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SUMMARY

The three dimensional unsteady flow field behind a transonic compressor rotor with a design pressure

ratio of 1.6 at a tip Mach number of 1.2 has been resolved on the blade-passing time scale, using the

M.I.T. Blowdown Compressor Facility. Quantities determined were total and static pressures, tangential

flow angle and radial flow angle. The spatial and temporal resolution achieved was sufficient to determine

velocity components inside individual blade wakes and in the surrounding flow. From these measurements the

flow structure is described at stations immediately behind the'rotor and one chord downstream. Some domi-

nant features of the flow just behind the rotor are large radial velocity components, large static pressure

fluctuations near the blade wakes, and definite unsteadiness (in rotor coordinates) of the wakes. The wake

behavior one chord downstream is described in terms of the effect of the strong mean swirl on the behavior

of shear disturbances. In the outer portion of the annulus, where the mean flow approximates a solid body

rotation, a strong, persistent oscillatory flow is found with 16 periods in the circumference as roughly

predicted by theory. In the inner portion of the annulus the disturbances attenuate axially.

INTRODUCTION

The flow through high work compressors deviates from the idealized model of a nearly two dimensional

flow along cylindrical stream surfaces because of a number of phenomena including vorticity shedding due to

spanwise circulation variations, radial flow in the boundary layers, variations in passage shock strength,

casing boundary layer growth, and more. An understanding of the flow field induced by these phenomena seems

essential to progress in reducing the losses in such rotors.

This paper reports some results of a comprehensive investigation of the flow through such a high work

transonic compressor rotor, being conducted at the M.I.T. Gas Turbine Laboratory. The immediate objectives

of the program include a thorough experimental investigation of the flow ahead of, within, and downstream

of the rotor, and development of theoretical models capable of describing the flow quantitatively. In the

present paper two aspects of the study will be discussed; a detailed time resolved study of the flow field

downstream of the rotor, and a linearized description of the flow field accounting for the strong mean swir"..

At present, few detailed measurements are available within the rotor passage; Epstein has obtained

quantitative density maps by gas fluorescence in the same rotor studied here, as a part of this comprehensive

program. Very few measurements have been carried out downstream of rotors. Reference (2) presents down-

stream data for a low speed rotor, but the data to be given here are probably the first obtained for a high

work, transonic compressor. The rotor has a tip Mach number of 1.2, a design pressure ratio of 1.6, and

inlet hub/tip ratio of 0.5. Time resolved measurements of static pressure, stagnation pressure, and the

axial, tangential and radial components of Mach number will be presented for two axial stations downstream

of the rotor.

As an aid to understanding these complex results, a general theory of small disturbance fields in

strongly rotating flows has been developed
3 
and some qualitative features of the results will be compared

to the data.

The authors have considerable confidence in the experimental results and feel they are representative

of the behavior of many useful transonic rotors. They are complex, and full understanding of their impli-

cations is not claimed. The interpretation through the linearized disturbance theory is tentative, and

but a first step at best.

EXPERIMENTS

Test Facility

The experiments described in this paper were conducted in the M.I.T. Blowdown Compressor Facility.

This facility and the test rotor are described in detail in Ref. (4). Essentially, the facility provides

means for testing a two-foot diameter transonic rotor in a pulsed mode, with a test time of about 30 milli-

seconds during which the rotor is driven by its angular inertia, and operates at fixed axial and tangential

Mach numbers. Measuring probes can be surveyed over the span during this test time, at a number of axial

stations. A schematic of the test section and rotor flow path are given in Fig. 1.

Instrumentation

Time resolved measurements of the fluctuating pressures behind the compressor rotor were determined

using probes based on the miniature silicon-bonded transducers produced by the Kulite Corporation. These
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transducers have frequency response flat from DC to 100 kHz and their diameter is 1.5 mm. Probes which can
be used to resolve highly unsteady three dimensional flow fields can be produced by combining several of
these diaphragms into one probe body. The probe design used for these experiments is shown in schematic
form in Fig. 2. Four transducers were mounted on flats on a cylindrical body to construct this probe.
One transducer faces the mean flow direction while the remainder are inclined at 45 degrees to the mean
flow direction. During a compressor test the probe is traversed radially inward with transducer number 1
perpendicular to the mean flow direction.

