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ABSTRACT

Some Irreducible Complex Representations of a Finite Group
with BN Pair.

Robert W. Kilmoyer, Jr.

"Submitted to the Department of Mathematics on July 15, 1969
in partial fulfillment of the requirement for the degree of
Ph.D."

In this thesis the irreducible constituents of the per-
mutation representation of G on the homogeneous space G/B
are studied where G is a finite group with BN pair and B
is a Borel subgroup of G.

1 establishes the correspondence j ++ X between the
irreducible constituents j of the induced character (lp)G
and the irreducible characters X of the Hecke algebra
H=HC(GP), where G is an arbitrary finite group and P a
subgroup of G. A theorem is proved which expresses j(g),
g c G, purely in terms of the character X on H.

2 is a resume of the known properties of finite groups
with BN pair which are needed for this thesis.

In 3 a semisimple algebra H (also called a Hecke
algebra) is attached to every finite Coxeter system (W,I). H
is a generalization of both HC(GB) and C[W], if G is a
finite group with BN pair having (W,I) as its associated
Coxeter system. The center of H is characterized and the
one-dimensional representations of H are classified.

4 consists of a complete classification of the irre-
ducible representations of the Hecke algebra attached to a
dihedral group.

In 5 a distinguished absolutely irreducible representa-
tion w of H (the reflection representation), and its com-
pounds are constructed. i, the corresponding irreducible
character of G, is uniquely characterized by its multipli-
cities in the induced representations from parabolic subgroups
of G.

In 6 a theorem is proved about the stabilizers of the
orbits of certain permutation representations of a Weyl group
W. Information is obtained about the structure of double co-
sets of W.

In 7 a polynomial p(x,y) in two variables (the
Poincard polynomial) is attached to every finite Coxeter
system. The results of 6 are applied inductively to obtain
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a multiplicative formula for p(x,y) and hence for [G: B].

In 8 and 9 the results of 1 are applied to the lin-
ear representations and the reflection representation to ob-
tain formulas for the degrees of the corresponding irreduci-
ble representations of G.

Thesis Supervieor: Bertram Kostant

Title: Professor of Mathematics
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1. HECKE ALGEBRAS AND THE IRREDUCIBLE CHARACTERS

OF A FINITE GROUP

Let G be a finite group and P a subgroup of G.

Denote by A = C[G] the group algebra of G over the com-

plex number field C. Then e(P) = 1P~1 I x is an idem-
xeP

potent in A; and the left A-module Ae(P) affords the

character (UP)G induced from the trivial character lp of

P. Ae(P) is equivalent to the permutation representation of

G on G/P. We identify EndA (Ae(P)) with the semisimple

subalgebra e(P)Ae(P) of A as an algebra of right operators,

where e(P)Ae(P) operates on Ae(P) by right multiplication.

e(P)Ae(P) is called the Hecke algebra over C of G

relative to P, and is denoted by HC(GP). It is clear that

for x and y in G one has e(P)xe(P) = e(P)ye(P) if and

only if PxP = PyP; that is, if and only if x and y lie

in the same (P,P) double coset of G. Moreover, if D is

a complete set of representatives for the (P,P) double co-

sets of G, then {e(P)ae(P)Ia c D} is a C-basis for

HC(G,P). For each double coset PaP, (PaP)~l = Pa-1 P is

also a double coset. Thus we may choose D in such a way

that if a is the representative of PaP, then a-1 is the

representative of (PaP)-l. We also make the convention that

1, the identity of G, is the representative of the double co-

set P.

-3-



PROPOSITION 1: In the above notation put

Xa = |PK-I x,
xePaP

then

and put 1(Xa) = [P: P n aPa- 1],

(i) i(Xa) = I(PaP)/PI, hence C(Xa) depends only on the

double coset PaP.

(ii) C (Xa)
aeD

= [G: P].

(iii) c(Xa) = C(Xa 1

(iv) Xa = (Xa)e(P)ae(P).

(v) {XaIa

(vi)

e D} is a C-basis of

tity of HC(G,P).

C: HC(GP) + C, extended to

is an algebra homomorphism.

HC(GP).

HC(G,P)

Xi is the iden-

by linearity,

(vii) One has XaXb
ceD

na c,

In particular the na Cb
a,b,c e D.

where n = I(PaPfcPb~lP)/PI.a,b

are rational integers,

PROOF: (i) The cosets of G/P which lie in PaP form

a P-orbit under the action of P by left

stabilizer of this orbit

(ii) is immediate

multiplication.

is P n aPa- 1 .

from (i).

(iii) follows from the fact that IP n aPa-1|

= a-lPa n

(iv) Note that if x,y e P, then xae(P) = yae(P)

if and only if y- x c P n aPa- 1 . Thus e(P)ae(P)

= |P n aPa~11P|- 2 I x = C(Xa)-lXa'
xcPaP

(v) {Xala e D} is a basis because {e(P)ae(P)Ia e

'4

a e D,

The

PI.

L

D} is a



basis. Note that X= |PI-1 x = e(P).
xEP

(vi) follows from the observation that c is just

the restriction to HC(GP) of the trivial character 'G

of G.

(vii) XaXb = 1p-2( f x)( y) = p-1I (na cb z).
xEPaP ycPbP ceD I zCPcP

Comparing the coefficient of c on both sides of this equa-

tion we have

na b = IPI~ 1 |{(x,y)lx c PaP, y e PbP, xy = c}|

= IP|~ 1I{xlx c PaP, x-lc c PbP}I

= IPK-1I{xlx e PaP, x c cPb-lP}I

= j(PaP n cPb-'P)/Pi.

We call {Xala c D} the natural basis of the Hecke

algebra HC(G,P). As the constants of structure {na b

relative to this basis are rational integers, the Hecke

algebra of G relative to P is really defined over Z;

namely, let H(G,P) = HZ(G,P) be the free Z-module whose

basis is {Xala e Dl, and define multiplication in H(G,P)

by XaXb = na bXc. We call H(G,P) the Hecke ring of G
ceD a c

relative to P. If k is an arbitrary field, put Hk(G,P)

= k 0 H(G,P); and call Hk(GP) the Hecke algebra over k
z

of G relative to P. Call c: H(G,P) + Z the trivial

character of H(G,P).

We shall show that information about the representation

theory of HC(G,P) can be used to deduce information on the
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irreducible complex representations of G which appear as

the irreducible constituents of the induced representation

Ae(P). Our method is based on an observation that is valid

in any finite dimensional semisimple C-algebra.

Let A be a finite dimensional semisimple C-algebra.

Let w: A + End V be a representation of A on the finite

dimensional complex vector space V. Thus V is a left A-

module where a-v = n(a)v for a c A, v e V. Put dim w

= dim V. Let X be the character of 7r; i.e., X(a)

= trace w(a) for all a c A. Call X irreducible if and

only if w is irreducible. In any case X(l) = dim w.

A is the direct sum of simple two-sided ideals each

of which is isomorphic to a finite dimensional matrix algebra

over C. The identities of these simple subalgebras are the

minimal central idempotents of A. Thus there is a natural

one-to-one correspondence between the set of all minimal

central idempotents of A and the set of all irreducible

characters of A; namely, if x is an irreducible character

of A and i is a minimal central idempotent of A, then

x corresponds to e * j( ) X 0. If j corresponds to i,

then j(l) = j(i) = dim i where i is an irreducible repre-

sentation of A affording the character i.

Let A be a finite dimensional semisimple C-algebra,

and let e be an arbitrary idempotent in A. Consider V=Ae

as a left A-module by left multiplication in A. Then we may

identify the commuting algebra, EndA V with the semisimple
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subalgebra eAe of A as an algebra of right operators,

where eAe operates on V by right multiplication. If

{V1 ,V2 '' .,Vm} is a complete set of A-irreducible con-

stituents of V, then

m
V =@ Vi 1 Ui

i=1 C

where Ui is a C-vector space such that dim Ui is equal to

the multiplicity of Vi in V. A operates on Vi a Ui by

a-(vi 0 ui) = (a-vi) ui, a c A, vi e Vi, ui c UJ. We may
m

identify EndA V = eAe with @ End U . Let ei be the
i=i

minimal central idempotent in A corresponding to Vi

(1 < i < m). It is clear then that fi = eie = ee e is a

minimal central idempotent in eAe. In fact, under right

multiplication in A, fi is just the projection of V onto

the primary component Vi a U, of V. Thus ,+ fi = eeie

sets up a one-to-one correspondence between the set of all

minimal central idempotents ei of A which correspond to

the distinct irreducible constituents of Ae and the set of

all minimal central idempotents of eAe. We summarize the

facts pertinent to this situation that we will be needing in

the following:

LEMMA 1: Let A be a finite dimensional semisimple

C-algebra and e an arbitrary idempotent in A. Identify

the (semisimple) subalgebra eAe with EndA Ae as an algebra

of right operators. Let i: A -+ End M be an irreducible

representation of A such that M is equivalent to an
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irreducible constituent of the left A-module Ae. Let i

be the character of i and 6 the corresponding minimal

central idempotent of A. Then the following conclusions

are valid:

(i) f = ee = ese is a minimal central idempotent in eAe.

