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An Analytical and Numerical Study of the Second-Order

Effects of Unsteadiness on the Performance of

Turb omachines

by

Gerd Fritsch

A linear approach in two dimensions is used to investigate the second-order effects

of unsteadiness on the efficiency of turbomachines. The three main themes are the iden-

tification of physical nature and location of unsteady loss mechanisms, the magnitude

of the associated losses and their effect on the time-mean efficiency, and the assessment
of the modeling accuracy of numerical simulations with respect to unsteady loss.

A mathematically rigorous link is established between linear waves in a compressible,
two-dimensional flow and the efficiency drop associated with their dissipation. The anal-

ysis is applied to the mixing loss at the interface in a steady simulation of rotor/stator

interaction in a turbine and to the study of unsteady loss mechanisms.

Two unsteady loss mechanisms are considered. Unsteady Circulation Loss, i.e. the

transfer of mean-flow energy to kinetic energy associated with vorticity shed at the trail-

ing edge in response to an unsteady circulation, was first considered by Keller (1935)
and later by Kemp and Sears (1955). Keller's original work is extended to compress-
ible, homentropic flows. The use of simulations to obtain circulation amplitudes avoids

the limitations of thin-airfoil theory and yields a loss measure realistic for modern tur-
bomachines. For the Unsteady Viscous Loss mechanism, i.e. the dissipation induced
by pressure waves in unsteady boundary layers, the high-reduced-frequency limit and a
near-wall approximation are used to obtain the local velocity distribution in the laminar
Stokes sublayer and the corresponding time-mean dissipation. The input to the model

are the unsteady pressure gradients along a blade surface obtained from an unsteady
simulation. A numerical study of the errors due to modeling approximation is included.

Both sources of loss are small but not negligible. It is found that numerical smooth-

ing shifts the principal locus of unsteady dissipation from boundary layers to the
freestream, reducing the magnitude of the loss models input and the predicted loss.
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Chapter 1

Introduction

Flow fields in turbomachinery are inherently unsteady, with a multitude of sources con-

tributing. The incoming flow itself can be nonuniform resulting in an unsteady inflow to

the rotor frame of reference. The relative motion of neighboring blade rows, in conjunc-

tion with the spatially nonuniform pressure fields locked to loaded blades, leads to an

unsteady pressure distribution in both through so-called potential interaction. A blade

row may also move through and interact with shock wave systems. Stator wakes con-

vected with the mean flow cause unsteadiness in the rotor frame of reference. Similarly,

secondary flow effects like horse shoe vortices, passage vortices, and tip clearance vor-

tices contribute to flow unsteadiness. The viscous flow past a blunt turbine trailing edge

results in vortex shedding; trailing-edge vortex shedding has also been found in com-

pressors operating in the transonic or supersonic regime. Finally, there is unsteadiness

induced by the motion of the blades themselves, i.e. blade flutter.

Very successful turbomachines have been developed in the past by compensating for

the lack of basic knowledge about unsteady effects or for their neglect with extensive

empirical correlations. The past two decades have seen a strong increase in the experi-

mental and computational effort devoted to unsteady flows in turbomachinery. Partly,

this increase was driven by a tremendous rise in the computing power and memory

available and by new or improved experimental facilities and techniques. Partly, it was

fueled by continuing demands to improve upon existing designs and design methodolo-

gies. To increase engine efficiencies and stability margins, to extent engine life-times, to

reduce weight and size, and to cut development cost and time, it is imperative to study

and understand unsteady flow phenomena. With turbomachinery efficiencies typically

around 90%, there is room left for improvement but one needs to look at all sources of

loss, including those considered too small or too difficult to treat before.
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1.1 Motivation

Besides the general recognition of the importance of unsteady effects in turbomachinery,

several specific factors motivated this thesis.

First among them is the continuing prevalence of steady tools for routine design

purposes in industry. The standard aerodynamic design tools for turbomachinery are

steady codes, both inviscid and viscous, and steady cascade experiments. Designing

a single stage or blade row with steady-state tools amounts to placing the stator and

rotor row infinitely far apart thus eliminating the effects of blade row interaction. Un-

steadiness, however, contributes additional loss with non-zero time-meant First, most

of the energy associated with the unsteady part of the flow field is not recovered; it will

eventually be dissipated. Second, the interaction of unsteadiness with boundary layers

and shock structures can trigger additional loss. In a steady viscous simulation, the

effect of unsteadiness on the efficiency is not captured. An unsteady, nonlinear simu-

lation is still prohibitively expensive for routine design purposes and will likely remain

so in the foreseeable future, particularly for multistage turbomachinery. Testing of a

stage or a whole turbine under unsteady operating conditions will remain impractical

for routine design purposes. Therefore, the error in the predicted efficiency stemming

from the neglect of unsteady effects needs to be assessed.

Recently, linear perturbation methods have received increased attention as alterna-

tives to fully nonlinear, unsteady simulations. In linear CFD-codes, a nonlinear steady

state is found and the unsteady flow field is superimposed as a small perturbation.

Second-order terms, i.e. terms quadratic in unsteady quantities, are neglected since the

perturbations are assumed to be small. Linear perturbation codes have been found to

give accurate results up to a surprisingly high level of unsteadiness [1, 2] and will be

more widely used in the future. Linear codes, like steady codes, cannot capture un-

steady loss. The time-mean of the first-order unsteady dissipation is zero; only terms

second-order in unsteady quantities have a non-zero time-mean.

'This is not meant to imply that an increased spacing increases the efficiency.

See sections 1.2 and 2.7 for a further discussion of this point.
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Most recently, CFD-codes have been developed which account for the second-order

effect of unsteadiness on the time-mean flow. Work in this direction has been pursued

by Adamczyk [3] and Giles [4]. In this context, the thesis research was intented to

underscore, or not, the need to include these effects.

Fully nonlinear, unsteady, viscous CFD-codes are another tool to evaluate unsteady

loss. However, the weakest point of any numerical simulation, steady or unsteady,

remains the accurate prediction of heat loads and losses due to the unavailability of

adequate turbulence and transition models. Thus, there is a need to examine the mod-

eling accuracy of numerical simulations with respect to unsteady flow phenomena and

unsteady losses. Throughout this thesis research, the CFD-code UNSFLO by Giles

[5, 6, 7], and the visualization package VISUAL2 by Giles and Haimes [8] were used.

The turbomachinery community is moving towards the consensus that increased

losses under unsteady operating conditions are primarily due to strongly nonlinear ef-

fects like the alteration of the boundary layer characteristics through their effect on

transition [9], the variation of secondary flow generation in downstream blade passages,

and their effect on separation or reattachment. Those effects are beyond the realm

of the linear/quadratic approach taken in this thesis. Nevertheless, the magnitude of

effects that can be treated in a linear framework, remains to be determined.

1.2 Unsteadiness and Loss - Historical Perspective

Theoretical and Experimental Work

Unsteadiness affects the efficiency of turbomachinery in a variety of ways. What follows

is a necessarily incomplete list of subjects of past investigations.

One of the earliest investigations was done by Keller [10] in 1935, who considered

the transfer of mean-flow energy to the unsteady flow field through shedding of vorticity

in an incompressible flow. The vorticity is shed off the blade trailing edges in response
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to circulation variations, and its kinetic energy cannot be recovered. Keller estimated

the circulation amplitudes and concluded that the rate of energy transfer is equivalent

to between 0.4% and 1% of the power delivered or consumed by the rotor. In 1955,

Kemp and Sears [11] applied thin-airfoil theory developed earlier [12, 13, 14], and used

in the approximate analysis of interference between blade rows [15], to calculate the

circulation variations, the shed vorticity, and the associated kinetic energy. They ar-

rived at the conclusion that the rate of energy transfer is, generally, much less than

estimated by Keller. In 1973, Hawthorne [16], who used a lifting-line approach, found

rates of energy transfer which are in line with those of Keller[10].

In 1970, Kerrebrock and Mikolajczak [17] advanced a wake transport model to ex-

plain experimentally observed stagnation temperature and pressure non-uniformities in

the stator exit plane of a compressor stage and their effect on the performance. In

1984, Ng and Epstein [18] measured large total temperature and pressure fluctuations

at three to four the times blade passing frequency in the rotor core flow of a compressor

stage. They proposed a moving shock model coupled to shed wake vorticity to explain

their origin and deduced the magnitude of the associated loss. The entropy rise due to a

moving shock was found to lead to a 0.15% drop in the efficiency while the mixing-out of

fluctuations led to a loss on the order of the wake loss. Additional losses were expected

from the interaction of the shed vorticity with downstream shock structures. Experi-

mental evidence for moving shocks in a compressor rotor has subsequently been found by

Strazisar [19]; Hathaway et el. [20] found vortex shedding in a axial-flow fan. Owen [21]

observed vortex shedding off a transonic compressor rotor in numerical simulations.

More than one source of unsteadiness affects the compressor performance upon vari-

ation of the blade row gaps; those include wake transport, potential interaction, and

wake mixing, among others. In 1970, Smith [22] reported an efficiency increase of 1% for

reduced gaps in an multistage compressor. Later, Mikolajczak [23] confirmed their find-

ings, while experiments by Hetherington and Moritz [24] contradicted them; the above

experiments suggest that choosing an aerodynamically optimal gap is not an easy task.
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The first studies on the influence of unsteadiness on the profile loss and the effi-

ciency in attached flows appeared in the late sixties and early seventies [25, 26, 27].

Obremski and Fejer [28], as well as Walker [29], observed early transition in unsteady

flow, leading to a greater length of the blade surface being covered by turbulent flow.

Pfeil et al. [30, 31] observed unsteady transition on a flat plate subject to periodic

wake-type disturbances. The same transition mechanism was found in an axial-flow

compressor by Evans [32], and in an axial-flow turbine by Dring et al. [33]. Hodson [9]

investigated the effect of unsteady transition on a cascade and found an increase of

50% in the rotor profile loss for unsteady inflow; subsequently he proposed an unsteady

transition model [34]. Shock-wave/boundary layer interaction can lead to separation,

as observed by Doorly and Oldfield [35], for example.

Numerical Developments

The progress in the numerical simulation of unsteady flow over the past two decades has

been impressive. The range of methods includes linear potential [36, 37] and linear Euler

methods [1, 2, 38], as well as nonlinear codes solving the Euler [5, 6, 39, 40, 41, 42, 43] or

the Navier-Stokes equations [7, 44]. In linear (perturbation) methods, the steady flow is

a solution to the nonlinear potential equation or to the nonlinear Euler equations, and

the unsteady flow field is superimposed as a small perturbation. The appeal of linear

methods lies in the savings in CPU-time they offer over a fully nonlinear formulation.

In response to the impracticality of multistage, unsteady, viscous simulations, Adam-

czyk [3] formulated a system of equations to account for the time-mean effect of the de-

terinnistic periodic unsteadiness on the mean flow through second-order terms similar

to Reynolds stresses. In a research project related to this thesis, Giles [4] developed an

asymptotic approach to unsteady flow in multistage turbomachinery. The asymptotic

parameter is the level of unsteadiness in a flow described by the Euler equations. The

approach leads to separate equations for the mean flow, the first-order perturbations,

and the time-mean of the second-order perturbations. These can be solved more effi-

ciently than the full nonlinear equations, in particular for multistage turbomachinery.
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A number of comparisons have been conducted between experiments and simula-

tions. Those were focusing, for example, on wake/stator interaction [5, 9, 42, 45], on

the redistribution of inlet temperature profiles in a turbine stage [46, 47, 48, 49], on

heat transfer in a turbine stage [50, 51, 52], or on the efficiency [53]. The weakest point

of any numerical simulation remains, as was noted earlier, the exact prediction of heat

loads and losses.

1.3 Thesis Outline

The first component of this thesis, chapter 2, focuses on the relation between unsteadi-

ness and loss in two dimensions. The unsteady waves that are solutions to the linearized

Euler equations are entropy and vorticity waves, convected with the mean flow, and pres-

sure waves of propagating or evanescent nature. Concluding that most of the energy

associated with the unsteadiness cannot be recovered, an asymptotic analysis in sec-

tion 2.3 yields the second-order mean flow change and entropy rise resulting from the

dissipation of an arbitrary combination of unsteady waves in a uniform mean flow. For

the use in subsequent chapters, section 2.5 links the entropy rise to a total pressure

loss and to a change in performance through a linearization of the isentropic efficiency.

The result of the analysis is used in section 2.6 to evaluate the accuracy of the linear

approach, and in section 2.7 to analyze mixing loss at the stator/rotor interface of a

steady simulation.

The second component of this thesis focuses on the nature and the location of

unsteady loss mechanisms and the magnitude of the associated losses. Two aspects are

covered, termed Unsteady Circulation Loss and Unsteady Viscous Loss, respectively.

Chapter 3 revisits the Unsteady Circulation Loss first treated by Keller [10] in 1935

and later by Kemp and Sears [11] in 1956. Keller estimated the unsteady circulation

amplitude to arrive at the kinetic energy in the unsteady flow field induced by the shed

vorticity. Sears and Kemp used thin-airfoil theory to obtain the unsteady circulation

amplitude. This approach, while enabling them to calculate the circulation amplitude,
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limited them to incompressible flow and blades of zero thickness and camber with the

mean flow nearly in the blade direction, i.e. lightly loaded blades. Thus, the airfoils

are more representative of compressor blades than turbine blades. In this thesis, the

circulation amplitudes are obtained from numerical simulations, which allows one to

obtain amplitudes for arbitrary blade and stage geometries, steady lift distributions,

and Mach numbers. Kelvin's Circulation Theorem, upon which Keller's work rests, is

valid even in compressible flows, provided they are homentropic. Eliminating the need

to estimate the circulation amplitudes or to deduce them from thin-airfoil theory, results

in a realistic measure for the secondary kinetic energy in modern turbomachines and

the loss associated with its dissipation.

The unsteady stator/rotor interaction can generate strong pressure waves. Unsteady

Viscous Loss, considered in chapter 4, is a consequence of dissipation in unsteady bound-

ary layers driven by these pressure waves. Using a linear approach and a near-wall ap-

proximation in the high-reduced-frequency limit, the streamwise momentum equation,

driven by unsteady pressure gradients, yields the local velocity distribution in the lam-

inar Stokes' sublayer. The driving pressure gradients are obtained from an unsteady

simulation. In the high-frequency limit, the dissipation in unsteady boundary layers

depends only on the unsteady shear. The associated entropy generation is integrated

over a blade surface and related to a drop in the isentropic efficiency. The result of a

numerical study to check the errors introduced by a departure from the high-frequency

limit is presented in section 4.3. Section 4.4 applies the loss model to a transonic tur-

bine stage and discusses the modeling accuracy of numerical simulations with respect

to unsteady loss.

Chapter 5 summarizes the approaches taken and the results obtained in this thesis,

and gives recommendations for future research on the topic of unsteady loss.
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Chapter 2

Unsteadiness and Loss

The objective of this chapter is to establish, in a rigorous mathematical manner, a link

between the dissipation of unsteadiness in a two-dimensional, inviscid, compressible

flow and the efficiency of turbomachinery. The result will be used in the investigation

of unsteady loss mechanisms in chapters 3 and 4, and in discussions of the numerical

modeling accuracy.

The unsteady waves that are solutions to the linearized Euler equations in two

dimensions are entropy and vorticity waves, convected with the mean flow, and pressure

waves of propagating or evanescent nature. They are briefly (re)derived in section 2.1;

this section closely follows [55]. Section 2.2 contains a brief survey of literature on wave

transmission and reflection in turbomachines and takes a short look at the rectification

of energy associated with unsteady waves.

A novel asymptotic analysis in section 2.3 links unsteady waves to the loss resulting

from their dissipation in a uniform mean flow. In subsection 2.3.1, a mathematically

rigorous flux-averaging procedure for an arbitrary unsteady flow relates the dissipation

of unsteady waves to second-order mean-flow changes. Subsection 2.3.2, in turn, relates

the change in the mean state vector to a time-mean mass-average entropy rise. It

emphasizes the separate contributions from waves of different frequency, wavenumber

and physical nature. Section 2.5 relates the entropy rise to an equivalent total pressure

loss and to a change in the turbomachine performance through a linearization of the

isentropic efficiency.

Section 2.6 looks at the accuracy of the second-order entropy rise calculated from the

linear model by comparing it to the entropy rise calculated with a nonlinear approach.

Section 2.7 contains the first application of a linear/quadratic model to the analysis of

the interface treatment (the mixing loss) in steady rotor/stator interaction simulations.
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2.1 Unsteady Modes

In the core flow, the inflow and outflow boundaries, and the gap between blade rows of a

turbomachine, the Euler equations are sufficient to describe the fluid motion. They are

usually expressed in a form based on the conservation of mass, momentum, and energy.

8U aF 9G
+ +- =0 (2.1)

The state vector U and the flux vectors F and G are defined by

Pu pv

Pu Pu2 + p Puv
U = , F = , and G= . (2.2)

pv puv Pv2 +p

.pet , puht j L pvht j

The pressure is determined from

p = ( p-1) Pet - p (u2 + V2 , (2.3)

where - is the (constant) ratio of specific heats. Equation (2.3) can be used to eliminate

the total energy per unit mass, et, and the stagnation enthalpy, ht = et + (p/p), from

equations (2.1) to obtain the Euler equations in the so-called primitive form.

Up + U BU
-+A "+B -=0 (2.4)at Ox ay

The primitive state vector U, and the matrices A and B are defined by

P' u p 0 0 V 0 p 0

u 0 u 0 1/p 0 V 0 0

U,= , A = 000 ,and B = 00 v./ (2.5)V 0 0 U 0 0 0 V 1/p

.P. 0 7P 0 u . . 0 0 7YP v _

Equations (2.4) are still nonlinear; they are linearized by considering small perturbations

EU1 of the primitive flow vector from a spatially uniform, steady (mean) flow Uo.

Up = UO + fUi (X, y, t) + ... (2.6)

Since the character of the flow depends on the mean Mach number M ,O, it is advanta-

geous to nondimensionalize the mean flow and the unsteady perturbations by the mean
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density po and the mean speed of sound ao.

equations (2.4) are

with U1 , A 0 , a

1 9U1  au1
a at+ AO X

nd BO defined by

Pi ' O

U 1  0
U1= Ao=

V1  0

.P1. . 0

"My'O

0
and BO=

0

L 0

The first-order perturbations of the Euler

aU1+ Bo - 0,
5 Y

1

0

1

0

MyO

0

0

0

0

0
1

0

MyO

1

0'

1

0

0'

0

1

(2.7)

(2.8)

Searching for wave-type solutions

U1(x, y, t) = U(x, y, t) = -, exp {i (k,,x + kyy - ot)}

to equation (2.7), one is led to

- + Ao +Bo , = 0,

where 5,. is a right eigenvector; the reduced frequency f is defined as

From the definition of AO and BO, the dispersion relation is found as

k ,o + MyO - Q

(2.9)

(2.10)

(2.11)

(2.12)kXMXO + My'O - 2 = 0.(kxM

With the reduced frequency S and the circumferential wavenumber k. known, equa-

tion (2.12) may be solved for the axial wavenumbers k,, i.e. the eigenvalues of equa-

tions (2.7). The corresponding right eigenvectors are determined from equation (2.10).
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The first two eigenvectors correspond to the twofold eigenvalue

k.,1 =k.,2 = ky '' (2.13)
MX'0

The corresponding eigenvectors are not unique and are chosen as

0 -M 0
W-,1= and 1,,2 = . (2.14)

0 JL 0 

The first right eigenvector, with a perturbation in the density only, represents an entropy

wave, while the second, with perturbations in the velocities only, represents a vorticity

wave. Both are convected with the mean flow.

The third and fourth eigenvector correspond to the eigenvalues

kx,/4= -y(fl - My,o) ( R - M--,o) (.51 M2 (2.15)

where

R= 1 - - MX,' .,) (2.16)
(f2- MY,0)2'

For a negative discriminant of R, the root with the positive imaginary part is implied.

The corresponding eigenvectors are

- (f - My,o) ( Mx,oR - 1)

(1 - My,o) ( R - Mx,o)
Wir,3 / 4 = .M,0  (2.17)

L (n - My,o) ( Mx,oR - 1)J

In axially subsonic flow (IMx,oI<1), they represent (isentropic) evanescent pressure waves

with amplitudes decaying axially upstream and downstream, if the reduced frequency

falls in the range (M',o - 1-0Mj0  Q (M,,o+ 1-Mj0 . The evanescent nature

is due to the complex (conjugate) wavenumbers kx,3 and kx, 4. Outside that range, the

eigenvectors represent (isentropic,) propagating pressure waves. In axially supersonic

flow (IMx,oJ > 1), both pressure waves are of propagating nature and will be traveling

in the downstream direction. Details are found in [55].
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2.2 Dissipation and Rectification

In section 2.1, the unsteady waves that are solutions to the linearized Euler equations

have been briefly rederived. The unsteady waves generated by wake/blade row in-

teraction, rotor/stator interaction, vortex shedding, or any of the other mechanisms

described in the introduction, propagate and/or are convected through the blade rows

of a turbomachine. Away from the blades, the Euler equations are sufficient to describe

the convection and propagation of unsteady waves, even if their origin is viscous as is

the case for blade wakes or the vorticity shed off a blunt turbine trailing edge. The

amplitudes of the unsteadiness in a turbomachinery environment can be quite large, in

particular in the presence of viscous wakes and shock waves. Wakes are decomposed into

vorticity and entropy waves while the weak shock waves can be modeled as isentropic

pressure waves.

Unsteady waves in a turbomachine will undergo one of the following processes:

" Rectification

" Laminar or turbulent dissipation (in the blade passage or in boundary layers)

" Radiation out of the turbomachine upstream of the first row in an

unchoked turbomachine

" Outflow or radiation out of the turbomachine downstream of the last blade row

" Acoustic transmission to the environment through the structure

" Dissipation through structural damping

Rectification denotes the recovery of energy associated with unsteady waves through its

transfer to the mean flow. The effect of acoustic transmission and structural damping

(an important player in the phenomena of flutter and forced response) cannot easily be

quantified; they are not considered here. In multistage turbomachines one would expect

the outflow/radiation at the inlet or the outlet to play a minor role only. In single-stage

turbomachines, energy associated with unsteady waves is convected or radiated out and

eventually dissipated. For multistage turbomachines, this leaves viscous dissipation in
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the blade passage, the gap, and in unsteady boundary layers at blade, hub and tip as

primary loss mechanisms.

Excluding the extraction of extra energy from the mean flow by unsteady waves,

there are three questions about the effect of unsteadiness on the efficiency of turbo-

machinery. First, there is the question as to what percentage of the energy associated

with unsteadiness is lost and what percentage is rectified. The second question pertains

to the loss mechanism and its locus, if rectification is not possible. The third question

inquires about the associated loss. Subsection 2.2.1 will briefly touch on the issue of rec-

tification while subsection 2.2.2 takes a short look at the literature on wave transmission

and reflection to make a conclusion about the locus of dissipation.

2.2.1 Conditions and Mechanism for Rectification

(k,) 
IVR

(ky, w-kyVR) 1

(ky nr~ kyVR)

kyy

PS

(ks, + 2nr e n

stator row interface rotor row

Figure 2.1: Rectification of unsteady waves

The energy associated with an unsteady wave can be rectified if the wave becomes

steady in the rotor frame of reference. Figure 2.1 illustrates this process. An unsteady

wave with normal wavenumber and frequency (k., w) in the rotor frame crosses into the

stator frame of reference. There, it is perceived as a wave with the same wavenumber

but a different frequency due to the relative motion of the blade rows. Reflection at

the stator blade row will give rise to waves of the same frequency but differing in their
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wavenumbers by a term (2rn/Ps), where Ps is the stator pitch. Crossing back into

the stator frame of reference, they keep their wavenumbers but shift their frequencies

to (w+27rnV/Ps). If w was the blade passing frequency, a harmonic thereof, or zero, in

the first place, some of the reflected waves will be steady in the rotor frame of reference.

To recover the energy of a wave which is unsteady in the rotor frame and convert it into

mechanical energy, the following conditions must hold:

e the circumferential wavelength must match the rotor pitch

e the axial wavelength must be large compared to the blade chord

e the inertial time scale of the rotor must be much less than the period

of the unsteadiness

The first condition implies that the effect of a wave on different rotor blades in a row

must be identical. Otherwise, the compound effect of the individual blade lift varia-

tions is zero; lift variations of different blades cancel. In practice, turbomachines never

have identical rotor and stator pitches, making it impossible that the circumferential

wavelength and the rotor pitch match. The second condition is of similar nature. If

the wavelength is short compared to the blade chord, variations over different parts of

a blade have a zero net effect on the blade lift. The third condition states that any lift

circulations must be quasi-steady compared to the inertial time scale of the rotor. Oth-

erwise, the rotor speed cannot follow lift variations and increase the mechanical energy

delivered at the shaft. In turbomachines, the inertial time scale is much larger than

the unsteady waves periods (which are linked to the blade passing frequencies and their

harmonics), ruling out the rectification of waves which are unsteady in the rotor frame.

2.2.2 Wave Transmission and Reflection

Pressure waves encountering a blade row are partly transmitted and partly reflected.

As a consequence of the Kutta condition, a vorticity wave is shed at the trailing edge

of every blade. When a vorticity wave impinges upon the leading edge of a blade row,

pressure waves are generated and another vorticity wave is shed at the trailing edge.

Amiet [56] contains a good summary and a list of the related literature.
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The amount of energy dissipated in the turbomachine and the location of its dissi-

pation depend on the transmission and reflection characteristics of the blade rows with

respect to the unsteady waves impinging upon them. The larger the reflection coeffi-

cients in a multistage turbomachine, the more likely it is that the waves are dissipated

in place, i.e. in the gap between the blade rows or in unsteady boundary layers on the

adjacent blade rows. Also, the larger the reflection coefficient of the blade rows, the

larger is the probability that unsteady waves become steady in one frame of reference

and are rectified. The larger the transmission coefficient, the more likely it is that they

are radiated or convected out at the upstream or downstream end of the turbomachine.

Kaji and Okazaki [57, 58] made the most thorough study of this problems with

a minimum number of limiting assumptions. In [57], they used a semi-actuator disk

model to determine the transmission and reflection coefficients of a single blade row

for a plane pressure wave or a vorticity wave impinging from upstream and for a plane

pressure wave impinging from downstream. They examined the effects of mean-flow

Mach number, wavelength, incidence angle, stagger angle, and steady aerodynamic

blade loading. The Mach number and the incidence angle, combined with the stagger

angle, were found to be the most important factors in determining the coefficients. High

subsonic Mach number and angles of incidence far from the stagger angle substantially

increased the reflection coefficients. The ratio of the wavelength of the incident wave

to the blade chord had a minor effect only, especially at higher Mach numbers. The

steady aerodynamic loading, i.e. the introduction of turning, was without substantial

effect, its tendency being to increase the reflection coefficient and to eliminate cases

of pure transmission or reflection. In a second paper [58], they used an acceleration

potential method to clarify the effect of finite blade spacing; typically the longest wave

in a turbomachine has a wavelength on the order of a blade chord or a blade pitch. It

was found to be most significant at low Mach numbers and of secondary importance at

high Mach numbers.

