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ABSTRACT

In this paper we discuss the problem of estimating processes by the innovations approach [6] and [7]. This
boundary value processes in one or several dimensions. approach has some advantages over diagonalization. In
The estimator dynamics are described, and by using particular, in constrast to diagonalization, no opera-
operator transformations for these dynamics, several tor inversions are required in computing the estimate
implementations are obtained which either diagonalize by triangularization. Having established the conditions
or triangularize the linear least-squares estimator. for diagonalization we formulate matrix Riccati equa-
These implementations enable us to compute the estimate tions which lead to stable diagonal forms for the es-
of the process by using two-filter type of smoothing timator for l-D boundary value processes. Finally,
formulas, or more general smoothing formulas similar to questions of existence and uniqueness of diagonalizing
those used for solving the smoothing problem for 1-D transformations for 2-D estimators are discussed.
causal processes.

2. THE PROBLEM STATEMENT
1. INTRODUCTION

2.1 Differential Operators and Green's Identity
In this paper we describe some results related to

noncausal estimation problems. The starting point for The process to be estimated is defined in terms
our work in this area was the class of one-dimensional of a linear differential operator acting on a Hilbert
(l-D) two-point boundary value processes introduced and space of square-integrable functions as follows. Let
first analyzed by Krener [1]. In [2] we presented a QN be a bounded convex region in RN with smooth boun-
brief description of a solution to this estimation dary [16]. The space of nxl vector functions which
problem using the method of complementary models which are square-integrable on is represented by Ln(are square-integrable on. is represented bywas first introduced by Weinert and Desai [3]. In this Let L be a formal differential operator mapping
work we described the central role played by Green's into L2n( and defined on D(L), the subspace of suffi-
theorem-in determining a two-point boundary-value ciently differentiable elements of L2(2N).
problem description of the smoother. While the details
of the computations in [2] rely heavily on the specific Green's identity for L is
1-D model under consideration, the general approach used
is not restricted to this model, and, as developed in <LxX> = <x,L > + <xE > (1)
detail in [4], is applicable to processes in several Ln (N) Ln( ) b b
spatial dimensions. Specifically, in [4], the estimate 2 N
is shown to be the solution to a boundary value problem, where L is referred to as the formal adjoint differen-
and consequently an issue is the construction of tial operator [81, xb and Xb are elements of a Hilbert
efficient methods to implement that solution. In space Hb of processes defined on Ag , and E is a mapp-
[5] a detailed solution in the 1-D case is developed by ing from Hb into itself; E:HR*Hb. Yn particular,
diagonalizing the dynamics of the smoother boundary these processes are defined Ehrough the action of an
value differential equation (see also [2] for a brief operator A : L n() Hb, so that
description). The computations involved in these re- b 2 N
sults relied heavily on the specific 1-D problem. In x = A x and X = abX (2)
this paper we extend the ideas underlying that diago- b b b
nalization approach by describing the diagonalization The nature of Hb, Ab, and E all depend upon L and QN
of estimator dynamics in an operator framework appli- For a discussion of Green's identity for ordinary
cable to problems in several dimensions as well. differential operators see [9] and Chapter 3 of [10];

for elliptic, hyperbolic and parabolic second order
After reviewing the form of the estimator solution partial differential operators see [8] and Chapter 7

in Section 2, we describe some equivalent dynamical re- of [10]. In this paper, we will restrict our discus-
presentations for the differential operator description sions to operators L and regions QN that admit a Green's
of the estimator dynamics in Section 3. The diagonal identity.
form we seek, if it exists, is in the class of equiva-
lent differential operator representations, and in The boundary condition associated with L is de-
Section 4 we present the conditions which define the fined by a mapping V:
class of transformation operators which lead to such
forms. As an alternative to diagonalization, we out- V:Hb R(V) (3)
line a method for triangularizing the dynamics which R
leads to a representation of the estimator which is where the nature of the range space R(V) is determined
similar to smoothers obtained for 1-D and 2-D causal by the following well-posedness condition. We will

