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THE TIME DEPENDENT MAGNETOHYDRODYNAMIC GENERATOR

I. Introduction

Low magnetic Reynolds number magnetohydrodynamic generators as would

be utilized in power plants are conceived of as steady state D.C. devices.

Unsteady phenomena may exist in such generators however. Fluctuations

induced fluid mechanically or through combustion may develop into ampli-

fying magnetoacoustic instabilities ,2,3. In addition to possible insta-

bilities appearing in the bulk of the flow, there exist other important

unsteady situations in which the generator must operate. These include

the transient response of the generator to changes in load conditions,

start up and shut down, coupled unsteady interactions of the generator

with the power grid, and the response of the generator to faults such as

electrode wall break down or the sudden imposition of a short along the

insulator wall. Many of these unsteady situations involve large changes

in the amplitudes of the fluid mechanical and electrical variables and

therefore require a large amplitude unsteady theory.

In the present work we present a description of unsteady quasi one

dimensional magnetohydrodynamic generator flows and propose a highly

accurate explicit time dependent method of predicting the time response

of such flows. This method of calculation is capable of treating MHD

flows under subsonic, supersonic, and transonic flow conditions, arbitrary

nonuniformities in electric fields and currents, strong interaction

parameters, and with normal shocks present in the duct.

In Part II a formulation of the appropriate magnetohydrodynamic

fluid equations for quasi-one-dimensional flow is given. In Part III a

description of the Lorentz forces and Lorentz power in the flow is given.
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In Part IV a finite difference operator for the unsteady nonlinear MHD

equations is proposed and its stability and accuracy characteristics are

described. In Parts VI and VII, illustrations of this analysis are pre-

sented for two unsteady generator situations of contemporary interest:

(1) the growth and evolution of large amplitude magnetoacoustic fluctu-

ations under conditions of strong interaction, and (2) the behavior of

the generator to changes in loading.

II. Unsteady Fluid Conservation Equations

In the quasi-one-dimensional approximation transverse variations are

neglected compared to axial variations in a single flow direction. The

fluid may be described in terms of its velocity distribution u and two

thermodynamic variables such as its density p and internal energy c. In

addition, the flow cross sectional area A becomes a variable describing

the flow. It will be assumed that the area A is invariant in time and is

specified as a given function of the axial coordinate of the flow. In

terms of the mass density p, momentum density m where m = pu, and the

total energy density e = e + u2/2 the fluid state may be represented at

any time t and spatial location x along the axis of the flow by the vector

function U (x,t):

U (xt) = m (1)

e

The fluid state U is governed by the quasi one-dimensional fluid conser-

vation equations which in the magnetohydrodynamic regime assume the form

(U) = -(F) -H - D + S (2)

The vector F describes the mass, momentum, and energy fluxes of the
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fluid:

m

F(U) = m2/p +p (3)

(e+p) m/p

The vector H describes the area variation effect:

f
H(U,x) = A 1 (A) m2 /p (4)

(e+p) m/p

The vector S contains the Lorentz force and power. If the electrical

state is described in terms of a current density 1, electrical field

and magnetic field 9, then

0

_(U5x,t) = x fx (5)

For a flow in which the velocity u is normal to and I, 3 exist in the

plane normal to with components E , E, J9 J the Lorentz force and

power are

xi= J B
x y

= J E + J E
x X y

The vector D contains the effects of wall friction and heat transfer:

0

D(U,x,t) = w/H (6)

wql/DH

where T w and qw are the wall shear stress and heat flux respectively. The



wall shear stress and heat flux may be described by the appropriate wall

region boundary layer mechanics which relate these quantities to the mean

flow variables p, u, e and the wall boundary conditions. These relation-

ships are summarized by the statements

T = N = n 2  (7)w f 2 f 2p

qw= Ntpuc (T - Taw + r (8)

where N and N are the friction factor and Stanton numbers respectively.