The fraction of the free stream dynamic pressure recovered at each transducer location is primarily a
function of radial and pitchwise flow angles. Dynamic pressure recovery is influenced to a much lesser
degree by Mach number and Reynolds number. The pressure recovery measured at each transducer location during
steady state testing is shown in Figs. 3a, b, and c for several combinations of flow angles. The recovery
measured for transducer number 2, which is not shown, is identical to that of transducer number 3, if the
sign of 6 is reversed. During a compressor test the transducers are referenced to vacuum and thus indicate
absolute pressure. An iterative procedure is used to determine the freestream total pressure, static pressure,
radial flow angle, and pitchwise flow angle which would be compatible with the four measured pressures using
these probe calibrations.

The effect of Mach number and Reynolds number variation on the probe calibrations were determined in
steady state model testing. The range of Mach number simulated was 0.25 to 0.55; the range of Reynolds
number simulated was 0.8 x 104 to 3 x 104, based on probe diameter. The effect of changing Mach number and
Reunolds number over these ranges was small for angle variations of 15 degrees. For larger angle variations
the effects of Mach number and Reynolds number are expected to be much stronger.

The physical dimensions of the traversing probe limit the spatial resolution that may be achieved. For
the rotor tested the pitchwise distance between transducers is about 3% of blade spacing at the hub; while
in the radial direction the maximum distance between transducers is about 5% of the blade span. Large flow
gradients cannot be reliably determined over distances smaller than these.

It should be noted that the transducers are mounted on the probe body without any surrounding cavities.
In this way the full frequency response of the transducers is retained. However the flow time across these
transducers limits the probe response to about 10 times blade passing frequency, which is sufficient to
resolve events occurring in the blade passing time scale.

Data Reduction

During a compressor test high response data is recorded on a 14-channel-wide band FM tape recorder with
a frequency response from DC to 80 kHz at 120 in. per second tape speed. One channel is reserved for an
internal oscillator (200 kHz) which gives an absolute time base for the experiment. For later analysis
each tape recorder channel is played back, with tape recorder speed reduced by a factor of 64, simultaneously
with the internal oscillator into a two-channel analog to digital converter. The converter produces a
magnetic tape which may then be processed at the M.I.T. Information Processing Center. Required calibration
procedures are applied to convert the digital voltages into pressure values. The four digitized pressure
measurements from the traversing probe are used to determine the freestream conditions at all times during
the probe traverse. This data may then be randomly retrieved for examination.

A problem which has often interfered with measurements of absolute pressures using the Kulite trans-
ducer is that of long-term thermal drift. This problem is mitigated by the extremely short test time and
by calibration against thermally stable low frequency transducers during a rotor test.

Results

In order to map out the flow field downstream of the test rotor, time resolved pressure measurements
were recorded during radial surveys at two axial stations, 0.1 chords downstream and 1.0 chords downstream.
Since the rotor pressure distribution is swept past the traversing probe much faster than the probe is
moved radially, a complete map of the flow field in one radial plane can be determined during one test run.

Measurements typical of those recorded when the probe was at r/rt = 0.74 and 0.1 chords downstream are
shown in Figs. 4a, b, and c. Figure 4a shows the total pressure ratio (P /P ) and the static pressure
ratio (P 2 tl); Figs. 4b and c show the Mach number components as computed from pressures plus the measured
flow angies. As time increases in these plots, the rotor turns such that the probe appears to move from
the suction side of one blade to the pressure side of the adjacent blade.

Some of the features of the traditional model of an inviscid core flow plus a viscous wake appear in
this data. Figure 4b shows the axial and pitchwise Mach number profiles of a clearly defined viscous wake

embedded in a more or less constant Mach number flow.

But the static pressure is not uniform across this wake, as can be seen from Fig. 4a, in fact it varies
by as much as plus and minus 25 percent, so that the viscous "wake" should not be expected to behave in the
traditional way. Close scrutiny of Figs. 4a and 4b shows that the peaks of static pressure (and also of

stagnation pressure) lie outside the "wake" region, with a minimum of pressure on the pressure side of the
blade and a maximum on the suction side.