...... say that the pair (L,V) leads to a well-posed boundary
,*Th value problem if the differential operator A formed by
The work of this author was supported by a Draper augmenting the formal differential operator L and
Fellowship. boundary mapping V
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has a unique continuous left inverse A#. We denote the Y = y, Yb}

components of the left inverse by
3, THE ESTIMATE AND ESTIMATION ERROR

A = [ G G v] (4b)
The solution to this estimation problem has been

where GU: L ((Q) D(L) and G : Lnv(2aQ) D(L). For a obtained in [4] by an application of the method of
e2 N v 2 N complementary models. The complementary process has the

well-posed problem the value of the vector dimension property that it is orthogonal to the observations and
n depends on the type and order of the operator L and that, when combined with the observations, contains in-
the dimensions N and n. In this case, the equation formation equivalent to theboundary conditions, driving

ruj. noise and measurement noise, i.e. all of the underlying
Ax = [i (5a) variables which determine the system state and observa-

tions. By establishing an internal differential reali-
with u and v in the domains of G and G , respectively, zation for the complementary process associated with the
has a unique solution which can be writyen as observation set Y and augmenting that realization with

x = G u + G v (5b) the differential realization for Y given by (6) and (7),u v the estimator is shown in [4] to be given in differen-

It will be assumed that all problems considered here tial operator form as the solution of the inverse of the
are well-posed. augmented system projected onto the span of Y.

In particular the estimate x is the solution of
A description nearly identical to that given above

holds for a class of discrete processes defined by L -QB*
linear boundary-value partial difference equations. In - - ---- __ =)__ (9)
this case L is a partial difference operator and N is -1 
a multi-dimensional discrete-valued index set. It is * R L C*Ry
shown in [10] that the estimation problem statement
and solution presented in this paper apply as well for W*ly [ W*b W + V* V : E] (10)
this class of discrete processes. v b

b
2.2 The Problem Statement

where a superscript asterisk denotes the Hilbert ad-

Let u be an mxl vector white noise on QN with an joint [11] of an operator.
invertible correlation operator Q (i.e. the correlation Note that since L and L 
matrix of u is thought of as the kernel of an operator). Note that since L and Lm areof the sa of L. Arder,the order of the estimator is twice that of L. Also

rLet v be an nxl vector second order process over la N' note the remarkable fact that in addition to the ori-tuncorrelated with u and with invertible correlation t
operator I . Then the process to be estimated is for- ginal problem statement, we only need to know E and Loeao .v Th t p e t e ei o from Green's identity in (1) to completely define themally defined by

differential realization for the estimator. That is,
Lx = Bu (6a) it is not necessary to actually determine the inter-

with boundary condition nal differential realization for the complementary
process.

Vxb = v . (6b)

The observations are defined as follows. Let C(t) - As established in [4], the estimation error
Th obseration a e defo. Lx = x - x is obtained as the solution of the invertedbe a pxn matrix continuous in t C Qs . Let W be an oper-

ator mapping elements of Hb into R(0), a space of n xl augmented system projected onto the span of the com-
vector functions definoed over a se o f w plementary process rather than that of the observations.

ector f defie over the index set A differential realization of the estimation error
Let r be a pxl vector white noise over 12 with inverti- which is driven by the underlying processes fuvrr
ble correlation operator R, and let rb be a nwxl vector which is driven by the underlying processes {u,v,rr b}
process with invertible correlation operator IT . It
will be assumed that u, v, r and rb are multiply un- L -BQB*lBu
correlated. The set of observations of x is given by: - - - - = 

y = Cx + r on i (7a) C*R C: L -C*R

and
with boundary condition

Yb Wxb + r on MN .(7b)
y W r ob% .~ (7b) [V*l v - W*TI r 1= [W*T1 W + V* ElV :El[bJ. (12)

We will need to make some assumptions with respect v b b v
to the relationship between the operators V and W. In
particular, we will assume that if the operator obtain-
ed by augmenting V and W as

rVi We have chosen to write (11) and (12) in terms of -%b[li] (8a) instead of .b to highlight the similarity between the
structure of the dynamics and boundary condition foris not invertible, then there exists an operator W