(ii) i restricted to eAe induces an irreducible repre-

sentation w: eAe + End(e-M).

(iii) ileAe = x is an irreducible character of eAe.

(iv) A-f is a primary component of Ae of type x.

(v) i(e) = x(f) = dim(e-M) = multiplicity of in Ae

= multiplicity of i in Af = dim w.

(vi) & --+ e (resp. i ++ x) sets up a one-to-one corres-

pondence between the set of all minimal central idem-

potents (resp. irreducible characters) of A which

correspond to the distinct A-irreducible constituents

of Ae and the set of all minimal central idempotents

(resp. irreducible characters) of eAe.

PROOF: (i) and (iv) are obvious from the discussion of

the preceding paragraph. To see (ii), note that e-M 0 0

because M is A-isomorphic to an irreducible constituent of

Ae. e-M is eAe-irreducible because if x is any non-zero

vector in e-M, one has (eAe)x = (eA)x = e-M. Thus w is

irreducible. Obviously x is the character of r, hence

x is an irreducible character of eAe, proving (iii). It

is clear that i(e) = i(e) = X(f). Also i(e) = trace i(e)
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- dim(e-M). In the notation of the preceding paragraph we

may take e = ei, f = fi, Af = Vi Ui, = wi: eAe -+ End Ui,

and x the character of i. Thus x(e) = x(f) = dim U

= dim r = the multiplicity of Vi in Af = the multiplicity

of Vi in Ae. This establishes (v). (vi) is also immediate

from the preceding paragraph.

Applying lemma 1 to the case where A = C[G], e = e(P)

we have the following

PROPOSITION 2: Let H = HC(GP) be the Hecke algebra

of the finite group G relative to the subgroup P. Put

X = e(P) = the identity of H. Let j be an irreducible

character (complex) of G such that j is a constituent of

(lp)G. Let i: C[G] -+ End M be a representation affording

j, and i the minimal central idempotent of CEG] corres-

ponding to j. Then

(i) f = &X1 = X sxi is a minimal central idempotent of H.

(ii) i restricted to H yields an irreducible representation

n of H on MP = {v e Mjx-v = v for all x e P1.

(iii) ijH = x is an irreducible character of H.

(iv) Af is a primary G-module of type x.

(v) i(e) = x(f) = dim(MP) = (x,(lP)G)G (ilp)P

= the multiplicity of W in Af.

(vi) e ++ e (resp. x ++ x) sets up a one-to-one corres-

pondence between the set of all minimal central idem-

potents (respectively irreducible characters) of C[G]
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which appear as irreducible constituents of (lP)G

and the set of all minimal central idempotents (respec-

tively irreducible characters of H.

COROLLARY: In the above notation, if x is a charac-

ter of H of degree 1; that is, x is an algebra homomor-

phism of H into C, then f = f(X) is a primitive idem-

potent in C[G], and X is irreducible.

This corollary was proved by Janusz in [9].

There is quite a bit more that we can say about the

relationship between the minimal central idempotents and the

irreducible characters of H. The following theorem was

proved independently by C. Curtis, [41.

THEOREM 1: Let H = HC(G,P) be the Hecke algebra of

the finite group G relative to the subgroup P of G. Let

{Xala e D} be the natural basis of H, where D is a set

of double coset representatives for P\G/P. For any two

characters X and * of H, put <x,*>p = X X(X-1)*(X )C(Xa)-1
acD

Then the following conclusions are valid:

(i) If x is an irreducible character of H, then the

minimal central idempotent of H corresponding to X

is given by

f(X) = <X,X>P 1 X(X1 ) 1 X(Xa )C(Xa)~lXa
acD

(ii) If x is an irreducible character of H and X the



unique irreducible character of G such that

then

j(l) = X(Xl)[G: P]<x,x>P'.

(iii) If x and * are distinct irreducible characters of

H, then <x,*>p = 0.

PROOF: By proposition 1 if

ble character of G such that ijH

where

x is the unique irreduci-

= X, then f(X)

e(j) is the minimal central idempotent

of C[G] corresponding to X. Now 6(j) = G-1i(l) I i(x-1)x.
xeG

Thus f(x) = G|~1(l) I (x-1)e(P)xe(P)
xeG

= |G| 1x(l) ~
acD

= [G: P]- 1j(l)

Ii(x-1
xEPaP

)e(P)ae(P)

SX(X 1)(X )-lXa
aF-D a a

But then = x(f(x = [G: P~1Pj(l)
a

Thus j(l) = X(Xi)

I X(X-l)X(Xakc(X )
-1[G: PI<X,X>p

proving (ii). (i) follows from equation (1)

for [G: P]~ 1j(l).

upon substituting

Finally, if ' is an

irreducible character of H distinct from X, then 0=0(f(x))

= <x,X>P X(Xi) I X(X-1 )*(Xa)C(Xa)-1
acD

Hence <x,*>p = 0, proving (iii).

= <xx*P X(Xi)<x,$>p.

Note that theorem 1 tells us that if an irreducible

character x of

is known for all

HC(G,P) is known, in the sense that X(Xa)

a e D, then the degree

11

j|H = x,

(1)

= e(P)&(j)e(P),

= [G: P]-1 (1)<x,x>P-

<x,X> XX1)

X(l) of the cor-
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responding irreducible character of G is known. Actually,

the conclusion of theorem 1 can be sharpened so as to give

all the values x(g) of the irreducible character x of G

provided sufficient information is known about the conjugacy

classes of G, and how they intersect the (P,P) double co-

sets of G. I wish to thank C. Curtis for pointing out to me

the fact that the following proposition appears (without

proof) in [10].

PROPOSITION 3 (Littlewood): Let G be a finite group

and let e = x g be a primitive idempotent in C[G]
geG g

affording the irreducible character x. Let S be a con-

jugacy class in G and let g e S, then

C(g-') = IZ(g)I I ,
geS

where Z(g) denotes the centralizer of g in G.

Proposition 3 can be sharpened to deal with the case of

a primary idempotent f of C[G]. By a primary idempotent f

we mean an idempotent f such that C[G]-f is a primary

CEGI-module of type x for some irreducible character x of

G. Thus the character of G afforded by C[G]-f is just

x(f)-x.

PROPOSITION 4: Let f = g Xg-g be a primary idem-
geG

potent in C[G] of type x. Let S be a conjugacy class of

G and let g c S, then x(g-1) = x(f)-1Z(g)I X 9g.
geS

PROOF: Put z = x(f)~ 1x(l)IGK~1 I xfx- 1 . Then
xeG
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x(z) = X(l) while if * is any irreducible character of

G distinct from X, then *(z) = 0. z is obviously central;

hence it follows that z is equal to the minimal central

idempotent corresponding to X. That is,

x(f)~ 1x(1)IGK~ 1 I xfx- 1 = X(1)IG|~l Z x(x~ )x. (2)
xeG xcG

The assertion of proposition 4 now follows from collecting

together the conjugacy classes on both sides of equation (2),

and comparing the coefficients.

Applying proposition 4 to the idempotent f = f(x)

obtained in the proof of theorem 1 we thus obtain

THEOREM 2: Assume the hypothesis of theorem 1. Let

g c G and S be the conjugacy class of g in G, then one

has

X(g-1) = [G: P]|S|-1<x.Vx> ZPaPnsjx(X-a1) (X laPacDa a



2. COXETER SYSTEMS AND GROUPS WITH BN PAIR

In this section we recall some known properties of

finite groups with BN pair and their associated Coxeter

systems. We omit all proofs in this section. Most of these

results can be found in [1].

Coxeter Systems: Let W be a group generated by a

set {wiji I} of distinct nonidentity involutions. Then

every element w of W has an expression of the form

w = wiiwi 2...wim (ij e I, 1 < j < m). This expression is

called a reduced expression if it is not possible to write

w as a product of less than m of the involutions wi, i E I.

If w = wiwi2 ...wim is a reduced expression for w, put

t(w) = m. t(w) is called the length of w.

PROPOSITION 5: Let W be a group generated by a set

{wiji c I} of distinct nonidentity involutions. Then the

following are equivalent:

(i) (Axiom of Cancellation): If wi1wi2. .w is not a

reduced expression, then there exist integers p and

q between 1 and m such that w w ... W

=w i1wi2 ..wi ... w .. .w (where - means omit).
p q m

(ii) If wiwi2 ...wim is a reduced expression, but

w iw .Wi2... wi is not a reduced expression, then there

exists an integer p (1 < p < m) such that

w w 1...w im = w 1 ... iP...wim; and this last expression

is reduced.
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(iii) Let mu = I<w w >|. Then the generators {wi|i c I}

together with the relations w = 1, (ww )miJ = 1

(i,j C I, m < ) form a presentation for the group W.

If the conditions (i)-(iii) of proposition 5 are satis-

fied, then (W,I) is called a Coxeter system. If (W,I)

is a Coxeter system, then one has t(wiw) = t(w) + 1 for all

w E W, i C I.

