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ABSTRACT

The influence of tip clearance on the lift distribution along

a blade span was studied on linear compressor and turbine cascades.

The wall boundary layer was removed by means of the intage technique.

The lift distribution in the span direction was found to be almost

similar for both compressor and turbine cascades having the similar

velocity diagrams. The lift acting on the blades increases toward

the blade tip. The phenomena were explained theoretically by con-

sidering the velocity induced by tip vortices on the blade surface.



SYMBOLS

A aspect ratio

a radius, inches

b span, inches

Cl section lift coefficient

Cn section normal-force coefficient

CN normal-force coefficient of isolated airfoil

Cp pressure coefficient '
Cyp

Cx2 inlet axial velocity, feet per second

C 2outlet axial velocity, feet per second,

c blade chord, inches

F complex potential

PO stagnation pressure, pounds per square foot

p pressure on blade surface, pounds per square foot

p1  upstream pressure, pounds per square foot

R distance between point on surface and tip vortex line, inches

Re Reynolds number

r distance between point on surface and tip vortex segment, inches

s distance from leading edge along tip vortex line, inches

u velocity in 'chord direction, feet per second.

V inlet velocity, feet per second

V outlet velocity, feet per second2

V 2 d velocity around two-dimensional airfoil, feet per second

v velocity in span direction, feet per second

w velocity normal to blade surface, feet per second

w velocity w induced by tip vortices, feet per second

Wtr velocity w induced by trailing vortices, feet per second



X non-dimensional chordwise distance x/c

x chordwise distance, inches

Y non- dimensional spanwise distance y/c

y spanwise distance, inches

YO clearance to chord ratio, y /c

yO tip clearance, inches

Z complex plane

z distance normal to blade surface, inches

o( local incidence angle, degrees

o(., incidence angle, degrees

outlet angle, degrees

o(qo mean flow angle, degrees

( angle between blade surface and tip vortex line, degrees

T circulation of bound vortex

total circulation around profile

non-dimensional circulation around profile

F circulation of tip vortex

F~ non-dimensional circulation of tip vortex

circulation around two-dimensional airfoil

Fbuxrier coefficient

compalex plane

spanwiise distance, inches

stagger angle, degrees

chordwise distance, inches

fluiidjdensity, slugs per cubic foot



1. INTEODUCTION

It is well known that the amount of tip clearance haG a large effect

on the performance of axial flow machines. The results obtained by past
(1)

experiments show different trend from compressor to compressor and

it seems to be difficult to obtain a generalized expression for the

effect of tip clearance.

The flow phenomenon in the vicinity of a blade tip in an axial

flow machine may be considered as a combination or an interaction of

phenomena due to three different causes, i.e., the amount of tip

clearance, the boundary layer on the annulus wall and the relative

blad.e tip velocity to the wall. To study the problem in detail, an

experiment was conducted by G. Khabbaz(2) in the Gas Turbine Laboratory

in 1959. In this experiment, the tip clearance effect on stall limit

of compressor cascades was studied using the image method to eliminate

the wall boundary layer. He found through the test that

1) stall occurred at a higher angle of attack near the wing tip than

for the remainder of the blade,

2) as the clearance size is increased, the loading on the blade near

the tip increases, while at a greater distance from the tip it remains

unchanged.

He explained the pl nomena by applying the momentum theory to a

control volume taken between the blade tips as shown in the figure.

net momentum flux out = (p1 - p2 ) x Area

For compressor cascades,

the pressure at the outlet of

-~ -- the blade row p is higher than

CON T OL the inlet pressure pl, and the
Vo LumeS

momentum flux coming into the
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control volume must be larger than that going out from it. Accordingly,

some air must leave the cascade by passing through the blade row to

satisfy the continuity. Since the flow at a greater distance from the

tip is two-dimensional, this flow will increase the local velocity near

the tip and result in an increase of the lift near the blade tip.

If this hypothesis is correct, then the reverse result must be

obtained for turbine cascades because the pressure at the inlet of

the turbine cascade is higher than that at the exit.