The adiabatic wall temperature is T and T is the wall temperature.aw w

The radiative contribution to the wall heat flux is gr. The friction

factor and Stanton numbers are functions of the Reynolds number NR and

Mach number M:

N = N (N M)f f R2
(9)

Nst = N(NR,M)

The fluid equations are completed by equations of state of the form

p = p(p'C)
(10)

T = T(pc)

where c is given in terms of p, m, e by

e = (e - m2/2p)/p

III. Electrical Description

In the low magnetic Reynolds number approximation the magnetic field

is imposed and is uninfluenced by the currents flowing in the gas. This

field is then given as a function of x,t as (xt). The local electric

fields and currents J , J , E , E which exist depend upon the generator
x y x y

loading, external connection, and the local fluid state U since the cur-

rents depend upon the local velocity u = m/p and the electrical conductivity
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depends upon the local fluid thermodynamic state. One independent pair

of the four electric fields and currents [such as (E ,E y) (J ,J ),

(E ,J ), (E ,J )] must be specified to determine the electrical state at

each location in the duct. The remaining variables are then determined

by the conditions of Ohm's law:

J + J = uE

-BJ +J = a(E - uB - AV/h)
x y y

If voltage drops of total magnitude AV are present at the electrodes, the

average electric field E over the electrode separation h is related to
y

the electric field in the core of the flow E as
y

E = E + AV/h
y y

The electrical conductivity a and the Hall parameter $ are functions of

the local thermodynamic state of the gas:

a = 0(pqT)

$ = 6(p,T)

The external connection of the generator can be specified in terms

of axial and transverse loading parameters K , K defined by
x y

E = -KX /uB
X X (12)

E 'K uB
y y

The transverse load conductance (reciprocal impedance) may also be used

to specify the local fields in lieu of E . For the Faraday generator in
y

which J = 0 and K 1 - K the load conductance per unit channel length
x x y

a is related to K as

K = (1+ a /a) (13)
y L

The transverse load impedance B for a channel segment of length &x,
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depth d, and height h is given in terms of the load conductance aL by

R = dx)-1 (14&)I(L h

In a single load diagonal generator conservation of current requires that

J - tan 0 J = I/A(x) (15)x y

where I is the generator load current, A(x) is the local cross sectional

area of the duct, and 6 is the angle of the equipotentials relative to the

normal to the channel axis:

E - tan 0 E = 0 (16)
y x

For the Faraday generator the specification of K (or a ) and K is
y L x

usual. For the single load diagonal connection specification of I and 0

is usual. Note that the limit 6 = 0 of the single load diagonal connection

is the Hall generator connection. For the Faraday generator the load

voltage V (x,t) is given by
y

V (x,t) = -Z (x,t)h(x) (VT)
y y

where h(x) is the local channel height. The load conductances a L(x,t) are

related to the local currents and fields as

J (x,t)
aL(x,t) = - _I (18)

L (x,t)
y

For the single load diagonal connection the load voltage is given by

L

V(t) = - fEx(xt)dx (19)x
0

The load impedance for such a generator R Lt) is then related to the

load current I(t) and the load voltage V (t) asx

v (t)I~R I 1t) (20)



Using the Ohm's law (11) and the channel connection conditions (15)

and (16) the axial electric field may be expressed in terms of I and 0 as

E+tan0 - 1+6 2  L I
E - 2(1 - AV)uB + 2(~-) -x 1+tan (1+ 1+tan6 A L

The voltage between the ends of the generator may then be expressed as

V = V - IR. (21)

where R . is the internal impedance of the generator:

R. = +2 (22)i 1+tanzO aA)

and V is the open circuit voltage:
xo

V = l+t 1 (1 - AV)uB L (23)
xo 1+tzan

The average < > is over the channel length L. The load current is then

V
- (24)

R*+RL

and the short circuit current is

V
XI (25)s R.
I

IV. Boundary and Initial Conditions

An unsteady magnetohydrodynamic channel flow involves the specifica-

tion of an initial fluid state U(x,O) from which the subsequent fluid

states are computed for given electrical loading specification and boun-

dary condition variation. The boundary conditions require the specification

of the fluid states U(Ot), U(Lt).

