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Abstract

Let G be a split, semisimple p-adic group. We construct a derived localization func-
tor Loc : Dbmfg D Sh from the compactified category of [BK2 associated to
G to the category of equivariant sheaves on the Bruhat-Tits building whose stalks
have finite-multiplicity isotypic components as representations of the stabilizer. Our
construction is motivated by the "coherent-constructible correspondence" functor in
toric mirror symmetry and a construction of [CCC]. We show that Loc has a number
of useful properties, including the fact that the sections LIP, Loc(V) = V when V is
an object of Smfg compactifying the finitely-generated representation V.We also con-
struct a depth-< e "truncated" analogue Loc(e) which has finite-dimensional stalks,
and satisfies the property RIP, Loc(e) (V) = V for any V of depth < e. We deduce that
every finitely-generated representation of G has a bounded resolution by represen-
tations induced from finite-dimensional representations of compact open subgroups,
and use this to write down a set of generators for the K-theory of G in terms of
K-theory of its parahoric subgroups.
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Title: Professor of Mathematics
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Chapter 1

Introduction

1.1 K theory of the representation category

Let G be a split, semisimple p-adic group, and let Smfg(G) be the category of idem-

potented finitely-generated representations of the Hecke algebra 7i(G) with values in

C (equivalently, smooth finitely-generated representations of G, see e.g. [Ber]). The

category Smfg(G) is extremely well-behaved: it is a direct sum of countably many

Noetherian components, has enough projectives, and has finite homological dimension

equal to the rank of the group. In particular, the category has a well-behaved K-

theory, with K0 (Smfg(G)) the Grothendieck group of projectives in Smfg(G). Write

K (G) := K0 (Smfg(G)).

The group K0 (G) will be a central object of study in this paper. The rational coef-

ficient version K0 (Smfg(G)) 0 Q was considered in the papers IBDK and [D], and

is related to the character theory of admissible representations of G. Indeed, given

any admissible representation A and finitely-generated representation V, the graded

spaces Ext(A, V) are finite-dimensional and zero for i > n + 1 (for n the rank of G).

The signed sum (A, [V]) := Z(-1)' dim Ext'(A, V) then defines, for each admissible

A, an integral functional on K0 (G). Rationally, the group KO(G) was computed by

Dat [D], who showed that the group K0 (G) 0 Q naturally pairs with the vector space
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of central distributions on compact elements. Namely, we say that an element y E G

is compact if it is contained in some compact subgroup K C G. Write G, C G for

the (open and closed) subset of compact elements. Let 7, C R be the vector space

of (compactly supported locally constant) functions supported on GC. The group G

acts on R, by conjugation, and we write HHS for the space of coinvariants (7 c)G-

Theorem (Dat). There is an isomorphism i : K 0 (G) 0 C -+ HHg. In terms of this

isomorphism, the pairing (A, [V]) = (XA, t([V])), where XA is the Harish-Chandra

character of A (here XA is viewed as a distribution on G, which acts on -c and by

conjugation-invariance descends to conjugation coinvariants (Rc)G)-

One way to get projectives in Sm(G) is by (compact) induction from compact

subgroups. Suppose J C G is a compact open subgroup of G. Given a smooth

representation V of J, write Ind5'(V) := V &H WG for the induced representation.

Note that our functor Ind G is left adjoint to the forgetful functor, and is sometimes

denoted Ind, lI (V) to distinguish it from the right adjoint, which is a non-isomorphic

functor (since [J: G] is infinite).

A representation V of a compact group J is finitely-generated and projective if and

only if it is finite-dimensional (recall that smooth finite-dimensional representations

of a compact group form a semisimple category). As both of these properties are

obviously invariant with respect to induction, this gives us a collection of projectives

Ind G(V) E Smfg(G) for pairs (J, V) with J C G compact and V finite-dimensional

representations of J.

Definition 1. We say that a representation is finitely induced if it is of the form

Ind j(V) for some finite-dimensional representation V of an open compact J C G.

Note that it is sufficient to consider maximal compact subgroups J, as if J is

compact open and M c J is a maximal compact subgroup containing J, then

Ind (V) IndG(Indm V), and Indm V is a finite-dimensional representation of M.

Given a pair (J, V) as above, the class of the corresponding finitely induced represen-

tation in Dat's K0 group is the normalized character 6 j -Xv, where Xv is the function

(supported in J) such that Tr(h, V) = (h, Xv) for h E R supported in J and 6 1 is the
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uniform distribution on J of norm 1. Note that 6 1 -Xv is supported on J C Ge, hence

projects to the space of G-coinvariants HH. Because the characters Xv form a basis

for the vector space of central functions, one sees that these projections of charac-

ters span all of HHc over the complex numbers: in particular, the finitely induced

representations rationally span the group K0 (G).

In this paper we will consider the integral K group K0 (G). Our main result will

be the following.

Theorem 1. The classes [Indj V] of finitely induced representations integrally span

the group K0 (G).

An equivalent formulation of this result is as follows.

Theorem 1'. For any projective object P of Smfg(G), there are finitely induced rep-

resentations Indi1, Indy,1' such that P D Ind ,V' = Indi V.

Since Smfg has enough projectives, this is equivalent to the following formulation.

Theorem 1". Any object of Smfg(G) has a resolution by direct sums of finitely in-

duced representations.

The statement in this last form is a conjecture in Roman Bezrukavnikov's thesis,

[BThes].

The functor Ind G : Smfd(J) -+ Smfg(G) takes direct sums to direct sums, hence

induces a linear map on K0 groups [Ind G] : K0 Smfd(J) -+ K0 Smf9 (G). The maps

[Ind5G] and [Ind G -] are intertwined by the isomorphism V H- -yV : K0 (J) -

K0 (yJ-y 1 ) - hence, in particular, they have the same image in K0 (G). Further,

[IndG] factors through Smfd(M) for M some maximal compact subgroup containing

J. If we choose an Iwahori subgroup I C G, the collection Max, of maximal compact

subgroups containing I is a set of representatives of maximal compact subgroups up

to conjugation. With this in mind, we write down the following map.

[Indmax] := [IndG] : K(M) -+ K(G).
MEMaxi ME Maxi
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Theorem 1 then implies that the map [Indmx.] is surjective. There are some classes

obviously in the kernel of this map: namely, given a subgroup J c Mi n Mj, the two

inductions [Indmi (V)] and [Indm/ (V)] have the same image under [Indm ] (viewed

as elements of the corresponding direct summands). Note that it is enough to take

J = Mi n Mj above. Write Kell for the quotient of ®MecM., K0 (M) by relations of

the form [IndM'fnM. V] [Indd2 M, V].

The map [Indma] induces a map [Indcen] : K0el -÷ K0 (G). It can be shown from

the formula of [D] and basic properties of parahoric subgroups that this map is an

isomorphism rationally. Theorem 1 implies that it is a surjection integrally. Hence

the map [Indcen] : K011 - K0 (G) is an isomorphism on torsion-free quotients.

1.2 Compactified category

Our proof will proceed by constructing a resolution for an arbitrary object, in a way

that is functorial up to a certain choice of a "normalization" of V. This choice of

normalization is provided by the compactified category Sm defined in [BK2] and its

subcategory Smfg of locally finitely-generated objects. This category is a powerful tool

which in particular allows one to systematically normalize computations with finitely-

generated representations of G. Namely, given two objects V, W of Smfg(G), the space

Hom(V, W) is in general not finite-dimensional, but has action by the Bernstein cen-

ter Z := HH(Wi), and is a finitely-generated representation of Z. Equivalently,

this Hom space can be considered a sheaf Hom(V, W) over Specz which is coherent

and supported over finitely many irreducible components. Similarly the derived Hom

space can be written as a finite complex of coherent sheaves RHomsm(V, W) over

Spec(Z). Now components of Spec(Z) are canonically scheme-theoretic quotients of

tori (of dimension between 0 and n) by subgroups of the Weyl group W. Choosing

W-equivariant toric compactifications of these tori (something that can be done in a

consistent way), we get a canonical compactification Spec(Z)BK of the central spec-

trum. The idea of [BK2] is to endow the objects V, W of Sm(G) with some additional

data, giving objects V, W in some upgraded category Smfg, in order to be able to write
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an inner Hom space Hom(V, W) as a coherent sheaf over Spec(Z)BK. One can then

reconstruct Hom(V, W) as F (Spec(Z)BK, Hom(V, W)) , and Ext*(V, W) in Db'Eig

as the hypercohomology of the double complex RF (Spec(Z)BK, RHom(V, W)). The

wonderful advantage of this category and its derived category is that these cate-

gories are proper (see e.g. 10]), and two objects (under suitable finite generation

conditions) have finitely many finite-dimensional Ext spaces. This allows us to de-

fine Yoneda functors from DbSmfg9 to Db Vectfd given by taking R Hom with any

(finitely-generated) object. We will show that any representation V has a resolution

by induced representations by choosing a compactification V e Smfg (something that

is relatively easy to construct), and write down a resolution

of the forgetful functor

j:Sm - Sm(G)

by a finite collection of functors given by direct sum of functors of the form y: V -+

R Hom(Xi, V) 9 Indji indexed by J running over corank-i parahoric subgroups of

o containing some fixed Iwahori subgroup.