A further difference from the traditional picture lies in the large radial Mach number (up to 0.25),
which can be seen from Fig. 4c to exist at the tangential location of minimum static pressure, i.e. on the

pressure side of the "wake."

Similar data which were recorded when the traversing probe was located at r/rt = 0.87 are shown in

Fig. 5. These data, which are representative of results obtained at high r/rt, are quite different from

the previous results. Considerable blade to blade variation exists and no clear separation into an inviscid

core flow plus a viscous wake appears. Very large radial flows, of the same order as the axial flow, occur
in the flow field.
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These two radii, r/r = 0.738 and 0.870, roughly straddle the nominal sonic radius of the rotor.
Epstein has found by the fluorescent density measurement technique evidence of an unsteady separation
process at r/rt = 0.83, which is again in this range. This data will be presented in Ref. (5), which is
in preparation.

It should be remarked here that radial or pitchwise flow angles relative to the probe larger than 20
degrees are beyond the limits where consistent calibrations of the probe pressure recovery were obtained.
For the data described above a 20 degree variation in pitchwise flow angle relative to the probe corresponds
to absolute flow angles of 25 to 65 degrees. Data falling outside these ranges must be considered as only
approximations to the true flow.

As was previously stated, large blade-to-blade variations exist for r/rt > 0.80; moreover, by examining
the wakes shed by a single blade during successive passes at a constant r/rt, it was found that the flow
is quite unsteady in rotor coordinates. For r/rt < 0.80 the flow appears to be steady in rotor coordinates.

Time averages of selected flow variables were computed for two radial surveys, 0.1 chords downstream
of the rotor and 1.0 chords downstream of the rotor. These averages were computed from data samples 5 blade
passing periods in length. The average total pressure ratio is shown in Fig. 6a. Its value closely
approaches the design value of 1.6. Average pitchwise and axial Mach numbers are shown in Figs. 6c and 6d.
Considerable deviations from the design profiles exist especially at larger r/r t. The time averaged radial
Mach number was approximately zero at all radii.

An average total temperature ratio was determined using Euler's equation and is shown in Fig. 6b along
with the isentropic temperature ratio determined from the measured total pressure values. At low r/rt a
local efficiency would be very high as might be expected from the type of flow shown in Fig. 4. At larger
r/rt a local efficiency would be very poor as would be expected from a flow like that of Fig. 5. There is
a systematic difference between the stagnation pressures at station 5 and those at station 6, which
corresponds to approximately a 4 percent decrease in efficiency, based on time-averaged stagnation pressure
and temperature. This represents the efficiency loss due to wake mixing between stations 5 and 6.

Whenever high response data is collected, a serious problem arises in assimilating the quantity of
data recorded. Our attempt to overcome this problem is to construct level curves or contour plots of flow
variables in the r-O plane. Data samples recorded at several radial positions and approximately 3 blade
passing periods in length were selected. The samples were all chosen to begin at the same relative time
in a blade passing period. A data point in these samples then corresponds to a point in a sector of the
r-6 plane including 3 blade passages.

A contour plot of the rotor total pressure in the radial plane 0.1 chords downstream of the rotor is
shown in Fig. 7a. In this plot data from 10 radial positions were used. The time average value of total
pressure ratio is 1.62. At small r/rt the flow field can be seen to have nearly constant total pressure

except near the blade wakes. Around midspan islands of high pressure appear in the core flow as well as
near the wakes. At large r/rt numerous islands of high and low pressure are scattered throughout the flow
field.t

It should be emphasized that these data are in a sense taken out of context since data from several
different physical blades are combined into a single plot. As was previously discussed, unsteadiness does

exist and is important at larger radii; therefore some distortion and loss of detail in these contour plots
is unavoidable. However, flow features common to all blades will be emphasized by this procedure.

A contour plot of the rotor static pressure ratio (P 2 / ) is shown in Fig. 7b. Many interesting

features appear in this plot; in particular the high static pressure area at about midspan and the local
high gradient low pressure area. No convincing explanation for the origin of these areas is yet known;
however the existence of these areas is supported by the intra-blade density measurements performed by
Epstein , as noted above.