Muir [59] used an average-frequency approach, equivalent to the application of a

delta-function of pressure to a blade row, to remove the wavenumber-dependence of

transmission and reflection coefficients and extended the semi-actuator disk model to
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three dimensions and cambered blades. The model is limited to circumferential wave-

lengths which are long compared to the blade spacing. The effect of three-dimensionality

was found to be slight over the whole range of Mach numbers and cascade parameters.

Grooth [60] derived approximate expressions for the reflection coefficients of a seni-

infinite flat plate cascade. The reflection coefficients model the effect of the neighboring

blade row in a compressor and can be used to formulate reflecting boundary conditions

in numerical simulations.

In all the references considered, the values of transmission and reflection coefficients

varied greatly, depending on the exact choice of parameters like Mach number or angle

of incidence and stagger. To draw a conclusion about the relative importance of trans-

mission versus reflection, and ultimately about the locus of dissipation, these parameters

would have to be known. None of the references treated camber angles close to those

commonly found in turbines, nor did any of them consider the effect of blade-thickness.

The results are therefore more relevant for compressors than for turbines. No clear

general conclusion can be drawn about the reflection and transmission characteristics

of blade rows in turbomachines; the exact amount of energy (associated with unsteady

waves) rectified or dissipated, as well as the locus of dissipation, remain unknown.

2.3 Loss Due to Dissipation of Waves

The references on wave transmission and reflection examined in subsection 2.2.2 did not

provide a clear picture of the relative importance of these phenomena or the applicability

of the results to turbines. While some of the energy (associated with unsteady waves)

can be recovered because they become steady upon changing the frame of reference, as

illustrated in subsection 2.2.1, no quantitative assessment is available. The restrictive

conditions placed on rectification suggest that little of this energy can be recovered.

If the energy of unsteady waves is simply lost (rather than causing extra unsteady

losses), the level of loss still depends on the mean flow state at the locus of dissipation.
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Part of the energy dissipated into heat at a pressure level above the exit pressure can

be recovered in downstream blade rows. Downstream of a single-stage or a multistage

turbomachine, the locus of dissipation and the mean flow state are obvious. In general,

the locus of dissipation and the associated mean flow state are unknown.

Nevertheless, it is important to ask how an unsteady wave, or a combination thereof,

contributes to the loss upon its dissipation in an arbitrary but uniform mean flow. There-

fore, this section proceeds to investigate the dissipation of an arbitrary combination of

unsteady waves in an arbitrary constant mean flow. The emphasis is on the final mag-

nitude of the (mixing) loss as a result of complete spatial and temporal averaging of

waves rather than its spatial evolution. By its nature, the result is directly applicable

only to the generation of mixing loss downstream of the last blade row of a turboma-

chine and to the (unphysical) generation of loss at the interface in steady rotor/stator

interaction simulations.

2.3.1 Flux-Averaging

A novel asymptotic approach and a control-volume argument are central to the analysis.

Its aim is to link the dissipation of unsteady waves in a uniform mean flow to a measure

of loss. Figure 2.2 serves to illustrate the idea.

At the right-hand side, the outflow boundary, the uniform and steady mean flow is

described by the state vector in primitive form, Uo.

U,,- = UO (2.18)

At the left-hand side, the inflow boundary, the spatially and temporally varying flow

enters the control volume. The flow there is described by

U,,b ( , yi o) = UO + A U ( I Y, T . (2.19)

The top and bottom surfaces are periodic boundaries. The perturbation AU is described
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by an asymptotic expression in the small parameter E.

AU (X, y, t) = EU1 (X, y, t) + E2 U2 (X, y, t) + - - - (2.20)

The first-order perturbations, U1(x, y, t), are assumed to consist of waves of the type

given in section 2.1, equation (2.9). For the purposes of this chapter, it will suffice to

include terms up to second order. In an ongoing research effort, to which this thesis

is related, Giles [4] takes a similar asymptotic approach to the Euler equations for the

simulation of unsteady flows through multistage turbomachinery.

y6

Q

P

L .X

outin

p,out = UO

Figure 2.2: Control volume for the asymptotic analysis

The two-dimensional Euler equations in integral (conservation) form are

dd- UdA + f(Fdy +Gdx) =0.
dt dog

(2.21)

Applying them to the control volume depicted in figure 2.2 and integrating over one

fundamental period in time and space, one obtains the equations

Pout = Fin, (2.22)

where (i) = } ft [i fj'(*)dy] dt indicates the averaging operator. A formal Taylor
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series expansion for the components of the flux vector, Fj, yields

Fj (Uo + AU) = Fj (Uo) + d AU+ I AUTdFj AU+ - (2.23)
dUp y= 2 dU2 u,2=u

The second derivative of the flux vector, !-, is a third-order tensor; the second deriva-

tive of a flux vector element F, dU-, can be expressed as a matrix, though. To check

the derivatives, Mathematica@, a software package for performing symbolic mathemat-

ical manipulation by computer, was used. The first and second derivatives of the flux

vector are defined in appendix A. Substituting the asymptotic expression (2.20) into

(2.23), one obtains

d FjF3 (Uo + AU) = Fj (Uo) + c U1
UP=Uo

+f21 UTd2 F dF (2.24)
+ 1 -- U1 + j U2 +--- (.4

2 dU dU

Upon averaging, the second term on the right hand side of (2.24) vanishes because it

varies harmonically iny time and/or circumferentially; all that remains is

-1 d2Fi dFg 1Fj (Uo + AU) = Fj (Uo) + E2  UF U1 + U2 + -2-+ - (2.25)
.2 d U dUp y_

Equating fluxes as in (2.22), one obtains

21TdF 3  dF 1
E -UTU 1 + _U 2 + -- =0. (2.26)

2 dU dU

From (2.26), one can calculate U2 , the time-mean part of U2 , by equating second-

order terms. Again, Mathematica® was used; this time to solve the linear system of

equations (2.26) for U 2.

- -2
- 1 dF Ed2 UT Fj

U2 = U1  (2.27)
2dp U,=UO _ j=1 dUP U,=UO

The vector 4. is the jth unit (column) vector with a non-zero entry in the jth row.

For a non-zero axial Mach number the inverse of 4 always exists. Note that the Euler

equations (2.21) have been integrated along the inlet and outlet boundaries in time and

space. The incoming unsteadiness U1 (x, y, t) is a superposition of waves of different
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frequencies, wavenumbers, and physical nature.

4

U1 = Um = b imn exp {i (k)
m n 1=1 m n

The variable b denotes a real amplitude, and the variable <p a phase angle; t,.,i stands

for the right eigenvectors defined in section 2.1. The real part is implied wherever

complex quantities appear in place of physical variables. Due to the orthogonality

properties of sines and cosines, listed in appendix C, the integration (or averaging)

removes crosscoupling between modes of different circumferential wavenumbers ky,m or

different frequencies w. Thus, one can consider one circumferential wavenumber and

one frequency at a time and use the principle of superposition to obtain U2 .

- 1 dF ej d2 F m (2.29)U2 = 2 dU "l d2.29m
d~pyyo_ g apU=U

However, this does not remove crosscoupling between waves of different physical nature,

like pressure waves and vorticity waves, with the same frequency and circumferential

wavenumber. After all elements in equation (2.29) have been non-dimensionalized by

the outflow density and speed of sound, it may alternatively be written in the form

U2 = -- ZUM"Hgj Umn. (2.30)
,0 g M n Up=Uo

The matrices H, are defined in appendix A.

At this point, it is appropriate to remark that U2 ,mn is a periodic function of the

axial location of the inflow boundary due to the superposition of waves of different

physical nature which are contained in U1 , defined equation (2.28); the mean inflow

state, U,,in = UO +U 2 , varies periodically in the axial direction. This holds true even

though one only considers waves of one circumferential wavenumber and frequency.

If only one type of wave, for example a propagating pressure wave, is present, only

the phase angles of the unsteady perturbations will vary with the axial location. When

two or more waves are present, the amplitude as well as the phase of the compound

perturbation can change with the axial location! Figure 2.3 illustrates this for pertur-

'An exception is an evanescent pressure wave for which the amplitude changes also.

35



bations in the axial velocity. The subscripts 1 to 4 refer to the eigenvectors W,.,1 to W,.,4

of section 2.1. The magnitude of the compound perturbation i! is different at xi, and

xi,+Ax. Also, the change in phase for the compound velocity perturbation is different

from the phase changes A02 and A0 3 of the individual perturbations. In general, the

amplitude and phase changes with axial location are different for each element of the

state vector perturbation Umn-

Single Wave: Two Waves:

U3 at x= xi + Ax U3

A 03 = k;, 3 AX A 0 2 = k ,2 AX

UU

U3 at x =xi,

u 2 at x =in + Ax U2 at x =xi

Figure 2.3: Compound phase and amplitude as a function of the axial position

Regardless of where the inviscid inflow boundary is located, one has to satisfy the

equality of the average fluxes at inflow and outflow expressed in equation (2.22). This

statement leads to equation (2.26), because the state Uo is common to inflow and out-

flow. The first term in (2.26) contains time-means of products of perturbations in U1; the

time-mean of the product of two unsteady quantities, expressed in complex notation, is

R[b, exp {i (kx + kyy - wt + F1)}] R[b2 exp {i (kx + kyy - Wt + p2)}]

1
= - jbb21 cos ( 2 - 01), (2.31)

2

where R denotes the real part of a complex quantity and o is a phase angle. The

variables bi denote constant and real amplitudes. The time-mean of the product of

two unsteady quantities is a function of the axial location because the amplitudes and

relative phases of its members change as the axial location of the boundary is changed.

The second-order state vector perturbation with non-zero time-mean, 172, has to vary
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axially to allow the equality of time-mean fluxes to be satisfied in the presence of first-

order perturbations, U1?

Again, waves of different frequency and/or circumferential wavenumber do not inter-

act and influence the spatial distribution of the mean state Uo +U 2 . However, entropy,

vorticity, and pressure waves of the same frequency and circumferential wavenumber

have different axial wavenumbers k., the first two being convected with the flow and

the latter two propagating with the speed of sound relative to the mean flow. Therefore,

the phase angles and amplitudes implied in (2.30) will change with the axial location

of the inflow boundary and so will U 2 . This is merely an artifact of the way the mean

flow is represented, i.e. as a superposition of different physical modes. In [61], for

example, Doak derives several, related partial differential equations illuminating how
_T

the contribution to the time mean energy flux pu [u, v, w] from fluctuating quantities

changes in space in response to the presence of entropy, vorticity, and heat addition in

a dissipative, conducting fluid.

2.3.2 Entropy Rise

Only the entropy is a measure of the irreversibilities in the flow. In inviscid, adiabatic

flow, the substantial derivative of the specific entropy is zero.

Ds Os Os as
p-=p--+pu- +pv =0. (2.32)

Dt at Ox Oy

With the help of the continuity equation, equation (2.32) can be rewritten as

O(ps) O(pus) a(pvs)

Ot + ax + y 0. (2.33)

Averaging equation (2.33) in space and time leads to

O(pus) = 0. (2.34)

In an inviscid, adiabatic flow, the mean of the entropy flux S-pus is conserved in the

axial direction. Note, that no such condition holds in unsteady, nonuniform flow for the

2 The same holds true for a single evanescent pressure wave because the amplitude changes axially.
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mean of the total pressure flux, pupt. Analogous to equation (2.25), one can derive an

equation for the entropy flux.

- 1d2SdS ---~
S (Uo + AU) = S (Uo) +E 2  dUU U1 + U2 + (2.35)

2 dU2 dU =U

The first and second derivatives of the entropy flux are defined in appendix B. Again,

Mathematica® was used to check the derivatives. F 2 is known from equation (2.30) and

the mean change in the nondimensional specific entropy, -, is given by

A9 = (pus). -- S SUT DU (2.36)
POUOC m T m nmn

with the matrix D once more defined in appendix A. For physical insight, it is better

to write A- in explicit form. Equation (2.36) can be manipulated into the form

A13 =- U +' (. _;)2 mn] (2.37)

Doak [61] derived a time-average entropy transport equation for a dissipative, conduct-

ing fluid. However, it does not show the final magnitude of the entropy increase after

all fluctuations have been averaged out, nor does it single out contributions from waves

of different physical nature.

Note that the entropy rise is invariant to a circumferential translation of the con-

trol volume. It seems that the time-mean increase in specific entropy between inflow

and outflow, A-, varies axially with the location of the inflow boundary, if waves of

different physical nature but the same circumferential wavenumber and frequency are

present. The reasoning is the same as discussed in subsection 2.3.1; the phase rela-

tionships between the elements of the perturbation flow vectors Umn = [p i i U and

their amplitudes are functions of the axial position. Physically, the entropy rise can-

not depend on the location of the inflow boundary in an inviscid, non-conducting fluid.

The location of the inlet boundary is arbitrary because there exists no mechanism of

entropy generation; equation (2.34) confirms this notion and it can be shown that waves

of different physical nature do not crosscouple in equation (2.37). The term 'crosscou-

pling' in the present context refers to the occurrence of mixed terms like U2u 3 or Asi2
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in equation (2.37). The time-mean of such crosscoupling terms depends on the axial

location since the phase angle between the components varies with the axial location

as a consequence of differing axial wavenumbers k_9 The sum of the time-means of all

crosscoupling terms between any two waves of different physical nature, however, is zero.

The following statements can be shown to hold:

" No crosscoupling between entropy, vorticity, and pressure waves (of propagating

or evanescent nature) occurs in the flux-averaging process

" No crosscoupling exists between two propagating pressure waves, i.e. for real

wavenumbers kx,3mn and kx,4mn

" A single evanescent pressure wave, decaying upstream or downstream, does not

lead to an increase in entropy upon flux-averaging

" If both evanescent pressure waves are present, they cause a uniform shift in entropy

under the flux-averaging procedure (ill-posed problem)

Therefore, the entropy rise Asmn in the streamflux-averaging procedure can be calcu-

lated wave by wave and summed subsequently, as was the case for modes of different

frequencies and/or circumferential wave numbers.

It is laborious but straightforward to prove the first statement by expressing the

primitive variables in (2.37) as superpositions of contributions from the four physical

modes with arbitrary amplitudes and phase relations between them. It is easy to see

that entropy waves decouple in (2.37). The last term on the right hand side, the only

place where entropy perturbations enter, is non-zero only for entropy waves and reduces

to (FI/2). The remaining proofs are presented in appendices D and E.

A single evanescent pressure wave, referred to in the third statement, is of importance

in steady stator/rotor interaction simulations. There, the nonuniform stator outflow is

averaged to provide uniform rotor inflow conditions while conserving mass, momentum,

'An exception is the case of two evanescent waves with conjugate complex axial wavenumbers.
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and energy across the interface; this approach amounts to placing rotor and stator in-

finitely far apart and dissipating the unsteadiness between stator outflow boundary and

rotor inflow boundary. Other approaches are possible but they are non-conservative

and defy physical interpretation. If such a conservative averaging approach is used, the

potential field of the upstream stator row does not lead to an entropy increase (mix-

ing loss) at the interface; the subject will be discussed in detail in section 2.7. The

proof is in appendix F. The third statement is of also of importance in the calcula-

tion of the efficiency which can include mixing losses downstream of the last stage. If

the averaging is performed within the potential field of the last blade row, it will not

affect the mixing loss.

In the presence of an entropy wave, a vorticity wave, and both propagating pressure

waves, the entropy rise can be rewritten in terms of individual waves as

_-m - Pim-rn.n + (U2 + T2)+2 2 /n2

entropy wave vorticity wave

(+ 23+;23+2 +P4U+ + .(2.38)
2 MX,0 MX,0)

Lpressure wave propagating downstream ... propagating up/downstreamJ

For single evanescent pressure waves, the last two terms vanish (see appendix F).

2.3.3 Interpretation of the Entropy Rise

Entropy and Vorticity Waves

The first term on the right hand side of (2.38) represents the entropy increase through

mixing-out of density (temperature) variations associated with entropy waves. The

second term represents the effect of the averaging of velocity fluctuations associated

with vorticity waves. This term's contribution to the entropy rise is related to the

average kinetic energy per unit mass in a frame of reference convected with the mean
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flow and is independent of the Mach number of the mean flow. It can also be derived

from

A92,mn = (2.39)
cPTo

with the specific heat release A4 replaced by the average kinetic energy per unit mass

in the convected frame. With a2=(7- 1) cTo, equation (2.39) can be manipulated into

a form equivalent to (2.38).

A2m = 7 1 (E2 +U) (2.40)A-2,na 22 2+ 2) mna 0

Propagating Pressure Waves

The pressure wave contributions on the right hand side of equation (2.38) are in terms

of the axial component of the (nondimensional) acoustic energy flux, Nmn, originally

put forward by Ryshov and Shefter [62]. Eversman [63] showed this energy flux and the

corresponding acoustic energy density

Emn = - (-2 3 + 2 3 +F2 3 , (2.41)En 2 )mnn

which is the sum of potential and kinetic energy, to be consistent with the energy

equation in a uniform mean flow. In the limit of very high axial Mach numbers, the

pressure waves are essentially convected with the mean flow and their main contribution

to the entropy rise in (2.38) stems from the dissipation of their potential and kinetic

energy. For small axial Mach numbers, the term containing a factor 1/M2,o, representing

axial flux of acoustic energy across the inflow boundary of the control volume, dominates.

The interpretation of the pressure wave contributions depends on the axial Mach

number M,o of the mean flow. The first pressure wave, identified by a subscript 3,

always propagates downstream and enteTs the control volume at the inflow boundary.

So does the second pressure wave, identified by a subscript 4 and propagating against

the mean flow, if the mean flow is axially supersonic (M,O > 1).

In axially subsonic flow (M2,o < 1), a situation can arise in which a pressure wave

leaves the control volume at the upstream boundary, the inflow boundary of the mean
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flow. Since, by the way of the problem definition, no wave enters at the downstream

boundary, a wave leaving the control volume at the inflow boundary leads to difficulties

in interpretation, and it makes a negative contribution to the entropy rise.

P

U == U = UO + (X, y, t)

in dQ out

Figure 2.4: Control volume - revisited for propagating pressure waves

There are two ways to interpret this contribution. The first is to view this wave

as a reflected wave, in which case a corresponding downstream propagating wave must

also be present at the inflow boundary. Its negative contribution to the entropy rise

reflects the fact that not all of the incoming wave is dissipated. The second way is

to reformulate the problem, as is illustrated in figure 2.4. The flow is now uniform at

the inflow boundary and the unsteadiness enters at the outflow boundary. The entropy

rise between the inflow boundary and the outflow boundary due to dissipation of an

upstream propagating wave is now given by the negative of the second pressure wave

contribution, identified by a subscript 4 in equation (2.38).

Evanescent Pressure Waves

For single evanescent pressure waves, the last two terms in equation (2.38) are zero. The

simultaneous presence, however, of an evanescent pressure wave decaying upstream and

an evanescent pressure wave decaying downstream leads to an entropy increase/decrease

under the flux-averaging procedure. Details are found in appendix E.

42



While the last two terms of equation (2.38) are still zero, there is a non-zero contri-

bution from crosscoupling terms in equation (2.37).

Asmgn= 7- 2 - + 4 + >P4 + M4 + 4 (2.42)

This entropy change through crosscoupling is (and has to be) independent of the axial

location of the inflow boundary because the axial wavenumbers of the two waves are

complex conjugates. Thus, the phase shift with axial location is identical for both

waves, leaving the relative phase angle between the waves constant. The product of the

two amplitudes remains constant because, the waves decay/grow axially at the same

rate. This result, however, is meaningless because the assumed mean flow state Uo

does not exist.

y

U = UO + AU (X, y, t) Upla = U0

in dQout

Figure 2.5: Control volume - revisited for evanescent pressure waves

2.4 A Note on Numerical Smoothing

The control-volume argument of subsection 2.3.1 and the derivation of the entropy rise

in subsection 2.3.2 made no assumption other than the applicability of the linear regime

and the conservation of the axial flux P defined in equation (2.2).
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In particular, no assumption was made about the mechanism by which the flow is av-

eraged out within the control volume. The results, equations (2.37) and (2.38), are valid

for a physical flow averaged by the action of laminar or turbulent viscosity/conductivity

and for a simulated flow averaged by the action of numerical smoothing!

Numerical smoothing is required to stabilize numerical simulations of the Euler

equations. Fourth-difference smoothing dissipates high-wavenumber oscillations (with

wavelengths on the order of the grid spacing A), which are solutions of the finite differ-

ence equations but not the partial differential equations. Second-difference smoothing

is necessary to capture shock waves; it suppresses or limits overshoots and oscillations.

Not all numerical methods explicitly add numerical smoothing. Those that do not, have

it implicitly contained within their basic formulation, like McCormack's method [64].

As long as the basic formulation and the implementation of the numerical method

and the numerical smoothing operators are conservative, the results (2.37) and (2.38)

hold in a numerical simulation of the model problem depicted in figure 2.4.

In numerical simulations, the contributions of numerical smoothing to the fluxes

(of mass, momentum, and energy) across the (inviscid) inflow and outflow boundaries

are negligible. Thus, a simulation of a flow, in which unsteady waves are dissipated

by way of numerical smoothing, must show the same entropy rise as the corresponding

physical flow in which the unsteady waves are dissipated by the action of the laminar or

turbulent viscosity/conductivity. This statement also holds in flows with a nonuniform,

spatially varying mean state, which has important implications for the discussion of the

numerical modeling accuracy in subsection 4.4.3.

"for a further discussion of numerical smoothing see subsections 4.4.3 and 4.4.4

sIn this more general context, the results (2.37) and (2.38) do not apply, of course.

44



2.5 Efficiency Considerations

2.5.1 Total Pressure Loss

The effect of the averaging/dissipation on the isentropic or polytropic efficiency will be

expressed in terms of a total pressure loss. The total pressure is defined by

22Pt = P ( + 2 (2.43)

A change in specific entropy is related to changes in total pressure and temperature by

ds _ dT_ (7 -1) dpt

CP Tt'o 0 -t tO

After multiplying both sides by (pu), equation (2.44) may also be written in the form

d (pus) d (puTt) (7- 1) d (pupt) + d (pu) s (2.45)
cP Tt,0  7 Pt,o CP 7]

In steady, spatially uniform, and adiabatic flow, the first and the last term on the right

hand side of equation (2.45) are zero due to conservation of energy and mass. Thus, the

(flux-average) total pressure loss becomes

d (pus) (-y - 1) d (pupt) (2.46)
(PU)O Cp 7 (pUpt)o

Equation (2.46) is used to define an equivalent total pressure loss in (spatially) uni-

form and steady flow from the entropy rise AT of subsection 2.3.1 resulting from the

dissipation of unsteady waves.

A (pupt)t - (pupt) _ Y A dnn (2.47)
Ap~ (pupt)o 7 -1 '- (247

2.5.2 Linearized Efficiency

The dissipation of energy associated with unsteady waves causes an entropy rise whose

magnitude is given in equation (2.38). Equation (2.47), in turn, relates it to the equiva-

lent total pressure loss that would be seen if this entropy rise (dissipation) had occurred

in uniform, steady, and adiabatic flow. Neither the absolute magnitude of the rise in
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entropy nor the absolute magnitude of the drop in total pressure are meaningful in tur-

bomachinery; they must be compared to the entropy rise or total pressure drop through

the stage or the turbomachine to obtain the effect on the performance.

Steady, Uniform Flow in a Turbine

The isentropic efficiency of a single stage (or a turbine) for steady, uniform inflow and

outflow is defined by
zAh, he,40 - he,37Ts,E = - -ht, 3  (2.48)
Aht,, ht,4, - ht,31

where the numerator represents the specific work extracted from a real engine while

the denominator corresponds to the work extracted from an (ideal) isentropic engine.

The subscripts 3, 4, and 4s refer to the initial and final states, i.e. before and after the

isentropic or polytropic expansion in figure 2.6.

Pt
parameter: Pt

Pt,' 16

0.2 0.4 0.6 0.8

S/c,

8 4 2

1.0 1.2 1.4

Figure 2.6: ht -s diagram for an ideal gas
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For an ideal gas with constant specific heats, equation (2.48) may also be expressed as

n -1

_sE -t W_ t -7 -1 (2.49)
1-711 rt , r

where rt represents the total pressure ratio (pt,4/pt,3) and 7t the total temperature

ratio (Tt, 4 /Tt, 3 ). The efficiency of a turbine is assessed by the isentropic efficiency; the

efficiency of a single blade row or stage is given by the polytropic efficiency

7p,E = l-. (2.50)

The polytropic exponent n, (1 n2, 7-) is defined by

S = .-n(2.51)
np In (7rt)

For small total pressure ratios, the isentropic and the polytropic efficiency become equal.

The rotor operates with efficiency 77,,E,D at the design point. The design point ef-

ficiency is here defined between the inflow state, point 3, and the outflow state after

dissipation, point 4o. A Taylor series expansion around the design point yields the

change in the isentropic efficiency due to a drop in total pressure and/or total temper-

ature.

T ls,E = 7ls,E,D + 9,E Apt + aT,E A-rt + - (2.52)
Is,B=7as,B,D I ,E=

7
7s,B,D

APt=(Pt,4o-Pt,4) /Pt,4o denotes the total pressure loss non-dimensionalized by the outlet

total pressure. Assuming that dissipation downstream of the last rotor blade row leaves

the total temperature unchanged, one obtains

A77s,E _ ?7s,E - 77s,E,D 7 - 1 AptD = t,D As (2.53)
27s,E,D ?7 s,E,D 7 1 - 1 - Y7

tD 1-t,D

to first order. Equation (2.53) tells which part of the deviation of the isentropic efficiency

from unity is due to the (adiabatic) dissipation (of unsteady waves) downstream of the

outflow boundary. Figure 2.7 shows the relative drop in efficiency per unit total pressure

loss as a function of the design total pressure ratio. The symbols in figure 2.7 denote

turbine stages to be examined in chapters 3 and 4.
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Figure 2.7: Total pressure loss and isentropic efficiency drop for a turbine

For the polytropic efficiency which is presented in figure 2.8, an identical approach

gives the result

A77p,E _____ApE - .p (2.54)
77p,E,D In (7rt,D)

Most turbines stages are located between 0.25 < rtD < 0.75, which translates into a

(normalized) isentropic efficiency drop in the range of 0.6 to 3.3 times the (normalized)

total pressure loss.

The same linearized approach to the efficiency was used by Cattafesta [65] to calcu-

late the effect of experimental uncertainties in total temperature and pressure measure-

ments and the ratio of specific heats on the measured stage performance.
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Figure 2.8: Total pressure loss and polytropic efficiency drop for a turbine

Steady, Uniform Flow in a Compressor

The corresponding result for steady, uniform flow through a compressor is easily derived

as the analogue of the result for a turbine. The definition of the isentropic efficiency for

a compressor is

= (puht) 2 , - (puht),
(puht)20 - (puht),'

with the subscripts 1 and 2 corresponding to the states before and after compression.

