed into the flow from the

compressor. However, to match the boundary conditions across the compressor, the

circumferential and time dependence of the downstream flow field must have the same form

as the upstream flow field at the actuator disk ( x = 0 ). Therefore, the downstream flow

field must have the form:

Td = ei n (0 -atr) h (x) (A.8)

Since the flow is rotational, the streamfunction is governed by the 2-dimensional Poisson

equation:

V 2Td= CO (A.9)

where a D0 is the non-dimensional vorticity

Because the flow field is inviscid and two dimensional, the vorticity convects with the

flow.

-- = -- + cDI - + ( tan Pd -= 0
D c t x a 0 (A.10)

where: Pd = the flow angle in the downstream flow field

Substituting the form of the circumferential and time dependence of the disturbances into

the vorticity equation, yields the axial dependence of the vorticity:
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co = ( 
i -n t) n x (tan Pj --) o>=0 (A.11)

The homogeneous (potential) solution to the Poisson equation governing the downstream

flow field is of the same form as the solution the upstream flow field. The condition that

the disturbances be finite far downstream of the compressor restricts the homogeneous

solutions to those that decay axially downstream of the compressor. Combining the

homogeneous and particular solutions yields the following general form of the downstream

flow field.

+- 'o + c in ( 0 - a )-i n x (tan sPd
Td= Bn ein(G-t)-nx+ , Cn e

n=1 n=1 (A.12)

Boundary Conditions across Compressor:

The kinematic and dynamic boundary conditions which link the two flow fields are

governed by the properties of the compressor.

Mass Flow Continuity:

Assuming the compressor is short in axial length and that the flow through the compressor

is incompressible, mass continuity dictates:

5U = 50d (A.13)

Exit Flow Angle

Assuming the last blade row has sufficient solidity to fix the exit flow angle, the

circumferential velocity perturbation at the exit of the stator is linked to the axial velocity

perturbation through the follow relation:
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5Vd = - tan Pd 50d (A.14)

Pressure Rise across Compressor:

The total to static pressure rise across the compressor is given by the quasi-steady

compressor performance as a function of mass flow coefficient.

(A.15)

For small perturbations, the compressor is assumed to respond quasi-steadily with the

exception of the inertial of the fluid within the blade rows.

a(D (A.16)

In the above expression, a J is the slope of the total to static compressor characteristic, 1

represents the inertia of the fluid in all the (stationary and rotating) blade rows, and X

represents the inertia of the fluid within the rotating blade rows only.

Eigenvalue Problem:

Substituting the assumed forms for the upstream and downstream flow fields into the

matching conditions across the actuator disk, assuming axial mean flow in the upstream

and downstream flow fields (tan Pd = 0), and using the circumferential momentum

equation to relate perturbations in static pressure to the stream function,

-2-+ -+ tan a-I =2+v + ---
at ax (A.17)

or in terms of the perturbation streanfunction:
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- 2 - - D _D tan = 2 - - d2

a= &r ax ax 2  [3 ax at ax ax2 (A.18)

yields the following expression for the pressure rise across the compressor in terms of the

upstream perturbation streamfunction:

i a(4 +n )+--T-in), An=0
-a(D. (A. 19)

Eq. A.19 is an eigenvalue problem to determine the time dependence of the disturbance in a

compression system with no mean inlet or exit swirl:

a(b
4 + n (A.20)

The stability of each spatial harmonic is independent, and the slope of the compressor

characteristic, TO, solely determines the stability of the axisymmetric flow field. The

inertial parameters determine the rotation rate of the disturbances.

Modification to Include Swirl Sensitivity of Compressor:

The above analysis assumes that the compressor performance is determined by the mass

flow coefficient and the inertial parameters. However, for compressors operating without

inlet guide vanes, the pressure rise across the compressor can also be affected by the inlet

swirl. Thus, the quasi-steady compressor characteristic is assumed to be a function of the

mass flow coefficient and the inlet flow angle.
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T = T (<D, a) (A.21)

where: a is the swirl angle

For uniform axial mean flow in the upstream flow field, the swirl angle of the flow,

defined as positive in the direction of the rotation, is related to the circumferential velocity

perturbation

a = tan-1  V - 6 v ( for small disturbances)
D (CD (A.22)

Incorporating the swirl sensitivity in the dynamic boundary condition across the

compressor yields the following expression:

5TV=- T $0+ aT 1 - _Xa -a
aD e D ae aT (A.23)

where: aa is the swirl sensitivity of the compressor

Solving for the eigenvalues of the compression system, as developed above, including

swirl sensitivity yields the following eigenvalues:

aT i 
(n

aD <D )a
4 + n (A.24)

Assuming that swirl in the direction of the rotor decreases the pressure rise across the

compressor, the sign of aa is negative. Thus, the net effect of including swirl sensitivity

is only to increase the rotation rate of the disturbances, while having no effect on stability.
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Appendix B: Rotating Stall Model with Dynamic Mass /

Momentum Injection

The basic structure of the model used to assess the effect of dynamic mass / momentum

injection on the stability of the axisymmetric flow field through the compression system is

similar to that used for the compression system without feedback. The description of the

flow field consists of an irrotational upstream flow field and a vortical flow field

downstream of the compressor, with the two matched across the compressor with

feedback. The effect of the dynamic mass / momentum injection is thus incorporated into

the boundary conditions across the compressor.

Several assumptions regarding the injection process are assumed in this model:

1) The high velocity fluid is injected axially, within a short distance upstream of the

compressor. The short distance is assumed short compared to the circumferential length

scale of the disturbances.

2) The high velocity fluid mixes out to a span-wise uniform state before entering

the compressor.

3) The pressure rise of the compressor remains a pure function of the mass flow

coefficient entering the compressor, with the inertia of the fluid with the blade rows of the

compressor being modeled as in Appendix A.

A schematic of the dynamic mass / momentum injection strategy is shown in Figure 2.4

and a schematic of the model is shown in Figure 2.6. The mass flow and pressure rise

boundary conditions are derived below.
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Conservation of Mass:

The mass flow entering the compressor is given by the sum of the mass flow upstream of

the injection region and the injected fluid:

p Cx. H + p CXi A = P CXb H (B.1)

where: A = reed valve opening

H = annulus height

Cxi= velocity of injected fluid

CxU = axial velocity of upstream flow field

Non-dimensionalizing Eq. B.1 leads to:

u + 4I) q = Ob (B.2)

qA
where: H

UR

Conservation of Momentum:

The injection process is model in two parts. The first uses Bernoulli's Equation for the

flow from immediately upstream of the injection region ( axial station denoted by u) to the

injection location (axial station denoted by a), where the injected fluid displaces the free

stream flow field. Up to the injection location, the flow is assumed to remain axial and

uniform in the span-wise direction.

Ps.+ p C2.= Ps.+ p C22Sx 2 x" (B.3)
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Applying continuity from the span-wise uniform region immediately upstream of the

injection location to the axial location of the injection leads to:

p H Cx, = p ( H - A ) Cxa (B.4)

The momentum balance between injection location (a) and the mixed out region

downstream of the injection (axial station b) is obtained by assuming that the axial

momentum of the injected fluid is transferred to the flow. Applying conservation of axial

momentum within a control volume encompassing the injection region, extending from the

injection location to the span-wise uniform, mixed-out state, immediately upstream of the

compressor yields:

Ps, H + p ( H - A ) C2. + p A Cli =P H + pH C (B5P~a+P(~A) Xa+A = PSb HXHCb (B.5)

Eliminating the flow variables at the injection location leads to an expression relating the

static pressure and axial velocity of the span-wise uniform states immediately upstream and

downstream of the injection region as a function of local valve area and time mean

compression system parameters.

ps. + 1_p ( C,2. Ci ) C2. ( 1- 2 q)_=Ps + p C
2( 2 -q )2 (B.6)

Assuming that the reed valve opening area is a small percentage of the annulus height

q << 1

and, thus, that the injected mass flow is much smaller than the free stream mass flow

<Di q << (Du

and that the total pressure in the injection plenum is constant, the linearized relation between

the span-wise uniform total pressure change across the injection region is given in non-
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dimensional form as a function of the injection parameters and the local reed valve area

opening:

5Ptb - kt, = 2 I ( 4 - (u) 8 (B.7)

where: 5pt=8ps+2<D50

Boundary Conditions across Compressor with Feedback:

The span-wise uniform, perturbation axial velocity and total pressure across the injection

region is given in terms of the mean flow parameters and the local perturbation in injection

area. Combining these relations with the mass flow and pressure rise boundary conditions

across the compressor leads to the mass flow and pressure rise boundary conditions across

the compressor with dynamic mass / momentum injection.

Mass Flow:

50u + (A 5q = 50d (B.8)

Pressure Rise:

(B.9)

Exit Flow Angle:

The exit flow angle boundary conditions remains unchanged from the basic compression

system analysis, i.e. the flow in the downstream duct is axial and the flow angle is fixed by

the exit blade angle.
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5Vd =0

Expressing the boundary conditions across the actuator disk in terms of the solution forms

for the upstream and downstream flow fields leads to an expression relating the complex

amplitude of the upstream perturbation streamfunction to the local reed valve displacement.

i (4 + ptn )T +-- DT -in A,,+ <Di ( +g p )L4,a (D - A D b 2< (1>b4) - <Du) qn = 0

(B.11)

TPU= Z Anein(O-at)+nx
where n=1

+00

q= I ga ein(O -ar)
and n=1

Structural Feedback

The structural dynamics of the reed valves relate reed valve displacement to the static

pressure perturbations in the upstream flow field, thus providing the dynamic feedback.

The reed valves are modeled as second order, locally reacting mass-spring-damper systems

in the first cantilever bending mode, and are assumed to be continuous in the

circumferential direction.

The dynamics of the reed valves were calculated by choosing a mode shape for the first

cantilevered bending mode.

A (f t) = A (t) ( ) ( ) =x( 2 B LLL LI (B.12 and B. 13))
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The equation of motion for the reed valves, expressed in terms of the tip deflection, based

on the one mode approximation is given by:

M A+ B + K A =6E (t)

Where:

(t) Modal Forcing Function =
fo L SU

d(X)
(B.15)

Assuming that the static pressure perturbation is constant over the axial extent of the reed

valve, i.e. n L / R << 1,:

E (t) = L 8 Ps
3 (B. 16)

and:

M Modal Mass =
(B.17)

where m = the mass per unit circumference per unit axial length of the reed valves

B a Modal Damping =

K = Modal Stiffness = j

L()2 b(L) d(L)

L2 k(-) d(L )

Defining the following non-dimensional parameters:

q A= _ 1= _L_
H H (B.18), (B.20) and (B.21)
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(B.19)

t UR
R

(B. 14)
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and using the standard expressions for the natural frequency and critical damping ratio for

second order, damped, harmonic oscillators:

2M4 (B.22) and (B.23)

and defining non-dimensional mass and frequency parameters:

M
co R
UR (B.24) and (B.25)

leads to the following non-dimensional expression for the locally reacting reed valve

dynamics:

-12
aq+
a 2

2Q( +Q2 q=-LW ps.a,[ 6 (B.26)

Using Eq. B.26, the transfer function between reed displacement and static pressure is

given by:

q (co)
iw
6

S pu (c) (Q2 - o)+ 2 Q ( i CO

where co is the temporal frequency normalized by the rotor frequency.