For the rest of this section Coxeter system will always

mean finite Coxeter system; that is, IWI < M.

Let (WI) be a Coxeter system; and let w c W. If

wi wi2...wim = w is a reduced expression for w, one defines

the support of w (supp(w)) to be the subset {i1,i 2,'*'im

of I. The supp(w) depends only upon w, not upon the

choice of the reduced expression for w. For every subset J

of I put Wi equal to the group generated by {wili C J}.

Then (Wj,J) is again a Coxeter system. One has w e Wj if

and only if supp(w) c J.

The Coxeter system (W,I) is called irreducible if it

is impossible to partition I into two disjoint subsets I'

and I" such that wi commutes with wj for all i e I',

j e J'. It is easy to see that every finite Coxeter system

is the direct product of irreducible Coxeter systems in the

obvious sense.

Let (W,I) be a Coxeter system. There exists in W
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a unique element of maximal length. This element will

always be denoted by wo. wo is characterized by the

property that one has t(wwo) = 2,(wo) - t(w) for all w E W.

The finite irreducible Coxeter systems have been

classified as follows:

(a) The Weyl groups of the simple complex Lie

algebras (Coxeter systems of Lie type).

(b) The dihedral groups.

(c) H3 and H .

If W is the Weyl group of the simple complex Lie

algebra 42 of rank t, we take I = {l,2,...,z}, {aill < i < 2}

to be a set of simple roots of 5_ relative to a Cartan sub-

algebra h of ly and wi, E I to be the reflection with

respect to the simple root aj. Thus the groups W which

appear in (a) are also the finite irreducible groups gener-

ated by reflections in a finite dimensional Euclidean vector

space.

The dihedral group Dm of order 2m has the presenta-

tion: Dm = <w,w2Iw2 = w2 = (ww2 )m = 1>. Here we take

I = {1,2}.

The groups H 3 and H4 have the presentations:

H - <w ,w2,w 1w2=w2=w2= (w w2 )5 - (w w )3 = 1>,
3 123 1 2 3 1 22 3

H = <w ,w2,w3,w 1w 2=w2=w2 =w2 =(w w2 )
5=(w w )3=(w )3=1>

4 1234 1 234 1 2 2 3 3 4

Let (W,I) be a finite irreducible Coxeter system.

Put mij equal to the order of ww j for all i,j e I. The

elements w and w are conjugate in W if and only if
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there exists a sequence ii 2 '''' is of elements of I

such that 1 1 = i, is = j, and mikik+1 is odd. Thus from

the classification of the finite irreducible Coxeter systems

it is easily seen that there are at most two conjugacy

classes of the elements {wili e I}. If W is of Lie type,

then wi and wj are conjugate if and only if they corres-

pond to the reflections with respect to simple roots ai

and aj of the same length. Thus if we identify I with

the points of the Dynkin diagram D of , the conjugacy

classes of the elements {wili c I} are determined by the

points of D which lie on opposite sides of a multiple bond.

Let (WI) be a finite Coxeter system. Let J and

K be subsets of I. In each coset wW of W/W there is

a unique element of minimal length called the distinguished

coset representative (dcr) for that coset. If w' is the

dcr for wWJ, then w' is characterized by the property

that i(w'u) = t(w') + t(u) for all u c W . In each double

coset WKwWJ of WK\W/WJ there exists a unique element of

minimal length w called the distinguished double coset

representative (ddcr) for WKwW J. w is characterized by

the property that t(wru) = t(i) + t(u) for all u c W and

t(vir) = L(v) + (w) for all v e WK.

Let (WI) be a finite irreducible Coxeter system of

Lie type so that we may identify W with the Weyl group of a

simple complex Lie algebra 1 . Let h be a Cartan subalgebra

of % , {a,...,tat} a set of simple roots of relative to
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h, A+ the corresponding set of positive roots, and A the

set of all roots of 7 relative to h. We take I

= {l,2,...,t}, and w , i c I to be the reflection with

respect to the simple root a . That is, wi(E)=( 10
(rcie Ii)

for all c e h, where ( , ) denotes the Killing form of

I . Thus h forms a natural irreducible module for W. Let

a be a permutation of the set I = {l,2,...,t}. The element

w10w2a ...w is called a Coxeter transformation in W. The

Coxeter transformations in W are all conjugate to one

another. The order of a Coxeter transformation is called the

Coxeter number of W. Let c be a Coxeter transformation in

W, and let h be the Coxeter number of W. As the order of

c is h, the characteristic polynomial of c in the natural

representation of W on the Cartan subalgebra is of the form

ji [T - exp( mJ)]
ji h

where the mi are positive integers and we may assume that

0 < m <i M2 < s <- M < h. {i,m2,. .. , are called the

exponents of or of W; and {d ,d 2...,} are called

the degrees of W, where di = mi + 1. We list the properties

of 1 and W concerning the exponents and the degrees that

we will need for future reference in the following

PROPOSITION 6:

(i) m =1, m h - 1 (h = the Coxeter number of W)

(ii) mj = N = tA+I, the number of positive roots
j=1

of C.
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(iii) N = lth.
2

(iv) t(w0 ) = N.

(v) If the Dynkin diagram of is not simply laced,

so that there are two nonempty conjugacy classes {wgli C I,}

and {wi C I2} of the involutions {w 1i C I}, put

t 12 = 1I21, and let wo = w 1wi 2..WiN be any

reduced expression for wo; then exactly i h of the i
0 2 1 j

lie in I and -2 h of the di lie in 12 (1 < j < N). [17]

(vi) Put p(T) = 1 ( 1). p(T) is called the
i=i T - 1

Poincar6 polynomial of J. One has

p(T) = ITw)
weW

(vii) p(l) = f di = |WI.
i=i

Following is a list of the exponents for the Weyl groups

of the simple complex Lie algebras.

( % ) mi,...,M

(At) 1,2,3,...,et

(Bq) l,3,5,...,2x-1

(C) 1,3,5,..., 21-1

(DI) 1,3,5,...,21-3,t-1

(E 6 ) 1,4,5,7,8,11

(E7 ) 1,5,7,9,11,13,17

(E8 ) 1,7,11,13,17,19,23,29

(F 4 ) 1,5,7,11

(G2 ) 1,5
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Groups with BN pair: A group with BN pair (called

a Tits System in [1]) is a group G together with a pair of

subgroups B and N such that

(a) G is generated by B U N.

(b) T = B n N is a normal subgroup of N.

(c) N/T = W is a group generated by a set

{wji I} of distinct nonidentity involutions.

Cd) wiBwi ? B for all i e I.

(e) wiBw c BwB U BwiwB for all i c I, w e W.

[If w C W, by wB (respectively Bw) we mean nB (respec-

tively Bn) where n + w under the natural projection

N + W = N/T. The coset wB or Bw depends only on w

because T is a subgroup of B.] The group W is called the

Weyl group of G.

If G is a group with BN pair, then in the above

notation (W,I) is a Coxeter system, called Coxeter system

associated to G.

PROPOSITION 7: (Bruhat Decomposition) Let G be a

group with BN pair, then the (B,B) double cosets of G

are indexed by the Weyl group W of G. That is, one has

G = U BwB
wCW

is a disjoint union.

If G is a group with BN pair whose associated
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Coxeter system is (W,I), then for each subset J of I

G = BWJB is a subgroup of G. Moreover, every subgroup of

G which contains B is equal to Gi for some J c I.

The mapping J -+ G is a lattice isomorphism from the

lattice of subsets of I onto the lattice of subgroups of

G which contain B. The subgroups of G conjugate to B

are called Borel subgroups, and the subgroups of G con-

jugate to the Gj, J _c I, are called parabolic subgroups

of G. The following proposition is valid concerning the

parabolic subgroups.

PROPOSITION 8: (1) Two parabolic subgroups containing

the same Borel subgroup are never conjugate in G unless they

are equal. (ii) Every parabolic subgroup is its own normal-

izer in G. (iii) If two parabolic subgroups P1 and P2

are conjugate in G, and if Pi c P, i = 1,2, where P is

a third parabolic subgroup, then P1 and P2 are conjugate

in P.

In the sequel we shall deal only with finite groups

with BN pair. It - a theorem of Feit and Higman [61 that

if G is a finite group with BN pair, then the associated

Coxeter system (W,I) of G is isomorphic to a direct

product of ordinary Weyl groups (th'e Weyl groups of simple

complex Lie algebras) and dihedral groups of order 16. Thus

in particular, the finite Coxeter systems of type (H3) and

(H) can never appear as the Weyl group of a finite group G



22

with BN pair.

We call a finite group G with BN pair irreducible

if the associated Coxeter system (W,I) of G is irreducible.

We need a proposition on the double cosets in G also

for future reference.