Proceeding as for the turbine, one obtains

A7,C _ tD _ __ rtD
np-1 np-1 AP77s,C,D 7 ' 1 7 rt, n -
D D

(2.56)

to first order. Figure 2.9 shows the relative drop in the isentropic efficiency per unit

total pressure loss in a compressor as a function of the design total pressure ratio.
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Figure 2.9: Total pressure loss and isentropic efficiency drop for a compressor

2.6 Numerical Check and Accuracy

In order to check the analytical results for the mean-flow change U 2 (subsection 2.3.1)

and the entropy rise (subsection 2.3.2), a code was written to simulate the problem

illustrated in figure 2.2. The mean-flow change and the entropy rise were calculated

using the linear/quadratic approach of section 2.3 and a fully nonlinear approach.

An arbitrary combination of unsteady waves of arbitrary amplitudes bimn and phases P1mn

but the same reduced frequency Qm was superimposed upon a uniform mean flow of

arbitrary Mach numbers M_,o and My,O. The perturbations enter (or leave) the control

volume at the left-hand boundary.

In the fully nonlinear approach, the vector sum of the density, velocity and pressure

disturbances was taken to arrive at the compound vector of unsteadiness Umn, defined

in equation (2.28). The resulting compound unsteadiness was used in an (adaptive)
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integration via the Romberg method [66] to obtain the time-mean, space-average of

the flux vector at the inflow boundary? A Newton-Raphson algorithm, using the first

derivatives of the flux vector defined in appendix A, was employed to solve for the

mixed-out state at the outflow boundary. The initial guess for the outflow state was the

mean inflow state. Using the nonlinear definition

s-so 1 p\ p
= - -ln (- - n - (2.57)

CP 7 PO PO

for the entropy, the time-mean, space-average of the entropy flux at the inflow boundary

was calculated by Romberg integration. With the state at the outflow boundary known,

the (nonlinear) entropy increase was calculated.

1.3-
vorticity wave, subsonic

--- vorticity wave, supersonic

1.2 ---------------------------------------------- pressure wave (ke,3 ), supersonic

- - - - pressure wave (k,, 4 ), supersonic

--- entropy wave, supersonic

- ------------------------------------- --------------- Perturbation Amplitudes:

R 8 entropy wave: A = p/POl1

- --- -------L ------- vorticity wave: A = +~ + 2 ( _ VO)

pressure wave: A = IppI

0.9 - ----------- % ----------- ------------- ----------- ---------- Dissipation Ratio:

nonlinear dissipation
\ quadratic dissipation ('E)5

0.8 ------------ - -- ---- ----------- ----------- -----------
Mean Flow:
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M0,O = 0.35, MV,O = 0.53
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Perturbation amplitude A M.,o = 0.75, MV,O = 1.00

Figure 2.10: Accuracy of the second-order entropy rise (Q = 0)

In the linear approach, the mean-flow change U2,mn was calculated according to

equation (2.30) from the compound first-order disturbance vector Umn. The entropy

rise Asm was calculated from equation (2.37), which is in terms of the compound
6 1n contrast to figure 2.2 and equation (2.20), the second-order mean-flow change, AU2,,m., was

superimposed upon the flow at the outlet boundary.
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disturbance vector, and from equation (2.38), which is in terms of the individual waves

making up the disturbance vector.

1.3

vorticity wave, subsonic

-- vorticity wave, supersonic

1.2----------------------- -------------------- --------------- pressure wave (k., 3), supersonic
---- -pressure wave (ke,, 4), supersonic
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1.1- -------------------- --------------------------------- Perturbation Amplitudes:

R, entropy wave: A = Ip/polI

1 -- vorticity wave: A f (i
2  

()!U2v

pressure wave: A = p/po
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Figure 2.11: Accuracy of the second-order entropy rise (Q = 4)

Comparing the results from both approaches, the result for the mean-flow change

(2.30) and the second-order entropy rise (2.37,2.38) were confirmed. For small wave

amplitudes, the results from both approaches were identical regardless of the mean flow

state and the composition of the disturbance vector. Since the mean flow-change is a

vector quantity, it is difficult to present in a diagram. The entropy rise, however, is a

scalar quantity and can easily be plotted. Figures 2.10 and 2.11 show the accuracy of

the second-order entropy rise calculated from equation (2.38) versus the perturbation

amplitudes of the disturbance for reduced frequencies of Q =0 and Q =4. The vari-

able R, is the ratio of the nonlinear entropy rise over the entropy rise calculated from

equation (2.38). Only one disturbance, i.e. a single entropy wave, a single vorticity

wave, or a single pressure wave, was entering (or leaving) the control volume in the

cases presented in figures 2.10 and 2.11. In the most general case, the model has ten

degrees of freedom. They are the mean Mach numbers M,o and M,,0 , the reduced
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frequency D, four perturbation amplitudes, and three relative phases. The choice of a

single disturbance for figures 2.10 and 2.11 is (necessarily) arbitrary, but allows one to

judge the degree of nonlinearity of the Euler equations and the range of applicability of

the linear/quadratic analysis (if the accuracy requirement is known).

2.7 Mixing Loss at Steady Interfaces in CFD

The asymptotic analysis presented in section 2.3 can be used to investigate the mixing

loss at a steady interface in a (viscous or inviscid) simulation. A viscous simulation of

a highly loaded, transonic high-pressure turbine stage, called the ACE turbine stage,

which has been tested at MIT [50] and Oxford University [52, 541, was chosen to illustrate

the mixing loss. The simulation was performed with the CFD-code UNSFLO by Giles

[5, 6, 7, 67]. In the freestream, it uses an explicit Lax-Wendroff scheme to solve the two-

dimensional, unsteady (compressible) Euler equations on an unstructured grid composed

of triangular or quadrilateral cells. Around the blades, it uses the Thin-Shear-Layer

approximation of the Navier-Stokes equations to model viscous effects in boundary

layers. Its quasi-3D capability allows it to account for a varying streamtube thickness;

arbitrary pitch ratios can be handled with a time-inclined computational domain.

A detailed computational account of the (inviscid) stator/rotor interaction was pre-

sented by Giles [6]. Figure 2.12 shows the static pressure contours at a particular instant

during an unsteady viscous simulation. In the unsteady simulation, the stator and the

rotor row are separated by an axial gap of about 40% rotor axial chord. The outflow

of both the rotor and the stator row are supersonic, producing weak oblique shocks at

the trailing edges. An oblique shock wave, originating at the nozzle guide vane trailing

edge, first hits the downstream rotor around the crown of the suction surface and is re-

flected from there. Subsequently, it moves forward to the leading edge with the reflected

portion impinging on the adjacent pressure surface and being reflected to the suction

surface, once more. Upon lifting off the rotor blade, the primary shock wave grows

in length until the relative motion of the blade row causes it to strike the next rotor

blade. In the meantime, its reflection off the rotor leading edge has impinged on and
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Figure 2.12: Static pressure contours in an unsteady simulation of the ACE turbine

stage for (t/T) = 0.7

been reflected from the nozzle guide vane suction side. Comparatively large unsteady

amplitudes are expected and have been found for this turbine stage [6].

While the flows in turbomachinery are inherently unsteady, steady simulations are

often used for routine design purposes because they are easier to implement and less

CPU-intensive than unsteady simulations. Also, a steady simulations is often performed

to provide an initial condition from which to start an unsteady simulation. In a steady

simulation, the axial fluxes of mass, momentum, and energy, defined in equation (2.18),

are averaged at the stator outflow boundary to provide uniform and steady rotor inflow

conditions. Other approaches are possible and are used in practice, but they are non-
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Figure 2.13: Static pressure contours in a steady simulation of the ACE turbine stage

conservative, (i.e. the fluxes are not conserved across the interface,) and defy physical

interpretation. Figure 2.13 shows the static pressure contours during a steady simula-

tion of the flow through the ACE turbine stage. The shock waves originating at the

stator trailing edge are seen to vanish at the interface. There, outflow boundary condi-

tions, based on a linearized model [55] as described in section 2.1, ensure that entropy

waves, vorticity waves, and pressure waves leave the stator computational domain (al-

most) without reflections. Between the stator outflow and the rotor inflow boundary,

the waves are mixed out to provide steady rotor inflow conditions. While the equations

describing the mixing at the interface are nonlinear, the associated mixing loss can be

analyzed and understood with the help of the linear model of section 2.3.
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Figure 2.14: Entropy rise in the simulations of the ACE turbine stage

Figure 2.14 compares the time-mean mass-average of the specific entropy rise, A9,

in a blade passage for a steady and an unsteady simulation of the flow through the ACE

turbine stage. It is defined analogous to equation (2.36) as

fc [fJ (pus) I d (y/P)] d (t/ T)
S(X) = 1

cpf0 Lfj (pu) d (y/P) d (t/ T)

The axial coordinate x has been non-dimensionalized by the stator axial chord. The

stator leading edge is located at x=0, the trailing edge at x=1, as is shown in figures

2.12 and 2.13. The focus here is on the steady interface; other aspects of figure 2.14 are

brought up later. Of the total entropy rise in a steady simulation, about 20% (equivalent

to A2i=0.00417) are caused by (nonphysical) mixing at the stator/rotor interface. How-

ever, the entropy rise beyond the interface is slower in the steady simulation because all

waves that could cause unsteadiness and additional loss in the rotor frame have been

dissipated at the interface already. As a consequence, the entropy rise through the stage

remains only 8% higher in the steady simulation than in the unsteady simulation.
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Figure 2.15: Stage geometry and computational grid of the ACE turbine stage for

(t/T) = 0.7

The computational grid, see figure 2.15, along the stator outlet boundary (as well as

the stator inlet, the rotor inlet, and the rotor outlet boundary) is equally-spaced. This

facilitates the implementation of boundary conditions in a steady simulation and the

transfer of information between the blade rows in an unsteady simulation. Due to the

constant spacing, the nonuniform flow in a steady simulation can easily be decomposed

into its spatial Fourier modes along the stator outflow boundary. With the Fourier

modes known, the individual waves contained in these modes can be determined with

the help of the left eigenvectors of the linearized Euler equations defined in appendix G.

From the individual waves, the entropy rise (the mixing loss) at the interface can be
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determined using equation (2.38). Figure 2.16 shows the contributions to the entropy

rise of individual waves of different wavenumbers along the interface.

-2-

-3-

log A9m 0I

-6-

-7-

S6 A9 13 15

circumferential wave number (ky,m/kyi)

Figure 2.16: Decomposition of the entropy rise into the wave types

(fundamental wavenumber ky,1 corresponds to the stator pitch)

[ total

Z) entropy wave kz,lmO

Avorticity wave kr,2m,,O

pressure wave k,,3m0

pressure wave k.,4mO

and wavenumbers

While it was recognized previously that the interface treatment in steady simulations

results in an entropy rise, it was assumed to be negligible [68]. Clearly, this is not true

for stages with a high level of unsteadiness, like the ACE turbine stage. The presence of

oblique shock waves introduces a relatively strong perturbation into the stator outflow

and causes a considerable entropy rise upon mixing-out. The entropy rise is not without

physical implication, though. The same entropy rise would be seen if stator and rotor

were placed infinitely far apart and the flow allowed to mix out in between.

Many factors contribute to changes in the efficiency upon variation of the gap be-

tween blade rows. In experiments by Smith [22] and Mikolajczak [23], the efficiency

increased with decreasing axial gap. In experiments by Hetherington and Moritz [24]
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it decreased with decreasing axial gap. Mixing loss can give one explanation for an

increase in efficiency with decreasing axial gaps. The entropy rise at the stator/rotor

interface of a steady simulation is equivalent to the maximum entropy rise that can

result from mixing losses.

In a steady subsonic flow, all pressure waves are of evanescent nature, as can easily

be deduced from equation (2.15). They do not contribute to the entropy rise. In a steady

supersonic flow, all pressure waves are non-evanescent and do contribute. Weak shock

waves can be modeled as isentropic pressure waves with the vector sum of propagation

velocity (speed of sound) and convection velocity along the shock front. The flow at

the stator outlet boundary of the ACE turbine stage is supersonic. From figure 2.16

and table 2.1, shock waves (pressure waves propagating downstream with wavenumber

k3,mO) are seen to account for the major part of the mixing loss. Vorticity waves and

entropy waves, primarily a consequence of the stator boundary layer, contribute the

rest. There is also a minor (negative) contribution to the entropy rise from pressure

waves propagating upstream. The flow is axially subsonic and pressure waves can travel

upstream against the flow. Since disturbances in the rotor frame do not make them-

selves felt upstream beyond the interface of a steady simulation, these must be due to

reflections from the stator outlet boundary. While the stator outlet boundary conditions

are designed to pass through waves traveling downstream, their linear nature produces

weak reflections in the presence of nonlinear phenomena like shock waves.

Table 2.1: Contributions to the entropy rise at the interface - by wave type

The linear/quadratic model overpredicts the (nonlinear) mixing loss in the simula-

tion by only 4.5%. The discrepancy is explained by the nonlinearity of the averaging

process in the presence of (all but the weakest) shock waves. Note that this behavior is
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consistent with figure 2.10, which shows that the linear model overpredicts the entropy

rise due to dissipation of downstream propagating pressure waves of finite amplitudes.

The axial Mach number M:,o and the normal Mach number My,o used for the super-

sonic cases in figure 2.10 are very close to the Mach numbers found at the stator outlet

boundary in the steady simulation of the ACE turbine stage. Weak shock waves can

be modeled as isentropic pressure waves with the vector sum of local convection ve-

locity and local propagation velocity (speed of sound) pointing along the shock front.

From table 2.1, downstream propagating pressure waves are seen to be the dominating

perturbation at the stator outflow boundary. Given the large amplitude of the dis-

turbance at the stator outlet, the ACE turbine stage represents a difficult test for the

linear/quadratic model and it exhibits surprising accuracy.

Table 2.2 lists the contributions of different wavenumbers to the entropy rise, in-

dependent of the wave type. The fundamental wavenumber along the interface, ky,1 ,

corresponds to a wave with one period per (stator) blade pitch. The importance of

higher harmonics is due to the presence of oblique shock waves.

predicted entropy rise A- 0.00436

wavenumber k, 1  49.9%

ky,2 32.5%

ky,3 9.2%

ky,4 5.2%

ky'5 2.4%

all higher modes 0.8%

Table 2.2: Contributions to the entropy rise at the interface - by wavenumber
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2.8 Summary - Unsteadiness and Loss

This chapter presented a rigorous mathematical argument relating the dissipation of

unsteady waves in a uniform mean flow to the resulting entropy rise. It is the first ap-

plication of an asymptotic analysis to this problem and represents the first work clearly

identifying the separate contributions to the entropy rise stemming from simultaneous

linear disturbances.

The accuracy of the linear/quadratic model was evaluated by comparison to a non-

linear approach. Also contained in this chapter is the first detailed analysis of the

mixing loss at the stator/rotor interface of a steady simulation. The magnitude of the

mixing loss predicted by the asymptotic analysis is in excellent agreement with the

(nonlinear) simulation.

This chapter also pointed out another fact that seems to have been generally over-

looked. As a consequence of the mixing loss at the stator/rotor interface, the steady

simulation of a stage can have a lower efficiency than the corresponding unsteady sim-

ulation. The mixing loss at the interface is the same as the one which would occur for

an infinite gap between the rotor row and the stator row, providing an explanation for

a loss increase in turbomachinery with increasing blade row gaps.
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Chapter 3

Unsteady Circulation Loss

A turbomachine blade row moves through a flow field disturbed by inflow distortions,

potential interactions with adjacent blade rows, shock waves, wakes, vorticity shed at the

upstream blade rows, and propagating pressure waves. Furthermore, blade movement

(in flutter or forced-response problems) leads to periodic changes in the magnitude

and the direction of the incoming flow vector relative to the blade. As a consequence,

the blade circulation changes in a periodic manner and, in accordance with Kelvin's

Circulation Theorem, vorticity is shed at the trailing edges and convected downstream

with the mean flow. The transfer of energy from the mean flow into kinetic energy

associated with unsteady vortex sheets is regarded as a loss in accordance with chapter 2.

This loss mechanism was first considered by Keller [10], who calculated the average

kinetic energy in the vortex sheets trailing a single blade row in an incompressible flow as

a function of the unsteady c irculation amplitudes and the stage geometry. He estimated

the circulation amplitudes at 5% of the steady circulation and related the average rate at

which energy is transferred into the vorticity field to the steady power required to turn

the rotor. His results indicate that, on average, the specific secondary kinetic energy is

between 0.4% and 1% of the steady specific work absorbed or developed by the rotor,

with the exact value depending on the stage geometry.

Sears and Kemp [70] used thin-airfoil theory to calculate the unsteady lift acting

on a rotor row subject to the wakes of an upstream stator row. Fourier decomposition

of the velocity perturbation and subsequent application of results presented in earlier

papers [12, 13], allowed them to calculate a slowly converging series of unsteady lift co-

efficients. In [11], they used thin-airfoil -theory, as presented in earlier papers [15, 14], to

calculate the circulation amplitudes and extended the approach to an elementary stage
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with potential interactions between blade rows. This approach, while enabling them

to calculate the circulation amplitudes, limited them to incompressible flow, blades of

zero thickness and camber with the mean flow nearly in the blade direction, i.e. lightly

loaded blades. Thus, the airfoils are more representative of compressor blades than tur-

bine blades. Furthermore, they had to specify the steady lift distribution on the blades.

They found that the unsteady circulation amplitudes are, in general, substantially less

than those assumed by Keller. As a consequence, the secondary kinetic energy is less

than what was found in [10]. Also, the circulation amplitudes were much larger for the

upstream blade row (in a single stage) than for the downstream blade row. This was

attributed to the importance of the velocity field at trailing edge to the blade circulation.

In another approach for incompressible flows, Hawthorne [16] used lifting-line theory

to calculate the rate of energy transfer. He found values which are essentially in line

with those of Keller.

Korakianitis [71] used a CFD-code (UNSFLO) to determine the unsteady forces act-

ing on rotor blades in subsonic flow. He systematically varied the geometric parameters

of rotor blade rows in an effort to provide design data that predicts the unsteady blade

forces in response to incoming viscous wakes and potential disturbances. In the cases

considered, he found average unsteady forces and moments which are typically between

90% and 100% of the mean values. Giles [6] reported a 40% peak-to-peak variation in

the rotor lift for a transonic high-pressure turbine stage under the influence of unsteady

shock wave/blade row interaction.

In this work, the circulation amplitudes are the results of numerical simulations,

which allows one to obtain unsteady circulation amplitudes for arbitrary blade and stage

geometries, steady lift distributions, and Mach numbers. Kelvin's Circulation Theorem

is valid even in compressible flows, provided the flow is homentropic. Eliminating the

need to estimate the circulation amplitudes or to deduce them from thin-airfoil the-

ory, results in a realistic measure for the importance of this loss mechanism in modern

turbomachines. The work proceeds along the lines of [10]; it considers a single blade

row, its circulation variation and the associated trailing vorticity only. Wake/rotor and
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rotor/stator interaction cases are considered. In wake/rotor interaction cases, experi-

mental data is used to model the wake.

3.1 Analytical Theory

3.1.1 Single Airfoil

Figure 3.1 shows an airfoil experiencing an unsteady lift and circulation due to either

its own motion or the imposition of an external disturbance. The coordinate system

has been chosen such that the freestream velocity, U,, and the wake are aligned with

the x-axis.

y

U00

Figure 3.1: An isolated airfoil with an unsteady lift and circulation

Let the circulation on the airfoil be described by a steady component plus sinusoidally

varying, unsteady components.

00 00

F (t) = F + E Im (t) = Y + Z me~'"(WMt-'M) (3.1)
m=1 m=1

The variable <Pm denotes the phase angle of the mth temporal mode. In the above

equation, and in the remainder of this chapter, it is the real part of any quantity, that

is implied by complex notation.
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The strength of the unsteady vortex sheet shed at the trailing edge is determined

by the condition that the sum of bound and shed vorticity remain constant. This is

a consequence of Kelvin's Circulation Theorem which is valid in any compressible flow

that is inviscid, barotropic, and has only conservative body forces acting on it. In a

barotropic flow, the density is a function of the pressure only. The barotropic condition

can be replaced by the requirement of a homentropic flow because a homentropic flow

is also barotropic. If any of these conditions is violated, source terms appear in Kelvin's

Circulation Theorem, and the sum of shed and bound vorticity is no longer constant.

The strength of the vortex sheet (x, t), which is convected with the mean flow, is

related to the rate of change of the circulation by

S(X, t) = -' Id[(t - . (3.2)
Uoo dt U01

There are, at this point, two principal objections to this model. First, a single vortex

sheet suffers from the Kelvin-Helmholtz instability to small perturbations and tends to

roll up into discrete vortices. Second, due to the circulation bound to the airfoil, a simple

convection of the vortex sheet is a poor model in the nearfield. The first problem is

solved by noting that the kinetic energy of an isolated vortex sheet undergoing inviscid

roll-up is invariant. The second problem exists in the nearfield only; in the farfield, the

influence of the steady circulation is limited to an axial and circumferential offset, which

is without consequence for the amount of secondary kinetic energy present.

A frame of reference convected with the mean flow, in which the flow appears steady, is

introduced by

X = X - U00t

and y=y. (3.3)

Equation (3.2) may now be written in the form

Sm=1
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where the reduced frequency km is defined by

km W MC (3.5)
U00

The variable c denotes the airfoil chord.

In the stationary frame, the linearized potential equation, i.e. the equation for

the perturbation potential describing the flow field induced by the vortex sheet far

downstream of the trailing edge, is

I a+ U(--+) + V2 = 0, (3.6)
a2 (at ax

where a denotes the speed of sound. Unsteady and convective contributions in equa-

tion (3.6) are eliminated by the shift in the frame of reference; all that remains is

-2 + - = 0. (3.7)

In the convected frame, the flow perturbation satisfies the equations for steady, irrota-

tional, and incompressible flow, regardless of the freestream Mach number. Due to the

linear nature of equation (3.7), the principle of superposition can by applied. Far down-

stream of the trailing edge, where the influence of the bound circulation is negligible,

the perturbation potential &m associated with the mth mode is

b = exp ikm- exp {-km ', for y > 0,

and Om = A exp ikm- exp +km -I for < 0. (3.8)

The values of A+ and ka are determined from the matching conditions at y = 0. First,

the jump in the tangential velocity perturbation ii across the vortex sheet must equal

the strength of the vortex sheet.

um (i, 0+) - im (i, 0-) = jm (i) (3.9)

This leads to

im (0+) _ im (0~) m > i -km j m. (3.10)
CP+-A
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Second, for the problem under consideration, there must be no jump in the normal

velocity perturbation v.

Fm (,10+) - UM (i, 0~) 0 (3.11)

From equation (3.11) follows

&m (0+) - Vm (0) = 0 - - - = 0. (3.12)

Combining the two results above gives

= - - = 2 e . (3.13)
2

The average rate at which kinetic energy is transferred from the mean flow to the

unsteady motion associated with the shed vorticity is keUm. Due to the orthogonality

properties of trigonometric functions, summarized in appendix B, the principle of su-

perposition can be used. The kinetic energy in the convected frame can be calculated

mode by mode and summed subsequently. The average specific kinetic energy per unit

wake length and depth of the mth mode, kem, is determined by integrating the kinetic

energy over one wavelength in the i-direction and from 0 to oo in the y-direction.

k + 27rc/km 1
imem ]J" J f [3 (im)]2 + [g? (m)]2} di dp

27rc _. 2

km +00 2-7c/km, 2 + 2

= k j+ km 1 {[ ' d() dy (3.14)

The symbol R denotes the real part of a complex quantity. With the help of equation

(2.31) in subsection 2.3.1, the final result for the average kinetic energy associated with

the shed vorticity becomes

ke 8 km -m .)(3.15)
M=1

It is the average specific kinetic energy, ke, which, in accordance with equation (2.38)

of subsection 2.3.2, is related to the entropy rise upon mixing. There, the entropy rise

was summed over all temporal and spatial modes, In the application here, the spatial

Fourier-decomposition of the convected unsteady velocity field is not known explicitly.

If the spatial Fourier-decomposition of the unsteady velocity field were carried out and

the secondary kinetic energy of one temporal mode summed up by spatial modes, the
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result would be the same as in equation (3.15) by virtue of the orthogonality properties

of sines and cosines (appendix C). It is important to point out that the entropy rise

is independent of the frame of reference and, in particular, the Mach number of the

freestream. Thus, the approach taken in [10] can be extended to compressible flows.

3.1.2 Cascade

Figure 3.2 shows an analogous situation for a cascade in which every blade is experi-

encing an unsteady lift and circulation due to the imposition of an external disturbance

induced by the upstream blade row in an elementary stage.

VR

n=1

UO

"PO (/
n =0

Figure 3.2: A cascade with an unsteady lift and circulation

The coordinate system has been chosen such that the mean downstream velocity,

Uo, is in the i-direction and the wake of the nth blade lies along y = nP. P is the
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standard pitch, P the rotated pitch defined as P cos a, P* the standard pitch of the

neighboring blade row, and a the angle between the wake and the axial direction.

Suppose that the circulation of the nth blade is given by

00 00

P (t) = n + I"i (t) einl3" = 7 + E Pme4W"t-n/m- ", (3.16)
m=1 m=1

with /3m being the inter-blade phase angle for the mth mode. The frequencies Wm

correspond to the blade passing frequency and its harmonics

VR
Wm = m wf = 27r m , (3.17)

where VR is the rotor speed. The inter-blade phase angle is obtained from the difference

in pitch of the blade rows as

3m = 27r m sign (VR). (3.18)

Thus, the unsteady vortex sheet strength along the nth wake is given by

1 d [ / x-nPsina'1
( )= tn [ - . (3.19)

nZi) UO td t UO

With equation (3.16), this can be expressed in the form

00 {(320
?n (i) = r km expt i km+ nm+ Pm .(3.20)

m=1

The inter-wake phase angle of the mth mode, #m, is defined by

-m= - 3 m kP sm a = - A. tan a, (3.21)
2 2 2 c 2

with the reduced frequency Am given by

1 P
Am = -km-. (3.22)

2 c

The convected coordinate ' and the reduced frequency km are defined as before, with

U0 0 replaced by UO, and the airfoil chord replaced by the blade axial chord. The spatial

periodicity condition for the perturbation potential of the mth temporal mode is

M PZ ) = m(' ) e'. (3.23)
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The matching conditions at the zeroth wake are identical to the conditions used for a

single airfoil, equations (3.9) and (3.11). For 0 < y < P, the potential can be written as

rm (j, 9) [ [ cosh km -Am + B sinh km -A m ) exp ki (km )+ }.