The static pressure perturbations in the upstream flow field can be related to the

perturbation streamfunction, 'Pu, in the upstream flow field via the circumferential

momentum equation.
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(B.28)

Thus, the reed valve dynamics and the upstream streamfunction are related by:

-P __ aq i Tlu+ Ju
, +2QC +Q -q W + (

ao aT2 DO kt ae 3 ax ar x2 (B.29)

Expanding the second order (in time) expression for the reed valve dynamics into two first

order equations, the reed valve dynamics can be expressed as follows:

_2Z az afa2 _U+2Q(-+ Q2 -q= W + (D U
ae at ae ae 3 ax aI ax2 (B.30)

where the time rate of change of the reed valve displacement is given by z:

aq= Z
atr (B.31)

Substituting the solution forms for the perturbation variables leads to the following

expressions relating the reed valve displacement and velocity to the upstream flow field:

1W n2 ( ia - u) An + inQ2 qn+(n2 a+ 2 Q in)zn = 03

in aqn + Zn = 0

(B.32)

(B.33)
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Eigenvalue Problem:

Combining Eq. B.32 and Eq. B.33 leads to a third order, generalized, complex eigenvalue

problem governing the stability of the uniform, axisymmetric flow field through the

compressor with aeromechanical feedback.

[A - aB] 1A
4 =0(B.34)

The matrix A is defined as:

- - i n X A1 2  0

A -lWn2<D4 inQ 2  in2Q
3

0 0 1
(B.35)

A 1 2- A Di - i + 2 (Dj -(D

with

The Matrix B is defined as:
-i(4+np) -( +p)<Di 0 1

B -iwn2 0 -2

0 -i n 0 ] (B.34)
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Appendix C: Rotating Stall Model with Dynamic Mass /

Momentum Injection with Alternative Actuation Model

The detailed fluid mechanics of the in mixing process of the injection with the upstream

flow field is a complex problem. In Appendix B, the injection process was modeled

assuming the flow mixed out before entering the compressor. In this appendix, a model

for the effect of the dynamic mass / momentum injection is presented assuming that the

injection fluid does not mix out. The model assumes that the compressor performance is

modified by changing the velocity profile entering the compressor. Thus, the injected fluid

is assumed to remain within the region close to the tip of the compressor.

The basic structure of the model is similar to the structure of the models used through out

this thesis. The model consists of an irrotational upstream flow field and a vortical flow

field downstream of the compressor, and the two flow fields are matched across the

compressor. The effect of the dynamic mass / momentum injection on the flow fields is

incorporating into the boundary conditions across the compressor.

Several assumptions regarding the injection process are assumed in this model:

1) The high velocity fluid is injected axially, within a short distance upstream of the

compressor. The short distance is assumed to be short compared to the circumferential

length scale of the disturbances.

2) The high velocity fluid remains in the boundary layer region, close to the tip of

the compressor, and thus has no kinematic effect on the core flow of the upstream flow

field.
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3) The pressure rise of the compressor is a function of the mass flow coefficient of

the core flow entering the compressor and the shape of the axial boundary layer entering the

compressor. The effect of the fluid inertia within the blade rows of the compressor on the

pressure rise is modeled as in Appendix A.

4) The shape of the axial velocity profile is parameterized by the amount of axial

momentum injected into the compressor, normalized by the span-wise averaged momentum

of the mean core flow.

The model for the two-dimensional, incompressible, inviscid flow field is the same as that

for the basic compression system shown in Figure 2.1.

Boundary Conditions across the Compressor

Conservation of Mass:

Since the injected fluid is assumed to remain in the tip region, primarily modifying the axial

velocity profile in that region, the injection is assumed to not directly influence the mass

flow of the core flow. Thus, the mass flow through the compressor is assumed to be

continuous:

u = Od (C.1)

Conservation of Momentum:

The mean pressure rise across the compressor is assumed to be a function of the mass flow

coefficient and the amount of momentum (normalized by the momentum of the free stream)

injected into the upstream tip region.

?=V c i )(C.2)
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(c2
ai = D

where ((Du (C.3)

Assuming the compressor responds to small perturbations in a quasi-steady manner, yet

accounting for the inertia of the fluid within the compressor, the perturbation in pressure

rise across the compressor is given by:

8Sds - 6PtU ~ DY8U + DT i -0 p - U
aD Z(C.4)

where DC4 is the change in pressure rise for a small change in momentum injected

Expressing the normalized perturbation in axial momentum injected in terms of the reed

valve area opening (assuming that the mean reed valve opening is small compared to

annulus height) yields:

8iq (C .5)

Substituting Eq. C.5 into Eq. C.4 leads to the following expression for the pressure rise

across the compressor:

5ps - ptu= -~ + 8q -(---- -
ax ai U (C.6)

Exit Flow Angle:

The exit flow angle boundary condition remains the same as in the basic compression

system analysis, i.e. the flow in the downstream duct is axial and the flow angle is fixed by

the exit blade angle.
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5Vd =0 (C.7)

Expressing the boundary conditions across the actuator disk in terms of solutions for the

upstream and downstream flow fields leads to an expression relating the complex amplitude

of the upstream perturbation streamfunction to the local reed valve displacement.

1(4+pn)a+- -ikn An+ ga=qn0
ad)G u (C. 8)

+00

1 u= I Anein(-cOt)+nx
where n=1

q= I ga ein(O9-ar)
and n=1

Structural Feedback

The structural dynamics of the reed valves which relate the reed valve displacement to the

static pressure perturbations in the upstream flow field are the same as the original model as

developed in Appendix B. The reed valves are modeled as second order, locally reacting

mass-spring-damper systems in the first cantilever bending mode. The reed valves are

assumed to be continuous in the circumferential direction.

+2 Q ( Q2 q W P,
tT2 + 6 (C.9)

As shown in Appendix B, expressing the static pressure perturbations in the upstream flow

field in terms of the perturbation streamfunction and expressing the reed valve dynamics as
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two first order (in time) equations leads to the following expressions relating nth spatial

harmonics of the reed valve displacement and velocity, and upstream streamfunction:

W n2 ( i c - DU) An + i n Q2 qg + ( n2 a+ 2 Q Q i n ) Z( = 03 (C.10)

Where the nth spatial harmonics of the reed valve displacement and reed valve velocity is

given by:

i n cyqn +Zn = 0 (C.11)

Eigenvalue Problem:

Combining Eq. C. 11 and Eq. C.12 leads to a third order, generalized, complex eigenvalue

problem governing the stability of the uniform, axisymmetric flow field through the

compressor with aeromechanical feedback.

8A

[A - TB] (qn 0

5Zn (C. 12)

where the matrix A is given by:

?--ink u 0
DOnt Jk4

A= -IWn2<(U nQ 2  in2Qc3

0 0 1
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where the matrix B is given by:

-iwn2 0 - n2

0 -in 0

The stability derivative, aXi, can be estimated from the steady state performance of the

compressor for several injection rates operating near the stalling flow coefficient. An

estimate of ami for the optimal injection rate, Di = 1-0 , was determined to be on the order

-( =0.1
of acq.

The model developed in this appendix assuming that the flow does not mix out can be

compared to the model developed in Appendix B assuming that the flow mixes out by

comparing the expression for the pressure rise across the compressor, Eq. C.6 and Eq.

B.9, respectively. The perturbation in total to static pressure rise for a given, static and

spatially uniform, reed valve displacement is given by:

8 Psd - ptu = 2 4i Di - D) Sq + Di 5q
a4 (for the mixed out model)

and

P- -(for the not mixed out model)

274



Using estimated values for the following parameters for the optimized configuration

operating near stall,

(= 1.0

=Du 0.4

DT= 0.1
aai

-- = 0.0
a4D

The change in total to static pressure rise is given by:

6 Psd - ptu= (1.2) 5 for the mixed out model

and 5PSd - = (0.63) 5q for the not mixed out model

Thus, although not identical, the effect of the injection on the total to static pressure rise

across the compressor as a function of steady, circumferentially uniform, reed valve

displacement for the two limiting cases of the flow mixing out and not mixing out is

similar.
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Appendix D: Conservation Equation for 2-Dimensional,
Incompressible, Inviscid Flow

In this appendix, a conservation equation is derived that is applicable to 2-dimensional,

incompressible, inviscid flow fields such as those examined in the rotating stall analysis

used in this thesis. The conservation equation provides a rigorous definition for the

conserved quantities in the flow fields. The approach taken is similar to the approach used

in acoustics to define the principle of conservation of the flux of acoustic intensity.

The conservation equation is derived using the linearized continuity and momentum

equations. The 2-D, incompressible, inviscid momentum equation is given, in dimensional

form, by:

- +U. VU+IVP=O
P (D.1)

The velocity field is assumed to be given by a uniform, mean flow quantity and a small

perturbation,

S=(-+u)I+(N +v)j (D.2)

where I and J are unit vectors in an orthogonal coordinate system.

The pressure field is given by a uniform, mean pressure and a small perturbation:

P=P+p (D.3)

Linearizing the momentum equation, neglecting terms on the order of the small

perturbations squared:
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ati Vii+'Vp=0
p (D.4)

Taking the dot product of the linearized momentum equation and the perturbation velocity

vector yields a scalar equation:

u +U. V+Vp=0 (D.5)

Eq. D.5 can be expressed in terms of a time rate of change of a scalar quantity and the

divergence of a vector field by expanding the above expression ( Eq. D.5) in terms of

scalar quantities for a 2-D flow field yields:

au
ax

+Vu ay +Uv
ax

+vV a- + 1u P+i x
ayj P ax p

=0

(D.6)

and noting that the terms in the brackets in Eq. D.6 can by expressed as follows:

u
at 2 (D.7)

=V. -(U+v2
2

(Hu2 +v22(V. -)2

(D.8)

u p
I ax -V. (pi)-p(V- ')

(D.9)

Thus, using Eqs. D.7 through D.9, and using the continuity equation for incompressible

flow,
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V- U=O=>V- "=O and V- U=O (D.10)

the dot product of the perturbation velocity field and the linearized momentum equation can

be expressed in the form of a conservation equation for 2-dimensional, incompressible,

inviscid flow:

[_ ~U2 + V2)] (U2 +V2)g p =0

at 2 .2 - ( .11

Integrating the conservation equation over a volume of fluid in which the linearized

momentum and continuity equations apply yields:

[p (u2 + v2) dV +
2a -

V p (u2 + v2) U+p U dV = 0

For steady state conditions with oscillatory disturbances, the temporal average of the first

integral is zero, and thus, for oscillatory disturbances, the time averaged conservation

equation (Eq. D.12), evaluated over a volume of fluid, reduces to

LVh3v [P (u2+v2)= +p jdV=O
(D. 12a)

Defining the perturbation intensity,

F [ (u2+v2 -+p2 2)J (D.13)

and using the Divergence Theorem,
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JV - F dV=f F - n dS
va- ~ ra-(D.14)

the time averaged conservation equation can be expressed as a conservation of flux over a

closed surface.