The experiment was continued by the authro to check this effect.

After the cascade test, it was thought that it was necessary to observe

the flow near the tip for understanding the phenomena in more detail,

and flow observation was attempted by using tufts in the cascade and

by the ink tracing method in a water table.

The problem is also treated theoretically in this report.



2 Description of Test Apparatus

2.1 Low Speed Wind Tunnel Cascade

The experiments were carried on the same apparatus used by G. Khabbaz.

The cascade consists of nine blades; four of them were cut in halves to

make the clearance (Fig. 1).

The dimensions of the cascade are given in Table 1.

Table 1

Blade Profile

Chord Length

Solidity

Clearance to Chord Ratio

Stagger Angle

Air Inlet Angle

Air Inlet Velocity

Reynolds Number*

Dimensions of the cascade

NACA 65-410

C = 4.875 in.

c' = 1.0

y= yO/c = .03

Compressor

550

D= 65*

V 110 Ft/Sec

S e= 2.8 x 105

Turbine

50

= 54*

= 70 Ft/Sec

= 1.8 x 105

(*) Based on inlet velocity and chord length

The blade surface pressure was measured by two blades in the middle

of the cascade. The pressure taps on these bibades are located along

the chord at various distances from the blade tip as shown in Table 2.

Static pressures were fed into a multi-tube inclined manometer by

vinyl tubes.
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Table 2 Position of Static Pressure Taps on Blade Surface

Chordwise Distance from Leading Edge (percent chord)

No. 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Distance 2.5 5.0 7.5 10 20 30 40 50 60 70 75 80 85 90 95

Spanwise Distance from Blade Tip, inches

No. 1 2 3 4 5 6 7 8

Distance 1/16 3/16 7/16 11/16 15/16 1 /16 2 /16 4 /16

2.2 Probes

A pitot static tube was placed at a chord length upstream of the

blade row for measuring the inlet velocity and pressure. The flow down-

stream of the blade row was measured by traversing a five-hole probe

in a plAne at a chord length downstream of trailing edges of the blades.

The pressure tubes frm the probe were connected to a wirestrain gauge

type transducer and the pressures were read by a D.C. balancing bridge

type calibrator.

3 Test Results

Fig. 2 shows the pressure distribution on the blade surface of the

compressor cascade. It can be seen from the figure that the static pres-

sure on the suction surface decreases considerably as the blade tip is

approached, but there is little change in pressure on the pressure

surface.

The static pressure on the suction surface at different chords

were plotted against the distance from the blade tip in Fig. 3. The

region influenced due to the tip clearance is spread toward the trail-

ing edge along the chord except in the vicinity of the leading edge.
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The outlet axial velocity obtained by the wake traverse was divided

by inlet axial velocity and plotted in Fig. 4. It shows a typical wake

shape at y/c = 0.4, but for smaller values of y/c, the pattern deforms

gradually and a highest velocity appears at downstream of the suction

side and lowest velocity at downstream of the pressure side of the

blade.

Fig. 5 shows the distributions of the mean axial velocity, the

turning angle and the lift coefficient along the span. The mean value

of the outlet axial velocity and the lift coefficient were obtained by

integrating curves in Fig. 4 and Fig. 2 respectively. The turning angle

was calculated by using continuity and momentum equations assuming that

no mixing occurrs in the spanwise direction. The outlet axial velocity

and the turning angle decrease toward the tip in spite of the increase

in the lift coefficient.

Surface pressure measurements wore also made for a turbine cascade.

The stagger angle in this case was so chosen that the velocity diagrams

for compressor and turbine cascades are similar.

COMPRESSOR. TuUijE

c4) .) = d,)
) comp. tur. .i coMp. tur.

The surface pressure distribution is shown in Fig. 6, and the non-

dimensional lift coefficient is plotted in Fig. 7 together with the

results obtained from the compressor cascade. The trend is almost the

same for both cascades.