Using the periodicity condition (3.23) to relate the velocities at (i, 0-) to those at

(X, P-), the matching conditions give the following equations:

(Am cosh Am - Bm sinh Am) e+im/2 - (Pm cosh Am -

(Am cosh Am + tm sinh Am) e +i4m/ 2 + (Am cosh Am -

These two equations can be written in matrix form as

Bm sinh Am) e-i4m/2 = Pmeiw'

Bm sinh Am) e-i3m/2 = 0 (3.25)

+i cosh Am sin kp-
i s2[i isinhAmcos 4-

.A

F3

- sinh Am cos Z!2

+1i cosh Am sin - ) 20

and solved to yield

.- i cosh Am sin pto
Am = - 2 - r ce-

Asi2 2 0- + sinh2 Am

= sinh Am cos E2.and Bm I -- 2 mei~n
2 sin2 3 + sinh2 Am2

Hence, the solution for 0 < < P is

~ Tm/2c Ly.nm-m = - Pm2C [cosh Am sin-

sin2 4- + sinh2 Am i ch 2
22

+ sinh Am cos - sinh
2 (km- Am )

cosh (km- -
C

exp

kml'm/2c

sin2 4- + sinh 2 A
cosh Am sin -s

2
cosh (k- -

+i sinh Am cos 2 sinh (km

and

kmrm/2c

sin2 P7 + sinh 2 Am
i cosh Am sin

2
sinh km-Y - Am)

C

+ sinh Am cos cosh
2 (km exp i km 
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(3.24)

(3.26)

(3.27)

Am)

+ + Om , (3.28)

Am)

- Am ) exp { + + <pm) , (3.29)

+ + m . (3.30)

e

X

i k
( C

i km

- Am ]



The corresponding average kinetic energy per unit mass is

I-. 1 kf 27rc/k,, 1
k j j-rc/ 1 [-2 (am) + R2 (;m)] dy dX

2

kmm/4c 2/Om 23m
cosh2 Am sin2 + sinh2 Am cos2 - X

sin2 4. + sinh2 A 2 2I

22

x - )cosh km - Am + sinh km- c Am dy

(kmrm /4c)2 P
- cosh 2 km-y - Am dy

sin 2 J_ + sinh2 I fo

I r. 2 A sinh Am cosh Am (3.32)

()31

4 kpa sin2 L + sinh2 Am

which can be shown to coincide wit f sueto [.3.. Then this energy is dissipated

later, the resulting mass-average entropy increase is

_ y - 1 (m 2 Am sinh Am cosh Am
4 (Pao sin2 

!!4 + sinh 2 Am

2

in accordance with equation (2.38) of subsection 2.3.2. The corresponding total pres-

sure drop

_ y rm 2 A, sinh Am cosh Am
A~em (3.33)

4 (Pao) sin2 0- + sinh2 Am

is obtained from equation (2.47).

3.1.3 Cross-Induced Kinetic Energies

The shedding of vorticity at the trailing edge in response to circulation variations is

ultimately caused by the presence of unsteady perturbations. Vorticity waves, in the

form of wakes being convected with the mean flow, and pressure waves, in the form of

weak shock waves, are found to be of equal importance in the following section. For

very small axial gaps, evanescent potential interactions can be significant, too.

If shedding of vorticity is being caused by the presence of weak shock waves or

the evanescent potential field of the upstream blade row in an elementary stage, the

entropy rise calculated with the kinetic energy (3.31) only is correct. As was shown

71



in subsection 2.3.2, propagating pressure waves and evanescent potential fields do not

couple with vorticity waves upon dissipation. A very weak shock wave can be thought

of as being composed of isentropic pressure waves with the vector sum of the local

convection velocity and the local speed of sound pointing along the shock front.

Vorticity waves (wakes), however, can be both cause and consequence of unsteady

voticity shedding at the trailing edge. The vorticity waves being convected through a

cascade and causing a periodic circulation variation are of the same frequency and axial

wavenumber as the vorticity shed at the trailing edge. In the calculation of the secondary

kinetic energy (3.31), the velocities induced by the vorticity convected through the blade

row and the kinetic energy associated with it, are not accounted for. There are three

reasons for the neglect of these cross-induced contributions.

First, it is difficult to account analytically for cross-induced contributions in the com-

plex geometries and flow fields that will be considered. The vorticity convected through

a cascade adds to, or subtract from, the self-induced secondary kinetic energy (3.31)

(depending on the phase relationship between convected and shed vorticity), giving

the self-induced kinetic energy the character of a mean value. The self-induced kinetic

energy is associated with velocities induced by a blade row's own trailing vortex sheets.

Second, for potential rotor/stator interaction in an elementary stage, the analysis by

Kemp and Sears in [70] suggests that the cross-induced contributions (from the vorticity

shed at the trailing edge of the upstream blade row) to the secondary kinetic energy

beyond the downstream blade are of the same size as the self-induced contributions.

For the upstream blade row, they were found to be negligible. The differing relative

magnitudes of self-induced and cross-induced contributions were explained by the cir-

culation amplitudes; the upstream blade rows showed unsteady circulation amplitudes

which were a factor of ten larger than those of the downstream blade rows. In the simu-

lations performed here, the circulation amplitudes were of the same order of magnitude,

suggesting a second rationale for neglecting cross-induced contributions.
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Third, in wake/rotor interaction, most of the wake unsteadiness originating at the

trailing edge of the upstream blade row is in the lowest circumferential wavenumber.

As a consequence, most of the unsteadiness in the (frame of reference of the) down-

stream blade row is at the fundamental (blade passing) frequency. In the convected

frame beyond the trailing edge of the downstream blade row, most of the unsteadiness

associated with the convected vorticity is therefore found at the fundamental stream-

wise wavenumber. While the shed vorticity induces a velocity field continuous in the

streamwise (i-)direction, it introduces a discontinuity in the normal (y-)direction.

This implies that the shed vorticity has energy in discrete normal wavenumbers spread

over an infinite range, even if the incoming unsteadiness has its energy confined to the

blade passing frequency. Due to the orthogonalities of sines and cosines, summarized

in appendix C, there is no crosscoupling between the incoming convected vorticity and

the higher harmonics of the shed vorticity in the normal (y-)direction. It is therefore

legitimate to ask how much of the secondary kinetic energy is in the higher spatial

harmonics. To that end, the normal Fourier modes of the velocity field described by

equations (3.29) and (3.30) have to be found. For the mth temporal mode, the normal

wavenumbers downstream of the rotor are

kn = .+21r (3.34)

For simplicity, and without loss of insight, it will be assumed that 3r is an integer

multiple of 27r and that 'Pm = 0.

O3m = 2j 7r, j = 1, 2,... (3.35)

If the inter-wake phase angle were not taken to be zero, the determination of the Fourier

coefficients would involve a summation over a finite number of blades. This is because

the potential (3.28) is valid only over an interval of extent P, while the integration to

obtain the Fourier coefficients has to be carried out over an interval of periodicity. The

Fourier coefficients are:

Umn'S - 2 sin kn 1)d -2(-l) p k 2  sin (km) (3.36)
(1~~~/c)~~ 1 sn cI \c= m n \C
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Figure 3.3: Relative magnitude of the spatial harmonics in the shed vorticity wake (first

harmonic corresponds to the pitch of the upstream blade row)

Figure 3.3 shows the relative magnitude of the velocity harmonics um,, and vmn,c,

nondimensionalized by the respective first spatial harmonic, with the reduced frequency

Am as a parameter. Note that for higher harmonics (large wavenumbers) Umn,s 1/kn,

which is consistent with the discontinuity of the streamwise velocity perturbution U at

the vortex sheet. Since the normal velocity perturbation ii is continuous everywhere,

one finds Vmn,c ~ 1/k2 for large wavenumbers. The quadratic decay is mandated by

the discontinuity of its derivative at the vortex sheet. This is easily deduced from the

potential equation in the form (al/) = - (hi/d). From equations (3.36) and (3.39),
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one can calculate the spatial average of the secondary kinetic energy associated with a

wavenumber kn.

Ir 2 k 2
kemn = - - 2

k +kn 1 + (7r/Am) 2 2

1"

0.8-

rTm

0.6-

0.4-

-1 -0.2 0.6 1.4 2.2

(3.40)

log (2Am)

Figure 3.4: Relative amount of kinetic energy in higher spatial harmonics

Figure 3.4 shows the ratio

Zn=2 kemnrm = __-. (3.41)
E', kemn

versus the governing parameter Am. Even in the limit Am- 0, i.e. for zero reduced fre-

quency, there is a finite amount of secondary kinetic energy in higher spatial harmonics.

The limiting case for Am= 0 leads to a value of

1 _ 6
rm = 1 - - 3 9.2%. (3.42)

E',= (1/n2) T2

In the cases considered in the next section, a typical value of Am is 5 and roughly 64%

of the secondary kinetic energy is found in higher spatial harmonics.
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3.2 Results - Unsteady Circulation Loss

The analytic model described in the previous section was applied to a number of blade

rows and stages. The amplitudes of the unsteady circulation were calculated with the

CFD-code UNSFLO by Giles [5, 6]. The simulations were run until the flow was periodic;

then 50 instantaneous flow solutions equally-spaced in time were stored, from which the

circulation amplitudes were determined. For a single blade row, unsteadiness due to

upstream blade rows, (i.e. viscous wakes and potential disturbances), was modeled

at the inflow boundary. Incoming wake models and potential disturbance models are

described in [67].

3.2.1 Single-Stage, Large-Scale Turbine No. 2 at Cambridge

Hodson [69] conducted measurements of wake-generated unsteadiness in the rotor of a

large-scale, low-speed, single-stage, air-driven turbine. As detailed in [69], the stage is a

free-vortex design with zero exit swirl and high reaction. The uniform axial velocity at

the stage inlet combined with radial equilibrium results in no curvature in the meridional

plane. The flow at midspan can thus be regarded as two-dimensional. The 51 rotor

blades are separated from 36 stator blades by an axial gap of about one rotor axial

chord. In [42], Hodson computed the two-dimensional wake/rotor interaction with the

data for the modeling of the incoming wake taken from [69].

Input Parameters Others

Inlet Flow Angle 2.10 Outlet Flow Angle a -66.80

Exit Static Pressure 0.8956 Inlet Mach Number 0.14

Isentropic Exponent 1.4 Outlet Mach Number Mo 0.40

Stator Pitch/Rotor Pitch 1.417 Rotor Pitch 0.982

Rotor Speed VR 0.3104 Reduced Frequency k1  3.45

Table 3.1: Input parameters for the simulation of the Cambridge No.2 turbine
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The input parameters for the simulation are in table 3.1. Pressures have been

nondimensionalized by the inlet stagnation pressure, lengths by the rotor axial chord

and velocities by the inlet stagnation speed of sound. Outlet flow angles as well as

inlet and outlet Mach numbers are time-mean mass-averages in the frame of reference

moving with the corresponding blade row. The wake model was identical to the one

used by Hodson in [42]. The maximum velocity defect and the wake width were chosen

such as to replicate the maximum velocity and the momentum deficit in figure 4 of [69].

No effort was made to account for the viscous decay of the wake in the experiment. In

the absence of information about a potential disturbance acting on the rotor, it was not

modeled. Given the large axial gap, it can be expected to be insignificant.

Wake only

Wake Velocity Defect in [%] 4.6

Wake Width/Stator Pitch in [%] 30

Wake Angle (stator frame) 65.00

r,/r in [%] 0.67

Entropy Rise A-1 1.66 x 10-6

Total Pressure Drop' -Apt 5.80 x 10-6

Efficiency Drop -Ar7.,,E7s,E,D ~ 0.04%

Table 3.2: Unsteadiness parameters and results for the Cambridge No.2 turbine

The result of the simulation is summarized in table 3.2. With the harmonics of

the circulation known, the entropy rise and the total pressure loss are obtained from

equations (3.32) and (3.33), respectively. Section 2.5 relates the total pressure drop to

the drop in the isentropic efficiency. Higher harmonics of the circulation (P., m > 1) did

not contribute significantly and are not included in the above table. In the remainder

of this chapter, higher harmonics have been found to be insignificant, i.e. more than a

factor of 10 smaller than ]1, if they are not listed.

'Total pressure drop as defined here is not used in low speed flows. Instead, the total pressure drop
is nondimensionalized by the dynamic head. It is used here to be in line with the chain of
reasoning in chapter 2. The important measure is the efficiency drop.
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3.2.2 Large Scale Rotating Rig (LSRR) at UTRC

The second case is a simulation of the flow through the rotor of a large-scale, axial-flow

turbine model investigated experimentally by Joslyn, Dring, and Sharma [72]. It is a

one and one-half stage turbine model consisting of 22 first vanes, 28 first blades, and

28 second vanes, representing the first three blade rows of the high-pressure turbine

of a high bypass-ratio aircraft turbine. The Reynolds number of 5.6 x 106 and the

absolute and relative flow angles are typical for current high-pressure turbine airfoils.

The important input parameters for the simulation of the flow through the rotor are

summarized in table 3.3.

Input Parameters Others

Inlet Flow Angle 48.90 Outlet Flow Angle a -65.50

Exit Static Pressure 0.975 Inlet Mach Number 0.124

Isentropic Exponent 1.4 Outlet Mach Number Mo 0.200

Stator Pitch/Rotor Pitch 1.2727 Rotor Pitch 0.9578

Rotor Speed VR 0.1137 Reduced Frequency k, 2.92

Table 3.3: Input parameters for the LSRR simulation

In a first simulation, the incoming unsteadiness consisted of wakes only. The wake

profile was Gaussian as described in [67]; the wake width and the maximum velocity

defect were chosen to match the maximum velocity defect and the momentum defect at

midspan downstream of the first vanes, which were documented in figure 6 of [72].

In a second simulation, a potential disturbance was superimposed upon the wake

disturbance. The unsteady pressure amplitude of the potential disturbance was cho-

sen such that it causes a potential velocity perturbation resembling the one shown in

figure 6 of [72]. However, while the measurement station in the experiment is ap-

proximately 0.52x (axial chord) upstream of the rotor leading edge, the location of the

potential disturbance was set at 0.15x(axial chord) in the simulation. Otherwise, the

influence of the incoming potential disturbance on the rotor would have been negligible

due to its strong exponential decay at low Mach numbers. Also, depending on the lo-
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cation of the inflow boundary, where the potential disturbance is prescribed, it can add

to or subtract from the wake effect on the circulation. The results of both simulations

are in table 3.4.

Wake Wake+Potential

Wake Velocity Defect in [%1 15 Pressure Disturbance 3 x 10- 3

Wake Width/Stator Pitch in [%j 0.10 Disturbance Location -0.15

Wake Angle (stator frame) 68.50

P1 /J in [%] 0.57 r 1 /r in [%] 0.68

Entropy Rise A-91  1.23 x 10-5 A 1.72 x 10-5

Total Pressure Drop -A-p, 1  4.32 x 10-5 -Apt, 6.01 x 10-5

Efficiency Drop -ATs,E/77s,E,D 0.11% -A77s,E/?7s,E,D 0.15%

Table 3.4: Unsteadiness parameters and results for the LSRR

3.2.3 Cold Air Turbine Stage at the DFVLR

Binder [73] used the L2F technique to measure the flow in cold air turbine test facility.

The stage had 20 stator blades, 31 rotor blades, and an axial gap of 113% rotor axial

chord; it was a scaled version of the first stage of an helicopter gas turbine.

The flow in the low aspect ratio, high hub-to-tip ratio stage was weakly transonic

and showed a wake with a velocity defect of 6.5% and an angle of 700 at midspan,

50% rotor axial chord upstream of the rotor leading edge. Potential interactions at

this axial gap were found to be negligible. In the simulation, the unsteadiness at the

rotor inlet boundary consisted of wakes only. The input parameters for the simulation

are in table 3.5. Based on the velocity distribution at the rotor inlet measuring plane,

documented in figure 5.7 of [73], a sinusoidal wake model, as described in [67], with a

maximum velocity defect of 6.5% in the stator frame of reference was chosen.
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Input Parameters Others

Inlet Flow Angle 46.70 Outlet Flow Angle a -620

Exit Static Pressure 0.699 Inlet Mach Number 0.43

Isentropic Exponent 1.27 Outlet Mach Number Mo 0.65

Stator Pitch/Rotor Pitch 1.55 Rotor Pitch 0.822

Rotor Speed VR 0.5765 Reduced Frequency k1  4.25

Table 3.5: Input parameters for the DFVLR turbine simulation

Note that this case does not strictly satisfy the condition of homentropic flow re-

quired by Kelvin's Circulation Theorem (in compressible flow). Since the flow is not

incompressible, as in the previous two cases, a viscous wake consists of a vorticity wave

accompanied by an entropy wave.

Wake only

Wake Velocity Defect in [%] 6.5

Wake Angle (stator frame) 700

rI1 / in [%] 2.83

Entropy Rise A31 3.56 x 10-4

Total Pressure Drop -A-pj 1.67 x 10-3

Efficiency Drop -Ar/s,E/tls,E,D 0.24%

Table 3.6: Unsteadiness parameters and results for the DFVLR turbine
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3.2.4 ACE Turbine Stage

This subsection shows the results obtained for a highly, loaded transonic high-pressure

turbine stage, which has been investigated at MIT [50] and Oxford University [52, 54]. In

the experiments, the objective was to closely simulate all the important nondimensional

parameters of fluid mechanics and heat transfer in a modern high-pressure turbine

stage, while reducing the initial turbine metal temperature. A detailed computational

account of the inviscid stator/rotor interaction, dominated by weak shock waves, for

almost identical input parameters is presented in [6]; it was briefly recounted in section

2.7. Table 3.7 lists the input parameters used in the simulation.

Input Parameters Others

Stator Inflow Angle 0.00 Stator Outflow Angle 73.50

Exit Static Pressure 0.27 Rotor Inflow Angle 56.70

Isentropic Exponent 1.28 Rotor Outflow Angle -67.60

Stator Pitch/Rotor Pitch 0.8631 Rotor Pitch 1.399

Rotor Speed VR 0.55 Stator Inlet Mach Number 0.14

Reduced Frequency k1  2.38 (rotor) Stator Outlet Mach Number 1.13

Rotor Inlet Mach Number 0.59

Rotor Outlet Mach Number 1.11

Table 3.7: Input parameters for the ACE turbine stage simulation

In the simulation, wake/rotor interaction is not accounted for. The potential inter-

action and the interaction of weak shock waves with the blade rows are the result of

the simulation rather than being prescribed as boundary conditions. This case relies

on the fact that weak shock waves are almost isentropic with As~ (M - 1)' to sat-

isfy the requirement of homentropic flow in Kelvin's Circulation Theorem. Table 3.8

lists the results.
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Stator Rotor

ri/P in [%] 0.61 r1 /I in [%] 2.19

Entropy Rise A31 7.01 x 10-4

Total Pressure Drop -Ap, 1  3.21 x 10-3

1 2 /P in [%] 0.27 J 2 /P in [%] 1.02

Entropy Rise A92  2.60 x 10-4

Total Pressure Drop -Apt, 2  1.19 x 10-3

r 3 /y in [%] 0.07 r 3 /P in [%] 0.20

Entropy Rise As3  1.55 x 10-5

Total Pressure Drop -Apt, 3  7.07 x 10-5

r 4 /P in [%] 0.07 I 4 /P in [%] 0.25

Entropy Rise A94  3.11 x 10-5

Total Pressure Drop -APt, 4  1.42 x 10- 4

r5 /Y in [%] r 5 / in [%1 0.13

Entropy Rise A 5  1.12 x 10-5

Total Pressure Drop -Apt, 5  5.12 x 10-5

P6 /T in[%] J'6 /r in [%] 0.10

Entropy Rise A- 6  8.15 x 10-6

Total Pressure Drop -Ap, 6  3.27 x 10- 5

Entropy Rise E =1A-mS 1.3 x 10-3

Total Pressure Drop = 4.7x10-3

Efficiency Drop -Ar/s,E/rs,E,D 0.30%

Table 3.8: Results for the ACE turbine stage

As a consequence of the shock wave/blade row interaction, comparatively large un-

steady lift amplitudes are expected; Giles [6] reported a 40% peak-to-peak variation

in the rotor lift for almost identical input parameters. Nevertheless, the circulation

amplitudes (r;/T) of the rotor remain small. At 5.5% of the mean, the peak-to peak
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variation in the circulation is one order of magnitude less than the lift variation. The

increased importance of higher harmonics of the rotor unsteady circulation is the re-

sult of shock waves which represent localized disturbances with a significant content of

higher-order temporal modes. Since the stator is choked, the unsteady stator circulation

is substantially smaller.

3.2.5 NASA Stage 67 Compressor

The NASA Stage 67 is a low aspect ratio, single-stage, transonic, axial-flow compressor

designed and experimentally investigated at the NASA Lewis Research Center [74, 75,

76]. It consists of 22 rotor blades separated from 34 stator blades by an axial gap of

78% rotor axial chord. At a rotor tip Mach number of 1.38, strong shocks are present

in the rotor passage. Shang [77] used UNSFLO to calculate the flow through the stage

at midspan with the input parameters inferred from the experiments at NASA Lewis.

Input Parameters Others

Rotor Inflow Angle 59.90 Rotor Outflow Angle 39.70

Exit Static Pressure 0.8103 Stator Inflow Angle -44.70

Isentropic Exponent 1.4 Stator Outflow Angle 3.50

Rotor Pitch/Stator Pitch 1.55 Rotor Pitch 0.808

Rotor Speed VR 0.8335 Rotor Inlet Mach Number 1.106

Reduced Frequency k1  21.5 (stator) Rotor Outlet Mach Number 0.624

Stator Inlet Mach Number 0.668

Stator Outlet Mach Number 0.457

Table 3.9: Input parameters for the NASA stage 67 simulations

The case considered here is a stage with purely potential interaction between blade

rows. The strength of the potential interaction strongly depends on the size of the gap

separating the two blade rows. A wide range of gap sizes exist in compressors and the

gap itself varies from hub to tip. To be in line with modern compressor designs, the
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axial gap had been set to 10% and 20%. The results are listed in table 3.10.

Gap in % rotor axial chord f 10 Gap 20

r,1/ in [%] (rotor) 2.08 P 1 /r in [%] (rotor) 0.69

F 1 /r in [%] (stator) 0.90 J 1 /r in [%] (stator) 0.44

Entropy Rise A-i 1  1.06 x 10-5 A31 2.54 x 10-6

Total Pressure Drop -A1t, 1  3.73 x 10-5 -Apt, 1  8.90 x 10-6

r 2 /y in [%] (stator) 0.80 P 2 /y in [%] (stator) 0.41

Entropy Rise As 2  1.68 x 10-5 A- 2  4.42 x 10-6

Total Pressure Drop -Apt, 2  5.89 x iO- -Abt,2  1.55 x 10-5

r3 /r in [%] (stator) 0.49 P 3 /y in [%] (stator) 0.24

Entropy Rise As3  9.47 x 10-6 AS 2.27 x 10-6

Total Pressure Drop - Ajt,3  3.31 x 10-5 -A~, 3  7.95 x 10-6

14 /T in [%] (stator) 0.14 r 4 /7 in [%] (stator) 0.07

Entropy Rise A- 4  1.03 x 10-6 A34  2.58 x 10-7

Total Pressure Drop -Apj, 4  3.61 x 10-6 -APt, 4  9.01 x 10-7

Ejm=1 Aim 4-0 x 10- >m=1 AgM 1.0 X 10-5

E4=1 AIt,m 1.4 X 10-4 E = Aptm 3.5 x 10-5

Efficiency Drop -A77,,C/7s,C,D 0.03% -A7s,C/I 3 ,C,D < 0.01%

Table 3.10: Results for the NASA stage 67 simulations

This case, aside from the compressible nature of the flow, comes closest to the

assumptions made by Sears and Kemp[11, 15]. Another simulation performed by Shang

and documented in [77] indicates that the unsteadiness induced by rotor wake/stator

interaction is of the same order of magnitude.
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3.3 Summary - Unsteady Circulation Loss

The typical magnitude of the unsteady circulation amplitudes in incompressible flow was

estimated at 5% of the mean by Keller [10]. In their incompressible considerations within

the limits of thin-airfoil theory, Kemp and Sears [11] concluded that the amplitudes

are, generally, substantially less than 5%. The values found in this thesis for realistic

geometries in compressible flow suggest that 5% is an upper bound for the unsteady

circulation amplitude. Typical values were on the order of 1% with larger values for

highly loaded blade rows, small axial gaps, and high turning. Even the rotor of the

ACE turbine stage, for which a 40% peak-to-peak variation in the lift was reported [6],

shows only a 5.5% peak-to-peak variation in the circulation. In stator/rotor interaction

simulations, the circulation amplitudes of the upstream and the downstream blade rows

were of the same order of magnitude, which contrasts with the results of [11]; there the

unsteady circulation of the upstream blade row was found to be a factor of 10 larger. In

the ACE turbine stage it was only one fourth, and in the NASA stage 67 it was twice

the magnitude of the circulation amplitude of the downstream blade row.

Wake/rotor interaction and weak shock wave/blade row interaction are the most

important mechanisms leading to an unsteady circulation. Potential interaction is only

important for very small axial gaps between blade rows.

Keller [10] calculated the ratio K, of the kinetic energy in the trailing vorticity

to the steady power required to turn, or delivered by, the rotor; he found values of

0.04 < K,, < 0.01 for various configurations and circulation amplitudes of 5%. In line

with the smaller circulation amplitudes, the losses here are smaller than suggested by

Keller. In the turbine stages considered, the dissipation of the secondary kinetic energy

associated with trailing vorticity led to a drop in the isentropic stage efficiency of up to

0.24% through wake/rotor interaction. Dissipation of the secondary kinetic energy in

the vorticity trailing the rotor of the ACE turbine stage, where the unsteady interaction

is dominated by weak shock waves, led to a drop in the stage efficiency of 0.30%. In the

NASA stage 67 compressor, the efficiency drop was much less than in the ACE-turbine
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case because it is missing the shock wave/blade row interaction. The smallest gap of

10% axial chord resulted in a 0.03% drop in the isentropic efficiency only.

With turbine efficiencies generally beyond 90%, these results imply that Unsteady

Circulation Loss represents a small unsteady loss mechanism. The profile loss typically

accounts for one half of the losses in a turbine [53]; unsteady operating conditions can

cause an increase of 50% or more [9] if the character of the boundary layer changes.

Thus, one expects efficiencies in unsteady flow to decrease by roughly 2% as a conse-

quence of this (strongly nonlinear) loss mechanism alone. Unsteady Circulation Loss is

comparably small; they only account for a small part of the steady loss or the unsteady

loss. Also, it are certainly small compared to the uncertainty in measured efficiencies.