PROPOSITION 9: Let G be a finite group with BN

pair and (W,I) the associated Coxeter system. Let J,,K

be subsets of I. Then the mapping WJ\W/WK -+ GJ\G/GK,

WJWWK -+ GjwGK is bijective. In particular, if

{u1 ,u2 ,...,um} is the set of distinguished double coset

representatives for WJ\W/WK, then {u1,...,um} is also a

complete set of representatives for GJ\G/GK'



3. THE HECKE ALGEBRA ASSOCIATED

TO A FINITE COXETER SYSTEM

Let G be a finite group with BN pair, and let (WI)

be the associated Coxeter system. According to the Bruhat

decomposition, the (BB) double cosets of G are indexed

by the Weyl group W of G. Thus one hat a natural basis

{Xwlw c W} for H(G,B), where Xw = |B1~ 1 I x. This Hecke
x BwB

ring was first studied by N. Iwahori [8] in the case where G

is a Chevalley group and B a Borel subgroup. In [2] Iwahori

has proved, using a theorem of J. Tits (unpublished), that if

G is any finite group with BN pair and k a field such

that the characteristic of k does not divide the order of

G, and such that k is a splitting field for both G and

W, then Hk(G,Gj) and Hk(WWJ) are isomorphic as k-

algebras, in particular HC(G,B) = HCN(,1l1) = C[WI.

The following theorem is due to H. Matsumoto [11].

THEOREM 3: Let G be a finite group with BN pair

whose associated Coxeter system is (W,I). For each i e I

put q = lBwiB/Bl = [B: B n wiBw~i], then one has

i) XwiX w ={Xwiw , if t(wiw) = 1(w) + 1

qiXww + w'i-)Xw, if t(wiw) = k(w) - 1

for all i c I, w E W.

(ii) The generators {Xwili e I} together with the relations:

-23-



X X = XwiXi = X

X = qiX + (qi-l)Xw, (3)
Wj

X X X ... = X X X ...

mu mu

(i1j E I, mij= <w >1)

form a presentation for H(G,B).

Let t: H(G,B) + Z be defined as in 1. That is,

C(Xw) = [B: B n wBw- 1]. Then c is an algebra homomorphism

and c(Xwi) = qi, i E I.

PROPOSITION 10: One has qi = qj if m is odd;

and hence qi = qj whenever wi and w are conjugate in

W.

PROOF: By (3) one has q q - qqiqj.-..

mu mu

Hence qi = qj if mid is odd. The second assertion of the

proposition follows then from 2.

REMARK: There exist finite groups with BN pair

such that qi . qj when mu is even. For example, the

twisted Chevalley groups have this property; cf. [12,13,19,20J.

However, in all the known examples qi and qj are either

equal or are both powers of the same prime for all i,j E I.

It is not an open question as to the existence of a finite
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group G with BN pair such that q. and qj are not both

powers of the same prime for some i,j E I.

We would like to study some representation theory of a

C-algebra whose constants of structure satisfy (3), only with

the qi being of a slightly more general nature. The next

proposition shows that such an algebra exists.

PROPOSITION 11: Let (W,I) be a finite Coxeter system

and M be a vector space over C having basis {Xwlw C W}.

Let {qii c I} be a set of complex numbers such that

qi = qj if wi and wj are conjugate in W (i,j E I).

Then there exists on M a unique associative C-algebra

structure such that

Xwi w , t(wiw) = t(w) + 1

XwiXww qiXwjw + (qi-l)Xw, t(wiw) = t(w) - 1

Moreover, the generators {Xwili c I} and the relations

Xw X 1 = Xwi i I

Xwi = qiX + (qi-l)Xwj i C I (4)

X Xw iX . X X Xwiwj i,j I

mu mu

form a presentation of the C-algebra M.

PROOF: This proposition, in much greater generality,

is given as an exercise in [1, p.55].
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We denote the algebra M obtained in the preceding

theorem by H(q 1,...,q ), where I = {l,2,...,L}, and we

refer to H(ql,...,q,) as a Hecke algebra over C associ-

ated to (W,I). Thus H(ll,...,l) is just C[W] the group

algebra of W, while if W happens to be the Weyl group of

some finite group G with BN pair, then H(q,,...,q,)

becomes HC(G,B) upon the appropriate choice of qi as

positive integers. Note that the structural constants of

H(ql,...,jq )are certain polynomials in the qi with rational

integer coefficients, so that this algebra is really defined

over the subring Z[qi,...,q of C.

REMARK: Using the techniques of Iwahori and Tits

mentioned before, it is easy to show that whenever H(q1 ,..., q

is semisimple, then it is C-isomorphic with C[W] as a

C-algebra. It does not seem, however, that there is any

natural isomorphism as long as the rank is greater than one.

Nevertheless, it is reasonable to expect the representation

theory of H(q,1 .1.q) to resemble that of CEW] in the

sense that given a representation of H(ql,...,q,), one

should be able to obtain an analogous representation of C[W]

by setting "qi = 1" everywhere. We shall see later that

this is the case for certain representations that we con-

struct.

As an immediate consequence of proposition 11 we have

that the map Xwi -+ qi can be uniquely extended to an algebra

homomorphism c: H(q ,...,q) C where if wilwi2...wiM is
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any reduced expression for w e W, then C(Xw) = qi1qi2*& imo

We shall refer to C as the trivial representation of

H(qj,...,qj).

Our next result is that H(q1 ,...,q2 ) is semisimple

if the qi are positive real numbers, but we need a few

lemmas.

Define the linear functional e on H(q , $06.,q

by Ec( cwXw) = c1 , cw E C.
weW

0 if wu ; 1
LEMMA 2: 1(XwXu C(Xw) if wu = 1 (w,u C W).

PROOF: By induction on t(w). If i(w) = 0, then

w = 1 and the result is clear. Otherwise we may write

w = w'wi with w' c W, i E I and t(w') = L(w) - 1. Now we

make two cases.

Case 1: 1(wiu) = 1(u) + 1. In this case XwXu

= XwXwiXu = XwXwiu. Now wu X 1 and so w'(wiu) # 1.

Thus by induction (XwXu) = E(Xw, Xwiu) = 0.

Case 2: L(wiu) = t(u) - 1. In this case XwXu

= Xw'wiXu = X wXXwiXu

= XwI{C(Xw )Xwiu + (C(Xwi) - Uul'

Now clearly w'u X 1 in this case so that c(XwXu) = 0 by

induction. On the other hand, we have wu = 1 if and only if

w'(wiu) = 1, so again by induction

0 if wu X 1
CX X ) CXC(X)C 

,)=C ) if wu=l
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PROPOSITION 12: Let x = JawXw and y =JbXw

be arbitrary elements of H(q,...,q ), aw~bw c C. Then

(xy) = a wbw-ic(Xw) = E(yx).
weW

PROOF: This is an immediate consequence of lemma 2.

LEMMA 3: For each x c H(q 1,...,q), x = CWXW
weW

cw E0, put x = c X -1, where c denotes the complex
weW

conjugate of cw, then the following properties of the mapping

x -+ x* are valid:

(i) (x*)* = x

(ii) (cx)* =Fx

(iii) (xy)* =y*X

(iv) If the qi are positive real numbers,

then xx* = 0 implies x = 0.

PROOF: (i) and (ii) are obvious from the definition.

To prove (iii) it suffices to show that (X Xu)* = X Xw

w,u E W, and this can be shown quite easily by induction on

the length of w. Now suppose xx* = 0. Let x = cwXW,
w W

then 0 = xx* = C(xx) = cw C(Xw) = CW|2C(XW). But
w W wCW

if the qi > 0, i c I, then c(Xw) > 0 V w c W. Thus we must

have Icw| 0 V w c W and x =0.

THEOREM 4: If the qi > 0, i c I, then H(q ,...q

is a semisimple C-algebra.
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PROOF: Let J be the radical of H(q1 ,...,q9 ), and

let x be an element of J. Then y = xx* is also an element

of J and by lemma 3 we have y* = y. Let k be the smallest

positive integer such that yk = 0. Suppose k > 1. If k

is even k = 2n and 0 = yk = y2n = (yn)(yn)* so that by

lemma 3 we have yn = 0, a contradiction. If n is odd,

k = 2n + 1, then 0 = yk = yk+1 = (yn+1)(yn+1)* so that

by lemma 3 we have yn+1 = 0, again a contradiction. Hence

k = 1, and 0 = y = xx* which implies x = 0 by lemma 3.

Thus J = (0) and H(q,,...,q) is semisimple.

We now characterize the center of H(q 1 ... ,q in

terms of the natural basis {Xw~w C W}.

PROPOSITION 13: Let H = H(q1 ,...,q ) and

x = [ awXw be an element of H. Then x is central in H
weW

if and only if the following condition is satisfied on the

coefficients aw, w e W: For all w e W and i c I such

that L(w iww) = t(w) + 2, one has

iawww, = aw + (qi-l)awjw

(5)
a = aw wwi

PROOF: Since H is generated by {Xw ii C I} it

follows that x will be central if and only if xXw = Xwi

for all i e I. Let i c I and let r be a set of dis-

tinguished coset representatives for W/<wi>, that is,

L(wiw) = t(w) + 1 for all w e r. Then we may express x as
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follows in two ways:

x = awXw + [ aw wXw w (6)
wer wer i i

x = aW-iXW-i + a _lw Xw-1w
w r w w Er i i

Now if one multiplies equations (6) and (7) on the left and

right respectively by Xwi, one obtains after making the

appropriate substitutions, the following necessary and

sufficient condition for Xwi to commute with x (broken

into four separate cases).