1.3 Localization on the building

The resolution (ji, d) (as well as a version of this functor depending on depth) will

be the focus of this paper, and is interesting independently of its application to

K theory. Our construction will be topological in nature, and is motivated by a

philosophy of p-adic localization introduced in the paper [BThes]. Namely, recall

that (for G split and semisimple) the Bruhat-Tits building BG is a G-equivariant

contractible cell complex with vertices parametrized by maximal compact subgroups

and k-dimensional cells stabilized by parahoric subgroups of corank k. The space

BG can be thought of as a p-adic analogue to the equivariant space G/K, either for

G a real group and K a compact subgroup, or for G a complex group and K the
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Borel. The combinatorially constructed topology on B then takes the place of the

smooth or complex structure on the equivariant spaces. In particular, the appropriate

analogue to the category of local systems on an equivariant space is the category

of constructible sheaves on the building with finite-dimensional fibers, constructible

with respect to the cellular stratification. This category (perhaps after imposing

a suitable boundary condition) can be thought of as having action by something

like the Lie algebra of the totally disconnected group G. To have action by all

of G, we consider the category Sh G of G-equivariant constructible sheaves on the

building with finite-dimensional stalks. One then is interested in the (compactly

supported) global sections functor F: Sh G -+ Smfg(G) which is analogous to the

inverse Beilinson-Bernstein localization functor arising in the theory of category-

representations of semisimple Lie groups. Unlike the (inverse) localization functor

in geometry, the functor r, is far from being an equivalence, and is not a faithful

functor; nevertheless, Bezrukavnikov shows in [BThes that it becomes faithful after

factoring out a certain Serre subcategory of ShGd of objects with trivial homology. In

fact, the essential image of Bezrukavnikov's functor is precisely the full subcategory of

representations in Smfg(G) consisting of representations which admit a resolution by

direct sums of finitely induced representations. To motivate this, observe the functor

F, comes endowed with a resolution (coming from the cellular structure) by functors

IF : ShY -4 Smfg(G) with J running over the paraholics and FJ a Ind Stalk,

canonically expressed as the induced representation from the stalk functor at a cell -

stabilized by J.

Thus in order to show that any finitely-generated representation has a resolution

by finitely induced ones, it would be sufficient to construct a right inverse Locsm of

the functor F : ShOd - Smfg(G): then the cell complex computing F(Locsm(V)) a V

would give functorial such resolutions. Unfortunately, it is relatively easy to see that

such a right inverse does not exist. Instead, what we do construct is (essentially) a de-

rived, compactified version of the localization functor: a complex of sheaves Locg(V),

which we will call

Locv' : Dbgmfg -+ Sh G
gr fdl
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with the property that the following diagram of functors commutes:

Dm Loc DbShG

Db Smfg(G).

This commutative diagram, along with the existence for any object V E Sm of a

(non-unique) compactified object V with jV 2 V, furnishes us with a resolution of

every object by finitely induced representations.

1.3.1 Truncation

The more canonical functor, and the one we will spend the most time studying, is a

functor Loc : D'Smg, -+ Db CoShG into the category of cosheaves, not necessarily

with finite-dimensional stalks. In order to get a functor Locv into sheaves we can

use a standard Verdier-type equivalence between derived categories of sheaves and

cosheaves (see [Cul). In order to further project to the category of sheaves with finite-

dimensional stalks, we use a procedure of "truncation" and take stalkwise invariants

with respect to a coefficient system of congruence subgroups of conductor depending

on the depth of V. It is in fact somewhat surprising that "truncation" does not destroy

commutativity of the global sections diagram above, and our proof of this (in section

7) uses extensively ideas of Meyer and Solleveld, [MS].

1.4 Toric mirror symmetry and corridors

The idea behind our construction of the localization functor comes from adapting to

the context of buildings and noncommutative geometry a certain functor arising from

mirror symmetry of toric varieties: namely, the coherent-constructible correspondence

of [FLTZ] (especially in the interpretation of [T] and [CCC]). The basic idea underly-

ing both the point of view of [CCC] and our construction of the localization functor is
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one of descent: we express (countable) colimit-compatible dg functors DbSm -+ DbC

(for arbitrary categories C) as collections of functors from noncommutative affine

charts, with certain algebra actions and compatibilities between them. This converts

the task of constructing the functor Loc : DbS m_ -+ DbShG to that of finding sev-

eral compatible objects of ShG with appropriate algebra actions. These objects are

constructed using (Verdier duals to) constant sheaves on a new class of contractible

geometric subsets of the building which we call corridors (branched versions of dual

toric cones which are used in the coherent-constructible correspondence of [TJ). Note

Figure 1-1: Example of a corridor for SL 2(Q 2 )

that both the Beilinson-Bernstein localization functor and the coherent-constructible

correspondence functor are in general fully faithful: not so for the localization functor

here. Instead, we have a functor Col : Db CoShG -+ DbSm right adjoint to the local-

ization functor with the property that Col o Loc: Sm -+ Sm is close to but not quite

the identity functor (as would be the case if Loc were fully faithful). The question

of whether it is possible to "fix" Loc to be fully faithful (and thus give an embedding

of the compactified category Loc into the category of equivariant sheaves on B) is an

interesting one, and one that the author is agnostic about at the moment.
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1.5 The Yoneda philosophy and the Morita philoso-

phy

Before continuing, we point out a subtle point about the point of view we adopt

in defining functors, which is in a sense dual to the classical Bourbaki notion of

Yoneda-representable functors. We will indicate this difference somewhat vaguely in

this section, in order to motivate some of the definitional choices we make later in

paper. Namely, given two module categories (either Abelian or differential graded),

A-Mod and B-Mod there are a few common ways to "represent" dg functors be-

tween them. One, which we can call the "Yoneda" philosophy, is to define a functor

F : A-Mod -+ B-Mod by choosing some bimodule Y E A-B-bimod, and defining

F (X) := Hom(Y, X). Another, which we call the "Morita" philosophy, is to choose

a B-A-bimodule, M, and define FM(X) := M OA X. When one has not chosen a

generator and starts with two categories C, D determined by some sort of algebraic

data, it is still often possible to interpret the notion of a C-D-bimodule as an object of

another algebraic category, informally "DP-type object in C" (formally, this bimod-

ule category is determined by some universal property, and denoted C 0 Do when it

exists). In defining the functors in this paper, we will identify the relevant bimodule

categories, and almost exclusively use the "Morita" language of tensor product with

a "kernel" bimodule M rather than the Yoneda constuction of Hom(Y, -). Note that

our choice is aesthetic: as our categories are smooth, every "Morita-type" object M

can (in the dg world) be replaced by a suitably dual "Yoneda-type" object Y := Mv.

However, the relevant duality functors are complicated, and using the Yoneda method

of defining functors would make our exposition more cumbersome than it should be.
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Chapter 2

Plan of paper

We begin by gathering together in section 3 some results about the category of rep-

resentations Smg that at this point can be considered classical. In section 4 we

study homological algebra on the compactified category Sm. We begin by recalling

basic properties of the compactified category from [BK2], the most important ones

being its geometric enrichment over the smooth compact variety X//W for X an n-

dimensional toric variety over C compactifying the spectrum of the spherical center,

Spec(Z,,h) t T//W. We move between three different points of view of Sm intro-

duced in [BK2]. One point of view is to consider Sm as a collection of compatible

representations of the topological algebras W-pQ, which can be thought of as noncom-

mutative affine charts. A second is a microlocal modification of the first, where we

only consider punctured completions RpQ of the Rp with respect to certain closed

strata. The final one is a picture of Sm as sheaves of modules over a sheaf of al-

gebras A over X//W (which we get after choosing an appropriate generator). The

most important results of this section are Lemma 7, giving a formula for higher Hom

and derived 0 between compactified representations and Lemma 8, which character-

izes colimit-compatible (dg) functors Dbgm -÷ C in terms of the data of compatible

collections of objects XpQ with action by the topological algebras 7 -pQ. We call

such data {XpQ} "kernels" for functors. In the next section, 5, we recall some com-

binatorial models for the category of equivariant cosheaves on the building and its

derived category in Section 5, with the main sources being [BThes] and [Cul. We
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also introduce a class of cosheaves we call constant cosheaves on orbifolds, which

are orbifold pushforwards of constant sheaves on "6tale subsets" of the orbifold B/G.