No further work is suggested on the subject of Unsteady Circulation Loss because

its magnitude has been clearly established and was found to be small.
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Chapter 4

Unsteady Viscous Loss

Unsteady Viscous Loss is loss with a non-zero time-mean due to viscous dissipation

of energy associated with the unsteady part of the flow field. Subsequently, it will be

shown that the primary locus of dissipation, in real turbomachinery flows, is in unsteady

boundary layers rather than in the freestream. Before comparing the relative importance

of unsteady loss in the freestream and the boundary layers, it is necessary to clarify the

concept of an unsteady boundary layer and to introduce the relevant length scales and

time scales. Figures 4.1 to 4.4 serve to illustrate the loss mechanism.
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Figure 4.1: Steady boundary layer subject to a discontinuous freestream velocity

Figure 4.1 shows a boundary layer on a flat plate translating to the left in an incom-

pressible fluid. The velocity profiles are given in a frame of reference fixed to the plate.

At t = t,, its velocity changes discontinuously. In the outer region far from the wall, the

initial response will be a shift of the velocity profile. Generation of vorticity is confined
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to the wall and spreads out with a rate characterized by the viscous time constant T

62
T = -, (4.1)

where J represents the boundary layer thickness. Ti, gives the time it takes viscous

effects to make themselves felt across the boundary layer. The normal distance to which

viscous effects have spread within a set time is characterized by the viscous length scale

(4.2)

An isentropic pressure (velocity) disturbance in the freestream will have a similar effect

on a stationary flat plate. Since an isentropic pressure disturbance does not change

the local vorticity in an incompressible flow, the initial response in the outer region

will again be a mere shift of the velocity profile, while viscous effects spread out from

the boundary. For compressible boundary layers with non-aligned static pressure and

density gradients, vorticity will also be created within the boundary layer, but this just

slightly modifies the above description.

-\

&f 6= X

\ I f
\

- - exponential envelope a (n)

unsteady velocity Z(n) for wf t = 0
- - - unsteady velocity Z(n) for wf t = ir/2

N'

S

axes fixed in the fluid U axes fixed to the wall

Figure 4.2: Unsteady boundary layer on an oscillating wall
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The unsteady velocity distribution induced by a wall oscillating harmonically with

forcing frequency wf, i.e. Stokes' second problem, is depicted in figure 4.2. In the left

half of figure 4.2, the velocity distribution, as seen in the stationary frame of reference,

has been sketched for two particular instants during a period Tf. Analogous to the

previous example, one can define a length scale to characterize the extent to which

unsteady viscous effects spread into the flow during a period.

6f= ~ (4.3)

The right half of the figure shows the unsteady velocity distribution in the frame of ref-

erence fixed to the plate. The same velocity distribution relative to a frame of reference

fixed to the plate can be obtained by allowing the freestream static pressure gradient

to vary harmonically with forcing frequency Wf, if the characteristic length If of the

pressure disturbance is much larger than the unsteady boundary layer thickness.

et

steady mean flow unsteady flow superposition

at f t = 0 at wtt = 0 at oft =ir

n

s

Figure 4.3: Unsteady boundary layer on a blade surface

In a turbomachine, figure 4.3, one will have both a steady and an unsteady boundary

layer together with a mean-flow pressure gradient, and a freestream which no longer
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satisfies Me <1; the forcing frequency becomes the blade passing frequency or one of its

higher harmonics. The unsteady stator/rotor interaction can generate strong pressure

waves. In the immediate neighborhood of the wall, a harmonic pressure disturbance

will still induce an unsteady velocity distribution as found in Stokes' second problem of

figure 4.2 for sufficiently high reduced frequencies [79]1 Away from the wall, the unsteady

velocities will increasingly be influenced by the non-zero (and generally turbulent) mean

flow and, possibly, compressibility effects. In the outer region beyond the boundary

layer, the response to a harmonic pressure disturbance will be purely potential.

rotor blade

1.316 1.317 1.318 1.319 1.320 1.321 1.322

axial location x

Figure 4.4: Unsteady boundary layer on a blade - simulation of the ACE turbine stage

at (t/T) = 0.9

Unsteady boundary layers, including regions of reversed attached flow2 have been

observed in numerical simulations. Figure 4.4 shows instantaneous velocity vectors in

the boundary layer on the rotor of the ACE turbine stage introduced in section 2.7; the

location is near the leading edge of the rotor blade, marked by an arrow in figure 2.12.

1 see section 4.3

2 For a definition of unsteady separation and unsteady reversed, attached flows consult [78].
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The locus and the mechanism of unsteady (viscous) dissipation are of pivotal im-

portance to this chapter. The energy associated with the unsteady part of the flow field

is dissipated either in the freestream or in unsteady boundary layers at the blades, the

hub and the tip. To compare the relative importance of these two loss mechanisms, the

following order-of-magnitude argument in laminar flow is instructive:

In the freestream, the velocity gradient is set by the unsteady velocity Ue = [e, el,

and the characteristic length If of the disturbance.

VUe ~ (4.4)

The subscript e denotes a quantity in the freestream (at the edge of the boundary layer).

If one assumes the presence of (linear) entropy waves, vorticity waves or pressure waves

(propagating approximately in or against the freestream direction), the characteristic

lengths become the wavelengths Af,i

Af 1 , 2 _ 27r

Ca ke

Af 3,4  27r (1 Me)and =-,(4.5)
Ca ke Me

and Ue is replaced by U,. The reduced frequency ke is defined in terms of the blade

passing frequency wf, the local mean velocity in the freestream Ue, and the blade axial

chord ca as

ke = Wf Ca(46he = ".(4.6)
Ue

Near the wall, a harmonic disturbance will give rise to an unsteady boundary layer of a

thickness characterized by bf and hence

-n ~ - . (4.7)
On Sf

To obtain a meaningful measure of dissipation, one has to integrate (the time-means

of) the unsteady dissipation functions (which are proportional to the viscosity and the

squares of the above velocity gradients) to account for the different extents of boundary

layer and freestream. Assuming that a wave typically travels one axial chord between
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reflections, one finds that viscous dissipation in the freestream is negligible if

2f 
<) ) «1. (4.8)

With the definition of the unsteady boundary layer thickness 6 f in (4.3) and equa-

tions (4.5), one can rewrite equation (4.8) as

1 kke
ke -«1,I

4r.2 Re

and 1Lke M < 1 (4.9)
4Zr2 Re( I Me)2

where the Reynolds number defined by Re = (peeca/,pe). For the Reynolds num-

bers encountered in turbomachinery applications, this inequality is easily satisfied.

Thus, the locus of unsteady viscous dissipation is in unsteady boundary layers, and

not in the freestream.

In turbulent flow, the argument is less straightforward, because it depends on the

relative level of the turbulent viscosity in the freestream and the boundary layer. How-

ever, unless the level of turbulent viscosity. in the freestream by far exceeds the one

characterizing the boundary layer, inequalities (4.9) still hold.

4.1 Analytical Approach

The initial step in the analytical approach taken in this section is to linearize the gov-

erning viscous equations about their time-mean. Taking the first-order perturbation

equations to their asymptotic high-reduced-frequency limit at the wall, the momen-

tum equation decouples. Driven by the unsteady pressure gradients, it yields the un-

steady streamwise velocity distribution near the wall. With the unsteady velocities

in the boundary layer known, the time-mean of the dominating term in the second-

order unsteady dissipation function can be calculated and related to a drop in the

time-mean isentropic efficiency.
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4.1.1 Governing Equations

In the streamline-oriented Cartesian coordinate system (s, n) of figure 4.3, the problem

is described by the continuity equation

O+ dn+p ( ~ Op Op
Os + n (4.10)

the streamwise momentum equation in conjunction with the stress/strain relations in a

Newtonian fluid

au Ou au 1 (Op
at + us +On = p O as

Ov2 &
ass-, = ( 2 a

+O-ass
9s

n )' (4.11)

(4.12)
(Ou

and rn =i +
(On

the energy equation in conjunction with the definition of the dissipation function

/(OT
atp

and

Jat
\9 2J
/Os\)

Op

+2 (OV)2

Op +8 (OT

a g n 2$ _F

+ + n

+ 4 (4.13)

dv \2
+n '(4.14)

OT aT
=s +On

= 1 2

and the equation of state

p= pRT. (4.15)

Because of the boundary layer character of the problem under consideration, the normal

momentum equation has been replaced by the assumption (Op/On) = 0.

4.1.2 Linearization

Linearizing the velocity components and the thermodynamic variables around their

time-mean, the first-order perturbation equations become

+- +as-- + aJ +--
On) 0s Os

On = 0, (4.16)

at as as
Oin O_

+ -F n +O n

15 - + + (O
On~ )] , (4.17)
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2 / Oi5 O5\
, =2- 2---) and

3 O s an!
(anlisn=b p

+ p O

as On5 + Os + O 0
+

a
k s ( a I

On )
+ i, (4.19)

- OU Oii 19:F
2pL 2 +

E1 Oi Oii) 2 (OU
n Os+ On 3 s On) \s On) , (4.20)

= 1
-pR

( 2N
Ip--p I (4.21)

The laminar viscosity p and the laminar thermal conductivity K have been assumed to

remain constant at their mean values in the freestream.

4.1.3 Nondimensionalization

All variables are normalized using time-mean quantities at the boundary layer edge and

the blade axial chord.

p

pel

s -+ --

Ca

UU -4

Ue

T -T
Te

n
n -+-

Ca

V

p
Pe

t -+ wft (4.22)

With this nondimensionalization, the linearized equations may be written as

075
ke

ke--
at

( OT
P ke a

+%5 ( O+
+p0 + -

= s

10js

+ U + fa0as 0n (4.23)

+ --
On

1 (0,,
+ I

7i Os

1 2
Re 3

at 8T
as F -s +

+ On
On )

On)

_aT
+U V-n

+ 0 7 3
"ags Ss+ On)'

On )
(4.24)

(4.25)

On)+p(+_

Tcp,
as On

- (4.18)

aT
+ UT-

and

(s

0as
+Os +0 = 0,

p2

and Fsn = 5 ,
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( 1)M ke +E + ++ U +
t as an (as anJ

+PrRe 9n +a + i, (4.26)

- 2 & aiai 0U{ v au \a: ai
Re as 9ss 'an n T\s +dn as +6n1

2 ( u a - aii aV (4.27)

3 as an as an

and i = (M2ji - . (4.28)

To arrive at the nondimensional energy equation (4.26), the definition of the Prandtl

number,

Pr = Cp , (4.29)
K

has been used.

4.1.4 High-Reduced-Frequency Limit

The high-reduced-frequency limit is characterized by a reduced frequency

ke > 1. (4.30)

The reduced frequencies of modern turbomachines typically are at the upper end of

the middle-frequency range (0.05 < k, < 5). The low-frequency limit clearly does not

apply. The high-reduced-frequency limit may only strictly apply for disturbances at

higher harmonics of the blade passing frequency. Here, the high-reduced-frequency

limit includes the inequalities

6f /6 < 1, (4.31)

Af /C' < 1, (4.32)

and 6 f /Af < 1. (4.33)

Inequality (4.31) states that normal derivatives of unsteady quantities dominate over

normal derivatives of steady quantities, because the unsteady boundary layer is much

thinner than its steady counterpart. Inequality (4.32) allows one to neglect streamwise
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mean-flow derivatives because the wavelength of the disturbance is much less than the

blade axial chord. Inequality (4.33) states that the wavelength of the disturbance is

far greater than the unsteady boundary layer thickness. It allows for the neglect of

unsteady streamwise derivatives in the presence of unsteady normal derivatives and

for the assumption of (oj5/8n)=O. Together, inequalities (4.32) and (4.33) imply that

the length scale describing the evolution of the steady boundary layer (the blade axial

chord), as well as the wavelength, are much larger than the thickness of the unsteady

boundary layer. In other words, parallel mean flow can be assumed because both the

steady boundary layer and the driving disturbance appear constant on the length scale

of the unsteady boundary layer. The errors incurred by the application of the high-

reduced-frequency limit in turbomachinery flows are addressed in sections 4.2 and 4.3.

Inequalities (4.31) to (4.33) implicitly depend on the reduced frequency. For simplic-

ity, consider a laminar boundary layer on a flat plate with zero mean pressure gradient.

The mean boundary layer thickness is approximately

- /(4.34)

where Re, is the Reynolds number formed with the local distance from the leading edge.

Assuming that the unsteadiness consists of pressure waves (propagating approximately

in or against the freestream), inequalities (4.31) to (4.33) take on the form

~ << 1, (4.35)

Af 27r (1 Me)
- < 1,(4.36)

Ca ke Me

a f 5  ke Me
and - ~-- - < 1 (4.37)Af 27r Re (1+ me

in the high-frequency limit. To derive the last two relations, the definition of the wave-

length A 3,4 (4.5) has been used. Inequalities (4.35) and (4.36) hold for high reduced

frequencies and may only be strictly satisfied for higher harmonics of the blade pass-

ing frequency. Inequality (4.37) is least critical because it relies on the large Reynolds

number in turbomachinery. A typical value of the Reynolds number in modern turbo-

machinery is Re, ~0(106).
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4.1.5 High-Frequency Limit of the Momentum Equation

Applying the inequalities of subsection 4.1.4 to the normalized momentum equation (4.24),

the following terms drop out:

(4.30,4.32)

ke ai+u + + + R-
at as as +;/n an

(4.33) (4.32) (4.32) (4.31)

_ 1 8p 1 a;Fs +% in 3{ 8+ T2n7i as 7i (#s + n /a-os p g jn

(4.33)

1 au
7sn - +Re On s

The numbers above the arrows refer to inequalities (4.30) to (4.33) and give the

reasoning for the neglect of individual terms. Inequalities (4.30) and (4.32) leave the un-

steady term and two convective terms dominant on the left-hand side. In the freestream,

only first of these convective terms remains; the second will be shown to be the domi-

nant convective term near the wall. On the right-hand side, only the driving unsteady

pressure term and the unsteady shear term remain.

4.1.6 Free-Stream and Near-Wall Approximation

In the high-frequency limit near the wall, the momentum equation simplifies further.

Due to inequality (4.31), the first of the remaining convective terms becomes small

compared to the unsteady term. While the unsteady shear (au/as) can be proportional

to the reduced frequency ke, as is the case for a propagating pressure wave, the mean

streamwise velocity U approaches zero. The second convective term approaches zero

because of inequality (4.30) and because the normal velocity perturbation ii vanishes at

the wall. The high-frequency limit of the momentum equation near the wall becomes

k e -- = ------. (4.38)Ot T, an T as
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The subscript w denotes a quantity at the wall. With the definition of the unsteady

shear stress Fm, the streamwise momentum equation near the wall can be written as

Ui 1 1 a 2 ii I O
ke - -(4.39)

at Re Tp, an2 T as

in laminar flow. Equation (4.39) describes a Stoke's layer driven by an unsteady pres-

sure gradient.

In the freestream, normal derivatives of steady quantities vanish and the streamwise

momentum equation takes the form

k- - = -- (4.40)
at os as

in laminar flow. Note that the mean streamwise velocity U approaches unity in the

freestream.

4.1.7 Streamwise Velocities in the High-Frequency Limit

Since (4.39) and (4.40) are linear constant coefficient equations, the principle of super-

position can be used. Any disturbance can be decomposed into its individual (tempo-

ral) Fourier modes. After the solutions to the individual modes have been found, the

response to the original disturbance may be obtained by superposition. The driving

pressure disturbance, decomposed into its individual modes, is given by

00

= p m(s) eimt. (4.41)
m=1

This is the form which will be used when the loss model is driven by unsteady pressure

gradients obtained from a simulation. To evaluate the accuracy of the analytic loss

model or the modeling accuracy of numerical simulations, a propagating (or convected)

disturbance of the form

00

= Pm exp {im (ks - t)} (4.42)
m=1

will be used. The variable im denotes the complex amplitude of the mth time-harmonic
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of the static pressure, and k, the streamwise wavenumber of the first harmonicd The

same functional forms, (4.41) or (4.42), are assumed for all linearized variables. For the

rnth harmonic, the solution in the viscous Stoke's sublayer near the wall is

1 1 i mk e n_ -imt
Um = ._ k -exPj-(1-z) 2 Re n e (4.43)

-p, k, m (IF 2 09s

for a pressure disturbance of the form (4.41), and

UM = I - exp -_(_i) _k Re n pm exp {im (ks - t)} (4.44)

for a wave-type disturbance (4.42). The first exponent in equations (4.43) and (4.44)

can be rewritten as

Smk> m2(1 0 i) T Re n -(1 - i) n (4.45)2!2 2 6 f

in terms of the unsteady boundary layer thickness 6f.

Far from the wall, the unsteady velocity asymptotes to

k
U = k pm exp {im (ks - t)} (4.46)

for a wave-type disturbance.

Figure 4.5 illustrates the above solutions for an upstream propagating wave over a

laminar (adiabatic) flat plate at zero pressure gradient. The 'exact' solution was ob-

tained by solving the linearized equations (4.70) to (4.75) discussed in the numerical

evaluation of modeling errors in section 4.3. In the viscous Stokes sublayer close to the

wall, the velocity distribution is well represented by equation (4.44). The agreement

increases with the ratio (6/6f) and decreases with the Mach number, because equa-

tion (4.39) assumes zero mean flow at the edge of the unsteady boundary layer and an

incompressible mean flow. Due to the neglect of the convection, which becomes impor-

tant away from the wall, it asymptotes to the wrong unsteady velocity. The correct

magnitude of the unsteady velocity in the freestream is given by equation (4.46).

3 In keeping with the high-frequency limit, inequality (4.33), and the boundary layer approximation,

(&p/8n) = (a;/on)= 0, the normal dependence of the unsteady pressure through a

wavenumber k, has been omitted.
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Figure 4.5: Unsteady streamwise velocity distribution as a function of the wall distance

4.1.8 Unsteady Dissipation

Note that the linearized dissipation function 41 (4.27) has a zero time-mean. The extra

unsteady dissipation with non-zero time-mean, 42, is of second order; it is obtained

from the definition of the dissipation function (4.14).

~ 1 5 ~2 g 2 /g g j2  22 U
2'2 121)2 2I ii -2 (a + IRIe [ 2 + + +(4.47)Re as On (as an 3 as On

Applying inequalities (4.30) to (4.33) and remembering that «U< i in the unsteady

boundary layer, the following terms can be neglected in the high-frequency limit:

(4.33) - (4.33)

R2= e 2 + 2 n)22(is )2 -

The dominating contribution in the high-frequency limit

tive of the unsteady streamwise velocity.

S= I()2
Re On

(4.33)
2

(1+)
3 s ni

2]

comes from the normal deriva-

(4.48)
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Taking the time mean of (4.48),

2 um)II2 dt = 9 (4.49)
27 Re~ 1im2 / OnO

one obtains

2 = -nm 2 . (4.50)
m=1 M=1

Due to the orthogonality of harmonic functions (appendix C), the time-mean of the

unsteady dissipation may be calculated mode by mode and summed subsequently. With

equation (4.43), the dissipation function (4.50) can be rewritten in the form

42,m = 1 O 2 exp -V2 (4.51)
2mkeiiw as t5 J

for the mth harmonic; it gives the time-mean dissipation per unit volume induced by the

mth harmonic of the pressure disturbance. Since the major part of the dissipation occurs

in the region of high gradients near the wall, equation (4.51) is integrated from the wall

into the freestream to obtain the losses per unit surface area due to the mth harmonic.

1 2-M [f 00 1 022
2im = - [j 2,m dn dt = _ _ (4.52)

o 2mkepw Re as

For a propagating-wave-type disturbance (4.42), equation (4.52) takes the form

1 2 oo1 (k 2 Ck
2i,m f - [[ m dn] dt= --w (- -* |12 k(mk1 .(4.53) 27ro O 2 p, e 2 Re I (

Figure 4.6 compares the rate of dissipation per unit volume rate of the 'exact' so-

lution and the high-frequency-limit solution depicted in figure 4.5. The 'exact' solu-

tion was calculated from the full second-order dissipation function (4.47). The high-

frequency-limit solution includes only the dominant term. The difference in the inte-

grated dissipation rate 42 in figure 4.6 is about 10% of the 'exact' solution for this

choice of parameters.

In the high-frequency limit, the normal distribution of the unsteady velocity and

the dissipation rate depend only on local quantities. It is 42i,m, in conjunction with the

local mean flow state at the wall, that is necessary to calculate the total pressure loss

and the entropy rise per unit surface area. In order to evaluate the unsteady dissipation,
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Figure 4.6: Dissipation rate for the 'exact' solution and the high-frequency limit

the Fourier modes of the driving static pressure or static pressure gradient along a blade

surface need to be known. These may be the result of an experiment or a numerical

simulation. In the latter case the algorithm does not have to include viscous effects.

Unless the unsteadiness is related to viscosity (or significantly affected by it), an inviscid

simulation will suffice!

4.1.9 Unsteady Viscous Loss and Efficiency

The results of section 2.5, relating the dissipation of unsteady waves to the efficiency via

an entropy rise and a total pressure loss, are not immediately applicable to the result

of subsection 4.1.8. First of all, the dissipation of (energy associated with) unsteady

(pressure) waves does not happen at a constant mean flow state. Instead of being

dissipated beyond the outlet of the stage, the energy is dissipated within the blade

passage. Secondly, due to the reheat effect, the total pressure loss and the entropy rise

are less than for a case in which the same amount of energy is dissipated beyond the

'Boundary layers at the trailing edge, for example, will likely alter the unsteady circulation response

to potential perturbations.
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outlet. Part of the dissipation can be recovered because it was turned into heat at a

pressure level higher than the outlet pressure.

parameter: Pt
16 8 4 2 Pt'?

37 74

7 7 .

1/2
4- -- - - - - - - - ----------- ------ - ---- --------- -- ----

h7

.1/8

1/16

.81.0 1.2 1.4 1.6

s/1/8

Figure 4.7: ht - s diagram for an ideal gas - revisited and magnified

The h-s diagram is slightly modified from figure 2.6. Figure 4.7 illustrates the

changes for a turbine; all quantities have to be interpreted as time-mean mass-averages.

The line connecting points 3 and 4 represents an expansion during which no unsteady

modes are dissipated within the blade passage. The dissipation happens beyond the

outlet at constant total temperature between points 3 and 4o. None of this dissipation

can be recovered. In the presence of Unsteady Viscous Loss in the blade boundary layers,

line 3-4', the entropy rise is slightly higher. Due to the reheat effect of dissipation at

a temperature above the outlet temperature, part of the dissipated energy, put into

the mean flow in the form of heat, can be recovered and turned into mechanical work.

Consequently, the difference in total enthalpy (total temperature) along path 3-4' must

be slightly larger than along path 3-4-4o; the total pressure loss Ap' is less than the

one which would have occurred if the same amount of energy had been dissipated at

the outlet pressure.
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In equation (2.38) of subsection 2.3.2, the entropy rise is written in terms of the

primitive variables associated with individual unsteady waves. For the unsteady loss

mechanism considered here, the dissipated energy is known directly from the second-

order dissipation function (4.52) in the unsteady boundary layer. The time-mean of the

mass-average specific entropy rise is

_q dm 1 d4 2i,m
Asm = - - 1 f , (4.54)

cPT P 7FcTTi

with the average mass-flux Ti through a blade passage defined as

=f pu) d d (). (4.55)

This is the entropy rise that results from the dissipation of energy associated with

unsteady waves in unsteady boundary layers. The reheat effect is captured by the mean

static temperature at the blade surface, Tw, in the denominator of equation (4.54). The

higher T,, the less the entropy rises per unit dissipated energy This entropy rise, or

the equivalent total pressure loss,

7 -1 d 1 fd 2 i~m
AP',m = - = J (4.56)'M 7 cpTw - 1 P PU cpT w

are used to calculate the efficiency drop from equations (2.53) or (2.56).

4.2 Analytical Evaluation of Modeling Errors

A typical value for the reduced frequency in turbomachinery is ke~5. The high-frequency

limit cannot be applied without consideration of the errors involved. The analytic error

analysis in this section determines which of the neglected convective terms dominate the

errors in laminar flow and how they scale with dimensionless parameters. A numerical

error analysis in section 4.3 will quantify the effect of the high-frequency limit on the

accuracy of the predicted dissipation N2i in laminar and turbulent flow.

'The dissipation and the resulting frictional heating happen locally in the boundary layer. There
will be an additional entropy rise when the associated temperature nonuniformities are
smoothed out, but this is a higher-order effect.

104



4.2.1 Convective Terms in the Momentum Equation - Global

The focus of the analytic error evaluation is the streamwise momentum equation which

has decoupled from the continuity equation and the energy equation in the near-wall

approximation of the high-frequency limit. In comparison to the retained unsteady

term, the neglected convective terms on the left-hand side of the streamwise momentum

equation (4.17) have the magnitudes

O/ ~ = -Fe (4.57)T's~ -1 LfCa ke'

OIL O Ue I Ca

Os/ Ot wf Af e Af (4.58)

iii au e _ 1 Ve Ca

On Ot Wf48f ke Ue 6f' (4.59)

au Ott Ue i 1 e Ca
and i--/- ~ -- (4.60)

On at Wf 6e keUe 8

These estimates describe the boundary layer as a whole rather than details near the

wall. Only the magnitude of the convective terms (4.57) and (4.60) can be estimated

easily and their neglect justified in the high-frequency limit. Note that Ue < Ue in (4.60).

Also, in incompressible flow, where (Ve lUe) (T/Ca), (4.59) can be rewritten as

i /- ~ .(4.61)
an at V/k~e

For a pressure wave (propagating in or against the streamwise direction), (4.58) can be

written as

ii 8U Me
-/ - ~ . (4.62)

s Ot 1 Me(

The above estimates suggest that the errors introduced by neglecting the convective

terms in the momentum equation are at least of magnitude Me and (1/9 Vk), stemming

from the neglect of the convective terms (4.58) and (4.59), respectively. In particular,

for a propagating pressure wave, the convective term (4.58) can be of the same order of

magnitude as the unsteady term, independent of the reduced frequency.

In a typical turbomachinery application, the flow will neither satisfy Me < 1, nor

will the square root of the reduced frequency satisfy V, > 1. It seems that there is no
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merit in applying the proposed loss model in a turbomachinery environment. However,

(4.57) to (4.60) pose conditions across the boundary layer as a whole and do not focus

on details close to the wall.

4.2.2 Convective Terms in the Momentum Equation - Near the Wall

The emphasis is on the near-wall region because it is there that the unsteady gradients

and the unsteady loss are large. From the time-mean continuity equation (4.10) and its

first-order perturbation (4.16), one can derive that

-9 ~ n, ii~ n,

Y - n2 and 5~ n

hold for an adiabatic (or isothermal) wall. Also, one finds that the first-order perturba-

tion of the continuity equation near the wall is

--- ~ -k, 1 .9 (4.63)
n P at,

All of the neglected convective terms in the linearized momentum equation (4.17) are

O(n2 ), except for the term U(8i/an) which is O(n). Its neglect will cause the largest

error in the near-wall region. Using a Taylor series expansion of the unsteady velocity

distribution (4.44) at the wall and the continuity equation (4.63), the ratio (4.60) can

be written as
O-u Ou 7i k, E 26

;-/ ~ - U M --. f (4.64)fn t pe k, an e Ca

For a pressure wave propagating (in or against the freestream) over a laminar flat plate

boundary layer with (au/8n)~0.332%/Re/s, the argument can be made more precise:

/ ~ 0.332 me) (4.65)
On Ot V/,

In the high-reduced-frequency limit, the dominant of the neglected convective terms,

iU(Oii/an) is of order 0 (M/V/k) relative to the unsteady term. Note that the validity

of this argument is restricted to the near-wall region; details are found in appendix H.
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4.3 Numerical Evaluation of Modeling Errors

While the analytical error considerations in laminar flow provide insight into which of

the neglected convective terms dominate the error in the near-wall region and/or the

freestream, and how they scale with dimensionless parameters, it was desired to get

a quantitative measure of the error in the integrated dissipation 42i, in particular for

turbulent flows.