W(wiw) = t(w) + 1
(i) aw~ y

t(wwi) = t(w) + 1

) t(wiw) = t(w) + 1 q awjw = aww, + (q-l)aw

t(wwi) = t(w) - 1 aw = awiwwi

(8)

(iii) t(w iw) = (w) - 1 qiawwj = awiw + ( -1)aw

X(wwi) = t(w) + 1 aw = awiwwi

L(wiw) = L(w) - 1
(iv) aw w = awwiL(ww ) = t(w) - 1 w

But for x to be central it is necessary and sufficient for

(8) to be satisfied for all w E W, i c I. It follows by

making the appropriate substitution for w in the four parts

of (8) that (8) may be replaced by the single condition (5),

proving the proposition.
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PROPOSITION 14: Keeping the above notation, let wo

be the unique element of W having maximal length, then

(i) Xwo is central in H if and only if w is central

in W.

(ii) X20 is always central in H.

PROOF: (i) is an immediate consequence of proposi-

tion 13. For each i e I there exists a unique j e I such

that w w0 = w0 w . Thus wi,w are conjugate in W so one

has qi= qj. It follows that XwiXwo = qiXw iw+ (qi-l)Xw0
= qjXwow + (qj-l)X0 =wo Xwj. Similarly XwjXw = X wXwi.

Thus XXX =X X X X X X and X 2 is centralwi wowo wo wiw0  w wo wi- Xw i eta

because it commutes with Xwi, i E I.

PROPOSITION 15: Put c = I c(XW),
weW

(i) If c p 0, then c-1 I Xw is a primitive central
weW

idempotent in H affording the trivial representation t.

(ii) If c = 0, then H is not semisimple.

PROOF: Let x = I Xw. By proposition 13 we know that
weW

x is central in H. Now let i e I and let r be the set

of distinguished coset representatives for W/<wi>, as in

the proof of proposition 13. We may write x = I Xw + I Xw w
wer wEr i

= (X1 + Xwi) Xw. Then Xwix = qi(X1 + Xwi) Xw = qiX.
wer wEr

It follows that if w c W, then XwX = c(XW)x and hence

X2 = ( I C(Xw))x = cx. Thus if c = 0, then x is a
weW

central nilpotent and H is not semisimple. But if c X 0,
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then c~1 x is an idempotent as asserted.

REMARK: It seems likely that H will be semisimple

if and only if I c(Xw) $ 0, but we have no result in this
weW

direction of a general nature.

For the remainder of this section we assume that

qi > 0, 1 E I, so that H = H(q1 ,...,q,) is semisimple. Let

J be an arbitrary subset of I. Denote by H the sub-

algebra of H generated by X1  and {Xw i c J}. Thus H

is just a Hecke algebra over C associated to the Coxeter

subsystem (W ,J). It is clear that H will be semi-

simple also because qi > 0, i E I. The trivial representa-

tion of H is given by c = cJH , and

e = '(Xw Xw is the primitive central idem-

J J

potent of H affording JO Thus if w: H -+ End V is any

representation of Hj, then w(ej) is the projection on the

Hi-submodule eJ-V consisting of a certain number of copies

of the trivial representation of H . Applying lemma 1 to

this situation we observe the following simple reciprocity

theorem for future reference.

PROPOSITION 16: Let w: H -+ End V be an irreducible

representation affording the character X, then for any sub-

set J of I one has x(ej) = the multiplicity of ir in

He = the dim e -V = the multiplicity of c in fj'Hi.
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The linear characters (one-dimensional representations)

of an algebra are just the multiplicative linear functionals

on that algebra. The linear characters of H(GB) have been

classified by N. Iwahori [8], when G is a Chevalley group

and B a Borel subgroup of G. It is not difficult to

extend his argument to our algebra H = H(q,, ... ,q ).

Recall that as (W,I) is a finite irreducible Coxeter

system, there are at most two conjugacy classes {witi E I1}

and {wili C 12} of the elements {wili c I}. If there is

only one conjugacy class we make the convention that Ii = I,

12 = 0. Put qi = p for all i E I,, qi = q for all i e 12'

PROPOSITION 17: Let H = H(q 1,...,q ) If 12 $

then there are exactly two linear characters r and a of

H, where a(Xw) = (~)z(w), w e W. If 12 0 0, then there

are two additional linear characters a 1 and a2 of H,

where

p i e I

-l i I 2f-l i s
a2 X )

q i C I2

PROOF: It is clear that a can be extended uniquely

to a multiplicative linear functional by our presentation for

H. Similarly, if there are two conjugacy classes, then al

and a2 can be extended to multiplicative linear functionals.
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It suffices to show that these are all of the linear charac-

ters of H. But if C 1,...,Cm are the conjugacy classes of

the elements {wi|i e I}; and if * is any multiplicative

linear functional on H, then *(Xwi) must be equal to -1 or

qi because these are the only roots of the quadratic equation

x2 = qi + (qi-l)x which is satisfied by Xwi. Furthermore *

must be constant on the conjugate classes C1,. 0.. Cm* Hence

the number of linear characters is 2m.

COROLLARY: Assume that there are two conjugacy classes

of the involutions {wili e I}; i.e., 12 # 0. Let

w = wi wi ...wi be a reduced expression for w e W. Put
1 2 m

21(w) equal to the number of ii such that i C I,, and

t2(w) equal to the number of i such that E 12 (lgjSm).

Then t (w) and 2(w) depend only upon w, not upon the

choice of reduced expression for w c W. Moreover, one has

ai(Xw) = pt(w) ( 1 )L2 (W)

(9)

a2 (Xw) = ( 1 )11(w) q2(w)

PROOF: (9) is obvious from the proposition. Taking

pq > 1, it follows that tl(w) ,2 (w) are uniquely deter-

mined, independent of the choice of reduced expression for w.

Iwahori has also shown in [81 the existence of a

canonical involution of HC(GB). This involution exists for

H = H(q1 ,...,qt).
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LEMMA 4: Xw is invertible for all w E W.

PROOF: It suffices to show that X, is invertible,

i E I. But it follows from the fact that X= +(-l)Xw,

that in any irreducible representation of H, the eigenvalues

of Xi are qi and -1. Hence X is given bywi wi

X1 = q 1 (X + (1-qi)X ).
-1GX X1 an o

PROPOSITION 18: Let Xw = C(Xw)a(Xw)X , and for

x = w yXw in H put = a W Xw Then the mapping
wEW wCW

x + is an algebra automorphism of H, having order 2.

PROOF: It is obvious that i = x, hence it suffices

to prove that the {Xw~i c I} satisfy the relations of our

presentation (4) of H. Now Xwi = -i Xwj and hence in any

representation of H must also have only the eigenvalues qi

or -1. Thus Xwi satisfies the same quadratic equation as

Xwi, namely Xw = qiX1 + (qi-1)kwi. Let ij c I,

mu = I<wiwj>I, and put w w w ... = w w w ... = w. These are
m ij jij

mu mu

the two distinct reduced expressions for w. Thus one has

X X X ... = C(Xw)a(X )X WXW Xw1 .. = C(X)a(X)X =X X X ....

mij mu mu

REMARK 1: Note that this canonical involution, x -+ x

induces a natural pairing of the irreducible characters of H;

namely, if X is an irreducible character of H, then

X(x) = x(i) is also such. If H = C[W], then j(w)
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= sgn(w)x(w) for all w e W. Note that in the notation of

proposition 17 one has 4 = A, a = 02'

REMARK 2: If H = H(q1 ,...,q), qi > 0, i E I, one

can show, using the characterization of the center of H

given in proposition 13, that if one puts

<XX>= I X(Xw-1)X(Xw)c(Xw)- 1, then <X,X> p 0 and
weW

e = <X,X>~ X(Xw-1)4(Xw )-1Xw is the minimal central idem-
weW

potent in H corresponding to X. By theorem 1 we know, of

course, that this is true when either H = C[W] or H is the

Hecke algebra of HC(G,B) of some finite group with BN pair.

LEMMA 5: The map Xw + Xw--1, extended by linearity

to H, is an anti-automorphism of H of order two.

PROOF: This is an immediate consequence of proposition

18.

Let w: H Mn(C) be a representation of H by n x n

complex matrices. Then the preceding lemma enables us to

define the contragredient representation w* of w, namely

* (Xw) = W(Xw-1)t. If X is the character of w, we denote

the character of w* by X*. Thus X*(Xw) = (X-1). Using

our presentation, (4), of H we can also define i the

complex conjugate of w by 7r(X) = '(Xw) for all w W.

Denote the character of 7r by X. Thus X(Xw) = X(Xw). It

is clear that X is irreducible, so are x and X.

