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Abstract

Precision cosmology has made tremendous progress in the past two decades thanks to
a large amount of high quality data from the Cosmic Microwave Background (CMB),
galaxy surveys and other cosmological probes. However, most of our universe's vol-
ume, corresponding to the period between the CMB and when the first stars formed,
remains unexplored. Since there were no luminous objects during that period, it is
called the cosmic "dark ages". 21 cm cosmology is the study of the high redshift uni-
verse using the hyperfine transition of neutral hydrogen, and it has the potential to
probe that unchartered volume of our universe and the ensuing cosmic dawn, placing
unprecedented constraints on our cosmic history as well as on fundamental physics.

My Ph.D. thesis work tackles the most pressing observational challenges we face
in the field of 21 cm cosmology: precision calibration and foreground characterization.
I lead the design, deployment and data analysis of the MIT Epoch of Reionization
(MITEoR) radio telescope, an interferometric array of 64-dual polarization antennas
whose goal was to test technology and algorithms for incorporation into the Hydrogen
Epoch of Reionization Array (HERA). In four papers, I develop, test and improve
many algorithms in low frequency radio interferometry that are optimized for 21 cm
cosmology. These include a set of calibration algorithms forming redundant calibra-
tion pipeline which I created and demonstrated to be the most precise and robust
calibration method currently available. By applying this redundant calibration to
high quality data collected by the Precision Array for Probing the Epoch of Reion-
ization (PAPER), we have produced the tightest upper bound of the redshifted 21 cm
signals to date. I have also created new imaging algorithms specifically tailored to
the latest generation of radio interferometers, allowing them to make Galactic fore-
ground maps that are not accessible through traditional radio interferometry. Lastly,
I have improved on the algorithm that synthesizes foreground maps into the Global
Sky Model (GSM), and used it to create an improved model of diffuse sky emission
from 10 MHz through 5 THz.
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Many are stubborn in pursuit of the path they have chosen, few in pursuit of the goal.
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Chapter 1

Introduction

1.1 Precision Cosmology

Precision cosmology has made tremendous progress in the past two decades, thanks to

a large amount of high quality data from the Cosmic Microwave Background (CMB)

as well as the study of nearby stars and galaxies. As my advisor Max likes to say,

when he was a graduate student 25 years ago, people were arguing over whether

our universe is 10 billion years old or 20 billion years old, whereas nowadays, people

debate over whether it is 13.7 or 13.8 billion years old. This drastic improvement in

our knowledge of our universe's age is only the tip of the iceberg that is the triumph

of precision cosmology. As another example, we now know that our universe consists

of only about 5% ordinary matter that constitutes everything around us here on

Earth, and the other 95% is split between about 26% dark matter and 69% dark

energy [134]. The physical natures of dark matter and dark energy remain mysteries

to us, but perhaps another two decades of precision cosmology could unveil their

secrets. In the next two sections, I will briefly review two of the most important

topics in precision cosmology: the Cosmic Microwave Background (CMB) and the

3D mapping of galaxies through the Sloan Digital Sky Survey.
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Figure 1-1: The evolution of CMB anisotropy measurements made by the last, three
generations of CMB experiments. Image credits: the COBE, WMAP, and Planck
Collaborations, respectively.

1.1.1 The Far End: the Cosmic Microwave Background

The CMB is a blackbody radiation emitted by cooling plasma in the early universe

when it cooled to about 3,000 K, less than half a million years after our Big Bang. As

the CMB radiation traveled to us, it cooled down by a. factor of about 1100, so it ap-

pears to us as 2.725 K blackbody radiation. Because the 2.725 K blackbody spectrum

peaks in the nmicrowave band, it, is called the Cosmic Microwave Background. This

radiation was discovered back in the 1960s. Most of the recent progress in cosmology

has come from studying very slight variations in CMB temlperature throughout the

sky, typically no more than 0.1 mK. Fig. 1-1 clearly shows the improvement, in quality,

specifically angular resolution and sensitivity, of the last three generations of CMB

experiments, which are all microwave detectors nounted on satellites. People study

the CMB anisotropy by investigating the statistical property of the anisotropies, cap-

tured by the CMB power spectrum, as shown in Fig. 1-2. The strength of the power

spectrum represents the amount. of fluctuation concentrated at various angular scales,

and the amplitudes and locations of the peaks in the power spectrum are determined

by what happened both before the CMB was emitted, as well as when it. was on its

way to us. Thus, careful study of the power spectrum can and has revealed a great,

deal about the history of our universe.

1.1.2 In the Neighborhood: the Galaxy Surveys

Observing stars in our Galaxy and other distant galaxies have been the study of

astronoiny for centuries. Edwin Hubble's observation in 1929 that the majority of

distant galaxies are moving away from us is perhaps one of the most impactful dis-

20
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Figure 1-2: The CMB power spectrum measured by the Planck satellite. Our current

cosmological model (green curve) can fit it, very well with just six parameters. Image

credit: Uhc Planck Collaborations.

coveries in the history of cosmology. The constant development of more and more

advanced telescopes and spectroscopes has allowed us to observe more galaxies that

are farther away. One of the most ambitious efforts in systematically studying galax-

ies is the Sloan Digital Sky Survey [190] (SDSS). Using the 2.5 im telescope at Apache

Point Observatory, the SDSS created the largest volume three-dimensional map of

galaxies to date (see Fig. 1-3).

1.1.3 Is There Anything in between?

The 13.8 billion years old CMB is at, the far end of our universe accessible to us

through light. This is because before the time when CMB was emitted, the hot

plasma that filled the universe did not, allow light to travel freely. On the other hand.

most of the galaxies surveyed by SDSS are less than 2 billion years old', which is

very close to us compared to the CMB. Thus, one must be tempted to ask: is there

anything we can observe in between the CMB and the oldest galaxies? If observations

of the farthest, slice (CMB) and the nearby volume (SDSS) have propelled the last,

'SDSS has been carrying out larger and larger surveys, and other instruments have observed

galaxies more than 10 billion years old. However, volume in cosmology is not proportional to the

age cubed, so the gap between the CI\4B and the oldest galaxy is much larger thaii their age gaps

suggest. See Fig. 1-4.

21
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Figure 1-3: The 3D galaxy map made by the SDSS Legacy Survey. Each point in
this "cosmic web" is a galaxy, and the farthest galaxies are about 2 billion years old.

Image credit: the Sloan Digital Sky Survey.

two decades of cosmological discoveries, observing the volume in between certainly

has the potential to revolutionize cosmology again.

As shown in Fig. 1-4, the missing gap actually makes up more than 80% of our

universe's comoving volume. This gap period has been called the cosmic dark ages,

because there was very little light being generated then, compared to the later times

when our universe is populated by shiny stars and galaxies. Fortunately, the universe

was not, a complete void, but was filled by neutral hydrogen gas, which later gravitated

to form the stars and galaxies. What is more, the neutral hydrogen gas did emit

radiation that we can observe today. Unlike the CMB which obeys a continuous

spectrum characteristic of the blackbody radiation, the neutral hydrogen atoms have

a hyperfine transition that. emit light, at a very specific wavelength: 21 cm. As the

21 cm radio waves traveled towards us, their wavelength got stretched due to the

universe's expansion, and the earlier they were emitted, the more they were stretched.

This, combined with the fact that the neutral hydrogen is optically thin, allows us to

determine the age of any emission from neutral hydrogen by simply looking at how

much longer its wavelength is compared to 21 cm, so in principle we can make a 3D

map of the entire gap shown in Fig. 1-4.
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Figure 1-4: The CMB anisotropy maps and the galaxy surveys only probe a small

fraction of the volume of the observable universe. 21 cm cosmology, the probe that

this thesis focuses on developing, may one day make the entire pink region accessible

to direct observation. Image credits: Josh Dillon and Tegmark and Zaldarriaga [166.
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Figure 1-5: The Epoch of Reionization is a period in the early history of the universe

between the cosmic microwave background (on the left) and modern stars and galaxies

(on the right). During this time, the first stars and galaxies form and ionize the neutral

hydrogen gas around them, which creates merging bubbles of ionized hydrogen. Image

credit: Abraham Loeb and Scientific American.

Being able to map the neutral hydrogen throughout the history of our universe

can shed much light. on both cosmology and astrophysics. The neutral hydrogen gas

underwent a lot of changes during the dark ages, especially towards the end when the

first stars and galaxies just started forning (which we call the "cosmic dawni"). The

young stars and galaxies emitted strong radiation that ionized the neutral hydrogen

around them (in a process called reionization), and the hydrogen gas stopped emitting

21 cm radiation once ionized. Thus, if we can make a 3D hydrogen map, we can see

that more and more empty "bubbles" appeared and merged during the cosmic dawn,

as shown in Fig. 1-5. Currently we have a rough idea of how it might, have happened,

but, we don't, even know exactly when this "bubble period" was, how long it lasted,

or any further details. Thus, direct measurements of this transition period will teach

us about both the structure of our universe, as well as the formation of the first stars

and galaxies.
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1.2 Probing the Red-shifted Neutral Hydrogen Gas

and the Potential of 21 cm Cosmology

In this section I briefly describe the more technical aspects of 21 cm cosmology. For

a much more detailed review, see the introduction of Josh Dillon's thesis [35] and

reviews in the literature [54, 144],

1.2.1 Temperature Evolution of the Neutral Hydrogen Gas

The aforementioned 21 cm radiation has been observed and used to trace neutral

hydrogen in our Galaxy since its first detection in 1951 by Ewen and Purcell [44].

However, it is different to probe the neutral hydrogen before and during the epoch

of reionization (EoR) with red-shifted 21 cm signals. For periods before and during

the EoR, the hydrogen gas is observed in the form of either emission or absorption

relative to the CMB. What we directly measure is I,, the specific intensity of emission

at the frequency v. Since the red-shifted 21 cm signals have frequencies on the order

of 10' Hz, much lower than the peak of the CMB at around 10" Hz, we can use

the Rayleigh-Jeans limit of the blackbody spectrum to represent observed specific

intensities as brightness temperatures Tb, where

2kBTbl2
Iv = 2 (1.1)

The observed brightness temperature is a combination of the CMB temperature Ty-

and the spin temperature of the hydrogen gas Ts, which is defined in terms of the

Boltzmann factor for the spin-singlet and spin-triplet hyperfine levels of the ground

state of hydrogen,
ntriplet = 3ehv0/k S. (12
nsinglet

Following Furlanetto et al. [54], the equation of radiative transfer through a cloud of

hydrogen backlit by the CMB is

Tb(z, v) = Ts(z) (1 - e-') + Ty(z)e- Tv, (1.3)
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where -r, is the optical depth of the cloud due to the 21 cm transition.

Since the neutral hydrogen gas is considered optically thin (T, < 1) [54], contrast

in the 21 cm signal observed today relative to the CMB is then given by

Tb (z) _
6Ta bs(z) = -T,(z = 0)

b1 + z TY(

(Ts(z) - T,(z)) (1 - e-TVo)
I + z

Ts(z) - Ty(z)
I + z 7V 14

where T, 0 is the integrated optical depth over frequency. Finally, we skip some tech-

nical calculations shown in Furlanetto et al. [54] and Pritchard and Loeb [144], and

arrive at the final equation

,b, (Z - 7-(z 1+ (1 + z)H(z)6Ta "(z) ~ (27 mK)xH((z) ( + __z)) 1
TS(z) 10 L [ (z)/&r '

(1.5)

where XHI is the neutral fraction of the hydrogen gas (with 1 meaning fully neutral), 6 b

is the baryon over-density, H(z) is the Hubble parameter, and 0v1o /&rl is the gradient

of the proper velocity along the line of sight.

Equation 1.5 shows that the observed brightness temperature depends on the

relative amplitude of the spin temperature and the CMB temperature. As discussed

in Furlanetto et al. [54], Pritchard and Loeb [144], the spin temperature is driven

by three major processes: interaction with CMB photons, collisions between neutral

hydrogen atoms and other particles, and absorption and remission of Lyman-alpha

photons known as the Wouthuysen-Field effect [187, 48]. In equilibrium, the spin

temperature is given by

_, T-1 + XCTy + -1
T T 1 + xT + x ~T (1.6)

where xc and x, are the collisional and Lyman-alpha coupling coefficients, TK is

the kinetic temperature related to particle collisions, and T. is the Lyman-alpha

temperature related to the Wouthuysen-Field effect. Since many of these quanti-
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Figure 1-6: Top: simulated evolution of the brightness temperature, driven by the

formation of the first stars and galaxies. Bottom: the sky-averaged global 21 cm signal

calculated from the simulated result in the top panel. Reproduced from Pritchard and

Loeb [J441.

ties are inhomogeneous and change across cosmological time, so does the brightness

temperature we observe. The top panel of Fig. 1-6 shows simulated evolution of the

brightness temperature. However, the precise physical processes that drive this evolu-

tion are poorly understood, and precise measurements on the evolution of brightness

temperature during EoR will shed light on these topics [54, 144].

1.2.2 The 21 cm Power Spectrum

While making high quality 3D maps of the brightness temperature will be possi-

ble in the future, current efforts are focusing on reduced data, products due to low

signal-to-noise ratio in today's instruments. The simplest data product that. probes

the evolution of the brightness temperature is the global 21 cm signal, which is the

brightness temperature averaged over the whole sky, as shown in the bottom panel of

Fig. 1-6. Another useful reduced data Iproduct is the power spectrum of the bright-

ness temperature. This power spectrum P(k) reflects the amount of correlation on

various length scales k in the 21 cm brightness temperature, and it is defined by

(W (k) Tb(k')) -- (27r) 36(k - k')P(k), (1.7)
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where 6Tb(k) is the spatial Fourier transform of 6Tb(r). If we approximate the spatial

distribution of 6Tb(r) as isotropic, we turn P(k) into P(k), and obtain the dimen-

sionless power spectrum
k3

1(k) = 2 2 P(k). (1.8)

As reionization progresses, both the number and the size of ionized bubbles in-

crease, so we expect to see more and more power at lower k, and less and less power

overall. Fig. 1-7 shows simulated evolution of the power spectrum from 10% ionized

to 98% ionized. Measuring the evolution of the 21 cm power spectrum is the focus of

many current instruments, including the ones presented in this thesis.

1.2.3 The Potential of 21 cm Cosmology

Precise measurements of the red-shifted 21 cm signals will not only shed light on the

astrophysical processes driving reionization, but also teach us a lot more about our

universe. Pober et al. [139] has shown that a suitably designed instrument with a

tenth of a square kilometer of collecting area will allow tight constraints on the timing

and duration of reionization and the astrophysical processes that drove it. As shown

by Mao et al. [93], a future radio array with a square kilometer of collecting area,

maximal sky coverage, and good foreground maps could improve the sensitivity to

cosmological parameters, such as spatial curvature and neutrino masses, by up to two

orders of magnitude. It also has the potential to shed new light on the early universe

by measuring the running of the spectral index related to the theory of inflation. In

the shorter term, Liu et al. [88] has shown that with the instruments currently under

construction, it is possible to constrain some of the cosmological parameters much

better than the CMB experiments can.

1.3 Low-frequency Radio Interferometry

The first generation of instruments designed to measure the 21 cm power spectrum

are all radio interferometers [75, 172, 125, 188, 115, 60], and they have inherited

28



20.0 11111 I I 111111 I I I 11111

10.0 30%
- 50%

70%

E3.0

1.0

0.3
0.1 1.0 10.0

k (h 1 Mpc)

Figure 1-7: Simulated evolution of a hydrogen cube undergoing reionization (top),
and simulated evolution of the power spectrum (bottom). As the number and the

size of ionized bubbles increase, there is more and more power at lower k:, and less

and less power overall. Image credit: Marcelo Alvarez, Ralf Kaehler, and Tom Abel

(top); reproduced from Morales and Wyithe /1081 (bottom).
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Figure 1-8: The Very Large Array (VLA, on the left) is a radio interferometer that
consists of 27 radio antennas located at the NRAO site in Socorro, New Mexico. Each
antenna in the array measures 25 meters in diameter and weighs about 230 tons. The
first, direct observation of an Einstein ring (middle figure) was made using the VLA
by a team led by Prof. Jacqueline Hewitt, whom I have the honor to have on my
thesis committee. This 1986 observation of the quasar 3C175 (on the right) has a
0.35 arcsecond resolution. Inage credit: National Radio Astronomy Observatory and
the Very Large Array.

many ideas from traditional radio interferometry developed in the past century. One

example of an exquisite radio interferometer and its amazing achievements are shown

in Fig. 1-8. Before we discuss more about new challenges in 21 cm instrumentation and

how I optimized algorithms and instrumentations for detecting 21 cm signals, I would

like to give a, brief introduction to fundamental radio interferometry in this section,

which will help us understand the need for new algorithms in 21 cm interferometry.

1.3.1 Basic Instrumentation

Very roughly speaking, the signal chain in radio interferometers can be divided into

four stages: detection, amnplification, digitization, and cross-correlation. Radio fre-

quency emissions are usually detected using antennas, which themselves are typically

similar in size to the wavelength they are designed to detect, ranging from millime-

ters to meters. The large dishes, such as those in Fig. 1-8, are reflectors designed to

increase sensitivity by reflecting niuch more radiation onto the antennas, which are

located at the focal points of the dishes. The signals picked up by the antennas are

first amplified by low noise amplifiers, before they are digitized by analog-to-digital

converters (ADCs). At this stage, the output of an ADC connected to the ith antenna
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can be described using incident plane wave, summed over all directions in the sky:

Ei(t) = s(k, t)b(i)ei(k-ri-wt)dQ, (1.9)

where k is the wave vector of radiation coming from sky direction k, s(k, t) is the

strength of signal coming from that direction at the moment t in time, b(k) is the

antenna's sensitivity in that direction decided by the shape of the antenna and its

reflector, and ri is the antenna's position on the ground. For simplicity I have omitted

the noise term here.

Since the radio frequency is in the MHz-GHz range, it is not convenient to record

millions or billions of samples of Ei(t) for every antenna onto a hard drive directly.

However, since the signals oscillate rapidly, any averaging over time would severely

reduce their amplitude. To solve this problem, people cross-correlate signals to form

so-called visibilities from pairs of antennas:

vig(t) = (E'(t)Ej(t)) J S(k, t)B(i)eik(ri-ri)dQ, (1.10)

where * means complex conjugate, S =sl2 , and B = Ib| 2. The eik(rjri) term is the

interference pattern between the two antennas; thus the name interferometer. In this

form, the fast varying wt-terms are canceled, and the only remaining t-dependence

is in S(k, t), which varies on the time scale of Earth's rotation. Thus, we can safely

integrate the visibilities over tens of milliseconds. Even longer integration is possible,

depending on the angular resolution of the instrument. For high resolution instru-

ments like the VLA, integration over timescales of minutes can be done through

techniques such as delay tracking, which compensates for the movement of the source

in the sky.

1.3.2 Calibration

As Niels Bohr said: in theory, theory and practice are the same, but in practice, they

are not. In practice, the measured visibilities are rather different from what is written
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in Eq. (1.10). There are many effects at play, including but not limited to sky noise,

amplifier noise, cable delay, reflections between antennas, cross-talk between signal

channels, radio frequency interference (RFI) from airplanes or satellites, and so on.

Just as in many other experiments in physics, noise can be averaged down by repeated

measurements over many nights, assuming that all the other systematic effects are

accounted for. Among these effects, the strongest are modeled as a set of complex

gain parameters, gi(t)'s, where each antenna has a different one, and they vary over

time. Conceptually, the amplitude of gi(t) corresponds to fluctuating amplifier gains,

whereas the phase of gi(t) is a consequence of fluctuating cable delays. These gain

parameters change our measured visibilities from Eq. (1.10) to

vig (t) = gi*(t)gy (t) foS(k, t)B(k^)e ik(rj -ri) dQ. (.

Calibrating the instrument is then finding the complex gains for all of the antennas.

A lot of work has been put into this topic and many sophisticated algorithms have

been developed [157, 185, 145, 23, 114]. The simplest form of calibration is to point

the instrument at a known bright source that has been carefully measured, and then

use the knowledge of S, B, and vij's to solve for the gi's. Assuming those gi's do not

change very much over time, the instrument is then pointed to the object of interest.

A more sophisticated form is called self-cal, where one first uses the uncalibrated data

to form an image of the sky, and using the approximation that there are only point-

like objects in the sky, one can correct the image and use that as the model. One then

iterates this operation until both the image and the gain solutions gi's converge. This

brings us to our next topic: how do we form an image using the measured visibilities?

1.3.3 Imaging

Radio interferometry typically takes advantage of Eq. (1.10) by first performing a

coordinate transformation from k on the celestial sphere to its projection on the
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xy-plane, the horizontal plane in the observer's local coordinate system:

ViJ S(q)B(q) ei2 w,.ii dq, (1.12)
J 1 -1- |q|2

where q = k,) u = ui and A is the wavelength of the radiation. We see

that in this form, the visibilities vij (or written in a more explicit form, v(uij)) and

the sky-beam image, S(q)B(q), form a Fourier pair. Performing 2D Fourier transforms
/1-q1

2

on measured vij's is the core step in making images. The Fourier approach, however,

comes with one important limitation. Generally speaking, without knowing the spe-

cific form of B or what is in the sky, the sky-beam image is band-limited to the unit

circle JqJ ; 1, so by Nyquist theorem, one has to have the shortest baseline shorter

than half a wavelength to avoid aliasing in the image (see Section 2.A for more details

and illustrations). In reality, it is difficult to have any baselines shorter than half a

wavelength due to the physical size of the antenna dishes. What is more, the size of

B(q), which determines the band-limitedness of the sky-beam image, is roughly the

inverse of the antenna size2 . Since the shortest baseline has to be longer than the

diameter of the antenna, the largest angular scale available is always smaller than

the primary beam width (or the band-limitedness of the sky-beam image), making

aliasing inevitable.

Fortunately for instruments like the VLA, aliasing is not much of a problem, and

that is due to the nature of the objects these instruments are trying to observe.

As seen in Fig. 1-8, the objects of interest are typically compact objects that are

much brighter than the background. For the rightmost image in Fig. 1-8 of 3C175,

the field of view is about 1 arcminute, and the primary beam width is around 10

arcminutes. First of all, there are no objects comparable in brightness to 3C175 within

10 arcminutes. Secondly, before Fourier transforming them to obtain the image, we

can apply an anti-aliasing filter [163] to the visibilities to artificially suppress any

signal outside the field of view, since we are only interested in studying the structure

of 3C175. This way, many stunning high resolution images have been captured using

2Jf there's a reflector, then it is the reflector size.
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radio interferometers.

1.3.4 Challenges in 21 cm Cosmology Instruments

Unfortunately, the cosmological 21 cm signal is so faint that none of the current

experiments around the world (LOFAR [75], MWA [172], PAPER [125], 21CMA

[188], GMRT [115]) have detected it yet, although increasingly stringent upper limits

have recently been placed [116, 38, 127, 4]. The major challenge comes from our own

Galaxy. In the frequency range where the redshifted 21 cm signals are thought to be

the strongest, our Galaxy is emitting synchrotron radiation that is thought be four

orders of magnitude larger than the cosmological hydrogen signal [34, 4].

To put this in perspective, recall our discussion on how aliasing does not affect

traditional radio interferometric imaging. As mentioned, in the case of 3C175 shown

in Fig. 1-8, the background that makes up the majority of space in the beam is

much lower than the bright structures of 3C175, and both imaging and calibration

rely on that fact. For 21cm cosmology, the neutral hydrogen signals we want to

map are ten thousand times weaker than the "negligible background" in the 3C175

image, and these signals are of comparable strength across most of the sky. In this

case, the traditional imaging algorithm cannot work very well due to effects such as

aliasing, and because of that, calibration will not work very well either, as no maps

or collections of point sources can be used as the model in the first place.

In addition to calibration and foreground removal, correlator cost will become a

bottleneck when experiments scale up in the future. Since steerable single-dish radio

telescopes become prohibitively expensive beyond a certain size, the aforementioned

experiments have all opted for interferometry, combining N (generally a large num-

ber) independent antenna elements which are (except for GMRT) individually more

affordable. The problem with scaling interferometers to high N is that all of these

experiments use standard hardware cross-correlators whose cost grows quadratically

with N, since they need to correlate all N(N - 1)/2 ~ N2/2 pairs of antenna ele-

ments. This cost is reasonable for the current scale N ~ 102, but will completely

dominate the cost for N Z 103, making traditionally designed precision cosmology
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arrays with N ~ 106 as discussed in Mao et al. [93] infeasible in the near future.

1.4 Thesis Outline

The work that constitutes this thesis was originally written as four different papers.

The papers appear here as Chapters 2 through 5 and are reproduced verbatim with the

permission of their primary co-authors. I played a significant role in the development

and writing of all these papers and served as the first author on three of them-

in this thesis, Chapters 2, 4, and 5. Two of them have already been published in

peer-reviewed journals; Chapter 4 and 5 will be submitted in May 2016.

This thesis is organized into three thematic parts. In Part I, Building MITEoR

and OMNICAL, I describe my work leading the MIT effort of building a new radio

interferometer: the MIT Epoch of Reionization (MITEoR) experiment. I demonstrate

many new instrument design ideas and algorithms through this experiment, and one of

the most notable is the redundant calibration algorithms. I show that the redundant

calibration algorithms are able to perform calibration without the need for a sky

model, and can achieve optimal precision. MITEoR is also a precursor to what we

call "omniscopes", a type of radio interferometer that will not be limited by the

quadratic correlator cost in the future.

In Part II, Latest Epoch of Reionization Science Results, I apply the redundant

calibration algorithms to the latest data collected by the Precision Array for Probing

the Epoch of Reionization (PAPER). The redundant calibration algorithms dramat-

ically improve the quality of the PAPER data, which were used by the PAPER team

to place the most stringent constraints to date on 21 cm power spectra.

Finally, in Part III, Novel Imaging and The New Global Sky Model, I present two

new algorithms optimized for 21 cm cosmology. The first is a new imaging method

that does not use the Fourier approach. Rather, the new method takes on Eq. (1.10)

as a linear system of equations, and uses precise mathematical tools developed by the

CMB community to make high precision, large field of view images of the radio sky.

The second algorithm builds on what is called the Global Sky Model (GSM), which
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combines sky maps from many different frequencies to model the radio sky. The

new GSM algorithm improves both the precision and the flexibility of the original,

allowing us to combine many more datasets in a more accurate fashion.
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Part I

Building MITEoR and OMNICAL

37



38



Chapter 2

MITEoR: A Scalable

Interferometer for Precision 21 cm

Cosmology

The content of this chapter was submitted to the Monthly Notices of the Royal Astro-

nomical Society on June 12, 2014 and published /194] as MITEoR: a scalable interfer-

ometer for precision 21 cm cosmology on October 8, 2014. The authors are: Haoxuan

Zheng, M. Tegmark, V. Buza, J. S. Dillon, H. Gharibyan, J. Hickish, E. Kunz,

A. Liu, J. Losh, A. Lutomirski, S. Morrison, S. Narayanan, A. Perko, D. Rosner,

N. Sanchez, K. Schutz, S. M. Tribiano, M. Valdez, H. Yang, K. Zarb Adami, I. Zelko,

K. Zheng, R. P. Armstrong, R. F. Bradley, M. R. Dexter, A. Ewall- Wice, A. Magro,

M. Matejek, E. Morgan, A. R. Neben, Q. Pan, R. F. Penna, C. M. Peterson, M. Su,

J. Villasenor, C. L. Williams, and Y. Zhu.

2.1 Introduction

Mapping neutral hydrogen throughout our universe via its redshifted 21 cm line offers

a unique opportunity to probe the cosmic "dark ages," the formation of the first lu-

minous objects, and the epoch of reionization (EoR). A suitably designed instrument

with a tenth of a square kilometer of collecting area will allow tight constraints on
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the timing and duration of reionization and the astrophysical processes that drove it

[139]. Moreover, because it can map a much larger comoving volume of our universe,

it has the potential to overtake the Cosmic Microwave Background (CMB) as our

most sensitive cosmological probe of inflation, dark matter, dark energy, and neu-

trino masses. For example [93], a radio array with a square kilometer of collecting

area, maximal sky coverage, and good foreground maps could improve the sensitiv-

ity to spatial curvature and neutrino masses by up to two orders of magnitude, to

A~e ~ 0.0002 and Am, _ 0.007 eV, and shed new light on the early universe by a

4- detection of the spectral index running predicted by the simplest inflation models

favored by the BICEP2 experiment [2].

Unfortunately, the cosmological 21 cm signal is so faint that none of the current

experiments around the world (LOFAR [75], MWA [172], PAPER [125], 21CMA [188],

GMRT [115]) have detected it yet, although increasingly stringent upper limits have

recently been placed [116, 38, 127]. A second challenge is that foreground contami-

nation from our galaxy and extragalactic sources is perhaps four orders of magnitude

larger than the cosmological hydrogen signal [34]. Any attempt to accurately clean

it out from the data requires even greater sensitivity as well as more accurate cali-

bration and beam modeling than the current state-of-the-art in radio astronomy (see

Furlanetto et al. [54], Morales and Wyithe [108] for reviews).

Large sensitivity requires large collecting area. Since steerable single dish radio

telescopes become prohibitively expensive beyond a certain size, the aforementioned

experiments have all opted for interferometry, combining N (generally a large num-

ber) independent antenna elements which are (except for GMRT) individually more

affordable. The LOFAR, MWA, PAPER, 21CMA and GMRT experiments currently

have comparable N. The problem with scaling interferometers to high N is that all of

these experiments use standard hardware cross-correlators whose cost grows quadrat-

ically with N, since they need to correlate all N(N - 1)/2 - N2 /2 pairs of antenna

elements. This cost is reasonable for the current scale N - 102, but will completely

dominate the cost for N Z 10', making precision cosmology arrays with N ~ 106 as

discussed in Mao et al. [93] infeasible in the near future, which has motivated novel
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correlator approaches such as Morales [107].

For the particular application of 21 cm cosmology, however, designs with better

cost scaling are possible, as described in Tegmark and Zaldarriaga [166, 167]: by

arranging the antennas in a hierarchical rectangular or hexagonal grid and perform-

ing the correlations using Fast Fourier Transforms (FFTs), thereby cutting the cost

scaling to N log N. This is particularly attractive for science applications requiring

exquisite sensitivity at vastly different angular scales, such as 21 cm cosmology (where

short baselines are .needed to probe the cosmological signal' and long baselines are

needed for point source removal). Such hierarchical grids thus combine the angular

resolution advantage of traditional array layouts with the cost advantage of a rect-

angular Fast Fourier Transform Telescope. If the antennas have a broad spectral

response as well and their signals are digitized with high bandwidth, the cosmological

neutral hydrogen gets simultaneously imaged in a vast 3D volume covering both much

of the sky and also a vast range of distances (corresponding to different redshifts, i. e.,

different observed frequencies.) Such low-cost arrays have been called omniscopes

[166, 167] for their wide field of view and broad spectral range.

Of course, producing such scientifically rich maps with any interferometer depends

crucially on our ability to precisely calibrate the instrument, so that we can truly

understand how our measurements relate to the sky. Traditional radio telescopes

rely on a well-sampled Fourier plane to perform self-calibration using the positions

and fluxes of a number of bright point sources. At first blush, one might think that

any highly-redundant array would be at a disadvantage in its attempt to calibrate the

gains and phases of individual antennas. However, we can use the fact that redundant

baselines should measure the same Fourier component of the sky to improve the

'It has been shown that the 21 cm signal-to-noise ratio (S/N) per resolution element in the uv-
plane (Fourier plane) is < 1 for all current 21 cm cosmology experiments, and that their cosmological
sensitivity therefore improves by moving their antennas closer together to focus on the center of the
uv-plane and bringing its S/N closer to unity [106, 20, 98, 93, 82]. Error bars on the cosmological
power spectrum have contributions from both noise and sample variance, and it is well-known that
the total error bars on a given physical scale (for a fixed experimental cost) are minimized when
both contributions are comparable, which happens when the S/N ~ 1 on that scale. This is why
more compact 21 cm experiments have been advocated. This is also why early suborbital CMB
experiments focused on small patches of sky to get S/N ~ 1 per pixel, and why galaxy redshift
surveys target objects like luminous red galaxies that give S/N ~ 1 per 3D voxel.
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calibration of the array dramatically and quantifiably. In fact, we find that the ease

and precision of redundant baseline calibration is a strong rationale for building a

highly-redundant array, in addition to the improvements in sensitivity and correlator

speed.

Redundant calibration is useful both for current generation redundant arrays like

MITEoR and PAPER and for future large arrays that will need redundancy to cut

down correlator cost. Omniscopes must be calibrated in real time, because they

do not compute and store the visibilities measured by each pair of antennas, but

effectively gain their speed advantage by averaging redundant baselines in real time.

Individual antennas therefore cannot be calibrated in post-processing. No calibration

scheme used on existing low frequency radio interferometers has been demonstrated to

meet the speed and precision requirements of omniscopes. Thus, the main goal of the

MIT Epoch of Reionization experiment (MITEoR) and this paper is to demonstrate a

successful redundant calibration pipeline that can overcome the calibration challenges

faced by current and future generation instruments by performing automatic precision

calibration in real time.

Building on past redundant baseline calibration methods by Wieringa [185] and

others, some of us recently developed an algorithm which is both automatic and

statistically unbiased, able to produce precision phase and gain calibration for all

antennas in a hierarchical grid (up to a handful of degeneracies) without making any

assumptions about the sky signal [87]. Once obtained, precision calibration solutions

can in turn produce more accurate modeling of the synthesized and primary beams2

[137], which has been shown to improve the quality of the foreground modeling and

removal which is so crucial to 21 cm cosmology. It is therefore timely to develop

a pathfinder instrument that tests how well the latest calibration ideas works in

practice.