J[ p +Ip (u2 v2)] -dS =0
surfc 2(D.15)

If the control volume contains regions of the flow field in which the linearized momentum

and / or continuity equations do not apply, the flux of the perturbation intensity through a

closed surface surrounding the region can be defined as a source term.

J p " + p (u2 +v2) .idS = Source Term
surfa 2(D.16)

Application of the Conservation Equation to the Rotating Stall Analysis:

Equation D. 16 can be applied to the stability analysis of the compressor flow field at neutral

stability in order to interpret the role of the individual components of the flow field in terms

of perturbation intensity. Consider the control volumes shown in Figure D. 1. One control

volume surrounds the upstream flow field and the other surrounds the downstream flow

field. By evaluating the flux of the perturbation intensity through the control volumes, an

audit of the sources of perturbation intensity can be performed.

The flux of the quantity defined above through an axial plane of an unit area is a scalar

quantity given by:

p u + Ip (u2 + v2)U(E 2 i(D. 17)
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For the rotating stall analysis, the perturbations far upstream are zero, and the flux of

perturbation intensity through surface I is, therefore, zero. Since the there are no source

regions in the upstream flow field, the perturbation intensity is conserved in the upstream

flow field. Therefore, by Eq. D.15, the flux of perturbation intensity at surface II is also

zero.

The production of perturbation intensity across the compressor can be determined by

calculating the change in flux across the compressor using the compressor boundary

conditions which relate pressure and velocity perturbations across the compressor.

The change in flux of perturbation intensity across the compressor is given by the

difference in perturbation intensity flux through surface III ( immediately downstream of

the compressor) and the flux through surface II (immediately upstream of the compressor):

Psd u + P (u2 + v2) U- s+ uu+2 p(ud+v )iUSource Term
ZMMIIUS(D. 18)

Using the dimensional form of the boundary conditions across the compressor developed

in Appendix A:

u = ud (D.19)

vd =0 (D.20)

pSd-t.=PSd(PS +pUU)= --- a pUR)u
TA aT n p t (D.21)

The change in perturbation flux across the compressor can be written as:
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[(ps - Psi) u + u p v Ul = Source Term
8-9= (D.22)

Using the result from the stability analysis, at neutral stability the slope of the total to static

compressor characteristic is zero and the static pressure across the compressor is given by:

(pSd - Psi)= p U - + ) p U R)
T 0 d ( (D.23)

At neutral stability the perturbations through the compressor are harmonic in time and in

circumferential position. Therefore, the product of the axial velocity perturbation and the

derivatives in time and circumferential position of the axial velocity integrate to zero over

the annulus. Thus, the annulus averaged change in flux of perturbation intensity, or

perturbation intensity production, across the compressor is given by:

f Uu 2 -pvUj= Source Term

The production of perturbation intensity across the compressor must balance the flux of

perturbation intensity through surface IV, far downstream of the compressor. Since the

potential mode in the downstream flow field decays exponentially with axial distance

downstream of the compressor, only the vortical mode is present at this location. For the

vortical mode, the first order perturbation in static pressure is zero, and the flux of

perturbation intensity through surface IV is given by:

p (Uj + V2)U
f=1- d- (D.25)
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Where ud, and vd, are the axial and circumferential velocity perturbations associated with the

downstream vortical mode.

The balance between perturbation intensity produced across the compressor and the flux of

perturbation intensity far downstream of the compressor is therefore given by equating

(D.24) and (D.25):

f[ p Uu- p v2, =] (u2+v2)U2
-P u fa- (D.26)

Where uu, and vup are the axial and circumferential velocity perturbations associated with the

upstream potential mode.

Since the mean axial flow field is constant throughout the flow field and the flow is

incompressible, showing that Eq. D.26 is valid reduces to showing that the two

expressions below are equivalent:

(2 u2 - v2) annuus - (u2+ v2) annulus
averaged averaged (D.27)

In a potential flow, axial and circumferential velocity perturbations are equal in magnitude

and in quadrature, i.e. 90 degrees out of phase. Therefore, the following relation holds for

the annulus average of the perturbation velocities in the upstream flow field:

(2 U - V2annuus = 1 )annuIlus
UP u~ averaged UP ( averaged (D.28)

Using Eq. D.28, Eq. D.27 can be expressed as:

(u2)annulus ~(U2 + dV2 rgd(.9
U a ) e ds annulus

averaged averaged (D.29)
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Decomposing the upstream and downstream flow field in terms of potential and vortical

modes, the continuity equation across the compressor can be written as:

up = ud + U (D.30)

Similarly, the exit flow angle condition on the downstream flow field can be written as:

V4  ~ d (D.31)

Using mass flow continuity (Eq. D.30):

(uuf = (ud) -+(2 udud) + (ud) 2  (D.32)

From the relation between the axial and circumferential velocities associated with a vortical

disturbance, the downstream axial and circumferential vortical perturbations are in phase at

neutral stability and are related by:

(Ud,) - U R (Vdj
COIs (D.33)

Wherehs is the frequency of the rotating disturbance and R is the mean radius of the

compression system.

Using the exit flow angle condition (Eq. D.31), one can show that the downstream

circumferential velocity associated with the vortical perturbation is in phase with the

downstream circumferential velocity associated with the potential perturbation. Therefore,

the downstream axial velocity associated with the vortical perturbation and the downstream

axial velocity associated with the potential perturbation are in quadrature, and do not
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contribute to the annulus averaged perturbation flux. Therefore, Eq. D.32 can be

expressed as:

(uwy = (udf + (u) 2 annulus
averaged (D.34)

The annulus averaged square of the axial and circumferential velocities associated with the

downstream potential perturbations are equivalent.

(uf = (vdpf annulus
averaged (D.35)

Substituting Eq. D.35 and the exit flow angle boundary condition (Eq. D.31), into Eq.

D.34, the annulus average of the square of the perturbation velocities can be written:

(u)2 = (ud)2 + (v&)2 annulus
averaged (D.36)

Eq. D.36 is the same as Eq. D.29, and thus, the results from the linear stability analysis for

the compressor flow field at neutral stability confirm that perturbation intensity is conserved

with in the upstream and downstream flow fields and that the production of perturbation

intensity across the compressor at neutral stability is balanced by the flux of perturbation

intensity in the downstream vortical flow field.

Although applying the conservation analysis to the rotating stall flow field yields no

additional information not contained in the linear stability analysis, it is a rigorous

application of the conservation principle of a quantity (perturbation intensity) that scales

with the perturbation quantities squared and lends credence to the simplified, and therefore,

intuitively useful, (although non rigorous) unsteady energy arguments presented in Chapter

2.
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Appendix E: Galerkin Based Non-Linear Simulation

In order to assess the effect of finite amplitude disturbances on the compression system, a

Galerkin procedure was applied to numerically simulate finite amplitude, non-axisymmetric

compression system dynamics. The non-linear simulation developed in this appendix

retains a linearized description of the upstream and downstream flow fields. The only non-

linearity included is the non-linearity of the compressor pressure rise versus mass flow

pressure rise. The Galerkin procedure includes the two lowest spatial harmonics for the

compression system with dynamic mass / momentum injection. The annulus averaged

mass flow coefficient is assumed to be constant in the simulation.

The small amplitude rotating stall dynamics of the compression system are governed by the

three first order in time, partial differential equations.

Pressure Rise PDE:

Based on the model developed in Appendix B, the pressure balance across the compressor

with feedback can be expressed in terms of the upstream flow field (evaluated at x=O) and

reed valve deflection:

aT a2u +4 u a3, X -0TU

D2 a 2)I'jax +'CDO2 32

+ 4Di + 2 CDi(<bi - (Du) -q go<i + 2 4)1EqEq- 0
D _ ae nao ar DO2 (E.1)

Reed Valve Dynamics:

The reed valves are modeled as locally reacting, mass-spring-dashpots which respond to

pressure perturbations in the upstream flow field, as developed in Appendix B.
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t2Z +2Q +Q2 W - IW "-W u 0
iaE)t ae 3 ax ar 3 ax2 (E.2)

aqZ=O
a'r (E.3)

Thus, the above system of equations contains three complex equations in terms of three

complex variables for each spatial harmonic. For the Galerkin procedure, the

circumferential and axial forms of the solutions will be assumed to be represented by the

circumferential and axial forms of the first and second spatial harmonics of the solutions to

the linearized analysis:

Tu ( x, 6) = A1 ei 0 +x + A2 ei 2 + 2x

z(x,0)=Zi eiO +Z 2 ei2 8

q ( x, 9) = qi ei 8 + q2 ei20

where A1, A2 , Z1 , Z2 , qj, q2 are complex coefficients.

Taking the real part of the solutions:

real (u) =(AR, cos(6) - A1, sin(0)) ex + (AR2 cos(20) - AI2 sin(20)) e2x

real (z) = (zR1 cos(6) - zi, sin(9)) + (ZR2 cos(20) - zj2 sin(20))

real (q)=6(g, cos(8) - qII sin(0)) + (q 2 cos(29) - qj2 sin(28))

287

and

(E.4)

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)



where ARl, A 1,, AR 2, A 2, ZR,, zII, ZR2, z12, qR,, qi, qR2, q12 are real coefficients.

The system now consists of twelve real variables. To reduce the partial differential

equations into a system of twelve real, first order, ordinary differential equations, the

approximate Galerkin method will be used. In this method, the circumferential and axial

derivatives are expressed in terms of the assumed mode shapes and substituted into the

governing partial differential equations. Substituting the approximate solutions into the

PDE's results in an a residual for each of the three PDE's. The expression for the residual

is then orthogonalized with respect to each of the four assumed mode shapes by integrating

the product of the residual and the assumed mode over the annulus.

2RI

fo (Residual) ( assumed mode ) dO = 0(E10
Jo (E.1O)

Evaluating equation (E. 10) for the three residuals for the four assumed modes results in

twelve first order, ordinary differential equations.