4 Discussion of Test Results

The test results may be summarized as follows:

(1) For the compressor cascade, the turning angle and the outlet
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axial velocity decrease near the blade tip in spite of the increase

in the lift coefficient.

(2) For both compressor and turbine cascades, the lift coefficient

increases toward the tip.

These phenomena cannot be explained by the momentum theory which

was applied to this problem by Khabbaz.

Before entering the discussion of the tip clearance effect, let

us look at the flow around a single wing of finite aspect ratio. There

are some reports concerning the lift or pressure distribution along

the span of wings of small aspect ratio. Fig. 8 is one of the test

results obtained by Holme. The lifting surface theory shows the

correct behavior for very small angles of incidence. However, as

the angle of attack is increased, the loading becomes larger near the

tip. Except at small angles, the lifting surface theory gives very

inaccurate results even for angles of attack much smaller than the

stalling angle.

To investigate the flow phenomena near a wing tip in detail,,

flow was observed by tufts in the wind tunnel and also by the ink

tracing method in a water table. In the experiments, a strong wing

tip vortex was observed as shown in Fig. 9. Air rolls up around

the wing tip and makes a wing tip vortex above the suction surface.

This tip vortex will have a large influence on the blade surface pres-

sure, especially on the suction surface since the vortices exist above

the suction surface. To confirm the effect of tip vortices on the

surface pressure, a crude calculation was attempted under the fol-

lowing assumptions.

1. Velocity on the blade surface is approximately the sum of

velocities induced by two-dimensional bound vortices and tip vortices,
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the effect of trailing vortices are neglected since the strength of

trailing vortices were observed to be much smaller than that of the

tip vortices.

2. The distribution of the bound vortices along a chord is

approximated by a linear function of x/c, because the circulation of

a bound vortex is proportional to the pressure difference between the

surfaces, and the pressure difference would be approximated by a

triangle as shown in the figure.

ACTUAL 'PRESSU*E

----- ArPOXMAT ED 0

Figure 1O
0 I.0

5. The tip vortices are a continuation of the bound vortices and

exist in the x-z plane (Fig. i-5) with an angle P to the x-y plane.

Two different assumptions were made to express the position of

the tip vortices.

i) The wing tip vortices leave from the wing tip parallel to

each other. (Fig. I-5-i)

ii) The wing tip vortices leave from the wing tip and join a

vortex which started from the leading edge with an angle

to the blade surface. (Fig. I-3-ii)

In both cases, the angle 0 was approximated as equal to the angle

between the chord line and mean flow direction, that is

The pressure on the suction surface at y/c = .0385 was evaluated

by taking images of the tip vortices to satisfy the boundary co. lition

on the surface (see Appendix I).

Vz = 0, on surface (xy,O)
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The result was plotted in Fig. 11. The pressure distribution along

the span was also calculated at x/c = 0.5, and shown in Fig. 12. The

pressure distribution calculated by the assumption (3-ii) shows com-

paratively good agreement with the test result. We will be able to say

from the figures that the assumptions made for the calculation are not

far from the actual flow phenomena. However, the procedure used here,

i.e. the use of the image vortices to satisfy the boundary condition

is not applicable in evaluating pressures on the pressure surface.

(7)
In the lifting surface theory, this boundary condition was

satisfied by the relation

w + V1 Sin 0l = 0. (1)

That is, the normal component of the induced velocity cancels the

normal component of inlet flow.

The problem may be solved by using Eq. 1 as' the boundary con-

dition and the calculation procedure will be similar to that for the

lifting surface theory, the only difference is that the equation

would involve additional terms due to the tip vortices which were

not considered in the original lifting surface theory.

The treatment of the problem as a lifting surface will be much

more complicated and a laborious numerical calculation will be

required to solve it. If our main interest is to know the distribu-

tion of lift in the span direction, this complication may be avoided

by means of the lifting line approximation. The procedure will be

shown in the following chapter.