MITEoR is such a pathfinder instrument, designed to test redundant baseline

calibration. We developed and successfully applied a real-time redundant calibration

2For tile-based interferometers like the MWA and 21CMA, gain and phase errors in individual
antennas (as opposed to tiles) do not typically get calibrated in the field, adding a fundamental
uncertainty to the tile sky response.
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pipeline to data we took with our 64 dual-polarization antenna array during the

summer of 2013 in The Forks, Maine. The goal of this paper is to describe the design

of the MITEoR instrument, demonstrate the effectiveness of our redundant baseline

calibration and absolute calibration pipelines, and use the calibration results to obtain

an optimal scheme for estimating calibration parameters as a function of time and

frequency.

This paper is organized as follows. We first describe in Section 2.2 the instru-

ment, including the custom developed analog components, the 8 bit 128 antenna-

polarization correlator, the deployment, and the observation history. In Section 2.3,

we focus on precision calibration. We explain and quantitatively evaluate relative

redundant calibration, and address the question of how often calibration coefficients

should be updated. We also examine the absolute calibration, including breaking the

degeneracies in relative calibration, mapping the primary beam, and measuring the

array orientation. In Section 2.4, we summarize this work and discuss implications

for future redundant arrays such as HERA [139].

2.2 The MITEoR Experiment

In theory, a very large omniscope can be built following the generalized architecture in

Figure 2-1. On the other hand, it is crucial to demonstrate that automatic and precise

calibration is possible in real-time using redundant baselines, since the calibration

coefficients for each antenna must be updated frequently to allow the FFTs to combine

the signals from the different antennas without introducing errors. In this section,

we will present our partial implementation of this general design, including both the

analog and the digital systems. Because the digital hardware is powerful enough to

allow it, the MITEoR prototype correlates all 128 input channels with one another,

rather than just a small sample as mentioned in the caption of Figure 2-1. This

provides additional cross-checks that greatly aid technological development, where

instrumentation may be particularly prone to systematics. This also allows us to

explore the question of exactly how often and how finely in frequency we must measure
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Figure 2-1: Data pipeline for a large omniscope that implements FFT correlator

and redundant baseline calibration. First, a hierarchical grid of dual-polarization

antennas converts the sky signal into volts, which get amplified and filtered by the

analog chain, transported to a central location, and digitized every few nanoseconds.

These high-volume digital signals (thick lines) get, processed by field-programmable

gate arrays (FPGAs) which perform a temporal Fourier transform. The FPGAs

(or GPUs) then multiply by complex-valued calibration coefficients that, depend on

antenna, polarization and frequency, then spatially Fourier transform, square and

accumulate the results, recording integrated sky snapshots every few seconds and

thus reducing the data rate by a factor ~ 109 . They also cross-correlate a small

fraction of all antenna pairs, allowing the redundant baseline calibration software

[87, 112] to update the calibration coefficients in real time and automatically monitor

the quality of calibration solutions for instrumental malfunctions. Finally, software

running on regular computers combine all snapshots of sufficient quality into a 3D

sky ball or "data cube" representing the sky brightness as a function of angle and

frequency in Stokes (I,Qj,V) [1.67], and subsequent software accounts for foregrounds

and measures power spectra and other cosmological observables.
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visibilities to solve for calibration coefficients, a question we return to in Section 2.3.

Since we chose to implement a full correlator, an additional FFT correlator would

bring no extra information (simply computing the same redundant-baseline-averaged

visibilities faster), so we leave the digital implementation of an FFT correlator to

future work. In general, our mission is to empirically explore any challenges that

are unique to a massively redundant interferometer array. Once these are known,

one can reconfigure the cross-correlation hardware to perform spatial FFTs, thereby

obtaining an omniscope with N log N correlator scaling.

2.2.1 The Analog System

MITEoR contains 64 dual-polarization antennas, giving 128 signal channels in total.

The signal picked up by the antennas is first amplified by two orders of magnitude in

power by the low noise amplifiers (LNAs) built-in to the antennas. It is then phase

switched in the swapper system, which greatly reduces cross-talk downstream. The

signal is then amplified again by about five orders of magnitude in the line-drivers

before being sent over 50 meter RG6 cables to the receivers. The receivers perform

IQ demodulation on a desired 50 MHz band selected between 100 MHz and 200 MHz,

producing two channels with adjacent 25 MHz bands, and sends the resulting signals

into the digitization boards containing 256 analog-to-digital converters (ADCs) sam-

pling at 50 MHz. The swappers, line-drivers and receivers we designed are shown in

Figure 2-2.

When designing the components of this system, we chose to use commercially-

available integrated circuits and filters whenever possible, to allow us to focus on

system design and construction. In some cases (such as with the amplifiers) the cost

of the IC is less than the cost of enough discrete transistors to implement even a

rough approximation of the same functionality. Less expensive filters could be made

from discrete components, but the characteristics of purchased modules tend to be

better due to custom inductors and shielding. When we needed to produce our own

boards as described below, our approach was to design, populate and test them in our
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Figure 2-2: System diagram of the analog system. The signal received with an MWA

"bow-tie" antenna is first amplified by the built-in low noise amplifier, then Walsh-

modulated in the swapper module controlled by the swapper system. The signal is

amplified again in the line driver and sent, to the processing rack through 50 in long

coaxial cables. In the processing rack, the signal first. goes into the receiver, where it,

undergoes further amplification, frequency down-mixing and I/Q modulation froml the

120-180 MHz range to the 0-25 MHz range. The analog chain ends with digitization

on ADC connected to ROACH boards.

laboratory, then have them affordably mass-produced for us by Burns Industries3

2.2.1.1 Antennas

The dual-polarization antennas used in MITEoR, were originally developed for the

Murchison Widefield Array [91, 172], and consist, of two "bow-tie"-shaped arms as

can be seen in Figure 2-8. They are inexpensive, easy to assemble, and sensitive to

the entire band of our interest. The MWA antennas were designed for the frequency

range 80-300 MHz, and have a built-in low noise amplifier with 20 dB of gain. The

noise figure of the amplifier is 0.2 dB, and the 20 dB of gain imeans that subsequent

gain stages do not contribute significantly to the noise figure4

2.2.1.2 Swappers (Phase Switches)

As with nany other interferometers, crosstalk within the receivers, ADCs, and cabling

significantly affects signal quality. We observe the cross-talk to depend strongly on

the physical proximity of channel pairs, reaching as high as about -30 dB between

nearest, neighbor receiver ehannels. Our swapper system is designed to cancel out

crosstalk during the correlator's time averaging by selectively inverting analog signals

3 http: //www.burnsindustriesinc.com

4In a multi-stage amplifier, the contribution of each stage's noise figure is suppressed by a factor

that is equal to the total gain of previons stages.
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Figure 2-3: System diagram of our swapper signal system and physical components

of the swapper transceiver (lower left.) and swapper controller (lower right). The

swapper is designed to reduce crosstalk between neighboring channels.

using Walsh modulation [154]. The signal from each antenna-polarization is inverted

50% of the time according to its own Walsh function, by an analog ZMAS-1 phase

switch from Mini-Circuits located before the second amplification stage (line-driver),

then appropriately re-inverted after digitization5 . We performi the inversion once

every millisecond, which is much longer than the ADC's 20 ns sample time, and much

shorter than the averaging time of a few seconds'. This eliminates all crosstalk to first,

order [154]. If crosstalk reduction were the only concern, the ideal position for the

swapper would be immediately after the antenna, in order to cancel as much crosstalk

as possible. In practice, the swapper introduces a loss of about. 3dB, so we perform

the modulation after the LNA to avoid adding noise (raising the systen temperature).

'Since the undesirable crosstalk signal is demodulated with a different Walsh function than it is

modulated with, it will be averaged out due to orthogonality of Walsh functions.

'The inversion cannot be too frequent, because we need to discard data during the analog inver-

sion process which takes a few nicroseconds. At the same time, the inversion needs to be frequent

enough to average out the cross-talk.
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Figure 2-4: Plots of cross-talk power measured in the laboratory. The swapper sup-

presses crosstalk between channels by as much as 50 dB. To measure these curves we

fed a 0 dBm sinusoidal signal into input channel 0 of the receivers and left, the other

31 input channels open. We then measured the correlations between channel 0 and

all 31 empty channels, due to crosstalk from channel 0. We repeated the procedure

with input frequencies from 125-150 MHz and obtained the results shown above.

To evaluate the effectiveness of the swapper modules, we sent a monotone signal into

one single channel of the receivers while leaving other channels open, and measured

the correlation between the signal channel and each empty channels with the swapper

turned on and off. We then repeated this while varying the signal frequency over the

full range of interest. As seen in Figure 2-4, the swapper system attenuates crosstalk

in the receiver and ADC by as munch as 50 dB over the frequency band of interest,

typically reducing it to being of order -80 dB for strongly afflicted signal pairs.

2.2.1.3 Line-Driver

A line-driver (Figure 2-5) amplifies a single antenna's signal from one of its two

polarization channels while also powering its LNA. Line-drivers only handle a single

channel to reduce potential crosstalk from sharing a printed circuit board. They are

placed within a few meters of the antennas in order to reduce resistive losses from

powering the antenna at low voltage. Additional gain that they provide early in the

analog chain helps the signal overpower any noise picked up along the way to the

processing hub, and maintains the low noise figure set up by the LNA. To further

reduce potential radio-frequency interference (RFI), we chose to power the line-drivers
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Figure 2-5: System diagram and physical components of the line drivers. The line

driver we designed takes the signal in the 50Q coaxial cable from the antenna LNA

and amplifies it by 51 dB, in order to overpower noise picked up in the subsequent

75Q coaxial cable and further processing steps up to 50 meters away. It, operates on

5V DC and also provides DC bias power to the antenna's LNA through the 50 Ohm

(able.

with 58Ah 6V sealed lead acid rechargeable batteries during the final 64-antenna

deployment, rather than 120 VAC to 6VDC adapters (whose unwanted RF-eission

may have caused occasional saturation problems during our earlier expeditions).

2.2.1.4 Receiver

Our receivers (Figure 2-6) take input from the line-drivers, bandpass filter the in-

coming signals, amplify their power level by 23 dB, and IQ-demodulat-e them. The

resulting signals go directly to an ADC for digitization. Receivers are placed near

the ADCs to which they are connected to reduce cabling for local oscillator (LO)

distribution and ADC connections. IQ demodulation is used, which doubles received

bandwidth for a given ADC frequency at the cost. of using two ADC channels, and

has the advantage of requiring only a single LO and low speed ADCs. The result is

49

111!0111



U

Splitter

DC Input LO Input

Control RdeguntFors r

To ADC

Line Low-pss

Impedance Band-pass Atten Amplifiers IQ To ADC

Matc Demltr-I.-

Figure 2-6: System diagram and physical component of the receiver boards. The

boards take the signals arriving from four line drivers, band-pass filter and amplify

them, then use a, local oscillator to frequency shift them from the band of interest to

a. DC-centered signal suitable for input to the ADC.

40 MHz of usable bandwidth 7 anywhere in the range 110-190 MHz, with a 2-3 MHz

gap centered around the LO frequency due to bandpass filters. The receiver boards

have five pins allowing their signals to be attenuated by any amount between 0 dB

and 31 dB (in steps of 1 dB) before the second amplification stage, to avoid saturation

and non-linearities from RFI and to attain signal levels optimal for digitization.

2.2.2 The Digital System

We designed MITEoR's digit.al system (Figure 2-7) to be highly compact and portable.

The entire system occupies 2 shock-mounted equipment racks on wheels, each inea-

suring about 1 in on all sides. It takes in data from 256 ADC channels (64 antennas

with I and Q signals for polarizations), Fourier transforms each channel, reconstructs

IQ demodulated channels back to 128 corresponding antenna channels, computes the

7 Due to limitations in our FPGAs' comnputing power, only 12.5 MHz of digitized data are corre-

lated and stored at any instant.
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Figure 2-7: The entirety of our 128 antenna-polarization digital correlator system,

packaged in two portable shock mounted racks. The two black chassis and two silver

chassis in the middle of each rack are F-engines (ROACH) and X-engines (ROACH2),

respectively. Above the ROACHes are 32 receiver boards that. input, the signals

from 128 line drivers via F-cables. The blue lit area below the ROACHes contains

various clocking devices responsible for synchronization, whereas the chassis below

the ROACHes on the right hand side is the 8TB data acquisition server.

cross-correlations of all pairs of the 128 antenna channels with 8 bit precision, and

then time-averages these cross-correlations. Although standard 4 bit correlators suf-

fice for most astronomical observation tasks, the better dynamic range of our 8 bit

correlator allows us to observe faint, astronomical signals at the same time as 103

times brighter ORBCOMM satellites, whose enormous signal-to-noise has proved in-

valuable in characterizig various aspects of the system (see Sections 2.3.2.2, 2.3.2.3,

and 2.3.3). The digital hardware is capable of processing an instantaneous band-

width of 12.5MHz with 49kHz frequency bins. It averages those correlations and

then writes them to disk every few seconds (usually either 2.6 or 5.3 seconds).

While one of the advantages of a massively redundant interferometer array is the

ability to reduce costs by performing a spatial FFT rather than a full cross-correlation,

we have not implemented FFT correlation in the current MITEoR prototype as the

hardware is powerful enough to correlate all antenna pairs in rea-l time (the feasibility

of implementing FFT correlation on the ROACH platform has been demonstrated by

Foster et al. [53]). Rather, the goal of MITEoR is to quantify the accuracy that au-
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tomatic redundant baseline calibration can attain, thereby experimentally character-

izing all of the unknowns in the system, such as unexpected analog chain systematics

and other barriers to finding good calibration solutions.

We adopted the widely-used F-X scheme in MITEoR's digital system. We have

4 synchronized F-engines that take in data from 4 synchronized 64-channel ADC

boards, which run at 12 bits and 50Ms/s. The F-engines perform the FFT and IQ

reconstruction, and distribute the data onto 4 X-engines through 16 10GbE links. The

4 asynchronous X-engines each perform full correlation on 4 different frequency bands

on all 128 antenna polarizations, and send the time averaged results to a computer

for data storage.

To implement the computational steps of the MITEoR design, we used Field Pro-

grammable Gate Arrays (FPGAs). These devices can be programmed to function

as dedicated pieces of computational hardware. Each F-engine and X-engine is im-

plemented by one Xilinx FPGA (Virtex-5 for F-engines and Virtex-6 for X-engines).

These FPGAs are seated on custom hardware boards developed by the CASPER col-

laboration8 [121]. We also use the software tool flow developed by CASPER to design

the digital system. The CASPER collaboration is dedicated to building open-source

programmable hardware specifically for applications in astronomy. We currently use

two of their newer devices, the ROACH9 (Reconfigurable Open Architecture Comput-

ing Hardware) for the F-engines, and the ROACH 210 for the X-engines. The main

benefit of using CASPER hardware is that it facilitates the time-consuming pro-

cess of designing and building custom radio interferometry hardware. The CASPER

collaboration also offers a large open-source library of FPGA blocks for commonly

used signal processing structures such as polyphase filter banks, FIR filters and fast

Fourier transform blocks [120]. However, due to MITEoR's ambitious architecture,

involving both extreme compactness, an 8-bit correlator, and tight inter-ROACH syn-

chronization constraints, we custom-designed most of the digital FPGA blocks. The

specifications of our latest correlator are listed in Table 2.1.

8https ://casper .berkeley . edu/
9https://casper.berkeley.edu/wiki/ROACH
"0https://casper.berkeley.edu/wiki/ROACH-2Revision_2
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Antenna MWA dual-pol bow-tie
Antenna count 64 x 2 polarizations
Array configuration 8 x 8 grid
ADC 4 x 64-channel 50 Msps
F-engine 4 ROACHes with Virtex-5
X-engine 4 ROACH2s with Virtex-6
Correlator precision 8 bits
Frequency range 110-190 MHz
Instantaneous bandwidth 12.5 MHz (50 MHz digitized)
Frequency resolution 49 kHz
Time resolution > 2.68 s

Table 2.1: List of MITEoR specifications. We observed with two different 8 by 8 array
configurations, one with 3 m separation and one with 1.5 m separation. We observed
ORBCOMM band with 2.68 s resolution, and we chose a resolution of 5.37 s for other
bands.

2.2.3 MITEoR Deployment and Data Collection

We deployed MITEoR in The Forks, Maine, which our online research suggested

might be one of the most radio quiet region in the United States at the frequencies

of interest" [18]. We deployed the first prototype in September 2010, and performed

a successful suite of test observations with an 8-antenna interferometer. In May

2012, we completed and deployed a major upgrade of the digital system to fully

correlate N = 16 dual-polarization antennas. With the experience of this successful

deployment, we further upgraded the digital system to accommodate N = 64 dual-

polarization antennas, which led to our latest deployment in July 2013 and the results

we describe in this paper.

The MITEoR experiment was designed to be portable and easy to assemble. The

entire experiment was loaded into a 17 foot U-Haul truck and driven to The Forks.

It took a crew of 15 people less than 2 days to assemble the instrument and bring

it to full capacity. A skeleton crew of 3 members stayed on site for monitoring and

maintenance for the following two weeks, during which we collected more than 300

"The Forks has also been successfully used to test the EDGES experiment [21], and we found
the RFI spectrum to be significantly cleaner than at the National Radio Astronomy Observatory in
Green Bank, West Virginia at the very low (100-200 MHz) frequency range that is our focus: the
entire spectrum at The Forks is below -100 dBm except for one -89.5 dBm spike at 150MHz.
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Figure 2-8: Part of the MITEoR array during the most recent deployment in the
summer of 2013. 64 dual-polarization antennas were laid on a 21 m by 21 in regular
grid with 3 in separation. The digital system was housed in the back of a shielded
U-Haul truck (not shown).

hours of data. Subsequently, a demolition crew of 5 members disassembled and packed

up MITEoR in 6 hours and concluded the successful deployment.

During the deployment, we scanned through the frequency range 123.5-179.5 lHz,

with at least 24 consecutive hours at each frequency. We used two different array

layouts for most of the frequencies we covered. The observation began with the

antennas arranged in a regular 8 by 8 grid, with 3 meter spacing" between neighboring

antennas, which we later reconfigured to an 8 by 8 regular grid with 1.5 meter spacing

for a more compact layout (which provides better signal-to-noise ratio on the 21 cm

signal). The total volume of binary data collected was 3.9TB, and in the rest of this

paper, we demonstrate the results of our various calibration techniques using this

data set.

2.3 Calibration Results

As we have emphasized above, the precision calibration of an interferometer is essen-

tial to its ability to (etect the faint cosmological imprint upon the 21 cm signal, and

the key focus of MITEoR is to determine how well real-time redundant calibration

can be made to work in practice. In this section we describe the calibration scheme

12 We aligned the antenna positions using a laser-ranging total station, and measured their positions

with millimeter level precision. The median deviation from a perfect grid is 2 n in the N-S direction,
3 min E-W, and 28 mnm vertical, primarily caused by the fact that the deployment site had not been

leveled.
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that we have designed and implemented and quantify its performance. We first con-

strain the relative calibration between antennas, utilizing both per-baseline algorithms

and redundant-baseline calibration algorithms [87]. We then build on these relative

calibration results to constrain the absolute calibration of the instrument, including

breaking the few degeneracies inherent to redundant calibration.

2.3.1 Relative Calibration

2.3.1.1 Overview

The goal of relative calibration is to calibrate out differences among antenna elements

caused by non-identical analog components, such as variations in amplifier gains and

cable lengths, which may be functions of time and frequency. We parametrize the

calibration solution as a time- and frequency-dependent multiplicative complex gain

gi for each of the 128 antenna-polarizations. Calibrating the interferometer amounts

to solving for the coefficients gi and undoing their effects on the data. Our calibration

scheme revolves around calibration methods that heavily utilize the redundancy of our

array, whose efficacy we aim to demonstrate with MITEoR. The current redundant

calibration pipeline involves three steps, as illustrated in Figure 2-9:

1. Rough calibration computes approximate calibration phases using knowledge of

the sky.

2. Logarithmic calibration ("logcal") decomposes roughly calibrated data into am-

plitudes and phases and computes least square fits for amplitude and phase

separately.

3. Linear calibration ("lincal") takes the relatively precise but biased results from

logcal and computes unbiased calibration parameters with even higher precision.

Although logcal and lincal have been previously proposed [185, 87, 94], they both fail

in their original form if the phases of gi are not close to 0.13 In practice, the phases
13 Logcal requires phase calibrations close to 0 to avoid phase wrapping issues, whereas lincal

requires phase calibrations close to 0 to converge.
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Figure 2-9: Illustration of three stages in the redundant baseline calibration pipeline.

Each panel is a complex plane, and each point is a complex visibility for a, specific

pair of antennas at 137.1 MHz during the passage of an ORBCOMM satellite. Each

unique combination of color and shape stands for one set, of redundant baselines. In

an ideal world, all identical symbols, such as all upright red triangles, should have the

same value thus overlap exactly. Due to noise, they should cluster together around

the same complex value. In panel (a) showing raw data, the redundant, baselines have

almost no clustering visible-for example, red filled circles can be found throughout

the plot. After crude calibration in panel (b), we see most points falling into clustered

segments-though the clustering is still far from exact. Finally in panel (c), after

performing log calibration, we see that, all points corresponding to each redundant

baseline are almost exactly overlapping, with no visible deviation due to the high

signal-to-noise. While the difference is not visible here, linear calibration can further

improve log calibration results, as shown in Figure 2-11.
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of gi can be anywhere in the interval [0, 27r). To overcome these practical challenges,

we introduced various improvements to these algorithms. In the following sections,

we describe our improvements to calibration algorithms in detail, and demonstrate

the effectiveness of our calibration by obtaining x2 /DoF ~ 1 for the majority of our

data. We then analyze these calibration parameters to construct a Wiener filter to

optimally average them over time and frequency, which also tells us how frequently

we need to calibrate in time and frequency.

2.3.1.2 Rough Calibration

The goal of rough calibration is to obtain reliable initial phase estimates for the

calibration parameters to enable the subsequent more sophisticated algorithms. This

step does not have to involve redundancy, thus it can be done with any standard

calibration techniques, for example self-calibration [145, 23]. The rough calibration

algorithm that we describe below is computationally cheap and can robustly improve

upon raw data even when a few antennas have failed.

At a given time and frequency, we have both the measured visibilities, vij, and

23 , a rough model of the true sky signal' 4, where indices i and j represent antenna

number. We first compute the phase difference between each measured visibility and

its prediction. We then pick one reference antenna and subtract the phases of its

visibilities from the phases of other visibilities to obtain a list of estimated phase

calibration for each antenna. Finally, we take the median of these calibration phases

to obtain a robust phase calibration estimator for each antenna. More concretely, we

use the following procedure:

1. Construct a matrix M of phase differences where Mij = -Mji = arg(vi /vpodel).

2. Define the first antenna as the reference by subtracting the first column of M

from all columns to obtain M = Myk - M,0 .

3. Obtain rough phase calibration parameters <Ok = arg(gk) by computing the

14 Since we are trying to obtain an initial estimate, the model does not have to be very accurate.
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median angle of column k in M', defined as

Ok - arg [medianj{exp(iMjk)}]

= arg [medianj{cos(Mk)}

+ i medianj{sin(Mjk)}]. (2.1)

For stable instruments, the true calibration parameters have very small variation over

days, so we can use one set of rough calibration parameters from a single snapshot

in time for data from all other times. Thus we pick a snapshot at noon when each

Vpgodel can be easily computed from position of the Sun, and use the resulting raw

calibration parameters as the starting point for logcal at all other times.

2.3.1.3 Log Calibration and Linear Calibration

To explain our redundant calibration procedure, we first need to briefly reintroduce

the formalism developed in Liu et al. [87]. Suppose the ith antenna measures a signal

si at a given instant. This signal can be expressed in terms of a complex gain factor

gi, the antenna's instrumental noise contribution ni, and the true sky signal xi that

would be measured in the limit of perfect gain and no noise:

si = gixi + ni. (2.2)

Under the standard assumption that the noise is uncorrelated with the signal, each

baseline's measured visibility is the correlation between the two signals from the two

antennas:

= gigj (x xj) + g*(x* nj) + gj (n*xj) + (n*nj)

= g gjyi-j + n, (2.3)
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where we have denoted the true correlation (X*xj) by yj,15 the noise from each

antenna by ni, the noise for each baseline by n es and expectation values (effectively

time averages) by angled brackets (...). In a maximally redundant array such as

MITEoR, the number of unique baselines is much smaller than the total number

of baselines. Therefore, we can treat all the gis and the yi-js as unknowns while

keeping the system of equations (2.3) overdetermined, enabling fits for both despite

the presence of instrumental noise.

In Liu et al. [87], some of us proposed logcal and lincal, and we have implemented

both for calibrating MITEoR data. In log calibration, we take the logarithm of both

sides of Equation 2.3 and obtain a linearized equation in logarithmic space. We then

perform a least squares fit for the system of equations

log vjj = log g* + log g + log yij, (2.4)

where we solve for log gi and log yi-j. Because the least squares fit takes place in

log space whereas the noise is additive in linear space, the best fit results are biased.

Linear calibration, on the other hand, is unbiased [87]. The lincal method performs

a Taylor expansion of Equation 2.3 around initial estimates go and y, and obtains

a system of linearized equations

Vij = go*g y _ g|*gy_ + g* gy_ + * y _ (2.5)

where we solve for g and y -. For a detailed description of the logcal and lincal al-

gorithms and their noise properties, we direct the reader to Liu et al. [87], Marthi and

Chengalur [94]. We now describe some essential improvements to these algorithms.

Logcal was first thought to be unable to calibrate the phase component due to

phase wrapping, since logcal has no way to recognize that 0' and 360' are the same

quantity. Consider, for example a pair of redundant baselines that measure phases

' 5 Following Liu et al. [87], we use yi-j instead of yij to emphasize that in a redundant array,
the number of unique baseline visibilities can be much smaller than number of measured visibilities.
The complete expression should be yu(jj) where u(i,.j) means that baseline ij corresponds to the
uth unique baseline.
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of 0.10 and 359.9 respectively. We can infer that they each only need a very small

phase correction ( 0.1 ) to agree perfectly. However, since logcal treats the difference

between them as 359.8' rather than 0.20, it will calibrate by averaging 0.1' and 359.90

to 180', which is completely wrong.

We made two improvements to the logcal method to guard against this. The

first is to perform rough calibration beforehand, as described in Section 2.3.1.2. The

second is to re-wrap the phases of vij. While rough calibration can make the phase

errors relatively small", that improvement alone is not sufficient, since 00 and 3600

are still treated as different quantities. Thus we need to intelligently wrap the phases

of the input vector before feeding it into logcal. This is done in two simple steps.

For a snapshot of rough calibrated visibilities at given time and frequency, vjj, we

first estimate the true phases of each group of redundant baselines, arg(y-jj), by

computing median angles of measured phases using Eq. 2.1. Then for each measured

phase, we add or subtract 27r until it is within 7r of arg(yi-j). This eliminates the

phase wrapping problem.

Unlike logcal, lincal is an unbiased algorithm, but it relies on a set of initial es-

timates for the correct calibration solutions to start with. The output of lincal can

be fed back into the algorithm and it can iteratively improve upon its own solution.

However, the algorithm converges to the right answer only if the initial estimates

are good. In practice, we find that three iterations of lincal typically produces ex-

cellent convergence, because the outputs of logcal are already decent estimates of

the calibration solutions. Thus, by improving logcal, we also greatly improve lincal's

effectiveness.

Our current calibration pipeline performs all steps of redundant calibration in

less than 1 millisecond on a single processor core for a data slice at one time and

one frequency channel, which is an order of magnitude faster than the rate data is

saved onto disk. It is carried out by our open source Omnical package, coded in

C++/Python.1 7 Thus there should be no computational challenge in performing the

161n our experience, they need to be less than about 20 degrees to ensure that the subsequent
calibration steps converge reliably.

17 The package supports the miriad file format and is easily adapted to work with other file formats.
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Figure 2-10: Waterfall plot of V 2/DoF for a day's data. This demonstrates the

stability of our instrument as well as the effectiveness of using x2 /DoF as a indicator

of data quality. We evaluate X2 /DoF every 5.3 seconds and every 49 kHz. For the

majority of the night time data, x2/ DoF is close to 1. We flag all data with x2 larger

than 1.2, which are marked red in this plot and account for 20% of this data set. The

amount of detailed structure in the flagged area (around 18:00 for example) shows

the x2 flagging technique's sensitivity to rapidly changing dat-a quality.

above described calibration procedure in real-time for any array with less than 103

elements. For a future oninscope that, has as many as 106 elements, there are two

ways to reduce the computational cost. The first is to calibrate less frequently in

time and frequency, and we will discuss in detail the minima l sampling frequency in

Section 2.3.1.5. The other is to adapt, a hierarchical redundant calibration scheme,

where instead of calibrating all visibilities at the same time, one can calibrate the

array in a hierarchical fashion whose computational cost scales only linearly with

the number of elements. We discuss more details regarding hierarchical redundant

calibration in Appendix 2.B.

2.3.1.4 x2 and Quality of Calibration

One of the many advantages of redundant calibration is it allows for the calculation

of a X2 for every snapshot to quantify how accurate the estimated visibilities are for

each unique baseline, even without any knowledge of the sky. For a set of visibilities

at a given time and frequency, LU, with calibration results gi and yi-j, we define X2

To obtain a copy, please contact jeffz Qmnit.edn.
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as

2 VU- yi~-gigj 2  (2.6)
ij U

where a?. is the noise contribution to the variance of the visibility vij. The effective

number of degrees of freedom (DoF) is

DoF = Nmeasurements - Nparameters

= Nbaselines - (Nantennas + Nunique baselines). (2.7)

The numerator in Equation 2.6 represents the deviation of measured data, vij, from

the best fit redundant model, yi-jgigj. Thus X 2/DoF can be interpreted as the non-

redundancy in measured data divided by the expected non-redundancy from pure

noise. If the data agrees perfectly with the redundant model (with noise) and is free

from systematics, then X2/DoF is drawn from a x2 distribution with mean 1 and

variance 2/DoF [1].

With a smooth model for -ij which we describe below, we compute X 2/DoF for the

results of rough calibration, log calibration, and linear calibration using all of our data.

The x 2 distributions of our calibrations for one day's data are shown in Figures 2-10

and 2-11. Each calibration algorithm significantly reduces the X 2/DoF, and lincal's

produces a distribution of X2/DoF consistently centered around 1. We automatically

flag any data with X 2/DoF larger than 1.2, which accounts for about 20% of the

data. Among the data that is not flagged, 85% is accounted for by the theoretical x2

distribution. The 15% in the right tail is mostly attributable to a slightly optimistic

noise model designed to avoid underestimating x 2 . This close agreement between

predicted and observed X2-distributions for the lincal results suggests that except

during periods that get automatically flagged, our instrument and analysis pipeline is

free from significant systematic errors. The fully automatic nature of our calibration

pipeline and data quality assessment is encouraging for future instruments with data

volume too large for direct human intervention.
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Figure 2-11: Histograms of the distributions of x2 /DoF of logcal results (mean 1.31)

and lincal results (mean 1.05, median 1.01), together with the theoretical distribution

of x2/DoF (mean 1). They contain one night of data in a 12.5MHz frequency band

(21:00-5:00 in Figure 2-10). We evaluate x 2 /DoF for every 5.3 seconds and every

49kHz. We set the flagging threshold to k2 = 1.2, and 80% of the lincal result, is be-

low the threshold (majority of the 20% flagged data have x2 much larger than 2, thus

not shown in this figure). Among the data that is not flagged, 85% is accounted for

by the theoretical x 2 distribution. The right tail in lincal's distribution is due to the

noise model sometimes underestimating the noise in order to minimize false negatives

in the flagging process. The fact that X2 /DoF for tincal is so close to the theoreti-

cal distribution means that both the instrument and the calibration algorithms are

working exactly as we expect.

Calculating X 2 /DoF for flagging and data quality assessment requires an accurate

model of noise in the measured visibilities. To compute the noise (i, we approximate

oj by (J 2), where the average is over all baselines. This assumption that, all antennas

have the same noise properties drastically deceases the computational cost of calculat-

ing x2 /DoF. Because we have 103 baselines, and the variation of oi between baselines

is less than 20% (due to slightly different amplifier gains), this approximation should

cause only about, a 1% error in the final X2/DoF.

To compute (K 2 ), we perform linear regression on each visibility v over one minute

to obtain its estimated variance T , and then average all on to obtain u. Thus we

have (K2) at all frequencies every minute. Before we plug (u 2 ) into Equation 2.6,

we model it as a smooth and separable function: (u 2)(f, t)= F(f)T(t), where F(f)

and T(t) are polynomials. The smooth model has three advantages. The first is that

it, is physically motivated to model thermal fluctuation as a smooth and separable

function. Secondly, a smooth noise model makes the x2 /DoF a much more sensitive

flagging device. Theoretically, 2 /DoF should not, rise above 1 when unwanted radio
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events such as radio frequency interference (RFI) occur, because they are far field

signals that do not violate any redundancy. However, since RFI events make both

the signal and noise stronger, by demanding a smooth noise model, the (12 ) we use

will underestimate the noise during RFI events and give abnormally high X2 /DoF,

which can then be successfully flagged with the X2 /DoF < 1.2 threshold. Thirdly,

seasonal changes aside, the noise model is expected to largely repeat itself from day

to day, so for future experiments that will operate for years, it suffices to use the same

model repeatedly without recomputing oj in situ for all the data. Thus, by using

a smooth noise model, one can drastically reduce the occurrence of false negatives

(since it is better to flag good data than it is to fail to flag bad data) as well as the

computational cost of calculating X 2 /DoF.