The initial condition is the specification of the fluid state U0 Cx)

at all points in the flow at time t = 0:
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U(xO) = UO(x) (26)

The boundary conditions are specifications of the fluid state as

functions of time at the channel boundaries x = 0, x = L:

U(0,t) = U (t)
(27)

U(Lt) = U(t)

The initial value problem is then completely specified in terms of the

initial function U0 (x) and the boundary functions U (t), U(t). In-o '-

addition, the electrical boundary conditions must be specified as func-

tions of time. For the Faraday generator this condition may be the

specification of the load conductance function aL (x,t). For the single

load diagonal generator, this specification may be the load impedance

RLt)

At each time step the electric field and current distributions are

computed corresponding to the fluid state existing at that instant and

the electrical boundary conditions imposed. For example, in the Faraday

generator case if the load conductance is specified as a function of time

as aL (x,t) the loading parameter distributions are determined as

K (x1t) =t TT
y l+aL(x

K x(x,t) = 1 - K (xt)
x y

The complete electrical distribution is then determined by K (x,t),
y

K x(x,t). In the case of a single load diagonal generator, if the load

impedance RL(t) is specified as a function of time and the diagonal con-

nection angle O(x) is specified and independent of time, the load current

I(t) is given at each instant by

V (t)
I(t) = 0t)

B.(t)+RL(t)
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where V is given by Eq. (23) and R. is given by Eq. (22).
xo 1

V. Method of Solution

We now propose a method for solving the first order vector differen-

tial Eq. (2) for the fluid state U(x,t). The governing equation may be

expressed as

(U)t = -[F(U) _ + Q(U,xt) (28)

where the undifferentiated terms are

C(U,x,t) = -H(U,x) + S(U,xt) - D(U,xt) (29)

Our approach will be based upon replacing the nonlinear partial differen-

tial operator in Eq. (28) by a nonlinear finite difference operator. For

this purpose we consider the space and time coordinates to be discretized

with finite differences 6x, 6t such that

x = jSx

t = n.t

where j and n are integers. The state U at time t and location x is then

represented as T(xt) = Un. The finite difference form of Eq. (28) is then

Un+l LUn (30)
-j ;-j

where L is an appropriate finite difference operator for Eq. (28). An

operator L with attractive accuracy and computational economy is the two

step operator in which L is formed by first calculating an intermediate

state U* as
~j

U* = Un F (Un ) - F(Un)] + StC(Un x ,t)- - 6x - -+l - -j - -j

The final fluid state is then determined as

n+l 1/2 {Un + U* - 6fF(U*) - F(U* )] + 6tC(U*,x,t)}-j -~j -j 6x - -j -jl

(31a)

(31b)
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Thus, given the initial fluid state U the subsequent fluid states may be

computed forward in time. The finite difference operator (31) is a modi-

fication of a class of second order accurate operators developed by Lax

'4 5 6
and Wendroff, Richtmyer, and MacCormack. They have the power to

compute flows in the full subsonic, transonic, and supersonic range

including moving internal shockwaves, rarefaction waves, and contact

discontinuities. These discontinuities are represented as rapidly varying

regions in the mesh which are spread over three to four mesh points. The

operator is second order in the sense that the finite difference operator

deviates from the partial differential operator in terms that are of

order 6t2, 6x2 , 6t6x in the finite difference increments. Operators which

are only first order accurate do not resolve the flow structure as

sharply as the second order accurate operators. Operators of higher

order accuracy require larger amounts of computing time per mesh point.

The second order accurate operator is a good compromise between accuracy

and computational economy.

The numerical stability of the operator (31) is conditional and

requires that the Courant condition be satisfied at each point in the

flow:

6t < +

The time step 6t is thus limited for a given space step 6x by the fluid

speed lul and the sonic speed c.

The undifferentiated term C(U,xt) does not affect the numerical

stability conditions; however, for accuracy of the computed results the

time step 6t should satisfy the condition

6t << () c max
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where the c are the eigenvalues of the Jacobian matrix C/aU. These
C

eigenvalues are the growth or decay rates of the linearized system

(U) = c U-t

This requirement in physical terms is that the time step St should be

small enough so that the fluid state changes by only a small fraction

over the time 6t under the action of area variation, Lorentz forces, wall

heat conduction, and wall shear stress.

VI. Load Change Transients

As a first illustration of the foregoing unsteady theory of the MHD

generator we shall consider a description of a strong generator transient

initiated by a load change. A constant velocity supersonic single load

diagonal wall generator is operating at the steady state conditions given

in Table VI-l. At time t = 0, the load is instantly shorted and remains

Table VI-1 Steady State Operating Conditions of
Constant Velocity Single Load Diagonal
Wall MHD Generator

Velocity

Magnetic Field Strength

Length

Mass Flow

Wall Angle

Operating Voltage

Operating Current

Inlet Temperature

Inlet Pressure

Exit Temperature

Exit Pressure

1500 m/sec

4 Tesla

4.5 m
250 kg/sec

450

7554 volts

6358 amps

22600 K

2 atm

21070 K

1.2 atm

shorted [R L(t) = 0, t > 0]. The response of the generator to this load
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change is then determined. The working fluid is assumed to be an ideal

gas with specific heat ratio y = 1.2 and molecular weight MW = 30. The

thermodynamic and electrical transport properties are represented in terms

of the functions described in Appendix II. Wall friction and heat transfer

are neglected in this illustration (D E 0).