To aid in determining the losses and the distribution of these losses a calculation of the local total
temperature ratio and from it the local entropy rise across the rotor was attempted. For this test rotor,

which has no upstream swirl, Euler's turbine equation has a simple form and was used to calculate the local
total temperature. When the local total temperature ratio and total pressure ratio are known, the entropy
rise across the rotor may be determined. This approach will be strictly valid for those streamtubes for

which the flow in the relative coordinate system is steady; for other streamtubes the procedure will yield

only approximate results. A contour plot of the entropy rise, (S2 -S )/Cv, is shown in Fig. 7c. At low

r/r the flow appears to be very nearly isentropic except for the wa1es. above midspan isolated regions

of nigh entropy appear.

Contour maps of the axial Mach number, pitchwise Mach number, radial Mach number and total temperature
ratio are included as Figs. 7d, e, f, g, and h for later reference.

These data all appear to be self-consistent. For example, large radial flows are directed away

from the high static pressure areas at about midspan. In addition,these data all have large disturbances

concentrated at blade passing frequency.

A similar set of contour plots was prepared from the radial survey done 1.0 chords downstream of the
rotor and are shown in Figs. 8a, b, c, d, and e. These figures show that considerable evolution of the
flow field occurs between the two radial survey locations. In particular, considerable decay of the

disturbances introduced by the rotor has occurred at smaller r/rt, while at larger r/rt the disturbances
seem to have propagated without significant decay. In addition, the disturbance frequency for r/rt > 0.82

seems to be significantly lower than the blade passing frequency. These trends will be discussed more

completely in the next section, in conjunction with the small disturbance theory.
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THEORETICAL CONSIDERATIONS

To the extent that the flow behind the compressor rotor may be thought of as an axisymmetric steady
base flow perturbed by an unsteady 0 dependent disturbance field, it should be representable by a linear
theory based on an expansion about the axisymmetric throughflow. One approach to such a theory is to
determine the duct eigenfunctions which satisfy the differential equations resulting from such an expansion,
and which also satisfy the boundary conditions at the hub and tip diameters, and to then attempt to match
a set of such eigenfunctions to the disturbance produced by the blade row. In first approximation, the
disturbances can be described by an inviscid heat conduction-free model, because the Reynolds number of the
disturbances is large once they leave the blades which produced them. This is true even though viscous
forces on the blades are the controlling factor in producing the disturbances. Of course some of the
disturbances of interest arise from inviscid phenomena, such as spanwise circulation variations, but the
main focus here will be on those of viscous origin, as they appear to dominate in the Blowdown Compressor
rotor. A first attempt at such an approach has been described in Ref. (3). The present discussion will
draw on that work and further developments along the same lines to help explain the experimental results
described above.

The most important feature of the mean flow downstream of the rotor is its strong rotation. Ideally,
this would approach a free vortex; in practice it is more nearly a constant swirl-angle flow, and for the
present pugposes it will be approximated by a tangential velocity distribution, V = Or + F/r. Now it is
well known that in the absence of the rotation, i.e., in a uniform axial flow, a general small disturbance
field can be represented as a sum of three separate modes consisting respectively of entropy, vorticity,
and pressure fluctuations, the last having associated (irrotational) velocity and (isentropic) density and
temperature fluctuations. The vorticity mode represents convected wake (shear) disturbances, while the
pressure mode represents the propagating (sound) or elliptic pressure field. In contrast, for the strongly
rotating fluid there are not three distinct modes, since the centrifugal forces resulting from density and
tangential velocity fluctuations generate pressure disturbances, as do the coriolis forces associated with
radial velocity perturbations. Thus we might expect a qualitatively different behavior for the flow down-
stream of a blade row from that behind a wing or body.