Due to the magnitude of the Reynolds number, inequality (4.33) is always satisfied

for turbomachinery flows encountered in practice. However, since the longest wavelength

in a turbomachine is typically on the order of a blade chord, inequality (4.32) may

only be valid for higher spatial harmonics. For finite reduced frequency, the unsteady

boundary layer starts spreading away from the wall and inequality (4.31) is not satisfied.

4.3.1 Model Problem

In order to quantify the effect of the high-reduced-frequency limit and the near-wall ap-

proximation, a FORTRAN-code was written to solve the linearized equations describing

a flat plate boundary layer subject to a harmonic pressure disturbance. The pressure

disturbance at the boundary layer edge is a pressure wave propagating at an arbitrary

non-zero angle 0 relative to the surface normal.

As was shown in section 4.2, the two main effects in laminar flow not captured in the

loss model proposed in section 4.1 are the unsteady compression of the boundary layer

near the wall, and convection in the freestream. In turbulent flow, the proposed loss

model can be accurate only if the unsteady boundary layer is confined to the laminar

sublayer. All three concerns are addressed by the model problem illustrated in figure 4.8.

As long as 6f< c, holds, however, the mean flow appears constant (and parallel)

on the length scales characterizing the steady and the unsteady boundary layer. This

assumption, together with a small steady and unsteady boundary layer thickness com-

pared to the wavelength, reduces the model problem to one dimension.
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Figure 4.8: Model problem for the numerical evaluation of modeling errors

The incoming and the reflected pressure wave of figure 4.8 are described by

pi = f exp {i (k,s - kan - iwf t)}

and 5,. = - exp {i (k,s + kn - iwf t)}. (4.66)

The unsteady pressure in the boundary layer is set by the freestream.

propagation of a pressure wave is governed by

( 1 2 S2 On2

Me
=2 -

de

a2p

osOt
+ 12i

j2 8t2e

which leads to the dispersion relation

- 2Mek, (
-1( e

- (1- Me2)ks + k = 0, (4.68)

and to the nondimensional streamwise wavenumbers

-Me sinO+ i v 7
k, = keMe sin6 .-MsinV

1 - M2 sin 20
(4.69)

The signs '+' and '-' again correspond to downstream and upstream propagating pres-

sure waves.
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Governing Linearized Equation

The linearized equations being solved are obtained from equations (4.16) to (4.21).

ke--+p -- +a : +i-+;--=0 (4.70)
at 's +n as On

aii Oii _O8 1e9p 1 O7, 7.,f
ke-+Tt-+Vo-= --- + -(-1kOU Os OU a OP a~s -- a7 (4.71) 8t + 1 s + n _s + 7-8n 7i2 an

,n = p- (4.72)

7ic, (ke -+6- - UL- + k + (ka + 1 (4.73)ak t O s +O5- t Os Os O s On On

< = ai + O) (4.74)
Re n as an

= yM ( 2P- (4.75)
P \P/

As discussed in section 4.2, equations (4.70) to (4.74) assume parallel mean flow because

the (streamwise) evolution of the boundary layer is a higher order effect. In keeping with

the high-frequency limit, inequality (4.33), and the boundary layer approximation, the

unsteady pressure is assumed constant across the boundary layer. This is implemented

by setting the normal wavenumber k, to zero in equations (4.66).

Boundary Conditions

The boundary condition on the unsteady velocities at the wall is

UW = ;F = 0. (4.76)

At an adiabatic wall the condition on the unsteady temperature is

0aT 0 (4.77)
On

from which follows

apw 0 (4.78)
On
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with the boundary layer assumption. For a wall at constant temperature, the boundary

condition are

T, = 0 and _ = 0. (4.79)
Pw P

At infinity, the boundary conditions for a wave propagating in the freestream are

e - 3  and =9;. 0, (4.80)
ka ke dn

Te and Pe = _ (4.81)
7 P 7P

Mean Flow Profiles

All mean profiles were taken to be identical to the corresponding profiles in steady flow.

In experiments, for example [79, 80], the mean flow has generally been found to be

unaffected by the oscillations, even for finite disturbance amplitudes. Exceptions to

this behavior have been observed at high frequencies close to the turbulent bursting

frequency and for very large amplitudes [81].

In laminar flow, the mean velocity profile was obtained as the solution of the Falkner-

Skan equations. In turbulent flow, a three-layer nodel with the inner law in Spalding's

formulation [82] and a law of the wake in Coles' formulation [83] was used. Both the

laminar and the turbulent velocity profile are strictly valid for incompressible flow only,

but were used regardless of the freestream Mach number. The use of incompressible

velocity profiles in compressible flow was mandated by the unavailability of explicit for-

mulae or simple codes which could be used to calculate the velocity profiles for arbitrary

Mach numbers and Reynolds numbers. In laminar flow, considerable thickening of the

boundary layer occurs for Mach numbers larger than unity (at constant Reynolds num-

ber), resulting in a reduction of the velocity gradients[84]. In turbulent flow, there is the

additional complication that turbulent viscosity profiles corresponding to the velocity

profiles are also needed. The mean temperature and density profiles were obtained from

the mean velocity profiles with the assumption of an unity Prandtl number. However,

the Prandtl numbers Pr Prt = 0.72 were used for the unsteady flow field.
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The laminar viscosity 1i and the conductivity K were fixed at their mean values;

their variation under the influence of the unsteady flow field is a higher-order effect. For

turbulent flow, a simple algebraic turbulence model and an intermittency factor defined

by Klebanoff [85] were used to prescribe the turbulent viscosity distribution. In the inner

region, the turbulent viscosity was given by the viscosity distribution corresponding to

Spalding's turbulent velocity profile [82]. In the outer region, the turbulent viscosity

had the constant value pt =0.0168pe17e6* Since the model problem for the numerical

evaluation of modeling errors is one-dimensional, there is no other choice than using

an algebraic model. One-equation models or two-equation models of turbulence would

require two dimensions to allow for streamwise transport equations. Investigators do

not agree whether a simple algebraic model can adequately represent the turbulence

structure in unsteady flow. While [86] reports fair agreement between experimentally

and numerically determined velocity profiles and finds an algebraic model superior to an

one-equation model, [87, 88] discount it as inadequate, in particular at high frequencies

and for large unsteady amplitudes. The mean turbulent viscosity acts on the mean flow

and the unsteady perturbations, i.e. the turbulent viscosity distribution is assumed

constant at its mean valueJ

4.3.2 Code Verification in Laminar Flow

For a laminar, incompressible flow over a flat plate at zero pressure gradient, where the

mean boundary layer thickness is

) ~ (4.82)

the ratio (3/ 6 ) is a function of the reduced frequency only.

5 1k (4.83)

The dependence on the Reynolds number drops out.

6Turbulent dissipation of kinetic energy first raises the turbulent kinetic energy KE=(U' 2 + v' 2),

which in turn increases the turbulent viscosity pt. Only then is it turned into heat and

causes an entropy rise. This effect is not captured in the model.
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The laminar portion of the code was verified by comparison to Lighthill's analytical

work [89] on oscillatory boundary layers in an incompressible mean flow. Figure 4.9

illustrates a case with a reduced frequency ke=0.8, or equivalently a ratio (T/ I)=4.47;

the agreement is seen to be excellent. In the limit Me -- 0, the high-reduced-frequency

limit and the near-wall approximation are exact, regardless of the ratio (S/6f).

-2.8-
Numerical solution

Real Part
2.4 -------- --------------- ------------------ --------- a--------t------------------ - - I ag. Part

Analytical solution [89]
2 - -------- -------- - ---- --------- ----------------- --------- --------- ------- ++alP r2 +++ Real Part

XXXX Imag. Part

1.2- -- ---- -------- --------- -------- 7 -------- --------- ------------------- 4 4

0 .8 - -- -- --- - -- - 0 .8-- - - - -- -- -- -- - - -- -- - - - - - - -

M - 0.01

0.4 - ----------- X-------- .-X------ ---------------------- --- -------- ---------

0-
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 4.9: Comparison to Lighthill's analytic solution in laminar flow

In the high-frequency limit, equation (4.44) is the exact solution to (4.17) for finite

(n/6f) regardless of the freestream Mach number. Figure 4.10 shows a comparison

between the 'exact', numerical solution and the analytical solution for a Mach number of

M = 0.3 and reduced frequencies of ke = 1, 4, 16, 64. The velocities have been normalized

by

|uel= k. ,w (4.84)
kpw

that is, by the magnitude of the unsteady velocity at the edge of the unsteady boundary

layer in the high-frequency limit (4.44). The distance from the wall, n, has been normal-

ized by the unsteady boundary layer thickness 6f. On this normal scale, all solutions in
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the high-frequency limit collapse one the solid lines. It is seen that the unsteady velocity

distribution approaches the on predicted by the high-frequency limit for high reduced

frequencies and finite values of (n/6f), regardless of the freestream Mach number. For

high reduced frequencies, the differences are located at large values of (n/6f), where

the 'exact' solution veers off to meet the boundary conditions in the freestream. The

differences are almost imperceptible for the imaginary part of the solutions.

28
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Figure 4.10: Comparison between
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Analytical solution (4.39)

Real Part

- Imag- Part

'- = 5, 10,20,40
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Me = 0.3

4

d high-frequency limit

4.3.3 Errors in the Integrated Dissipation for Laminar Flow

The result of the numerical evaluation of modeling errors in laminar flow is summarized

in figure 4.11, which quantifies the errors introduced by the near-wall approximation in

the high-reduced-frequency limit.

It shows the ratio of the integrated dissipation 4 .2i calculated in the high-frequency

limit (HFL) to the value calculated with the full linearized equations (4.70) to (4.75),

for a pressure wave propagating parallel to the wall (0 = 900). In the limit Me -+ 0,
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or ke, (/6f) -- oo, the HFL model yields the correct dissipation. The lower the reduced

frequency for a non-zero freestream Mach number, the greater is the deviation of the

integrated dissipation calculated in the high-frequency limit. This is a consequence of

the unsteady boundary layer spreading away from the wall into the steady boundary

layer with a non-zero streamwise velocity where convective terms in equation (4.71)

become significant. For the same reason, equation (4.39) does not yield the proper

asymptotic value of the unsteady velocity in the freestream, as was shown in figure 4.5.

With the velocity magnitude in the unsteady boundary layer off, the unsteady viscous

dissipation must behave accordingly. Depending on the orientation of the pressure wave

vector, the high-frequency limit yields an integrated dissipation greater than the value of

the full linearized model (upstream propagating waves) or less (downstream propagating

waves).

6/, = 2.5 6 /45 = 5

=.4.25 .5 k = 1
increasing.k,, (6/6)

2.0 -------------------- ----------- ---------- ---- I------------ --------- L-----------

upstreatn propagating waves: 2

6= +900

__1.6 - ----------- ----------- -- - -1-- - - - -0- - - - - - - - - - - - - - - - - -

4 
2i,HFL 8

2i 20
1.2- ----- 0----- .----- ------- 04 ---- 0 --0-.------ -----------

16

0.8 - ----------- --- -- - - ----- ------- ,-- ------ ------- ---------k - - ---

6,=20

increasing ke, (T/s /re n=gh
0.4 - ----------- ----------- L----------- I-- -- - -L ---------- L------- ----------- - ----- -

downstaeam propa ating waVes 0.2 3/6f= 2.5
o -900e

0 0 .1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

me

Figure 4.11: High-frequency-limit model and 'exact' laminar model dissipation

A different angle 0 between the direction of wave propagation and the surface normal

increases the wavelength and the decreases the pressure gradient driving the unsteady

boundary layer. A non-zero mean pressure gradient influences the result primarily

through a change in the mean shear and an associated change in the ratio (T/6f).
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4.3.4 Code Verification in Turbulent Flow

In turbulent flow over a flat plate at zero pressure gradient, the boundary layer thickness

is given by
0.37s

1/~5 (4.85)
Re.

The ratio (3/6f) now depends on the Reynolds number and the reduced frequency.

~ 0.37 k Re3 /10  (4.86)

The mean flow, however, reaches a major fraction of the freestream velocity in the

laminar sublayer already. Therefore, it is more instructive to consider the ratio (6i/6f),

where 5i is a measure of the laminar sublayer thickness. In turbulent flow, the laminar

sublayer extends no further than

31 ~~ 30 it, (4.87)

where it is the characteristic length scale of turbulence defined as

i = . (4.88)
U,7.

The wall friction velocity u, is defined by

U, = .W (4.89)

The turbulent velocity fluctuations are characterized by u, and the eddy size by it.

Through its dependence on the wall shear, the above definition of the laminar sublayer

thickness in turbulent flow is valid in flows with pressure gradients, and is independent

of the Reynolds number as well. In experiments with flat plate boundary layers in

incompressible channel flows, Binder and Kueny [79] found that the unsteady laminar

wall shear calculated in the near-wall approximation of the high-frequency limit, is a

good approximation for (6'/6f) > 4.2. In the parameter range 4.2> (6i/6f)> 2.8, they

observed only slight deviations in the phase. In the range (1/6f) < 2.8, the unsteady

wall shear increased above the laminar value. Appendix I compares the turbulent length

scale and time scale to the length scale of the unsteady boundary layer and the forcing

time scale in incompressible flow.
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to Cousteix's experiment - unsteady streamwise

Verification of the turbulent portion of the code was complicated by the fact that

no experiments were found that used a propagating wave type disturbance in the

freestream. In a first test, it was verified that the code reproduced the laminar so-

lution for reduced frequencies high enough to confine the unsteady boundary layer to

the laminar sublayer of the mean flow; this test is not presented here. Cousteix, Des-

opper, and Houdeville [90 conducted experiments in which the freestream velocity in

a subsonic wind tunnel varied sinusoidally in response to a rotating vane at the exit.

For the wind tunnel's resonance frequency, they examined the unsteady boundary layer

at four axial locations. While the mean flow velocity was practically constant, the

freestream velocity perturbation was a strong function of the axial position; the phase

change along the axial direction was less than what would be seen for a propagating

pressure wave. However, as long as the reduced frequencies of experiment and numerical

solution match, the results can be compared. In the linear regime, the magnitude of

the driving unsteady pressure gradient does not influence the velocity distribution. To

allow a comparison, the experimental and the numerical unsteady velocity distributions

were normalized by their respective freestream values.
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Figure 4.13: Comparison to Cousteix's experiment - unsteady velocity phase

Figures 4.12 and 4.13 show a comparison to the experiments of Cousteix [90]. The

agreement in the unsteady streamwise velocity is acceptable in the view of the modeling

shortcomings. The maximum velocity overshoot occurs roughly at the same distance

from the wall; its magnitude is only 3% instead of the experimentally observed 6%. In

addition, the unsteady velocity gradient outside the laminar sublayer is steeper in the

numerical solution?

The phase angles of the unsteady velocity are in qualitative agreement. The maxi-

mum overshoot (towards negative phase angles) is at the correct location but too small.

Closer to the wall, the computed values are offset towards lower (n/6) while the maxi-

mum phase angle is approximately correct.

Similar observations have been made in other comparisons to between numerical and

experimental results [80, 86]. In particular, [86] contains a numerical and experimental

study which also uses an algebraic turbulence model.

7
This may be due to an increase in the turbulent viscosity from the turbulent kinetic energy

production (mean-flow kinetic energy dissipation).
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4.3.5 Errors in the Integrated Dissipation for Turbulent Flow

Figure 4.11 is valid only in a laminar mean flow. The flows encountered in practice,

however, will almost always be (transitional or) turbulent, and the unsteady boundary

layer can extend well beyond the laminar sublayer. In figures 4.14 and 4.15 error due

to the assumption of a laminar mean flow in the high-frequency-limit model appears

superimposed upon the error due to a finite reduced frequency. These figures show

1.2

Re, = 106

Rea = 3500

1 k - 00 = 1.26

__ 0.8 - ----------- ----------- L----------- L----------- L------------ ----------- L----------- L-----------
ke = 16

2,HFL increasing ke, V16 ), (k,6f
42i

0.6 - -------- - ----------- -- ------ ----------- ------- --- ----------- ----------- -----------

4

* f= 5.55

1 /6f =2.77

0.2- ------- L----------- I------------- ----- - --------- -- - ----------- ---------- / = 1.39

k= . 0.69

/* b= 0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Figure 4.14: High-frequency-limit model and 'exact' turbulent model dissipation -

downstream propagating pressure waves

the ratio of the integrated dissipation 42P calculated in the high-frequency limit (HFL)

to the 'exact' turbulent dissipation calculated numerically. Figure 4.14 is valid for

a downstream propagating wave, figure 4.15 for an upstream propagating wave. As

opposed to the case with a laminar mean flow, the high-frequency-limit solution is not

exact in the limit Me-O, any more. The turbulent nature of the mean flow introduces

additional errors into the high-frequency-limit model, which is an inherently laminar

model. For high reduced frequencies, the turbulent dissipation again approaches the
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value predicted by the high-frequency-limit model, although this is not evident within

the range of reduced frequencies displayed. Except for upstream propagating waves at

high Mach numbers, its tendency is to underestimate the integrated dissipation.

Re, = 106

Re& = 3500

2.5 --- - - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - - - - - -y = 1.26

'2iHFL increasing ke I/6 Ii/6f

42i
1.5 - ----------- - ------- ----------- ----------- -------------------- --- - --- -------

8
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0.5 - -- - ---- --- - --- -6 ----- _-- ----- ---- -- ------ L----------- I----------- I-----------

1.5

k,= 00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Figure 4.15: High-frequency-limit model and 'exact' turbulent model dissipation -

upstream propagating pressure waves

Figure 4.16 illustrates this with plots of the unsteady streamwise velocity at a Mach

number of M,=0.8 for reduced frequencies ke = 0.25, 1, 4, 16, and 64. It can be expected

that the 'exact' turbulent solution in the near-wall region starts to approach the HFL

solution if the ratio (6 1/ 6 f) exceeds 0(1). At a Reynolds number of Re=106 , the afore-

mentioned reduced frequencies correspond to (W1/ 6 f) = 0.35, 0.69, 1.39,2.77, and 5.55.

For a ratio (i/6f) ~ 3, the shape of the unsteady velocity distribution in figure 4.16

changes from the fuller turbulent profile to the laminar profile of the HFL solution; it

takes an even higher ratio (Wl/Sf) to have quantitative agreement in the maximum of

the unsteady streamwise velocity. Figure 4.17 is identical to figure 4.16 except that the

scales have been changed to allow details at the wall to be examined more closely.
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Figure 4.16: Unsteady streamwise velocity distribution in a turbulent mean flow -

upstream propagating pressure waves

Returning to the dissipation in figures 4.14 and 4.15, one notices that the ratio

(P2i,HFL/ 4 2i) for a downstream propagating wave in turbulent flow behaves similar

to the corresponding ratio in laminar flow. With higher reduced frequency and lower

Mach number, the high-frequency limit is more accurate. The behavior of the ratio

(42i,HFL/ 4 2i) for an upstream propagating wave, however, differs from the behavior

of the corresponding ratio in laminar flow. In the limit Me ->0, the ratio is less than

one and matches the value for a downstream propagating wave; the rate of unsteady

dissipation in a turbulent mean flow is higher than the rate in a laminar mean flow. The

(laminar) high-frequency model underpredicts the velocity gradients and the viscosity

in a turbulent mean flow and thus arrives at too low an integrated dissipation for finite

reduced frequencies. As the Mach number increases, this ratio rises above one because

the high-frequency limit overpredicts the magnitude of the unsteady velocity in the

freestream; it is the relative magnitude of these two effects that governs the behavior of

the ratio (4t2i,HFL/4 2) in figure 4.15.
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Figure 4.17: Unsteady streamwise velocity distribution near the wall in a turbulent

mean flow - upstream propagating pressure waves

It is puzzling, at first, that there is a (Mach-number dependent) range of reduced

frequencies in figure 4.15 for which the ratio (42i,HFL/2i) moves away from unity when

the reduced frequency is increased and moves back towards unity beyond that range.

This behavior can be explained with the help of figures 4.16 and 4.17. The major part

of the unsteady viscous dissipation occurs near the wall and is locally proportional to

the square of the velocity gradient and the viscosity. As a first approximation, the

integrated dissipation is set by the magnitude of the dissipation and the normal extent

over which it acts. On the normal scale (n/8f), the unsteady velocity gradient in figure

4.17 is steepest for low reduced frequencies, i.e for a laminar sublayer thickness much

less than the unsteady boundary layer thickness. It is steeper than the unsteady velocity

gradient in a laminar mean flow, the same way the steady velocity gradient is steeper

in a turbulent mean flow than in a laminar mean flow. As the reduced frequency is

increased, the ratio (Ti/5b) increases and the velocity gradient eventually equals the

one in the high-frequency limit and the turbulent viscosity approaches the laminar
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viscosity. The high-frequency-limit solution is the same for all reduced frequencies on

the scales chosen for figure 4.17. This effect depends mainly on the ratio (6i/S) and

moves (42i,HFL/42i) towards higher values as the reduced frequency is increased; the

turbulent dissipation increases less rapidly than the dissipation predicted by the high-

reduced-frequency model. The change of behavior for higher reduced frequencies comes

about because of a second effect, seen in figure 4.16. When the reduced frequency is

sufficiently high, the maximum of the unsteady turbulent velocity approaches the value

predicted in the high-frequency limit before it veers off to match the boundary condition

in the freestream. Thus, the extent over which the gradient acts becomes larger and

(42i,HFL/ 2i) moves towards unity. This effect depends primarily on the Mach number

because it sets the freestream velocity disturbance via equation (4.46) and tends to

move the ratio of losses towards unity. For Me->O, this effect vanishes. Regardless of

the Mach number, the ratio (42i,HFL4 2i) always approaches unity for sufficiently high

reduced frequencies.

4.4 Unsteady Loss in the ACE Turbine Stage

The ACE turbine stage is a highly loaded, transonic high-pressure turbine stage, which

has been tested at MIT [50). A 2D-version of the rotor profile was investigated at

Oxford University [52, 54]. Its design is representative of modern high-pressure turbine

stages. A detailed computational account of the inviscid stator/rotor interaction is

presented in [6]; subsection 3.2.4 summarized the shock wave/blade row interaction. The

parameters in this simulation were similar to the parameters of subsection 3.2.4 except

that the code, UNSFLO, was run in the viscous mode [7], the rotor speed increased,

and the back pressure lowered slightly. The computational grid as well as the pressure

contours for the steady and the unsteady viscous simulation were shown in section 2.7.

Table 4.1 lists the input parameters. Lengths have been nondimensionalized by the

stator axial chord, the rotor speed by the inlet stagnation speed of sound, and the outlet

static pressure by the inlet stagnation pressure. The Reynolds number Re;,t is formed

with inlet stagnation quantities (upstream of the stator row) and the stator axial chord.
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Rotor Axial Chord Ca,R 0.762

Stator Pitch PS 1.344

Rotor Pitch PR 0.778

Axial Gap 0.318

Inlet Flow Angle 00

Rotor Speed VR 0.737

Ratio of Specific Heats y 1.26

Outlet Static Pressure po 0.234

Stator suction surface x < 0.60 laminar

suction surface x > 0.65 turbulent

pressure surface x < 0.4 laminar

pressure surface x > 0.5 turbulent

Rotor Blades turbulent

Reynolds Number Rei,t = (pi,tai,tca,s/I;,t) 2.256 X 106

Table 4.1: Input parameters for the ACE turbine stage simulation

The increased rotor speed in conjunction with the lower backpressure led to slightly

stronger trailing edge shock waves and reduced the mean rotor inflow angle from the

design inflow angle of 580 to 480, matching the experiments of Johnson et al. [54]. The

linear velocity analysis for this stage can be regarded as a viscous complement to the

investigation of Johnson et al., who studied the surface heat transfer fluctuations in

response to a passing shock wave.

In experiments by Ashworth et al. [52], the rotor boundary layer was found to be

laminar over most of the suction surface for low levels of freestream turbulence and in the

absence of wakes and shock waves. The pressure surface boundary layer was transitional.

Bar passing experiments, to simulate stator wakes and shock waves, showed that widely

spaced wakes and shock waves temporarily trip the boundary layer, which will relax

back to a laminar state after the disturbance has passed. For a bar spacing resembling

engine conditions, the boundary layer is transitional or turbulent. In the simulation,

the flow was prescribed to be turbulent from the rotor leading edge on. The turbulence
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model was an algebraic model in the formulation of Cebeci and Smith [91]; all blades

were modeled as adiabatic blades.

4.4.1 Application of the Unsteady Viscous Loss Model

Predicted Loss

The loss model based on the near-wall approximation in the high-frequency limit, de-

scribed in section 4.1, was applied to the ACE turbine stage. The input required for the

model are the time-harmonics of the pressure gradient along the blade surfaces. These

may be the result of an inviscid or a viscous simulation, although the dominating effect

of the rotor passing through the oblique shock waves of the stator is captured inviscidly

10 A
ASR

12-

10- --- ---- ----------- ----------- ---------- ---------- ---------- ----------- -----------

leaiing edge: sR 
= 

0.0

trailing edge: SR = 0.94 (pressure urface)

8------------------------------------ - ---- ------ ------ -----------
sR =-1.6 (suction surface)

- ---------------- ---------- - ---------- --------- - ---------- ----------- -----------

rotor crown

4- ----------- ----------- ----------- -------- - -------- ---------- -----------

2------------------ ---------- ------ ------------- L---------- I----------- -----------

0 --
-1.25 -1 -0.75 -0.5

rotor surface

-0.25 0

coordinate SR

0.25 0.5 0.75

Figure 4.18: Entropy rise per unit surface length on the ACE rotor

8In both cases, numerical smoothing will affect the unsteady pressure amplitudes.