The remainder of the paper defines and studies various functors DbSm a Db CoShG

using appropriate kernels {XpQ}. In section 6, we define the "absolute localization"

functor Loc : D bSm -+ Db CoShG which we glue as a homotopy limit of the functors

Loc-Q indexed by pairs of parabolics. The functors LocpQ are deduced from constant

orbifold cosheaves on quotients of certain special contractible subsets of B which we

call corridors. We check that Loc satisfies commutativity of the diagram

-o-

DbE Lm DbCoShG

Db SMG,

and show that the stalks of this functor are profinite-dimensional, i.e. the stalk over x

becomes finite-dimensional upon taking invariants with respect to any open subgroup

of the stabilizer G(x).

Now replacing the functors LocpQ by invariants with respect to the "Schneider-

Stuhler coefficient system" Ge) ~ G(x, e)<G(x) over every point x gives a new functor

Loc(e) : Sm- Sh with finite-dimensional fibers. We need to show that this functor

has the same compatibility

DbSm( e) Loc Db CoShG

Db SMG,

when restricted to compactified representations of depth < e. It turns out that we

in fact have a stronger statement: taking invariants does not change the (compactly

supported) sections of any component LocpQ (V) (provided V has depth < e). In order

to prove this, we use the remarkably versatile machinery of "compatible systems of
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idempotents" of Meyer and Solleveld, [MS]. This is done in section 7. This finally gives

us a resolution of the underlying representation V of any object V of the compactified

category. It remains to observe that any object V of Sm admits compactification to

an object V of Sm to conclude our proof.
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Chapter 3

Reminders about the representation

category and the Bruhat-Tits

building

Here we will gather together several known results about the category SmfG of smooth

finitely-generated representations. See [Berl, [?] and ISS] for some additional back-

ground. Choosing an integral model for G (easy since G is split), we have a subgroup

G(O) C G(K), which is a maximal compact subgroup. A subgroup conjugate to the

preimage of a Borel subgroup of G(k) under the residue map G(O) -+ G(k) is called

an Iwahori subgroup. A compact open subgroup containing an Iwahori subgroup is

called a parahoric. Parahoric subgroups have a geometric incarnation as stabilizers of

cells of a contractible G-equivariant cell complex, BG, called the Bruhat-Tits building.

When G is simply connected, its parahorics are self-normalizing, and so we have a

bijection between cells and parahorics o +- G(a) taking a cell of B to its stabilizer,

or equivalently the stabilizer of any point x E a. (More generally, a parahoric can

stabilize several cells). Now to every point x E B and number r E R>O, Moy and

Prasad [MP] associate a subgroup G(x, r) C G, normal in the stabilizer G(x). We say

that (for some integer e), a representation V E SMG has depth < e if it is generated

by the subspaces VG(x,e). It follows from work of Bernstein that the category of all

finitely-generated representations of depth < e is Noetherian and a direct summand
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in the category Smfg(G). When e is an integer, the groups G(x, e) can be taken to be

the Schneider-Stuhler coefficient system G( of [SS], which is constant on cells of B.

Given a parabolic subgroup P C G, it has a normal unitary radical Up C P C G,

and the quotient P/Up is a Levi subgroup, which we will denote Lp. We have a pair

of exact adjoint functors

rp : SMG SmL iP

called the Levi restriction and induction, such that rp(V) := VU with evident Lp-

action. We say that a representation V is cuspidal if rp(V) = 0 for any parabolic

P ; G, and admissible if it has finite length (in terms of a Jordan-Hblder composition

series). Jacquet induction and restriction preserve both the properties of admissibility

and of having depth < e.

We define the Bernstein center Z := HH(SmG) to be the center of the cate-

gory SMG . Given any representation V C SmG, it has a central support subvariety

Supp(V) C Spec(Z). The category of representations with central support at a given

point x E Spec(Z) is not necessarily semisimple, but is always Artinian, with at most

|WI irreducibles (for |WI the size of the Weyl group). The depth of a representation

depends only on its singular support, and the variety Spec(Z) is decomposed into a

disjoint union by depth. The component Spec(Z<e) of bounded depth is a variety of

finite type, and it has smooth connected components isomorphic to quotients of tori

(of dimension between 0 and n) by subgroups of the Weyl group.

Up to some choices, we can choose a "spherical" central subring Zph c Z such

that the Spec(Zph) Tc//W is the scheme-theoretic quotient of the Langlands dual

torus to the maximal torus T c G, taken with coefficients in C and quotiented by

the Weyl group. The resulting map Spec(Z) - Tc//W can be shown to be finite on

every central component.
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Chapter 4

Geometry in the compactified

category

In order to construct and study our functor Loc, we need a good understanding of the

derived category of the Bezrukavnikov-Kazhdan category Sm, and more generally, a

characterization of dg functors DbSm -+ C for all "sufficiently nice" dg categories C,

in terms of algebraic data on objects of C. The description we will give will have

algebro-geometric flavor. The techniques in this section come directly from ideas of

toric mirror symmetry, and in particular from constructions in [CCCI (although the

exposition will be self-contained).

4.1 Polarization of G

Here we will introduce some notation and collect some standard results having to do

with the combinatorics of roots and polarization of coweight lattices. In particular, to

every conjugacy class of parabolic P C G we associate a sublattice Ap of the coweight

lattice of G, and a positive cone A+ C Ap.

Notation. When making a point to distinguish between a geometric group or space

and its set of points, we will use math boldface G, X for the geometric object and

ordinary symbols G := G(K), X := X(K) to denote sets of points. When there is no

27



ambiguity, we reserve the right to abuse notation and use G to denote the geometric

group G, etc.

Recall that a polarized semisimple algebraic group G is a pair B C G with B a

fixed Borel subgroup. Recall that a parabolic subgroup of G is an algebraic group P

containing a Borel subgroup. Having chosen a polarization, every parabolic subgroup

is conjugate to a unique standard parabolic subgroup ? D B.

Notation. We will use calligraphic B, P to denote standard Borels or parabolics, and

roman B, P to denote their conjugates.

As any parabolic is its own normalizer, the set of all parabolics conjugate to P

can be canonically identified with points of the space G/'P.

Notation. Abusing notation, we will identify the set of (K-rational) parabolics con-

jugate to P with the set G/P, and write P E G/P to denote a choice of such a

parabolic.

Definition 2. For P a standard parabolic, write Ap for the unramified quotient of

Lp by the minimal open normal subgroup, Ap := LpIL.

For B the Borel, the lattice A1 is identified with X,(T), i.e. the dual lattice to the

weight lattice. The lattice A- is the sublattice in AT of vectors satisfying (A, xi) = 0

for any principal roots xi E Xprinc \ XPc C X*(T) not in the Lie algebra of P.

The choice of polarization endows the lattice AT with a distinguished positive cone,

AT C AT consisting of {A I (A, xi) ;> 0 V Xi E Xprinc}. Write A+ = A+ n Ap. There is

some ambiguity (depending on convention) on the relationship of polarization on the

root lattice (i.e. choice of positive cone) to the polarization data B C G. We choose

the convention that guarantees that for any rank-one parabolic Pi D B, the action

of L+ on the p-adic affine line UB/Up, (viewed as a totally disconnected space with a

Haar measure) is expanding.
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4.2 Definition of Sm

Here we will recall the definition and some properties of the compactified category Sm

from [BK2]. First, a bit more notation. To a pair of embedded standard parabolics

' c Q we will associate an intermediate cone A+ c A+ C Ap as follows.

Definition 3. Write AQ+ := {A E Ap I (A, xi) ;> 0 V xi E X4.,}. Evidently, A ~

A+.

Definition 4. For P c Q parabolics in G, define L+, resp. LQ+ to be the preimage

in Lp of the semigroups A+, resp. AQ+, in the unramified quotient LPIL.

The category Sm will be "glued" out of smooth representation categories of the

semigroups LQ+ above.

Definition 5. Define R-pQ to be algebra of locally constant, compactly supported

functions on the topological semigroup LQ+

Definition 6. Define SmpQ to be the category of smooth representations of the algebra

7i7PQ.

One should think of the SmpQ as a system of "6tale" (or, more precisely, flat)

opens of Sm, and the open corresponding to the pair (P, Q) can be considered to

"contain" (P', Q') if P' C P C Q C Q'.

Definition 7. Write K for the poset of pairs (P, Q) of standard parabolics in G

satisfying P C Q, with order (P', Q') - (P, Q) when P c P c Q C Q'.

Now for any pair (P', Q') - (P, Q) we have a functor j"Q' : SmpQ - SmPQ,

defined as a composition of the following two functors.