It is argued in Ref. (3) that the dimensionless number which measures the importance of the base
rotation is a Rossby number, E = V/QL , where V is the local tangential velocity, E the local angular
velocity, and L a characteristic length for the disturbance. If we think of V/L as a "disturbance frequency",
then 6 is the ratio of disturbance frequency to mean rotational frequency. When it is large, the fluid
accelerations due to the disturbance are large compared to those due to the rotation, and we might expect
the effects of rotation to be small. When the disturbance frequency is small, however, we would conversely
expect the effects of the fluid rotation to be controlling. The detailed analysis of Ref. (3) shows in fact
that the pressure field of a many bladed rotor is in these terms a high frequency disturbance, and that the
effects of mean rotation on its behavior are minor. On the other hand, the frequency of wake disturbances
would be zero (in rotor coordinates) in the nonrotating case, so we should expect the effects of mean
rotation to strongly influence their behavior. The next few paragraphs will summarize the main points of
the argument, in comparison to the experiment.

Following the procedure of Ref. (3) we expand the general small disturbance field about a mean flow
with radially uniform entropy S and axial velocity W. The tangential velocity V = V(r). We find then that
entropy perturbations in this flow satisfy the relation

L(s) = 0

where L = -L + (V/r) (D/ae) + W(a/az) (1)

so that they are convected by the mean flow.

Since the mean flow varies only in r, not in e or z, the coefficients in the differential equations
depend only on r, and it is natural to seek solutions for the density and velocities of the form

p (r, 0, z, T) = fp (r, m, k, w) exp [i(kz + m8 - WT)] dmdkdw

whereupon it can be shown that p is governed by a single second order differential equation. If we neglect
the effect of entropy perturbations on the density and velocity, the equation becomes

r2 + (1 - r-' r d + - r 2k D 2 2mV rD' rV' (2)dr D dr m Xr (1+D V (2)

where A = kW + mV/r - w and D = A2 - (2V/r)(V' + V/r)

the prime indicating differentiation with respect to r. The radial velocity is given by

u=i (I dp 2mV P
D R dr Rr (3)

where R is the mean flow density, and the tangential and axial velocities are

v= [(V' +V/r) dp +-Am P1(4
D R dr Rr (4)

k
w XR 

(5)
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The existence of solutions of (2) satisfying the boundary conditions u = 0 at the hub and tip radii
essentially requires that the solutions oscillate in r, since u is connected to p by the first order
differential equation (3) and must have successively larger numbers of zeros in the annulus as the eigen-
value is increased. Writing (2) in the form of a comparison equation,

a(r) , + b(r) $2 + c(r) p = 0dr dr

shows that the local condition for oscillation is that b 2- 4ac < 0, and since a = r2 is positive, this
requires that c be sufficiently positive. An infinite set of solutions is required to represent by super-
position an arbitrary disturbance field, so c must take on successively larger positive values, giving
larger numbers of oscillations within the annulus, as the eigenvalue is increased.

In the compressor annulus we can view m and w as being specified by the boundary conditions at the
rotor plane. Thus for the blade passing harmonic m = 23 for the Blowdown Compressor, while w = mQ R, where
02 is the rotor's angular velocity. The axial wave number, k , is the eigenvalue. Its value controls those
of X, D, and the other functions which appear in the coefficients of (2).

The behavior of the solutions will be discussed for two relatively simple mean flows before turning to
the actual Blowdown Compressor flow.

Non-rotating Flow

The characteristics of the solutions depend on whether k is real, complex, or pure imaginary. Turning
to the case of non-rotating flow as a first illustration, there would be three classes of disturbances.
For convected vorticity and entropy X = 0, so k = w/W = mQR/W is real. For nonpropagating (elliptic)
pressure disturbances k = ikI, a pair of pure imaginary values corresponding to exponential decay in z
away from the source. For sound disturbances k = X/W + mOR/W, where now X is of order mDR , so k is again
real, but such propagating pressure waves are excited only if the source has supersonic velocity relative
to the fluid.