See subsection 4.4.3 for details.
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Figure 4.18 shows the distribution of the time-mean, mass-average entropy rise A9,

defined in equation (4.54), per unit surface length ASR along a rotor blade. A value

of SR=O corresponds to the rotor leading edge; positive and negative values correspond

to pressure and suction sides, respectively? The dissipation is concentrated on the suc-

tion surface between the rotor leading edge and the crown, where the pressure gradient

fluctuates in response to shock wave passing/reflection. Note that figure 2.14 shows

a pronounced rise of the (time-mean, mass-average) entropy in the rotor passage be-

tween the leading edge and the crown. The integrated entropy rise for a rotor blade is

A3= 2.8 x10-4, which is equivalent to a total pressure loss Ap = -1.3 x10- 3 . The above

numbers translate into an isentropic efficiency drop Az,,E/17s,E,D=-0.09%. Of the to-

tal, 70% is at the blade passing frequency and 16% in the second harmonic. Table 4.2

shows the contribution of individual harmonics to the entropy rise.

total entropy rise E Am'9 2.8 x 10- 4 1J100%

blade passing frequency 1.96 x 10- 4  70.1%

2 nd harmonic 0.45 x 10- 4  16.1%

3 rd harmonic 0.10 x 10-4 3.6%

4 ,d harmonic 0.11 x 10-4 4.0%

5 th harmonic 0.07 x 10-4 2.5%

all higher harmonics 0.10 x 10-4 3.7%

Table 4.2: Modal contributions to the Unsteady Viscous Loss of the ACE rotor

The Unsteady Viscous Loss on a stator was more than a factor of ten smaller than

the loss on a rotor; the stator passage is choked and the unsteady interaction between

shock waves and blade rows is much stronger in the rotor blade row.

Loss Model Errors

Figures 4.14 and 4.15 identified the parameters governing the error in the integrated

dissipation predicted by the high-frequency-limit model in turbulent flow. They are the

9 see figure 2.12
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ratio of laminar sublayer thickness to unsteady boundary layer thickness, (6j/Sf), and

the freestream Mach number Me. These figures illustrated computations for a flow at

zero mean pressure gradient. Nevertheless, they can be used to estimate the error for the

ACE turbine stage, which has a strong favorable mean pressure gradient in the primary

region of Unsteady Viscous Loss. A mean pressure gradient enters through the wall

shear velocity u, in the definition of the laminar sublayer thickness (4.88). This defi-

nition is valid for arbitrary pressure gradients, Reynolds numbers, and Mach numbers.

Calculating the laminar sublayer thickness in the primary region of Unsteady Viscous

Loss from the wall shear of the steady simulation gives a thickness ratio of (6 l/65 )=1.2

for the unsteady boundary layer at the blade passing frequency. The freestream Mach

number in the primary loss region is Me~0.65 (in the rotor frame of reference). There-

fore, figure 4.14 suggests that the Unsteady Viscous Loss predicted for the ACE turbine

stage could be up to five times the nominal value of AT=2.8 x10- 4 . Figure 4.15 implies

that the loss model, when applied to the ACE turbine stage, overpredicts the actual

Unsteady Viscous Loss by no more than a factor of 1.5.

4.4.2 Efficiencies in the Numerical Simulation

The unsteady loss can also be inferred by comparing a steady and an unsteady viscous

simulation for the same profile. In a steady simulation, the stator outflow is averaged

at the interface to provide a spatially uniform and steady rotor inflow condition. The

efficiencies can be calculated from the time-mean, mass-average total pressures and

temperatures at the inlet boundary, the interface, and the outlet boundary. With the

total pressures and temperatures known, the isentropic efficiency may be calculated from

equation (2.49). Table 4.3 lists the isentropic efficiencies. Streamflux-average efficiencies

include the mixing loss from the dissipation of unsteady waves beyond the rotor outlet

boundary. The higher stage efficiency in the unsteady case is a direct consequence of

the mixing loss at the steady interface, as was discussed in section 2.7.

Detailed measurements of total temperature and total pressure with the spatial and

temporal resolution required to deduce the steady or the unsteady efficiency for this
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stage are not available. Moreover, the experimental error bands would be of the same

order of magnitude as the numerical difference in efficiency between the steady and

the unsteady simulation. An indication that the calculated stage efficiency is realistic

can be obtained from a combined experimental and numerical study of a single stage

of comparable Reynolds number and total pressure ratio reported in [53]. While the

efficiencies are 2% to 3% less in [53], they include endwall loss, tip clearance loss, and

secondary flow loss, which are shown to add up to roughly one half of the total loss.

Table 4.3: Isent ropic efficiencies for the steady and the unsteady A( E simulation

The Unsteady Viscous Loss on the rotor blade surface is small compared to the total

loss in an unsteady viscous simulation. Nominally, i.e. at an isentropic efficiency drop of

(A77s,E/rs,E)=-0.9%, it accounts for only 1.43% of the total loss in the stage10 (or the

deviation of the stage efficiency from unity). Including the error bounds, it can account

for 1% to 7.1% of the total loss. The unsteady rotor efficiency is 1.25% less than the

steady rotor efficiency. The predicted Unsteady Viscous Loss could account for about

one third of this drop in the efficiency within the error bounds stated.

For an experiment that compared identical profiles in steady and in unsteady flow,

that is, in a linear cascade and in a stage, Hodson [9] reported an increase of 50% in

the rotor profile loss for the unsteady case. This was found to be due to the nature

of the boundary layer changing in sympathy with the passing of stator wakes. In the

simulation of the ACE turbine stage, the loss of the rotor blade row is 55% higher in

unsteady flow than in steady flow. Barring turbulence modeling, mechanisms that can

increase the loss in the unsteady simulation include unsteady shock waves [18], shock

t osee figure 2.14
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wave/boundary layer interaction, unsteady boundary layers, and numerical smoothing

in the freestream. In the steady as well as in the unsteady simulation, the boundary layer

was prescribed turbulent from the rotor leading edge on. Thus, there are no changes in

the transition point location or in the boundary layer character. The transition point on

the stator was also fixed. No separation, be it shock-induced or not, was found in either

simulation. While the magnitude of the loss increase in unsteady flow is in line with [9],
the mechanism is different. Neither Unsteady Viscous Loss nor a change in the nature

of the boundary layer character can account for the loss increase in unsteady flow.

4.4.3 The Role of Numerical Smoothing

Questions remain about the exact magnitude of the Unsteady Viscous Loss. However,

they cannot explain the loss increase in unsteady flow, even if the errors of the loss model

are accounted for. The mechanisms behind the loss increase in the unsteady simulation

remain unclear, but there are indications that numerical smoothing in the freestream

plays an important role. Numerical smoothing, explicitly added to or implicit in a code,

is necessary to stabilize numerical simulations of the (inviscid) Euler equations. In

UNSFLO, the flow is governed by the Euler equations on the H-Grid through the blade

passages,' and by the Thin-Shear-Layer approximation of the Navier-Stokes equations in

the O-Grid around the blade surfaces. The H-grid roughly coincides with the freestream,

the core flow, while all blade boundary layers are contained within the O-grid. In the

O-grid, numerical smoothing is not necessary to stabilize the code; in fact, it would

corrupt the solution in the boundary layer.

Should numerical smoothing be an important player in the loss increase, there are

two implications. First, the simulation may not dissipate unsteady (pressure) waves pri-

marily in unsteady boundary layers, as happens in physical flowsl'but in the freestream.

Second, the unsteady pressure gradients acting on the blade surfaces, which are the in-

put to the loss model, may have been diminished prematurely, reducing the predicted

level of Unsteady Viscous Loss.

"Strictly speaking, it is not an H-grid because of the triangular cells at the inflow and outflow

boundaries. See figure 2.15.

1see introduction to chapter 4
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The indications suggesting that numerical smoothing in the freestream plays an impor-

tant role in unsteady simulations are as follows:

First, it is difficult to detect more than three shock wave reflections in the visual-

ization of an unsteady simulation. To see whether such a small number is physically

realistic, the rate of amplitude attenuation due to dissipation in unsteady boundary lay-

ers and due to numerical smoothing in the freestream will be estimated and compared.

Second, in figure 2.14, the entropy rise between rotor crown and trailing edge is

steeper in the unsteady simulation. Neither the steady nor the unsteady simulation

showed any separation and the predicted Unsteady Viscous Loss is small in this region.

Third, the difference between the mass-average and the streamflux-average isentropic

rotor efficiency is about 0.6% in the steady case and 0.9% in the unsteady case. The

streamflux-average efficiency is less because it includes mixing losses downstream of the

rotor. The larger difference in the unsteady case is a consequence of the presence of

unsteadiness in the form of pressure waves, vorticity waves, and entropy waves at the

rotor exit. According to the inviscid simulations of subsection 3.2.4, the dissipation of

vorticity shed at the rotor trailing edge (Unsteady Circulation Loss) alone should have

accounted for a mixing loss of 0.3% in the isentropic efficiency.

The action of numerical smoothing in the freestream (the H-Grid) could explain these

observations. The following analytical and numerical considerations confirm that numer-

ical smoothing is the main mechanism leading to increased loss in unsteady simulations.

Attenuation of Pressure Waves at Boundaries

At the introduction to this chapter, it was shown that the energy associated with un-

steady waves is dissipated primarily in unsteady boundary layers. However, the rate at

which the wave amplitudes are attenuated remains to be determined. Based on the re-

sults of section 4.1, the attenuation of a pressure wave in laminar flow can be estimated.

Figure 4.19 illustrates the model problem graphically.
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Figure 4.19: Attenuation of an acoustic wave in an unsteady boundary layer

An incoming pressure wave at an angle of incidence 0 to the surface normal,

i; = 3 exp {i (k,s - kn - t)}, ( 4.90)

causes a reflected wave

i, = (1 - B) f exp {i (k,s + k.n - t) + i (} , (4.91)

where the amplitude attenuation factor , and the phase angle p depend on the complex

impedance R of the unsteady boundary layer which dissipates part of the wave energy.

R = Pr - (1 -3) e+ i ', (4.92)
p

Recalling that bf < Af by (4.33), one can make the simplifying assumptions

kn6f < 1 (4.93)

and p < 1 (4.94)

at the edge of the unsteady boundary layer.
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The incident as well as the reflected wave induce an unsteady streamwise velocity

distribution in the boundary layer. Due to inequalities (4.93) and (4.94), those are

nearly in phase. For an incompressible mean flow, the unsteady velocity gradient in the

boundary layer is approximately

--u~ (2 -,3) (1 - i) k,- R exp -1 - exp{i (k.s -t)} (4.95)
n e) 2 I v/2- fI

from equation (4.44). The rate of dissipation per unit surface area in response to the

unsteady velocity gradient (4.95) is obtained from (4.53) as

(2 - 0)2 1 1 LP 2
42, = 2k s (4.96)

The average rate of acoustic energy incident per unit surface area is given by the acous-

tic intensity
1 1

I; cosi ~ - ~- I2 Me C 05
6 , (4.97)

2 2

while the average rate of acoustic energy reflected per unit surface area is

1 1
I, cos ~ (1 -3)2 |$, ~ - (1 - )2 I 2 Me cos G. (4.98)

2 2

The above acoustic intensities, strictly valid only for Me =0, are used for simplicity.

Since the objective is an order-of-magnitude argument, these simplification will not

compromise the subsequent conclusions; other consistent simplifications will be made.

Balancing incoming intensity, reflected intensity, and unsteady viscous dissipation, one

obtains

1 ~ ~ ~ k -- (e ) M o (2 -) (4.99)

Since 3 is small by definition, the solution of interest is found as

Me 2 tan0 sin0. (4.100)
Re

The relation (k,/ke) 2 ~M2, obtained from equation (4.69) in the limit Me-0, has been

used in the above result. Alternatively, equation (4.100) can be expressed in the form

# = 2 tan 6 sin 0. (4.101)
\ Re Af)
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In appendix J, the same result is derived via the high-reduced-frequency limit of the

linearized momentum equation; it also shows how the two approaches are related.

The longest nondimensional wavelength A1 in a turbomachine typically is 0(1).

Assuming Reynolds and Mach numbers typical of turbomachines, and tan0 sin 0 of 0(1),

one expects to see 0(102) reflections before a wave amplitude is halved. In a (viscous or

inviscid) simulation of the ACE turbine stage, however, no more than three reflections

can be detected. The approximations made in the loss model and in the above order-

of-magnitude argument can not account for a difference of two orders of magnitude in

the number of reflections; that small a number of reflections is unphysical.

Numerical Smoothing in the Free Stream

The propagation of a pressure wave in the freestream beyond the boundary layers is

modeled numerically by the convection-diffusion equation

ap ap I a2- 192- 94-
+ (1 Me sin6) - = --- +62AS -64A3 3(4.102)

t az Re i z 2  
-z2 az (

where z is a coordinate along the direction of wave propagation; A denotes the mesh

spacing. Here, the time t has been nondimensionalized by the axial chord and the

speed of sound in the freestream. Numerical smoothing, necessary to stabilize numerical

simulations of the Euler equations, has been added on the right-hand side. The time-rate

of decay of the amplitude due to second-difference smoothing for shock wave capturing is

12 ~ 2 A k 2, (4.103)

where E2 denotes the corresponding smoothing coefficient and k the wavenumber in the

direction of propagation. The factor E2 A plays the role of an inverse Reynolds num-

ber. In smooth-flow regions, second-difference smoothing is turned off by the pressure

switch S (0 5 S <1). There, the time-rate of decay due to the remaining fourth-difference

smoothing is

#4 ~ E4 A3 k4 . (4.104)

132



Assuming that a wave typically travels one axial chord between two successive reflec-

tions, the time in between two reflection is t~1 for moderate Mach numbers. Thus,

32 and 34 also represent the amplitude attenuation factors due to numerical smoothing

between reflections. Alternatively, they may be written as

32 ~ E 2 A (27r/Af) 2  and 84 ~ E4 A3 (27r/Af) 4 , (4.105)

which shows the strong bias of fourth-difference smoothing towards short wavelengths.

Typical values of the smoothing coefficients are E 2 = 10-1 and E4 = 10-2, respectively.

A standard value of the mesh spacing is A =3 x 10 2

For the longest wavelength with Af of 0(1), fourth-difference smoothing in between

two successive reflections results in an amplitude attenuation which is an order of mag-

nitude smaller than the attenuation caused by dissipation in an unsteady boundary

layer upon reflection. Second-difference smoothing results in an attenuation of 0(10%)

if not switched off. For higher spatial harmonics, that is shorter wavelengths, fourth-

difference numerical smoothing in the freestream will start to dominate over dissipation

in unsteady boundary layers due to its strong inverse dependence on the wavelength.

The attenuation coefficient 04 of the sixth harmonic approaches 0(1) for the above

choice of A and E4 .

This implies that numerical smoothing will dissipate waves prematurely in the

freestream unless the wavelength is on the order of an axial chord or more. Weak shock

waves, which dominate the unsteady interaction in the ACE turbine stage, have most of

their energy in higher spatial harmonics and are subject to strong numerical dissipation,

even in the absence of second-difference smoothing. The unsteady pressure gradients

acting on the boundary layer, which are the input to the high-frequency-limit model,

are diminished prematurely in the freestream and the level of unsteady dissipation is

underpredicted. Numerical smoothing in the freestream can explain the discrepancy

between the number of reflections expected based on the Unsteady Viscous Loss in

the boundary layer and the number of reflections observed in an unsteady simulation.

To prevent numerical smoothing from dissipating unsteady waves prematurely in the

freestream, the smoothing coefficients ei and/or the grid spacing A must be reduced. In
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many CFD-codes, like the MacCormack method [64], numerical smoothing is implicit in

the formulation. Its level cannot be adjusted (other than increasing it by adding explicit

smoothing). In all formulations, a minimum level of smoothing is necessary to stabilize

the simulation. Thus, increasing the grid resolution, i.e reducing the grid spacing at the

expense of CPU-time, remains as the only viable solution in many applications.

4.4.4 Entropy Rise in the Simulation

Figure 4.20 shows the time-mean, mass-average entropy, defined in equation (2.58), in

the freestream of the rotor passage; both the steady and the unsteady viscous simulation

are shown. For simplicity, the freestream was assumed to coincide with the H-grid in the

rotor passage. While the freestream extends into the O-grid around the rotor blades, it

is only the flow on the H-grid that is subject to numerical smoothing.
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Figure 4.20: Average entropy in the rotor passage H-grid (the freestream)
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The entropy rise between the rotor leading edge and the rotor trailing edge in the

unsteady simulation is about three times as large as in the steady simulation. Clearly,

the locus of loss increase in the unsteady simulation is in the freestream, with the

primary mechanism being numerical smoothing.

Both figure 2.14 and figure 4.20 show regions in which the average entropy is axially

decreasing. The decrease happens in the freestream (on the H-grid), as is seen from

figure 4.20. In figure 2.14, the decrease is masked by the monotonically rising average

entropy in the boundary layer contained in the O-grid. While it is not clear what

mechanism causes the decrease in average entropy, it is a numerical artifact most likely

linked to numerical smoothing. By its very nature, numerical smoothing mixes out the

flow. In uniform mean flow, a control-volume argument as presented in chapter 2 can

be used to calculate the associated entropy rise. Moreover, the entropy is guaranteed

to rise monotonically in the axial direction. Second-difference smoothing mimics the

action of the physical viscosity; fourth-difference smoothing has no physical counterpart

in real flows. The control-volume argument allows no conclusion about the path a fluid

particle's entropy takes in an unsteady nonuniform flow subject to fourth-difference

numerical smoothing.

The entropy rise in the freestream cannot be discounted as a numerical artifact

without physical implication. The argument was made in detail in section 2.4. While

the mechanisms and the locus of unsteady loss differ in numerical simulations and real

physical flows, the entropy rise in the freestream of a numerical simulation, and the

associated loss, are possibly indicative of the level of Unsteady Viscous Loss that would

be seen in the boundary layer in the absence of numerical smoothing. As was pointed

out in section 2.4, the entropy rise associated with the dissipation of unsteady waves

does not depend on the mechanism of dissipation. While numerical smoothing shifts

the locus of dissipation into the freestream, the associated entropy rise is expected to

be approximately correct. The statement is not an unqualified one because the entropy

rise still depends on the mean flow state at the locus of dissipation.
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Figure 4.21: Average entropy in the O-grid (boundary layers) around the rotor blades

Figure 4.21 shows the average entropy in the 0-grid. In the steady simulation,

the mass-average entropy at the leading edge only slightly exceeds the uniform entropy

level after mixing at the interface. Surprisingly, the time-mean mass-average entropy

at the leading edge is higher in the unsteady simulation, but rises more slowly. As a

consequence of the predicted Unsteady Viscous Loss, one would expect to see a steeper

rise between leading edge and rotor crown in the unsteady simulation. At their nominal

level, Unsteady Viscous Loss causes a rise of AT = 2.8 x 10- based on the time-mean

axial mass-flux through a rotor passage. The Unsteady Viscous Loss, however, happens

locally near the rotor blade surface. Based on the mass-flux in the O-grid, the average

entropy rise is O(10-3), nominally. On the entropy scale of figure 4.21, an entropy rise

of O(10-3) is still small. The major problem in interpreting figure 4.21 is the fact that

the boundary between 0-grid and H-grid is not a streamline. Thus, fluid is entrained in

or passes out of the O-grid. The associated change in the average entropy of the O-grid

masks any entropy rise due to Unsteady Viscous Loss. Without computing streamlines,

it is not possible to separate the effects of entrainment and Unsteady Viscous Loss.
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The blade surface itself is a streamline. Thus, a surface entropy plot does not

suffer from entrainment effects. Figure 4.22 shows the time-mean entropy on the rotor

surface. In the unsteady case, the mean entropy rises faster along the front portion

of the suction surface, which could be attributed to Unsteady Viscous Loss. While

the Unsteady Viscous Loss occurs in the near-wall region, the exact magnitude of the

associated rise in the surface entropy is not known. It is not possible to determine

whether the difference between the steady and the unsteady entropy rise corresponds

to the generation of Unsteady Viscous Loss. On the pressure surface, there is an almost

constant offset between the entropy in the steady and the unsteady case. Its magnitude

roughly matches the entropy rise due to the mixing loss at the steady interface.
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Figure 4.22: Time-mean rotor surface entropy

While Unsteady Viscous Loss could be one explanation for the difference between

steady and unsteady surface entropy, it could also be due to the migration of stator

wake fluid to the suction surface. Due to its velocity defect in the stator frame, the

wake has a slip velocity perpendicular to the freestream in the rotor frame. Wake fluid
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of higher entropy piles up on the suction side, while freestream fluid with lower entropy

drifts to the pressure side.

4.5 Summary - Unsteady Viscous Loss

Based on a near-wall approximation in the high-reduced-frequency limit, a model for the

Unsteady Viscous Loss with a non-zero time-mean has been formulated. The loss is due

to dissipation in unsteady boundary layers driven by unsteady pressure gradients. The

errors introduced into the loss model by a departure from the high-reduced frequency

limit have been examined in laminar and turbulent mean flows; at high freestream Mach

numbers in turbulent flow, they can be appreciable.

The loss model was applied to the ACE turbine stage, which exhibits strong inter-

action between oblique shock waves and the rotor blade row. The Unsteady Viscous

Loss was found to be small. Nominally, i.e. without taking the loss model errors into

consideration, they account for only 1.4% of the total loss in an unsteady simulation

of the flow through the stage. The error band for this case is significant, allowing for

an Unsteady Viscous Loss up to five times the nominal level. At that level, Unsteady

Viscous Loss would be of the same magnitude as the Unsteady Circulation Loss. While

still small compared to the total loss of an unsteady simulation, it could account for a

third of the unsteady loss increase in the rotor passage. The ACE turbine stage is repre-

sentative of current high-pressure turbine designs but its level of unsteadiness is at the

upper end of the range found in turbomachinery. Generally, the level of unsteadiness,

and the associated Unsteady Viscous Loss, are lower.

The loss in the rotor passage is 55% higher in the unsteady simulation than in the

steady simulation. Neither the Unsteady Viscous Loss nor a change in the boundary

layer character account for the magnitude of the loss increase. The dominant mecha-

nism of loss increase was found to be numerical smoothing in the freestream. Numerical

simulations damp unsteady waves by way of numerical smoothing in the freestream,
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and not in unsteady boundary layers, as do real flows. As a consequence, the computed

pressure gradients, which drive the model for the Unsteady Viscous Loss, can be dimin-

ished prematurely, reducing the predicted loss. While the loss increase in unsteady flow

occurs in the wrong location, its level is possibly indicative of the Unsteady Viscous Loss

that would otherwise be seen in the boundary layer. To prevent numerical smoothing

from dominating, the level of numerical smoothing in simulations must be decreased. If

numerical smoothing is implicit to a code, its smoothing coefficients cannot be adjusted

and the grid spacing needs to be reduced.

In the simulation, it proved difficult to separate the effect of Unsteady Viscous

Loss from the effects of other phenomena, in particular in the presence of numerical

smoothing. At its small (nominal) magnitude, it is easily masked. The uncertainty

about its exact magnitude averaged over the blade passage or the boundary layer,

and lack of knowledge about its effect on the surface entropy further complicate the

identification of Unsteady Viscous Loss in the simulation.
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Chapter 5

Concluding Remarks

This thesis reports an analytical and numerical investigation of the second-order effects

of unsteadiness on the efficiency of turbomachines, using linear, two-dimensional models.

The main themes of the thesis are the identification of the physical nature and the

location of unsteady loss mechanisms, the magnitude of the associated losses and their

effect on the time-mean efficiency, and the assessment of the modeling accuracy of

numerical simulations with respect to unsteady losses.

5.1 Summary

The thesis research consisted of three distinct parts, corresponding to chapters 2, 3,

and 4. The scope and the results for each chapter are briefly summarized below.

5.1.1 Chapter 2 - Unsteadiness and Loss

Chapter 2 established, for the first time in a rigorous mathematical manner, a link be-

tween the dissipation (mixing out) of unsteadiness in a compressible flow in two dimen-

sions and the efficiency of a turbomachine. A novel approach, involving an asymptotic

analysis and a control-volume argument for a flow governed by the linearized Euler

equations, related the dissipation of an arbitrary combination of unsteady waves in a

uniform mean flow to an entropy rise. The entropy rise was in turn related to a change

in the turbomachine performance through a linearization of the isentropic efficiency.
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The unsteady waves permitted in an inviscid, compressible, linearized flow in two

dimensions are convected entropy and vorticity waves and propagating, or evanescent,

pressure waves. In an unsteady nonuniform flow, the time-mean of the flux-average

entropy is the only loss measure with a sound physical foundation. The separate con-

tributions to the second-order entropy rise (upon dissipation) from waves of different

frequency, wave number, and physical nature were explained. It was proved that contri-

butions from waves of different physical nature do not crosscouple and that evanescent

pressure waves do not contribute to the mixing loss.

The dependence of the accuracy of the predicted entropy rise on the wave amplitudes

was investigated by comparison to the numerically determined (nonlinear) entropy rise.

The loss model was employed for the first analysis of mixing loss at the stator/rotor

interface of a steady simulation. At the interface, the nonuniform stator outflow is

averaged to provide steady, uniform rotor inflow conditions. For the case examined, a

viscous simulation of a high-pressure turbine stage called the ACE turbine stage, the

mixing loss accounted for about 20% of the stage entropy rise in the steady simulation.

The linear model identified the contributions from pressure waves, vorticity waves, and

entropy waves to the mixing loss. The agreement between the predicted mixing loss and

the (nonlinear) mixing loss observed in the steady simulation was excellent, despite the

large magnitude of the perturbations in the stator outflow. It was pointed out that, as

a consequence of the averaging at the stator/rotor interface, the steady simulation of

a stage can have a lower efficiency than the corresponding unsteady simulation. This

aspect of steady simulations seems to have gone unrecognized, so far.

It is also relevant to note that Mathematica®, a software package for performing

symbolic mathematical manipulations by computer, proved to be an extremely useful

tool in carrying out the extensive manipulations required by the asymptotic analysis.
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5.1.2 Chapters 3 and 4 - Unsteady Loss Mechanisms

The thesis treated two unsteady loss mechanisms in a 2D, linearized framework. They

are called Unsteady Circulation Loss and Unsteady Viscous Loss, respectively.

Chapter 3 - Unsteady Circulation Loss

Unsteady Circulation Loss results from the transfer of mean-flow energy to kinetic

energy associated with vorticity shed at the trailing edges of a blade row. In accordance

with Kelvin's Circulation Theorem, the vorticity is shed in response to a time-varying

blade circulation. The kinetic energy associated with the shed vorticity is unlikely to

be recovered and is thus related to an efficiency drop as detailed in chapter 2.

While Unsteady Circulation Loss has been considered previously, this thesis pre-

sented the first application of numerical simulations to the loss mechanism. The use

of circulation amplitudes determined from simulations allows one to obtain Unsteady

Circulation Losses for arbitrary blade and/or stage geometries and Mach numbers.

Eliminating the need to estimate the circulation amplitudes or to deduce them from

thin-airfoil theory results in a realistic loss measure for modern turbomachines.

The Unsteady Circulation Losses were found to be small. For the case with the

strongest unsteady interaction between blade rows, the ACE turbine stage, Unsteady

Circulation Loss led to a drop in the isentropic stage efficiency of only 0.3%.

The most important interaction mechanisms leading to an unsteady circulation were

found to be wake/blade row interaction and oblique shock wave/blade row interaction.

Potential interaction played a minor role only. In the so-called NASA-stage 67 com-

pressor, for example, Unsteady Circulation Loss led to a drop in the efficiency of only

0.03% for the smallest gap between blade rows.