Pressure Rise PDE orthogonalized with respect to cos(e):

- AR FCC + A1, FSC - 4 AR2 FCC2 + 4 AI2 FS2C + (4 + p) A:R1 - X A1

- qR, 4), FSC - qil < 1 FCC - 2 qR2 4), FS2C - 2q12 b jFCC2

- 2 <D>i (<4>1 - (Du) qil + <bi + 2 .1, + X <DI qa, = 0 (E. 11)

Pressure Rise PDE orthogonalized with respect to sin(O):

- AR1 FSC + A1, FSS - 4 AR2 FSC2 + 4 A12 FSS2 - (4 + p) Ah, - X AR,
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-OqiDi FSS - qg, 0, FSC - 2 qR2 4D, FSS2 - 2 q 2 4 <, FSC2

- 2 (1>1 ( 4bi - COu) qRI + Ip (Di + gkI - X 0D1 qj = 0 (E. 12)

Pressure Rise PDE orthogonalized with respect to cos(20):

- AR, FCC2 + A1, FSC2 -4 AR2 FC2C2 +4 AI2 FS2C2 + (8 + 4 g) AR 2 -8X A 12

- qR, (1 > FSC2 - q, (I FCC2 - 2 qR2<(hFS2C2 - 2 q1 2 4% FC2C2

- 4 (D> ((Ii - <b) qI2+ 2 IDi + 4,2 -4 X 4>i qR2= 0 (E.13)

Pressure Rise PDE orthogonalized with respect to sin(20):

- ARI FS2C + A, FSS2 - 4 AR2 FS2C2 + 4 A, 2 FS2S2 - (8 + 4 g) A12 - 8 X AR2

- qRI (1> FSS2 - qI, 4Di FS2C - 2 qR 2,Di FS2S2 - 2 q 2, (i FS2C2

- 4 (I( <Di - <Du) qR2 + 2 p (D1 + q2 - 4 X 4>ij q2= 0 (E.14)

where FCC, FCC2, FC2C2, FSS, FSS2, FS2S2, FSC, FS2C, FSC2, FS2C2 represent

the integrals of the slope of the compressor characteristic, expressed as a function of

circumferential position, integrated over the annulus and weighted by the assumed mode

shapes.

2Il

FCC =' (0) cos(O) cos(0) d6
Saob
0

289



FS2C -1
Hi

2II

-- (0) sin(26) cos(O) dO

etc. (E.15)

The slope of the compressor characteristic aD is given as a function of local mass flow

coefficient through the compressor defined by:

(E.16)

and noting the definition of the streamfunction: dt),

(0) = F (CDd - AR, sin(0) - A1 cos(O) - 2AR2 sin(20) - 2AI 2 cos(20) +

+ (Di qR, cos(O) - (I>, qi, sin(0) + 4 >, qR2 cos(20) - (I qi2 sin(20) ) (E. 17)

F(<D) is a function describing the quasi-steady slope of the compressor characteristic as a

function of local compressor mass flow coefficient

Reed Valve Dynamics PDE with respect to cos(O):

- zi, - 2 Q 3 zi, -Q2 q, - IW ARI -W 0. ARI = 0 (E.18)

Reed Valve Dynamics PDE with respect to sin(O):

- zk, - 2 Q C zRI - Q2 qR1 - IW Aj~ - W 0. A =0
(E.19)

Reed Valve Dynamics PDE with respect to cos(20):
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-2zi 2 -4Q zI2-2 Q2 qI2 -ZWA:R2-!W uAR 2 = 0
3 3

Reed Valve Dynamics PDE with respect to sin(20):

- 2zR2 - 4 Q C zR2 - 2 Q2 qR2 - WA:I 2 - A W <Du A 2 = 0
3 3

Definition of reed valve velocity with respect to cos(e):

qRi - ZR1 = 0

Definition of reed valve velocity with respect to sin(0):

qi, - zi1 =0

Definition of reed valve velocity with respect to cos(20):

qk2 - ZR2= 0 (E.24)

Definition of reed valve velocity with respect to sin(20):

j2 - zi2= 0 (E.25)

The resulting system of twelve, ordinary differential equations in time can then be

numerically integrated in time. At each time step, the non-linear terms are updated with the

previous time step value for the perturbation values. Expressing the system of equations in

state space formulation leads to:
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[C] {,) = [B] {x)

{i) = [C-1 B] (x} = [A] (x) (E.26)

A 4th order Runge-Kutta numerical integration technique was used to simulate the time

resolved, non-linear behavior of the compression system.

kI = A t i(xoId)

k2 = A t (xold +

k3 = A t Y (xoId +

k4 = A t i(x + k3 )

xnew = xoId + +k 2 + 3 + 4
6 3 3 6 (E.27)

Noise Model:

To simulate the effect of noise on the compression system, a random static pressure

perturbation at the face of the compressor was added to the simulation. The pressure

balance PDE (Eq. E. 1) with noise is given by:

aTd2u +4 d3T x dPU

a(D ae 2  atax a'[ao2 a0

+ a 01 + 2 4<bl(<i - <U) D (Di + 2bi q X 2q _ apnoise

(E.28)

The reed dynamics PDE (Eq. E.2) with noise is given by:

2z + 2 Q ( az+ Q2 q IW "1 -W _D _ =1W "i

ae ao ae 3 ax 3 x2 3 a__3
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(E.29)

Where the random noise is given by:

Pnoise = Pi cos(O) + P2 sin(0) +p3 cos(20) + p4 sin(20)
where Pn=1-4 = pmax 2(RNDn= 1.4 - 0.5) (E.30)

The random number (RND) is a value with uniform distribution between 0 and 1.

The noise was applied to each spatial assumed mode shape independently. The magnitude

of the random noise applied to each spatial assumed mode shape was bounded by a

maximum noise level given by:

|Pmax|= d Prms (E.31)

With this formulation, the noise source approximates a noise source with rms amplitude of

Prms with a flat power spectra density between 0 Hz and 1 / (2 AT) Hz where AT is the

time step. For the simulations used in this thesis, the time step was 1000 Hz, and thus the

noise was distributed between 0 Hz and 500 Hz.

Applying the Galerkin method to the system of equations with noise, results in a state space

model of the rotating stall dynamics with an excitation term.

[C] (i) =[B] (x) +(D)noise

(i) = [C-1 B] (x) + [C]- 1 (D)nOise (E.32)

where the noise excitation matrix is given by:
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-Pi

-P2

2P3

Wpi3

2 Wp33

2Wp43

0

0
0
0

(E.33)

The noise input at each time step was held constant over that step for the non-linear

integration.

Features of the Non-linear Simulation

In addition to providing a method to account for random excitation of the compression

system, the non-linear simulation allows non-linearities resulting from the compressor

characteristic to influence the compression system dynamics.

One feature that the non-linear simulation contains which is absent from the linearized

analysis is the ability to predict small amplitude limit cycles. The nonlinear simulation

predicts that small amplitude limit cycles can develop in the simulation for certain
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compressor characteristics. Figure E.1 shows two compressor characteristics, (A) and

(B). The primary difference between the two characteristics is the shape of the

characteristics in the positively slope region, with (A) being steeper than (B). Figure E.2

shows initial condition responses of the two compression systems operating at similar,

linearly unstable, operating points denoted on Figure E. 1. The Figure shows the

normalized axial velocity perturbations through the compressors at a single circumferential

position. Although the linearized dynamics of the compression systems are similar, (a =

0.03), the resultant finite amplitude oscillations are very different. For the compression

system with characteristic (A), the oscillations grow with time and the simulation predicts

that the flow transitions into large amplitude rotating stall. However, for characteristic (B),

the oscillations grow initially, but, eventually stabilize into a small amplitude limit cycle.

The oscillations shown are self-excited, no external excitation was incorporated in the

simulation. The small amplitude limit cycle behavior for characteristic B is similar to the

limit cycles predicted by Moore-Greitzer[ 7].

One Spatial Harmonic Non-linear Simulation of the Basic Compression

System:

The mechanism behind the limit cycle oscillations can be interpreted by applying the

Galerkin method to the basic compression system using a single spatial harmonic.

For the basic compression system, i.e. without dynamic mass / momentum injection, Eq.

E.1 reduces to:

+4 - -a =U0
ad) a()2 a,[ ax ac ao2 33(E.34)

Assuming solutions of the form:

real (u) =(AR cos(O) - AI sin(0)) ex (E.35)
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and applying the Galerkin procedure as developed above, leads to the following state space

representation:

{AR_ 1 FCC

A1 i (4+p) - -FSC-X

Where FCC, FSC, FSS contain the non-linear terms in

are defined in Equation E.15.

-FSC +A AR

FSS -A' (E.36)

the compressor characteristic and

If the non-linearity in the compressor characteristic is removed, the Galerkin formulation

reduces to an exact solution for the linearized PDE. The state space representation for the

linearized system is given by:

AR 1
A1 (4 +p)

a(D a JAR~
A I

DO j (A1 17
jb (E.37)

Comparing Eq. E.37 with Eq. E.36, we see that the role of the slope of the compressor

characteristic, a ,in the linear analysis is analogous to that of a weighted average (over the

annulus) of the local slope of the compressor characteristic in the non-linear analysis.

[4D - AR sin(O) - A1 cos(e) cos 2 (0) dO
(E.38)

[Du - AR sin(O) - A1 cos(O) sin2 (0) dO
(E.39)
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For a compression system with infinitesimal disturbances , both the non-linear and linear

simulations predict an initially exponentially growing disturbance for positive compressor

slopes. However, for the non-linear simulation, the weighted, annulus averaged, slope is a

function of the disturbance amplitude. If the shape of the compressor characteristic is such

that the weighted annulus averaged compressor slope decreases with increasing disturbance

amplitude in the neighborhood of the linearly unstable operating point, a mechanism for a

limit cycles exists. The limit cycle oscillation will stabilize to a finite amplitude oscillation

when the annulus averaged slope, defined in equations (E.38) and / or (E.39), is zero.

The possibility for small amplitude limit cycles can be quantified for compressor

characteristics expressed as a cubic function of compressor mass flow coefficient

T (ID) = A e + B e + C (D+ D (E.40)

For this compressor characteristic, the slope is given by:

DLP 2-- (0) = 3A e + 2B D + C
a(D (E.41)

The form of the limit cycle will be a constant amplitude, first harmonic disturbance rotating

around the annulus at a constant speed. The Galerkin analysis expresses the constant

amplitude rotating wave as the summation of two standing waves of oscillating amplitude.