Definition 8. For any triple P' C P c Q, we define the functor j'P' : SmpQ -

SmpQ taking VpQ to the coinvariants (Vp Q)u,, where we view VpQ as a representa-

tion of PQ+, the subsemigroup of P which is the preimage of LQ+, restrict it to the

preimage (P')Q+ of P' in LS,+, then quotient out by Up to obtain a representation of

LQ,+.
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Definition 9. For any triple P C Q C Q', we define the functor jpQ' : SmpQ

SmpQ, taking a representation VpQ of 7 ipQ to its extension of scalars VPQ pO-(7QH2pQ,.

Definition 10. Now for a quadruple P' C P C Q C Q' of parabolics, we write

PQ' := jP'Q' 0 jP' : SmJQ -> SmpfQ1.

Note that this functor is canonically equivalent to the composition in the opposite

order, jP'' o jP . More generally, any chain of compositions of functors of this sort

with the same range and domain will be canonically equivalent. This is encoded in

the following lemma.

Lemma 2 (Bezrukavnikov, Kazhdan). The categories Sm-pQ and the functors JpQ

extend to a strict representation of the poset K in categories. L e. there are canon-

ical isomorphisms of functors jpQ"j ' " jp"" : SmpQ -+ Smp/Q/, and these

isomorphisms are compatible in an evident sense.

We define Sm to be the limit of this diagram of functors parametrized by K in

the category of categories. Namely,

Definition 11 (Bezrukavnikov, Kazhdan). An object V of Sm is a collection of objects

VpQ of SmpQ along with compatible isomorphisms jT"''VpQ VI Q,. A morphism

f :V -+ V' is a collection of morphisms fpQ : VpQ -+ V Q such that jp'Q'f-pQ = fpi ,.

4.3 Root toric variety and the geometric center of

Sm

Let Tc be the algebraic torus over C with character lattice A (which is dual to the

character lattice of the maximal torus T C G). The collection of dual hyperplanes

in AR to the roots in A form a toric fan. Write X = kc for the corresponding

toric variety over C, with open orbit Itc C kc. Then X is smooth W-equivariant

(with action induced from W-action on the fan). The W-action preserves the toric
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stratification, and induced a stratification on the scheme-theoretic quotient X//W.

This stratification on k/W then has components parametrized by faces of the Weyl

chamber (as it is a fundamental domain for the W-action on the fan), which are

indexed by standard parabolics P C G. For P a parabolic, let Wp be the intersection

W n P for W C G an embedding of the Weyl group that normalizes some T C B.

Then Wp acts on the lattice Ap, as well as on the semigroup A'. Write X- for the

spectrum Spec(A+), which is an affine toric subvariety X- C X, with closed toric

stratum isomorphic to the torus tP := Spec(Ap). The Xp are then an affine cover

of X, and the J?- are an affine stratification of X.

Definition 12. Write XpQ for the quotient XQ//Wp and SpQ for the closed stratum

tQ//WP C XPQ.

Then the XpQ give a finite flat cover of X. (This cover has the flat analogue of

the Nisnevich property, which we will see in the next section). Now it follows from

work of Bernstein that the identity functor in the category Sm(G) has action by the

ring of functions C[AIW r O(//W) on the scheme-theoretic quotient by this action.

Equivalently, the Hom functor in Sm(G) is enriched to a functor Hom : SMG X SmG -+

Qcoh(LTC'//Wp) with composition o : Hom(V, W) 0 Hom(U, V) -+ Hom(U, W)

fibered over the base LTP'//Wp, and with canonical isomorphism Hom(V, W) a

r (LTP//W, Hom(V, W)). An extension of Bernstein's arguments implies that the

category of smooth representations of the semigroup ?-pQ is enriched over the com-

mutative ring O(XpQ). In the same sense, the paper [BK2] shows that Sm is fibered

over the smooth projective scheme X. Namely,

Lemma 3 ([BK2]). 1. The category Si is enriched over Xc//W, i.e. there is a

functor Hom :Sm 0 Sm -+ Qcoh(Xc//W) with a composition natural transfor-

mation o : Hom(V, W) 0 Hom(U, V) -+ Hom(U, W) fibered over the base.

2. Ordinary Hom in Sm is the composition of Hom with global sections, i.e. Hom;(VjW) 

F(Xc//W, Hom(V, W)).

3. Given an object V of Sm and.F of Qcoh(Xc //W), there is an object VO.F E Sm
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with a natural adjunction equivalence

Hom-(V 0 F, W) 2 HomQcoh(XC//W)(F, Hom(V, W)).

4. In an itale neighborhood of the boundary stratum Sp, the pullback of the inner

Hom Hom(V, W) to any XpQ agrees with HomxPQ (VpQ, WpQ) (and in partic-

ular, the fiber of Hom(V, W) over the open stratum T//W is Hom(V, W)).

4.3.1 Local projectivity and extension

In order to rightfully call Smfg a "compactified" category, it would be nice to know

that any object V E Smfg(G) can be extended to an object V E Smfg, at least in a dg

sense. This is in fact true on the level of abelian categories, but in order to simplify

our life a little, we prove it in a simpler setting of locally projective objects, which we

show to dg span all of Dbm.

Definition 13. We say that an object V E Sm is locally projective if every VpQ is

projective as an object of SmpQ.

Lemma 4. Every object in Sm has a finite locally projective resolution.

Proof. Every SmpQ has projective resolution of length < n. Now given any object V

such that each VpQ has projective resolution of length k > 0 and a map F -+ V from

a locally projective object F which is surjective on every PQ-component, the kernel

ker(P -4 V) locally has projective resolutions of length < k - 1. Thus by induction,

it is enough to show that any object V E Sm admits a surjective map from a locally

projective P. This is shown in 1BK2].

Now we prove the following lemma.

Lemma 5. For any locally projective V E Smfg(G), there is a (not necessarily canon-

ical) object V with the underlying representation VGG = V-

Proof. We proceed by induction. Suppose we have constructed a collection of com-

patible (in the sense of Definition 11) objects VpQ for all Po C P C Q, with VGG = V-
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Then we can automatically extend it to a compatible collection of objects VpQ for all

Q D PO, by taking VpQ := (VO Q)UI,. Now it suffices to extend this collection of com-

patible representations by an object of type Vp,0  whose localizations produce Vp0 Q

for Q 2 Po. Now note that as (by assumption) the Vp 0Q are finitely-generated and

projective, hence torsion-free, we can choose collections of generators xiOQ E VpOQ.

Now we define Vp0p0 to be subspace of the L'-span of x 00 E VPoG which are con-

tained in all VpOQ C V-PoG. By Noetherianness of the finitely-generated representation

categories, this module is finitely-generated. (In fact, the module is independent

of choice of generators when the codimension of Po > 2 by the S2 property of the

center).

Corollary 6. These two lemmas imply that the K-theory map K0 (Smfg) -÷ KO(Smfg(G))

is surjective.

4.3.2 Internal and external tensor product

Define the category Sm for the category of collections of collections of right rep-

resentations VpQ of JpQ with opposite compatibility conditions. Then given a pair

of objects V E Sm,V E SEmR, we can define the complex VOW E Q coh(X) and

V 0 W := F(X, VOW). The functor 0 is left exact, and we can define its derived
_.L__ ..b - L - --L

functor VOW E Db coh(X). We can then define the functor V 0 W RE(VOW) on

the derived category which is a dg functor in each component. When V, W are locally

finitely generated, VOW e Db coh(X) is a perfect complex of coherent sheaves, hence

V 0 W is a finite complex of finite vector spaces.

4.4 Formal charts and higher Hom

Lemma 7. 1. For a pair of objects V, W E Sm, the derived Hom space is computed

by the limit in the derived category

RHom(V, W) a holim(p,Q)g (RHomw-pQ (VpQ, WpQ)).
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Further, this quasiisomorphism is compatible with the fibered structure of Sm

over XC//W. Namely,

RHom(V, W) c limj,' (RHomQ(VpQ, WQ)) ,

where we take j : XpQ X the finite flat map of the previous section.

2. For a pair of objects V z Sm and W G SML, we have

- L -
W 0 V 2 holim WpQ O®,,H VpQ,

and, similarly, the inner derived Hom

_L _ L
VOW a holimyr WpQ_0Vp Q,

L
where WpQOVpQ are viewed as derived pushforwards from coh(XpQ) to coh(X).

In order to prove this lemma we will give an alternative glueing of the compacti-

fied category Sm out of formal representation categories SmpQ fibered over punctured

formal neighborhoods of closed strata in X. Write XpQ := S p n XpQ for the for-

mal neighborhood of S-p in Xpp intersected with XpQ. This is an n-dimensional

formal scheme which is a product of one-dimensional tori, disks, and formal disks.