2.3.1.5 Optimal Filtering of Calibration Parameters

While the above-mentioned estimates of the calibration parameters that we obtain

from redundant baseline calibration vary over time and frequency, much of that vari-

ation is due to the noise in raw data. To minimize the effect of instrumental noise

on the calibration parameters, we would like to optimally average information from

nearby times and frequencies to estimate the calibration parameters for any particular

measurement.

As we will show below, the optimal method for performing this averaging is Wiener

filtering. In the rest of this section, we first measure the power spectrum of the

calibration parameters over time and frequency, and make a determination of how to

decompose this into contributions from signal (true calibration changes) and noise.

We then weight the Fourier components in a way that is informed by their signal-

to-noise ratio, and quantify how this Wiener filtering procedure improves upon more

naive averaging over time and/or frequency. Finally, we discuss the implications for

how regularly (in time and frequency) we should calibrate. It is important to note

that while these methods are applied only to MITEoR below, they are applicable to

any current or future experiment.

We model the measured calibration parameter gi (f, t) for the ith antenna as the
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sum of a true calibration parameter s (f, t) (the "signal") and uncorrelated noise

ni(f, t):

gi(f, t) = si(f, t) + nj(f, t). (2.8)

We choose our estimator j (f, t) of the true calibration parameter si(f, t) to be a

linear combination of the observed calibration parameters gi at different times and

frequencies:

4i(f, t) JJ W(f, t, f', t')gi (f', t')df'dt' (2.9)

for some weight function W. We optimize the estimator j by choosing the weight

function W that minimizes the mean-squared estimation error (ljj(f, t) - s(f, t)j 2).

Assuming that the statistical properties of the signal and noise fluctuations are sta-

tionary over time18 , all correlation functions become diagonal in Fourier space:

(si(T, v)*si(Tf', v')) = (27r) 26(rI - T)6(V' - V)S(T, v),

(ih(T, v)*hj(TI', v')) = (27r) 26(T' - T)6(V' - v)N(T, v),

(9i(r, V)*i(r', v')) = 0, (2.10)

where tildes denote Fourier transforms and S and N are the power spectra of signal

and noise, respectively. This means that the optimal filter becomes a simple multi-

plication ; = Wj in Fourier space, corresponding to the weighting function W(w, v)

that minimizes the mean-squared error

(0 W (T, V)ji (7, V) _ gi(_F, V) 12). (2.11)

Requiring the derivative of this with respect to W to vanish gives the Wiener filter

[184]
S(T u)

W(rF, V) = ' .T V (2.12)
S(T, V) + N(T, v)

Since S and N are to a reasonable approximation independent of the antenna number

8 We perform this analysis on data over 12 MHz and two hours, where the signal and noise power
are empirically found to be approximately time-independent.
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i, we have dropped all subscripts i for simplicity. Back in real space, the optimal

estimator .j for the ith calibration parameter is thus gi convolved with the 2D inverse

Fourier transform of W.

To demonstrate this technique, we show the above process carried out in the

time dimension in Figure 2-12. In practice we perform the analysis on time and

frequency dimensions simultaneously through a 2D FFT. The noise power spectrum

N(v) is seen to be constant to an excellent approximation, corresponding to white

noise (uncorrelated noise in each sample). The signal power spectrum S(v) is seen

to be well fit by a combination of two power laws: S(v) ~ (v/2.9 x 10- Hz)- 2  +

(v/4.8 x 10-17 Hz)-0.46 . The optimal convolution kernel W is seen to perform a

weighted average of the data on the timescale of roughly 200 s and frequency scale of

0.15 MHz, giving the greatest weight to nearby times and frequencies, resulting in an

order-of-magnitude noise reduction.

To quantify the effectiveness of the obtained filter compared to naive "boxcar"

averages, we use the 2D power spectrum and noise floor of the calibration param-

eters obtained from real data to simulate many realizations of calibration parame-

ters g(f, t) = s(f, t) + n(f, t), apply various averaging/convolution schemes W(f, t)

on the simulated data, and compare their effectiveness by computing the RMS er-

ror (I(W * g)(f, t) - s(f, t)12) normalized by (In1 2 ). Due to our limited frequency

bandwidth as well as frequent RFI contamination, power spectrum modeling in the

frequency dimension is very challenging, so the frequency Wiener filter appears to be

less effective than the time filter. In Table 2.2 we list the normalized noise powers

using frequency Wiener filter, time Wiener filter, 2D Wiener filter, as well as tradi-

tional boxcar averaging, and the 2D Wiener filter produces results three times less

noisy than that of the traditional boxcar averaging.

We have described how to optimally average calibration parameters when we

calibrate very regularly in time and frequency. For a future instrument such as an

omniscope with 106 antennas, calibration will pose a serious computational challenge,

so it is important to know what the minimal frequency one needs to calibrate the

instrument. The above analysis conveniently provides an answer to this question. As
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Figure 2-12: Illustration of ID Wiener filtering of calibration parameters at different

times. Panel (a) shows the amplitude of calibration parameters measured for one

antenna over two hours. Panel (b) shows that the average power spectrum across

all antennas (blue dots) is well fit by a white noise floor (red horizontal line) plus a

sum of two power laws (green curve). Panel (c) shows the Wiener filter in frequency

domnaiii computed using Eq. 2.3.1.5 and the power spectra from panel (b). Panel

(d) shows the Wiener convolution kernel in the tiie domain, the Fourier transform
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Table 2.2: Wiener filtering reduces the noise contribution to the calibration parame-
ters by an order of magnitude. This table lists residual noise power (normalized by
original noise power) after applying various filters to average the amplitude calibra-
tion parameters in time and/or frequency. The optimal two-dimensional Wiener filter
indeed performed the best, lowering the noise power by an order of magnitude. In
comparison, the naive boxcar average, using the characteristic scales of the optimal
Wiener filter (200 s and 0.15 MHz), has more than 3 times residual noise power than
the Wiener filtered result.

shown in the second panel of Figure 2-12, the signal 19 is band limited. By the Nyquist

theorem, one needs to sample with at least double the frequency of signal bandwidth,

so in our case we could measure the calibration parameters without aliasing problems

as long as we calibrate once per minute. Calibrating more frequently than this simply

helps average down the noise. Although this one-minute timescale depends on the

temporal stability characteristics of the amplifiers and other components used in our

particular experiment, it provides a useful lower bound on what to expect from future

experiments whose analog chains are even more stable.

2.3.2 Absolute Calibration

The absolute calibration of the array involves two separate tasks. One is to find the

overall gain and to break phase degeneracies that redundant baseline calibration is

unable to resolve, and the other to calibrate fixed properties of the instrument such

as the orientation of the array and shape of the primary beam. The former is done by

comparing the data to a sky model comprised of the global sky model (GSM) [34] and

published astronomical catalogs (see Jacobs et al. 73 for example). The latter is done

using bright point sources with known positions. While we can take advantage of the

19 We only show results for amplitude calibration parameters for brevity, as the phase calibration
results have nearly identical power spectrum.
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No average 1
Frequency Wiener filter 0.33
Time Wiener filter 0.12
Time and frequency Wiener filter 0.09
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extremely high signal-to-noise data in the ORBCOMM channels (around 137 MHz),

thanks to the dynamic range provided by our 8 bit correlator, it is important to note

that all the algorithms described here are applicable to astronomical point sources as

well.

This section is divided into three parts. The first part describes how we use prior

knowledge of the sky to break the degeneracies in redundant calibration results, a

vital step to obtain usable data products. The second and third part each describe

one aspect of absolute calibration using satellite data: primary beam measurement

and array orientation.

2.3.2.1 Breaking Degeneracies in Redundant Calibration

Redundant calibration alone cannot produce directly usable data products, due to the

degeneracies intrinsic to the algorithms. There is one degeneracy in the amplitude

of the calibration coefficients gi, since scaling the amplitude of everything up by a

common factor does not violate any redundancy (the degeneracies discussed here

are per frequency and per time, as are the calibration solutions). There are three

degeneracies in phase, corresponding to three degrees of freedom in a two dimensional

linear field (see Appendix 2.A for a detailed discussion). In general, breaking these

degeneracies requires prior knowledge of the sky. In this section, we briefly describe

our algorithm that uses the global sky model (GSM) of de Oliveira-Costa et al. [34]

to remove these degeneracies. Doing so requires efficiently simulating the response of

the instrument to the GSM; we summarize a fast algorithm for doing so in Appendix

2.C. We defer detailed comparison of our data and the GSM to a future publication.

Our degeneracy removal procedure is an iterative loop that repeats two steps. The

first step is to fit for the amplitude degeneracy factor. The knowledge of the GSM

and bright point sources give us a set of model visibilities, mq, where index a denotes

different modeled components such as the GSM or Cygnus A. A linear combination

of these models should be able to fit our measurements20 . Thus we fit for the weights

20We allow each model to have a separate weight to guard against potential calibration offsets
between existing models.
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wa of the models by minimizing

2

Vij -jWam . (2.13)
a

The second step is to break the degeneracy in redundant phase calibration by fitting

for the degeneracy vector 4i and the constant b defined in Appendix 2.A. We assume

that the error in the first step's fitting is mostly due to the phase degeneracies, so we

take the Wa from step one and fit for 4i and 0 by minimizing

2

arg(vij) - arg ( wam) - - 2 (2.14)

where di-j is the position vector for baseline i - j.

Note that the two fitting processes described above are not independent of one

another, so we repeat these steps until convergence is reached. We find that in prac-

tice, the errors converge within two iterations. Our preliminary result is illustrated

in Figure 2-13, which shows that the data agree very well with current models.

2.3.2.2 Beam Measurement Using ORBCOMM Satellites

In general, in situ measurements of antenna primary beams over large fields of view

pose a challenge to 21 cm cosmology, as primary beam uncertainties are intimately re-

lated to calibration, imaging, and catalog flux uncertainties [72]. Motivated by these

difficulties, Pober et al. [137] present a solution that uses celestial point sources and

assumes reflection symmetry of the beam, whereas Neben, Bradley, and Hewitt (in

preparation) demonstrate high dynamic range beam measurement using the constella-

tion of ORBCOMM satellites. Here, we present in situ primary beam measurements

of the MWA bow-tie antennas using the ORBCOMM constellation. We take ad-

vantage of both the high signal-to-noise ratio of ORBCOMM signals, and of our full

cross-correlation measurements (rather than auto-correlations alone) to determine the

beam.

In order to measure their primary beam profile Bm-(i), we compare measure-
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Figure 2-13: Waterfall plots of phases on the 6 m E-W baseline. These show that.
our absolute calibration successfully matches the data (panel (a)) with a linear coi-
bination of global sky model and known point sources, including the Sun (panel (b)).
Panel (c) shows the global sky model alone. The white areas are flagged out, using x9
criterion described in Figure 2-10. Each plot is stit-clhed together using four indepen-

dently measured and calibrated frequency bands, aligning local sidereal time. Thus

the discontinuities between hours 4 and 12 are due to the Sun rising at different local

sidereal times on different days of our observing expedition.
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ments with MWA antennas to simultaneous measurements with simple center-fed

dipoles, whose beam pattern Bdipole is known analytically. When there is a single

extremely bright point source in the sky, such as an ORBCOMM satellite, we can

compute the ratio of the visibilities of select baselines to obtain the ratio of the MWA

antenna beam to the analytically known dipole antenna beam - thus determining the

MWA antenna beam itself. To perform this analysis, two dipole antennas, one orien-

tated along the x-polarization axis of the array and the other along the y-polarization

axis, are added to the array and cross-correlated with all other MWA antennas.

The rationale behind this technique is as follows. At an angular frequency W, the

electric field from a sky signal at the position of a receiving antenna can be encoded

in the Jones vector S(k), where k is the position vector of the source [31]. With a

primary beam matrix B3 (k), the signal measured by the jth antenna at position r3 is

s3 = e-i[k-rj+wt]Bj(f)S(k) dQ. (2.15)

When a single ORBCOMM satellite is above the horizon2 1 , its signal strength is so

dominant at its transmit frequency that S(k) becomes well-approximated by a point

source at the satellite's location. The measured signal can then be written as:

sj e-i[k.rj+wt1B3 (jks)S., (2.16)

where ks is the wave vector of the satellite signal, and S, is the Jones vector encoding

the satellite signal strength.

If we limit our attention to either x-polarization or y-polarization and approximate

the off diagonal terms of B(k) as zero, the visibility for two antennas can be written

as

Vk ~S2 Bj(ks)*B kse-iks,(rk-i) (2.17)

If we take one visibility vij formed by correlating a simple center-fed dipole with an

MWA bow-tie antenna and another visibility Vkl for the same baseline vector formed

21There is typically more than one ORBCOMM satellite above the horizon at any one time, but
they are coordinated so that they do not transmit in the same frequency band simultaneously.
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by correlating two MWA antennas, then their ratio is simply

_Vi__ IBmwa(ks),

|Vkl| Bdipole (ks)|

because the satellite intensity S and one MWA beam factor Bmwa all cancel out, and

the phase factor e-iks'.(,rj-j) is removed due to taking absolute values of the visibilities.

This means that when a single point source dominates the sky, the ratio of visibility

amplitudes is simply the ratio of the antenna beams at the direction of the point

source. Since we already know the beam Bdipole of a center-fed dipole over a ground

screen, we can directly infer the magnitude of MWA primary beam jBmwa(ks)|-

In order to fully map out the MWA primary beam, we need to take data during

many satellite passes until we have direction vectors that densely cover the entire sky.

Satellite signals from 27 ORBCOMM satellites at 5 frequencies in the range of 137.2-

137.8 MHz were identified. Their orbital elements are publicly available 22 , so we can

calculate k,(t) straightforwardly. With 40 hours of data taken at the frequencies of

interest, we were able to obtain 248 satellite passes, shown in Figure 2-14.

We compared our measurements of the MWA primary beam using Equation 2.18

to numerical calculations using the FEKO electromagnetic modeling software package.

Fixing an azimuth angle #, we can plot and compare the simulated and measured

beam at different polar angles 0 (the angle between the direction vector and zenith).

Figure 2-15 shows how the beam changes with 0 for four different #-values, where

#= 0 correspond to North and increases clockwise. Our measurements of the MWA

beams are seen to agree well with the numerical predictions for both polarizations.

The small differences between the predicted and measured beams are larger than the

statistical noise, implying that the main limitation is not noise but one or more of the

above-mentioned approximations, or approximations in the electromagnetic antenna

modeling.

22 We obtained the TLE files from CelesTrak, a company that archives TLEs of many civil satellites.
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Figure 2-14: Projected trajectories of 248 passes of ORBCOMM satellites over 40
hours. With these passes we obtain sufficiently dense sampling of the MWA antennas

primary beam that we can robustly map its response, especially at high elevations

where the response is strongest. With a map of the southern half of the primary

beam, we can use the reflection symmetry of the antennas to infer the entire beam

at the ORBCOMM transmission frequencies. Each curve is a satellite pass projected

onto the x-y plane, and the different colors specify sets of data taken at different

times.
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Figure 2-15: Measured MWA primary beam patterns compared to those obtained
from numerical modeling. The two panels show the predictions (curves) and mea-
surements (points) of the primary beam for the x-polarized and y-polarized MWA
antennas. Each curve shows how the primary beam changes with the polar angle 0
for a fixed azimuth angle 0. To reduce noise, the measurements have been averaged
in 10 square degree bins.
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2.3.2.3 Calibrating Array Orientation Using ORBCOMM Satellites and

the Sun

The orientation of the array is very important, because the degeneracy removal pro-

cess relies on the predicted measurement for each unique baseline, which in turn relies

on precise knowledge of the baselines' orientations. Although we measured the rela-

tive position of each antenna to millimeter level precision with a laser-ranging total

station, we did not measure the absolute orientation of the array to better than the

~ 1 accuracy obtainable with a handheld compass. To improve upon this crude

measurement, we make use of both the known positions of both ORBCOMM satel-

lites and the Sun. As we show in Figure 2-16, the exceptional signal-to-noise in the

ORBCOMM data allows us to fit for a small array rotation as a first order correction

to a model based on our crude measurement. Our method for finding the true ori-

entation of the array is as follows. For a given baseline during the peak few minutes

of an ORBCOMM satellite pass at frequency v, we measure a phase 0(t). We also

know the satellite's position vector k(t). However, we only have crude knowledge of

baseline vector do in units of wavelength, where vectors are in horizontal coordinates

with x, y, z that correspond to south, east and up. We can therefore only compute a

crude prediction of the phase measurement

#0(t) = 27rk(t) - do. (2.19)

We assume that the difference between the measurement #(t) and our crude prediction

qo(t) is due to a small angle rotation of the baseline vector do around the axis 0 =

(OX, Y, Oz) by an angle 0 = 101, ignoring a constant cable length delay.23 In the small

23 Here it is important to use data before redundant baseline calibration to avoid phase degeneracy.
We remove the phase delay from cables by allowing a constant offset that matches q(tm) with the
crude prediction at time tM when the satellite has the strongest signal during the pass.
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Figure 2-16: Illustration of using the high signal-to-noise ORBCOMM data, to calcu-

late any small rotation in the array relative to the field-measured orientation. Panel

(a) shows the rapidly wrapping phase of the raw data (black) from one baseline at

the ORBCOMM frecuency during the peak three minutes of a single satellite pass.

In green, we see the predicted values computed with the field-measured array orien-

tation and publicly available satellite positions. The residual between the iodel and

the data is plotted in red points in panel (b). Finally, the cyan curve shows the best

fit using small angle rotations of the array. In practice we use hundreds of satellite

passes and all the baselines to obtain a single accurate fit for the true orientation of

the array.
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0 regime, we have that

0(t) - 0 (t) = 27k(t) - (R(9) - do - do)

S27rk(t) - (9 x do)

S27r(do x k(t)) - 9, (2.20)

where R(9) is the rotation matrix. Since we have a set of equations each representing

a different time, the problem of finding 9 can be reduced to that of finding a least

squares fit. With 117 satellite passes, we obtained the following best fit for the array

rotation around the vertical axis:

0 sat = 0.660 0 .0 0 0 5 tat 0.07

While this method is very precise for solving the main problem we were worried

about-the direction of North (Oz) which we approximated in the field with a hand-

held compass-it is less useful for measuring rotations of the array in the other two

directions. Our instrument's absolute timing precision is only - 0.5 seconds, which

makes it hard to distinguish rotations about the North-South axis from timing er-

rors, as most ORBCOMM passes are East-West. This issue can of course be easily

addressed in future experiments; for our experiment, we solve it using a more slowly

moving bright point source: the Sun.

By using one day of solar data at 139.3 MHz, we obtained

(0,Y, Oz)G =(-0.08, -0.12 0, 0.6720)

(0.01, 0.03 , 0.0040 )stat

(0.04 ,0.0030, 0.0050 )sys.

Although solar data is noisier, in part because the Sun is not as bright as the OR-

BCOMM satellites in a given channel, timing errors are no longer important. These

results agree with and complement the satellite-based results and allow us to con-
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fidently pin down the orientation of the array and thus improve the quality of the

calibration of all of our data. The excellent agreement between the independent mea-

surements at m 0.66' and OZ - 0.670 provides encouraging validation of both the

satellite and solar calibration techniques.

2.3.3 Systematics

As we discussed in section 2.3.1.4, most of our data are well-calibrated with X2 /DoF <

1.2, which means that any systematic effects should lie well below the level of the

thermal noise. In this section we aim to identify all the systematic effects present

in the system, and describe our efforts to quantify and, whenever possible, remove

them. The systematics can be categorized into two groups:

1. Signal-dependent systematics that grow as the signal becomes stronger, such as

cross-talk, antenna position errors and antenna orientation errors.

2. Signal-independent systematics, such as radio frequency interference (RFI) from

outside or inside the instrument.

Below we find a strict upper bound of 0.15% for the signal-dependent component, as

well as a signal-independent component which is easy to remove.

To quantify signal-dependent systematics, we again use ORBCOMM satellite

data. Because the ORBCOMM signals are 103 times brighter than astronomical sig-

nals, and we know that any signal-independent systematics must be weaker than the

astronomical signals (otherwise they would have been blatantly apparent in the data),

any signal-independent systematics must be negligible compared to the ORBCOMM

signal. We therefore investigate how the discrepancies between calibrated visibilities

and the models for each unique baseline depend on ORBCOMM signal strength. We

define the average fitting error per baseline at a given time and frequency to be

E= (Ivij - yi-jgigj ), (2.21)

which is a combination of antenna noise and systematic errors. If we compute c at
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different times with different signal strength and compute its signal dependence, we

can derive an upper bound on the signal dependence of systematic errors. To do this,

we take all data at the ORBCOMM satellite frequency over a day and compute E after

performing redundant calibration. We then bin the e-values according to the average

signal strength s = (|yi_j), and obtain the results shown in Figure 2-1724. The

result is seen to be well fit by a constant noise floor plus a straight line E ~ 0.0015s.

This slope implies that the combined effect of all signal-dependent systematic effects

is at most 0.15%. This is merely an upper bound on the systematics, since it is

possible that the increase in E is mainly due not to systematics but to an increase

in instrumental noise caused by an increase in the system temperature during the

ORBCOMM passes.

There is one signal-dependent systematic that is not included in the above analysis:

deviation from redundancy caused by imperfect positioning of antenna elements. This

is because the data we used to derive the upper bound is always dominated by a single

point source, the ORBCOMM satellite, and redundant calibration cannot detect any

deviation of antenna position when the sky is dominated by a single point source25 .

We have two ways to quantify the error in our data due to antenna position errors.

Firstly, the laser-ranging measurements of antenna positions in the field indicate an

average of 0.037m deviation from perfect redundancy, which translates to about 2%

average error in phase on each visibility. Since the deviations are in random directions,

the variance of phase error in the unique baseline fits should be brought down by a

factor equal to the number of redundant baselines, resulting in phase errors much

less than 1% for most of the unique baselines. Secondly, although satellite calibration

cannot detect position error in a given snapshot, over time the position errors would

create very rapidly changing calibration parameters, which we do not observe in our

24 Another way of describing these data points is that, if we look at the third panel in Figure 2-9,
we are plotting the average small spread in each unique baseline group versus the radius of the circle,
and as the satellites pass over, both the circle size and the amount of average spread change over
time, forming the data set in question.

2 5This is because for any arbitrary position deviation Ari for antenna i, one can add a phase
equal to k . Ari to the calibration parameter gi to perfectly "mask" this deviation. Note that this
"mask phase" depends on k and thus changes rapidly over time when the ORBCOMM satellite
moves across the sky.
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Figure 2-17: Signal-dependent systematic error and its linear fit. By comparing the

modeled and calibrated visibilities during ORBCOMM satellite passes, we conclude

that signal-dependent systematic effects account for no more than 0.15% of our nmea-

surement. We calculate the average fitting error per baseline e = ('vu - yji-gIgj 1) and

the average signal strength s = (ly.i- I) binned over one day's data (blue points). The

green line fits the data points above the noise floor. While many systematic errors,

such as cross-talk, can contribute to the fitting error in addition to thermal noise,

the best-fit slope of 0.0015 puts an upper bound on the sum of all signal-dependent

errors. Since the ORBCOMM signal is so strong, alny signal-independent systematic

errors are nlegligible ii this analysis. The high noise floor of ~ 0.01 pW is due to our

digital tuning in the ORBCOMM frequency channels to maximize dynamic range.
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data. Lastly, a formalism exists. [87] to treat errors in antenna placement as small

perturbations when redundantly calibrating, although though we did not need to take

advantage of this technique for the present paper.

We first identified a signal-independent systematic when we obtained consistent

X2 /DoF ~ 4 for much of our data2", which means that the fitting error was on average

twice as large as the thermal noise in each visibility. This implies a systematic (or

a combination of systematics) at the level of 10-6 pW/kHz, about 10% of the total

astronomical signal. Given the above analysis, we can exclude the possibility of

any signal-dependent explanations such as cross-talk between channels or antennas.

While we are unable to offer any conclusive explanation of this systematic, it appears

consistent with persistent near-field RFI, perhaps originating from our electronics.

Fortunately, we found this additive signal to vary only very slowly over time, typically

remaining roughly constant over 5-minute periods, which made it easy to remove.

After calibrating the data with logcal, we average the fitting errors E= (vij -

yi-jgggj)t over time and subtract them from the data before we run logcal again. We

perform the averaging over 5 minute segments, corresponding to 112 independent time

samples, and iterate the calibration-subtraction process three times. This corresponds

to less than a 1% increase in the number of effective calibration parameters we fit for

during logcal. Because many baselines probe the same unique baseline, the procedure

described above exploits the redundancy of the array to robustly remove this slowly

varying, signal-independent systematic, leaving us with X2 /DoF ~ 1.

2.4 Summary and Outlook

We have described the MITEoR experiment, a pathfinder "omniscope" radio inter-

ferometer with 64 dual-polarization antennas in a highly redundant configuration.

We have demonstrated a real-time precision calibration pipeline with automatic data

quality monitoring that uses X2 /DoF as a data quality metric to ensure that redundant

26 This was before we obtained a consistent X2/DoF ~ 1 in Section 2.3.1.4, which occurred after
we were able to remove the systematic described here.
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baselines are truly seeing the same sky. We have also implemented various instru-

mental calibration techniques that utilize the ORBCOMM constellation of satellites

to measure the primary beam and precise orientation of the array. Our success bodes

well for future attempts to perform such calibration in real-time instead of in post-

processing, and thus clears the way for FFT correlation that will make interferometers

with > 10' antennas cost-efficient by reducing the computational cost of correlating

N antennas from an N2 scaling to an N log N scaling. It also suggests that the ex-

treme calibration precision required to reap the full potential of 21 cm cosmology is

within reach.

The various calibration techniques that MITEoR successfully demonstrates are

now being incorporated into the much more ambitious HERA project2" [139], a

broad-based collaboration among US radio astronomers from the PAPER, MWA,

and MITEoR experiments. Our results are also pertinent to the design of the SKA

low-frequency aperture array 28 . HERA plans to deploy around 331 14-meter dishes in

a close-packed hexagonal array in South Africa, giving a collecting area of more than

0.05 kM 2 , virtually guaranteeing not only a solid detection of the elusive cosmological

21 signal but also interesting new clues about our cosmos.

2.A Appendix: Phase Degeneracy in Redundant

Calibration

Both of our redundant baseline calibration algorithms, logcal and lincal (see Section

2.3.1.3), have the same set of phase degeneracies that require additional absolute

calibration that must incorporate knowledge of the sky. When calibrating a given

unique baseline, the quantity that logcal minimizes is

Z (Oj-k - O7i + 00k)- arg(Vik) 12 , (2.22)
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where we define Oj-k- arg(yj-k), j = arg(gj). Similarly, lincal minimizes

1 (Yj-kYjgk) - Vjk 2

jk

1: 1 yJ-kgjgklexp[i(OJ-k - O/i + Ok)] - Vjk 1. (2.23)
jk

Unfortunately, for all values of Oj-k and qk, one can add any linear field i- rj + / to

the Oj across the entire array while subtracting 4i- dj from the Oj-k without changing

the minimized quantities:

9 j-k ~- Of + O =(O-k - 4 dJk) -- (03 + 4 rj +

+ (qOk +14' rk +4'

=Oj-k - q3 + Ok. (2.24)

Here rj is the position vector of antenna j and dj-k - rj is the baseline vector for

the unique baseline with best-fit visibility Yj-k. Thus, the quantities in expressions

2.22 and 2.23 that the calibrations minimize are degenerate with changes to the linear

phase field 4P and the scalar 4. This means that there are, in general, 4 degenerate

phase parameters that need absolute calibration: one overall phase 4 and three related

to the three degrees of freedom of the linear function 45 (which reduces to two for a

planar array).

In an ideal instrument, the measured visibilities for a given unique baseline would

be

yi-i = Jk0k e ik~i-j SB(k x ky) dkx dky,1 (2.25)

where k = (kx, ky, k,) is the wave vector of incoming radiation and SB(kx, ky) is the

product of the incoming signal intensity and the primary beam in the direction k

normalized by kkz (which comes from the Jacobian of the coordinate transformation

from spherical coordinates; see Tegmark and Zaldarriaga 166). When the array is

coplanar, we can take an inverse Fourier transform of yi-j and obtain an image of
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SB(kX, ky). Above we saw that the best fit yi-j computed by logcal and lincal is

multiplied by an unknown linearly varying phase i - di-j. Since multiplication in

uv space is a convolution in image space, this means that the image generated using

these yi-j is the true image convolved with a Dirac delta function centered at 4,

which corresponds to a simple shift by the unknown vector 4i in the SB(kx, ky) image

space.

To calibrate these last few overall phase factors, one can either make sure that

bright radio sources line up properly in the image, or match phases between measured

visibilities and predicted visibilities, as we described in Section 2.3.2.1. However, there

may be another complementary way to remove this phase degeneracy without any

reference to the sky. We know that physically the true image SB(kx, ky) is only non-

zero within the disk |k, + k2 11/2 < k centered around the origin, and a shift caused

by 4P would move this circle off center. This suggests that we should be able to

reverse engineer 4i by looking at how much the image circle has been shifted, without

knowing what SB(k_, ky) is. Figure 2-18 demonstrates how the image is shifted by 4i

using simulated data.

Unfortunately, this simple approach to identifying and removing the effect of 4i

suffers from a few complications. By far the most important one is the requirement of

very short baselines. In the example in Figure 2-18, the shortest separation between

antennas is 0.21A, and it is easy to show that the sky disk is only clearly demarcated

when the shortest separation is less than 0.5A 2 9 . This sets a limit on the physical

size of each element, which makes achieving a given collecting area proportionately

more difficult. As Figure 2-19 shows, the deployed configuration of MITEoR cannot

be used to reverse engineer the degeneracy vector 4i without knowledge of the true

sky.

29This is the 2D imaging counterpart of the well-known fact that, in signal processing, one must
sample with a time interval shorter than 0.5v- 1 to avoid aliasing in the spectrum of maximum
frequency v.
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Figure 2-18: Illustration of phase degeneracies shifting the sky image where the sky
disk is demarcated. The linear phase degeneracy, which takes the form P - ri, in each
antenna for any , corresponds to a shift of the reconstructed image. These simulated
images demonstrate shifts of fiducial sky image at 160 NlHz caused by four different

#, where the fiducial arrays shortest baseline is 0.2 m. Panel (a) shows the image
obtained from visibilities with i no 4. and the sky image is centered at 0. In the other
three panels, the sky image is shifted by amount. G. Even if one has no knowledge of
what. the true sky is, it is still possible to determine 5 from where the sky image is
centered.
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Figure 2-19: Illustration of phase degeneracies shifting the sky inage where the sky

disk is not demarcated. With any practical array configuration, including that of MI-

TEoR, distinguishing image shifts caused by the 4i-degeneracy becomes significantly

more diffcult. These images demonstrate shifts of fiducial sky image at 160 MHz just

as in Figure 2-18, but with MITEoR's compact configuration where the shortest base-

line is 1.5 in. In the left panel, the image is obtained from visibilities with 43 - (0, 0)7

and in the right panel the sky image is shifted by and amount 4i (0, 0.3k). Because

the shortest baseline is too long (0.8A), the Fourier transform of the visibilities only

cover up to about 0.7 in k1 and A, so in contrast with Figure 2-18, it is impossible

to determine 43 by merely looking at where the sky image is centered without prior

knowledge of the sky.

2.B Appendix: A Hierarchical Redundant Cali-

bration Scheme with O(N) Scaling

One of the major advantages of an onniscope is its N log N cost scaling where N

is the number of antennas. However, existing calibration techniques, including the

ones presented in this paper, require all of the visibilities to compute the calibration

parameters. Since the cost for computing the visibilities alone scales as N2 , this is a

lower bound to the computational cost of existing calibration schemes regardless of the

actual algorithm. While current instruments with less than 103 elements can afford

full N 2 cross-correlation, such computation will be extremely demanding for a future

omniscope wit .i4 or more elements. Thus, to take advantage of the N log N scaling

of an omniscope with large N, it is necessary to have a calibration method whose cost

scaling is less than N log N. In this section, we describe a such a method using a

hierarchical approach, and show that its computational cost scales only linearly with

the number of antennas.
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Figure 2-20: Example of the hierarchical calibration method for 256 antennas (marked
by +-symbols) viewed as a 2-level hierarchy of 4 x 4 arrays (To= 16, T? = 2). Our

method first calibrates each sub-array independently with both relative and absolute

calibrations. This produces calibration parameters for every antenna, up to one phase

degeneracy V; per sub-array. We can remove these 16 phase degeneracies among sub-

arrays by choosing one antenna out of each sub-array (marked red and thick) and

performing calibration on these 16 antennas. Thus we have calibrated the whole 256
antenna array by performing 16-antenna calibration 16+1=17 times. This can be

generalized to a hierarchy with more levels by placing 16 such 256-antenna arrays

in a 4 x 4 grid to get a 4096-antenna array, and then repeating to obtain arrays of

exponentially increasing size. As shown in the text, the computational cost for this

calibration method scales only linearly with the number of antennas.
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Figure 2-20 illustrates the hierarchical calibration method for an example with a

256 antennas in a 16 x 16 regular grid, viewed as a 2-level hierarchy of 4 x 4 grids. More

generally, consider an n-level hierarchy with m sub-arrays at each level, containing

a total of N =n antennas; the example in Figure 2-20 corresponds to m = 16,

n = 2 and N = 256.30 Let Bm denote the computational cost of calibrating a basic

m-antenna array31 Let C, denote the computational.cost of calibrating the entire

n-level hierarchy containing all N antennas. We have C1 = Bm by definition and

Cn+1= rCn + Bm (2.26)

since, as explained in the caption of Figure 2-20, we can calibrate the m sub-arrays at

cost C, each and then calibrate the m reference antennas (one from each sub-array)

at cost B,. Solving this recursion relation gives

C = Bm(l + m(( + m(1 +(1 + ))))

Em Irnkz - I
k=0

= Bm = O(N). (2.27)
M - I

Eq. 2.27 implies that for a fixed m, the computational cost for calibrating a 10'

antenna array will be 10 times that of a 104 antenna array. Intuitively, the cost

reduction comes from not computing cross-correlations among most pairs of antennas.