The response of the pressure in the generator is shown in Fig. 1.

The flow time through the generator at the initial steady state velocity

(1500 m/sec) is 3 ms. By t = 3 ms the pressure has begun to rise sharply

in the upstream region of the generator due to the increased deceleration

of the gas induced by the short circuit Lorentz forces. By t = 4 ms the

flow has been decelerated below Mach 1. The sonic point is first reached

at the exit of the generator ahead of the diffuser at t = 2.9 ms. Further

deceleration continues in the downstream generator region which leads to

the formation of a shock wave which is quite well developed by t = 5 ms.

The shock wave strengthens and moves upstream slowly. Behind the shock

the temperature of the constant property gas has risen sharply so that

the electrical conductivity behind the shock is nearly an order of magnitude

greater than the conductivity ahead of the shock. By t = 6 ms the shock

is still moving upstream and will eventually reach the generator inlet.

The response of the load current and pressure at the center of the

channel are shown in Fig. 2. Initially the current rises to reach a

peak short circuit current value of nearly 90,000 amperes at t = 4 ms.

By this time, however, the shock has formed and begun moving upstream and

the flow is increasingly decelerated so that the current begins to fall

as rapidly as it rose. The fluctuation in the channel center pressure is

also related to the formation and passage of the shock wave and the con-

tinued deceleration of the flow.
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In Fig. 3, the detailed pressure distribution and current distribu-

tion throughout the generator are shown at t = 6.4 ms. Because the wall

angle is fixed during the transient, the axial current J has grown to be

nearly the same order of magnitude as the transverse current J during
y

the deceleration of the flow. The detailed distribution of current and

pressure in the vicinity of the shock wave are shown in Fig. 4. The

method of computation represents the shock as a rapidly varying region

over about 3-6 mesh points. The fluid state inside this region is not

the actual fluid state within such a shock wave; however, because of the

conservation law differencing of the fluid equations, the conditions on

either side of the shock are quite accurately computed.

As a second illustration, we consider a load change transient ini-

tiated by a change in seed level of the generator while all other boundary

conditions including the load resistances remain fixed. The generator

to be subjected to this transient is a multiple load diagonal wall gen-

erator, whose steady state operating conditions are given in Table VI-2.

Table VI-2 Design Characteristics of Steady State Multiple
Load Diagonal Wall Generator, Constant Velocity,
Constant Electrical Efficiency, J = 0.

Velocity 750 m/sec

Inlet Temperature 25500 K

Inlet Pressure 4 atm

Magnetic Field 6 Tesla

Length 12 meters

Exit Temperature 21900 K

Exit Pressure 1.18 atm

Electrical Efficiency 0.75

At time t= 2ms, the seed level to this generator is instantly reduced by
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a factor of 4 and the response of the generator is computed. The space-

time history of the important fluid and electrical variables is shown in

Fig. 5. It can be seen that as the seed reduction wave passes through

the generator, the current levels fall and the reduced Lorentz forces

allow the flow to accelerate. Since the conductivity is nearly propor-

tional to the square root of the seed density for weak ionization, it

can be seen that a factor of four reduction in seed density has reduced

the transverse currents in the generator by approximately a factor of

two. Because the diagonal wall angle remains fixed during this transient,

the angle is off design for the new current level and thus a significant

axial current J now flows over most of the generator in the final steady

state.