Now we observe that the rings 7-LpQ are canonically fibered along the XPQ, and we

can base change to get rings 7 (pQ, with representation categories SmpQ. It is then

straightforward to see that an object V of Sm is equivalent to a compatible system of

representations VpQ of RpQ. Now the spaces XpQ form a formal cover of X closed un-

der intersection, so that for two sheaves F, F' on X, we can compute RHom(F, F') via

the "ech complex" RHom(7, F') a holimg (Hom (7| 2 , F'|2 )), and simi-
L

larly for F & F'. This implies from our fibered property that also given two objects

V, W in Sm, we have RHom(V, W) a holimg (Home (VpQ, WPQ)) , and (for V an

object of Sm ) we have V 0 W 2 holimr VPghHQ WPQ1 . Now we observe that,
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fixing ', both the colimits

holimQD-P (Homji ( ,PQ, IWpi)) and

holimQ:p (HomHpQ(VQ, WpQ))

compute the same complex which is the complex H,*,, ((Xp, X- \ Sp), Hom(Vpp, Wpp)),

computing the relative coherent cohomology of the sheaf Homx, (Vpp, Wpp) relative

to the complement to the closed stratum. This means that we can introduce filtrations

on the complexes

holimN RHomPQ (VpQ, WpQ) and

R Hom(V, W) a holimg RHom (VPQ, WPQ)

compatible relative to the obvious map R Hom(V, W) -+ holimg Homwe (VpQ, WpQ),

which induce isomorphisms on associated graded components. The arguments for

V O V' are analogous. This proves the lemma.

4.5 Noncommutative pushforwards

We've defined the forgetful functors j*>Q : Sm -+ SmpQ; these are exact, hence have

obvious derived analogues J*pQ : DbSm -+ Sm-pQ. These functors are noncommutative

analogues of affine pull-back and so it makes sense to look for a right adjoint functor

RjyfQ. It is proved in [BK2I that it is possible to define a sheaf of algebras A over

Xc//W such that Sm is equivalent to the category of sheaves of modules Sm(A). Now

tpQ induces a sheaf of algebras ApQ over XpQ such that the category of sheaves of

representations of ApQ is equivalent to Sm-pQ. Write jPQApQ for the algebra W

considered as an algebra over X via the map of algebraic varieties j7Q : XpQ -+ X.

Then it follows from formal arguments that the functor J* Q interpreted as a functor

A-Mod -+ jpQApQ-Mod is given by tensor product with some bimodule MpQ flat

over both A and jpQApQ. From this it follows formally that we have a well-defined

right adjoint functor 3P' to 3*, whose derived functor will give a left adjoint in the
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derived category, R3jQ. We will not write down a formula for the affine components

of (Rj1'Q(VpQ))piQ here (as it is rather involved), but rather just use the existence

of this adjoint functor.

4.6 Dg functors out of Sm

Now we are ready to characterize DG functors from Sm to an arbitrary dg category

C.

Lemma 8. Suppose that C is a dg category with all colimits. Then a colimit-preserving

functor DbSm'-+ C is equivalent to a collection of objects ApQ of C with right actions

by 'HpQ, together with compatible identifications j 'Q' ApQ '= AplQ g, where the functor

J ''(A) := (A ®HpQ HpQ))ul, is defined as a colimit in the category C.

Proof. Define Funocai for the category of collections ApQ as above and Fun(D~m, C)

for the category of (dg) colimit-compatible functors. Then we have a functor a:

Funocal -+ Fun(DbSgm,C) given by a({XpQ}) : V - holimXpQ ®7f7PQ V and /3
Fun(DbSBm, C) -+ Funiocal given by /(F)pQ := F(J(NpQ)) (which have obvious right

WpQ-action as pQ-modules). It follows from the previous two subsections that a, #
are inverse to each other.

Notation. We call the data XpQ like in Lemma 8 the kernel of the functor F

a({XpQ}). The notation comes from the theory of Fourier-Mukai kernels, since in

fact, the data of {XpQ} above is most naturally an object of the tensor product category

Sm N C.

In Section 6, we will write down a kernel {2ocpQ} which we will use to define the

localization functor Loc.
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Chapter 5

Algebra on the building

In this section we write down some standard results about the derived category of

G-equivariant cosheaves on the Bruhat-Tits building. Our main sources are [BThes]

and [Cu].

5.1 Models for sheaves and cosheaves

Definition 14. Write CoShG for the category of cosheaves on the building B which

are constructible with respect to the cellular stratification and equivariant with respect

to the G-action on B. Equivalently, this is the opposite category of the category of

sheaves with values in Vect P.

Given any point x E o C B and cosheaf V E CoShG, the costalk Vx has action

by the parahoric subgroup G,. Because the strata of the cellular stratification are

contractible, the data of these stalks together with the specialization morphisms on

costalks is sufficient to reconstruct V. More precisely, choose a top-dimensional cell

E C B. Note that as we are studying sheaves which are constant on cells and the

stabilizer G(o-) coincides with the stabilizer G(x) for any x E -, we can unambiguously

write V, for the costalk of V at an arbitrary x E a.

Definition 15. Write PE for the (non-additive) category with objects cells - C E
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and morphisms

HomE (a, a') : ~ -,o'co

0, ' Co

with compositions given by embeddings of subgroups and the group structure on G(U).

This category is generated by the automorphisms G(u) = AutpE (a) together with

"specialization" morphisms t,,, : a-+ a' for a' C a (in fact, it's enough to take the

two cells to be of consecutive dimension). Then we have

Lemma 9. There is an equivalence of categories between CoShG and the category of

left modules PE - Mod taking a cosheaf V to the representation RV(O-) := V, with

AutpE(a) action induced by equivariance and action of t,, given by cospecialization

morphisms of stalks of cosheaves.

We will abuse notation and go between these two interpretations freely. The most

important category for us will be the category CoShG of equivariant cosheaves above.

However, it will also be useful for us to have similar "representation-theoretic" models

for the categories CoSh (non-equivariant cosheaves) as well as the categories ShG, Sh

of equivariant and non-equivariant sheaves on B. We define another poset category.

Definition 16. Define the category PB to be the poset of closed cells of B, ordered

by reverse containment.

Now the same arguments as above give us the following equivalences.

Lemma 10. With this definition, we have

1. The category of nonequivariant cosheaves CoShB is equivalent to the category

of representations of the category PB

2. The category of equivariant sheaves Sh Gis equivalent to the category of repre-

sentations of the opposite category PEOP.

3. The category of nonequivariant sheaves ShB is equivalent to the category of

representations of PB P.
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In particular, as the pairs of categories Sh, CoSh and ShG, CoShG can be in-

terpreted as representation categories of opposite rings, we obtain tensor product

functors 0 : Sh x CoSh -+ Vect and 0 : ShG x CoShG - Vect, as well as left
L

derived versions L.

5.2 Projective and injective objects

We will be interested in the derived category Db CoShG. It will be convenient for us

to have a notion of derived tensor product between sheaves and cosheaves. Namely,

for a sheaf V E ShB and a cosheaf V' E CoShB, write V OPB V' for the tensor product

of V, V' as right and left PB-modules. We define tensor product V 0pE V' similarly
G G L

for V E ShG, V E CoShG, and write V 0 V' for the derived functor. By standard

homological-algebraic arguments, this derived tensor product can be computed in

terms of a projective resolution of either side. We will be especially interested in the
L

case V = C the constant sheaf, in which case as we will see (C Op V' returns the

homology of the cosheaf V'. First, we recall from [BThes] a classification of projective

objects in ShG

Definition 17. Given a cell o- C B and a vector space V, write *,(V) for the

constant sheaf with fiber V on the stellar neighborhood of a.

This definition has an equivariant analogue,

Definition 18. Given a cell o- and a representation V, of G(-), write *,(V,) E

PE - Mod for the sheaf with *, (V)a' = VIG(a') if a' D a and 0 otherwise, where for

any pair of cells a' D a the cospecialization morphism *,(V,), ~ *,(V,),, is the

identity map.

Lemma 11 ([BThesI). The sheaves *,(V) for V irreducible are a complete collection

of indecomposable projectives in ShG. Their dual cosheaves, *a(V) for V irreducible

form a complete collection of indecomposable injectives in CoShG
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Lemma 12 (fBThes]). Any sheaf V E Sh has a projective resolution

®~ocE *oVo, - $cDT, 1o,-Ii-=1 *O'VT G...r Ii-IrJ=n *oVT 0

and, analogously, every sheaf V E SliG has a projective resolution

@a$UDTVO IoiJ-kI=1 *U1VT E~o... T Ioi--rI=n *oV- - 0

This in particular tells us that Sh and ShG have projective dimension n. Ad-
L

ditionally, it gives us a formula for a complex V 9 W as follows indexed by pairs

- D T:

EcE Voa OG, Wo, +D- 1 7r1= 1 Vr ®G(r) W -- .-- 9 -|r=n HomG(o-) Va ®G(r) WO
I..

quasi-iso

L
V D W,

with an analogous formula in the non-equivariant setting. Putting in V = CB the

constant sheaf, we recover the standard complex RIFe(V) computing the homology of

B with coefficients in W, with respect to the baricentric subdivision of our cellular

decomposition. Putting in V = CJB/G, the constant sheaf viewed as an object of

ShG, we recover a complex computing RF(V)hG, the derived G-coinvariants in the

homology of W.