5 Modified Lifting-Line Theory

5.1 Single Flat Plate Wing
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Z

.2

Figure 13

Consider a flat rectangular wing placed in a free stream of

velocity V1 with a small angle of attack 0( . Some air flows from

the bottome to the top around the wing tips due to the pressure dif-

ference between the surfaces, and trailing vortices are formed from
(6)

the trailing edge of the wing a. explained by Prandtl. However,

as the angle of attack 0( 1 is increased, the pressure difference

between the surface increases, consequently a strong upward flow

appears around the tips, which rolls up above the suction surface

and forms wing tip vortices as shown in Fig. 14. The wing tip vortices

-Z z

Figure 14
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induce velocity in the direction from the center of the span to the wing

tips, the magnitude of which is approximately inversely proportional to

the distance between the vortex and the point on the surface and propor-

tional to the cosine of the angle 9 shown in Figure 15.

z

J2

Figure 15

The interesting thing is that the direction of this induced

velocity is opposite to that in the Prandtl hypothesis.

In the Prandtl theory, the trailing vortices were considered as

the continuation of the bound vortices and the system was replaced

by a set of horseshoe vortices (fig. 16). If the same assumption is

made for the present case, i.e. the wing tip vortices and the trailing

vortices are considered as the continuation of the bound vortices,

then the system will be as shown in Fig. 17.

I

Figure

It can

the profile

value which

_ 9
I

-p

- - -

16 Prandtl's Hypothesis Figure 17 Present Case

be seen from Fig. 17 that the total circulation [j)around

increases toward the tip and at the tip it has a finite

is equal to the circulation of the wing tip vortices FO.
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Lifting Line Approximation

For the wing of large aspect ratio, A = b/c 9 1, the system in

Fig. 17 may be simplified to the system shown in Fig. 18; the wing is

replaced by a vortex of circulation r(|)which is an unknown function of y.

Figure 18

The induced velocity at a point P(O0,y) is the sum of velocities

induced by the tip vortices and the trailing vortices, since a bound

vortex induces no velocity at its own center.

.Applying Biot-Savart's law (Eq. I1-4) to the system, the velocity

induced by the tip vortices which extend from x = 0 to x = o is given

by

'The negative sign in the equation means that the induced velocity is

in the negative z-direction.
.r

The velocity induced by a trailing vortex of circulation LjIthrough

the point Q (0,Fj ) is

4. 4 7 -- ()-3)

Integrating Eq. valong the span, we get the induced velocity due to

all the trailing vortices

by

thepoi t Qt CO"')i

d 

X(f b

4 z'l~



Thus, tile total induced velocity at P (0,

r= ,+ Wtr r~~)~

Y) becomes3 o7L1

I ~ O __ __ (5)

zX

The total circulation around the profile is expressed as (see Appendix II)

~ ) -. cW s. = c /1st( , + ) . (6)

For a small angle of attack, Sin ot'N 0(, , then

Uw) =7cV(d,+ ) = 7c c 1 +i + - ca + (7)

Substituting Eq. 4 into Eq. 7, we obtain

66

Fm ,cVd. - cFo fdoT ~ I.
The first term of the equation is equivalent to the circulation

(8)

of a

two-dimensional wing, that is the circulation around a wing of infinite

aspect ratio, so we define

vz2
== 77:C V (, ( 9)

Dividing Eq. 8 by Eq. 9, we get

EM T ( +)._. + d d.

whereT

(10)

FV)
The variables y and I may be changed into 6 and f by the following

relations
- Cos S= - CWs4' C

A (- Cos&) == -(9) . (11)

Combining these equations, the non-dimensional expression is obtained.

12



() I-Cos 2 Ces # -- Ce 6
S-o

where A aspect ratio = b/c.

Assume F() may be represented by the function

[~() = o + z F, si-n ?L. e
since (6)has a finite value at G = 0 and 9=

Noting that n must be an odd integer to ensure the equality

Sin nG = Sin n (1( -6),

n is taken as

n = 2m + 1, m = 0,1,2, , . ..