In the simple case in Figure 2-20, only one visibility is computed between each pair

of sub-arrays, rather than 256 visibilities in a full correlation scheme. Because of the

reduced number of cross-correlations computed, we expect the quality of calibration

parameters to be worse than that in the full correlation case. Since both the precision

of calibration parameters and the computational cost depend on n, one can tune the

30It is easy to see that for a regular grid of N antennas, N need not an exact power of m to obtain
the scaling that we will derive.

3'Bm includes the cost to compute cross-correlations between the m antennas, as well as both
relative and absolute calibrations. The cost Bm is unimportant for the scaling as long as it is
independent of n.
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value of m to achieve an optimal balance between precision and computational cost.

2.C Appendix: Fast Algorithm to Simulate Visi-

bilities Using Global Sky Model

For both traditional self-calibration and the absolute calibration described in this

paper, it is crucial to have accurate predictions for the visibilities. This requires sim-

ulation of both the contributions of bright point sources and diffuse emission, which

can be added together due to the linearity of visibilities. While it is computationally

easy to compute the contributions of point sources of known flux, it is much harder

to compute visibilities from diffuse emission such as that modeled by the global sky

model (GSM, de Oliveira-Costa et al. 34). Dominated by Galactic synchrotron radia-

tion, this diffuse emission is especially important for the low frequencies and angular

resolutions typical of current 21 cm experiments.

In general, we want to compute visibilities

y(f, t) = J s(k, f, t)B(k, f)eikdudQk, (2.28)

where s(k, f, t) is the magnitude squared of the global sky model at time t in horizontal

coordinates, and B(k, f) the magnitude squared of the primary beam at a given

frequency. Performing the integral by summing over all npix pixels in the GSM takes

O(npixnbnf nt) computational steps, where nb is the number of unique baselines one

simulates, nf is the number of frequency bins, and nt is the number of visibilities one

simulates for one sidereal day.

The faster algorithm we describe here takes only O(npixnbnf) steps, by taking

advantage of the smoothness of the primary beam as well as the diurnal periodicity in

Earth's rotation. It applies only to drift-scanning instruments, so B(k, f, t) = B(k, f)
in horizontal coordinates, and is similar in spirit to the ideas proposed by Shaw et al.

[158].
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The key idea is to decompose Equation 2.28 as follows:

YU (f, It) = af puf eimoa, (2.29)

where each am is a spherical harmonic component of the GSM at a given frequency,

and each Buf is a spherical harmonic component of B(k, f)eikd, both in equatorial

coordinates. In this appendix, we describe precisely how to perform this decomposi-

tion and why it decreases the computational cost of calculating visibilities from the

GSM.

2.C.1 Spherical Harmonic Transform of the GSM

The GSM of de Oliveira-Costa et al. [34] is composed of three HEALPIX maps of size

niside describing different frequency-independent sky principal components sc(k) and

the relative weights of each component wc(f) that encode the frequency dependence.

We can decompose the spatial dependence into spherical harmonics,

acj JY*(k)s(k)dQk (2.30)

3

in O(n ), steps, due to the advantage of HEALPIX format [59]. The frequency

dependence of the spherical harmonic coefficients of the sky is given by

aEm =cfrmwc(f), (2.31)
C

d 
t3

and the total complexity of computing the coefficients am is 0(n'ix) + (9(nf).
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2.C.2 Spherical Harmonic Transform of the Beam and Phase

Factors

Next, we would like to compute the spherical harmonics components of B(k, f)eik'd:

Juf Y,,(k)B(k-, f)eik-dud.Qk (2.32)

Substituting the spherical harmonic decompositions of B(k, f) and eikdu gives

Lu = J Yj* (k) Z B|,mYei (k)

x 1: 4-ri"'j," --rdu Yf*,, (du) Y ,n,, ik)d~k
"t i"

= S 47ri"j,, 2 f du) B, 1,Y*,,n(du)

x YA,, (k)YmI(k)YevMIiI(k)dQk

= E 47i"j,,, (27Ff du) Bly ()

(2f + 1) (2f' + 1) (2V" + 1)
C' 4,r

x (-1)m (
0 0 i ) ( -m C' i" ,

where je(x) is the spherical Bessel function, f'm' represent quantum numbers when

expanding the primary beam, e"m" represent quantum numbers when expanding

eik du, and the Wigner-3j symbols are results of integrating the product of three

spherical harmonics. Because the Wigner-3j symbols vanish unless f - f' < e" < t + f'
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and -m + m' + n" = 0, the above sum simplifies to

i~e'
emf E E 47i"j" ('m e7m" d,) BU)

X /(2 + 1) (2e'+ 1) (2" + 1)
V 47r

x (-I)M , (2.34)
(0 0 0 -mm m"J

where m" = m - m'. Note that f', m' and f" in this sum are all limited to the

range of f-values where the spherical harmonics components for the primary beam
3

are non-zero, so the complexity for this triple sum is n , where nBpix is the number

of non-zero spherical harmonics components for the primary beam. Since the cost for
3

each BRf is n , and there are nbnfnpix of them, the computational complexity of
3

calculating all Buf -coefficients scales like O(nnflnp1ixn$P).

2.C.3 Computing Visibilities

By performing a coordinate transformation on Equation 2.28 from horizontal co-

ordinates (corresponding to the local Horizon at the observing site) to equatorial

coordinates, the time dependence of s(k) is transferred to B(k) and du. We can now

calculate y,(f, t) by computing

yf It) f s (k)Bft(k) eikdu(t)dQk

= Za*mBf t. (2.35)
im

Since the time dependence of Buft is a constant rotation along the azimuthal direction,

we can write the above as

y(f, t) = Zcimh4 a*Beimod(t) - c"feimo(t), (2.36)
m m
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where we have defined

c = a* Bf, (2.37)

which can be computed in O(nbnfnpix) steps. Given cuf, it is clear that we can

evaluate Equation 2.36 using a fast Fourier Transform (FFT), whose cost is

0(nbnfntlog(nt)). (2.38)

Note that this FFT in Equation 2.36 has no nPix dependence, because we always need

to zero-pad cm to length nt before the FFT. In summary, the total complexity of all

of the above steps is

( ) + ((nf) + 0 (nbnfnpixnPix)

+ 0 (nbnflnpix) + 0(nbnf ntlg(nt))

~o (nbnfnpixnpi). (2.39)

This does not scale with nt, unlike the naive integration's 0(nnffnpixnt). Thus with
2

a spatially smooth beam whose nBpix < n , the algorithm described here is much

faster than the naive numerical integration approach described at the beginning of

this Appendix.
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Chapter 3

PAPER-64 Constraints on

Reionization: the 21 cm Power

Spectrum at z =8.4

The content of this chapter was submitted the The Astrophysical Journal in February

2015 and published [4] as PAPER-64 Constraints on Reionization: the 21 cm Power

Spectrum at z = 8.4 in August 2015. The authors are: Zaki S. Ali, Aaron R. Par-

sons, Haoxuan Zheng, Jonathan C. Pober, Adrian Liu, James E. Aguirre, Richard

F. Bradley, Gianni Bernardi, Chris L. Carilli, Carina Cheng, David R. DeBoer,

Matthew R. Dexter, Jasper Grobbelaar, Jasper Horrell, Daniel C. Jacobs, Pat Klima,

David H. E. MacMahon, Matthys Maree, David F. Moore, Nima Razavi, Irina I.

Stefan, William P. Walbrugh, and Andre Walker.

3.1 Introduction

The cosmic dawn of the universe, which begins with the birth of the first stars and

ends approximately one billion years later with the full reionization of the intergalac-

tic medium (IGM), represents one of the last unexplored phases in cosmic history.

Studying the formation of the first galaxies and their influence on the primordial IGM

during this period is among the highest priorities in modern astronomy. During our
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cosmic dawn, IGM characteristics depend on the matter density field, the mass and

clustering of the first galaxies [81], their ultraviolet luminosities [99], the abundance of

X-ray sources and other sources of heating [143, 102], and higher-order cosmological

effects like the relative velocities of baryons and dark matter [97, 180].

Recent measurements have pinned down the bright end of the galaxy luminosity

function at z , 8 [16, 156] and have detected a few sources at even greater distances

[43, 113]. In parallel, a number of indirect techniques have constrained the evolu-

tion of the neutral fraction with redshift. Examples include integral constraints on

reionization from the optical depth of Thomson scattering to the CMB [132, 134],

large-scale CMB polarization anisotropies [117], and secondary temperature fluctua-

tions generated by the kinetic Sunyaev-Zel'dovich effect [101, 192, 8, 118, 55]. Other

probes of the tail end of reionization include observations of resonant scattering of

Lya by the neutral IGM toward distant quasars (the 'Gunn-Peterson' effect) [46], the

demographics of Lya emitting galaxies [156, 173, 45], and the Lya absorption profile

toward very distant quasars [14, 15]. As it stands, the known population of galaxies

falls well short of the requirements for reionizing the universe at redshifts compatible

with CMB optical depth measurements [150, 151], driving us to deeper observations

with, e.g., JWST and ALMA, to reveal the fainter end of the luminosity function.

Complementing these probes of our cosmic dawn are experiments targeting the

21 cm "spin-flip" transition of neutral hydrogen at high redshifts. This signal has

been recognized as a potentially powerful probe of the cosmic dawn [54, 108, 144]

that can reveal large-scale fluctuations in the ionization state and temperature of the

IGM, opening a unique window into the complex astrophysical interplay between the

first luminous structures and their surroundings. Cosmological redshifting maps each

observed frequency with a particular emission time (or distance), enabling 21 cm ex-

periments to eventually reconstruct three-dimensional pictures of the time-evolution

of large scale structure in the universe. While such maps can potentially probe nearly

the entire observable universe [93], in the near term, 21 cm cosmology experiments

are focusing on statistical measures of the signal.

There are two complementary experimental approaches to accessing 21 cm emis-
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sion from our cosmic dawn. So-called "global" experiments such as EDGES [19], the

LWA [42], LEDA [60, 13], DARE [25], SciHi [181], BigHorns [160], and SARAS [129]

seek to measure the mean brightness temperature of 21 cm relative to the CMB back-

ground. These experiments typically rely on auto-correlations from a-small number

of dipole elements to access the sky-averaged 21 cm signal, although recent work is

showing that interferometric cross-correlations may also be used to access the signal

[177, 142]. In contrast, experiments targeting statistical power-spectral measurements

of the 21 cm signal employ larger interferometers. Examples of such interferometers

targeting the reionization signal include the GMRT [116], LOFAR [175], the MWA

[172], the 21CMA [130, 188], and the Donald C. Backer Precision Array for Probe

the Epoch of Reionization (PAPER; [125]).

PAPER is unique for being a dedicated instrument with the flexibility to explore

non-traditional experimental approaches, and is converging on a self-consistent ap-

proach to achieving both the level of foreground removal and the sensitivity that

are required to detect the 21cm reionization signal. This approach focuses on spec-

tral smoothness as the primary discriminant between foreground emission and the

21cm reionization signal and applies an understanding of interferometric responses in

the delay domain to identify bounds on instrumental chromaticity ([126], hereafter

P12b). This type of "delay-spectrum" analysis permits data from each interferometric

baseline to be analyzed separately without requiring synthesis imaging for foreground

removal. As a result, PAPER has been able to adopt new antenna configurations that

are densely packed and highly redundant. These configurations are poorly suited for

synthesis imaging but deliver a substantial sensitivity boost for power-spectral mea-

surements that are not yet limited by cosmic variance ([123], hereafter P12a). More-

over, they are particularly suited for redundancy-based calibration [185, 87, 194], on

which PAPER now relies to solve for the majority of the internal instrumental degrees

of freedom (dof). The efficacy of this approach was demonstrated with data from a

32-antenna deployment of PAPER, which achieved an upper limit on the 21 cm power

spectrum AX(k) < (41 mK) 2 at k = 0.27h Mpc- 1 ([127], hereafter P14). That upper

limit improved over previous limits by orders of magnitude, showing that the early
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universe was heated from adiabatic cooling, presumably by emission from high-mass

X-ray binaries or mini-quasars.

In this paper, we improve on this previous result using a larger 64-element de-

ployment of PAPER and a longer observing period, along with better redundant cali-

bration, an improved fringe-rate filtering technique, and an updated power-spectrum

estimation pipeline. The result is an upper limit on A2 (k) of (22.4 mK) 2 in the range

0.15 < k < 0.5h Mpc- 1 at z = 8.4. This result places constraints on the spin temper-

ature of the IGM, and as is shown in a forthcoming paper, [140], this supports and

extends previous evidence against extremely cold reionization scenarios. In Section

3.2 we describe the observations used in this analysis. In Sections 3.3 and 3.4, we

discuss the calibration and the stability of the PAPER instrument. We then move on

to a discussion of our power-spectrum analysis pipeline in Section 3.5. We present

our results in Section 3.6 along with new constraints on the 21cm power spectrum.

We discuss these results in Section 3.7 and conclude in Section 3.8.

3.2 Observations

We base our analysis on drift-scan observations with 64 dual-polarization PAPER

antennas (hereafter, "PAPER-64") deployed at the Square Kilometre Array South

Africa (SKA-SA) reserve in the Karoo desert in South Africa (30:43:17.50 S, 21:25:41.8'

E). Each PAPER element features a crossed-dipole design measuring two linear (X,Y)

polarizations. The design of the PAPER element, which features spectrally and spa-

tially smooth responses down to the horizon with a FWHM of 60', is summarized

in [125] and [137]. For this analysis, we use only the XX and YY polarization cross-

products.

As shown in Figure 3-1, PAPER-64 employs a highly redundant antenna layout

where multiple baselines measure the same Fourier mode on the sky (P12a; P14).

We rely on all 2016 baselines for calibration, but only use a subset of the baselines

for the power spectrum analysis. This subset consists of three types of baselines:

the 30-m strictly east-west baselines between adjacent columns (e.g. 49-41, black
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Figure 3-2: The Global Sky M~odlel [34] illustrating foregrounds to the 21cm cos-

rnological signal, with contonrs indicating beam-weighted observing time (relative to

peak) for the PAPER observations described in Section 3.2. The map is centered at
6:00 hours in 6A.

in Figure 3-1; hereafter referred to as fiducial baselines), 30-in east-west baselines

whose eastern element is staggered one row up (e.g. 10-41, orange in Figure 3-1),

and those whose eastern element is one row down (e.g. 49-3, blue in Figure 3-1).

These baseline groups consist of 56, 49, and 49 baselines, respectively. We definie

a redundant group of baselines as being the set of baselines that have the same

grid spacing; baselines in each of the three redundant groups described above are

instantaneously redundant and therefore measure the same Fourier modes on the sky.

Thus, within a redundant group, nmeasuremnents from baselines may be coherently

added to build power-spectrum sensitivity as N rather than /N, where N is the

number of baselines added.

PAPER.-64 conducted nighttime observations over a 135 (lay period from 2012

November 8 (JD 2456240) to 2013 March 23 (JD 2456375). Since solar time drifts with

respect to local sidereal tiume (LST), this observing campaign yielded more samples of

certain LSTs (and hence, sky p~ositions) than others. For the power spectrum anialysis,

we use observations between 0:00 and 8:30 hours LST. This range corresponds to a

"cold patch" of sky away from the galactic center where galactic synchrotron power is
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minimal, but also accounts for the weighting of coverage in LST. Figure 3-2 shows our

observing field with the contours labeling the beam weighted observing time relative

to the peak, directly over head the- array.

The PAPER-64 correlator processes a 100-200 MHz bandwidth, first channel-

izing the band into 1024 channels of width 97.6 kHz, and then cross multiplying

every antenna and polarization with one another for a total of 8256 cross products,

including auto correlations. Following the architecture in [122], this correlator is

based on CASPER1 open-source hardware and signal processing libraries [121]. Six-

teen ROACH boards each hosting eight 8-bit analog-to-digital converters digitize and

channelize antenna inputs. New to this correlator relative to previous PAPER cor-

relators [125], the cross multiplication engine is implemented on eight servers each

receiving channelized data over two 10 Gb Ethernet links. Each server hosts two

NVIDIA GeForce 580 GPUs running the open-source cross-correlation code devel-

oped by [30]. Visibilities are integrated for 10.7 s on the GPUs before being written

to disk. All polarization cross-products are saved, although the work presented here

only made use of the XX and YY polarization products.

3.3 Calibration

Foreground contamination and signal sensitivity represent the two major concerns for

21 cm experiments targeting power spectrum measurements. Sources of foregrounds

include galactic synchrotron radiation, supernova remnants, and extragalactic radio

sources. In the low-frequency radio band (50-200 MHz) where 21 cm reionization

experiments operate, emission from these foregrounds is brighter than the predicted

reionization signal by several orders of magnitude [155, 3, 34, 75, 11, 12, 56]. However,

the brightest foregrounds are spectrally smooth, and this provides an important hook

for their isolation and removal [85, 131, 84]. Unfortunately, interferometers, which

are inherently chromatic instruments, interact with spectrally smooth foregrounds to

produce unsmooth features that imitate line of sight Fourier modes over cosmolog-

lhttp://casper.berkeley.edu
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Figure 3-3: The stages of power-spectrum analysis. Black lines indicate data flow;
red lines indicate Monte Carlo simulations used to measure signal loss. Yellow boxes
indicate stages that by construction have negligible signal loss. Signal loss in other
stages is tabluted in Table 3.1.

ical volumes (Pl2b; [109, 22]). One approach to solving this problem involves an

ambitious calibration and modeling approach to spatially localize and remove fore-

ground contaminants [86, 22, 61, 161, 29]. Perhaps the most impressive example of

this approach is being undertaken by LOFAR, where dynamic ranges of 4.7 orders of

magnitude have been achieved in synthesis images [189], although it is expected that

additional suppression of smooth-spectrum foreground emission will be necessary [29].

The analysis for this paper employs a contrasting approach based on the fact that

the chromaticity of an interferometer is fundamentally related to the length of an

interferometric baseline. This relationship, known colloquially as "the wedge," was

derived analytically (Pl2b; [176, 170, 89, 90]), and has been confirmed in simulations

[32, 64] and observationally [138, 38]. As described in P12b, the wedge is the result

of the delay between when a wavefront originating from foreground emission arrives

at the two antennas in a baseline. The fact that this delay is bounded by the light-

crossing time between two antennas (which we call the "horizon limit" since such a

wavefront would have to originate from the horizon) places a fundamental bound on
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the chromaticity of an interferometric baseline. So far, PAPER has had the most

success in exploiting this bound (P14; [74]). In this analysis, we continue to use the

properties of the wedge in order to isolate and remove smooth spectrum foregrounds.

As illustrated in Figure 3-3, our analysis pipeline begins by running a compression

algorithm to reduce the volume of our raw data by a factor of 70. As described in

Appendix A of P14, this is achieved by first performing statistical flagging to remove

radio frequency interference (RFI) at the 6- level, applying low-pass delay and fringe-

rate filters that limit signal variation to delay scales of ITI < 1ps and fringe-rate scales

of f < 23 mHz, and then decimating to critical Nyquist sampling rates of 493 kHz

along the frequency axis and 42.9 s along the time axis. We remind the reader that

while information is lost in this compression, these sampling scales preserve emission

between -0.5 < k1l < 0.5h MpcJ that rotates with the sky, making this an essentially

lossless compression for measurements of the 21 cm reionization signal in these ranges.

After compression, we calibrate in two stages, as described in more detail below.

The first stage (Section 3.3.1) uses instantaneous redundancy to solve for the major-

ity of the per-antenna internal dof in the array. In the second stage (Section 3.3.2),

standard self-calibration is used to solve for a smaller number of absolute phase and

gain parameters that cannot be solved by redundancy alone. After suppressing fore-

grounds with a wide-band delay filter (Section 3.3.3) and additional RFI flagging and

crosstalk removal, we average the data in LST (Section 3.3.4) and apply a fringe-rate

filter (Section 3.3.5) to combine time-domain data. Finally, we use an OQE (Section

3.5) to make our estimate of the 21 cm power spectrum.

3.3.1 Relative Calibration

Redundant calibration has gained attention recently as a particularly powerful way to

solve for internal dof in radio interferometric measurements without simultaneously

having to solve for the distribution of sky brightness ([185, 87, 112, 94, 194]; P14).

The grid-based configuration of PAPER antennas allows a large number of antenna

calibration parameters to be solved for on the basis of redundancy (P14; P12a; [194]).

Multiple baselines of the same length and orientation measure the same sky signal.
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Differences between redundant baselines result from differences in the signal chain,

including amplitude and phase effects attributable to antennas, cables, and receivers.

Redundant calibration only constrains the relative complex gains between antennas

and is independent of the sky. Since redundant calibration preserves signals common

to all redundant baselines, this type of calibration does not result in signal loss.

In practice, redundant calibration often takes on two flavors: log calibration (LOG-

CAL) and linear calibration (LINCAL) [87, 194]. LOGCAL uses logarithms applied

to visibilities,

Vij = gigjyj + nre, (3.1)

where g denotes the complex gain of antennas indexed by i and j, and y represents

the "true" visibility measured by the baseline, to give a linearized system of equations

log V2 = log g* + log gj + log yi-, (3.2)

In solving for per-antenna gain parameters with a number of measurements that scales

quadratically with antenna number, redundancy gives an over-constrained system

of equations that can be solved using traditional linear algebra techniques. While

LOGCAL is useful for arriving at a coarse solution from initial estimates that are

far from the true value, LOGCAL has the shortcoming of being a biased by the

asymmetric behavior of additive noise in the logarithm [87].

LINCAL, on the other hand, uses a Taylor expansion of the visibility around initial

estimates of the gains and visibilities,

Vi =go 00 * 0 0* 1 0 0* 0 1
i= gjy y* + g *gy y.-F + gf g yi-j + gg y _7, (3.3)

where 0 denotes initial estimates and 1 represents the perturbation to the original

estimate and is the solutions we fit for. Using initial estimates taken from LOGCAL,

LINCAL constructs an unbiased estimator.

Redundant calibration was performed using OMNICAL2 - an open-source redun-
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Figure 3-4: PAPER visibilities plotted in the complex plane before (left) and after

(right) the application of the improved redundancy-based calibration with OMNI-

CAL [194]. All baselines in the array measured at 159 MHz for a single time in-

tegration are plotted. Instantaneously redundant baselines are assigned the same

symbol/color. The tighter clustering of redundant measurements with OMNICAL

indicates improved calibration.

dant calibration package that is relatively instrument agnostic [194]. This package

implements both LOGCAL and LINCAL, solving for a complex gain solution per

antenna, frequency, and integration. The solutions are then applied to visibilities and

the results are shown in Figure 3-4.

In addition to solving for gain solutions, OMNICAL also characterizes the quality

of the calibration parameters by calculating the x 2 for every integration. As defined

in [194],
2 _ __Vi_ _ y__gg___ _

X -- E72 v 2 3-y id, g
(3.4)

where a.2 is the noise in the visibilities. The x2 measures sum of the deviation of

measured visibilities to that of the best fit model derived from the LINCAL relative

to a noise model, and gives us a tool to use in order to check the quality of our data.
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I

The number of dof, as defined in [194], is given by

dof Nmeasurements - Nparameters

= 2Nbaselines - 2 (Nantennas + Nunique baselines),

and is effectively the number of visibilities for which x 2 is calculated.

are noise-dominated, X 2 /dof is drawn from a y 2 distribution with p=

If the data

1 and o2

2/dof. The calculated X 2 /dof for every frequency and integration of a, fiducial day of

observation in this season and for the fiducial power spectrum baselines is shown in

Figure 3-5, demonstrating the stability of the PAPER instrument.

We measure a mean y2 /dof of 1.9. This indicates that the redundant. calibration

solutions, while a substantial improvement over the previous PAPER-32 calibration

(P14), do not quite result in residuals that are thermal noise dominated. Possible

sources of this excess include instrumental crosstalk and poorly performing signal

chains. While the latter will be down-weighted by the inverse of the estimated signal
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covariance described in Section 3.5, crosstalk is a defect in the data that must be

addressed. Crosstalk caused by the cross-coupling of signals between antennas reveals

itself as a static complex bias to a visibility that varies on timescales much longer

than typical fringe rates. This effect skews the distribution of the X2 of the residuals

away from 1. To minimize crosstalk, we first use OMNICAL to solve for antenna-

dependent gains, and then average the residual deviations from redundancy over 10

minute windows before subtracting the average from the original visibilities. This

crosstalk removal preserves signals common to redundant baseline groups (such as

the 21 cm signal). Unfortunately, it also preserves a term that is the average of the

crosstalk of all baselines in the redundant group. This residual crosstalk is removed

by a fringe-rate filter later in the analysis.

3.3.2 Absolute Calibration

After solving for the relative complex gains of the antennas using redundant calibra-

tion, an overall phase and gain calibration remains unknown. We use the standard

self calibration method for radio interferometers to solve for the absolute phase cal-

ibration. We used Pictor A, Fornax A, and the Crab Nebula to fit for the overall

phase solutions. Figure 3-6 shows an image of the field with Pictor A (5:19:49.70,

-45:46:45.0) and Fornax A (3:22:41.70,-37:12:30.0).

We then set our over all flux scale by using Pictor A as our calibrator source with

source spectra derived in [73],

S = S (50 X 1i (3.6)
(150MHz)'

where S150 = 381.88 Jy 5.36 and a = -0.76 0.01, with l- error bars.

To derive the source spectrum from our measurements, we use data that have been

LST-averaged prior to the wide-band delay filter described in Section 3.3.3, for the

hour before and after the transit of Pictor A. We image a 300 x 30' field of view for

every frequency channel for each 10 minute snapshot and apply uniform weights to the

gridded visibilities. We account for the required three-dimensional Fourier transform

109



in wide field imaging by using the w-stacking algorithm implemented in WSclean

[114] although we note that the standard w-projection algorithm implemented in

CASA 3 gives similar performances as the PAPER array is essentially instantaneously

coplanar. A source spectrum is derived for each snapshot by fitting a two-dimensional

Gaussian to Pictor A by using the PyBDSM 4 source extractor. Spectra are optimally

averaged together by weighting them with the primary beam model evaluated in the

direction of Pictor A. To fit our bandpass, we divide the model spectrum by the

measured one and fit a 9th order polynomial over the 120-170 MHz frequency range.

Figure 3-7 shows the calibrated Pictor A spectrum and the model spectrum from [73].

Also plotted are the l- error bars derived from the PyBDSM source extractor and

averaged over the multiple snapshots used after being weighted by the beam-squared.

Fitting a polynomial to the bandpass has the potential for signal loss which would

include suppressing modes that may contain the cosmological signal. In order to quan-

tify the signal loss associated with fitting a ninth degree polynomial to the bandpass,

we run a Monte Carlo simulation of the effect the bandpass has on a model 21-cm

reionization signal. We construct a model baseline visibility as a Gaussian random

signal multiplied by the derived bandpass for every independent mode measured. We

calculate the total number of independent modes by counting the number of indepen-

dent uv-modes sampled for the different baseline types over the two hour time interval

used to measure the bandpass. We average each mode together and fit a 9th degree

polynomial. Using this as our measured bandpass for this simulated signal, we finally

compare the power spectrum from the output of the simulated signal to the input

power spectrum as a function fo k-mode. We find that between -0.06 < k < 0.06,

the width of our wideband delay filter described below, the signal loss is less than

3% and at the mode right outside the above limit is 2 x 10-7%. We apply the latter

correction factor for all modes outside the width of the delay filter to the final power

spectrum.

3 http://casa.nrao.edu
4 http://www.lofar.org/wiki/doku.php?id=public:user-software:pybdsm
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measure the flux density in PyBDSM, combined from all snapshots.
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3.3.3 Wideband Delay Filtering

Before implementing our foreground removal techniques, we combine the two lin-

ear polarizations for an estimate of Stokes I as per [105]. Namely, Stokes I can be

estimated as
1

V= -(Vxx + Vy) (3.7)
2

where Vxx and Vyy are the visibilities of the two linear polarizations measured by the

interferometer. There are some important caveats to the estimate of Stokes I provided

by Equation (3.7). One important caveat is that it neglects the beam asymmetry

between the two linear polarization states. This mismatch can cause polarization

leakage from Stokes Q into Stokes I, thus contaminating our measurement of the

power spectrum with any polarized emission from the sky. This effect for PAPER, as

shown in [105], leaks 4% of Q in to I in amplitude (2.2 x 10-3 in the respective power

spectra). We take the conservative approach and do not correct for this effect, noting

that the leakage of Q in to I will result in positive power, increasing our limits.

Foreground removal techniques discussed in the literature include spectral poly-

nomial fitting [182, 22, 85], principal component analysis [115, 83, 116, 95], non-

parametric subtractions [61, 29], and inverse covariance weighting [83, 37, 38, 89, 90],

Fourier-mode filtering [131], and per-baseline delay filtering described in P12b. This

delay-spectrum filtering technique is well-suited to the maximum redundancy PAPER

configuration which is not optimized for the other approaches where high fidelity imag-

ing is a prerequisite. The delay-spectrum foreground filtering method is described in

detail by P14; its application is unchanged here. In summary; we Fourier transform

each baseline spectrum into the delay domain

JWv A Ve-2xir, . e2WvivU"di (3.8)

= W, * AT* * 6 (T - T),

where A, is the frequency dependent antenna response, Wv is a sampling function
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that includes RFI flagging and a Blackman-Harris tapering function that minimizes

delay-domain scattering from RFI flagging, and I, is the source spectrum. In the delay

domain, a point source appears as a 6-function at delay T9 , convolved by the Fourier

transforms of the source spectrum, the antenna response, and the sampling function.

We note that the antenna response effectively determines a finite bandpass, which

imposes a lower bound of 1/B ~ 10 ns on the width of any delay-domain convolving

kernel. As per [124] and P14, we deconvolve the kernel resulting from W(T) using

an iterative CLEAN-like procedure [68] restricting CLEAN components to fall within

the horizon plus a 15-ns buffer that includes the bulk of the kernels convolving the

6-function in Equation (3.8). To remove the smooth spectrum foreground emission

we subtract the CLEAN components from the original visibility.

Applying the delay filter to fiducial baselines used in the power spectrum analy-

sis, foregrounds are suppressed by 4 orders of magnitude in power, or -40 dB of

foreground suppression, as seen in Figure 3-8. As discussed in P14, there is a small

amount of signal loss associated with this filter. For the baselines and filter param-

eters used, the loss was found to be 4.8% for the first mode outside of the horizon,

1.3% for the next mode out, and less than 0.0015% for the higher modes.

3.3.4 Binning in LST

After the wideband delay filter, we remove a second layer of RFI which was over-

shadowed by the foreground signal. RFI are excised with a filter which flags values

3- above the median using a variance calculated in a localized time and frequency

window.

We then average the entire season in LST with 43-s bin widths, matching the

cadence of the compressed data. The full season was 135 days long; of these, 124

days were included in the average. We make two separate LST-binned data sets,

averaging every other Julian day together to obtain an "even" and "odd" dataset.

The use of these two data sets allows us to construct an unbiased power spectrum

estimate.

Sporadic RFI events result in measurements that, in any individual LST bin, de-
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Figure 3-8: Visibilities measured by a fiducial baseline in the PAPER-64 array, aver-

aged over 135 days of observation. From left to right, columns represent data that:

(1) contain foregrounds prior to the application of a wideband delay filter or fringe-

rate filtering, (2) are fringe-rate filtered but not delay filtered, (3) are delay filtered at

15 ns beyond the horizon limit, but are not fringe-rate filtered, (4) are both delay and

fringe-rate filtered, and (5) are delay and fringe-rate filtered and have been averaged

over all redundant measurements of this visibility. The top row shows signal anipli-

tude on a logarithmic scale; the bottom row illustrates signal phase. Dashed lines

indicate the 0:00-8:30 range in LST used for power spectrum analysis. The putative

crosstalk is evident in the center panel as constant phase features which do not fringe

as the sky. The two right panels show some residual signal in the phase structure

which is present. at low delay. Away from the edges of the observing' band, over four

orders of magnitude of foreground suppression is evident.
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viate from the Gaussian distribution characteristic of thermal noise. To catch these

events, we compute the median of a LST bin for each frequency and flag values 3-

above the median, before averaging. Since we are narrowing the distribution of visi-

bilities about the median, the measured thermal noise variance is not preserved under

this filter. However, since the central value is preserved, the expectation value of the

measured visibility in each LST bin is unchanged, and there is no associated signal

loss for power spectrum measurements. Moreover, because errors are estimated em-

pirically through bootstrapping (see Section 3.5.4), the slight increase in measurement

error associated with truncating the tails of the Gaussian distribution are naturally

accounted for.

3.3.5 Fringe-rate Filtering

By averaging visibilities in time, we aim to maximize sensitivity by coherently com-

bining repeated measurements of k-modes before squaring these measurements and

averaging over independent k-modes to estimate the power spectrum amplitude. This

is mathematically similar to the more traditional process of gridding in the uv plane,

but applied to a single baseline. However, rather than applying a traditional box-

car average, we can apply a kernel - a so-called "fringe-rate" filter - that weights

different temporal rates by the antenna beam corresponding to the parts of the sky

moving at the same rate.