uS not invertible, then there exists an operator Wc the estimation error and that of the estimator in (9)
and (10). One should be able to take advantage of

~~~V ~~~~~~~~~these similarities when computing the estimate and its
WVW d (8c) error covariance. For example, see the discussion ofUWic the implementation of the estimator and the computa-

tion of the error covariance for 1-D noncausal pro-
is invertible. cesses in [5].

Our estimation problem is to find the linear mini-
mum variance estimate of x given the oberservation set



4. DIAGONAL REPRESENTATIONS

4.1 Equivalent Differential Operator Representations = (18a)

Within the class of equivalent differential oper- 2
ator representations for the estimator dynamics is, if
it exists, the stable decoupled form we seek. Here we with its inverse written as
describe the class of equivalent representations for
the differential operator form of the estimator in (9). [ I s
Our goal is, if possible, to diagonalize these dynamics T = (18b)
into two decoupled systems, each of which is stable.
The stability property is desirable for purposes of -2 a1 s
numerical implementation of the estimator. The opera-
tor diagonalization is analogous to what has been done where
previously in [12] and [13] for differential reali-
zations of the estimator dynamics for l-D processes. -1
We start by investigating equivalent operator repre- s (1 2
sentations of dynamics described by equations such as
(9). Although we have not yet determined the form of either

1 or 0 , we will assume for the time being that their
Consider the general differential operator form sum is 2nvertible.

Az = Bu ; A:X - Y (13) Substituting (18b) into (16b) and carrying out the
product for an arbitrary operator F (see (17)), one

where A is a differential operator whose domain and finds that in order to achieve the diagonal form of
range X and Y are two inner.. product spaces. Consider (16b), we require:
the invertible operator T:X - X which gives rise to -1 +
the equivalence transformation F1L - F1BQB*e1 + F2 C*R C + F2L 1 (20a)

i = Tz (14) and

Defining -1 t
D -1 - F L + F BQB*9 + F C*R C - F L e .0 (20b)
= FAT and B = FB , (15a) F3 B 2 4 C 2

where F:Y - Y is invertible, the dynamics of 5 in (14) Expressoins for L1 and L2 are obtained by substituting
can be written in the form of (13) as from (20a) and (20b), yielding

A. = Bu . (15b) L1 = - F2 L + F1BQB* (21a)

4.2 Operator Diagonalization L = FL' - F BQB* (21b)

In decoupling the estimator dynamics, our objec-
tive is to find invertible operators T and F where the Thus we must find (if possible) 81, a2, and the four
action of T defines the equivalent process partitions of F such that:

[q1 j (i) (20a) and (20b) are satisfied,
= T (16a) (ii) the sum of 01 and 82 is invertible (i.e. T is

q2 LX invertible),

whose dynamics are diagonalized as (see (15a)) (iii) the operator F is invertible

L -BQB*1 L1 0 and
F _-_ _ T =- _ _: _ (16b)
LFC b 0 Lq (iv) the diagonal elements L1 and L2 are stable~~~2 ~differential operators.

with L1 and L2 stable. Assuming that F is given by (see section 4.4)

To obtain the most general expression for (16b) I
we could define partitions of F and T-1 and carry out l
the indicated product. For example, F = , (22)

F = F and T1
= 1 (17) the equations (20a) and (20b) for 81 and 8 are the

3 F4 3 4 following Riccati equations (in the 2-D case, "operator
Riccati" equations [14]):

The first set of conditions for decoupling would be
given by setting the upper right and lower left parti- ( L + L 9 BQB* C*R- = (23a)
tions of the product in (16b) to zero. Next the con- 1 1 1
straint that L1 and L2 must have some appropriate and
stability properties would be added.

(9 2L+L + + BQB*8 - C*R C)S = 0 (23b)
Unfortunately, determining the complete class of 2 2 2 2

F and T which are compatible with this most general for arbitrary E. Here we have used the fact that an
statement of the problem is decidely nontrivial. With operator M = 0 if and only if MS = O for arbitrary 5
the benefit of our previous work on diagonalization of in the domain of M.
1-D estimator dynamics, we will constrain the problem
statement by assuming the following form for the opera- Later we consider the diagonalization of the esti-
tor T mator dynamics for 1-D continuous problems. The