As the wave rotates around the compressor, an instant in time will exist when AR has a

maximum and Al= 0. The time rate of change of AR is zero at this instant, and thus,

FCC = f F [Du - AR sin(O)] cos 2 (O) dO = 0

Jo (E.42)
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Substituting the expression for the slope of the compressor (Eq. E.41) derived from the

cubic characteristic yields:

FCC = j 13 A ( u - AR sin(O) + 2 B (<Du - AR sin(8)) + C cos2 (8) dO = 0

(E.43)

Solving for the amplitude of the disturbance that satisfies Eq. E.43, yields the amplitude of

the limit cycle oscillations as a function of the linearized slope at the mean operating mass

flow coefficient and the cubic term in the compressor characteristic:

JT (- A) (E.44)

For small amplitude limit cycles to exist, the cubic term of the compressor characteristic

must be negative. A physical interpretation of the requirement is that the compressor

characteristic must be more steeply sloped approaching its peak from the high flow region

than from the low flow region.

The non-linearity associated with the shape of the compressor characteristic can also have

an influence in the stall inception process and the compression system dynamics prior to

stall inception. Non-linearity in the compressor characteristic allows for coupling between

axisymmetric and non-axisymmetric oscillations in the compression system. For a more

detailed assessment of the influence of the shape of the characteristic on the stall inception

process, the reader is referred to Paduano and Gysling [26].

298



Compressor Characteristic
0.4

Char. A

0.36
Operating Point

0 .3 4 --- -.. .. ... ...-.- ...-- ------ -

0 .3 2 - ---. .. .-..-. ... .-. -- -.--.--- ---..--

C0.3 - --. -... -.--.-..--.

0 .2 8 -- ---.. ----.- -.-.-.---.- -.-..-.

0.24
0.4 0.45 0.5 0.55 0.6 0.65 0.7

Mass Flow Coefficient CD

Compressor Slope versus Flow Coefficient

-2

S - -- - - - ----- -- ---- -- - - -- -- - - -

0.4 0.45 0.5 0.55 0.6 0.65 0.7
Mass Flow Coefficient <D

Figure E. 1: Two Compressor Characteristics used to Demonstrate Effect of Non-
Linearities on Compression System Dynamics with Slope of Characteristics
versus Flow Coefficient also Shown
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Appendix F: Digital Signal Processing

Several digital signal processing techniques are employed in this research. The software

package MATLAB was used for the signal processing. The algorithms are outlined in this

appendix:

Discrete Fourier Coefficients:

The fast Fourier transform is applied to transform discrete time resolved data into the

frequency domain. The fast Fourier transform for a discrete time resolved data set, x(n),

containing N samples, sampled at a frequency of fs, is given by:

N-1 2 tkn
X(k+l)= I x(n+l)e1 N

n=O (F.1)

where: x is a discrete time resolved signal

X is the discrete Fourier transform

The index k ranges from 0 to N-1 and specifies the harmonic frequency as multiples of the

sampling frequency. The actual frequencies corresponding to the elements in the discrete

Fourier transform given, (up to the Nyquist frequency = fs / 2 ), by:

f (k)= kf for k =0 to k=_N
N 2 (F.2)

Power Spectral Density

The power spectral density function Pxx (termed "PSD" in text) of a discrete time resolved

signal of length N is defined in terms of the discrete Fourier transform by the following

expression:
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Pxx (k)=X(k)X* (k) (F.3)

for k = 0 to N /2

The magnitude of the PSD's presented in this thesis are normalized as defined below:

N N/2

_ x (n)2 1 Pxx (n)
Nn=1 N/2=1 (F.4)

Cross Power Spectral Density:

The cross power spectral density [28] between two discrete time resolved signals x ( n)

and y ( n ), both of length N, is defined in terms of the discrete Fourier transform of the

individual signals:

Pxy (k )=Y (k) X* (k) (F.5)

for k=0 to N/2

Welch Method

MATLAB employs the Welch method to obtain an estimate of the power spectral density

and cross power spectral density by averaging the power specta over several intervals of

length N for samples containing more that N samples.

The averaged power spectral density for a discrete time resolved signal containing m

windows of length n is given by:

m
S..x ( k) = Px x (k )i

Mi=1 (F.6)

The cross power spectra density averaged over m windows of length n is given by:

m

Sxy (k )= 1M Pxy (k)i
m (F.7)
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Estimate of Transfer Function:

The frequency domain transfer function, magnitude and phase, of two discrete time

resolved signals can be estimated using the ratio of the averaged values of the power

spectral density and the cross power spectral density [28]

H(k)= Sxy (k)
Sxx (k) (F.8)

Coherence

The coherence of the two signals gives an estimate of the accuracy of the transfer function

estimate. The coherence function is given by [28],

-?x k JSx y ( k )A2jSy (k)=
Sx x (k ) Sy y (k ) (F.9)

Spatial Fourier Decomposition

The time resolved axial velocity measurement from a circumferential array of 8 equally

spaced hot-wires placed at mid span approximately 1/3 chord upstream of the rotor were

used to obtain information about the spatial structure of the disturbances within the

compressor. At each point in time, the axial velocity measurements recorded around the

annulus can be decomposed into complex spatial Fourier coefficients. The spatial Fourier

decomposition method used in this research was developed by Gamier [13] and further

refined by Paduano[25] and has been used by several other researchers at the Gas Turbine

Lab for studying the small amplitude disturbances in axial flow compression systems prior

to stall.
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The complex Spatial Fourier Coefficients are given by the following expressions:

2n

V (n)=j2 v (0) cos (n O ) dO +i. 2- v (0) sin (nO) dO

(F.10)

Using this definition [25], a sinusoidal disturbance, v(O), with harmonic number (n) has a

magnitude of IVn and an angular position given by - Vn.

Using the above definition, the non-axisymmetric perturbation in axial flow coefficient

(80) can be represented as a summation of its Spatial Fourier Coefficients (SFC):

5$(o)= InIcos(nO+4$n)
n=1

where I 4 n I is the magnitude of the nth Spatial Fourier Coefficient and Z4n is the phase

angle of the nth Spatial Fourier Coefficient. For the array of 8 hot-wires this

decomposition can resolve the magnitude and phase of the first three spatial harmonics

(n=1,2, and 3).
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Appendix G: Measurement of Injection Quantities

The annulus averaged, temporal mean, injection mass flow was measured using a Venturi

flow meter. The pressure in the injection plenum was measured referenced to the static

pressure in the free stream immediately upstream of the compressor. The momentum of the

injected mass flow was determined using the mass flow measurement and the pressure in

the injection plenum,.

Injected Mass Flow Measurement:

The Venturi flow meter contained a 2.0 inch diameter inlet and a 1.2 inch diameter throat.

A schematic of the B.I.F. Inc. UVT-PI-0182-022231 Venturi flow meter is shown in

Figure G. 1. Two pressure measurements were recorded using a Magnehelic 0-5 psi

differential pressure gauge for the differential pressure measurement and a Marshalltown 0-

100 psig pressure gauge for the gauge pressure at the inlet to the flow meter. An Omega

thermocouple recorded the temperature in the distribution plenum.

The actual mass flow through the Venturi flow meter is calculated by the product of the

ideal mass flow and an empirically determined discharge coefficient:

i = 1 dI~deal (G.1)

For range of mass flow measured, using an empirical discharge coefficient of p= 0.98

results in a error of less than 1% from the manufacture's tabulated discharge coefficient

versus Reynolds number [34].

The ideal mass flow through the flow meter can be derived using 1-D, adiabatic,

compressible flow relations [34].
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2 Pi ( -Pi -pt )
co pt1 - 2 (G.2)

where At = throat area
A = area ratio
A1 , and

( - -1 2

-1 1-ir
2

1 - o2
= compressibility factor

/ -K -= pressure ratio

y = ratio of specific heats = 1.4 for air

Defining the injection parameter, UR, and the normalized reed opening, H, where

A is the reed valve opening and H is the annulus height, injected mass flow coefficient is

given by:

pCx AA
= H q9

p A UR p A UR (G.3)

where, p is the ambient density, A is the annulus area, and UR is the mid-span wheel

speed of the rotor

Given the injected mass flow coefficient, the mass flow coefficient through the compressor

can be determined using the sum of the injected mass flow and the mass flow measured

upstream of the injection location:
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c = (Du +@j q

Axial Momentum of Injected Fluid Measurement:

The axial momentum of the injected fluid is given by the product of the mass flow and the

velocity of the injected fluid.

rih C, = momentum injected (G.5)

The velocity of the injected fluid was determined by measuring the pressure differential

between the injection plenum and the free-stream static pressure and assuming that the

injected fluid expands to the free-stream static pressure in an ideal manner.

C _ Pinj penum - Pfreestream

2 (G.6)

The non-dimensional momentum injected, normalized by the axial momentum entering the

compressor is given by:

2A ri CXi _ 
(V 

q

p A ((D, U OC (G.7)
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Appendix H: Rotating Stall Model with Visco-Elastic Dynamic

Mass / Momentum Injection

The basic structure of the model used to assess the effect of dynamic mass / momentum

injection with a visco-elastic dashpot is similar to the model used for the compression

system with the dynamic mass / momentum injection modeled in Appendix B.

The boundary conditions across the compressor are identical to those derived in Appendix

B:

Mass Flow Across Modified Compressor:

Wu + (i 5q = 50d (H.1)

Pressure Rise Across Modified Compressor:

(H.2)

Exit Flow Angle:

The exit flow angle boundary conditions remains unchanged form the basic compression

system analysis:

8Vd =0 (H.3)

Expressing the boundary conditions across the actuator disk in terms of the solutions forms

for the upstream and downstream flow fields leads to an expression relating the complex
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spatial Fourier component of the nth spatial harmonic of the upstream perturbation

streamfunction to that of the local reed valve displacement.

i(4 +pgn a +D-iknAn+[<Di(2+p)G-X<Di- CDi+2(D,(DA -Du) qn=0

(H.4)

+00

TU=: A. ein(9-at)+nx
where n=1 (H.5)

+00o

q= cbein(O-ac)

and n=-** (H.6)

Structural Feedback:

The only difference from the model developed in Appendix B is the feedback provided by

the reed valves. In the reed dynamics with a visco-elastic dashpot, the reed valves are

modeled as a third order, locally reacting mass-spring-(visco-elastic)-damper systems in the

first cantilever bending mode. The dynamics of the reed valves were calculated by

assuming a mode shape for the first cantilevered bending mode. Thus, the reed

displacement as a function of time and position is given by:

A (L, t) = A(t) () where (() = assumed mode shape (H.7)

The equation of motions for the reed valves, expressed in terms of the tip deflection ( A)

and the position of the junction of the spring and dashpot in the visco-elastic dashpot ( )

shown in Figure X, is given by:

M A + K A + a K ( A - e) = 6 (t) (H.8)

309



and

B e = oK ( A -F-) (H.9)

Where the quantity, K ,is the ratio of the spring constant in the visco-elastic dashpot

to the spring constant of the reed and the other variables are as defined in Appendix B:

E (t) a Modal Forcing Function = ( Ps, L d(L) L Ps,
Jo (H.10)

and:

M Modal Mass = (!)2(X) d(1 L)

fo L T(H. 11)

B Modal Damping = ((2 b(t) d(t.)
Jo L L L(H. 12)

K Modal Stiffness = (()2 k( ) d( )
L (H.13)

Defining the following non-dimensional parameters:

t~tU A e j=
R H H H (H.14)

and retaining the standard expressions for the natural frequency and critical damping ratios

for second order, damped, harmonic oscillators:
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SM
B

2 M Ctn (H.15)

and the non-dimensional mass and frequency parameters:

W Po R2
M

oQ R
UR (H.16)

leads to the following non-dimensional expression for the locally reacting reed valve

dynamics:

oD2
( 1+a ) Q2 5 q - a Q2 8 y =1W ps,6 (H.17)

a+a Q y-aQ 5q=0
D' 2 C 2 C (H.18)

Using Eq. H. 17 and Eq. H. 18, the transfer function between reed displacement and static

pressure is given by:

6 q (o)

p Pu (CO)

1W
6

0 - (02)+ 2 Q o ( i + x CO)
1+(x (of (H.19)

w ( 2 Q
where aQand o= temporal frequency non-dimensionalized by rotor frequency.