H
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po

I X(Xw-l)C(Xw)-lXw be the minimal central
wCW

tent in H corresponding to X. Then

idem-

X*(e) = <X,X>~1 w X(Xw-1)C(Xw)-X(Xw-1
weW

= <X,X>~1 Now c(Xw )-1w eX(XWW1)12C(Xw)-.
wCW

X*(e) y 0. But this implies x* = X,

> 0

hence X*=X.

SX (Xw)1|2 C(Xw )-lCOROLLARY: X(Xw-i) = X (Xw) , <x X> = I
weW

> 0. If X(Xw) is real for all w e W, then X(Xw-.)=X(Xw).

PROPOSITION 19: One has X* = x.

PROOF: It suffices to prove the proposition when x

irreducible. Let x be irreducible and let e
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< X X

so that



4. CLASSIFICATION OF THE IRREDUCIBLE REPRESENTATIONS

OF THE HECKE ALGEBRA OF A DIHEDRAL GROUP

In this section we assume that the Coxeter system

(WI) is dihedral of order 2m; that is, I = {1,2}, and

W has the presentation:

W = <wlw2 |w = w2 = (wiw2 )m = 1>.

Let H = H(q ,q2) be a Hecke algebra, over C,

associated to (WI) as in section 3. We assume that q1

and q2 are positive real numbers so that H is semi-

simple by theorem 4. Recall also that q = q2 if m is

odd.

We shall classify, in this section, all the irreducible

complex representations of H.

LEMMA 6: Let q and q be positive real numbers

such that q, = q if m is odd. Let s be a positive
m2-

integer such that 1 < s < M-1 if m is odd- and 1 < s < m-2
2 - 2

if m is even. Let a and b be complex numbers such that

ab =q, + q2 + 2Vqlq2 cos -. Let A, and A2 be the

2 x 2 complex matrices:

-1 a q2 0
Al = , A 2 = 2. (10)

0 q b -1

Then the following statements are valid:

(i) A, = qi-I + (qi-l)Ai (i=1,2)

(ii) A1 and A2 do not commute.

-38-
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(iii) A1 A2 and A2A1 have the same minimal polynomial

equal to x2 - 2/q q2 cos 2fsx + q1 q2 '12 m

(iv) The eigenvalues of A1A2, (A2AI) are /qq2 exp

[+2wis/m].

(v) If m is even one has (A A )M/2 = (A A )M/2.
1 2 2 1

M-1 m-1
(vi) If m is odd, one has (A A 2)-=A = (A2 A ) A2

PROOF: AiA2 ab-q2 -a

q1 b -q 1

-q2 q2a
A2A1 =

-b ab-q1

Hence (i), (ii), (iii), and (iv) are immediate. To verify (v),

note that when m is even we have by (iv), that the eigen-
m m

values of (A 1A2 )2 are equal to (q 1q2 )v exp(+wis). That

is, (A1A2  = 1 qq2) if s is even, and (A1A2)

= -(qlq 2 )V when s is odd. Since the same is true of

(A2A1 ) we have (v). It remains to prove (vi). As m is

odd we have q1 = q2 = q, say; and by (iv) the eigenvalues

of A1 A2 are qexp(+2wis/m). Thus (A1A2 )m = qm-I, and

(A A )m-1 = qmA~1A- .
1 2 2 1

M-1 L
Now the eigenvalues of (A1A2) 2 are q exp(+ie) where

= Hence we have the equation:

m-1 m-1
(A A 2)m-1 - 2q 2 cos e(A A 2) + qm-1 = 0
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that is,

qmA~1A~1 - 2q 2 cos O(A A ) 2 + qm-1 0qm2i- 1 q 1 2

hence
M-1 M-1

qmA~1 - 2q 2 cos e(A A 2 A + A qrni = 0 (11)
2 - 12 1 1

similarly

M-i M-1
q A~I - 2ql cos O(A A )7A + A qm-= 0 (12)

1 2 1 2 2

Now qA~ = Ai + (1-q)-I (i=1,2), and hence

qm(A-1 - A-) = qm-(A - A ).
2 1 2 1

Thus subtracting (12) from (11) we obtain

m-1 M-1 M-1
-2q 2 cos [(A A 2) 2 A - (A2 A ) 2 A2] = 0 (13)

But our hypothesis implies that cos e / 0. Hence (vi) follows

from equation (13).

THEOREM 5: Let H = H(ql,q2) be a Hecke algebra over

C associated to the dihedral group of order 2m. Let s be

a positive integer such that 1 <_ s < m-l if m is odd and
2

1< s < m-2 if m is even. Let the 2 x 2 complex matrices

A and A2 be defined as in (10) where ab = q1 + q2 + 2/qq2

cos . Then there exists a unique irreducible matrixm

representation

rs: H -+ M(2; C)

such that s(Xw)= A1', WS w) = A2. Moreover, the {s
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together with the one-dimensional representations of H

form a complete set of inequivalent irreducible representa-

tions of H.

PROOF: It follows from the presentation, (4), of H,

together with (i), (v), and (vi) of lemma 6 that the map

Xwi + Ai (i=1,2) can be uniquely extended to an algebra

homomorphism ws: H -+ M(2; C). The representation w7 of H

is irreducible because A and A2 do not commute by (ii)

of the lemma. The ws are inequivalent by (iii). Thus if

m is even we have found m-2 inequivalent two-dimensional
2

representations. By proposition 17 there are precisely 4

distinct one-dimensional representations of H when m is

even. As 4(-2?) + 4 = 2m, it follows that {wsjl < s < m2

together with the four one-dimensional representations of H

form a complete set of inequivalent irreducible representa-

tions of H. Similarly, if m is odd, then 4(m-1) + 2 = 2m,
2

and it follows that {ws1 < s < m }" together with the two

one-dimensional representations of H form a complete set

of inequivalent irreducible representations of H.



5. THE REFLECTION REPRESENTATION OF HC(GB)

AND ITS COMPOUNDS

In this section H = H(q,,q 2 ' ) denotes a Hecke

algebra attached to a finite irreducible Coxeter system

(WI) of Lie type (cf. 3). Thus W is the Weyl group of

a simple complex Lie algebra i . Let {ac,12 ,...,at}

be a set of simple roots of % relative to a Cartan sub-

algebra of and h the real vector space spanned by

{a 1 ,...,c}. Denote by ( , ) the Killing form of . We

take I = {l,2,...,L}, and wi, i e I, to be the reflec-

tion with respect to the root aj. We assume the q , i e I,

are positive real numbers so that H is semisimple by the-

orem 4.

We shall define a representation of H on h that

coincides with the natural action of W on h when q. = 1

for all i e I.

Let mu = I<wiw >1, and put

[q1 + qj + 2/q1 qj cos 2w/mij ]1 2

u ij = 2 cos ir/m j mij2

(14)

u = 0 , m j=2 .

We define the symmetric bilinear form B on h as follows:

B(ai,ai) = 1(qi + 1)(ai,ai)
2

B(ai,aj) = uij (caia ) 1 j .
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C
(qi + 1)B(ai,aj)

B(aiai)ij

and call C = (C ) the Cartan matrix of the Hecke algebra

H. Following is a list of all the Cartan matrices of H,

along with their determinants.

0-0-... -0-0
1 2 Z-1

Let qi = p, 1 < i< 91

p+l - '/F

-V / p+l

- /p p+l

det C = P 1
p- 1

+ p + p 2 + --- + pL-

0-0-0- - -0-0=# 0
1 2 3 -2 Z-l 1

Let qi = p, 1 < i < L-1, q, = q.

det C

= pt-1 q+l

p+1 -/Wp

- pp+ -

- V p+1

Put

(A

(B I ):

-/ p+l 2

-q q+l

tx t

ixt



I
Z-1

0o0
1 2 -3

Let qi = p, 1 < i < Z.

F - / .

-- p Vp -pl

C =

(E6 ):

p+1 -/p

-/ p p+1

p+1

t x t

det C = (p+1)(pt-1 + 1)
04

0-0-0-0-0
1 2 3 5 6

Let qi = p, 1 < I < 6.

p+1 -V

-p~ +1 -/VP

C = -v/p p+l -/K- -y/p

-v/p p+l

-p p+1  -/'p

-v/p p+l

det C = * + . (p 2+p+1) = p6 + p5 - p3 + p + 1
p2 + 1
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(D )



5
0

0---O---------O--
1 2 3 4 6 7

Let q = p, 1 < 1 < 7.

p+1 -/p

C/ -V p+ VP

-./pT p+1

det C = (p+1)(p9+1) - (p+1)(p6

(p3+1)

-VP

p+1 -/P

-/p p+1J

- p 3 + 1)

6
0

1 2 3 4 5 7 8

Let qi = p, 1 < i < 8

p+1 -/pT

-/p p+1 -V

-/p p+1 -V

C = -/p p+l -/p -/p

-vp p+1

p+1 -/p

-vp p+1

det C = (p 1 5+1)(p+1)
(p5 +1) (p 3 +1)

= p8+ p7- p _ p4- p3+ p + 1
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Let q = q2 - pI q3 = q 4 q.

p+l -/p

-/ p+1 -2

q+l -/q

- /q q+1

det C = p 2 q 2 - pq + 1 =

Let q =P,

p+1

p++/pg
3

p 3 +1
pq + 1

J

1 2

q 2=q

- 3 I++
3

q+1

det C = pq - /p?' + 1 - (pq)3/2 +
pq + 1

PROPOSITION 20: The bilinear form B is positive

definite.