For a given baseline and frequency, different parts of the sky exhibit different

fringe-rates. Maximum fringe rates are found along the equatorial plane, where the

rotation rate of the sky is highest, and zero fringe rates are found at the poles,

where the sky does not rotate and hence sources do not move through the fringes

of a baseline [124]. Fringe rates are not constant as a function of latitude. Bins

of constant fringe rate correspond to rings in R.A. and decl., where the east-west

projection of a baseline projected toward a patch of the sky is constant. We use this

fact in conjunction with the root-mean-squared beam response for each contour of

constant fringe rate to construct a time average kernel or "fringe-rate filter."

As examined in [128], it is possible to tailor fringe-rate filters to optimally combine
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time-ordered data for power-spectrum analysis. Fringe-rate filters can be chosen that

up-weight points of the sky where our instrument is more sensitive and down-weight

those points farther down in the primary beam, which are less sensitive. For white

noise, all fringe-rate bins will contain the same amount of noise, but the amount

of signal in each bin is determined by the primary beam response on the sky. By

weighting fringe-rate bins by the rms of the beam response, we can get a net increase

in sensitivity.

Applying this filter effectively weights the data by another factor of the beam

area, changing the effective primary beam response5 , A(l, m) [128]. By utilizing

prior knowledge about the beam area, we are selectively down-weighting areas on the

sky contributing little signal. This will result in a net improvement in sensitivity

depending on the shape of the beam and the decl. of the array. For PAPER, this

filter roughly doubles the sensitivity of our measurements.

Generally, a fringe-rate filter integrates visibilities in time. For a fringe-rate filter,

ffr, the effective integration time can be calculated by comparing the variance statistic

before and after filtering:

fo 2df
tint,after = tint,before f Oxf (3.9)

where tint,before is the integration time before filtering, oy denotes the noise variance

in fringe rate space and the integral is taken over all possible fringe rates for a given

baseline and frequency. As discussed in [128], the signal re-weighting associated with

this fringe-rate filter can be interpreted as a modification to the shape of the primary

beam.

For the fiducial baseline at 151 MHz, the integration time, as given in equation

(3.9), associated with an optimal fringe rate filter is 3430 s. The number of statistically

independent samples on the sky decreases from 83 to 1 sample per hour. As discussed

in section 3.5.3, empirically estimating a covariance matrix with a small number of

independent samples can lead to signal loss in the OQE. In order to counteract the

5The angular area in Equation (3.24) will reflect the new angular area corresponding to the
change in beam area.
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signal loss, we degrade the optimal fringe-rate filter, as shown in Figure 3-9, to have

an effective integration time of 1886 s, increasing the number of independent modes

to 2 per hour. The fringe rate filter is now sub-optimal, but is still an improvement

on the boxcar weighting as used in P14. As documented in Table 3.1, the correction

factor for the associated signal loss of the filter we have chosen is 1.39.

We implement the modified filter on a per baseline basis by weighting the fringe-

rate bins on the sky by the RMS of the beam at that same location. In order to obtain

a smooth filter in the fringe-rate domain, we fit a Gaussian with a hyperbolic tangent

tail to this filter. In addition, we multiply this response with another hyperbolic

tangent function that effectively zeros out fringe rates below 0.2 mHz. This removes

the slowly varying signals that we model as crosstalk. We convolve the time-domain

visibilities with the Fourier transform of the resulting fringe-rate filter, shown in

Figure 3-9, to produce an averaged visibility. The effect on the data can be seen in

Figure 3-8.

3.4 Instrumental Performance

3.4.1 Instrument Stability

In order to build sensitivity to the 21 cm reionization signal, it is critical that PA-

PER be able to integrate coherently measurements made with different baselines on

different days. Figure 3-10 shows the visibility repeatability between baselines and

nights as a function of LST. Specifically, we histogram the real part of the visibilities

for all redundant fiducial baselines in a given LST bin for foreground contained data.

We see that for a given LST bin, the spread in values over all the baselines is ~50 Jy

which corresponds with our observed Tys ~500K. We get more samples per LST bin

in the range of 2-10 hr due to our observing season, therefore the density of points

in this LST region is greater, as shown by the color scale. This density plot shows

that redundant baselines agree very well with one another; OMNICAL has leveled

the antenna gains to within the noise.
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Figure 3-9: The optinal fringe-rate filter (orange) and the degraded fringe-rate filter

(blue) actually used in the analysis at 151 MHz, normalized to peak at unity.
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Figure 3-10: Histogram of the real component of all calibrated visibilities measured

over 135 days with every redundant instance of the fiducial baseline at, 150 MHz.

Color scale indicates the number of samples falling in an LST/flux-density bin. This

plot serves to illustrate the stability of the PAPER instrument and the precision of

calibration. The temporal stability of a single LST bin over multiple days is shown

in Figure 3-11.
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Figure 3-11: Power spectrum of 135 days of time-series data contributing to a single

LST bin, illustrating the stability of measurements over the observing campaign.

Relative to the average value, variation in the measured value across days (quantified

by variance as a function of time period) is orders of magnitude lower. The excess

at two-day timescales is a beat frequency associated with the changing alignment of

integration windows in the correlator with respect to sidereal time.
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Delving in a little deeper, we also examine the stability in time for measurements in

a particular LST bin. In order to quantify the stability in time we extract one channel

for a given baseline for every observation day and LST bin. We then Fourier transform

along the time direction for every LST bin and compute the power spectrum. As

shown in Figure 3-11, for time scales greater than one day, we see that signal variance

drops by almost four orders of magnitude, with the exception of an excess on two-day

timescales caused by the changing alignment of the 42.9 s integration timescale relative

to a sidereal day. The implication of this measurement is that, after calibration,

PAPER measurements are sufficiently stable to be integrated coherently over the

entire length of a 135 day observation. This implies day-to-day stability of better

than 1%, contributing negligibly to the uncertainties in the data.

3.4.2 System Temperature

During the LST binning step, the variance of the visibilities that are averaged together

for a given frequency and LST bin are recorded. Using these variances, we calculate

the system temperature as a function of LST, averaging over each LST hour.

Trms = Tsys/v'2Aut, (3.10)

where Av is the bandwidth, t is the integration time, and Trms is the RMS tem-

perature, or the variance statistic described above. Figure 3-12 shows the results of

this calculation. In this observing season, the system temperature drops just below

previous estimates as in P14 and [74] of Tsys = 560 K, at Ty, = 500 K at 160 MHz.

However, this estimate is more consistent with the results derived in [104], where

Tsys = 505 K at 164 MHz. The change in the system temperature can be attributed

to the reduced range of LST used in the calculation. We note that at 7:00 LST, there

is an increase in the system temperature due to the rising of the galactic plane as

seen in Figure 3-2.

When calculating the system temperature using the variance in the visibilities for

a given LST and frequency, we take into account the fact that we flag 3- outliers from
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Figure 3-12: System temperature, inferred from the variance of samples falling in an
LST bin, averaged over one-hour intervals in LST. The measured value in the 150-160
MHz range is consistent with previous determinations of system temperature ([74];
P 14).
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the median. To calculate an effective correction factor to account for the filtering, we

assume the visibilities follow a Gaussian distribution which would require a correction

factor of 1.34 for the removal of data points that are 3o- above the median. In other

words, we are accounting for the wings of the Gaussian that would contribute to the

variance in the visibility.

Previous estimates of the system temperature (P14; [74]) relied on differencing

and averaging baselines, time samples, and/or frequency channels. The relative agree-

ment between these various methods of estimating the system temperature provides

a robust measure of the system temperature of the PAPER instrument. Agreement

between the instantaneous measurements of the system temperature, the LST repe-

tition variance, and the predicted power spectrum noise level (see below) indicates a

robustly stable system with no significant long term instability contributing appre-

ciable noise.

3.5 Power Spectrum Analysis

In this section we first review the OQE formalism, followed by a walk-through of our

particular applications of the OQE method to our data. Finally, we discuss the effects

of using an empirically estimated covariance matrix in our analysis.

3.5.1 Review of OQEs

We use the OQE method to estimate our power spectrum as done in [83], [37], [89],

[90], and [174]. Here we briefly review the OQE formalism with an emphasis on our

application to data, which draws strongly from the aforementioned works, but also

relies on empirical techniques similar to those used in P14. The end goal of this

analysis is to estimate the 21cm power spectrum, P21(k), defined such that

(T(k)* (k')) = (27) 3 (k - k')P21(k) (3.11)
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where Tb(k) is the spatial Fourier transform of the brightness temperature distribution

on the sky, () denotes an ensemble average, and 6 D is the Dirac delta function.

In order to make an estimate of the power spectrum in the OQE formalism, one

begins with a data vector x. This vector could, for example, consist of a list of

brightness temperatures on the sky for an imaging-based data analysis, or (in our

case) a list of measured visibilities. We form the intermediate quantity,

1
qa = -x tC-QC-x - bc, (3.12)

2

which will be needed to form the OQE of our power spectrum. Here, C = (xxt)

is the true covariance matrix of the data vector x, Q, is the operator that takes

visibilities into power spectrum k-space and bins into the ath bin, and b, is the bias

to the estimate that needs to be subtracted off. In general, Q, represents a family

of matrices, one for each k bin indexed by a. Each matrix is defined as Q, = 8,

i.e., the derivative of the covariance matrix with respect to the band power pa. The

bandpower p, can be intuitively thought of as the value of the power spectrum in the

ath k bin. Therefore, Q, encodes the response of the data covariance matrix to the

ath bin of the power spectrum.

The bias term b, in Equation (3.12) will include contributions from both instru-

mental noise and residual foregrounds. Their presence in the data is simply due to

the fact that both contributions have positive power. One approach to dealing with

these biases is to model them and to subtract them off, as is suggested by Equation

(3.12). An alternate approach is to compute a cross-power spectrum between two

data sets that are known to have the same sky signal but independent instrumental

noise realizations. Labeling these two data sets as x, and x 2 and computing

4a = -xtC-'Q,C-'X2, (3.13)21

one arrives at a cross-power spectrum that by construction has no noise bias. There

is thus no need to explicitly model and subtract any noise bias, although any residual

foreground bias will remain, since it is a contribution that is sourced by signals on
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the sky, and therefore must exist in all our data sets.

The set of 4as do not yet constitute a properly normalized estimate of the power

spectrum (as evidenced, for example, by the extra factors of C- 1 ). To normalize our

results, we group the unnormalized bandpowers into a vector q- and apply a matrix

M (whose exact form we specify later), so that

P = M4 (3.14)

is a normalized estimate f) of the true power spectrum p. We emphasize that the

vector space that contains 4 and P is an "output" vector space over different k-bins,

which is separate from the "input" vector space of the measurements, in which x and

C reside.

To select an M matrix that properly normalizes the power spectrum, we must

compute the window function matrix W for our estimator. The window matrix is

defined such that the true bandpowers p and our estimates p of them are related by

S=WP, (3.15)

so that each row gives the linear combination of the true power that is probed by our

estimate. With a little algebra, one can show that

W = MF, (3.16)

where

F,,= -tr(C-1QaC-1QO), (3.17)
2

which we have suggestively denoted with the symbol F to highlight the fact that

this turns out to be the Fisher information matrix of the bandpowers. In order to

interpret each bandpower as the weighted average of the true bandpowers, we require

each row of the window function matrix to sum to unity. As long as M is chosen in

such a way that W satisfies this criterion, the resulting bandpower estimates p will
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be properly normalized.

Beyond the normalization criterion, a data analyst has some freedom over the pre-

cise form of M, which effectively also re-bins the bandpower estimates. One popular

choice is M = F', which implies that W = I. Each window function is then a delta

function, such that bandpowers do not contain leakage from other bins, and contain

power from only that bin. However, the disadvantage of this becomes apparent if

one also computes the error bars on the bandpower estimates. The error bars are

obtained by taking the square root of the diagonal of the covariance matrix, which is

defined as

E = Cov(P) = (f^t) - ( 0)()t. (3.18)

Since p = M4j, it is easily shown that

E = MFMt. (3.19)

The choice of M = F 1 tends to give rather large error bars. At the other extreme,

picking M, x 6,, 3/F,, (with the proportionality constant fixed by our normalization

criterion) leads to the smallest possible error bars [164], at the expense of broader

window functions. In our application of OQEs in the following sections, we will pick

an intermediate choice for M, one that is carefully tailored to avoid the leakage of

foreground power from low k modes to high k modes.

3.5.2 Application of OQE

Here we describe the specifics of our application of the OQE formalism to measure

the power spectrum. Doing so requires defining various quantities such as x, C, Qa
for our analysis pipeline.

First, we consider x, which represents the data in our experiment. Our data

set consists of visibilities as a function of frequency and time for each baseline in

the array. In our analysis, we group the baselines into three groups of redundant

baselines (described in Section 3.2), in the sense that within each group there are
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multiple copies of the same baseline. In the description that follows, we first estimate

the power spectrum separately for each group. Power spectrum estimates obtained

from the different redundant groups are then combined in a set of averaging and

bootstrapping steps described in Section 3.5.4. Note that because our data have been

fringe-rate filtered in the manner described in Section 3.3.5, we may reap all the

benefits of coherently integrating in time simply by estimating the power spectrum

for every instant in the LST-binned data before averaging over the time-steps within

the LST-binned day [128].

For the next portion of our discussion, consider only the data within a single

redundant group. Within each group there are not only multiple identical copies of

the same baseline, but in addition (as discussed in Section 3.3.3), our pipeline also

constructs two LST-binned data sets, one from binning all even-numbered days in our

observations, and the other from all odd-numbered days. Thus, we have not a single

data vector, but a whole family of them, indexed by baseline (i) and odd versus even

days (r). Separating the data out into independent subgroups allows one to estimate

cross-power spectra rather than auto-power spectra in order to avoid the noise bias,

as discussed in the previous section. The data vectors take the form

V(vi, t)

x r (t) = (V2, t) ,(3.20)

where V"i(v, t) is the visibility at frequency v at time t. Each data vector is 20 ele-

ments long, being comprised of 20 channels of a visibility spectrum spanning 10 MHz

of bandwidth centered on 151.5 MHz.

Having formed the data vectors, the next step in Equation (3.12) is to weight

the data by their inverse covariance. To do so, we of course require the covariance

matrix C, which by definition, is the ensemble average of xxt , namely C = (xxt).

Unfortunately, in our case the covariance is difficult to model from first principles,

and we must resort to an empirically estimated C. We make this estimation by

taking the time average of the quantity xxt over 8.5 hr of LST, estimating a different
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covariance matrix for each baseline and for odd versus even days. While an empirical

determination of the covariance is advantageous in that it captures features that are

difficult to model from first principles, it carries the risk of cosmological signal loss

[162]. We will discuss and quantify this signal loss in Section 3.5.3.

To gain some intuition for the action of C 1 on our data, let us examine the

combination

zZ = (Cri) lx"r (3.21)

for select baselines. This is a crucial step in the analysis since it suppresses coherent

frequency structures (such as those that might arise from residual foregrounds). Note

that the inverse covariance weighting employed here differs from that in P14, in that

P14 modeled and included covariances between different baselines, whereas in our

current treatment we only consider covariances between different frequency channels.

Figure 3-13 compares the effects of applying the inverse covariance matrix to a data

vector that contains foregrounds (and thus contains highly correlated frequency struc-

tures) to one in which foregrounds have been suppressed by the wideband delay filter

described in Section 3.3.3. In the figure, the top row corresponds to the data vector

xri for three selected baselines in the form of a waterfall plot of visibilities, with fre-

quency on the horizontal axis and time on the vertical axis. The middle section shows

the empirical estimate of the covariance by taking the outer product of x with itself

and averaging over the time axis. Finally, the last row shows the results of inverse

covariance weighting the data, namely zri. In every row, the foreground-dominated

data are shown in the left half of the figure, while the foreground-suppressed data are

shown in the right half.

Consider the foreground-dominated x" in Figure 3-13, and their corresponding

covariance matrices. The strongest modes that are present in the data are the eigen-

modes of the covariance matrix with the largest eigenvalues. Figure 3-14 shows the

full eigenvalue spectrum and the four strongest eigenmodes. For the foreground-

dominated data, one sees that the eigenvalue spectrum is dominated by the first

few modes, and the corresponding eigenmodes are rather smooth, highly suggestive
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Figure 3-13: Visibilities before (top row) and after (bottom row) inverse covariance

weighting. Signal covariance (middle row) is estimated empirically, averaging over
LST. The three left/right columns show visibilities from three different baselines in a
redundant group before/after delay filtering, respectively.

of smooth spectrum foregroimd sources. The application of the inverse covariance

weighting down-weights these eigenmodes, revealing waterfall plots in the bottom

row of Figure 3-13 that look more noise-dominated. With the foreground-suppressed

portion (right half) of Figure 3-13, the initial x" vectors already appear noise domi-

nated (which is corroborated by the relatively noisy form of the eigenvalue spectra ill

Figure 3-14). The final z'i vectors remain noise-like, although some smooth structure

(perhaps from residual foregrounds) has still been removed, and finer scale noise has

been up-weighted.
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With intuition established for the behavior of C', we may group our identical

baselines into five different sets and average together zn vectors for baselines within

the same set. That is, we form

ZA = (Cri)lxi, (3.22)
icA

where A ranges from 1 to 5 and indexes the baseline set. At this point, we have

10 weighted data vectors z (5 baseline sets, each of which has an even day and odd

day version) for every LST-binned time-step. As discussed in the previous section,

instrumental noise bias may be avoided by forming cross-power spectra rather than

auto-power spectra. Generalizing Equation (3.13) to our present case where we have

10 different data vectors, we have

= Zc ztQCz, (3.23)
A,Br,s

r54s,A 6B

so that auto-power contributions from identical baseline groups or identical even/odd

indices never appear. Residual foreground bias will remain in Equation (3.23), but in

order to avoid possible signal loss from an overly aggressive foreground bias removal

scheme, we conservatively allow the foreground bias to remain. Since foreground

power will necessarily be positive, residual foregrounds will only serve to raise our

final upper limits.

In order to implement Equation (3.23), it is necessary to derive a form for Qc,,

aC/ap. To do so, we follow the delay spectrum technique of P12a, where it was

shown that ( / 2  2 X 2 y

P(kT) B)B- ((t, I)K*(t, T)), (3.24)(2kB3 QB

where V(t, T) is the delay transform of baseline visibilities given by Equation (3.8),

X and Y are the constants that convert from angles and frequency to the co-moving

coordinate, respectively, Q is the power squared beam (see Appendix B of P14), B is

the bandwidth, A is the spectral wavelength, and kB is Boltzmann's constant. This
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suggests that in order to estimate the power spectrum from visibilities, one only

needs to Fourier transform along the frequency axis (converting the spectrum into a

delay spectrum) before squaring and multiplying by a scalar. Thus, the role of Q,
in Equation (3.23) is to perform a frequency Fourier transform on each copy of z.

It is therefore a separable matrix of the form Q, = mamL, where ma is a complex

sinusoid of a specific frequency corresponding to delay mode a. We may thus write

. = z mam zSB (3.25)
A,B,r,s

rhs,A$B

With an explicit form for Qa, one now also has the necessary ingredients to compute

the Fisher matrix using Equation (3.17).

Having computed the 4as, we group our results into a vector 4. This vector

of unnormalized bandpowers is then normalized to form our final estimates of the

power spectrum p. As noted above, the normalization occurs by the M matrix in

Equation (3.14), and can be any matrix of our desire. Even though the choices of

the normalization matrices described above have certain good properties, e.g. small

error bars or no leakage, we opt for a different choice of window function, as follows.

We first reorder the elements in 4 (and therefore in F, M, and ^ for consistency)

so that the k-modes are listed in ascending order, from low k to high k, with the

exception that we place the highest k bin third after the lowest two k bins. (The

reason for this exception will be made apparent shortly). We then take the Cholesky

decomposition of the Fisher matrix, such that F = LL, where L is a lower triangular

matrix. Following that, we pick M = DL-, where D is a diagonal matrix chosen to

adhere to the normalization constraint that W = MF has rows that sum to unity.

In this case, the window function matrix becomes, W = DL. This means that W

is upper triangular, and with our ordering scheme, has the consequence of allowing

power to leak from high to low k, but not vice versa. Since our k axis is (to a good

approximation) proportional to the delay axis, foregrounds preferentially appear at

low k because their spectra are smooth. Reducing leakage from low k to high k

thus mitigates leakage of foregrounds into the cleaner, more noise-dominated regions.
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Additionally, our placement of the highest k bin as the third element in our reordering

of - prevents leakage from this edge bin that will contain aliased power. Figure 3-15

shows the resulting window functions.

Our choice of normalization matrix also has the attractive property of eliminating

error correlations between bandpower estimates. Using Equation (3.19), we have that

E = DL--LLtL-tD = D2 . (3.26)

The error covariance matrix on the bandpowers is thus diagonal, which implies that

our final data points are uncorrelated with one another. This.stands in contrast to the

power-spectrum estimator used in P14, where the Blackmann-Harris taper function

induced correlated errors between neighboring data points.

3.5.3 Covariance Matrix and Signal Loss

We now discuss some of the subtleties associated with empirically estimating the

covariance matrix from the data. Again, the covariance matrix is defined as the

ensemble average of the outer product of a vector with itself, i.e.,

C = (xxt), (3.27)

where x is the data (column) vector used in the analysis. In our analysis, we do

not have a priori knowledge of the covariance matrix. and thus we must resort

to empirical estimates [39]. As we have alluded to above, we replace the ensemble

average with a time average that runs from 0 to 8:30 LST hours.

Since the OQE method for power spectrum estimation requires the inversion of

C, it is crucial that our empirically estimated covariance be a full rank matrix. With

our data consisting of visibilities over 20 frequency channels, the covariance matrix

is a 20 x 20 matrix. Thus, a necessary condition for our estimate to be full rank is

for there to be at least 20 independent time samples in our average. As noted in

Section 3.3.5 the fringe-rate filter used corresponds to averaging time samples for 31
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Figure 3-15: The window function matrix W, as defined in Equation (3.15). The 'th

row corresponds to the window function used in the estimate of the power spectrum

for the ith k-mode. Color scale indicates log10 W. The inset plot, illustrates the

window function along the dashed line in the upper panel. As described in Section

3.5.2, M in Equation (3.16) has been chosen so that each window function peaks at

the waveband while achieving a high degree of isolation from at lower k-modes that

are likely to be biased by foregrounds.
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minutes. Over the LST range used in this analysis, this corresponds to roughly 20

statistically independent modes in our data after fringe-rate filtering. We therefore

have just enough samples for our empirical estimate, and in practice, our covariance

matrices are invertible and allow OQE techniques to be implemented.

Another potential problem that occurs from empirically estimating covariances

is that it leads to models of the covariance matrix that over-fit the noise. In this

scenario, the covariance matrix tells us that there may be modes in the data that

should be down-weighted, for example, but if the empirical covariance estimates are

dominated by noise, these may just be random fluctuations that need not be down-

weighted. Said differently, the weighting of the data by the inverse covariance is

heavily influenced by the noise in the estimate of the covariance matrix and thus

has the ability to down-weight valid high-variance samples. Over-fitting the noise in

this manner carries with it the possibility of cosmological signal loss. This seems to

contradict the conventionally recognized feature of OQEs as lossless estimators of the

power spectrum [164]. However, the standard proofs of this property assume that

statistics such as C are known a priori, which is an assumption that we are violating

with our empirical estimates.

In order to deal with possible signal loss, we perform simulations of our analysis

pipeline, deriving correction factors that must be applied to our final constraints. We

simulate visibilities for Gaussian temperature field with a flat amplitude in P(k) that

rotates with the sky, which is fringe-rate filtered in the same way as the data for

our fiducial baselines. This signal is processed through our pipeline, and the output

power spectrum compared to the input power spectrum, for various levels of input

signal amplitude. We repeat this for 40 sky realizations at each signal level. Figure

3-16 shows the resultant signal loss associated with estimating the covariance matrix

from the data. Error bars were obtained through bootstrapping.

As a function of the increasing input amplitude of the simulated power spectra,

we find that the ratio of output power to input power decreases, which we interpret

as signal loss through the use of our empirical OQE of the power spectrum. However,

since the transfer function through this analysis is an invertible function, we can cor-

135



1.0
0.8

0.6

0.4

0.2

0.0

'o"

1012

101

1ll

108

S10

F(k) [mK 2 (h - Mpc):' I

. . .. . . ... .. . ... .. . *

-..... --- -

-0

-0

-. . . . 0 -

. . . . . . . . . .......

Figure 3-16: Recovered power spectrum signal as a function of injected signal ampli-
tiude. Shaded regions indicate the range in measured amplitude of power spectrum
modes in Figure 3-18. Error bars indicate 95% confidence intervals as determined
from the Monte Carlo simulations described in Section 3.5.3. Because the recovered
signal amplitude is a monotonic function of the injected signal amplitude, it is pos-
sible to invert the effects of signal loss in the measured power spectrum values to
infer the true signal amplitude on the sky. Over the range of powers measured, the
maximum correction factor Pim/Pout is less than 1.02 at. 97.5% confidence. The tran-
sition to significantly higher correction factors at larger signal anplitudes occurs as
the injected signal dominates over the foreground modes present in estimates of the
data covariance.
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rect for the transfer by using the output value to infer a signal loss that is then divided

out to obtain the original input signal level. In Figure 3-16, we see that deviations

from unity signal transfer begin at power spectrum amplitudes of 10 7mK 2(h- 1 Mpc) 3 .

For the range of output power spectrum amplitudes in our final estimate of the 21 cm

power spectrum (Figure 3-18), we show that signal loss is < 2% at 95% confidence.

Table 3.1: SIGNAL LOSS VERSUS ANALYSIS STAGE

Analysis Stage Typical Loss Maximum Loss
Bandpass Calibration < 2 x 10-7% 3.0%

Delay Filtering 1.5 x 10-3% 4.8%
Fringe-rate Filtering 28.1% 28.1%
Quadratic Estimator < 2.0% 89.0%

Median of Modes 30.7% 30.7%

As shown in Table 3.1, the signal loss we characterize for quadratic estimation of

the power spectrum band powers is tabulated along with the signal loss associated

with each other potentially lossy analysis stage (see Figure 3-3). We correct for

the signal loss in each stage by multiplying the final power spectrum results by the

typical loss for each stage, except for modes within the horizon limit and immediately

adjacent to the horizon limit, where we apply the maximum signal loss correction to

be conservative.

3.5.4 Bootstrapped Averaging and Errors

When estimating our power spectra via OQEs, we generate multiple samples of the

power spectrum in order to apply the bootstrap method to calculate our error bars.

In detail, the power spectrum estimation scheme proposed above requires averaging

at several points in the pipeline:

1. Visibilities are averaged into five baseline groups after inverse covariance weight-

ing (see Equation (3.22))

2. Power spectrum estimates from each of the three redundant baseline types (de-

scribed in Section 3.2) are averaged together.
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Figure 3-17: Absolute value of the cumulative mean (left) and median (right), as a
function of number of modes of the power spectrum band power for ki modes ranging
from -0.49 (red) to 0.44h Mpc- 1 (violet). Here, modes are defined as samples from
different redundant baseline groups and LSTs. This Allen variance plot shows modes
averaging down as the square root of number of modes combined until a signal floor
is reached. The difference in behavior between the mean and median is an indication
of outliers in the distribution of values, likely as a result of foreground contamination.
We use the median in the estimation of the power spectrum in Figure 3-18, along with
a correction factor compensating for the difference between the mean and median in
estimating variance.
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3. Power spectrum estimates from each LST are averaged together.

With the bootstrapping technique, we do not directly perform these averages. Instead,

one draws random samples within the three-dimensional parameter space specified

above, with replacement, until one has as many random samples as there are to-

tal number of parameter space points. These random samples are then propagated

through the power spectrum pipeline and averaged together as though they were the

original data. This forms a single estimate (a "bootstrap") of P(k). Repeating ran-

dom draws allows one to quantify the inherent scatter-and hence the error bars-in

our estimate of P(k). When plotting A2 (k) = k3P(k)/27r 2 instead of P(k), we bin

power falling in +k and -k, and so we additionally randomize the inclusion of positive

and negative k bins.

We compute a total of 400 bootstraps. In combining independent samples for our

final power spectrum estimate, we elect to use the median, rather than the mean, of

the samples. One can see the behavior of both statistics in Figure 3-17, where we

show how the absolute value of A 2 (k) integrates down as more independent samples

are included in the mean and median. In this plot, one can see modes integrating

down consistent with a noise-dominated power spectrum until they bottom out on a

signal. In the noise-dominated regime, the mean and the median behave similarly.

However, we see that the median routinely continues to integrate down as noise for

longer. This is an indication that the mean is skewed by outlier modes, suggesting

variations beyond thermal noise. The magnitude of the difference is also not consistent

with the Rayleigh distribution expected of a cosmological power spectrum limited

by cosmic variance. For a Rayleigh distribution, the median is ln 2 ~ 0.69 times

the mean. Instead, we interpret the discrepancy as a sign of contributions from

foregrounds, which are neither isotropic nor Gaussian distributed. Since median

provides better rejection of outliers in the distribution that might arise from residual

foreground power, we choose to use the median statistic to combine measurements

across multiple modes. As listed in Table 3.1, we apply a 1/ In 2 correction factor

to our power spectrum estimates to infer the mean from the median of a Rayleigh

distribution.
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3.6 Results

3.6.1 Power Spectrum Constraints

To summarize the previous section, we follow the power spectrum analysis proce-

dure outlined in Section 3.5.2, we incoherently combine independent power spectrum

measurements made at different times and with different baseline groups using the

median statistic. As described in Section 3.5.4, we bootstrap over all of these in-

dependent measurements, as well as over the selection of baselines included in the

power spectrum analysis for each baseline group, in order to estimate the error bars

on the spherically averaged power spectrum P(k), where positive and negative kl

measurements are kept separate for diagnostic purposes. In the estimation of the di-

mensionless power spectrum A 2 (k) - k3P(k)/27r 2 , the folding of tkjj is handled along

with the rest of the bootstrapping over independent modes. Finally, the measured

values for P(k) and A 2 (k) are corrected for signal loss through all stages of analysis,

as summarized in Table 3.1.

The final results are plotted in Figure 3-18. For the first two modes outside of

the horizon where A2 (k) is measured, we have clear detections. We attribute these

to foreground leakage from inside the horizon related to the convolution kernels in

Equation (3.8) (either from the chromaticity of the antenna response, or from the

inherent spectrum of the foregrounds themselves). Somewhat more difficult to inter-

pret are the 2.4c- excess at k o 0.30h Mpc- 1 and the 2.9c- excess at k ~ 0.44h Mpc-1.

Having two such outliers is unlikely to be chance.

In examining the effects on the power spectrum of omitting various stages of anal-

ysis (see Figure 3-19), we see a pronounced excess in the green curve corresponding to

the omission of crosstalk removal in fringe-rate filtering. While the signal is heavily

attenuated in the filtering step, it remains a possibility that the remaining detections

are associated with instrumental crosstalk. We do note, however, that the qualitative

shape of the excess in the crosstalk-removed data does not appear to match that of

the crosstalk-containing data.

Another likely possibility is that the signal might be associated with foregrounds.
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Figure 3-18: Measured power spectrum (black dots with 2j error bars) at z 8.4

resulting from a 135 day observation with PAPER-64. The dashed vertical lines

at 0.6h Mpc' show the bounds of the delay filter described in Section 3.3.3. The

predicted 2a upper limit in the absence of the a celestial signal is shown in dashed

cyan, assuming Tsys = 500K. The triangles indicate 2 a upper limits from GMRT

[115] (yellow) at z = 8.6, MWA [38 at z = 9.5 (magenta), and the previous PAPER

upper limit (P14) at z = 7.7 (green). The magenta curve shows a predicted model

21 cm power spectrum at 50% ionization [81].
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Figure 3-19: Diagnostic power spectra in the style of Figure 3-18 illustrating the
impact of various analysis stages. The blue power spectrum uses the P14 fringe-rate
filter combined with crosstalk removal. Green illustrates the result using the improved

fringe-rate filter, but without crosstalk removal. A power spectrum derived without
the application of OMNICAL is shown in orange. Black includes improved fringe-rate
filtering, crosstalk removal, and OMNICA L calibration; it is the same power spectrum
shown in Figure 3-18.
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Foregrounds, which are not generally isotropically distributed on the sky, are likely

to be affected by the spatial filtering associated with fringe-rate filtering, whereas a

statistically isotropic signal is not. Indeed, we see that excesses in many modes mea-

sured with using the P14-stype time-domain filtering (blue in Figure 3-19) decrease

significantly using the improved fringe-rate filter. As discussed in [128], the normal-

ization applied to Qeff for fringe-rate filtering correctly compensates for the effect of

this filtering on power-spectral measurements of a statistically isotropic Gaussian sky

signal. We can surmise from any significant change in amplitude of the excess un-

der fringe-rate filtering that it arises from emission that violates these assumptions.

We conclude, therefore, that this excess is unlikely to be cosmic reionization, and is

more likely the result of non-Gaussian foregrounds. As discussed earlier, one possible

culprit is polarization leakage [76, 77, 105], although further work will be necessary

to confirm this. The interpretation of the signal as polarization leakage is, however,

rather high to be consistent with recent measurements in Stokes Q presented in [104],

where the leakage is constrained to be < 100 mK2 for all k.