As in the other models, the static pressure perturbations in the upstream flow field can be

related to the perturbation streamfunction in the upstream flow field via the circumferential

momentum equation.
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aSPs" = 2 + +<Du 0 U
a ax &t ax2 (H.20)

Defining the velocity of the reed motion as a state variable leads to three first order

equations for the compression system dynamics in terms of reed displacement, reed

velocity, the additional state variable introduced by the visco-elastic dashpot model, and the

upstream streamfunction:

W 2 ( i a - <D,,) An + 2g 2 a)z 2y
3 (H.21)

inaqn + z=0 (H.22)

q + (- +ina)yn=0
2C( 2C (H.23)

Eigenvalue Problem:

Combining Equations H.21, H.22, and H.23, leads to a fourth order, generalized,

complex eigenvalue problem governing the stability of each spatial harmonic of the

uniform, axisymmetric flow field through the compressor with aeromechanical feedback.

8 An

[A - aB] q =0

6 yn (H.24)

The matrix A in Eq. H.24 is given by:
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A1 2

0

I W n2 0
3

0

0

A 1 2 2=- Di- ij n

i n ( 1 + a) Q2

0

SQ

0

0 - i n X Q2

1 0

0 - 2

24

the matrix B in Eq. H.24 is given by:
+ 2 (<bi -<b )
I /and

1,Wn2
3

0 -in
0 0

0 0

-n2 0

0 0
0 -in

A-=

where

0
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Figure H. 1: Schematics of Reed Valve Dynamics Showing Viscous and Visco-Elastic Dashpot Models



Appendix I: One Dimensional Acoustic Analysis of

Compression System

To determine the influence of compression system parameters on acoustic oscillations in the

compression system, a one-dimensional acoustic analysis was applied to the compression

system. The analysis was developed using acoustic transmission matrices, which are a

compact and convenient method to relate the acoustic state variables upstream of an acoustic

element to the acoustic state variables downstream of the flow element. The format of the

transmission matrices used in this thesis is given below:

P 1 _. T 11 T 12 1 P2
pcu1  [ T21 T2 pcu2  (1.1)

where p is the acoustic pressure perturbation, u is the acoustic axial velocity perturbation

and Tij is an element in the transmission matrix.

The one-dimensional, acoustic model of the compression system contained four acoustic

elements: the upstream duct, the compressor, the downstream duct, and the throttle. Using

the acoustic transmission matrices for the individual components, the transmission matrix

for the entire compression system can be readily assembled. A schematic of the model is

shown in Figure 5.2.

The transmission matrices for the flow elements are given below.
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The Upstream Duct:

The flow in the upstream duct was assumed to be a subsonic, one-dimensional flow with a

small amplitude acoustic disturbance. The one-dimensional, compressible, linearized

continuity and axial momentum equations are given below:

+ U P
t ax ax (1.2)

p 
ax (1.3)

where: p = P + P (1.4)

u = U + 8 u (1.5)

Manipulation of the continuity and momentum equations, and assuming isentropic

compression, i. e.,

ap= C2
ap (1.6)

where c is the speed of sound, leads to the one-dimensional convective wave equation:

1 1 +_ -- 2 a2 p2

C2 .5t x] ax2(17

The one-dimensional, convective wave equation describes the acoustic oscillations within

the duct. Assuming traveling wave solutions of the form,

ei( w t -k x)

leads to a dispersion relation,
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k=1 1 [+1-MX]c 1 -M2 (1.8)

where Mx is the axial Mach number of the flow

The general form for a one-dimensional, acoustic pressure disturbance in the duct consists

of a wave traveling with the mean flow and a wave traveling against the mean flow and is

given by:

p ( x, t )=A ei( c t - k, x) +B ei( co t + k2 X) (1.9)

ki =k-2 (0k
where c 1+M ' c 1-MX

Using the general expression for the acoustic pressure perturbations in the duct and the

axial momentum equation, the acoustic state variables at the ends of a duct of length L can

be related. At the entrance to the duct, x= - L, the acoustic pressure and axial velocity

perturbations are given by:

px=-L = A ei O t+ i ki L + B ei O t - i k2L (1.10)

pcux=-L=Aei ot+ikL- B eio t-ik2L (I.11)

At the exit of the duct, x = 0, the acoustic pressure and axial velocity perturbations are

given by:

px=o = A ei o t + B ei cot (1.12)

pcuxo=AeiwOt -Beicet (1.13)
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Expressing Equations 1.10 through 1.13 in the form of an acoustic transmission matrix

yields:

I(ei ki L + e- i k2L) l(eikiL-e-ik2L[ 2.ekL~-kL 2 1 puxo

P c U x=L 1 (ei ki L - e-i k2L) I(ei ki L +e-i k2L) (4x=0
L2 2 (I.14)

Acoustic Transmission Matrix for the Compressor:

The compressor is modeled as a one-dimensional actuator disk. For simplicity, the flow

through the compressor is assumed to be incompressible. Neglecting the compressibility

of the flow through the compressor results in errors on the order of the compressor Mach

number squared. The compressor is assumed to be quasi-steadily, following it steady state

performance characteristic for the acoustic oscillations. Also, the inertia of the fluid within

the compressor was considered to be negligible compared to the inertial of the fluid within

the ducts associated with the acoustic oscillations.

The quasi-steady model for the performance of the compressor is given by:

p p=+.+p .) 1 p U --2U
2 apD 2 D (1.15)

=T )PSd- Pt.

where 2 R (1.16)

Assuming that the flow through the compressor is incompressible requires that the axial

velocity is continuous across the compressor:

u = Ud (1.17)
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Assembling Equations 1.15 and 1.17 in form of an acoustic transmission matrix yields:

pu}
P C ul U _ 0

-$ p
P 

_pC u Id

(1.18)

where: 1 acoustic compressor slope MR-+ M(
d@ (1.19)

Alternatively, the acoustic compressor slope can be expressed in terms of the total to total

compressor characteristic:

1ait t
2 (1.20)

Acoustic Transmission Matrix for the Downstream Duct:

The acoustic transmission matrix for the downstream duct is similar to that of the upstream

duct, however, the downstream duct is of length aL.

p u (ei kiaL + e-i k2 aL)
p _ 2

PC cuX=O+ .1-(ei ki aL - e- i k2 aL)
. 2

(ei kiaL .- e-i k2aL)
2 P p
I(ei ki aL + e-i k2aL) I cu x=cL
2 j

(1.21)

Acoustic Transmission Matrix for the Throttle:

The throttle is assumed to be an orifice plate, modeled as a one-dimensional actuator disk.

The transmission matrix for an orifice plate, assuming quasi-steady flow is given by:

(p'cuIK ]{ u 1 d (1.22)
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where:- _ .-- , Mx, = Acoustic Throttle Slopewhere: a

(Y = A0e - Area Ratio of Orifice
Aduct

MX&= Axial Mach Number of Flow through Orifice

Acoustic Transmission Matrix For Entire Compression System:

A model for the acoustic behavior of the entire compression system can be constructed by

assembling the transmission matrices of the individual components:

L (eikL+e-ik2L) I(ei ki L e-ik2L 1
p _2 21 -

P C U x [-L 1(eikL - e-ik2L) 1(eikiL+e-ik2L) 0 1
- 2 2-

(ei ki L + e- i k2 OLL) I (ei ki aL - e- i k2 aL)
12 2
[ (ei k aL - e- i k2 aL) I (ei k1 aL + e- i k2 aL)

1 K p
0 1 1 pculx=+aL (1.23)

The acoustic transmission matrix of the entire compression system can thus be written as:

ZiZ Z2  1 Z3 1[Z4 Z5 ][ P2 x =2
pcu fx=-L L Z2 zJ 1JZ5 -74 J0 1 p c u 2 Jx=aL (1.24)

where the Z's are defined by the elements of transmission matrices for the individual

components in equation (1.23). Carrying out the matrix multiplication in equation (1.24),

the transmission matrix for the entire compression system is expressed as:

p _ 1 12 p
P C u x=- L [21 422 . pc u jx=+aL (1.25)
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Eigenvalue Analysis:

The boundary conditions at the entrance to the inlet duct and the exit of the throttle define

the eigenvalue problem for the acoustic behavior of the compression system. The regions

upstream of the inlet and downstream of the throttle are assumed to be free fields, and thus,

behave as pressure release boundary conditions. Expanding transmission matrix for the

expression for the pressure upstream of the inlet in terms of the conditions downstream of

the throttle yields:

P(x=-L)=11 p(x=+aL)+ 12 Pc u(x=+aL) (1.26)

Applying the pressure release boundary conditions, i.e. p = 0 at (x= -L) and at (x=+CCL),

requires that 12 = 0 for non-trivial solutions to exist. The eigenvalues for the acoustic

oscillations are solutions to the complex, non-linear equation below, expressed in terms of

the elements of the transmission matrices for the individual components as defined in

equation (1.24):

1 2 = Z 6 (Z1 Z4 + Z5(Zi Z3 + Z2))+ Z 1 Z5 + Z4 (Z1 Z3 + Z2 )= 0 (1.27)

Solving Eq. 1.27 for the complex time dependence of the acoustic oscillations yields the

growth (or damping) rate and natural frequency of the acoustic oscillations in the

compression system. The time dependence of the acoustic oscillations is given by:

ei e t =eReal(ikL) -t9-+iImag(ikL) ct (.28)

where k =

For complex frequencies with a positive imaginary component, the system is stable. For

complex frequencies with a negative imaginary component, the solutions grow

exponentially with time, and the system is unstable.
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Equivalent Critical Damping Ratio:

Relating the growth rates of the acoustic oscillations to an equivalent critical damping ratio

of a second order, mass-spring-damper system, gives a useful physical interpretation of the

growth (or decay) rates of the eigenvalues. For a second order, damped oscillatory

system, the time dependence of the oscillations is given by:

+i J+()O~t (1.29)

where: 2 m~7~ = critical damping ratiO and t oi = Natural Frequency

Thus, the equivalent critical damping ratio of the acoustic oscillations is given in terms of

the eigenvalues of the system by:

-Real (i k L)

=(Real(i k L))2 + (Imag(i k L)f (1.30)

Response to External Excitation:

The eigenvalue analysis assess the stability of the compression system to acoustic

disturbances, however, it is also useful to predict the system response to excitation. In the

compression system, the main noise source was assumed to be an unsteady pressure

fluctuation across the compressor. Modeling this noise source as an external forcing

function allows the response of the acoustic oscillations within the system to be predicted.