The circulation amplitudes were found to be surprisingly small, i.e. 0(1%) of the

time-mean circulation. Even the ACE turbine stage with a 40% peak-to-peak variation
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in the rotor lift, only showed a peak-to-peak variation in the rotor circulation of 5.5%.

No further work is required on the subject of Unsteady Circulation Loss because its

magnitude has been clearly established and was found to be small.

Chapter 4 - Unsteady Viscous Loss

The unsteady stator/rotor interaction can generate strong pressure waves. Unsteady

Viscous Loss is a consequence of dissipation in unsteady boundary layers driven by

these pressure waves. The proposed loss model represents the first attempt to model

Unsteady Viscous Loss.

A high-reduced-frequency limit was used to obtain the streamwise velocity distribu-

tion in the laminar Stokes sublayer driven by unsteady pressure gradients. The driving

pressure gradients were obtained from a simulation. In the high-frequency limit, the

dissipation in unsteady boundary layers depends only on the unsteady shear. The as-

sociated entropy rise was again related to a drop in the isentropic efficiency.

To check the errors introduced by a departure from the high-reduced-frequency

limit, a numerical study was performed on a flat plate boundary layer subject to a

pressure wave disturbance. The accuracy of the predicted dissipation was shown to

depend primarily on the freestream Mach number and the ratio of the laminar sublayer

thickness (of the turbulent mean flow) to the unsteady boundary layer thickness.

The loss model was applied to the ACE-turbine stage. Unsteady Viscous Loss was

predicted to cause a drop in the isentropic stage efficiency of 0.09%. Compared to

the total loss in an unsteady viscous simulation, this is a very small contribution; it

accounts for only 1.4% of the total loss. Taking into account errors due to modeling

approximations, the loss could be at most five times the predicted level. At that level, it

would be roughly of the same magnitude as the Unsteady Circulation Loss but remain

a small contribution, accounting for no more than 7.1% of the total loss.
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Unsteady Viscous Loss could, however, account for about one third of the loss in-

crease in the rotor passage observed in the unsteady simulation over the level in the

corresponding steady simulation. Analytical considerations and detailed examination of

the simulations showed that the increase is induced primarily by numerical smoothing.

Numerical smoothing shifts the primary locus of unsteady loss from boundary layers into

the freestream. Pressure waves, which constitute the input to the loss model, are atten-

uated prematurely in the freestream, reducing the predicted level of Unsteady Viscous

Loss. The magnitude of the loss increase in the freestream of the unsteady simulation is

possibly indicative of the levels of Unsteady Viscous Loss that would otherwise appear

in unsteady boundary layers.

The thesis contains the first investigation on the origin of the increase in loss seen in-

the rotor passage of an unsteady viscous simulation. The finding that there can be differ-

ent unsteady loss mechanisms and loci in physical flows and simulations, is an important

one. Since unsteady simulations are used to assess the performance of turbomachinery,

the potential problems and the limitations of CFD-codes need to be understood.

In contrast to Unsteady Circulation Loss, Unsteady Viscous Loss requires future

work to address the problems identified in the course of this thesis.

Synopsis of Unsteady Loss

The contributions of the unsteady loss mechanisms considered to the overall loss in a

stage with a high level of unsteadiness are small, but not negligible if an accurate account

of the loss sources and the time-mean efficiency are required. This is particularly true as

long as the magnitude of Unsteady Viscous Loss cannot be established more accurately.

As discussed above, Unsteady Viscous Loss could be a significant contributor to

unsteady loss. A less conditional statement must await additional research into the

effect of numerical smoothing and modeling approximations on the predicted level of

Unsteady Viscous Loss.
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5.2 Future Work Recommendations

5.2.1 Chapter 2 - Unsteadiness and Loss

Chapter 2 linked unsteady waves to the entropy rise upon their dissipation. While it was

concluded that little of the energy associated with unsteady waves can be recovered, a

closer analytical study of rectification mechanisms in turbomachines and a quantitative

measure of rectification would be highly desirable.

References on wave reflection and transmission through blade rows did not provide

a clear picture on reflection and transmission coefficients. The coefficients vary greatly,

depending on the exact choice of parameters like Mach number, incidence angle, and

stagger angle. None of the references treated geometries realistic for turbomachinery.

Therefore, it was difficult to make a general conclusion about the relative importance

of transmission versus reflection, and ultimately about the locus of dissipation.

If an unsteady wave is not dissipated 'in place', but only after transmission through

blade rows, it may extract additional energy from the mean flow. Also, if dissipation of

unsteady waves happens in a nonuniform mean flow, the associated loss is not known.

The asymptotic analysis for a control volume holds only in a uniform mean flow. Both

of the above issues should be addressed analytically.

An experiment, measuring the unsteady flow field of a turbine stage with the spatial

and temporal resolution required to identify the unsteady waves, could provide answers

to the above questions. Knowing the wave content at the stator/rotor interface and the

outflow boundary would allow one to draw a conclusion about the relative importance

of reflection versus transmission and the locus of dissipation.
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5.2.2 Chapter 4 - Unsteady Viscous Loss

Chapter 4 treated Unsteady Viscous Loss and applied the loss model to the ACE turbine

stage. The predicted loss was small, but its magnitude was not well-defined due to

modeling approximations and the action of numerical smoothing.

Numerical smoothing was found to shift the primary locus of unsteady loss in nu-

merical simulations from boundary layers into the freestream. While loss mechanisms

and locations differ in physical flows and numerical simulations, the entropy rise in the

freestream is possibly indicative of the level of Unsteady Viscous Loss in physical flows.

Therefore, the first step in any future work should be an analytical assessment of the

consequences stemming from differing mechanisms and locations of unsteady loss if the

predicted level of unsteady loss is realistic.

Since numerical smoothing is necessary to stabilize CFD-codes, and in many cases

is implicit in the numerical method, the only way to reduce nonphysical losses in the

freestream is to increase the grid resolution at the expense of CPU-time. Careful bench-

mark calculations with high grid resolution are recommended to establish the resolution

required to have identical dissipation mechanism in simulated and real flows.

Experiments focusing on the unsteady pressure gradients on the blade surfaces are

suggested; these could be used for two purposes. First, they could be compared to

pressure gradients obtained in a numerical simulation to give some guidance as to when

the dissipation mechanism in a simulation is physically realistic. Second, the data could

be used as an alternate source of input to a loss model.

Once the input, i.e. the unsteady pressure gradients, can be trusted, an improved

loss model should be developed. In the present formulation, the errors in the predicted

dissipation are appreciable when the model is applied to turbomachinery flows of prac-

tical interest. A model like the one used for the numerical error evaluation could be

employed to account for turbulent mean flows and mean-flow convection.
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Appendix A

Derivatives of the Axial Flux Vector

U
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dU

d2F1
dU2
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Appendix B

Derivatives of the Axial Entropy Flux

dS
dUp

d2 S

dU,2

1
D=1
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0 0 i
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Appendix C

Orthogonalities of Trigonometric Functions

2r j2

1 27r

27 o

cos (<p')
sin(mix) sin(mjx + yp)dx = 6z3 2

2

cos(mix) cos(mx + <p)dx =

1 12-r

cos (<p)
6;g 2

sin(mix) cos(mjx)dx = 0

Iml = 1, 2,3, ...

ml = 1,2,3,...

Iml = 1, 2,3,...

The.Kronecker delta 6ij is defined such that

'5i1 ={

0

1

if i 7

if i =

I

3
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Appendix D

Separation Properties for Non-Evanescent

Pressure Waves

In accordance with equation (2.37), one has to show that the following three relations

hold in order to prove that there is no crosscoupling between the two propagating

pressure waves, and between vorticity waves and propagating pressure waves:

~3U4 + #4"3
U3 4 + V3 4 + P3 p4 + =.,0  0

U3U2-  +P3U 2 -0

U4 U2 +V 4 V2 + 0
M[O

The right eigenvectors j,, = [,, j, ]T are defined by

0 - ( RMx,o - 1) ~

-MXO ( R - MXO)
W2 = and W3,4 =

Q - My'O ( - R2 (-MY,O)

L 0 J - (iRMO - 1) -

The subscripts '2', '3', and '4' denote a vorticity wave, a downstream

propagating pressure wave, respectively. R and R are defined by

R= 1 - ' and -= .
(9 - MU,0)2 aok,

and an upstream

Let a denote the phase angle between the complex pressure amplitudes h and p4 and

/3 the phase angle between the complex axial velocity i2 of the vorticity wave and the

complex pressure h of a downstream propagating pressure wave.

Looking at the individual pressure wave crosscoupling terms, one can derive the

156



following relations: 3 ~4 - + 2541 cos a

34 R + Mx,o P _ R + Mx,o 1P3P4op3P4 = -cos a
MXo (1 + RM,o) Mx,o (1 + RMx,o) Mx,o 2

54U3 R - MXo R - Mx,o IP3 P4 1
.= + P3 P4 =+- Cos Ce

M,o (1 - RMx,o) Mx,o (1 - RMx,o) Mx,o 2

R + Mx,o R - Mx,o -- R2 - MX,0 P3P41
(1 + RMx,o) (1 - RMx,o ) '_6t 1 - R2 Mj0  2

(1 - R2) 2 ( 11 - My,o)2 (1- R2) (i - M I,0) 3 os a
V3V4 = + - R2M0 P34 1 - R2 Mx,0  2

Thus, one obtains

S3U4 + P4U 3
U 3 U 4 + V3V4 + P3P4 + M =,,

R2 - M +,o (1 - R2 ) (i - M, 0 ) _ R + M, o
i - R 2 M 2  1 - R 2 MxQ (1 + RMx,o) M,o

R - Mx,o Cos a 0R-Ma,0  ~~~cosa= 0.
+(1 - RMx,o) M,oI 2

An upstream and a downstream propagating pressure wave do not couple in the flux-

averaging procedure.

The individual crosscoupling terms between a downstream propagating pressure

wave and a vorticity wave can be rewritten to yield:

h"2 1IpAu21
P3u2 = #U|cos/#
M=,o Mx,o 2

_3 =+ R-MO T R - Mx,o I 21Cos

usu2 =+l R~,P32 =+lR aO 2 cos #31 - RMx,o 1 -- RMx,o 2

(1 - R 2 ) (Q - MY,o)2 - 1 - Mx, 0  p#3u 2 o
V3V2 =-P3U2 = -Cos#

(1 - RMx,o) M,o (1 - RM,,o) M,o 2

Summing all terms, one obtains

32+ 32+P32 - 1 (R - Mx,o) M,o 1 - Mx, 0 + cos 3 0.
M O M,o 1 - RMx,o 1 - RM2 ,o 2

Vorticity waves and pressure waves do not couple in the flux-averaging procedure. In

this very same manner, one can prove the third of the above conditions for crosscoupling

between an upstream propagating pressure wave and a vorticity wave.
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Appendix E

Separation Properties for Evanescent Pressure

Waves

In accordance with equation (2.37), one would have to show that the following three

relations hold in order to prove that there is no crosscoupling between the evanescent

pressure waves, and between vorticity waves and evanescent pressure waves:

~ ~ ~3U4 + p41L3_
L3Ui 4 + V3 V 4 + P3P4 + = 0

MXO

U 3 U2 +V 3V2 + =O

U4 U2 +V 4 V0U4U2 + F4:2 + = 0O

For evanescent pressure waves, the right eigenvectors 'j,., are defined by

0 -( iRMx,o - 1)

-MXO ( iR - MX,o)

W - My'O (1 + R2) (n - MY,o)

L 0 J - ( iRM,o - 1) j

The subscripts 2, 3, and 4 denote a vorticity wave and pressure waves decaying down-

stream and upstream, respectively. Note the complex nature of the pressure wave

eigenvectors; there are phase shifts other than 7r between the pressure or density per-

turbation and the velocity perturbations. R and Q are now defined by

R= I ' -1 and = .
(Q - MYo) 2  aoky

Figure E.1 presents the elements of the eigenvectors corresponding to the evanescent

pressure waves in the complex plane. Without subscripts, the variable <W denotes the

phase shift between the complex pressure amplitudes J% and P4. <p, is the phase angle
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t (1 - M2 0 ) R
tanlSt= - (1 + R 2

) M.,o

(1 + R2) M.,0

(1 + R4) M.2o + (1 + M4,O) R2

(1 - M 0,) R

V/(1 + R4) M2,0 + (1+ M 4 0 ) R 2
Opu Wp

P3

tan pp = RM.,o

COS (P,, =
1 + R 2

M ,0

sin (p RM.,o
1, + R 2

M ,0

Figure E.1: Eigenvectors for evanescent pressure waves in the complex plane

between the pressures P3,4 and the corresponding axial velocities , Correspondingly,

the variable <p, denotes the phase angles between the pressures and the corresponding

velocities %3 ,4 . The following relationships between the components of the eigenvectors

hold for evanescent pressure waves:

(1 + R4) M,o + 1 + Mo) R2

1 + R 2M2,0

(1 + R4 ) M2,0 + (1 + M4 R2

_(1 + R 2) (fl _ My~)-+o
1 V + R2 M2O

(1 + R 2 ) (Q - MY,o)

0 + R2=M0,

Thus, the individual pressure crosscoupling terms can be written as

P~3 _1(1 + R 4 ) MxO + (1 + MJ,0 ) R2 
_

MXO (I + R2MxO) MxO P4 (j +iWP)
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(I + R4 ) MJ, 0 + 1 + M4,0 R2

(1 + R2Mx,0) M.,o

1P3A4 cos (p,, - p),
2

V(1 + R4 ) M=,0 + (1 + M4, ) R2

(1 + R2M2,0) Mx,o

+ MxO) R2

(1 + R2M2,O) Mx,o

(1 + R4 ) MA4,Q + (i +

(1 + R2M2,0 )

i3 (j54e-i) =

M, 0 ) R 2

2 (,3e+ie,) ( 4e-is',)

(1 + R4) M2,0 + (1 + M4,0 ) R2

(1 + R2M2,O) 2
2 cos (2 pp - p),2

V3 V 4 = (1 + R 2 ) ( - M,o)
(i + R2M,O)

(hse+C,,) (j 4e-io, ) =

(1 + R2) 2 (1 - M2,

1 + R 2 M2,0

and

~54 = 2 Cos <p.

This leads to

1 3 U4 + Vi3 4 + J23P4 +

2

4 4 _

1(1 + R4 ) Mx,O + (1 + M,) R2

(1 + R2M2,0 ) MxO

(1 + R4) M, 0 + (1 + M ) R2
L2

(1 + R2 MX 0 )

(cos <p, cos <o + sin <p, sin <p)+

(2 cos2 <p, -1) cos sa + 2 sin <pu cos p sin <p +

(2cos2 _1)cospo+2sinvp cosop, sinp + cos sO
2
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3P4
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IP3P4 Cos
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(2 pp - p),

(1 + R4) Mx2,O + (1

(1+R 2) (1 _ MX2,0

1 + R2 MX, 0



After some algebraic manipulations involving the phase angles defined in figure E.1, the

final result is

~4+(I - M,) R 2  sin \ 3P41
u3U4 + V3v4 + 3P4 + ,1+ + R2MP2U M ,7 + Cos 2

It is seen that there is, in general, crosscoupling between the two evanescent pres-

sure waves.

There is, however, no crosscoupling between an evanescent pressure wave and a

vorticity wave. To show this, let p now denote the phase shift between the pressure P3

of a pressure wave decaying downstream and the axial velocity i 2 of a vorticity wave.

Again, the individual crosscoupling terms are first rewritten as:

F3"2 _ 4Cos a
Mx,o 2Mx,o

1(1 + R4 ) M2,0 + 1 + M____ R2
13L 2 = 1 + R2 MR,2 (Pe+ipu) 2 =

U321 + R2 M2
x 2(+R4) M2,0 + (1 + MX4o R2

1 + R2 MX2' 2 (CO o 9 cos o + sin pp, sin p)

(1 + R2 ) (Q - MY)2

V3V2 =-(Ps~e+iwv,) T2=
1 + R2 Mx 0 MX, 0

S(1 + R 2 ) (i _M.2)_ (cos p, cos p + sin , sin so)
1+ R2 Mjo2, 2

Summing the above terms and substituting the expressions of figure E.1 for p, and

(P into the above equation, one obtains

U3U 2 + vsv2 + = 0.
MXO

In the very same manner, one can prove that there is no crosscoupling between an

evanescent pressure wave decaying upstream and a vorticity wave.
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Appendix F

Single Evanescent Pressure Waves

In order to show that a single evanescent pressure wave does not lead to a rise in entropy

under the flux-averaging procedure, one has to show that

.~! + + i ! 2+2 pss=0

holds. The definitions of the phase angle ,pp, R, and 1 are the same as in appendix E.

The individual terms above can be rewritten in the following form:

P321

(1 + R 4 ) M2,0 + (1 + M ,0) R2 2

1+ R2M2,0 )
2

(Q - My,o) 2 (1+ R2 )
1 + R 2 MX,0 2

(1+ R4) MO + (1+ M,) R2

(1 + R2Mx,0) M.,O

1- M2,0) (1 + R2) 2  21

1+ R2 Mx , 2

IA3(Aei'=-

(1+ R4)M ,o+ (1
+ M o) R2

(1 + R2M ,0) M.,o
This leads to

E +-I

P3U3

MXO

(1 + R 4 ) M2,0 + (1 + M 2 0) R2

(1 + R2M 20 )2

(1 - Mx, 0 ) (1+ R2)
2

+ +R2M2 0

(1 + R4) M2,o + (1
2 _

+ M,O) R2
cos <pu = 0.

2

Therefore, a single evanescent pressure wave does not lead to an entropy rise.
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Appendix G

Left Eigenvectors of the Linearized Euler

Equations

The left eigenvectors, corresponding to the right eigenvectors 1ir, of section 2.1, are

needed to determine the individual wave amplitudes contained in an arbitrary unsteady

perturbation superimposed upon a uniform mean flow. Note that the left and the

right eigenvectors are not normalized, i.e. wi,; * W,j $ 6 ij. The symbol 6;j denotes the

Kronecker delta function defined in appendix C.

I - T

0
=,1

0

.- 1.

0 -T

-MXO
Wl,2 f

-1 J

0 T

=(f - MYO)
W1,3/4 

MO

.(O - My,o) Rj
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Appendix H

Scaling Arguments in the Near-Wall

Approximation

Close to the wall, the inertial terms in the streamwise momentum equation (4.11) can

be neglected in the steady as well as the linearized unsteady equations. To first order,

the streamwise pressure gradients near the wall are balanced by the normal shear stress.

-r = TW + (~) n+ ..
as

It follows that both the steady and the unsteady streamwise velocity, iX and U, vary

linearly with the normal coordinate n close to the wall. The mean flow continuity

equation is

i 8-+- I +8- + =.
as an as On

Moving towards the wall, the 1st, 3rd, and 4th term clearly vanish because U and F

approach zero. The second term then also vanishes, which implies that, at a minimum,

T-n2 . This holds for an adiabatic wall, and for an isothermal wall as well.

The first-order perturbation of the continuity equation (4.16) is

+p -- + -- +- + i--+ _U + U-2+;-=0.at as +n) s an) as an 19s On

Moving towards the wall, all the above terms, except the time derivative and the un-

known term containing the normal derivative (a;U/an), vanish. The normal velocity at

the wall results from an adiabatic or isothermal compression in response to the unsteady

pressure acting on the boundary layer. At an adiabatic boundary, (aTn/n) =0 holds.
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Together with the equation of state and (ar/On) =0 from the boundary layer approxi-

mation, this leads to the conclusion that 5is independent of the normal coordinate at the

wall. Therefore, iEn must hold to have 7(dU/an) balance the unsteady term (ap/t).

For a constant temperature boundary, the equation of state gives (Or/at) ~ (ay/at).

Together with (a,/On)=0, this again leads to the conclusion that F -n.

Coming back to the linearized streamwise momentum equation (4.17) above, one

concludes that all inertial terms on the left hand side are of 0(n2 ) near the wall except

for the unsteady term and the convective term ;F(O-u/9n) which are of O(n).^ Those

two terms are the first to play a role as one moves away from the wall. It is not the

convective term (4.58), but (4.60), whose neglect introduces the largest errors at the

wall. From (4.44) and (4.45) one obtains

Oi 1 k, n
at 7iw ke 6 f

using a Taylor series expansion near the wall. From (4.23), one obtains the near-wall

approximation of the linearized continuity equation as

V_ 1 8
-~ -ke _

an 7i at

which leads to

|;F|~- ke M,2 n |pij

for an adiabatic boundary. In the calculation of JiF, the relation (p/y.)=Mj2 has been

used; for a constant temperature boundary, the relation (p/-p) = (Me2p/i) has to be

used. The ratio (4.60) can now be written as

i .au 7w ke a" 2 6f
an at peksn Ca

For a pressure wave propagating (approximately in or against the freestream) over a

laminar flat plate boundary layer with (ai/an) ~ 0.332 Re/s, the argument can be

made more precise:

E/ 0.332 Me (1 Me)
an at Iks
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Appendix I

Length and Time Scales in Turbulent Flow

Unsteadiness causes extra time-mean dissipation in an unsteady boundary layer. It is,

a priori, not obvious whether the dissipation mechanism is turbulent even if the mean

flow is turbulent. To address this issue, the forcing time scale Tf is compared to the

characteristic turbulent time scale T, and the unsteady boundary layer thickness 6f to

the turbulent length scale it. The time scale of turbulence is

T, = -

For an incompressible turbulent boundary layer along a flat plate at zero incidence, the

time-mean wall shear is approximately

rW V v 1/4-2
0.0225 Ue,

P UeW

with the steady boundary layer thickness defined by (4.85). Using the above equation

and equation (4.89), one can rewrite the ratio of time scales as

~ 5.52 ke, S
Tf Res' 5

The ratio of length scales becomes

~ 5.88 ke s T
6 2/5f1 Res FT

Except for the leading edge region, the time scale of the turbulent motion is much less

than the forcing time scale. This implies that turbulent eddies move much more than a

characteristic length it during a period. A period much larger than the turbulent time

scale also provides the rationale for the application of a steady turbulence model to an

unsteady flow. For Reynolds numbers and reduced frequencies typical of turbomachin-

ery (Re=106 and ke=5), the ratio of length scales is 0(0.1). Turbulent diffusion of

momentum takes place in the unsteady boundary layer.
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Appendix J

Attenuation of Pressure Waves at Boundaries

The attenuation coefficient (4.101) can also be obtained from the high-reduced-frequency

limit of the linearized continuity equation (4.23).

- -keM2 ? (J.1)
an a at as

The relation 5 = M2, valid in compressible isentropic mean flow, was used in (J.1).

Using the full viscous expressions for the unsteady pressure and streamwise velocity,

one may recast (J.1) as

& ikeM [(1 -/) exp {ikn} + exp {-ikan}] -exp {i (ks -t)}

(k,) 2 (ex { (i1)n})- ike -- ) (1- exp - [(1 -0) exp {ik.n}
ke /2 45f)

+ exp {-ikan}] - exp {i (ks - t)}. (J.2)

For the inviscid case, i.e. for # -- 0 and Re -- oo, equation (J.2) simplifies to

linv = ike M -j (exp {ikan} + exp {-iknn}) P exp {i (ks - t)}, (J.3)

which corresponds to a standing wave with a norial velocity

iinv = M - (exp {ikn} - exp {-ikn}) P exp {i (ks - t)}. (J.4)

In the inviscid case, any normal derivative of iU is solely due to a phase shift governed

by the wave number kn of the standing wave. It is instructive to contrast this to the

viscous case. To this end, one takes the difference between the viscous and the inviscid

normal gradient.

vis /3k (i-1) n kM 2_ 2 expji(ks+kn-- Is- an in = #ike I1I- exp fM/2f k ) M exp{ (k kn - t)}
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+ ike -) exp -(i-1)n [exp {ikan}+exp {-ikan}j] exp {i (ks - t)} (J.5)
(ke v'2 6 f

The exponential factor in the first term on the right-hand side of equation (J.5) may

be neglected because it is multiplied by the small factor 3 and thus negligible when

compared to the second term. Equation (J.5) will be integrated to obtain the difference

in the unsteady normal velocities at the boundary layer edge. The limits of integration

are 0 and oo on a scale (n/Sf) or 0 and 0(0) on a scale kan. Upon integration, the

second term on the right hand side of (J.5) contributes the dominating term and one

obtains approximately

lhsirf Vinv ( Re (exp{ikan}+exp{-ikan}) j exp{i(k,s-t)}exp i}. (J.6)

In keeping with the arguments advanced above, the dependence of the second term

on the right-hand side of (J.5) on the phase angle kn has been neglected in the

integration. The result (J.6) cannot readily be compared to the solution of the energy

balance approach (4.100) because, due to its nature, it did not retain phase information.

Figure J.1 helps to clarify the issue.

4

Figure J.1: Normal velocity vectors in viscous and inviscid flow

Utilizing (4.69) and rewriting (J.6) in terms of magnitudes, one obtains

RevvisI - I:Uinu I -:: Me V2 taRse plMecs6= 1|~jM o6 J7

because the phase shift p between Y,;, and ii,, is small. Noting that Iul = ['MeI cos0,

it becomes obvious that the edge of the unsteady boundary layer exhibits an additional

normal velocity as if it were exited by an acoustic wave with an amplitude 31 Pe,, I.
This is exactly what happens physically, because the amplitude of the reflected wave

has been diminished by a factor 1 due to unsteady dissipation; both approaches lead to
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the same attenuation factor

/1 = Me 2 ke tan 0 sin 0. (J.8)
Re

The unsteady pressure and the unsteady velocity at the edge of the unsteady bound-

ary layer can be related to the dissipated energy as follows:

The second-order time-mean dissipation function 4 2i (in dimensional form) can be trans-

formed to read

/duN2 r 8 8 ax 8' aU

f 0iL 2dn =y 0 I dn -f m U dn. (J.9)

In the high-reduced frequency limit, the first term on the right-hand side is zero at the

wall and at the edge of the unsteady boundary layer. Using (4.39) in dimensional form,

the right-hand side can be written in the form

00 / \ 2 00 / 5 p
dn = U p + dn. (J.10)

For a harmonic disturbance, ii and (au/8t) are (7r/2) out of phase such that the time

mean of their product is identically zero. The right-hand side may be transformed

further by

-- W- i dn aiidn.
dsa p. 1s1) 8

In the high-reduced-frequency limit, the first term on the right-hand side is again zero.

Due to the assumption of parallel mean flow, it is independent of the streamwise co-

ordinate. The high-reduced-frequency limit of the continuity equation in dimensional

form reads

+ + =o. (J. 12)

Substituting (J.10) and (ai/as) from (J.12) into (J.11), one obtains

/* ui
2 dn = j dn=o + _ dn . (J.13)

o an p o t

The first term on the right-hand side represents the work transferred into the unsteady

boundary layer while the second term represents the potential energy stored in the

boundary layer.
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