Substituting Eqs. 13 and 14 into Eq. 12, we get

a t 0r~Et'r
= I - iC, 5 9

(15)
_ _- Co,(zm+,)+ df

2A fo cos +- Cos6 '

Evaluating the integral on the right hand side and noting that

e = > must be omitted since a vortex induces no velocity at

its own center,

it

Cos (2M+)
S CO.s - Cos 0

CCs (2M+I)+ d pCos+ -Cos e
Q+E

Therefore, it follows that

(
0-5Cos20

or

bn *111o

+ Zo
",MO

..... +.) [+ -A
2A

I \+ C0.5 9

+ - zmi+I Ln (zMP+0ZA s'ff 0
(16)

-

is

(12)

("5)

(l4)

the point

"'+" S,'. (2m+ )e

s4A (z ? + 1)

I

E 0E

&n (2 rn +Q i
=z n76

+ I \C s



The coefficients and r on +,) can be evaluated approximately

by taking a finite number of particular values of 9 . For &= 0,

the term l/(1-Cos e ) in Eq. 16 must be set equal to zero for the same

reason described in evaluating theintegral of Eq. 15.

The theory developed above will be useful for evaluating the lift

distribution along the span for wings of large aspect ratio, since the

theory was derived based on the lifting line approximation.

As an example, the distribution of normal-force coefficient

for a wing of aspect ratio 6 was calculated by locating 9 at 0, 30, 60,

and 90 degrees.

The normal-force coefficient Cn was divided by the mean value of

Cn, that is b

and the result was plotted in Fig. 19. The curve shows the correct

trend at the region near the wing tip.

.2 ij Clearance Effect

G. r.

Figure 20

Place three blades in a plane with clearances 2yo between the adjacent

blades.*

_ 1. First an attempt was made to solve the problem for two blades
of semi-infinite span. However, the solution was found to diverge since
the wing span extended to infinity. 'his trouble may be avoided by
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The induced velocity at a point P (0,y) can be evaluated by the same

manner as in the previous calculation.

Velocity induced by tip vortices;

I
1 1 I+

+

b-+
t . -- + b

-y6 I~o

1*
(I) ~ -0 i ('.+ 6 2 j" (,+f-y (2 -L (z I' + 4 ____t_+

Velocity induced by trailing vortices;

r rr

Substituting Eqs. 17 and 18 into Eq. 7, we get the expression for

the distribution of circulation along the span.

+ b
2 +Y

2 I4

-I+ I _ _ _ _ T 19

zI
Changing the variables by the relations

U= .s C , = - - Cost

and using the non-dimensional expressions

rw4 Fo
[/O

(20)

solving the problem for long blades but finite span.
2. Three blades were taken instead of two, so that the lif.; dis-

tribution along the span can be considered as symmetric to x axis and
the calculation would be much simplified.

*X

I



('*)

b

Eg. 19 beco

Fte)

- (--kCase)

A _ -Acs6

mes as follows:

- ' -a 0
.3 + 4 Y/,,

(3+4YI- Cos' 6
(' + 4 V4

, 4 )2_ C,,20

o s L - Coso (2+4 (as )+Cos .

Again ri9)is assumed as

M=o (2(+2 /
and then,

/ 00
r (41) = z

"su 0
(z*n+e) + Cos (z n-+) + O t

(24)

From Eq. 22, 23 and 24, we get

-m1o:-r s0 (zm - 1)

A L -Cos

~~ "CO +1

+ 3 t+4 A s
(s 4 z) -cS'

-I- 12,

S+ 4 YYA
0+4 )1 -CosO]

,,, . 3 j

-CCs ( m +i)+
Cos'1' Cs9

0

f: K f + Cos+

O

3, - Cos t

X Sin (zmi+1)e
S-L

)

16

(21)

(23)

where

I

(25)

d+.(22)
(2+4 + C49)-,4



K,= 2 +4 f -Cos 0 >I

K, == +4 Cos0*
- i or O~g9 !C 7

The solution of integrals I2,, and l cannot be expressed in simple

forms like that of I,m . iere, the integrals were evaluated step by step

and the following equation was obtained:

-

=4

+. + 3 + 4 i
-4(3++)-Cos 2O (1+4 4)-CosG) 4

- S+ [3 K, K I2,4 1/ ." - I I

-- z 33 z K, (4 -4-3) K z(4 Ka--3)
r3+ - + +4(K, -+ Kz)-).Z2A + l e ,K| - k-

+ 7E + (6(K k4'4 K.)-2(K, ) +2

K, ( 1 6K, -20K, 2+ 5) xz (16 4 ,-2OKz +-5)

+ -- - - - - - (26)

The equation may be useful for wings of large aspect ratio and

with comparatively large tip clearance. A numerical calculation was

tried for A = 10 and Yo = 0.1, and the result war; compared in Fig. 21

with the test result obtained by Khabbaz.

and

17



6. CONCLUSION

It can be concluded from the results obtained by the cascade tests

that:

1) For a compressor cascade, the lift coefficient increases near the

blade tip in spite of the decrease in the turning angle and the outlet

axial velocity.

2) For the turbine cascade, the lift distribution in the spanwise

direction shows a trend similar to that for the compressor cascade.

The problem was approached theoretically by considering a simpli-

fied vortex system, and the pressure distribution on the suction sur-

face was calculated from the induced velocity due to the tip vortices.

It shows a fairly good agreement with the test result.
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Appendix I Evaluation of Static Pressure on Suction Surface

(1) Biot-Savart's Law

Figure I-1

If a vortex filament of circulation F lies in a plane, the

velocity induced at point P(x,y) by the vortex segment (y Y Y 2

can be evaluated by the law of Biot-Savart.

I-. t (I-i)4 r
Considering the angle e as the variable, we have

1 - =X Cot 0 , d

and (1-2)

Thus,

T r ==n --0,:. dO (COS 19Z Cos 01 ),

If the vortex filament extends to y + oo , then n= , Cos ez = -1,

and the above expression becomes

F = (I +Cos ). (1-4)
47 X
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(2) Circulation of Bound Vortex Z

C

Figure (1-2)

According to the assumption (2) on page 7 , the circulation of

a bound vortex at x = { would be expressed as

Integrating this equation along the chord, we obtain the total circula-

tion around the profile.

c C

*j (I-5)
or ZrV

o C
where F is the circulation around a two-dimensional wing accord-

ing to the assumption (1) on page 6

Substituting Eq. 1-5 into Eq. 1-4, we get

(3) Induced Velocity at P(x,y,o)

To satisfy the boundary condition on the surface, that is

w = 0, on P (x,y,0)

the images of the tip vortices are considered as shown in Fig. I-3.



Case (i)

The velocity at point P(x,y,o), induced by the tip vortices

which leave from the wing tips at x = is expressed as (see Fig.

-(x-) 0 ) + c., e,
2 X. R,

1+ Co's jZ
Ia (I-7)

2 = (
RI (~)SQ + -t)

t + Y"2

Ces 9, = ( X- ) (OS P& k(x - + Co ,

Ccs Oz vC.
(x-)z + ('I+ f

(I-9)

Substituting Eqs. 1-6, 1-8 and 1-9 into Eq. I-7, we obtain the

equation for the induced velocity.

-1v ~J.(x-k)(c-g)S..t { -g Z(1-). +
tC

Q +

Ea . Cz h e t in pfrtial +f(i -

Sx +(I + +x1Co

Expanding the equation in partial fractions., we get

. S .k
V t.2r t'

(x-k) cos 

*O)g I
C CJ (x - l)(c -- ) z ___(__-__(c - _

(z-jk/ S4&9 +(1 - ) f(x- g)* ZSZ9(+
#0

C

os(- ? + (c -.

-+ -o s 6)L

Cos- ) Ii +( y+.)(-o + CIL6-.

21

where

I-4)

(1-8)

) o. (xy+( -



The integrations of Eq. I 10 were evaluated term by term and the

following result was obtained.