When calculating the steady state system response to purely oscillatory excitation, a simpler

form of the transmission matrices can be used than was used in the eigenvalue analysis.

Also for simplicity, the axial Mach number in the duct was assumed to be negligible for the

force response analysis.
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For purely oscillatory solutions, the frequencies and wave numbers of the acoustic

oscillations are purely real. Thus, the transmission matrix for a duct of length L reduces to:

p _ E cos(kL) i sin(kL)~ p
p C u x=-L i sin(kL) cos(kL)( P c u u (1.31)

Using Eq. 1.31 and applying the pressure release boundary condition upstream of the

compressor (p = 0 at x= - L), the acoustic state variables at the entrance to the compressor

can be related:

-i sin ( k L)
Pu = (kL)p cu=-Z7 Pcuucos (k L) (I.32)

The Compressor with excitation is modeled as follows:

1

0( pu
p F

P pC u Id+ 0 1 (1.33)

where F(t) is the excitation, represented as a variation in the static pressure rise across the

compressor. Expressing the acoustic state variables upstream of the compressor to the

acoustic state variables downstream of the throttle yields:

p 1 u
P C Uu u~ [ 1

0

I cos(akL) i sin(akL) 1 i] p + -F (t)
i sin(akL) cos(akL) .0 1 PC u Ix _a L0

(I.34)

Applying the pressure release boundary condition at the exit to the throttle,

( p = 0 at x = a L), and expanding Eq. 1.34 leads to the following expression for 1)the

pressure upstream of the compressor.
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Pu ={K(cos (k a L) - i $ sin (k a L)+(i sin (k a L) - cos (k a L)] p CuaL- F(t)

(1.35)

Defining Z 8 as the terms in the square bracket in Eq. 1.35, the pressure upstream of the

compressor can be expressed as:

Pu= Z8 P C Ua L - F ( t) (1.36)

and 2) the acoustic velocity upstream of the compressor:

p cuu =[Ki sin (kaL)+cos(k aL)] pc uaL (1.37)

Defining Z 9 as the terms in the square bracket in Eq. 1.37, the velocity upstream of the

compressor can be expressed as:

p c u = Z9 p cuaL (.38)

Using Equations 1.36 and 1.38 and the relation between the acoustic state variables

upstream of the compressor (Eq. 1.32), the transfer function between the disturbances in

pressure rise across the compressor and the acoustic pressure at the entrance of the

compressor is given by:

pu(&)) 1
F ( co) Z8 -1

9 Z7  (1.39)

Figure 1.1 shows the predicted frequency response of the pressure upstream of the

compressor to white noise for the compression system operating at the peak of it
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= 0
characteristic, D ,with a steep and a shallow throttle slope. As shown, the acoustic

pressure oscillations near the frequency of the quarter wave length organ pipe mode are

predicted to be amplified for the system with the steep throttle slope. However, no such

amplification is predicted to occur at that frequency with the shallow throttle slope.
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Figure 1.1

Frequency Response of System to White Noise (slope =0)
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Static Pressure Perturbations at Entrance to Compressor Normalized by
Magnitude of White Noise Excitation at Face of Compressor for
Compression System Operating at Peak of Characteristic with a Steep
Acoustic Throttle Slope (K = 8.3) and a Shallow Acoustic Throttle Slope
(, = 0.3)
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Appendix J: Rotating Stall Model with Dynamic Mass /

Momentum Recirculation

In this appendix, a variation of the dynamic mass / momentum injection strategy used in

this research is presented. In this variation, termed dynamic mass / momentum

recirculation, the high pressure injection source is bled from downstream of the

compressor. The recirculation is assumed to be close coupled and locally reacting, i.e., the

fluid injected at a given circumferential location is removed from immediately downstream

of the compressor at the same circumferential location. As will be shown, this modification

serves to augment the stabilizing effect of the strategy developed in this thesis.

The basic model structure is similar to the basic structure of the models used through out

this thesis. The effect of the dynamic mass / momentum recirculation on the flow field is

incorporated into the boundary conditions across the actuator disk.

Several assumptions regarding the recirculation process are inherent in this model:

1) The high velocity fluid is injected axially, within a short distance upstream of the

compressor compared to the circumferential length scale of the disturbances.

2) The high velocity fluid injected upstream of the compressor mixes out to a span-

wise uniform state before entering the compressor.

3) The fluid injected upstream at a given circumferential location is removed from

immediately downstream of the compressor, at the same circumferential position. Thus,

the recirculation is close-coupled.
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4) The pressure rise of the compressor remains a pure function of the mass flow

coefficient entering the compressor, with the inertia of the fluid within the blade rows being

modeled as in Appendix A.

A schematic of the mass / momentum recirculation model is shown in Figure J. 1. The

effect of the injection upstream of the compressor, the compressor, and the mass removal

downstream of the compressor will be lumped into one semi-actuator disk.

Modeling the Injection Region

The injection process is modeled as developed in Appendix B.

Conservation of Mass:

The mass flow entering the compressor is given by the sum of the mass flow upstream of

the injection and the injected fluid:

(Du + 4) q = Ob (J.1)

where (Di is the injection parameter, q is the normalized reed valve opening area.

Conservation of Momentum:

As developed in Appendix B, the linearized relation between the span-wise uniform total

pressure change across the injection location is given by the following expression relating

the change in total pressure to the injection parameters and the local reed valve area

opening:

5Ptb - 5ptu = 2 0i ( 4 Du) 5q (J.2)
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Modeling the Mass / Momentum Removal Region

The mass removal process is assumed to create an axially discontinuous change in mass

flow and static pressure downstream of the compressor.

Conservation of Mass

The mass flow in the flow field downstream of the removal location is given by the mass

flow through the compressor minus the mass flow recirculated Noting that the mass flow

injected upstream is equal to the mass flow removed downstream, mass continuity requires:

p Cxc H - p Cx ,A=pCxd H (J.3)

where Cx is the axial velocity,,H is the annulus height, A is the reed valve opening, and p

is the density.

Non-dimensionalizing leads to:

(D - 4 i q = Gd (J.4)

Conservation of Momentum

The effect of the removal of mass and momentum downstream of the compressor on the

momentum balance is given by:

PsH+PHC= P A Cxi C + PsdH +pHCd (J.5)

Using Equations J.1 and J.4 to simplify the above expression, the change in static pressure

downstream of the compressor due to the mass and momentum removal is given by:

Psd -Ps, = p qCXi QCX (J.6)
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Linearizing and non-dimensionalizing, assuming the steady state mass flow recirculated is

small, yields:

8 Psd - 5pse = 2 4 , (d 5 q (J.7)

Combining these relations with the mass flow and pressure rise boundary conditions across

the compressor developed in Appendix A, leads to the mass flow and pressure rise

boundary conditions across the compressor with dynamic mass / momentum recirculation.

Mass Flow Across Modified Compressor:

(J. 8)

Pressure Rise Across Modified Compressor:

8P DT 5u + T (I&5 .- - g 4D> __-Xak-X(11a 2 255P~d - tu = aD a(D T ae a 1
(J.9)

Exit Flow Angle:

The exit flow angle boundary conditions remains unchanged from the basic compression

system analysis:

5Vd =0 (J.10)

Eigenvalue Problem
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Expressing the boundary conditions across the actuator disk in terms of solutions for the

upstream and downstream flow fields leads to an expression relating the complex amplitude

of the upstream perturbation streamfunction to the local reed valve displacement.

D ad ) (J. 11)

Anein(O-eat)+nx
and

q=J qnein(-at)
n=1

The structural dynamics

momentum injection.

of the reed valves are identical to the model in dynamic mass /

-+2Q (+Q2 1 wq=LWksuat 2 t 6 (J.12)

The static pressure perturbations in the upstream flow field can be related to the

perturbation streamfunction in the upstream flow field via the circumferential momentum

equation.

aPsu 2 ( + DU d2Tu

ae \ax kt aX (J.13)

Writing the expression for the reed valve dynamics as two first order equations leads to the

following expression relating the reed valve displacement and velocity to the upstream flow

field:

W n2 ( i a - (Du) An + i n Q2 qn + ( n2 a+ 2 Q C i n ) zn = 03 (J.14)

where the time rate of change of the reed valve displacement is given by:
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i n aq +zn = 0 (.

Combining Equations J. 11, J.14 and J.15 leads to a third order, generalized, complex

eigenvalue problem governing the stability of each spatial harmonic.

8An

[A - a B]J Sq =

Vemtf (J.

The matrix A is defined as:

--- i n A

-'W n2 D,3

0

A1 2  = - -- i n +2
na

A1 2

in Q2

0

0

in2Q(

1

15)

16)

(I

and the matrix B is defined as:

B=

-i(4+n g)

- i'W n2

3

0

0

-in

0

- n2

0

Comparing the stability matrices above for dynamic mass / momentum recirculation with

the stability matrices for dynamic mass / momentum injection (see Appendix B), the two
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are found to be similar in structure. Although the two control strategies constitute different

dynamic systems with different stability characteristics, the main difference between the

two systems is that the former (the recirculation strategy) has a larger effect on the pressure

rise across the actuator disk for a given reed valve deflection than the latter.