motivation for looking at the 1-D problem in this light Here we assume that F and T are time-varying in-
is to gain insight into how one might go about perform- vertible matrices. Our problem is to find dynamics
ing the diagonalization (i.e., determining the opera- governing their elements so that the conditions in
tors F and T) for 2-D cases. (20a) and (20b) are met. The condition in (20a) is

equivalent (for arbitrary Z) to
4.3 Operator Triangularization

(F 1 - F28 1) + (-F1A - F 2Ae F2e1
Here we show how the estimator could be imple-

mented by triangularizing the estimator dynamics rather - F BQB' + F C'RC) - O (29)
than by diagonalizing. The principal advantage of the 1 Q' 2 (
triangularized representation as compared to the dia-

Since this equation must be true for arbitrary 5 in the
gonalized representation is that the former can be de-rue for arbitrary 

l in such a way thatio no operatteor inverses are space of continuously differentiable functions, the
rveloped in suchvering that nostirateor iveproess ae coefficients of both C and its derivation must be zero.
required in recovering the estimate of the process x Considering the coefficient of the derivative ofConsidering the coefficient of the derivative of C
from the values of the transformed processes (in dia-
gonalization the inverse of 8 + e2 is required). In
addition, only a single operator equation must be F = F 8 (30)
solved as opposed to the two in (20a) and (20b). 1 2 1

Substituting this into the coefficient for % and set-To (lower) triangularize the estimator dynamics,
we seek transformations T and F which lead to ting that coefficient to zero gives

F2(e + 81A + A'8 + 81BQB'81 C'R C) = . (31)
L -BQB* T-1 L . LF 1 -

F _ _-_* .- j T (24) A similar application of (20b) results in

C*RC LtL L2 F =-F (32)
F3 F42 (32)

with a similar form for an upper triangularization. and
The following structures for F and T will lead to a
triangularization with no operator inverses: F4 (e2 + e2A + A'82 - 92BQB'8 2 + C'R-1C) = O . (33)

[I -P l[ I ] If we choose F as
T = with inverse T 1 (25a)

I I O I 1 I

F I = (25b) 2 

then (31) and (33) are the usual Riccati equations for
the dynamics of 81 and 82 and uniform complete con-
trollability and reconstructability of the tripleThen it can be shown by direct substitution into (24) trollability and reconstructability of the triple

that the estimator dynamics become {A,B,C} guarantees the invertibility of both F and T.
Furthermore, it can be shown by substituting from (34)

L21 LJ LC*L + PCl -1C. O into (21a) and (21b) that L1 and L2 are given by

_ - - - - - -=--- - -- -- -- -. (26) L1 = -L' + B1BQB* (35a)
L21 L2 C*R -1C L + C*R CP

and

The condition for this triangular form is the exis- t
tence of a solution to the single operator equation 2 -L - 82BQB* (35b)

(LP + PL + PC*R 1CP - BQB*) i = O (27) These result in the same dynamics as those obtained by
the Hamiltonian diagonalization in [5]. Note that we

4.4 The 1-D Continuous Case have not specified the boundary conditions for either
-8- or 8. As discussed later these boundary conditions
skould ge chosen to simplify the transformed estimator

In this section we solve the diagonalization pro- sould chosen to simplify the transformed estimator
blem for 1-D continuous estimators given the assumed
form for T in (18a). Temporarily no assumptions will 45 Th 2 case
be made as to the form of F. In this case the diffe-
rential operator L and its adjoint Lt are given by First express the differential operator L in the

(Ln)(t) = n(t) = A(t)n(t) (28a) diffusion

and L - Lt + A (36)

(L n)(t) -?'1(t) - A'(t)n(t) * (28b) where Lt - a and A contains no partials with respect

to t. This representation for L is typical of that
Each of these has the form of a diffusion in t. employed in studies of distributed parameter systems

The action of the operators C, B, R and Q is simply (see [7], for example). However, for a truly non-
multiplication by the matrices C(t), B(t), R(t) and causal process, the variable t would denote a spatial
Q(t). The adjoints C* and B* are given by the matrix variable rather than time. See [10] for a further dis-
transposes C'(t) and B'(t). To simplify the notation, cussion of representing L in this form.
hereafter we will omit reference to the independent
variable t. Given the representation for L in (36) the operator