5.3 Constant sheaves on orbifold subsets

Here we will introduce a class of sheaves corresponding to "tale sub-orbifolds" S/H

of B/G. We will use the notations B, G for the building and the group G, although

the same analysis will apply to an arbitrary polyhedrally stratified locally finite CW
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complex B with smooth action by a totally disconnected topological group G with

compact open stabilizers. Suppose that S C B is a (closed, cellular) subset and

H C G a closed subgroup fixing S. Then we define the G-equivariant topological space

G X H S = Gx, where H acts diagonally. We define the "action map" #3: G x H S -4 BH'

via (g, x) '-+ gx, and define

CS/H := A!(-GxS),

the "constant cosheaf on the orbifold S/H", to be the !-pushforward of the constant

cosheaf on G x u S via 3. This is the cosheaf whose costalk over a point x C B is

the vector space of compactly supported functions on G/G(x) n U. (Here G(x) is the

stabilizer of x in G, equivalently the stabilizer of a small symmetric open neighborhood

of x). We have the following important observation.

Proposition 13. RF(_Cs/u) 7 G x'H RVe(S).

This follows from the fact that RPF(V) := Rpt!(V), for pt : B -+ * the map to a

point, hence

(Q(CxHG)) .pt(C(S x HG)) C* C(S X H G).

(Here we write C* to denote the complex of chains.) The terminology of constant

cosheaf is motivated by the fact that CS/H E CoShG corepresents the functor of

invariants in cochains,

RHom(CS/H, V) C* (S V)hH

for arbitrary V E CoSh. In particular, if we have Si C S2 and H1 C H2 , then we have

a canonical map t : /H 1 - 2 /H2 corresponding to the constant section on Si of

the constant sheaf on S2. In fact, this construction can be extended. Let G(s,52) c G

be the collection of all -y E G with y(S1) C S2.

Definition 19. Given two subsets S 1 , S2 C B invariant with respect to H1, H2 C G,

respectively, define the "geometric Hom"

Homgeom (SI /H1,7 S2 /H2) := (H2\G(s, S2>) H1
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to be the set of right H1-invariant points in the quotient H2\GS 1/ H1,5 2/H 2 (with evident

right H1-action).

Then the space Cc Homgeom(SI/H1 , S2/H 2) of compactly supported locally constant

functions on Homgeom(S/Hi, 2/H 2) (viewed as a complex concentrated in degree 0)

maps to HomC o ShG(CS1/H 1 , CS 2 /H 2 ) HO RHomDbCOShG(CS,/H1, CS2/H 2 ) . Note that

Homgeom(S/H1, S2/H2) defines a category structure on pairs S/H (with H C G

acting on S C B), and the map

C; Homgeom(Si/Hi, S2/H2) 4 HomCoShG(CS I/H1 , CS1/H 2 )

is compatible with this category structure.
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Chapter 6

Definition of the localization functor

6.1 Corridors

There is a tradition of making papers on Bruhat-Tits theory read like manuals on

real estate. Buildings contain apartments that consist of alcoves. There is however a

problem with buildings that until now has not been resolved: there is no a priori way

of getting from one apartment to another. Here we will finally propose a solution for

the long-suffering tenants. We will introduce a notion of corridors, parametrized by

standard parabolic subgroups Q, each of which connects apartments in a Q-conjugacy

class along a Weyl chamber corresponding to Q.

Fix a basepoint of the building, xo E B, fixed by a maximal compact K C G. Let

A be the apartment in B (viewed as an abstract affine space). Write 73 : B - A for

the projection to the quotient A 2 1/UB. For a standard parabolic Q ;? B, write A'

for the kernel of the composition A C T -+ Q -+ L -+ X*(L/[L, L]). Then A' 0 R

acts on A. Write AQ := A/At & R and 7rQ : B -+ AQ for the evident composed

projection. Write A- C AQ for the cone of all points strictly smaller than 7rQ(xo) in

the usual poset structure on the coweight lattice of G.

Definition 20. The standard corridor of type Q is the preimage IDQ := ,r-1 (A-) C B.

Example. Let G = SL 2(Q2 ). Then

0 DG is the whole building B.

43



UL :

* Dt is the contractible graph that looks like this.

I

Figure 6-1: DL3 for SL 2

From the "hyperbolic" point of view, corridors should be thought of as cylinders in

the hyperbolic geometry, tangent to the boundary (in the polyhedral compactification,

see [Lal or section 7.1) at a hyperbolic subspace (which will always be a building for

a Levi subgroup). For example, ID, in the example above is a disk that meets the

boundary at a point:

DR 
_

Figure 6-2: Hyperbolic corridor

In particular, we have the following theorem about the geometry of corridors.

Theorem 14.

1. D- is convex and contractible.

2. The normalizer of the standard corridor Dp is LU-p.
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3. Suppose y E L g+ such that it is not in any LQ'+ for P' C P. Then the union

Un>o-DQ '== Dp.

4. For two corridors D-p, IDQ and -y E G we have -yD- C DQ if and only if P C Q

and Y E Q+.

Proof. We give a brief sketch of the proofs of these combinatorial results.

(P1) Convexity of DQ is equivalent to the convexity of the closure UDQ C B in the

polyhedral compactification (FLal). It remains to observe that the compactifica-

tion UQ is the convex hull of the boundary component &Q corresponding to Q

and the boundary, 7rQ'(0) c B. A nonempty convex set in a hyperbolic metric

is contractible.

(P2) We first prove that Lo UQ does indeed normalize DQ. Let A- C H be a lift of A-

in B (necessarily contained in B). Choose any point x E AU nlQ 1 (AQ OR) on the

closed boundary component of A- corresponding to a maximal compact, and

let Qx be the stabilizer of x in P. By standard arguments involving parabolic

orbits in characteristic p, the projection of a cell near x to AQ only depends on

its Px-orbit, hence in a stellar neighborhood of x, the image of Px(D) under lrQ is

contained in AQ. By an inductive argument, we deduce that such Px normalizes

D. On the other hand, the maximal torus of L0 is contained in the preimage of

AQ in the maximal torus T C G, hence also normalizes ID. We conclude using

a version of the Cartan decomposition for LO. In the other direction, let k be

the rank of L,,. Then D contains exactly one k-dimensional component of the

polyhedral compactification of B (see [La], or section 7.1), which is the unique

component normalized by Q. Thus anything that fixes ID must be contained in

Q. Let -y E Q be an element. By arguments analogous to the above, we see that

the image 7rQ(yD)is a shift of A' by the image of y in the lattice L/Lo C AQ,

hence -y must be in L0 to stabilize D.

(P3) This follows by pullback to B from the evident covering of the affine cone AQ x

A' by translates of A- x A'.
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(P4) Note that given a pair P C Q and a corridor D := yAp (some y E G), the

corridor D' := yAQ is the unique minimal conjugate of AQ that contains D (as

Q := -yQ-y 1 is the unique parabolic conjugate to Q which contains yP-y- 1 , and

D' can then be recovered as LO UQ - D). The result now follows.

QO

6.2 The localization kernel

Note that each DQ (being a preimage of a subset of B/Us) is invariant with respect to

the unitary group UB, hence also invariant with respect to all UP (which are contained

in U3). Now our localization kernel Loc will be constructed out of the equivariant

cosheaves

OC PQ := C1Q/U

in the terminology of section 5.3.

Namely, observe that for two arbitrary parabolics Q, Q', Theorem 14 implies that

the set of elements sending DQ to DQ, is

Gin~n,) = L+,UQ,lQcQ

0, Q Q.

This means that

Homgeom(DQ/Up, IDQ,/Up) = (Up,\L+,U Q,) = ((up, n LQ,)\LQ)Lfup

so long as P' C P c Q c Q'. If P = Q = 2 = Q', then we have L C L+UQ,

which is bi-invariant with respect to Up, and so L + C Homgeo(DQ/Up, DQI/UP,).