Wheel Flow

Since the relative outflow from the Blowdown Compressor rotor is subsonic, we will consider the rotating
fluid analogs of only the first two types of disturbances. This justifies an incompressible treatment, wich
has been assumed in Eq. (2). Now for V = Qr, X=kW + m - w is constant, D X2

_ Q2 is also constant, and the
equation becomes simply

d2 + -r2k2 X2 4Q2 2-r + r dr X m2Ip = 0 (6)

It is readily seen that solutions with real k, i.e., oscillatory in z, will exist for X
2 

< 402, since then
c(r) can be arbitrarily positive for X2 sufficiently small. We note that since X is the frequency of the
disturbance in a coordinate system moving with the fluid, (X/20) is the ratio of disturbance frequency to
fluid rotational frequency (apart from a factor of 2). From this we conclude that there is an infinite set
of nearly convected (i.e., low frequency) disturbances, which are the analogue of vorticity in uniform flows.
The characteristics of such disturbances shed from inlet guide vanes into a wheel flow have been presented

7in Ref. (3) and studied in detail by Yousefian

These "shear waves" propagate relative to the mean flow. As an example, take a case of X/Q = 1/2.
then

kW X+W+1+

= - m+ = 2 - +

For the Blowdown Compressor take m = 23, and wO = m!R/ 23(5) ~ 125, so kW/O ~ 100 1/2 . The value
kW/Q = 100 corresponds to pure convection for this case, so we would have a pair of waves splitting very
slightly from the convective direction. Note that the splitting would be much stronger for small m; for
m = 1, kW/O = 4 1/2. Of course this example is not directly relevant to the experiment because the flow
behind the rotor is not a wheel flow.

If (X
2
) >> Q2, c(r) becomes independent of 2 and c - k

2
, so that c can be arbitrarily positive for

k = ikI, and k, large. These eigenfunctions represent the elliptic pressure disturbances, being harmonic
in 0 and T, but attenuated in z.

Some comments about the velocity field are in order for this relatively simple case. Since k and X
are real for the shear waves (X2 < 42), p, v, and w are all in phase, while u is shifted 'r/2 in me.
That p is in phase with v and w allows an energy flux in the wave perpendicular to the rotor plane, hence
a propagation in z. For the elliptic pressure disturbances, where k = ikI, X = ikIW + m - w is complex,
and the situation is also more complex, but it is readily seen that p and w are shifted in phase relative
to v.

Rotor Exit Flows

We take V = Or + F/r as a model for the flow behind the Blowdown Compressor rotor, so that
X = kW + m - w + mF/r2 

is a function of r. But the condition for existence of multiple solutions of (2)
is still that the term -r

2
k
2
D/X

2 
take on sufficiently large positive values, since the other terms vary

comparatively weakly with X. As for the wheel flow, there are two classes of solutions. For "high frequency"
disturbances, D/X

2 
-+ 1, and the behavior is controlled by -k

2
, so that we find k ~ ik, as before, and such

high frequency disturbances are elliptic, i.e. attenuated in z with relatively minor effects of rotation.



6-6

For "low frequency" disturbances we will have oscillatory behavior in z when D/A2 is sufficiently
negative, otherwise k will be complex or imaginary. Consider first the oscillatory case. Then

D 4(1 + F/Cr 2
) 4 (1 + F/Qr2)

A 1 (A/)Z m' (A /m + r/Cr')

must be sufficiently negative to produce the required oscillations, where A = kW + mQ - w. From (3) it is
clear that D may not have a zero in the turbomachine annulus (unless it is cancelled by a zero of the
bracketed term), so tentatively we refine this condition to the requirement that

-mF F o mF /
- 2/1 + < L - F + 2 /1 +

for oscillatory solutions with real k. The tendency toward oscillation should be strongest for the value
of r where A0 = -mF/r2, i.e., for A = Ao + mP/r2 = 0. This radius will be termed the "convection radius", rc'

The regions of oscillatory behavior are plotted vs.F/Cr2 for two values of m in Fig. 9, from which it
is clear that the range of F/Cr2 for oscillatory behavior becomes very narrow for large m, but is broad for
small m. Thus, we conclude that

a) small m disturbances are more likely to be oscillatory (persistent) in the downstream
flow than those with large m.

In the event that no solutions exist for real k, as is likely for large m because D/A2 is not negative
over a sufficient range of r, then k must be complex or imaginary. If we ignore the A in the last term,
Eq. (2) depends only on A2, hence k + ik, and A = ik1 W + mC - w + mF/r 2, so that the group

-k2D/A2 = k2 4(1 + F/r2)
I k W

( )2 + (m - w/C + mF/2r2) (8)

must be sufficiently positive. It is schematically plotted as a function of k in Fig. 10. For sufficiently
large k , -k

2
D/A2 can be made large whatever the value of F/Qr2, and these large k2 correspond to the pressure

disturbances only slightly influenced by rotation.