PROOF: It suffices to prove that the principal minors

of the matrix (B(aj,aj)) are all positive,

(F4 ) :

46

C =

O-O-=O-O
1 2 3 4

and for this it
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suffices to show that the principal minors of the Cartan

matrix are all positive. Now the preceding list shows that

the determinants of all the Cartan matrices are positive,

and any principal minor of a Cartan matrix can be con-

strued as the determinant of the Cartan matrix of the Hecke

algebra associated to a Weyl group of some semisimple Lie

algebra of smaller rank. Hence B is positive definite.

Now for i c I define Xje End h by

xi( ) = qi- (qi+l)B(ai,$) a * (15)
B(aia i)

As B is an inner product on h it is clear that Rai is the

-1 eigenspace for Xi, while, (Rai) , the B-orthogonal com-

plement of Rai, is the qi-eigenspace for X . In particular

-1 and qi are the only eigenvalues of Xi, and hence we

have:

LEMMA 7: (Xi )2 = qi-I + (q-l)X.

LEMMA 8: X .. XX i i . (16)

mu mu

PROOF: Let V = Ra + Ra and Ui= V . It is

clear from the definition of X , that Vii is stable under

the action of Xi and X Moreover, X and X operate

as the scalars qi and q respectively on U so that

U i is also stable under the action of X and X . Now it

is clear that (16) holds on Uij (keeping in mind that qi=q
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if m i is odd); and on Vij thematrices of Xi and Xi with

respect to the basis {ai,a } are

-1 -2(aaj q0
(ai,cai)

and

0 q -2(aj,ai)

(a , d~

respectively.

Now,_2
= (qi + qj + 2/qjq cos m m j2

,ai ,) 0 m 2

It follows therefore from the representation theory of the

Hecke algebra of the dihedral groups (lemma 6) that on Vii

we have X i X i... = X X

mu mu

and this proves the lemma.

It follows from the presentation (4) of H together

with the above lemmas that the map Xwi * i can be uniquely

extended to an algebra homomorphism w: H + End h; namely, if

wiw . . .wim is any reduced expression for w c W, then

W(Xw) = 1 Xili2 - Xime We call w: H -+, End h the reflection

representation of H because it reduces to the usual repre-

sentation of W on h as a group generated by reflections

when all the q. are set equal to 1. We use the notation



x-a = 7r

PROPOSITION 21: Relative to the inner product B,

I(Xwi) is self adjoint. The adjoint of w(Xw) is 7r(Xw-l).

PROOF: The first statement is easily checked from the

definition of i(Xwi) = i. The second assertion follows from

the fact that if wi wi ... wi is a reduced expression for

w E W, then Xw = X iXwi 2'' Xwim, and Xw-1

-Xi Xi ...Xwi
w m wim-1 wi1

-q+1)B(ai,a )
Note that if we put aij = , then we

B(nat~ '

have

Xwi-(aj) = qiaj

we have the relations

aii = -(qi + 1)

aij = aji = 0

aijaji = qi = qj

aijaji = qi + qj

aijaji = qi + q +

+ aijai, ij E I.

if mu

if mi

if mi1

qi g- i f

= 2

=3

=14

mu = 6

REMARK: It is not difficult to show, using the

that the Dynkin graph of W is a tree, that given any

{b I of 12 complex numbers which satisfy equations

there exist complex numbers {c 1 ,c2 ,. .. ,c } such that

a = ciai, (1 < i < i), then one has Xwi*(a ) = qial

Thus the reflection representation is determined up to

equivalence by equations (17).

fact

set

(17),

if

+ bija .

complex

49

. (17)

(x)-a when x E H, a E h.

B gr
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Let v: H + End V be a representation of H on the

complex vector space V. We say that v has an integral

form or simply that v is defined over Z if there exists

a basis of V such that the matrices of v(Xw), relative

to that basis, have rational integral coefficients for all

w C W.

PROPOSITION 22: If W is not of type (G2 ), and if

the q1 (1 < i < ) are positive integers, then the reflec-

tion representation of H is defined over Z. If W is of

type (G2 ), then H is defined over Z if and only if q1 ,q 2

and /q1q2 are positive integers.

PROOF: If W is not of type (G2) and the q

(1 < i < 1) are positive integers, or if W is of type (G2 )

such that qg,q 2 and /qlq2 are positive integers, then

the fact that the reflection representation w is defined

over Z is immediate from the preceding remark. Suppose con-

versely that W is of type (G2 ) and that i is defined over

Z. If we denote by X the character of i, then

x(Xw1 ) = q, - 1, x(XW2 ) = q2 - 1, x(XWlW2 ) = q1q2. Hence

qq 2 and /qlq2 must be integers.

k
Let Ah denote the k-fold exterior product of h; we

k
consider Ah as a subspace of the exterior algebra of h.

k
Define the operator X k) c End Ah by

X ( 51E ^'^k) q 9-(k-1)Ri C ).X i(E2)^' '^ i(Ck)i E )

(El'E2''* '~k c h)-
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LEMMA 9: (X k))2 = q I + (q-1)Xik) (18)

(k)= (k)k(k)... (19)
i j j i

mj m

PROOF: It is obvious that equation (19) holds from

the definition because the relation is satisfied in End h.

Now let U = Rai and V = U = the orthogonal complement of

U relative to the inner product B. Then
k k k-1
Ah = AV @ ( A V)-U

is a linear direct sum. As U is the (-l)-eigenspace for

Xi and V is the qi-eigenspace for it, it follows from
k

the definition that every element of AV is an eigenvector

for X(k) with eigenvalue q., and every element ofi
k-1 (k)

( A V)-U is an eigenvector for Xki with eigenvalue -1.

Hence the eigenvalues of x(k) are qi and -1; and equationi

(18) is verified.

It is immediate from the lemma that the mapping

X -+ k) can be extended uniquely to an algebra homomor-

(k) k
phism w(k): H -+ End (Ah). We call the representation

(k)H + End h the kth compound of r, and denote the

character of w(k) by x(k). We identify Rh with the

trivial representation wr(X W) = C(Xw) (cf 3.

PROPOSITION 23: Assume the conditions of proposition

22 are satisfied. Then the w(k) are defined over Z

(0 < k < t).



PROOF: One has Xwi(aj) = qiaj + aijai where the

aij are integers 1 < i,j < t. We choose as a canonical

k
basis for Ah {aii^ai 2 A...saik} where (i1 ,i 2 $ ..' k) runs

over all sequences of positive integers such that

1 < 12 s i k. We apply X, to ail-.. -aik:

Xwj (ail ...- aik) = q(k-1)X a ... Xw aik

= (k-1)[(qjail + ajilaj) A . (qjai + ajikaJ)l =

k A
qjai ai 2 A A aik + I(-l)m+1a jima-a i Aaim^''^aik,

(20)

where the symbol ai means that the factor ai is omitted.
m m

Now rearranging (20) so as to get everything expressed in

k
terms of the canonical basis of Ah only involves changing

the signs of certain coefficients. Hence relative to this

basis, the matrix of (k)(X wi) has integral coefficients

and consequently w(k) is defined over Z.

THEOREM 6: If the Coxeter system (W,I) is irre-

(k) k
ducible, then the representations w .: H + End Ah are

distinct and absolutely irreducible (0 < k < Z).

PROOF: To simplify the notation let h = C & h,
R

H = C 0 H, and extend B to a symmetric nondegenerate bi-
R

linear form on h in the obvious way. We argue by induction

0 1
on the rank of W. If the rank is one, then Ah and Ah

are both 1-dimensional, hence irreducible. Suppose then that

52
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rank (W) = t > 1, and let J be a subset of I such that

J= t-1 and the Dynkin diagram of W is connected, where

W = <w ii e J>. Then hg = Cai can be identified with
icJ

a Cartan subalgebra of a simple complex Lie algebra of rank

t-1, and Hi = the subalgebra of H generated by {Xwi|i C JI

is a Hecke algebra over C associated to Wi. Let V = h

be the otIogonal complement of h relative to B. Then

k k k-1
Ah = Ahg D A hi ^ V (21)

k
Now considering Ah as an Hj-module by restriction, V is

1-dimensional affording the representation w( 0 )(X ) qi,

i e J. Thus it follows from the definition of the action of

k-i k-1
H on h that A h V A hi But by induction

k k-1
Ahg and A hg are distinct and irreducible as Hi-modules.

k
Thus as an H-module, either Ah is irreducible or (21) is

k
the decomposition of Ah into distinct irreducible constitu-

k
ents. But it is easily seen that Ah, is not stable under

k
the action of H. Hence Ah is irreducible. It remains to

k k'
show that Ah is not H-isomorphic with A h if k X k'

(0 < k,k' < t). In the proof of lemma 9 we have seen that

r(k)X is -1
the dimension of the qi-eigenspace for n ()X) is (tkl)'

k k-1
Hence if Ah and A h are H-equivalent we must have

( ) = (k,) and (Ljl) = ( ~ ) which implies that k = k'.