This gives us the desired Lp-action. Further, we have tautologically for P C Q

that Loc-pQ 2 (LocpQ) u, . The identity class 1 - Up, c L+,UQ, is right Up-invariant

(since Up, D Up), hence gives a class t 'Q' E Homgem(Dp/Q, De/Q'), inducing

a map t (CocpQ)U,, -+ ocpQ, which is visibly L+-equivariant. In order
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to check that the ocpQ indeed define a kernel, we need to check that the map

OCPQ ®+
1 24'-* ocpQl adjoint to tpQ' is an isomorphism. This follows from

part 3 of Theorem 14. Having checked conditions of Lemma 8, we get a functor

Loc : Sm -+ CoShG defined as follows.

Definition 21. Define

Loc(V) := holimpQ ocpQ OW,, VpQ = holimpQ CD,/UQ ® HPQ VpQ E Db CoShG.

We introduce also some notation for the "affine components" of Loc, namely

Definition 22. We define the functor LocpQ : SmpQ -+ CoShG by

LocpQ V PQ '- VPQ OpQ IDQ/UJ,

for VpQ a reprsentation of W7pQ.

Recall here that _Q is defined as the !-pushforward of the constant sheaf on

DQ x u, G under the action map # : G x U, DQ -+ B. This means that we can describe

the stalks of IDQ/Up alternatively via the following definition.

Definition 23. Define

{; = - E G I - - DQ -> al -} \G
HGQ=UUpU\G.

This is an open subset of G/Up left invariant with respect to G(U-) and right invariant

with respect to L+Q C Homgeom(D/Up,DQ/Up).

Proposition 15. We then have

P-oc p := C (HpQ).

Definition 24. Define (abusing notation somewhat) Zoc' for the G(O-)-equivariant

object of the right compactified category (S-m-R)G(,) to be the object with affine compo-

nents 2 oc'Q, and evident componentwise G(-)-action.
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From our definition of kernels, we now have:

Proposition 16. The stalk Loc(V), Z oc" 0 V.

Having defined the functor, we begin verifying its properties.

Lemma 17. For any sheaf V E Sm, we have canonically RFc Loc(V) e V.

Proof. We will prove a corresponding statement independently for each component

LocpQ.

Proposition 18. RFe LocQ VQ VPc OL+ WLp ®Lp c (Up\G).

Proof. It suffices to check this in the universal case, with VpQ = HpQ, in which case it

follows from Proposition 13 and the contractibility of DQ, (Theorem 14, part 1). E

Note that this proposition in particular implies that, given an object V of the com-

pactified category, RFc(LocpQ(V)) a RFe(LocpQ,(V)) for any Q' D Q (as VpQ ®L +

HLp is independent of Q). Now since all our functors are dg functors and com-

mute with finite homotopy limits, we can compute RF,(Loc(V)) as the limit of

RFc(LocpQ(VpQ)), giving

RC (Loc(V)) = holimp,Q VPQ 0L4+ Gc (G/Up).

Thus decomposing the partially ordered set K of pairs (P, Q) into subcategories

(W, -) C K, we are taking the homotopy limit along a diagram which is constant

along each (M, -). Since each of these categories has a terminal object: namely,

(P, G), the nerve of the corresponding subcategories is contractible, and the limit

computation can be simplified to

holimp V(p,G) ®Lp C (G/Up).

But the subcategory (P, G) c K, in turn, has a terminal object, namely, (G, G)

leaving us with RFe(Loc(V)) e V(G,G) OW W V
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Example. For SL 2 , the category K has three objects, and looks like this:

(BIB) >- (BIG) -< (GIG),I

and the colimit computation above then identifies the homotopy limit of the fibered

product diagram

V

V13 OTCcO (G / U) ~VU OT C (G/IUL3)

with V (note that the colimit of any diagram of the form A -+ A +- B is B).

This concludes the proof.

The next lemma establishes that Loc(V) almost has finite-dimensional stalks when

V E Smg. In the next chapter, we will see how to get rid of the "almost".

Lemma 19. So long as V is locally finitely generated, Loc(V) has stalks that have

finite-dimensional invariants with respect to open compact subgroups.

Proof. Since G(-) is compact, taking invariants with respect to an open subgroup is

an exact functor, and hence for J C G(o), we have the left invariants J Loc(V) C

V ® J(2oco). Now it is sufficient to show (see Section 4.3.2) that J(2oco) is locally

finitely-generated. In order to see this, we observe that J2oc'Q = Ce (J\HpQ) is

the space of compactly supported functions on the subset J\HPQ of the discrete

double quotient J\G/Up. Now in the special case J = G(a), the double quotient

J\HpQ c G(a)\G/U can be identified with the collection of cells of a' C A of the

apartment which are W-conjugate to a and satisfy a-a xO (in the partial order induced

by polarization on A = B/Uy). Hence it is generated over A+ by finitely many classes

(corresponding to the minimal cells in each A-conjugacy class of W a). Let these

generators be {x} E G(-)\G/U. Then their finitely many preimages in J\G/U will
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give a generating set for J( 2 oc"). This gives us finite generation of (2ocpQ)J, and

completes our proof. E
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Chapter 7

The truncated localization functor

Fix an integer e > 1, which we will assume to be chosen larger than the depth of

our compactified representation V. The paper [SS] defines a conjugation invariant

system of open normal subgroups G) < G, indexed by cells o C B, with the property

that G) c G$,) for r C -. This allows us to define a "truncation" functor (e)

CoSh(e) - CoSh(e) defined as follows:

Definition 25. For V E CoShG define I(e)V e CoSh(e) to be the cosheaf whose

stalks are invariants,

with respect to the ("Schneider-Stuhler") system of subgroups above.

Definition 26. Define Loc(e) to be the composition I(e) o Loc : Sm -+ Sh.

By Lemma 19, the functors Loc(e) have finite-dimensional cohomology of stalks.

This section will be devoted to proving the following theorem.

Theorem 20. Suppose that V E Sm has depth < e. Then the compactly supported

global sections, R'c(Loc(V)(e))

In fact, we will prove a stronger result.

Definition 27. Define Loc( := I(e) LocpQ : Sm -+ CoSh.

Then we have
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Theorem 21. Suppose VpQ C SmpQ has depth < e. Then the compactly supported

global sections,

RFc (LocN(VPQ)) 2 RFc (LocpQ(VpQ)).

7.1 Building combinatorics

We will give here some reminders about the theory of buildings and the polyhedral

compactification of [LaJ. This subsection and the next will be inspired by construc-

tions and notation in the paper [MS]. We will take a combinatorial point of view based

on the Weyl partial order on the coweight lattice. Namely, for an algebraic group G,

write T for its torus, with lattice of characters (the weight lattice) X*(T) and lattice

of coweights X,, (T). We will choose a uniformizer W E Gm (K), and write A C T

for the lattice A r X(T) of coweights embedded in the K-point group T := T(K)

via multipowers of the uniformizer. Write AR := A & R and choose a polarization

on G. Let x1,..., x, E AV be the collection of simple roots. Let A+ C A be the

sublattice of all element which pair positively with the xi. This is naturally identified

(via the metric) with a Weyl chamber. We define a partial order on A with a -< /3

if 3 - a E A'. Now to any torus T C G there corresponds an apartment AT C G.

If we choose a containment T C B in a Borel (equivalently, a polarization), then

we get a partial order on A with a >- b when we have a containment of stabilizers

U(a) D U(b) in the unipotent radical U C B. This partial order satisfies wva a> a

if and only if A E A+ (where the parametrized embedding A C T is determined by

the polarization as above). In particular, if we choose in addition a x E A, we get a

canonical identification A 2 AR compatible with partial order.

We will use the shorthand notation polarized apartment to denote an apartment

with choice of partial order corresponding to a pair T C B as above.

Definition 28 (Meyer and Solleveld). The convex hull of two cells U, T C B, denoted

U,-T, is the intersection of all apartments containing both - and T. More generally,

the convex hull of a subset F C B is the union of all convex hulls of pairs of points of

F. This notion generalizes in an obvious way to a subset F C lB
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Remark 1. The idea behind this terminology is to replace the notion of a geodesic

line segment, which is the collection of points on a shortest path between a, b, by

a 'partially ordered geodesic line segment", which is the collection of points x in a

parametrized apartment between a, b E B which satisfy a - x -< b in the Weyl partial

order corresponding to the parametrization.

Definition 29. Given a point x E A in a polarized apartment, we say that a subset

R C A with the data of a partial order is a geodesic ray out of x in the given

polarization if R is cofinal with minimal point x in the partial order, i.e. if any y E R

satisfies y >- x and for any pair y, y' E R, there is z E R with z > y, z > y'.

Remark 2. We are not using the usual notion of metric on the Bruhat- Tits building,

and a geodesic ray is in general not one-dimensional.