- x - X-K SltP + (Y + Y ) X, Si- +(YY.
2 _X)2 S ( (-XY(s + Y

(, + x cos ()[, - x Cos ,+ -x)c.sf44--()C) J

Y- Y

Y + Y

Y-YO

-x ef
Y+n O

Y- Ye

Y+YO.

Y - , 

YO Y -Yo

Y+f Y-Y.

sj; Y+ yo

[*, +X2( I( -x4

- 2,t Cos
I

(I-11)

Whe re.

VU - A T -y-e-

xY - (Y+YVZ

(I-iz)

-x -+Y1

YO ;

- 7Lc sin
U-z c

22

4-Z
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Case (1

From the geometry in Fig. 1-5 and Biot--&"avert' ; law, the velocity

induced at point P(x,y,O) by a vortex segment ds is formulated as

f ollows:

F.Msi.6ids x sk
2a R~~ YZ) 2

ie
G (m X S,--n X -~()xSat ?;

Circulation of the tip vortices ()May be written as

=fFc C zF(C~
J fJ

Fa fo) rt )M d*~ =
= = z d for ( > c ) h

r , r2 and ds are expressed. in term (' I, a rnd JL as follows.

xR- 15)

(I-14)

Cos P = I
Cos 9

Y= R R1 + (( Cos - Sec Y

YZ == z + (X Cos( 3 -- ISec.)

Substituting Eq. 1-14 and Eq. I- 15 into Eq. 1-13, we get
C

. C e ( (X C-s -Se .j (Cose- 5&cJ

+~ f (Cf 1_________ I

(I-16)

Integrating this and rcarrzuging, we obtain the equation for the

induced velocity at point P(x,y,O).

(1-15)



24

z 7E C V

X [-; S(4 rCs'f

3R'2 +(K Cs -Sec )
(x Cos SeCq) R, z C

2

R (kcoses ec) tSw' )

+ (zS , -XC.s) I

+ Sec, 2 e I -

(X Cos P -Sece) + /(X ce

(x Cos - Sec t) +/(X Cos

4 ,

-t caj

X CO3S tz
x Cos -+t

X2 S .-n a + Y-

x 1,sc-( +(Y.' t y. I
The pressure coefficient on the blade surface was calculated

as follows.

According to the assumption 1 in P. 6 , velocity on the blade

surface is expressed as

V7 = V2Z +v

z
1~I, I

w h re

(1-17)

(1-18)
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where V2d : velocity vector on a two-dimensional blade surface,

9; : velocity vector, induced by the tip vortices.

The magnitude of the velocity is

V V2 + 2

or

V2 V2d + V2  (1-19)

Bernoulli' s equation for two-dimensional flow;

P p1 + (1/2)V 2 p2d+ ( f/2)V2d

or

(p- = ( F/2) (V - V2d '

For three-dimensional cases, it becomes

p - p = (f/2)(V 2 v2) = (/2)(V 2 2) - (Sf/2)v 2

= (P - p1 )2 d - (J/2)v2

Dividing this equation by inlet dynamic pressure, we get the expres-

sion for the pressure coefficient.

z(1-20)

As an example, the pressure coefficients were calculated for the

tested compressor blading using Eqs. 1-20, 1 -11 and 1-17. The results

were plotted in Fig. 12 together with the test result.



Appendix II Circulation Around a Two-Dimensional Airfoil

The circulation around a wing of infinite aspect ratio can be obtained

by means of the conformal mapping.

z - t?

a-

-za-2(..

A circle of radius a given on the Z-plane is mapped into a straight

line (-2a ! t 1 +2a) in the -plane by the function

z

The complex potential of flow around the circle in the Z-plane is

expressed as

F(Z) V e- Z + V e , + i z

Differentiating this equation with respect to Z, we get

LF -,;., Ve A a 2  F_
2 z TL Z

The circulationF can be found from Eq. 11-3 with the boundary condition

= 0
SJZ

af z =a2
(11-4)

Thus,

(11-5)

26

.(1-2)

(11-3)

- a \

(II-1)

4 -i aV, S ,,. oe, = 7E c V/, s,,t a, 6
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