VII. Nonlinear Stability of MHD Generators

As a second illustration of the time-dependent MHD generator theory,

we consider the stability of MHD generator flows to small disturbances in

the inlet state.*

The particular disturbance to be studied is the archetypal one of

the propagation of a disturbance through the generator initiated by the

imposition of a pressure pulse at the inlet of the generator. If a

disturbance is initiated at the inlet of a supersonic generator flow in

the absence of Lorentz forces and in the absence of steady state gradients

the disturbance will propagate as three distinct modes traveling at the

three speeds u + c (downstream mode), u (entropy mode), and u - c (upstream

mode) where u and c are the fluid and sonic speeds respectively. With

*This work is described more fully in D. A. Oliver, "Nonlinear Stability
of Magnetohydrodynamic Generators" submitted to the 1974 AIAA Fluid and
Plasmadynamics Conference.
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steady state gradients and Lorentz forces present these propagation

speeds will be altered for different wavelength disturbances since the

system is then dispersive; however, for disturbances with wavelengths

which are not too long relative to the channel length these propagation

speeds are not very different from their free space values.

In the transient we shall now describe the steady generator flow

was subjected to a square wave pressure pulse at the generator inlet.

The static pressure at the inlet was increased over the steady inlet pres-

sure p by the fractional amount Ap/pi for the time duration T. The

steady state generator flow described in Table VII-1 was used as the basis

Table VII-1 Conditions for Steady State
Diagonal Wall MHD Generator

Velocity 1500 m/sec

Magnetic Field 4 Tesla

Wall Angle 450

Inlet Temperature 25000 K

Inlet Pressure 2 atm

Inlet Current

J 0.67 amp/cm2

J 1.07 amp/cm2

of these studies. This is a single load diagonal wall generator with fixed

wall angle. The load impedance during the disturbance transients to be

described was held fixed and the generator current and voltage evolved so

as to match this fixed load impedance; hence full coupling of the generator

through the load circuit is included in these calculations.

Linearized stability theory (assuming wavelengths short compared to

the channel length) may be applied to MHD channel flows with Lorentz

forces and gradients. 8, 9 For the steady state design described in
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Table VII-1, the linear stability theory predicts that the upstream and

10
downstream modes are slightly damped; however, the entropy mode will

11
grow. This generator is therefore linearly unstable to the entropy mode;

however, this instability is a convective instability and small distur-

bances may propagate out of the generator before growing to a size which

would be significant compared to the steady flow.

We shall now examine the stability characteristics of such an MHD

generator described by the full fluid equations without linearizing approxi-

mations using the unsteady theory and technique of the present work. A

disturbance of Ap/p. = 0.06 for a duration T = 0.08 ms was initiated at

the inlet of the generator described in Table VII-1. The response of this

convectively unstable generator to this disturbance is shown in Fig. 6.

The entropy wave of the perturbation has grown to 30% of the amplitude of

the steady flow by t = 1 ms; a factor of 5 increase over its initial amp-

litude. By the time the entropy wave of the disturbance has been convected

through slightly more than half the channel, it has grown to be of the

order of the steady state pressure. At this time the steady flow is so

strongly disturbed that a normal shock wave forms, followed by a rapid

acceleration of the flow downstream of the shock. The convective insta-

bility thus leads to global instability of the generator. The propagating

entropy pulse (and the Lorentz force disturbance propagating with it)

acts like a throat which shocks the flow at the upstream side of the

pulse and re-expands the flow on the downstream side (the Lorentz force

at the upstream side is greater than the mean Lorentz force while that on

the downstream side is much less than the mean which allows the flow to

accelerate).
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The transformation of the convective instability to a global insta-

bility arises from the fact that finite amplitude disturbances grow faster

than infinitesimal disturbances as discussed in Ref. 11. For initial

disturbances less than Ap/p. = 0.3%, the computed nonlinear distributions

are within 1% of the predictions of linear theory. For disturbances of

only 2%, however, significant deviation from the linear theory results.

Waves corresponding to an initial disturbance of 2.5% grow to 5 times the

linear prediction in a single transient through the generator.

Fluctuations in the fluid state exert a major influence on the Lorentz

force and power through the electrical conductivity. For weak ionization

of a singly ionized substance whose ionization potential is E. the fluc-

tuation in conductivity a is related to the fluctuation in temperature

approximately as

AaY Ci AT
2kT. T.

1 1 1

Since the factor e./2kT. is of the order of 10 for the steady state gener-
1 1

ator of interest, a 2% temperature fluctuation corresponds to a conductivity

fluctuation in excess of 20%. It is the sensitivity of the conductivity

to the fluid temperature which makes the onset of nonlinear effects in MHD

generator stability occur for such small amplitude of the fluid disturbances.