Riccati equations (22a) and (22b) become 3. Weinert, H.L. and Desai, U.B., "On Complementary
Models and Fixed-Interval Smoothing," IEEE Trans.

( Lt- LtG1 A 11A -- 1 BQB*1 + C*R C) O = ° * Aut. Cont., V. AC-26, Aug. 1981.
S1t -A±1 - 1 1 1QB*G1 +C*R

(37a) 4. Adams, M., Willsky, A., and Levy, B., "Linear
and Estimation of Boundary Value Stochastic Processes

-19 - A G -l Part I: The Role and Construction of Complemen-
(G2 Lt Lt - A 82 - 2 A + 2 BQB*8 2 - C*R C)E = 0 tary Models," to appear in IEEE Trans. Aut. Cont.

t xt (37b) 5. Adams, M.B., Willsky, A.S. and Levy, B.C., "Linear
Estimation of Boundary Value Stochastic Processes,

Assuming the existence of a solution to these equations E~~~~~Assuming the esequations ~ Part II: 1-D Smoothing Problems," to appear in
(to be discussed below), the diagonal operators L1 IEEE Trans. Aut. Cont.
and L2 are

L = L + (A + 9 BQB*) (38a) 6. Kailath, T. and Frost, P., "An Innovations Approach
1 t 1+ (A + 1BQB) to Least-Squares Estimation, Part II: Linear

Smoothing in Additive White Noise," IEEE Trans.
Aut. Control, AC-13, pp. 655-660, 1968.

L + (AT
- BQB*) (38b) 7. Ray, W.H. and Lainiotis, D.G., Distributed Para-

and the transformed decoupled estimator dynamics be- meter Systems, Marcel Kekker, New York, 1978.

come 8. Greenberg, M.D., Applications of Green's Functions

LllmCR1y adLqC*R1 -l3 3in Science and Engineering, Prentice-Hall, Engle-
L 1 = C*R y and L2q2 C*R y . (39) wood Cliffs, NJ, 1976.

Of course the solutions ql and q2 could be coupledof course the solutions q, and q 2 could be coupled 9. Coddington, E.A. and Levinson, N., Theory of
throueh their boundary conditions as discussed in the Coddington, E.A. and Levinson, N., Theory of~~~~~~~next section. ~Orinary Differential Equations, McGraw-Hill Book

Co., NY, 1955.

Existence of solutions to the operator Riccati
Existence of solutions to the operator Riccati 10. Adams, M.B., "Linear Estimation of Boundary Value

equations (37a) and (37b) remains an open issue in Stochastic Processes," Ph.D. Dissertation, Dept.
general. If the differential operator A were the in- of Aero and Astro, MIT, Cambridge, MA, Februaryof Aero and Astro, MIT, Cambridge, MA, February
finitesimal generator of a strongly continuous semi- 1983.
group (something which in general is difficult to es-

tablish, e.g. see the Hille-Yosida theorem in [151), 11. Kreyszig, E., Introductory Functional Analysis with
then it has been shown that there exists a solution to
these equations. This is a sufficient but not a
necessary condition. Given existence, there still re-

t n . L 12. Adams, M.B., "Estimation of Noncausal Processes in
mains the question of realizations for 81 and 82 which One and Two Dimensions," Doctoral Thesis Proposal,
for the parabolic case have been shown to be integral CS Draper Lab Rept CSDL-T-770 Feb 1982

C.S. Draper Lab. Rept. CSDL-T-770, Feb. 1982.
operators whose kernels are the solutions to Riccati
integro-differential equations [15].

13. Kailath, T. and Ljung, L., "Two-Filter Smoothing
fr ad4.6 BoundaryConditionsforq andFormulas by Diagonalization of the Hamiltonian

4.6 Boundary Conditions for ql and q
t1 q2 Equations," submitted to Int. J. of Cont.

If we assume that the existence and representation 14. Lions, J.L., Optimal Control of Systems Governed by
questions regarding the operator Riccati equations Partial Differential Equations, Springer-Verlag,
have been resolved, then we would choose boundary con- 1971 (trans. by S.K. Mitter).
ditions for these operators in such a way that the
boundary conditions for ql and q2 are simplified. 15. Curtain, R.F. and Pritchard, A.J., Infinite Dimen-
Substituting for ql and q2 into the boundary condition sional Linear Systems Theory, Springer-Verlag,
(10) gives 1978.

W*lb -lyb= [W*lTb lW + V*IlV E E] Tb (40) 16. Courant, R. and Hilbert D., Methods of Mathematical

Physics, Vol. 2, Wiley Interscience, NY, 1962.

where Tb is the transformation T on the boundary SN'
The objective is to choose T (this amounts to select-
ing boundary conditions for Ehe operators 81 and 82)
in such a way that the transformed boundary condition
(40) together with the decouple dynamics in (39) have
a stable, efficient numerical implementation. Although
an approach to this selection procedure is suggested
in [10], this subject remains an open research topic.
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