That the excesses at k ~ 0.30 and 0.44h Mpc 1 are relatively unaffected by

the filtering could be an indication that they are more isotropically distributed, but

more likely, it may mean that the simply arise closer to the center of the primary

beam where they are down-weighted less. Both excesses appear to be significantly

affected by omitting OMNICAL calibration (orange in Figure 3-19). This could be

interpreted as indicating the excess is a modulation induced by frequency structure

in the calibration solution. However, OMNICAL is constrained to prohibit structure

common to all baselines, so a more likely interpretation is that this faint feature

decorrelates without the precision of redundant calibration. To determine the nature

of these particular excesses, further work will be necessary.

In order to aggregate the information presented in the power spectrum into a

single upper limit, we fit a flat A3(k) model to measurements in the range 0.15 <

k < 0.5h Mpc 1 . We use a uniform prior of amplitudes between -5000 and 5000

mK2 , and assume measurement errors are Gaussian. Figure 3-20 shows the posterior

distribution of the fit. From this distribution, we determine a mean of (18.9 mK) 2
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Figure 3-20: Posterior distribution of power spectrum amplitude for a flat A 2 (k)
power spectrum over 0.15 < k < 0.5h Mpc- (solid black), assuming Gaussian er-
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Figure 3-21: Constraints on tie 21cm spin temperature at z = 8.4, assuming tihe

patchy reionization model in Equations (3.31) and (3.33), which hold in the limit

that T, < TCIB.

and a 2(- upper limit of (22.4 mlK) 2 . The measured mean is inconsistent with zero

at. the 4.7o- level, indicating that, we are detecting a clear power spectrurm excess at

k > 0.15h Mpc-1.

We suspect tiat tihe excess in our measured power spectrum is likely caused by

crosstalk and foregrounds. We therefore suggest ignoring the lower bound on the

power spectrum amplitude as not being of relevance for the cosmological signal. On

the otier hand, since foreground power is necessarily positive, the 2o- upper limit

of (22.4 1mK) 2 at. z = 8.4, continues to serve as a conservative upper limit.. This

significantly improves over the previous best upper limit of (41 11K) 2 at z = 7.7

reported in P14. As we show below and in greater detail in [1.40]. tis limit begins to

have implications for the heating of the IGM Iprior to the completion of reionization.

3.6.2 Spin Temperature Constraints

In this section, we examine the implication of the measured upper linits on 21cm

emission in Figure 3-18 on the spin telmperature of tHie 21cm line at z 8.4. In a

fortlconling paper [140], we conduct a tiorough analysis of tie constraints that can

be put on the IGM using a simiulat-ion-based framework. As a complement to that

iore tiorough analysis, we focus here on a simpler parameterization of the shape of
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the 21cm power spectrum signal.

The brightness temperature of the 21cm signal, 6Tb, arising from the contrast

between the cosmic microwave background, T., and the spin temperature, T, is given

by
T3 -T T -T

6Tb = z (1 - e-,) 1 + T1 (3.28)
1+Hz 1+z

where temperatures are implicitly a function of redshift z, and the approximation

holds for low optical depth, T. The optical depth is given by [193]

T Vh1onHI (3.29)16kvoTsH (z)

where A10 is the Einstein A coefficient for the 21cm transition, nHI is the density

of the neutral hydrogen, H(z) is the Hubble constant, xHI is the neutral fraction

of hydrogen, 6 is the local baryon overdensity, vo is the rest frequency of the 21cm

transition, and the remainder are the usual constants. Plugging in the cosmological

parameters from [134], we get

T~ To XHI(1 + 6) (3-30)

where 1- T/Ts and To 26.7mK (1 + z)/10.

If the spin temperature is larger than T, we get the 21 cm signal in emission with

respect to the CMB, and ~ 1. However, if T is less than T,, 6Tb is negative and (

can potentially become large.

As in P14, we consider a "weak heating" scenario in which T is coupled to the gas

temperature via the Wouthuysen-Field effect [187, 49, 67], but little heating has taken

place prior to reionization, so that TS < T,. In this scenario, because we have assumed

little heating, we can approximate as having negligible spatial dependence, and

therefore To 2 becomes a simple multiplicative scalar to the 21cm power spectrum:

A2 1(k) = T 2 (z)(k), (3.31)
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where A? (k) is the dimensionless HI power spectrum.

As shown in P14, the maximum value of the prefactor in Equation (3.31) is given

by a no-heating scenario where the spin temperature follows the kinetic gas tem-

perature, which is held in equilibrium with the CMB via Compton scattering until

Zdec ~ 150 [54] and then cools adiabatically as (1 + z)2 . In this case, is given by

1 + Zdec 150
1+z 1+z (.2

At z = 8.4, this corresponds to a minimum bound on the spin temperature of T, >

1.5 K.

We can now flip this argument around and, for a measured upper bound on A k

we can use models for A?(k) in Equation (3.31) to place a bound on T'. We consider a

class of "patchy" reionization models (P12a;P14) which approximates the ionization

power spectrum as flat between minimum and maximum bubble sizes, kmin and kmax,

respectively:

A2 (k) = (XHI - X2I)/ ln (kmax/kmin). (3.33)

For combinations of kmin and kmax, we determine the minimum spin temperature

implied by the 2- 21 cm power spectrum upper limits shown in Figure 3-18. Figure

3-21 shows the results of these bounds for neutral fractions of XHI = 0.1, 0.3, 0.5, 0.7,

and 0.9. In almost all cases (excepting XHI = 0.1, 0.9 for kmin < 0.1h Mpc-), we

find that T ,> 3 K, indicating that our measurements are inconsistent with the spin

temperature being coupled to a kinetic temperature governed strictly by adiabatic

expansion.

Our results become more interesting in the range of kmin ~ 0.1 and kmax ~ 30

representative of fiducial simulations [191, 81]. For neutral fractions of 0.3, 0.5, and

0.7, we find that T > 4 K. [140] improves on these results by using a simulation-based

framework, rather than relying on coarse parametrizations of the power spectrum

shape. They compare the limits they find to the amount of heating possible given

the currently observed star formation rates in high-redshift galaxy populations [17,

96] and assumptions about the relationship between star formation rates and X-ray
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luminosities [54, 143, 47]. Assuming the midpoint of reionization lies close to z = 8.4

(a reasonable assumption given that [134] suggests a midpoint of z = 8.8), both the

bounds found in this paper and [140] show evidence for heating that places constraints

on the possible values for the star formation rate/X-ray luminosity correlation given

certain models of the star formation rate density redshift evolution. We refer the

reader to [140] for a detailed examination of these results.

3.7 Discussion

The improvement in our results over those in P14 are the result of four major advances:

1. the expansion of PAPER to 64 antennas doubled our instrument's power spec-

trum sensitivity,

2. using OMNICAL for redundant calibration significantly improved the clustering

of measurements over the previous implementation of LOGCAL used in P14,

3. fringe-rate filtering further improved power spectrum sensitivity by ~50% and

suppressed systematics associated with foregrounds low in the primary beam,

and

4. moving from a lossless quadratic estimator targeting difference modes in redun-

dant measurements to an OQE (with carefully calibrated signal loss) signifi-

cantly reduced contamination from residual foregrounds.

Figure 3-19 illustrates the effect of some of these advances on the final power spectrum.

Other important advances include the use of the median statistic to reduce the impact

of non-Gaussian outliers in power-spectral measurements, and the use of a Cholesky

decomposition of the Fisher information matrix to help reduce leakage from highly

contaminated modes within the wedge.

These new techniques and improvements to calibration have reduced the measured

bias in nearly all wavebands by an order of magnitude or more. The use of OMNICAL

to accurately calibrate the relative complex gains of the antennas has shown to be a
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major improvement to the data-reduction pipeline. The accuracy and improvement

of this calibration brings redundant baselines into impressive agreement with one

another (see Figures 3-4 and 3-10), and provides important diagnostic information

for monitoring the health of the array, flagging RFI events, and otherwise assessing

data quality. Fringe-rate filtering, which is described in greater depth in [128], is also

proving to be a flexible and powerful tool for controlling direction-dependent gains

and improving sensitivity.

As sensitivity improves, it will be possible to determine more accurately than [104]

what the actual level of polarized emission, and thus leakage, may be. Independent

fringe-rate filtering of the XX and YY polarizations prior to summation has the

potential to better match these polarization beams and further suppress the leakage

signal if the polarized signal turns out to be significant.

The end result is a major step forward, both for PAPER and for the field of

21cm cosmology. While we have not yet made a detection of the 21cm cosmological

signal, our limits are now within the range of some of the brighter models. As

discussed in [140], another order-of-magnitude improvement in sensitivity will make

21cm measurements highly constraining.

3.8 Conclusions

We present new upper limits on the 21cm reionization power spectrum at z = 8.4,

showing a factor of ~4 improvement over the previous best result (P14). We find

a 2- upper limit of (22.4 mK) 2 by fitting a flat power spectrum in a k range from

0.15 < k < 0.5 h Mpc- 1 to the dimensionless power spectrum, A(k), measured by

the PAPER instrument. We coarsely show that these upper limits imply a minimum

spin temperature for hydrogen in the IGM. Although these limits are dependent on

the model chosen for the power spectrum, we use a patchy reionization model to show

that limits of T, > 4 K are fairly generic for models with ionization fractions between

0.3 and 0.7. A more detailed analysis of the implied constraints on spin temperature

using semi-analytic reionization/heating simulations is presented in a forthcoming
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paper [140].

The power spectrum results that we present continue to be based on the delay-

spectrum approach to foreground avoidance presented in P12b and first applied in

P14. The application of a delay filter over a wide bandwidth continues to be one of

the most powerful techniques yet demonstrated for managing bright smooth-spectrum

foregrounds. In this paper, we extend the analysis in P14 with improved fringe-rate

filtering, improved redundant calibration with OMNICAL, and with an OQE that,

while not perfectly lossless, is more adept at down-weighting residual foregrounds.

The combined effect of these improvements leaves a power-spectral measurement

that is not consistent with zero at the 4.7--level, which we expect is a result of

contamination from crosstalk and foregrounds. With the expansion of PAPER to

64 antennas, the extended 135 day observing campaign, and the added sensitivity

benefits of fringe-rate filtering, combined with the optimization of antenna positions

in PAPER for highly redundant measurements, this thermal noise limit is beginning

to enter the realm of constraining realistic models of reionization.

Forthcoming from PAPER will be two seasons of observation with a 128-element

array. Following the same analysis as presented here, that data set is expected to

improve over the PAPER-64 sensitivity by a factor of ~4 (in mK2 ), with the potential

for another boost to sensitivity should the new 16-m baselines provided in the PAPER-

128 array configuration prove to be usable. There also remains the potential for

further improvements to sensitivity through the use of longer baselines, if foregrounds

can be managed effectively. As has been done recently for PAPER-32 [74, 104], future

work will also extend PAPER-64 analysis to a range of redshifts and examine the

power spectrum of polarized emission.

With recent breakthroughs in foreground management, the sensitivity limitations

of current experiments are becoming clear. Although collecting area is vital, as dis-

cussed in [139], the impact of collecting area depends critically on the interplay of

array configuration with foregrounds. Despite a large spread in collecting areas be-

tween PAPER, the MWA, and LOFAR, in the limit that foreground avoidance is

the only viable strategy, these arrays all deliver, at best, comparable low-significance
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detections of fiducial models of reionization. To move beyond simple detection, next-

generation instruments must deliver much more collecting area with very compact

arrays.

The Hydrogen Epoch of Reionization Array (HERA) and the low frequency Square

Kilometre Array (SKA-Low) are next generation experiments that aim to make signif-

icant detections of the 21 cm power spectrum and begin characterizing it. SKA-Low

has secured pre-construction funding for a facility in western Australia. HERA was

recently granted funding for its first phase under the National Science Foundation's

Mid-Scale Innovations Program. HERA uses a close packing of 14-m diameter dishes

designed to minimize the width of the delay-space kernel A, in Equation (3.8). Sen-

sitivity forecasts for a 331-element HERA array and SKA-Low show that they can

deliver detections of the 21cm reionization signal at a significance of 39c- and 21c-,

respectively, using the same the conservative foreground avoidance strategy employed

in this paper [139]. HERA is the natural successor to PAPER, combining a proven

experimental strategy with the sensitivity to deliver results that will be truly trans-

formative for understanding of our cosmic dawn.
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Part III

Novel Imaging and The New

Global Sky Model
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Chapter 4

Low Frequency Mapmaking with

Compact Interferometers: A

MITEoR Northern Sky Map from

128 MHz to 175 MHz

The content of this chapter will be submitted the Monthly Notices of the Royal As-

tronomical Society in April 2016. The authors are: Haoxuan Zheng, Max Tegmark,

Joshua S. Dillon, Adrian Liu, Abraham R. Neben, Shana M. Tribiano, Victor Buza,

Aaron Ewall- Wice, Hrant Gharibyan, Jack Hickish, 6 Eben Kunz, Jon Losh, Andrew

Lutomirski, Scott Morrison, Sruthi Narayanan, Ashley Perko, Devon Rosner, Nevada

Sanchez, Katelin Schutz, Michael Valdez, Hung-I Yang, Kristian Zarb Adami, Joana

Zelko, and Kevin Zheng.

4.1 Introduction

Mapping neutral hydrogen throughout our universe via its redshifted 21 cm line offers

a unique opportunity to probe the cosmic "dark ages", the formation of the first

luminous objects, and the Epoch of Reionization (EoR). In recent years a number of

low-frequency radio interferometers designed to probe the EoR have been successfully
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deployed, such as the Low Frequency Array (LOFAR; [75]), the Murchison Widefield

Array (MWA; [172]), the Donald C. Backer Precision Array for Probing the Epoch

of Reionization (PAPER; [125]), the 21 cm Array (21CMA; [188]), and the Giant

Metrewave Radio Telescope (GMRT; [115]). Unfortunately, the cosmological 21 cm

signal is so faint that none of the current experiments have detected it yet, although

increasingly stringent upper limits have recently been placed [116, 38, 127, 74, 4].

Fortunately, the next generation Hydrogen Epoch of Reionization Array (HERA;

[60]) is already being commissioned and larger future arrays, such as the Square

Kilometre Array (SKA; [100]), are in the planning stages.

Mapping diffuse structure is important for EoR science. A major challenge in the

field is that foreground contamination from our Galaxy and extragalactic sources is

perhaps four orders of magnitude larger in brightness temperature than the cosmo-

logical hydrogen signal [34, 38, 127, 4]. Many first generation experiments therefore

focus on a foreground-free region of Fourier space, giving up on any sensitivity to

the foreground-contaminated regions [126, 138, 89, 90, 39]. To access those regions

and regain the associated sensitivity, one must accurately model and remove such

contamination, a challenge that requires even greater sensitivity as well as more ac-

curate calibration and beam modeling than the current state-of-the-art in radio as-

tronomy (see Furlanetto et al. [54], Morales and Wyithe [108] for reviews). Moreover,

an accurate sky model is important for calibrating these low-frequency arrays. For

non-redundant arrays-arrays with few or no identical baselines-such as the MWA,

modeling the diffuse structure is necessary for calibrating short baselines [141, 7].

For redundant arrays such as PAPER, MITEoR, and HERA [60], although they can

apply redundant calibration which solves for per antenna calibration gains without

any sky models [194, 4], they do need a model of the diffuse structure to lock the

overall amplitude of their measurements [73].

The Global Sky Model (GSM; [34]) is currently the best model available for diffuse

Galactic emission at EoR frequencies. It has been widely used in the EoR community

as a foreground model. The sky maps used in the GSM that are close to the EoR

frequency (100 MHz to 200 MHz) are the 1999 MRAO+JMUAR map [5, 92] at 45 MHz
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and 3.6' resolution, and the 1982 Haslam map [62, 63, 149] at 408 MHz and 0.80

resolution. Other notable sky maps include the 1970 Parkes maps [80] near the

equatorial plane at 85 MHz and 150 MHz, with 3.5' and 2.2' resolution, respectively.

However, both the frequency and sky coverage of these maps are insufficient to achieve

the precision necessary for 21 cm cosmology.

All the maps listed above were made using steerable single dish antennas. The

sensitivity necessary for EoR science requires a large collecting area, for which steer-

able single dish radio telescopes become prohibitively expensive [166]. As a result,

the aforementioned EoR experiments have all opted for interferometry, combining a

large number of independent antenna elements which are (except for GMRT) individ-

ually more affordable. Since these low-frequency instruments are designed for EoR

science, they differ in many ways from traditional radio interferometers. For example,

PAPER's array layout maximizes redundancy for optimal sensitivity and calibration

[123], which makes it unsuitable for standard interferometric imaging. MWA, on the

other hand, has a minimally redundant layout suitable for imaging, and customized

algorithms have been developed to optimize its imaging performance such as Sullivan

et al. [161] and Offringa et al. [114). Some progress has been made to create maps

of large-scale structure [183], they have relied on traditional algorithms designed for

narrow-field imaging.

Fundamentally, interferometric imaging is a linear inversion problem, since the

visibility data are linearly related to the sky temperature: the vector of measured

data equals the vector of sky temperature times some huge matrix, with added noise.

A number of map-making frameworks using this matrix approach have been proposed

in recent years. For example, Shaw et al. [158] proposed a technique on spherical

harmonics designed for drift scan instruments. Ghosh et al. [57] focused mostly

on imaging fields of view on the scale of a few degrees. While Dillon et al. [40]

develops much of the same formalism that we use, they focus less on high-fidelity

mapmaking and more on propagating mapmaking effects into 21 cm power spectrum

estimation. The "brute force" matrix inversion and full-sky imaging approach we

pursue is desirable since it is optimal in data reduction and conceptually simple, but
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is very computationally expensive. In terms of computations, in order to have 1' pixel

size, the entire sky consists of about 5 x 104 pixels and thus requires the inversion of

a 5 x 10' by 5 x 104 matrix. While not computationally prohibitive, it is desirable

to minimize the number of such inversions. Full-sky inversion has only becomes

more relevant recently with the deployment of low-frequency radio interferometers

with very short baselines (on the order of a few wavelengths), which are necessary to

probe the structures on large angular scales.

In this work, we propose a practical "brute-force" matrix-based method for imag-

ing diffuse structure using interferometers. We pixelize the temperature distribution

in the entire sky into a vector s, and flatten all of the complex visibility data from

all baselines and all times (as much as a whole sidereal day) into another vector v.

These two vectors are related by a set of linear equations described by a large matrix

A, determined by the primary beam and the fringe patterns of various baselines.

We then deploy familiar tools for solving linear equations such as regularization and

Wiener filtering to obtain a solution for the entire sky. This algorithm can poten-

tially be applied to any interferometer, and it is especially advantageous for imaging

diffuse structure rather than compact sources. The algorithm naturally synthesizes

data from different times, without requiring any approximations such as a flat sky,

a co-planar array, or a "w-term". It can therefore fill in "missing modes" that are

otherwise undetermined using each snapshot individually. Furthermore, it allows for

the optimal combination of data from different instruments in visibility space, rather

than image space. Lastly, even for arrays with very high angular resolution for which

the matrix inversion is impossible, this method can be used to calibrate its short

baselines without needing an external sky model.

The rest of this paper is structured as follows. In Section 4.2, we describe our

method in detail. In Section 4.3, we quantify the accuracy of the method using

simulations for both MITEoR's maximally redundant layout and MWA's minimally

redundant layout to provide intuitive understanding of its performance. In Section

4.4, we apply the algorithm to our MITEoR data set to perform absolute calibration,

and produce a northern sky map with about 20 resolution centered around 150 MHz.
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We use the obtained map to compute spectral indices throughout our frequency range,

as well as spectral indices when compared to 85 MHz and 408 MHz maps. To estimate

the accuracy of our map, we compare it with both the 1970 Parkes map at 150 MHz

and the prediction of the GSM at 150 MHz.

4.2 Wide Field Interferometric Imaging

4.2.1 Framework

We start with the interferometer equation for the visibility across the ith and jth

antennas, following the conventions in Tegmark and Zaldarriaga [166]:

ViJ = Ts(k)B(k)eik riidQ, (4.1)

where T is the sky temperature, B is the primary beam strength, ri is the baseline

vector between the ith and jth antennae, and k is the wave vector of the electro-

magnetic radiation whose amplitude kl = and whose direction k points towards

the observer [169]. Radio interferometry typically takes advantage of this equation

by first performing a coordinate transformation on Eq. (4.1) from k on the spherical

surface to its projection on the xy-plane:

v(u 2 g) J Ts(q)B()i2 7rquijdq, (4.2)
Vij -- V( ij =J V 1 - q

where q = y k), and uij = A [166]. By treating the visibilities, vij, and

the beam-weighted sky image, T(q)B(), as a Fourier pair and performing 2D Fourier
V1'HqJ2

transforms on measured vij's, radio interferometers have obtained high quality images

of the sky with tremendous success. However, this Fourier approach comes with one

important limitation. Generally speaking, the beam-weighted sky image is band-

limited to the unit circle JqJ < 1, so by the Nyquist theorem, one has to have uv

sampling finer than half a wavelength to avoid aliasing in the image. In reality, it

is difficult to have any baselines shorter than half a wavelength due to the physical
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size of the antennas. What is more, since the shortest baseline has to be longer than

the diameter of the antenna, the largest angular scale available is always smaller

than the primary beam width, making aliasing inevitable. Mature techniques such

as anti-aliasing filters [163] have been developed to solve this problem, but they are

typically tailored for resolving compact structures rather than a diffuse background.

The traditional uv-plane approach is therefore not ideal for imaging larger angular

scales than the primary beam width.

To overcome this challenge, we follow Dillon et al. [40] and attack Eq. (4.1) from

a different angle. By discretizing the integral over sky angles into a sum over sky

pixels indexed by n, and including measured visibilities from all times (such as 8

hours during a night's drift scan), Eq. (4.1) becomes

vijt = 1 T,(kn)B(kn, t)eikn-ri(t)AQ, (4.3)
n

where AQ is the pixel angular size, and we express all quantities in equatorial co-

ordinates. Here the sky, T, is static, and B(ki, t) and rij(t) change due to Earth's

rotation and possibly the instrument's re-pointing such as in MWA's case. We then

flatten visibilities from all times and baselines into one vector v, flatten T,(kn) for all

discretized directions in the sky into s, and package the rotating beam and baseline

information into a big matrix A. Eq. (4.3) now takes the form of a system of linear

equations

v = As + n, (4.4)

where we have now taken into account visibility noise n with mean zero and covariance

(nnt) = N. Since the sky temperature is always real whereas A and v are complex,

we "realize" the system by appending the imaginary part of A and v after their real

parts, and double the noise variance. Also, it is important to use double precision for

matrix operations throughout this work1 .

1Although neither the data nor the beam pattern are understood to any level near the numerical
precision of single point floating numbers, and our simulation results do not rely on such precise
knowledge (we calculate A using single precision, and the simulated data have noise), we found that
using single precision during matrix operations has a significant and negative impact on the quality
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To optimally estimate s, we use the minimum variance estimator [165]

s = (AtN-lA)-lAtNlv, (4.5)

for which the error covariance matrix is

E = ((A - s)(A - s)') = (A tN-'A) 1 . (4.6)

While this is an elegant set-up with a straightforward solution, there are two major

technical difficulties with this approach: the size of A and the invertibility of AtNl A.

We address these topics in detail in the next two sections.

4.2.2 Constructing the A-Matrix

To obtain an intuitive understanding of the linear system described by Eq. (4.4), we

express the nth column of A according to Eq. (4.3), and change the coordinate system

back to a rotating sky with a static beam and baselines:

aj~n =B(kn, ~e ik, - ij (t) A Q

=B(kn)e ik(t) rijQ. (4.7)

For a given baseline pair ij, a is the visibility over time on this baseline produced

by the nth pixel in the sky if it had unit temperature. Stacking all baseline pairs

together, the nth column of A is simply the set of visibilities the instrument would

have measured if the sky only consisted of a single nth pixel of, unit flux, with 0

in all other pixels. Because the visibilities we measure are a linear superposition

of contributions from all directions in the sky [40], finding an optimal solution to

Eq. (4.4) is simply asking how much flux is needed in each pixel of the sky in order

to jointly produce the visibilities we actually measured.

With this intuition in mind, we turn to the topic of how to pixelize the sky. Since

of our results.
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A is not sparse, computing Eq. (4.5) will inevitably involve some form of inversion

of AIN-lA, whose computational cost scales as n> . We would therefore like the

number of pixels to be as small as possible. On the other hand, in order to preserve

accuracy in discretizing Eq. (4.1) to Eq. (4.3), AQ needs to be smaller than square

of the angular resolution of the instrument, where the angular resolution is roughly

dAx, and dmax is the longest baseline length. When we pixelize the sky using the

HEALPIX convention [59], we thus need nside > d-ap. For MITEoR, whose longest

baseline is only about 15 wavelengths, we choose nside = 64, which translates to about

4.8 x 104 pixels, which is about the largest size that can be comfortably manipulated

on a personal computer. To obtain higher resolution maps for other instruments

with even longer baselines, one may choose to use non-uniform pixelization, which

we discuss in Appendix 4.B. It is worth pointing out that resolution alone does not

decide the number of pixels needed; rather, what matters is the ratio of the primary

beam width to the pixel width. Thus, the pixel number may not be very large if

one wishes to image a small patch of sky at higher resolution with a narrow-beam

instrument, depending on how quickly the sidelobes of the beam fall off away from

its center.

4.2.3 Regularization and Point Spread Functions

For interferometric data sets, AtN-lA can be poorly conditioned and numerically

non-invertible because the instrument is insensitive to certain linear combinations of

the sky, so we insert a regularization matrix R (which we assume to be symmetric

throughout this work) into Eq. (4.5):

sR = (AtN--A + R)- 1 A tN-'v. (4.8)
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We then substitute Eq. (4.4) into Eq. (4.8), which leads to

R =(AN-'A + R)-'A'N-1 (As + n)

=Ps + (AtN-lA + R)-AtN-n, (4.9)

(AR) -p.9 (4.10)

where we define the point spread matrix P = (AN-'A + R) -AtN A. The matrix

P is not the identity matrix due to the insertion of R, so each column of P acts

as a point spread function (PSF) for the corresponding pixel in the true sky map

s. The introduction of regularization thus represents a comprise between the goal of

completely removing the PSF and producing a map with favorable noise properties.

The result is, in the language of traditional radio astronomy, a position-dependent

synthesized beam. For each of the PSF, we can calculate the effective full width half

maximum (FWHM) using

OFWHM w 1 n1A(

where ni is the number of pixels in the PSF whose absolute value is above half of

the maximum pixel, and Ofsid is the angular area for each pixel. We use 0 FWHM to

represent angular resolution throughout this work.

It is also worth noting that the sum of each row of P is a damping factor for the

solution. For a fictitious uniform sky, if each row of P does not sum to unity, then the

resulting solution will not retain the same uniform amplitude as the original fictitious

sky. Thus, it is desirable to renormalize each row of P to sum to unity.

With the introduction of R, the error covariance is now

ER ((AR _ p8 )(hR __ p.t)

=(A tN- 1 A + R)- 1 (A tN-1 A)(A tN 1 A + R)-1

=P(AtN--A + R)-'. (4.12)

To quantify how well the predicted error in Eq. (4.12) accounts for actual noise we

obtain in either our simulations or maps using real data, we define the normalized
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error 6 at the ith pixel as

6 _ - (S). (4.13)

Intuitively, 6 represents the discrepancy between the recovered map and the ground

truth in units of the expected noise level, and is thus expected to center around 1 in

absence of any systematic effects.

Now we discuss the choice of R. Inserting R is equivalent to having prior knowl-

edge of the sky, where the Bayesian prior for s has mean (s) = sP = 0 and covariance

matrix ((s - sP)(s - sP)t) =R-1 . If one has a sky model with well-characterized

error properties (not the case for this work), there is a natural choice of R which

we discuss in the next section. In the absence of such a model, however, the choice

of R depends on the array layout, noise properties of the visibilities, as well as the

trade-off between angular resolution and noise (we will demonstrate these qin much

more detail through simulation in Section 4.3). The simplest form of R is a uniform

regularization matrix proportional to the identity: R = c21. E has the same units as

s, and can be compared to the noise level in the map solution: smaller E-1 suppresses

noisy modes more strongly since it will dominate the diagonal of E R, but it also

hurts angular resolution as it introduces wider point spread functions by bringing P

farther away from the identity matrix. Therefore, E is a tunable parameter deciding

the trade-off between resolution and noise. In our simulations in Section 4.3 and map

making using MITEoR data in Section 4.4, we show various choices of R, and we

leave investigations of the optimal choice of R for future work.

4.2.4 Wiener Filtering and Incorporating Prior Knowledge

If we have prior knowledge of the sky such as previous measurements, we would like

to optimally combine the existing sky map sP, with our visibility measurements (this

is not carried in our simulations or our final map product). We accomplish this by

shifting our focus from s to s - sP, and Eq. (4.5) becomes

s - sP - (AN-lA)-AtN-l(v - AsP). (4.14)
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We then quantify the uncertainty in our prior knowledge, by defining the covariance

matrix S = ((s - sP)(s - sP)'), and we use R = S- as the regularization matrix:

sR- sp = (A'N-A + S )-'A'N-'(v - As9). (4.15)

Our regularized estimate for s then becomes

sR = (AIN-'A + S-1)-AN-(v - AsP) + sP. (4.16)

There are three ways of understanding our choice of regularization R = S-.

First, using the identity

(X 1 + Y 1 ) 1 = X(X + Y) 1Y (4.17)

for invertible2 square matrices X and Y, one can show that Eq. (4.15) is equivalent

to applying a Wiener filter W to Eq. (4.14):

AR _ Sp = W( -. sp), (4.18)

where W = S(E + S)-', with E defined in Eq. (4.6).

Secondly, by using Eq. (4.17), one can show that Eq. (4.16) is equivalent to an

inverse variance weighted average of the unregularized A and the prior knowledge sP:

R= + S<1l + i(E + S)-18p, (4.19)

where E and S are the noise covariance matrices for the unregularized 9 and the prior

knowledge sP, correspondingly. It is reassuring to see from Eq. (4.19) that 8R -

when E > S, and vice versa.

Lastly, Eq. (4.16) is equivalent to combining visibility data and a previous sky

map through appending sP to v and the identity matrix I to A in Eq. (4.4), and
2 We have mentioned that AtN-' A is usually numerically uninvertible, but as long as one excludes

pixels never above the horizon, it should be formally invertible, with some eigenvalues very close to
zero.
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solving it using Eq. (4.5) without any regularization.

4.2.5 Further Generalization

Throughout this section, we have, for clarity, limited our discussion to data sets in

the form of baseline by time at a given frequency from one instrument. We generalize

this to incorporate data sets from multiple frequencies and even multiple instruments.

To synthesize multiple instruments at the same frequency, we simply append all the

flattened data vectors together, and stack their corresponding A matrices in the

same order. We then solve for the sky in one step using Eq. (4.5) or Eq. (4.8). We

demonstrate this through simulation in Section 4.3.3.

To synthesize multiple frequencies, we assume that the sky map only differs by

an overall scaling factor throughout a given frequency range, and the accuracy ap-

proximation depends on how wide the frequency range is. If at each frequency v we

have

VV= Av8 (4.20)

together with

V= f (v)s, (4.21)

we obtain

VL= f (v)Avs = A'ls. (4.22)

If we know f(v), we can simply stack v,'s and A','s and solve for s. In reality,

although we do not know f(v) very accurately, we can iterate this, where we start

with an estimated fo(v) and at each iteration reevaluate f (v) given by the best-fit

ratio between v, and Aus from the previous iteration. As a result, we can empirically

obtain f (v) in addition to s. We demonstrate this in detail in Section 4.4.
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4.3 Simulations

In this section, we perform simulations for both MITEoR and the MWA to demon-

strate the algorithms we have described in the previous section. The distinct array

layouts of MWA and MITEoR complement each other in demonstrating various as-

pects of our algorithm. The simulations are all based on just one night of observa-

tion on each instrument. To simulate visibilities, we. pixelize the GSM using to the

HEALPIX resolution naside = 128, but when we solve for the sky we use naide = 32 (a

pixel size of 20), so that we can quantify any potential errors introduced by having

coarse pixels. The noise is simulated as Gaussian noise independent across baselines,

frequencies and times, whose amplitude is set to the simulated autocorrelation over

Z/Avat, where Av is the bandwidth for each frequency bin, and At is the integration

time. For MITEoR, the noise variance is also scaled down by the redundancy factor

(the number of antenna pairs sharing a baseline type) for each baseline type. We

then follow Sections 4.2.1-4.2.3 to compute maps and their error properties.

4.3.1 MITEoR Simulation

MITEoR is a highly redundant array. It consists of 64 dual-polarization antennas

on a square grid with 3m spacing. For each polarization, it has 2,016 baselines with

112 unique baseline types. For this simulation, we include the shortest 102 out of

its 112 unique baseline types, with baseline lengths between 3 m and 25.5 m. The

primary beam model is numerically simulated as described in Zheng et al. [194], and

its FWHM is about 40' near 150 MHz. We simulate for a single night's observation

in the local sidereal time (LST) range between 12 hours and 24 hours to resemble the

LST coverage in Section 4.4, at 150 MHz, with 144 seconds integration, and 0.75 MHz

frequency bin width. The A-matrix size for this set-up is 122, 400 x 9, 725. We choose

2I as the regularization matrix, where 6- = 100 K (The result is not sensitive to the

choice of c within an order of magnitude, as shown later in Fig. 4-2.).