VIII. Conclusion

A nonlinear unsteady theory for magnetohydrodynamic flows capable of

treating such flows under subsonic, supersonic, and transonic flow condi-

tions, axial nonuniformities in fields and currents, and strong interaction

parameters has been proposed. The theory is implemented with an explicit

finite-difference procedure of high order accuracy. This theory, illustrated
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for load change transients and inlet state perturbations, may be utilized

for the prediction of general transient behavior of a wide variety for

MHD generators of contemporary and future interest.
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APPENDIX I. VARIABLE SEEDING

In some situations, the seed injection to the generator is controlled

as a function of time so that the seed function is not a constant through-

out the generator. In such conditions the unionized seed mass density

Pso is introduced as an additional state variable. The fluid state vector

then becomes

P

U = s

m

The interaction bectors then simply become

m

p mF =P

M%/ + p

(e+p) m/p

-l
H =A- A
- x

s = I
m

p
( )m
p

( 2 /p

(e+p) in/p

0

0

(JxB)
x

J-*E

4 vectors as

I
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0

0

D/D4

4qL/DR

The electrical conductivity is then a function of the local p, p so T:

a a(p,p ,T)
so

= (p,p ,T)so

Boundary and initial conditions are now required for p s. A typical

transient may invoke the specification of an initial steady state in which

p (x) is specified as a fixed fraction of the gas density p(x) throughout

the channel. The inlet boundary condition may then be the function

pso(O,t) which is prescribed according to the seed control transient of

interest. The propagation of the new seed level and the response through

the generator would then be computed.
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APPENDIX II. SIMPLE ELECTRICAL TRANSPORT

PROPERTY FUNCTIONS FOR MHD GENERATOR PLASMAS

Electrical transport properties qr (scalar electrical conductivity)

and a (Hall parameter) are required for the description of the flow in an

MHD generator. Although quite detailed theories exist for the prediction

and calculation of the electrical transport properties in MHD generator

plasmas, simple functions which summarize these detailed calculations

are useful for execution of the time dependent description of an MHD

generator. We offer here such a set of simple electrical transport prop-

erty functions.

The scalar electrical conductivity a and Hall parameter may be

expressed in terms of the electron number density n and the mobility y

as

a= enji (AII-I)

= B (AII-2)

where e is the electron charge and B is the magnetic field induction. The

electron number density n may be expressed in terms of the temperature

and seed density pso as

n = 1/2 [/K +4n 5 K - K] (AII-3)

where

np /MWs (AII-4)

(2em kfl
K(T) = G exp (-ei/kT) (AII-5)

The seed molecular weight is MWs, KCT) is the equilibrium constant

expressed in terms of the statistical weight factor G, electron mass m
e

and Planck constant h.
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The electron mobility may be expressed as

y = p T + 1 n _O-ne T + n e T _3/2 -1= [ 2 (L-) + s~nO) (L_ + II (-S. ) (-)3/2y1I-
0 n A- . C n T.r r sr r so r

The quantities p, 1s1 , p, n , T are parameters which summarize the

cross section and number density dependence of the various collision terms.

The first term on the right hand side of (AII-6) represents the bulk gas

contribution to the mobility. The second term represents the seed con-

tribution. The third term represents the Coulomb contribution. The

fuciosfT Tfunctions f (T), fs (L) represent the temperature dependence of the bulk
r r

gas and seed thermal speed-cross section functions. For a constant cross

section species composing the bulk gas, the function fo is given by

f() = (T)l/2o T T
r r

The foregoing functions for ne and p represent simple summary formulas

for the electrical transport processes. These functions require the

parameters

MW, G, E.i for the electron number density

, 2 Vs Vc 9r, n sr r f0 s for the electron mobility

Given these parameters, the thermodynamic state variables p, pso, T are

then required to determine a, 0.

For combustion product gases in the range 1750-30000 K and 0.1-10

atmospheres pressure seeded with potassium, suitable values for the

parameters are

and
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-1 2 -
11= 0.70 (m /volt-sec)

-1 2 -1
= 0.12 (m /volt-sec)

1 =14.5 (m 2/volt-sec)1

n = 3x1O24m-3
r

n =1.5xlo22nr
3

sr

T = 2500* K
r

f () = Ea ; a = 0.2

fs b ; b = 0.2
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