For an arbitrary pair of points x, y, there is then a unique geodesic ray x- with

minimal point x and maximal point y. If o, -' are a pair of closed simplices, then

there is a unique vertex x E o-, y E o' such that z 3 contains both o- and o-'. We define

0-, o-' to be this subset (with induced partial order).

Remark 3. The notion of a geodesic ray allows us to give an alternative definition of

the polyhedral compactification of B (see [La]) as follows. Define 9 to be the quotient

of the collection of closed geodesic rays R C B by the equivalence relation that R - R'

if R n R' is cofinal in both R and R'. In particular, the convex hulls x,-y and x', y (with

partial order such that y is maximal) are equivalent as their intersection contains y.

This gives the embedding B C B.

7.2 Consistent systems of idempotents

Definition 30 (Meyer and Solleveld). Let V be a vector space with action of G. We

say that a system of idempotents E, E Endc V indexed by cells of the building is

consistent if it satisfies the following three properties.

(a) (local commutativity) E,, E, commute if a,,r are in the closure of the same face
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(b) (local multiplicativity) The idempotent corresponding to a cell is the product of

those corresponding to its vertices, i.e. E, = -1,] o Ex.

(c) (convexity) For any triple of cells T, U, 0' with T C o and - in the convex hull of

T, O', we have the identity EE,, = EEo,,.

Lemma 22 (Meyer and Solleveld). For any depth e > 1, the idempotents E():

6G() form a consistent system of idempotents. L

We mention that in the proof of [MS], property (b) above is reduced to the fol-

lowing group identity, which will be useful to us as well:

Proposition 23 (Meyer and Solleveld). G!e) -Ge : G . Ee

Given a system E = {Ea} of consistent idempotents, write VE for the coefficient

system with the vector space VE over cell o. Note that this admits a map to the

constant coefficient system V.

Lemma 24 (Meyer and Solleveld). For any consistent system of idempotents {E,}

and any closed convex subset F C B, the derived global sections RF (VE) are quasiiso-

morphic to the vector space ' yEa C V concentrated in degree 0. This identification

is consistent with the embedding of coefficient systems RF (VE) C RF() = V [0]. El

Choose a parabolic P D B. Now let Vp = iprp Lp = C 0 (G/Up). We have

two algebras acting on Vp. First, 1-G acts via the usual representation structure.

Secondly, the commutative algebra

R := C (G/U)

of all locally constant functions acts on compactly supported functions by multipli-

cation. The two actions combine into an action of the crossed product algebra

Ap:= R#G.

Now choose another parabolic Q D P. Observe that the subsets H+' giving local

action of the localization functor correspond to idempotent functions 6 Q+ on R, and
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that these are preserved by the subgroups G,, hence commute with the idempotents

Ee) = 6(G(e)) (hence their products are idempotent). To unburden notation, write

6, 6 PQ

I. e) and

The idempotents 4b, act on the space Vp iPLp of compactly supported functions,

and have image Loc'p (7 -tpQ) (compactly supported, G()-equivariant functions on

H Q C G/Up). Up to a universality argument, it suffices for us to prove the following.

Proposition 25. The idempotents E(e) form a consistent system of idempotents.

Proof. It will be convenient for us to give a formula for products of functions of the

form 6,. Namely, given an element -y E G/Up, write DI := 7-yDQ for the corresponding

corridor (of type Q). Recall that the space H'Q is the collection of all -y E G/U such

that - C DQ. Because corridors are convex and closed, we can multiply idempotents

of the form 6, in the following way. Suppose that o-, ... , o- are a collection of cells

(of arbitrary dimension). Write E for the convex hull of the closed cells 5:. Write

H = { E G/U I DQ - E}. By convexity of corridors, we have H PQ in this case

is the intersection of all HPQ C G/Up. Write 6E for the corresponding characteristic

function. We deduce that we have the following formula.

Lemma 26. We have
k

= =

with E the convex hull of the closed cells uj as above. E

In order to prove proposition 25, we need to check the three properties of Definition

30 for the 4D,. By Meyer and Solleveld's Lemma 22, we have consistency of the

S, and the lemma 26 applied to the vertices of a single cell cell gives us the local

multiplicativity property for the system of idempotents 6,. The other two properties

are obvious from commutativity of the 6g, giving us consistency of the system {Yo}
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as well. Note that this is not yet good enough to give us the desired consistency of

the {b,} = ,6,} as E, may not commute with 6,, for a, a' far apart.

First, we observe that local commutativity and multiplicativity follows from the

corresponding properties of the systems {E}, {6,} by checking that idempotents of

the two systems mutually commute at nearby vertices.

Claim. the idempotents E,4, E :,, and 6,, pairwise commute for T, T' both in the clo-

sure of a cell a.

The only pairs for which we still need to check this are (E, 7) and (4, 6,1). Now

we have by construction that GI C G(') C G (see [SS], 1.2, where these groups are

called Ue). Since G, normalizes HQ, the idempotents S,4 and 67 commute and we

are done WLOG. E

It remains for us to check the convexity condition of definition 30. Note that,

fixing a Haar measure, the crossed product A = R#G can be identified with locally

constant functions on G/U x G which are supported over a bounded subset of G.

Product is computed via the multiplication kernel

x#^yd(G/U)dG - x'#-y'd(G/U)dG:= 6x,,,/ -x#y1 1'd(G/U)dG.

Suppose we have a triple T C a, and T' such that a C TT' is in the convex hull (of

the open cells). Write E := T, T' for the convex hull of the closures of the cells, which

coincides with FT'. We compute

I'dydq ____ . d '#dr ' (1

( d) d y'dre' 6(n, (77') )#YY' (7.2)
iEG(e),DT 97,Y'EG '7,Dtp' IG)G . |G?

Where we are using the notation 6(rq, y') for the delta measure on the diagonal q =

(r/)y. Now note that for -y E G, the conditions D, E T, Doq 3 T' and q = (r')7 together

are equivalent to ]D, 3 T,1D, D3 yT' and q' = 9f-4 , which can further be reduced to
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D77 D ^/E (as T = yT). This lets us rewrite

bb,= f#y' (7.3)
4D7W'(eD'r'/UD~y~ (Ge) I (e= EG(e),,7'EG *-1, ,EG/UDOD-yE IGy)| - I GIrl

Now note that multiplying ^y in the above expression on the right by any element

o c G that fixes E and is contained in the product G(')Ge) will not change the

result. In particular, this is true for any yo E G (e) n GE. Write Go:= G(,) n GE and

averaging over -yo E Go as above, we can safely introduce a new variable -Yo in the

integral above:

<br(by = d#7707'. (7.4)
e ),7 -EGo,-y'EG (e, ,7EG/UI,7 D(-)E (Ge)|-Go- G f

(e (e):~Y (e)

Now we observe that G Go = Gle: we know from Proposition 23 that Ge) -G D

Ge), so it follows that G() - (Ge) n G -e)) = Ge). Using this identity (and some

obvious homogeneity considerations), the expression above can be rewritten as

<b 0
Lb, = e T

1  7 ' (7.5)
4G E-y*,' E G,,,7E G/U,Dn |Gor\ - |GT,\

which, by the arguments above, =<bI<bV . (7.6)

This concludes the proof that the (D, are coherent.

From this we deduce by Lemma 24 that the derived global sections of the cosheaf

a -+<b, - Cc (G/U) = Lock (NpQ) have no higher cohomology, and in degree zero

give the subspace of C (G/U) spanned by all <bC (G/U), which evidently are

equivalent to the depth-e component of C (G/U) (see this by moving a towards the

boundary in the direction of the polarization on A). Thus the natural transformation

LocPQ ( gpQ) -- (LocpQ(pQ))(e) is an equivalence on global sections. As both func-

tors, as well as RIP are derived exact and commute with all colimits, and since 7 pQ

has right action by WpQ that commutes with the left module structure, this implies
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that for any module VpQ over 7WpQ of depth < e, we have

F, Lock VQ 2 F, Loc( (NQ OPQ (Vp Q))

(rC LocpQ(71PQ))(e) ®',, (V) F FcLocpQ(V),

where for a representation V E Sm(G), we define V(e) to be its depth-< e component.

From this we deduce that RIP, (Loc()(V)) a RFc Loc(V), which by Lemma 17 is just

V.

With Theorem 20 in hand, our main result, Theorem 1 easily follows. Namely,

given an arbitrary V E Sm of depth < e, write [V] E K0 (Smfg,) a preimage of the

class [V] E Smfg(G), which exists by Corollary 6. Write Loc(') for the fiber over

o of Loc(e). As these are dg functors, they define maps on K-theory [Loc, ]. Now

from the identity V RFc Loc(V) Rr, Loc(V) (and using Lemma 19) we deduce

[V] = [Ind] E',E (-1)101[Loc )]([V]). E
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