The results we obtain are shown in the first column of Fig. 4-1, in which the

median noise is 14.9 K. We computed the position-dependent FWHM using the PSF
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matrix, and found that 96% of the pixels have FWHM less than the pixel size, which

means that the resolution is limited by pixelization rather than the PSF. Note that

Cygnus A (Cyg A) and Cassiopeia A (Cas A) cast noticeable "ringing" due to their

extreme brightness and the effect of the PSF. Due to the coarseness of the pixelization

in this section, we defer a demonstration of point source removal, as applied to Cyg A

and Cas A, to Section 4.4. Lastly, the normalized residual map shows that the errors

in the recovered map are well described by the noise properties described by the noise

covariance matrix ER, with the exception of those regions with sharp features, such

as pixels near Cyg A, Cas A, and the Galactic center. This is caused by the coarse

pixelization, and can be remedied by decreasing the pixel size.

4.3.2 MWA Simulation

MWA is a minimally redundant array, with 8,128 different baselines. For this simula-

tion, we use the shortest 195 cross-correlation baselines, with baseline lengths between

7.7 m and 25.5 m (referred to as MWAcore from hereon). We limit the baseline lengths

in order to use the same naide = 32 pixelization as the MITEoR case, as longer base-

lines requires a much finer pixelization. The primary beam model is obtained by

calculating the analytic expression for phased array of short dipoles, and the FWHM

is about 140 around 150 MHz. We simulate for a single night's observation in the

LST range between 12 hours and 24 hours, at 150 MHz, with 144 seconds integration,

and 0.64 MHz frequency bin width. The beam remains in the zenith-pointing drift

scan mode for the entire observation, which is not how the MWA typically operates

(but doable). The A-matrix size for this set-up is 234, 000 x 9, 785. We choose E21

as the regularization matrix, where 6- = 300 K. The results we obtain are shown

in the second column of Fig. 4-1. The median noise in the map is 47.8 K, and the

higher noise lines follow the trajectory of the nulls between the main lobe and the

first side lobe, as well as between the first and second side lobes. In terms of the

angular resolution, 89% of the sky is limited by pixelization.
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Figure 4-1: Simulated results for MITEoR (left), the MWAcore (middle), and the two

combined (right). Filtered input GSM maps (top) are generated by applying the PSF

matrix P to the GSM with Pside= 32. Grey areas represent, directions that, are either

never above the horizon or have negligible sensitivity. Recovered output maps are

obtained by applying Eq. (4.8) to simulated noisy visibilities (assuming one night's

observation and one frequency channel with < 1 MHz bandwidth), using uniform

diagonal regularization matrices with c-o of 100 K, 300 K, and 100 K respectively.

Tyhe error bar maps are obtained by plotting the square roots of the diagonal entries

in ER, and the color scale is one order of magnitude smaller than the outpuIt maps.

Lastly, the normalized residual 6 maps represent, the ratio of the actual error in our

maps to the error bars, as defined in Eq. (4.13), and their values center around 1 as

we expect.
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Figure 4-2: Output maps recovered in simulation and their error bars ( ) using

the same set of data but different regularization matrices. As ( increases over 5

orders of magnitude (Ec = 100 K is shown in the third column of Fig. 4-1), the noise

is significantly suppressed, but the properties of PSF matrix become less desirable:

we start to see negative temperatures near the null regions of the MWA beam. This

is because stronger regularization suppresses the "missing modes" more heavily, and

as the large scale structures near the MWA's side lobe region gets suppressed, more

of that region becomes negative. In addition, strong regularization creates worse

"ringing" near Cyg A and Cas A, and even near the north pole spur in the 1 K case.

4.3.3 Simulation Discussion

By combining the MWAcore visibilities and the MITEoR visibilities, and using a uni-

form regularization c 1 = 100 K, we obtain another map shown in the third column

of Fig. 4-1, whose median noise is 14.6 K. In this case, 97% of the pixels' resolution

is limited by pixelization. To demonstrate the effect of tuning the parameter E in the

regularization matrix, we show a few different choices of c in Fig. 4-2. As the regu-

larization varies from two orders of magnitude too weak to two orders of magnitude

too strong, overall noise level decreases, but stronger PSFs start to overly suppress

the less sensitive regions near the nulls of the MWA beam and make the temperature

negative, and create worse "ringing" around Cyg A and Cas A.

As shown in Fig. 4-1, with just one night's data, our algorithm can produce

high quality diffuse structure maps using either the MWAcore or MITEoR. With

the MWAcore's set-up where the shortest baseline is longer than 7 wavelengths, the

algorithm successfully determines large scale modes such as the overall amplitude of

the map. On the other end, the longest baselines we include are 13 wavelengths long,

which naively translates to about 5' resolution, but the matrix approach recovers
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angular scales smaller than 2', as both simulations show that the resolution is limited

by the 2' pixel size. As we will show in Section 4.4 using 1' pixels, the true resolving

power of these baselines are between 10 and 20.

Comparing the noise maps of the MWAcore and MITEoR, where MITEoR's 14.9 K

median noise level is slightly lower than MWAcore's 47.8 K, we see that the overall

noise level is not very sensitive to the number of baseline types, the baselines' length

distribution, or the primary beam shape. Although the collecting area of MWA tiles

is 16 times larger than each bow-tie antenna used in MITEoR, it is offset by the fact

that there are effectively about 2000 baselines used in the MITEoR simulation (with

112 unique baseline types) compared to the MWAcore's 195, so the noise levels are

comparable in both cases. In contrast to the overall noise level, the spatial patterns of

noise do depend heavily on the primary beam pattern, which is not surprising, since

the primary beam pattern heavily influences the instrument's sensitivity to different

parts of the sky.

The 3 maps show that the error properties are well characterized by 3ER, with the

majority of the 6 values less 2. We see that although the visibilities are simulated

using the GSM with nlide = 128, the crude pixelization of naide = 32 is not introducing

significant errors, other than in regions near Cyg A, Cas A, or the Galactic center.

The importance of pixelization errors depends on the baseline lengths included, as

well as the amount of noise in the visibilities. We find that pixelization errors become

significant if we increase the baseline length threshold by another 50% to about 40 m.

We also expect the pixelization error to become dominant if the visibilities have much

lower noise, such as when they are averaged over 100 nights as opposed to a single

night used here.

Given the result that just one night's data from MWAcore's zenith pointing scan

can determine more than half of the sky to better than 50 K precision, MWA has

the potential to make a high quality (< 10 K noise through multiple nights' observa-

tions) southern sky map with multiple beam pointings and multiple nights throughout

the year to fill the sky. In addition, since MWAcore only includes a small fraction

of MWA's baselines, a much higher angular resolution (less than a degree) is also
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achievable with finer pixelizations.

4.4 New Sky Map

As we have demonstrated in the previous section, the new imaging method works

well on simulated data from both MITEoR and MWAcore. In this section, we apply

the method to real data collected by MITEoR, and produce a Northern sky map at

150 MHz.

4.4.1 MITEoR Instrument and Data Reduction

As mentioned above, MITEoR [194] is a compact radio interferometer with 64 dual-

pol antennas, deployed in July 2013 in The Forks, Maine (latitude 45.30). The an-

tennas are identical to individual MWA bow-tie antennas (without beam forming

as tiles), and the full width half maximum (FWHM) of the primary beam is about

40' throughout our frequency range. The data used in this work are collected with

an 8 by 8 square grid array configuration with 3 m spacings. The 8 bit correlator

cross-correlates all 128 antenna-polarizations (each bow-tie antenna has two polariza-

tions as outputs), with integration time of 2.7 seconds, instantaneous bandwidth of

12.5 MHz (tunable between 125 and 185 MHz), and frequency bin width of 50 kHz.

The data used in this work were collected through 7 observing sessions, as shown in

the left panel of Fig. 4-3.

We first perform redundant calibration on the raw data, using our redundant cali-

bration pipeline described in Zheng et al. [194], with further improvements described

in Appendix 4.A. Redundant calibration compresses the data in the baseline direc-

tion from 2016 cross-correlation visibilities per snapshot to 112 unique baseline types,

and automatically flags bad antennas, baselines, frequencies, and time stamps from

the data. It is worth noting that redundant calibration uses only the self-consistency

between redundant baselines, and does not use any sky model. After redundant cali-

bration, we further compress the data to 0.75 MHz frequency bin width by averaging

every 15 frequency bins. We then average over the time direction in 2 minute in-
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tervals. We empirically estimate noise during the time averaging step by performing

linear fitting over 2 minutes of data and calculating the residual power.

At this stage, we have a data cube of 4 polarizations by 75 frequency bins by 240

time steps by 112 baselines. Since we have not, used any sky information, the data

is not yet absolute-calibrated, meaning that for each of the 4 x 75 = 300 different

polarization-frequency data sets, we have 3 undetermined numbers: one overall am-

plitude, and two re-phasing degrees of freedom. These numbers cannot be determined

without performing absolute calibiation (as opposed to redundant calibration) with

a. sky model, which we describe in the next two sections.

Observin Schedule

U0 1
130 140 150 160 170

(Orn S, 3m E) (9m S, 9m E)

- - r-

130 140 150 160 170 130 140 150 160 170

Frequency (MHz)

(Om S, 21m E)

We

S - 11 -

130 140 150 160 170

Figure 4-3: MITEoR's observing schedule on the left and three sets of visibilities
in the MITEoR data product on the right. Each of the six colors represent one of
the nights between July 27th and August 2nd, 2013. Midnight corresponds to LST
at roughly 21 hours. The real part, of visibilities over time and frequency on three
baselines of very different, lengths are shown here. The white gaps in frequency and
time are RFI events automatically flagged by the redundant calibration pipeline.

4.4.1.1 Absolute Amplitude Calibration

The goal of absolute calibration is to determine three numbers (an overall amplitude

and two re-phasing degrees of freedom) for every time by baseline data set, where

each data set consists of more than I0 4 visibility measurements. This is a drastically

overdetermined system given a sky model. In this section, we discuss how we deter-

mine the overall amplitude. Since we intend to use the map obtained in this work to
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improve the GSM in a future work, we choose not to use the GSM as our sky model.

Rather, we use Cyg A and Cas A as our calibrators. After we obtain a map in Section

4.4.2, we will lock the amplitude of our map to the Parkes map at 150 MHZ [80], so

the amplitude calibration and its error will only affect our spectral index results, not

the amplitude of the map.

Our amplitude calibration is based on extrapolating the frequency-dependent sec-

ular decreasing flux models of Cas A [178] and the spectrum of Cyg A from VinyaIkin

[179]. Cyg A is an ultra-luminous, jet-powered, radio-loud galaxy. For our Cyg A

calibration spectrum, we use the model in Eq. 6a in Vinyaikin [179] of a transpar-

ent source, with a power law spectrum with spectral index a, observed through the

absorbing ionized gas of our Galaxy. The data point used in the model at 152 MHz

has a reported 3% error in Parker [119], and propagating the model parameters' error

bars leads to a maximum of 3.2% error in our frequency range.

The frequency dependence of the decreasing flux of Cas A has been widely studied

(see [65] and references, therein), and we adopt the empirical model in Vinyaikin

[178] that fits to the accumulated published data taken from 1961 to 2011 from about

12 MHz- 93 GHz, including their most recent observations. The spectrum of Cas A is

evaluated in frequency range 125-175 MHz, using the fitted function in Eqs. 15 and

16 in Vinyaikin [178]. With this spectrum modeled at epoch 2015.5, and the model

for the frequency dependent secular decrease in Eqs. 9 and 10 of Vinyaikin [178],

we evaluate the spectrum for Cas A during MITEoR observations in August 2013,

approximately two years earlier. The largest source of error in the radio spectrum

model of Cas A comes from our lack of complete understanding of the behavior of

this supernova remnant. In an evaluation of possible periodic deviations, Helmboldt

and Kassim [65] identify 4 possible modes ranging from 3 to 24 years, in a slightly

lower frequency range of interest, 38 - 80 MHz, contributing to flux deviations from

a secular decrease of up to 15%.

We calibrate in the LST range between 19 and 23 hours, during which Cyg A's

elevation ranges from 590 to 850, and Cas A from 360 to 65'. To minimize error

introduced by diffuse structures, we only include for calibration baselines longer than
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8.6 wavelengths, which are the longest 9 baselines at the lowest frequency and 34

at the highest frequency. After fitting using Cas A and Cyg A, we find about 15%

residual on the visibilities. Since the errors introduced by the Galactic plane are

averaged down over different baseline types, we estimate our amplitude calibration to

go down by a factor equal to the square root of the number of baselines used. Thus,

our absolute calibration has an overall error of about 5% at the lowest frequency and

2.5% at the highest frequency, relative to the calibrators.

4.4.1.2 Absolute Phase Calibration

As discussed in Zheng et al. [194], the two re-phasing degrees of freedom (or re-

phasing degeneracies) in the visibility space correspond to shifting the beam-weighted

sky image T8 (q)B(q), and cannot be determined using only the self consistency of
1-jqj2

visibility data without a sky model. However, this is only true for isolated snapshots

in time. For instruments with large fields of view such as MITEoR, rotation of

the sky does not exactly translate into shifting the beam-weighted sky image in the

projected q-plane, so a constant shift of the beam-weighted sky image caused by

constant re-phasing cannot be consistent with a rotating sky. Therefore, we can use a

procedure conceptually similar to self-cal to determine the re-phasing: we first image

using the visibility without correcting for the re-phasing degrees of freedom, then

use the image we obtain to solve for the re-phasing, and iterate until convergence.

In theory, this can be done without any prior sky model, but since each iteration

can be computationally expensive, we use the GSM to provide the initial re-phasing

solution, and start iterating from there. It is worth noting that, at a given frequency

and polarization, unlike self-cal which is solving for, say, 128 antenna calibration

parameters at every time stamp, here we are only solving for 2 numbers for an entire

observing session, so this iterative algorithm has negligible impact on the validity of

Eq. (4.12).

In addition, even for instruments whose array layout prevents making usable

images, this "self-cal" approach can be applied to remove re-phasing degeneracies.

Rather than inserting regularization matrices to make AtN-lA invertible, if the goal
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is to calibrate out the re-phasing degeneracies, we can simply use a pseudo-inverse

for AtN-1A. For example, for a redundant array with no short baselines, a pseudo-

inverse will remove large scale structures in the image, but this has no effect when

the resulting image is used as a model to simulate visibilities on those long baselines,

so "self-cal" should work just as well.

4.4.1.3 Cross-talk Removal

We define cross-talk as additive offsets on visibilities that are proportional to the

amplitude of auto-correlation, with a small but constant proportionality coefficient.

In theory, the cross-talk terms can be solved for in an iterative fashion similar to how

we determine the re-phasing degeneracies in the previous section. However, due to

the level of thermal noise and systematics present in our data set, cross-talk on our

shortest baselines is highly degenerate with having a bright stripe in the trajectory of

our local zenith. Thus for this work, we use the GSM to perform cross-talk removal.

We use the GSM to simulate all the visibilities we measure, and for each visibility

time series, we solve for the best fit using the GSM model visibility. and the auto-

correlation, and subtract the auto-correlation component from our data. Thus, for

each visibility time series over a few hours, we use the GSM to fit and remove one

degree of freedom corresponding to cross-talk.

4.4.2 Northern Sky Map Combining Multiple MITEoR Fre-

quencies

We apply the algorithm described in Section 4.2 on the MITEoR data to obtain

our Northern sky map. We have shown in Section 4.3 that the MITEoR data can

in principle make high quality maps at individual frequency bins, but due to the

systematics present in our data, which we discuss more in the next section, we are

not able to make high quality maps using each individual frequency alone. Since in

our frequency range the diffuse emission is dominantly synchrotron, which follows a

smooth power law, we use techniques described in Section 4.2.5 to combine multiple
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frequencies to form a single map with an overall spectral index, as well as the beam-

averaged spectral index as a function of time. We pixelize the sky to HEALPIX

naide = 64. Since the size of the A-matrix is proportional to the number of frequency

bins, and including the entire data set amkes the size of our A-matrix too large, we

include only one out of every 5 frequency bins throughout the frequency range of

128.5 MHz to 174.5 MHz. This forms an A-matrix of size roughly 6 x 105 by 4 x 104.

Since A has an order of magnitude more rows than columns, computing AtN-A is

the speed bottleneck and takes more than 2 days when parallelized on a single CPU.

In comparison, inverting AtN-1A takes about 3 hours.

In order to calculate the relative amplitude at different frequencies, to solve for

the re-phasing degeneracies in the data, and to empirically estimate the level of noise

and systematics in each data set, we iterate the process described in Section 4.2.3

until the amplitudes converge to within 0.1% and re-phasings within 0.1'. At each

iteration, we calculate visibilities using the solution from the previous iteration as a

model, and for each frequency we fit for the re-phasing, the relative amplitude, as

well as the overall error RMS. Both the best fit amplitude and the error RMS are

used to re-weigh the noise covariance matrices for each frequency. When iterating,

we prioritize the map's accuracy in modeling visibilities over its noise properties, so

we choose a weaker regularization of E- = 1500 K. For the final map we choose a

stronger regularization with c-1 = 300 K to obtain lower noise in the map at a cost

of lower resolution in the noisy areas. The map's overall amplitude is locked to the

Parkes map at 150 MHz [80] using the overlapping region. Cyg A, Cas A, and their

"ringing" are removed using the CLEAN algorithm [68]. The map we obtain together

with its angular resolution and error bars are shown in Fig. 4-4.

4.4.3 Error Analysis

Fig. 4-4 shows that the map we obtain agree very well with the prediction of the

GSM at 150 MHz. In this section, we discuss the errors in our map and their possible

causes in more detail. In terms of overall amplitude, the map's overall amplitude is

locked to the Parkes 150 MHz equatorial map [80], which has 20 K uncertainty in zero
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level and 4% in temperature scale. In order to compare detailed structures in our

result with the Parkes map and the GSM, we calculate the normalized error 6 maps,

shown in Fig. 4-4. The median 6 compared to the filtered GSM is 2.16, and 2.79 to

the unfiltered Parkes map, which are slight higher than what one might expect.

There are a few factors that make the median 6 higher than 1. Firstly, our

modeling of our instrument is not perfect, leading to error in our A-matrix. As we

investigated in detail in Zheng et al. [194], our beam model has up to 10% error in

some directions. Our empirically estimated visibility errors are dominated by slowly

varying modes, and beam mis-modeling is the most likely cause. Another cause of

error is the averaging over frequency, which assumes constant spectral index over the

sky. As we show in much more detail in the next section, the spectral index changes

by as much as 0.5 from the Galactic plane to out-of-plane regions, so this introduces

an error for the edge frequencies on the order of (175 MHz/150 MHz) 0 5 - 1 = 8%.

Moreover, as we have seen in our simulation results in Fig. 4-1, pixelization can also

cause un-modeled error near high temperature regions such as the point sources (Cas

A and Cyg A) and the Galactic center. Lastly, neither the GSM nor the Parkes map

are the ground truth: the GSM at 150 MHz is essentially an interpolation product

between a 45 MHz sky map and a 408 MHz sky map, with an estimated relative error

of 10% [34]. For the equatorial Parkes map, due to its 2.2' resolution, we cannot

apply the PSF matrix to it before comparing it to our result. The lack of PSF on the

Parkes map leads to higher error in the comparison, which we think is what makes

the median 6 higher for the unfiltered Parkes map than for the GSM.

4.4.4 Spectral Index Results

4.4.4.1 Spectral Indices from 128 MHz to 175 MHz

In the iterative process to compute the 150 MHz map, we also obtain relative am-

plitudes between all the data sets at different frequencies. At each frequency, we

calculate visibilities using the 150 MHz map we obtained as a model, and compute

the relative amplitude by comparing them to our data. We then perform a linear fit
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Figure 4-5: Map-averaged overall spectral index fit (top) and beam-averaged spectral
index over LST (bottom). The relative amplitudes and error bars in the top plot are

obtained from the iterative procedure described in Section 4.4.4. For the bottom plot,
each LST is observed on 5 different frequencies on 5 different nights (see Fig. 4-3),
so we can obtain a spectral index at each LST by fitting the overall amplitude over

frequency with a power law. The error bars are l-, empirically estimated using the

residuals of the power law fits.

in the log(amplitude)-log(frequency) space, and compute an overall spectral index of

-2.73 0.11, as shown in Fig. 4-5. The error bar is calculated using the residuals

in the fitting process. In addition to this overall spectral index averaged over the

entire data set, we also perform the same procedure on subsets of the data, and fit for

spectral indices for every half an hour of LST. The resulting time series of spectral

indices varies smoothly between -2.4 and -2.8, as shown in Fig. 4-5.

In comparison to our spectral index result, the Experiment, to Detect the Global

EoR Signature (EDGES; [21]) measured spectral index of -2.5+0.1 [153], centering

at an out-of-plane region at declination -26.5' and right ascension 2h. Our over-

all spectral index agrees with the spectral index obtained by EDGES, with a 1.5c-
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difference. However, the difference is likely not due to statistical variation alone.

The overall spectral index we present is averaged over the northern sky, so we are

observing a different patch of sky compared to EDGES. Unlike EDGES, our result

is influenced by both Cyg A and Cas A3 . These strong radio sources have spectral

indices of -2.7 and -2.8, respectively [119, 179, 178], so they would shift our results

towards a steeper spectral index.

4.4.4.2 Spectral Indices from 85 MHz to 408 MHz

In addition to spectral indices in the EoR frequency range computed using the MI-

TEoR data alone, we also calculate maps of spectral indices by comparing our MI-

TEoR map to the Parkes map at 85 MHz [80] and the Haslam map at 408 MHz

[62, 63, 149]. We compute per-pixel spectral index maps for all three pairs of these

three maps, as shown in Fig. 4-6.

The medians of the spectral indices shown in Fig. 4-6 are -2.60 0.29 0.07,

-2.43 0.18 + 0.04, and -2.50 + 0.07, respectively. The first error bars come from

the spread in spectral indices over the sky, and the second error bars come from

4% absolute calibration uncertainty of MITEoR. This is a very weak indication that

the spectral index softens over the range from 85 MHz to 408 MHz. For comparison,

Platania et al. [135] presented an overall spectral index of -2.695 0.120 between

the 408 MHz [62, 63, 149], 1.4 GHz [148, 146, 147], and 2.3 GHz [78] maps, which also

agrees well with an earlier study at these frequencies in Giardino et al. [58].

There are two spatial features worth noting in these maps. First, the Galactic

plane has softer spectral indices than the out-of-plane regions. The median spectral

indices within 5' of the Galactic plane for the three map pairs are -2.27, -2.37, and

-2.37, respectively. Softer spectral indices in the Galactic plane are also observed at

higher frequencies in Platania et al. [135], whose spectral index map comes from three

maps above the EoR frequency range, as mentioned above.

In addition to softer indices in the Galactic plane, there are regions that clearly
3The point sources are present in our spectral index results because our spectral index results

are obtained in the visibility space, whereas the CLEAN algorithm that removed the point sources
is performed in the image space.
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deviate from the median near the Galactic poles, such as the blue regions in the Parkes

vs MITEoR map, and the red regions in the MITEoR vs Haslam map. Since such

departure is not seen in the Parkes vs Haslam map, this suggests that the MITEoR

map is about 50 K lower in the Galactic pole regions than what the Parkes and

Haslam maps jointly predict. There are two possible causes for this. The first is that

the 50 K deficiency in the MITEoR map is due to systematic errors. However, the

temperatures in these regions are about 240 K, so neither the 4% absolute calibration

uncertainty nor the ~ 15 K error bars can fully explain the 50 K difference. Another

possible cause is that the MITEoR map has a higher dynamic range than the Haslam

and Parkes maps, so that it recovers more details at the low end of the temperature

range compared to these maps. We leave a more careful investigation of this 50 K

discrepancy to a future study.

4.5 Summary and Outlook

We have presented a new method for mapping diffuse sky emission using interfer-

ometric data. We have demonstrated its effectiveness through simulations for both

MITEoR and the MWAcore, where we obtained maps with better than 50 K noise

and better than 20 resolution for both instruments. We applied this method on

the MITEoR data set collected in July 2013, which was absolutely calibrated us-

ing Cyg A and Cas A. We obtained a northern sky map averaged from 128 MHz

to 175 MHz, with around 2' angular resolution, 5% uncertainty in its overall ampli-

tude, and better than 100 K noise. We also obtained an overall spectral index of

-2.69 0.11, and beam-averaged spectral indices that vary over LST between -2.4

and -2.8. Both the MITEoR visibility data and the 150 MHz sky map are publicly

available at github. com/j ef f zhen/MITEoR.

As this is our first application of this new method, there are many aspects of it that

we are excited to investigate in future work. Throughout this work, we have focused on

regularization matrices that are multiples of the identity matrix. However, since the

sensitivity varies across the sky, especially in the case of MWAcore, a regularization
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Figure 4-6: Spectral index maps between the Parkes map at 85 MHz, the MITEoR

map at 150 MHz, and the Haslam map at 408 MHz. The MITEoR map is masked for

regions with FWHIM above 2.50 or error bar above 20 K. The median spectral indices

in these maps are -2.60, -2.43, and -2.50, respectively.
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matrix whose strength varies with sensitivity may achieve a better balance between

noise suppression and PSF. It is also interesting to study what the optimal array

layout is for imaging diffuse structure, along the lines of Dillon and Parsons [36]. Since

the Earth rotates in the East-West direction, we expect the optimal array layout to

be very different in the E-W direction than the N-S direction, perhaps similar to that

of PAPER or CHIME [158]. Moreover, it is interesting to investigate the effectiveness

of this algorithm for instruments with much narrower primary beams, such as HERA.

Lastly, it is valuable to perform further study in the effectiveness of this method for

the purpose of calibration, such as calibrating the shorter baselines of MWA, which

complements the existing calibration algorithms that focus on point source models

for very long baselines.

4.A Appendix: Improvements to Redundant Cal-

ibration

Zheng et al. [194] first demonstrated the precision and speed of redundant calibra-

tion, which has since been applied to PAPER data analysis in the latest EoR power

spectrum upper limits [4]. In this work we use the same core algorithms as described

in Zheng et al. [194], with improvements that make the algorithm much easier to use.

In particular, we describe the improvement to rough calibration, which is the first

step in the redundant calibration process. A similar algorithm has been discussed

and used in Parsons et al. [127]. The completed redundant calibration software is

publicly available at https: //github. com/j effzhen/omnical.

As described in Zheng et al. [194], redundant calibration is a three step process:

rough calibration, log calibration, and linear calibration. While log calibration and

linear calibration do not rely on any sky information, they require rough calibration

to get started. Zheng et al. [194] described a rough calibration algorithm that re-

quires a sky model, which makes the whole pipeline rather cumbersome, especially

when dealing with data sets from a new season or a new instrument. In this section
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we describe a new rough calibration algorithm that can be directly applied to data

without any preprocessing, thus making the entire redundant calibration pipeline

sky independent. The computational complexity is proportional to the number of

antennas.

Here we describe our algorithm using an 4 by 4 array on a rectangular grid as

shown in Table 4.1, but the algorithm is easily generalized to other redundant config-

urations. At a given time and frequency, we start with 16 x 15/2 = 120 visibilities, vij,

whose phases are 'yij, where i, j are antenna numbers. The goal of rough calibration

is to obtain antenna calibration phases, #j, for all 16 antennas. The simple equation

that describes phase calibration is

'ij = -Oi + 05 + Oi-2 (4.23)

where Ojj is the true phase shared by all redundant baselines that share the same

baseline type with yyj, and we omit 27r wrapping for this section.

We start by taking advantage of the three degree of freedom in phase degeneracies

that are intrinsic to redundant calibration, namely an overall phase to all antenna

phases, and two phases corresponding to rephasing the array. Due to these degenera-

cies, we are free to declare that 1= 0, 01-2 = Y1-2, and 01-5 = 'Y1-5 4 . This then

gives us

#1 =#2 = #75 0. (4.24)

With the first five phases #1, #2,05, 01-2, 01-5 all determined, we can now proceed

to solve all 16 antenna phases. By applying Eq. (4.23) on baseline 7Y2,3, we can solve

for 53 since 02 and 02-3 = 01-2 are known. We can repeat the process to obtain #4.
Similarly, we can obtain #9 using ' 5,9, and extend that to obtain #13. Now we see

that after determining the first five phases, solving for all the antennas is simply a

matter of traversing the entire array and visiting every antenna with either one of the

two baseline types we picked, in this case 01-2 and Ol_.

As shown in Table 4.1, the only baselines we used in this example are the arrows

4 We choose 01-2 and 1-5 because they are the two shortest non-parallel baseline types.
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12 -3 '4

''6 '7 8

9 10"- 15 1

13 14 15 '16

Table 4.1: A 4 by 4 antenna array on a regular grid. Each "-, represents an antenna,
and each arrow represents a baseline used in the rough calibration algorithm.

in the table, so the computational complexity is O(N) where N is the number of

antennas. If noise is a concern, one can increase the number of baseline types used to

visit each antenna, so each phase calibration is sampled multiple times using multiple

baseline types. For both MITEoR and PAPER 32 element data [127], we found that

using just the two most redundant baseline types suffices.

It's important to note that while this rough calibration is much faster than log

calibration and linear calibration, it is not advisable to re-run it on every data set

before log calibration. As we pointed out above, rough calibration makes an arbitrary

decision on the phase degeneracies, which later requires absolute calibration (with an

accurate sky model) to determine. If each time step (typically a few seconds) uses

a different rough calibration, we will have to run absolute calibration separately on

every time step, which is very challenging as we may not always have good calibrators

in the sky. It is much easier to run rough calibration only once at a single time stamp,

and use it for a long period of data, such as one night or even a whole season. This

way the entire time window will share one constant set of phase degeneracies, which

are easy to determine in absolute calibration. Similarly, because log calibration and

linear calibration also make arbitrary choices of these same re-phasing degrees of

freedom, it's important to always project out any re-phasing components from the

calibration phase solutions.
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4.B Appendix: Dynamic Pixelization

Multiplications and inversions of 10' by 10' matrices can currently be done in a

matter of days, but since the computational times grows as O(Af2- 3 ), improving the

resolution can be very computationally demanding. To reduce the matrix size. we can

resort to a more intelligent pixelization scheme, which we call dynamic pixelization.

Having uniform pixelization can be wasteful. For example, near the edge of our

observable region, fine pixelization brings little advantage since our sensitivity is very

low. In contrast, regions with strong flux demand much finer pixelization, such as

the Galactic center and strong point sources such as Cas A and Cyg A. We use a

recursive algorithm to generate a pixelization scheme that accommodates all of the

above considerations. We start with a map predicted by the GSM5 , and a uniform

but coarse HEALPIX nested pixelization with naside ~ n for the longest baseline6 .

We then calculate a beam weighted sky map Sbweight given by

Sbweight (k) s (k) , t)dt. (4.25)

Lastly, we recursively divide each pixel into 4 sub-pixels according to HEALPIX nest

scheme, until the standard deviation among the sbweight values at these 4 sub-pixels

are below a threshold value -. Intuitively, since each pixel corresponds to a column

in the A-matrix, the algorithm only splits each column into 4 when the resulting 4

columns will be sufficiently different in fitting the data.

We decide .the threshold - by numerically searching for the optimal choice. As

larger - translates into fewer pixels but less pixel precision, we choose the largest

- such that the simulated pixelization error is less than 1% in power compared to

the noise in the visibility data. Fig. 4-7 shows an example pixelization scheme for

MITEoR data at 160 MHz, where the final pixel count is less than a quarter of uni-

form pixelization, leading to a factor of 64 speed-up in computation time, while the

5Note that using the GSM for pixelization does not automatically mix GSM information into our
solution.

6This relation is derived from ~ _ 2.
flpix \fx/
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Figure 4-7: The upper plot shows a dynamic pixelization scheme, where the blue,
green, and red regions represent rside of 32, 64, and 128, respectively. This scheme
contains 48900 total pixels, 24.9% of the pixel count in a uniform rside = 128 pixeliza-
tion. The lower plot shows the errors in the simulated visibilities compared to those
simulated with a rside = 512 pixelization, and we see that the dynamic pixelization
error is a factor of two higher than uniform pixelization, and it is negligible compared
to the noise level assuming one night's observation. The dynamic pixelization in this
case saves computation time by a factor of 64, and the increase in error is negligible
unless we average close to a. hundred nights of data.

pixelization error remains negligible compared to noise in the data..
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Chapter 5

An Improved Model of Diffuse

Galactic Radio Emission from

10 MHz to 5 THz

The content of this chapter will be submitted the Monthly Notices of the Royal As-

tronomical Society in April 2016. The authors are: Haoxuan Zheng, Max Tegmark,

Joshua S. Dillon, Adrian Liu, and Abraham R. Neben.

5.1 Introduction

Modeling diffuse Galactic radio emission has received great interest in cosmology.

Cosmological signals, such as the cosmic microwave background (CMB) and redshifted

21 cm emission, have to pass through our Galaxy before reaching us, so they are

inevitably mixed with foreground contamination from Galactic emission. For CMB

experiments, the unpolarized CMB signal dominates over foregrounds in out-of-plane

directions, though the situation for polarized CMB signal is about one to two orders of

magnitude worse (for reviews, see de Oliveira-Costa and Tegmark [33] and references

therein). For the redshifted 21 cm signals from the Epoch of Reionization (EoR), the

foregrounds are thought to be four or more orders of magnitudes higher than the

21 cm signal (see Furlanetto et al. [54], Morales and Wyithe [108] for reviews, and
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Dillon et al. [38], Parsons et al. [127], Ali et al. [4] for the latest 21 cm power spectrum

upper limits), which makes foreground modeling even more important [32, 176, 126,

110, 170, 174, 136, 171, 111, 141, 138, 89, 90, 39].