It appears, however, that there is not an infinite class of attenuated disturbances which have AI/ of
order unity, unless w is complex. If W = WR + iw1 and k = k + ikI, we can choose w, = kIW, so A is real.
Then for any value of F/Qr2 there is a value of k which wilt lead to a sufficiently large value of -k2D/A

2

to insure a solution. But the imaginary w implies instability, i.e., such a disturbance would grow exponen-
tially in time, Unfortunately for this case the differential equation becomes complex, and no detailed
analysis has been carried through. On the basis of this somewhat incomplete argument we tentatively conclude
that b) low frequency (i.e., shear) disturbances of large m are usually temporally unstable,

having the form i(krz + m8 - wRT) - kI(z - wT)
e

which implies the disturbance is convected from its point of origin, but is exponential
in T at a given value of z.

Summary of Theoretical Results

In summary of this discussion we have the following points for comparison to experiment:

1) Entropy disturbances generated by the blade row should be convected by the mean flow.

2) The "high frequency" pressure field should be only slightly influenced by rotation.

3) Shear disturbances with large m and real k, abd therefore persistent downstream, should
occur only in the portion of the annulus where F/Cr2 is small. For the Blowdown Compressor
this is roughly the outer half, where the mean tangential velocity approaches a wheel flow.

4) Oscillatory shear disturbances are most likely for small m.

5) For large m and large F/Qr2 there are no steady (in rotor coordinates) shear disturbances,

so the wake shedding from the rotor should be intrinsically unsteady.

COMPARISON OF THEORY AND EXPERIMENT

In view of the findings of the previous section the variation of the mean tangential velocity, V(r),
with radius should be a controlling factor in the behavior of the shear disturbances downstream of the rotor.
As shown in Fig. 6c, it is characterized by a near-free vortex behavior for r < .8

2
rt, and by a near solid

body rotation for r > .82r t. The rotor was "designed" to produce a free vortex over the whole annulus.
It appears that the excess work in the tip region results from the outward movement of the blade wakes,
which have radial Mach numbers as large as 0.7 near mid-span at station 5 and have stagnation pressure
ratios as large as 2.0 at that same station.

Oscillatory Flow for r > .82r

Whatever the origin of V(r), the theory indicates that in the inner region, where V - F/r , all
disturbances except the entropy should have imaginary or complex axial wave numbers, hence should be

attenuated in z. Scrutiny of Figs. 8a to 8e will show that in fact Mr, Mz, Me, and p are all relatively

uniform at station 6 for r < .84rt. The entropy variation is also fairly weak, but is periodic at blade

spacing, indicating convective behavior of the entropy in the inner portion of the annulus, as predicted.
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In the outer region, where V = Or, the behavior is very different. First, the disturbances of all
quantities are very strong at station 6, indicating persistent (oscillatory) phenomena. Secondly, the
period is not the blade passing period, but rather about 1.4 times blade passing period. Comparing Figs.
8d and 8e we see that zones of strong inward and outward flow exist, together with alternate large and small
tangential flow, the maxima of the latter being near the nodes of the former. This describes a cellular
vortex flow of the type which occurs between coaxial rotating cylinders under some conditions of radial
circulation variation. It is consistent with the prediction of the previous section, which of course
includes the physical phenomena that give rise to a cellular flow. A qualitative demonstration of this can
be given by modeling the outer region by a wheel flow, to which the relatively simple Eq. (6) applies.
The velocities are given by

i dpi 2m 2
u - = 7 QR dr + Rr P

1 (2 dp m.
X- =r - (10)

k
w- p(1

where p = Z m(pr), the general cylindrical harmonic. The argument p is connected to X by
3

mOr
(pr) 2 4 [1 + M) ]T (12)t w (2

To determine m and yrt one should match some set of boundary conditions at the inner and outer radii.
For present purposes we simply observe that the first mode is likely to have a half wave-length in r8 about
equal to that in r, since this allows u = 0 at rt and at .82 rt, where the oscillation terminates. Thus
we expect