The pressure rise for a given, spatially uniform, static change in reed deflection for the two

system is given by:

tdD-+2 
2

8Ss - 5Ptu ~ I (V 5
I for recirculation (J.17)

and

8psd - kptu = -~~Oi + 2 do, (0 - Ou 5
a(D for injection (J. 18)

Although the results of a parameter optimization study are not presented in this thesis, it is

reasonable to assume that the dynamic mass / momentum recirculation strategy developed

in this appendix has the potential to be more effective in stabilizing rotating stall than the

strategy that was implemented.
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Appendix K: Radial Stability Model

In this Appendix, a model is presented to demonstrate the plausibility of radial modes of a

compression system influencing the process through which the uniform flow field

transitions into some form of non-uniform unsteady flow. The model is viewed as a

simplified first step in determining the parameters that influence the role of radial

disturbances. The model assesses the stability of a two dimensional flow field in the axial

and radial directions. A schematic of the flow field is shown in Figure K. 1.

Considering only the axial and radial components assumes that the circumferential

disturbances are decoupled from the radial disturbances. This seems realistic for

compressors with high hub to tip ratios, in which the circumferential variations of any

circumferential disturbance are insignificant over the length scale of the span of the

annulus. A similar analysis, although applied to the steady state redistribution of the axial

and radial components of flow through a compressor, is developed in [35].

Assumptions:

The model contains the following basic assumptions:

1) The flow field is essentially two-dimensional in the axial and span-wise

directions.

2) The circumferential variations are negligible.

3) The upstream flow field is irrotational.

4) The downstream flow field is rotational.

5) The steady state flow field is uniform and axial.

6) The mean pressure rise is uniform in the span-wise direction.

7) The flow is incompressible and inviscid.
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Boundary Conditions:

The flow field is required to satisfy the following boundary conditions:

1) no normal velocity at the walls, i.e., v = 0 at h = 0 and h = H

2) mass flow at a given span-wise location is continuous across the compressor

3) radial flow angle at a given span-wise location is continuous across compressor

4) pressure rise across compressor is function of span-wise local mass flow

coefficient and span-wise local compressor performance

5) disturbances are bounded far upstream and downstream of the compressor

Stability Analysis:

As with the rotating stall analysis, the stability of the flow field will be determined using a

perturbation streamfunction ( P). In dimensional form, the perturbation streamfunction is

defined by:

u=
U h ' ax (K.1) and (K.2)

where, h is the span-wise coordinate, x is the axial coordinate, u is the axial velocity

perturbation, and v is the radial velocity perturbation.

The perturbation streamfunction for the upstream flow field must satisfy the Laplace

equation:

2 __2 __2__v 'pu= + =~'F0
Vx 2  ah2  

(K.3)

The solution, consistent with the boundary conditions is given by:
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Tu =
n=1

A, H sin(n h) eH es t
(K.4)

The axial and radial velocity perturbations associated with perturbation streamfunction

given in Eq. K.4 as shown in Figure K.2 for the first harmonic, (n = 1).

The downstream flow field must satisfy the Poisson equation:

Vx2  ah2  
(K.5)

where oo = the normal vorticity

The vorticity convects with the downstream flow field:

(U+ 8 u)ax
aco
ah (K.6)

Linearizing Eq. K.6 yields:

D co D
D t at

- aco
+ U 5- = 0

(K.7)

At x = 0, the downstream disturbance must have the same form, in time and span-wise

direction, as the upstream flow field:

co = G (x) sin ( H) es (K.8)

Therefore, the general disturbance streamfunction form the downstream flow field is given

by:
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'd= B. sin(naRh)e-" est + C, sin (n h e- es t
n=1 n=1 (K.9)

Boundary Conditions across Actuator Disk:

The compressor is modeled as a two-dimensional actuator disk with the boundary

conditions across the disk expressed in terms of the perturbation streamfunctions.

Mass Flow Continuity across Compressor:

Uu=Ud = afu (_h _ . d(h
Dh H ah H (K.10)

Continuous Radial Flow Angle

VuA=Vd (aTu _h) = d(h)
ax H ax H (K.11)

Pressure Rise across Compressor:

The pressure rise associated with the perturbations is assumed to given by:

SdH ( -) - (8sd ( h+p U () 2 P UR H() 8u
(K.12)

Using the Radial Momentum equation:

Dt at ax ax2 p ah
(K.13)
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The pressure rise boundary condition (Eq. K.12) can be expressed in terms of the

perturbation streamfunctions:

82a - 2T -2 fa'aau a _ _

+U 2 'Pat ad- U -2  U- - -UR + =w
at ax ax ax2  Dh2  2 Da ah2  ah a. =0

(K.14)

Simplifying, and using the constant radial flow angle boundary condition, the pressure rise

across the compressor can be expressed in terms of the upstream perturbation

streamfunction.

-- )u N U 1 aT 0-)TU DT3 aTu- -2 - - UR P - =0
ah2  at ax 2 aCD ah2  2 ah a ah (K.15)

Eigenvalue Problem for Uniform Span-wise Loading Case:

The homogeneous differential equation (Eq. K.15) can be solved in a straight forward

manner for the case where the span-wise loading is uniform, with loading defined here as

the local slope of the compressor (unsteady) total to static pressure rise performance, as a

function of span. For constant span-wise loading, the homogeneous differential equation

reduces to:

U 2 - - URaT -PT 'T 0
ah at ax 2 a( ah2  (K.16)

Substituting the upstream streamfunction:

TU = An sin(nLh) e n es t

n=1 H (K.17)
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yields an eigenvalue problem that determines the following expression for the time

dependence of the lowest spatial mode, i.e. n=1,

UR , T 2 <D t
est = e 4 H (2 ) (K.18)

The form of the instability corresponds to a divergence of the initially, span-wise uniform,

flow field when the span-wise uniform, (and hence span-wise averaged), slope of the

compressor characteristic satisfies:

>20
D (K. 19)

Comparing the above stability condition for uniform span-wise loading to that from the

stability model presented in Appendix A, where the 2-D, rotating stall modes become

unstable when,

-- > 0
a(D (K.20)

one finds that the rotating stall instability condition from the full-span rotating stall model

would be reached first for a compression system being throttled down to lower flow

coefficients from an initially stable flow region. Thus, the full-span rotating stall instability

would develop first, and the conditions for the part-span instability described above would

never develop as modeled. For different span-wise loading conditions, however, the

analysis developed in this appendix, predicts that instability of the part-span mode can

occur at operating conditions in which the full-span rotating stall is stable. This is shown

below.
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Eigenvalue Problem for Non-Uniform Span-wise Loading Case:

The non-uniform span-wise loading stability analysis will be performed using the Galerkin

procedure [ 24] for an assumed mode shape corresponding the solution to the uniform

loading solution. Thus, the perturbation streamfunction is assumed to be of the form:

'Tu= A ( t ) sin( -- h) e-HH (K.21)

Substituting the assumed mode shape into the PDE describing the linearized flow field

(Eq. K.15) yields an expression for the residual resulting from the approximation:

- U A sin( r h) - 2 -- A sin(1 h) +1 URI ( h) A sin( )
H2 H H H 2 aD H2  H

- UR ( h) I A cos(h) = residual
2 h a _D H H (K.22)

Orthogonalizing the residual with respect to the assumed mode by integrating the product of

the error and the assumed mode shape over the span yields a governing ordinary

differential equation:

H
H f

2A sin2 (Qt h) d h = , UA A ( h )2 ( sin2 (! h) d h
fo H 2 I -a(D H

H

- URA j( ( h) cos (h) sin (h-) d h

(K.23)
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The functional dependence of the stability of the system on the span-wise loading in

represented as spatial integral of the local slope over the span of the annulus. In an attempt

to parameterize the relative stability of the part span divergence mode modeled in this

appendix with the stability of the full span, rotating stall instability mode modeled in

Appendix A, the following approach will be taken.

The stability of the full span rotating stall model is a function of the span-wise averaged

slope of the compressor characteristic. The full span model predicts instability when the

span-wise averaged slope is positive, independent of the detailed span-wise loading.

Therefore, stability of the part span stall will be assessed for various loading distributions

with a zero span-wise averaged slope.

The span-wise loading distributions will be expressed as a zero mean linear distribution and

a zero mean quadratic distribution:

(h)=B (-h _)C ( 2]
aCD H 2 H 2 (K.24)

Expressing the loading distribution in Eq. K.24 as a polynomial in span-wise coordinate

yields:

S ( h ) ) = -+ ( B - C ) h + ( C )( .
aD2 6 H HY (K.25)

Substituting the expression for the span-wise loading (Eq. K.25) into Eq. K.23 and

assuming solutions of the form est, yields an expression for the growth rate, s, of the

disturbances and, hence, the stability of the system:
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2s fs2 ( ) d h = UR ( - + - 2 <D) + (HB - C ) + (C) (h Y]sin2 (Zh)dh

-UR f (B C) + (2C) cos ( ) sin (1) d h
0 (K.26)

Evaluating the integrals in Eq K.26 yields:

s =1 UR I ( -C b2 H 4 n2 (K.27)

Noting that the above stability criteria is given for a zero, span-wise averaged compressor

slope, the part-span, axisymmetric mode modeled in this appendix is predicted to become

unstable at a higher flow coefficient than the full-span rotating stall model if:

C >4 n2 (D (K.28)

The magnitude of the quadratic component of span-wise loading is therefore predicted to be

a parameter in determining whether a given compression system will exhibit part-span stall

or full-span stall inception. The model predicts that the linear component of span wise

loading distribution does not influence the relative stability of the part-span and full-span

modes considered.

The above result can be made more specific by determining the span-wise loading

distribution required for which the full-span and part-span modes are predicted to become

unstable simultaneously at the peak of the total to static, span-wise averaged pressure rise

characteristic. Assuming a mass flow coefficient of 0 = 0.5, the span-wise variations in

slope required for the above stability condition is given by:
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aT _h) = 47[2 (D[ h 2? 1= x h 12 1
H H - ]=2 1 1 2 L H 21 - 2

12 H 2 (K.29)

The span-wise loading distribution required for this condition to be met is shown in Figure

= + 3.0

K.3. As shown, the slope is required to vary from roughly a@ at the hub and at

= - 2.0

the tip to roughly a4 at mid-span for this condition to be met. This span-wise

loading distribution appears to be a physically realistic span-wise loading for compressors

operating with end-wall boundary layers which tend to load the end-wall regions more

heavily with respect to the core flow.

A qualitative interpretation of the above stability criteria is that compressors in which the

hub and tip regions are highly loaded relative to the core flow are more susceptible to part-

span stall inception than compressors with uniform span-wise loading Thus, this

simplified analysis identifies a compressor parameter that is predicted to influence the

nature of the stall inception process.

The analysis presented in this appendix is viewed as a first step in developing a

comprehensive fluid dynamic stability model of compression systems. The results are

intended to provide qualitative, physical interpretation of the parameters that determining

the nature of the stall inception process. A stability analysis that incorporates the coupling

between the radial and circumferential modes of a compression system would be a useful

next step in this process.
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Span-wise Loading Condition For Part-Span Instability
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