In the original GSM [34], the authors carried out an exhaustive survey of existing

sky maps from 10 MHz to 100 GHz, and performed a Principal Component Analysis

(PCA) on 11 of the highest quality maps. They found that using just the top three

principal components could explain between 90% and 99% of the variations in all the

maps, depending on frequency and sky direction. By interpolating these three com-

ponents over frequency, the GSM can therefore model the diffuse Galactic emission

anywhere between 10 MHz and 100 GHz.

The considerable flexibility and power of the GSM software has resulted in its

widespread application. Given that foregrounds are not only ubiquitous in cosmolog-

ical surveys, but also interesting probes of astrophysical phenomena in their own right,

it is unsurprising that the GSM has had broad influence within the astrophysics com-

munity. Astrophysical research using the GSM has ranged, for example, from studies

of inflation with the CMB (e.g. Armitage-Caplan et al. [6]) to interstellar turbulence

(e.g. Iacobelli et al. [69]) and from EoR power spectrum limits (e.g. Ali et al. [4]) to

the discovery of a Fast Radio Burst (e.g. Burke-Spolaor and Bannister [24]).

However, there are some notable limitations to the GSM. In terms of frequency

coverage, there is a lack of direct observation in the EoR frequency range. The

closest maps in frequency are a 45 MHz map with about 3.6' resolution [5, 92] and

a 408 MHz map with 48' resolution [62, 63, 149], and for the high resolution GSM

version, the entire model is locked to the 408 MHz map. In terms of sky coverage,

the PCA algorithm is performed on a rather small region covered by all 11 maps,

mostly in out-of-plane directions, so the resulting principal components may suffer

from biased frequency dependencies skewed towards that of the small region covered.

In terms of accuracy, each of the 11 data sets are normalized beforehand so that

they are treated equally, regardless of their relative accuracy. Thus, the model may

suffer unnecessarily from noise and systematics in the maps of lesser quality. Lastly,

since the PCA produces orthogonal principal components and orthogonal principal
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maps, these components are not likely to correspond to actual physical processes such

as synchrotron or dust emission. Actual emission mechanisms have similar spatial

structures (such as strong emission in the Galactic plane) and thus are not mutually

orthogonal.

In this work, we present a new GSM-building method that naturally extends the

original PCA algorithm. We use PCA as the initial step to obtain crude estimates of

the principal components and their corresponding maps, and we iterate between the

components and the maps to find the best fit to all of the data available. This method

allows us to include 29 sky maps in the frequency range 10 MHz to 5 THz (including

the Parkes maps at 85 MHz and 150 MHz [80]), which share no completely common

sky coverage. This method can be further extended in the future to incorporate

error information from each map into the fitting process. Furthermore, we use a

blind component separation technique to recombine the orthogonal components into

ones that are physically interpretable as different emission mechanisms. Both our

blind spectra and blind component maps agree remarkably well with existing physical

models.

The remainder of this paper is structured as follows. In Section 5.2, we describe our

improved GSM-building method. In Section 5.3, we describe the 29 sky maps included

in this work. Lastly, in Section 5.4, we present the improved GSM from 10 MHz

to 5 THz with six components in Section 5.4.1, estimate the new GSM's predictive

accuracy in Section 5.4.2, use a blind approach to recombine those components into

physically meaningful contributions in Section 5.4.3, and compare our blind spectra

and component maps with existing results in the literature in Sec. 5.4.4 and 5.4.5.
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5.2 Iterative Algorithm for Building a Global Sky

Model

5.2.1 Framework

We describe the Global Sky Model in the form of two matrices, an npix x nc map

matrix M and an n, x nf normalized spectrum matrix S, where npix is the number

of pixels in each sky map, n, is the number of components, and nf is the number of

frequencies for which we have maps. Furthermore, we encapsulate all the sky map

data into an nPix x nf matrix D, where all maps are normalized to the same level at

each frequency.' The Global Sky Model then models the sky by

D ~ MS. (5.1)

Thus to construct a Global Sky Model is to find the pair of M and S that minimizes

the cost function

||D - MS|2 . (5.2)

In general, because both components in the product MS are unknown, we have

degeneracies in the form of an invertible n, x n, matrix '@. For any solution M and S,

an alternative solution M' = M*- 1 and S' = @S will produce an identical prediction

for the data D.

To use the GSM to predict sky maps at previously unmeasured frequencies or sky

regions, one interpolates at the desired frequency both the normalized spectra in S and

the overall normalization. For the rest of this work, we choose linear interpolation for

the normalized spectra over the log of frequency, and linear interpolation for the log of

normalization over the log of frequency. Because normalized spectra are interpolated

linearly, the choice of degeneracy matrix T will have no effect on the predictions of

the GSM.

'Due to incomplete and different sky coverages between maps, a naive normalization will not
weigh the maps properly. We discuss our normalization in more detail in Section 5.2.3.
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5.2.2 PCA Algorithm

We first describe the original PCA algorithm in de Oliveira-Costa et al. [34], before

generalizing it to our iterative algorithm. Given the data matrix D, one first performs

an eigen-decomposition of DtD:

DtD = CtAC, (5.3)

where C is an nf x nf unitary matrix with eigenvectors as its rows, and A is an nf x nf

diagonal matrix with eigenvalues on its diagonal. If the sky can be described by n,

components where nc < nf, then A has only n, non-zero eigenvalues on its diagonal2 ,

so

D'D = dt d (5.4)

where C and A are the nc x nc, part of their non-tilde counterparts corresponding to

the non-zero eigenvalues. One then takes the principal components C and solves for

the best M that satisfies

M ~D. (5.5)

Comparing Eq. (5.1) and Eq. (5.5), we see that the PCA algorithm obtains one

solution to Eq. (5.1), with S = C. However, in practice, the sky maps have various

sky coverages with potentially very few overlapping pixels, so rather than using the

full D for Eq. (5.3), the original GSM uses a D* that consists of a subset of the rows

in D that corresponds to the common pixels covered at all frequencies. Therefore,

the process of obtaining C is ignoring the majority of information in D, and the

solutions are thus not minimizing the cost function in Eq. (5.2). Furthermore, if one

wishes to include more data sets, such as we do in this work, there are no overlapping

regions that cover all of the frequency range, so it is difficult to apply the original

PCA algorithm as-is.

2In practice, no eigenvalues are perfect zeros, and we will discuss our choice of n, in more details
in Section 5.4.1.
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5.2.3 Iterative Algorithm

To overcome the challenges discussed above, we extend the PCA algorithm by iter-

ating on the results obtained from it. We start by temporarily excluding the data

sets with smallest sky coverage one by one, until the remaining data sets have more

than 5% common sky coverage. We then use the 5% common pixels to obtain nc,

M(O), and C following the PCA algorithm described in the previous section, where

M(0 ) denotes our starting M at the 0th iteration. Once we obtain M(0), we fold the

temporarily excluded frequencies back into D and start iterating. At the ith iteration

we compute

S = (1 -)S(-) + 7(M(,-M)tI('--1)-1M(-)tD, (5.6)

MN = (1 - n)Ml-i) + n(S()S(i)t)- 1 S(i)Dt, (5.7)

where 0 < < ; 1 is a step size. Intuitively, at each iteration we are computing the

least square solution SW to Eq. (5.1), treating M(--) as the truth, and vice versa.

We keep iterating until the cost function decreases by less than 0.01%.

Due to incomplete sky coverage, there are two further tweaks to the above equa-

tions. Firstly, we do not directly compute the above equations in matrix form. Rather,

we compute SM column by column, with each column representing one frequency, and

we modify M(-) to exclude the pixels not covered at that frequency. Similarly for

Eq. (5.7), each column corresponds to a pixel, and we modify SM to exclude frequen-

cies that do not cover that pixel. Thus, at every iteration, the algorithm incorporates

all pixel data in D, regardless of the sky coverage at each frequency or the frequency

coverage of each pixel. In addition, since the maps have different sky coverages,

simply normalizing valid pixels in each map will over-weigh the maps covering low

temperature out-of-plane regions compared to the ones that only cover the Galactic

center. Thus, we re-normalize the data matrix D at every iteration by dividing each

map by the norm (root-sum-square) of its best fit map M(z)S(i).
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5.2.4 Incorporating More General Data Formats

Eq. (5.1) assumes that all data sets contained in D are sky maps with the same

pixelization and angular resolution, which is what we focus on in this work. However,

this comes with the drawback of forcing us to work with the lowest common resolution

for all maps, thus discarding the high frequency information in higher quality maps.

Furthermore, many low-frequency interferometers such as MWA [172] and PAPER

[125] have produced high quality data, but because they sample sparsely in the Fourier

domain, it is challenging to reduce those measurements into pixelized sky maps.

Fortunately, we can generalize our algorithm and allow all data sets that are linearly

related to the pixelized sky maps. The data set at frequency index f can be described

by

Dif = E BfMinSnf, (5.8)
in

which is a generalized version of Eq. (5.1). At any given frequency index f, Bf is a

known matrix describing the linear relationship between the pixelized sky map and

the data set. For pixelized sky-maps, Bf is the identity matrix and Eq. (5.8) reduces

to Eq. (5.1). For low resolution data sets, Bf contains the point spread function for

all pixels in the sky, which is typically the antenna beam pattern. For drift-scanning

interferometer data sets, Bf contains the primary beam pattern as well as the rotating

fringe patterns for all baselines, and Dfi at f is a flattened list of visibilities over both

time and baselines. Given B and D, one can iteratively solve for S and M. It is worth

noting that while including the B-matrix does not significantly increase the amount

of computations for obtaining S at each iteration, it makes the computation of M

much more demanding. This is because one can no longer use Eq. (5.7) to compute

M pixel by pixel, as the B mixes pixels in the sky. One now needs to operate matrices

with npix x n, rows rather than n, rows as in Eq. (5.7). For a HEALPIX map [59] with

naide = 64 corresponding to pixel size of 1 and 6 principal components, the matrix

size is about 3 x 105 on each side, which demands significant computing resources

beyond the scope of this work.
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Figure 5-1: 29 sky maps used in this work from 10 MHz to 5 THz, plotted on arcsinh
scale in Mollweide projection. The 11 bold and underscored frequencies are the
ones included in the original GSM. The last panel shows the 120 different, frequency
coverage regions, each represented by a different color, and none of which contains all
29 frequencies. The overall amplitudes of the maps are shown in Fig. 5-2.

5.3 Sky Survey Data Sets

Table 5.1 and Fig. 5-1 lists all sky maps we use in this work, ranging from 10 MHz

to 5 THz. We have included all sky maps in this frequency range that have angular

resolutions better than 5' and substantial sky coverage. All data, sets are publicly

available online 3 except the ones at 45 MHz and 2.33 GHz. We manually mask out

the ecliptic plane in the 3.33THz AKARI data, and the 5THz IRIS data, and ex-

clude IRIS data above 5 THz, in order to remove zodiacal contamination. Unlike

3 MPIfR: www3.mpifr-bonn.mpg.de/survey.html,

LAMBDA: lambda.gsf c.nasa.gov/product/

Planck: pla.esac.esa.int/pla.
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Figure 5-2: The overall amplitudes of the 29 sky maps included in this work. The

sizes of the circles represent the sky coverage of each map. The amplitudes can be

thought of as the root-mean-square of the input maps, with some iterative adjust-

ments explained in Section 5.2.3.

the original GSM, which used physical models to pre-remove the CMB anisotropy

from the WMAP and Plack maps, we choose to let the data speak for itself and not

pre-remove the CMB anisotropy. We smooth all maps to 5', and remove another 3'

from edge areas in incomplete maps. All map are pixelized onto a HEALPIX grid

with nside= 64, and all units are converted to MJy/sr. These 29 maps form regions

with 120 different combinations of map overlap, with no common region between all

maps (see the bottom right plot in Fig. 5-1), so the improved GSM-making method

is necessary to combine all these data sets.

5.4 Results: the Improved Global Sky Model

5.4.1 Orthogonal Components Result

We apply the algorithms described in Section 5.2 on maps described in Section 5.3.

To obtain the initial 5% common coverage, maps at 10 MHz, 85 MHz, 150 MHz, and

5 THz are temporarily excluded. In the iteration process, it takes 12 iterations with

step size q = 1 to converge. We also tried a smaller 1 = 0.2, and obtained the

same result with 4 times more iterations. After the first convergence, we mask out

the 1% of the pixels with the highest errors in order to eliminate point sources, and

re-iterate for another 8 iterations to arrive at the final convergence. The new GSM
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Table 5.1: List of sky maps we use in our multi-frequency modeling. F: full sky;
S: southern sky; N: northern sky; E: equatorial plane; P: partial sky. CHIPASS
at 1.39 GHzhas a bandwidth of 64 MHz, so its frequency largely overlaps with the
Stokert+Villa Elisa map at 1.42 GHz.
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Project/Instrument

DRAO, CAN
DRAO, CAN
MRAO+JMUAR
Parkes
Parkes
GER, AUS, ENG
Dwingeloo, NLD
CHIPASS
Stokert, Villa Elisa
Rhodes/HartRAO
WMAP
Planck
WMAP
WMAP
Planck
WMAP
Planck
WMAP
Planck
Planck
Planck
Planck
Planck
Planck
AKARI
AKARI
IRAS (IRIS)
AKARI
IRAS (IRIS)

v(GHz)

0.01
0.022
0.045
0.085
0.15
0.408
0.82
1.39
1.42
2.33
22.8
30
33
40.7
44
60.8
70
93.5
100
143
217
353
545
857
1875
2143
3000
3333
5000

Area
N
N
F
E
E
F
N
S
F
S
F
F
F
F
F
F
F
F
F
F
F
F
F
F
P
P
F
P
P

Resolution

2.6 x 1.90
1.1 x 1.7'

~ 3.6'
3.8 x 3.5'
2.20
48'
1.20
14.4'
36'
20'
49'
32'
37'
29'
24'
20'
14'
13'
10'
7'
5'
5'
5'
5'
1.5'
1.5'
4.3'
1.5'
4'

Ref.
[28]
[152]
[5, 92]
[80]
[80]
[62, 63, 149]

[10]
[26]
[148, 146, 147]
[78]
[66]
[133]
[66]
[66]
[133]
[66]
[133]
[66]
[133]
[133]
[133]
[133]
[133]
[133]
[41]
[41]

[103]
[41]
[103]
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Figure 5-3: The 6 orthogonal components (top) and t heir spectra (bottom).

maps are p)lotted on arcsinh scales. The percentage on each component represents

the fraction of all variations among the 29 input maps explained by that, component.

Here the spectra are not directly S, but, tie rows of S iiiultiplied by the overall

amplitudes of tie input naps shown in Fig. 5-2.
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Figure 5-4: Three different RMS error percentage estimations for our GSM, compared

to the error quoted with the original GSM. Agnostic error is an overly pessimistic

upper bound to the GSM's predictive accuracy, whereas the map agnostic error is the

lower bound. Fitting error is the fitting residual in each map not explained by the

GSM. The sizes of the circles represent the sky coverage of each map. The improved

GSM has less error compared to the original GSM across the entire frequency range.

with six components is shown in Fig. 5-3. We choose the number of components

to be six based on the predictive power of the resulting GSM, which we discuss in

more detail in Section 5.4.2. We find that using more than six components does not

noticeably increase the predictive power of the resulting GSI. We plan to perforn a

more rigorous model selection to determine the optimal number of components in a

future work that, incorporate error information from each input map.

5.4.2 Error Analysis

To assess the predictive power of the GSM, we compute three types of Root Mean

Square (RMS) errors at each frequency. The first is the fitting residual, which is the

difference between the complete GSM model and the input, sky maps. This fitting

error is typically 1% for CMB frequencies and around 5% everywhere else, as shown

in blue in Fig. 5-4. This is a. combination of the measurement errors in the input

maps and weak emission mechanisms comparable to such errors, which we are unable

to capture. The fitting error represent the lower bound of the predictive accuracy of

198



our GSM.

The second type of error is the map "agnostic error", where at a given frequency,

we use the same normalized spectra but do not use the input map at that frequency to

calculate the principal component maps. We then calculate the RMS of the difference

between the resulting model and the actual sky map. As shown in green in Fig. 5-

4, this error is typically 1.5 to 2 times larger than the fitting error. Among the

three errors discussed in this section, this error is the most probable estimate of the

predictive accuracy of the GSM, and is also used in the original GSM work.

The third type of error is a conservative upper-bound to the predictive accuracy

of the GSM. Here we pretend to have zero knowledge of each map and exclude it from

the algorithm from the outset, and produce a new GSM that is agnostic of that map.

We then compare the excluded map with the predicted map using the new agnostic

GSM, and calculate the RMS of the difference after an overall renormalization. The

renormalization is typically less than 15%. This is an overly pessimistic estimate of the

predictive power of the GSM, because we are not in the regime of an over-abundance

of sky maps, especially at frequencies below the CMB. The only two full-sky maps

below CMB (at 408 MHz and 1.4 GHz) serve as "cornerstones" of the GSM, so the

agnostic error caused by removing them completely (and thus crippling the GSM)

is not a good estimate of the complete GSM's predictive power at an unexplored

frequency such as 300 MHz.

The peaks in the agnostic error curves that rise above 10% fall into three cate-

gories. The first category includes the ones near spectral lines, where the high errors

are caused by having a spike at one end of the interpolation. One such example

is the strongest peak at 2.3 GHz, whose error mostly comes from interpolating be-

tween the peak at 1.4 GHz and the lowest WMAP frequency. Another example is

the peak around the 100 GHz CO line. The second category includes the ones at the

edge of our frequency range, namely 10 MHz and 5 THz. They have high errors due

to extrapolation. The third category includes ones that interpolate between incom-

plete and typically non-overlapping maps. One example is the 408 MHz Haslam map,

which is interpolated between the 150 MHz equatorial map and the 820 MHz northern
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sky map. Another example is the 3 THz IRIS map that is interpolated between two

AKARI maps with poor equatorial coverage.

In summary, for a map predicted by the GSM, we expect the RMS accuracy to

be above the fitting error, and below the completely agnostic error. This is typically

between 5% and 15% for most frequencies, and for CMB frequencies and frequencies

near 500, GHz, the accuracy can be as good as 2%. In addition, we expect an overall

amplitude offset of less than 15%. The improved GSM is seen to be consistently more

accurate than the original GSM across the entire frequency range.

5.4.3 Blind Component Separation

Since the component maps we obtain (Fig. 5-3) are mutually orthogonal by con-

struction, they are linear combinations of underlying emission mechanisms such as

synchrotron and thermal dust. As discussed in Section 5.2.1, we have the freedom to

apply any 6 x 6 invertible matrix * and its inverse to the matrices S and M without

changing our model, MS. Applying 1@ will not change any linear interpolation results

either. In this section we discuss our two-step automatic algorithm to determine XF

and blindly extract the physical contributions. This algorithm focuses on manipulat-

ing the normalized spectrum matrix S. The only two pieces of information that we

use in order to determine * are: 1) the absence of monopole in CMB; and 2) compact

frequency support for each normalized spectrum, meaning that the each component

dominates a limited frequency range. Our algorithm is thus blind to any existing

models for known emission mechanisms.

We start with a T that equals the identity matrix. The first step tries to search

for the smallest frequency range outside which there is only five components, meaning

that the sixth component must be limited to said frequency range. To do this, we

enumerate all possible frequency ranges, and for each frequency range, we remove

the columns in S that correspond to that range to form S*. We then calculate

the eigenvalues and eigenvectors for S*S*I. For the smallest frequency range whose
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Figure 5-5: Top: six component maps from blind component separation. Bottom:
six component spectra (solid poillts) and their best fits (dashed lines). For plotting

purpose, each component map is normalized to have a median of 1 and plotted on
arcsinh scales, where the color range corresponds to 2 and 98 percentiles in each map.
In the bottom panel, we only plot the two most dominant component spectra at, each

frequency to reduce visual clutter. The best fit parameters are listed in Table 5.2.
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smallest eigenmode explains less than 1% of all variations in S*,

Amn-< 1% (5.9)tr(S*S*t ) '

we multiply I by its eigenvectors C*. This way, the last row of [S, which corresponds

to the smallest eigenvalue, is our first separated component. If there is no frequency

range that satisfies this criteria, we keep doubling the 1% threshold until one valid

range appears. In practice, the synchrotron component is separated first with 2%

threshold. We then repeat the above procedure, and separate the CMB component

at 4%. Lastly, the "HI" component is separated at 8%. The first step ends since we

cap the threshold at 10%.

Before we proceed to the second step, we attempt to clean the foreground con-

tamination in the CMB component found in the first step. To do this we find the XF

that minimizes the power in the CMB component map. This is the only procedure

in the entire algorithm where we are working with the component map rather than

normalized spectra, also the only procedure that use physical knowledge, namely the

lack of monopole in the CMB.

The automatic procedure mentioned above is not able to separate the last three

modes, which suggests that they cover largely overlapping frequency ranges. For our

second step, we demand that the last three components each dominate one of the

three frequency ranges: 10 GHz to 100 GHz, 100 GHz to 1 THz, and above 1 THz. To

do this, we find the 'I that minimizes each component's normalized spectrum outside

its designated range. The results we obtain are shown in solid dots in Fig. 5-5.

5.4.4 Fitting the Blind Components

As shown in Fig. 5-5, five of the six components obtained in our blind separation

can be related to known physical processes: synchrotron, free-free, CMB, and two

thermal dust species at different temperatures. In this section, we take the known

spectrum models of these mechanisms, such as a power law for synchrotron, and

find the best parameters for them that fit our blind spectra. We first compute six
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spectra by taking the new normalized spectrum matrix TS and multiplying back the

normalization (shown in Fig. 5-2). We then fit each spectrum using its corresponding

physical model: synchrotron and free-free as power laws with spectral indices /#,
thermal dust as blackbody spectra multiplied by power laws with temperatures T

and spectral indices 3, and CMB anisotropy as the first order Taylor expansion of

the blackbody spectrum with temperature T. Note that we do not change our blind

spectra based on these models.

The fits are performed in log(frequency)-log(surface brightness) space, and input

variances are empirically estimated using the root mean square of best-fit residuals.

We limit the fitting range for each component to the frequency range it dominates,

as shown in Fig. 5-5. For power law fits, we perform a standard linear regression

to obtain the best-fits and error bars. For the dusts and CMB components, we first

numerically search for the best fit, and then perform Monte-Carlo on the input spectra

using the empirical variances to estimate the error bars.

Although our component separation is blind to any of these model spectra, the

best-fit parameters for all five of our blind spectra are seen to agree very well with

existing literature values to within 2-, as shown in Table 5.2. For all the non-CMB

models, the error bars on our best-fit parameters are comparable, if not better, than

the current best values in the literature. In addition to the spectra, their component

maps also agree well with existing spatial templates, which we discuss in the next

section.

5.4.5 High Resolution GSM

In addition to the 50 resolution GSM we have discussed, we also produce a high

resolution version using the same normalized spectra as the 5' version. Thanks to

the successful physical component separation as shown in Fig. 5-5, we are able to

adopt two different resolutions throughout the frequency range. For frequencies above

10 GHz, we take those WMAP, Planck, AKARI, and IRIS maps whose resolution is

better than 24 arcminutes, smooth them to 24 arcminutes, and solve for the CMB, the

free-free, and the two dust component maps. Then, for frequencies below 10 GHz, we
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Best-fit for blind Literature Ref.
Component Parameter spectra vleRf

spectra nvalue

Synchrotron spectral index / below -2.519 t 0.018 -2.5 0.1 [153]Haslam
spectral index / above -2.715 0.082 -2.695 0.120 [135]Haslam

Free-free spectral index 3 -2.175 0.032 -2.1 0.03 [159]
2.72548 i

CMB temperature T 2.748 i 0.016 K 0.00057K [52]
Warm dust temperature T 20.0 3.3 K 16.2 K [51]

spectral index / 2.78 0.70 2.70
Cold dust temperature T 10.4 1.2 K 9.4 K [51]

spectral index / 2.54 0.51 1.67

Table 5.2: List of model parameters for our blind components compared to existing
literature values. All parameters that fit our blind components agree with existing
literature values within 2-. The error bar in Platania et al. [135] represents spatial
dispersion rather than statistical error.

take the 408 MHz and 1.42 GHz maps, smooth the latter to 48 arcminutes, smooth and

remove the four component maps obtained in the high frequency band, and fit for the

synchrotron and "HI" maps. Overall, the high resolution product has 48 arcminute

angular resolution at frequencies below 10 GHz, and 24 arcminute angular resolution

above 10 GHz, shown in Fig. 5-6. Note that while the high resolution component maps

share the same spectra and large scale features as their low resolution counterparts,

directly smoothing them to 5' will not produce exactly the low resolution versions,

because the high resolution component maps are calculated using only a subset of the

29 input maps.

Our blind high resolution component maps agree remarkably well with existing

maps and spatial templates. Our synchrotron, CMB anisotropy, free-free, and cold

dust maps share most of the features seen in their counterparts in both the WMAP 9

year results and Planck 2015 results (see e.g. Fig. 19 in Bennett et al. [9] and Fig. 16

in Planck Collaboration et al. [133]). Free-free emission is known to closely trace Ha

emission [50], and our free-free map shows all the key features visible in the composite

Ha map presented in Finkbeiner [50]. Moreover, our cold dust map share all the key

spatial features of the 94 GHz dust map presented in Finkbeiner et al. [51].
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Figure 5-6: High resolution version of the six component maps. The five non-CMB

maps follow the same color scales as those in Fig. 5-5, whereas the CMB component

is plotted on a linear scale. The top two components have 48' angular resolution, and

the other four 24'.

5.4.6 Further Discussion

The blind spectra can be fit very well in the frequency ranges they dominate, as shown

in Fig. 5-5 and Table 5.2. On the flip side, however, because our blind separation

approach minimizes each component's normalized spectrum outside the frequency

range it dominates, this approach cannot recover very well the parts of the spectrum

outside its dominant range. One such example is the free-free spectrum, which is

well fit by a power law with spectral index of -2.175 0.032 near tihe CMB frequen-

cies, but due to the minimization procedure, it largely disappears in the MHz range

where synchrotron dominates. It is still contained in the GSM, but absorbed into the

synchrotron and the HI+other components.
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The sixth component, HI+other, is likely a combination of multiple mechanisms

and systematic effects. Its strong peak near 1.4 GHz is well agreed by both the

CHIPASS map and the Stockert+Villa Elisa map, and suggests local 21 cm emission

as the dominant mechanism. In its component map, however, we notice two more

features. There is a blue (low temperature) region whose shape resembles the syn-

chrotron map, so this might indicate another weak synchrotron component with a

different spectral index. We also notice a dipole component that is aligned with the

equatorial poles, with striping artifacts especially visible near the northern equato-

rial pole, which suggests contribution from scanning systematics in the low frequency

maps.

5.5 Summary and Outlook

We have presented an improved algorithm that builds upon the original PCA al-

gorithm, allowing us to include many more incomplete sky maps across a larger

frequency range. We have presented an improved GSM, with expected predictive

accuracy between 5% and 15% for most frequencies, and around 2% near CMB fre-

quencies, with overall amplitude offsets less than 15%. We have also presented a blind

component separation technique, which identifies five physical components that agree

very well with existing physical models. Lastly, we also create a high resolution GSM,

with 48' resolution at frequencies below 10 GHz, and 24' resolution above 10 GHz.

There are two ways to further improve the GSM in the future: adding more data

sets and improving the algorithm. On the data side, many high quality maps will be-

come available in the near future, such as CBASS [79, 70], SPASS [27], GMIMS [186],

and GEM [168]. Some of these upcoming maps will fill in the gap between 2.3 GHz

and 23 GHz. In addition, in a separate paper [195], we present a new imaging method

that allows existing low-frequency interferometers such as the MWA to produce high

quality foreground maps that cover nearly the full sky. Last but not least, we aim to

produce a polarized GSM using existing and upcoming polarized sky maps.

On the algorithmic side, we would like to include error information for all sky maps
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in the form of the maps' error covariance matrices into Eq. (5.6) and Eq. (5.7). This

would allow us to properly weigh each map rather than resorting to renomalizing all

maps and treating them all equally. In addition, this will allow us to perform rigorous

model selection in order to decide the optimal number of principal components. Last

but not least, we are interested in improving the blind physical component separa-

tion procedure to learn more about the physical mechanisms that correspond to the

components found in the GSM.

With the help of upcoming high-quality sky maps, the improved GSM will not only

serve as a powerful predictive model for diffuse Galactic emission, but will also have

the potential to uncover new physical mechanisms that contribute to this emission.
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Chapter 6

Conclusion

I began this thesis in Chapter 1 explaining the tremendous progress in precision

cosmology made during the past two decades, and explained how 21 cm cosmology had

the potential to provide even more knowledge of our universe in the decades to come.

I then gave a brief introduction to traditional radio interferometry, which was being

adapted by the 21 cm community for the new science objective of detecting redshifted

21 cm signals. I then explained the challenges the new field must overcome in order

to make progress in the short term and reach the full potential of 21 cm tomography

in the long term - challenges including calibration, foreground contamination, and

computational cost.

In Part I, Building MITEoR and OMNICAL, I described my work leading the

MIT effort to build a new radio interferometer: the MIT Epoch of Reionization

(MITEoR) experiment. I demonstrated many new instrument design ideas and algo-

rithms through this experiment, one of the most notable being redundant calibration

algorithms. I showed that redundant calibration algorithms are able to rapidly per-

form calibration without the need of a sky model, and that they can achieve optimal

precision (Fig. 2-11). I also found that the calibration parameters fluctuated on

minute timescales (Fig. 2-12). This capability has influenced the design of the next

generation 21 cm instrument HERA [60], which will have 384 dish elements arranged

in a maximally redundant hexagonal layout and take full advantage of redundant

calibration.
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In Part II, Latest Epoch of Reionization Science Results, I applied the redundant

calibration algorithms to the latest data at the time, collected by the Precision Array

for Probing the Epoch of Reionization (PAPER), thereby dramatically improving the

quality of the PAPER data. With the data quality improved by a combination of

this calibration, other data processing enhancements, and more measurements, the

PAPER collaboration obtained the most stringent upper limits to the 21 cm power

spectrum to date, only one order of magnitude away from a detection (Fig. 3-18).

With these upper bounds on the power spectrum, a crude constraint of spin temper-

ature Ts > 4 K at z = 8.4 was obtained, as shown in Fig. 3-21. Pober et al. [140]

carried out a much more thorough study using these power spectrum upper bounds,

and found for cold reionization a lower bound of Ts > 10 K assuming Plancks reion-

ization midpoint measurement [134] was current. This is only the beginning of 21 cm

measurements teaching us about astrophysics, and with PAPERs latest 128 element

data set and the HERA 19 element data set currently being analyzed, we are likely

to make the first detection of 21 cm power spectrum very soon, and learn much more

about both astrophysics and cosmology [93, 139, 88].

Finally, in Part III, Novel Imaging and The New Global Sky Model, I presented

two new algorithms optimized for 21 cm cosmology. The first was a new imaging

method that did not use the conventional Fourier approach. Rather, the new method

took on Eq. (2.3) as a linear system of equations, and used precise mathematical tools

developed by the CMB community to make high precision, large field of view images

of the radio sky. I showed that this imaging method can produce high quality maps of

the diffuse Galactic emission using both redundant arrays such as MITEoR and non-

redundant array such as the MWA (Fig. 4-1). By applying this new method on the

MITEoR data described in Part I, I produced the first Northern sky map at 150 MHz

at about 2' resolution and about 15K uncertainty (Fig. 4-4). I also calculated the

averaged spectral index in the MITEoR frequency range to be -2.73 + 0.11, which

agrees well with the EDGES result of -2.5 + 0.1 measured in a different sky region

[153]. By comparing the MITEoR 150 MHz map to the Parkes map at 85 MHz [80]

and the Haslam map at 408 MHz [62, 63, 149], I produced spectral index maps for the
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Northern sky and found that the Galactic plane has a significantly shallower spectral

index around -2.3 compared to out of plane regions with around -2.5. By applying

this imaging method to future data sets from instruments such as MWA and HERA,

we should be able to make very high quality foreground maps at the EoR frequency

to help foreground removal efforts in 21 cm cosmology.

The second algorithm I built was an upgrade to the Global Sky Model (GSM)

of diffuse galactic radio emission, which combined information from sky maps from

many different frequencies, and whose uses included foreground modeling for CMB

and 21cm cosmology. My new GSM algorithm improved both the precision and the

flexibility of the original, allowing me to combine many more datasets in a more

accurate fashion. The new GSM I obtained had a much wider frequency range and

better precision across the entire frequency range (Fig. 5-4).

I also developed a blind method for extracting physical emission mechanisms from

the GSM components, making no assumptions about physical emission mechanisms

(synchrotron, free-free, dust, etc). Remarkably, this blind method automatically finds

five components that have previously only been found "by hand", which we identify

with synchrotron, free-free, cold dust, warm dust, and the CMB, with maps and

spectra agreeing with previous work but in many cases with smaller error bars, as

shown in Table 5.2 and Fig. 5-6. For example, I found the synchrotron spectral index

to be -2.52 t 0.02 and -2.72 0.08 below and above the Haslam frequency, the free-

free spectral index -2.18 0.03, and two component dust temperatures 20.0 3.3 K

and 10.4 1.2 K. My blind method even independently rediscovered the CMB and

constrained its temperature to be 2.75 t 0.02 K. Upcoming high-quality data sets

should enable future GSMs to not only serve as powerful predictive tools for un-

probed frequencies, but also to uncover potential new physical emission mechanisms.

The improved GSM is available online at github. com/jef fzhen/gsm2016.

I hope that my work in this thesis has helped move us closer to shedding light on

the "dark ages" of our universe.
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