2vT(.91 r d( r 2(.18 r )m t

where .91 r is the mean radius of the outer region. This gives m = 15.9, and we note that 23/1.4 ~ 16.4,
the 1.4 being the number of blade passing periods characterizing the disturbance in the outer region.
Certainly this is a bit fortuitous! Now w/Q ~ 16 Mt/M6t = 42 where Mt is the tangential Mach number of the
rotor, and w/Q - m = 42-16 = 26. Estimating yrt ~ 26, which is the second zero of J16 (pr), we then find
X/Q = 0.77 or -0.73. The variations of the radial, tangential, and axial velocities are then readily found
from Eqs. (9) to (11). For comparison to the data it is convenient to express them in terms of Mach number
variations. Thus, we write for example

uORr yu~r
t _ t _

p yRT r 6t
where Mr is the radial Mach number perturbation and Met is the mean swirl Mach number at the tip (about
0.45). The predictions of the theory are given in this form in Fig. 11 for X/Q = 0.77, which gives the
best match to the data of the two possible values of X/Q.

Note first that the data are restricted to the region r < .93 rt. Within this range the signs and
phases of u, v, w, and p are all mutually consistent with the theory. That is, where p/P is positive, z
is negative, Me is negative, and Mr is negative. From the theory, Mr i i9e, i.e., it is shifted ahead
v/2 in me, so that an event in Mr should occur v/2 earlier in wt than the corresponding event in m, and
comparison of Figs. 8d and 8e shows this is approximately true.

There is not good quantitative agreement as to the relative magnitudes of Rz, p/P and the pair Mr
and Re, but this is not surprising as the model is very crude.

Harmonic Content of Downstream Pressure Field

One striking feature of Fig. 11 is that p/P is predicted to be small at rt, where of course Mr was
specified to be zero. This is in contrast to acoustical theories, where generally pressure maxima occur
at velocity nodes.

A series of measurements of static pressure was carried out in the Blowdown Compressor by Stephens
8

at stations 5, 6, and 7. Measurements were made both with flush wall static transducers and with a survey
probe. The survey probe, when positioned at about .90 to .95 rt showed a very strong spectral peak at a
frequency which shifted from blade passing (m = 23) at station 5 to higher values at stations 6 and 7.
These spectra are shown in Fig. 12a. Note that the strength of the peak actually increases with distance
from the rotor!

In contrast, the flush mounted wall static transducer shows a rapidly decaying tone at m = 23, as
shown in Fig. 12b. We infer that the latter is due to the elliptic pressure field of the rotor, which has
its radial maximum at rt, where u = 0, while the strong peaks of Fig. 12a are due to the pressure field of
the oscillatory shear flow, which according to Fig. 11 should not be detected at rt, but should be strong
for .82 rt < r < rt.

The reason for the upward shift in this frequency is not yet clear, but note that the data does not
include the region very near rt. It may be that a secondary shear structure exists there.
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Harmonic Content of Upstream Pressure Field

Measurements of the upstream pressure field of the rotor showed a well developed duct-modal structure
with dominant harmonics at m = 7 and m = 16.4 Aside from the dominance of these two "tones", the upstream
sound field was typical of the "combination tone" field of a transonic fan. It now seems clear that the
strong m = 16 tone is excited by the cellular flow in the downstream annulus. Perhaps the m = 7 is in fact
a combination tone of m = 23 and m = 16?

Unsteadiness

By careful examination of the wake from a single blade in successive passes by the probe we conclude
that for this rotor the flow in rotor coordinates is unsteady. It seems to be true in general that the
wake shedding from the blades of highly loaded rotors is aperiodic with blade passing, and in fact probably
quite random. A possible explanation for this lies in the lack of existence of a set of stable low frequency
(shear) disturbances for flows where F/Qr

2 > 1. The theory predicts that shear disturbances should be
unstable, i.e., should grow exponentially in time for such a situation. Evidently a nonlinear oscillation
results from the instability.
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Time Averaged Hach Number Profiles
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Figure 7d: AXIAL MACH NUMBER MAP
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Figure 7f: RROIRL MRCH NUMBER MRP
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Figure 8c: RXIRL MRCH
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