This completes the induction argument.

Recall that the involution x + x of proposition 18

sets up a natural pairing among the irreducible characters of
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H. The compound characters X(k) of the reflection charac-

ter are naturally paired as we shall see below, but first we

need a lemma.

LEMMA 10: Ah affords the linear character a,

where a(Xw) = (-1 )t(w), w C W.

PROOF: Let i e I, and choose a basis {,

of h such that Xwi - = q -o , (1 < j < L-1) and

Xwi-Et = -E,. Then by the definition of the action of H on

Ah it is obvious that if ( = ( .2---^ , , one has Xwie -

= -&. Thus X'')(Xwi)= -1, and as X is linear we must

have X P.(XW) =(~-W(W) = G(Xw) for all w e W.

PROPOSITION 24: One has ^(k) x(-k)

PROOF: Let x be a nonzero vector in Ah and let

k 2-k
e Ah, n C A h. Then E-n = c-X for some unique scalar c

k
and we have a nonsingular pairing < , > between Ah and

2-k
A h, namely <&,n> = c. Let i e I and let E =

= n .. n-k' Ej E h, nj e h. Then (Xwi-) (Xwi-n)

= q(t- 2 ) (X 1)-...-(Xwi-Ek) ^ (Xwi-n)-...(Xwi-nt-k)

= qiXwi -(-n) = -qi(E-n). In other words <Xwi -,Xwi n>

= -q,<E,n>. Now we can rewrite this equation in the form

<Xwi-(,n> = <E,-qX = <Xwin>. Hence for any w e W

we have the equation <Xwo-,n> = <E.,-1-Cn> . This implies,

k t-k *
using the natural identification of Ah with ( A h) , that

the contragredient H-module (t kh)* (cf. proposition 19) is

k k
equivalent to Ah. But as the Ah are all defined over R



it follows from proposition 19 that ( A h) is equivalent
(k t-)asasetd

to A h. Hence we have xk) = x( -k) as asserted.

THEOREM 7: Let J be any subset of I,

e= ( C(X)) Xw, then x(k)(e ) - (I-J1)
wCWg wWk

PROOF: Let hg be the subspace of h spanned by

{a i E J}, and hA = the orthogonal complement of h with

respect to the bilinear form B. Then h obviously affords

lI-JI copies of the trivial representation of H . One has
k k i k-i

h = hy S h and hence Ah = @ (AhJ) A h'). Now it is
i=0 k

easily seen from the definition of the action of H on Ah,

that as an H -module one has

1 k-i i J) k-i
Ah A h ) (Ahg)
i ) (

We assert that Ah does not contain the trivial representa-

tion of Hg if i > 0. Indeed let J be the

decomposition of J into connected subsets considering the

elements of I as points of the Dynkin graph of W. Then

h = h 1 I hJ 2 ED 9 hi is the decomposition of hi into
mi

distinct irreducible Hi-submodules. Thus Ahi
1 1 12 im

= D (A hj ) A (A hJ 2) (A h ), where the summation

is extended over all sequences (i 12-' '0'1 m of positive
m

integers such that I = i. Moreover, each direct sum-
i J=1 i

mand of Ah is an H -submodule. Suppose Ah contains a

vector ( which affords the trivial representation of H .ij
Then Ei =i1i2 A A im' where Eij e A hjj But
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then the pairwise orthogonality of the h implies that

each i affords the trivial representation of H in hjj.

By theorem 6 we must have i = 0, 1 < j < m, thus i = 0,

proving the assertion. Now by proposition 16 w (k)(e ) is

k k
the projection of Ah onto the primary component of Ah

corresponding to the trivial representation of H . Hence

k 0 (I JIi k =(I-J
e-Ah (Ahj) k , and in particular dim e J Ah = k

The assertion of the theorem now follows from proposition 16.

In the case of w = 7i0), the reflection representa-

tion, these multiplicities are enough to distinguish it when

the rank is greater than 1, as we shall see below.

THEOREM 8: Let (WI) be an irreducible Coxeter

system of Lie type and H = H(q 1,. .. ,q ,) a Hecke algebra

associated to W over C. Suppose n: H -* End V is an

irreducible complex representation of H, affording the

character X of H. Assume that X(ej) = II-JI for every

subset J of I. If W is not of type (G2 ), then w is

equivalent to the reflection representation of H.

PROOF: Taking J equal to the empty set 0, we have

e, = X1 , the identity of H. Thus dim V = x(eZ) = III = R.

Let i c I, and take J = {i}. Then (ej) is the projec-

tion on the qi-eigenspace for the operator i(Xwi). As x(ej)

= lI-JI = L-1, the dimension of the qi-eigenspace for

i(Xwi) is L-1. Thus the (-l)-eigenspace for i(Xwi) is

one-dimensional for all i c I. Let ui be a nonzero vector
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in the (-l)-eigenspace of ,(Xwi), i c I. We break the rest

of the proof into a number of assertions.

ASSERTION (a): If E e V, then X - E = qiE + cui

for some c c C.

PROOF: Note that w(X, - qiX1 ) must be a scalar

multiple of the orthogonal projection on the (-l)-eigenspace

for w(Xw ). Assertion (a) follows from the fact that this

eigenspace is one -dimensional spanned by ui.

ASSERTION (b): {u1 ,u2 ,...,ut} form a basis for V.

PROOF: It is clear from assertion (a) that the sub-

space spanned by {u1 ,... ,u,} is H-stable. By the irreduci-

bility of V it must coincide with V; and since dim V = 2,

the ui are linearly independent.

Let Xwi-uj = qiuj + bijui (1 < i,j < 2). It is clear

that bii = -(qi + 1).

ASSERTION (c): (Xwi) and w(Xwj) commute if and only

if bij = bji = 0, in which case one has Xwi(u ) = qiuj,

Xwj(ui) = qjui, (i # j).

PROOF: This can be checked directly from the defini-

tions.

ASSERTION (d): Let i p j, then w(Xwi) and w(Xwj)

commute if and only if mu = 2 (mii = I<wiwj>I).

PROOF: If m = 2, then Xwi and Xwj commute,

hence so do w(Xwi) and w(Xwj). Suppose that ff(Xwi) and
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7r(XWJ) commute with mij > 2. Then as the Dynkin graph of

W is a tree, it follows that there exists a partition of I

into two disjoint nonempty subsets I' and I" such that

7r(Xwi) commutes with w(Xw1 ) for all i c I', j e I". But

then if V' = I Cui, V11 = Cui, one has by assertion
iI' I

(c) that V' and V" are H-stable, contradicting the

irreducibility of V.

ASSERTION (e): If mu > 2, then

bijbji = q + q + 2/qiq cos .mij

PROOF: Let Hij be the subalgebra of H generated by

XwiX, and the identity. Let V 1 = Cui + Cu . Then Hij

is a Hecke algebra of the dihedral group of order 2mni, and

the restriction of w to Hij induces a representation of

H on the subspace Vii of V. As mu > 2, ff(Xwi) and

w(Xwj) do not commute on Vij by assertion (c). Conse-

quently Vii is an irreducible Hi-module. But W is of

Lie type so that mu = 3 or 4. It follows from theorem 5

that in either case Hi1  has precisely one irreducible two-

dimensional representation, and that the trace of XwiXwj in

this representation is 2/qq cos m . Assertion (e) now

follows from the fact that the trace of w(XwiXwj) on Vii

is equal to bijbji - (qi + qj).

Thus we have by the above assertions:
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Xwi(uj) = qjuj + bijui i,j C I

b = -(qi + 1) i C I

bij bii = 0 m i= 2 , i,j C I

b b = q+ q + 2/qiq Cos 2w, mi >2, i,j C I
mij

The fact that w is equivalent to the reflection representa-

tion of H is now an immediate consequence of remark fol-

lowing proposition 21.

REMARK: Note that for the proof of theorem 8 we only

had to assume that x(ej) = |I-Ji when |JI = 0 or 1.

Applying these results to the case where H is the

Hecke algebra of some finite irreducible group with BN

pair we have the following theorem:

THEOREM 9: Let G be a finite irreducible group with

BN pair, and assume that the Coxeter system (W,I) of G

is of Lie type. Then there exist irreducible complex

characters {(k)j0 < k < L} of G such that if (G) G

denotes the induced character from the trivial character of

the parabolic subgroup Gj, then

(~(k),(lG )G) = (11J) (22)

Moreover, ~ is uniquely determined by (22) if G is

not of type (G2 ). The representations affording the char-

acters X(k are all defined over Q.
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PROOF: By proposition 2 we know that for each k

(0 < k < ,) there exists a unique complex irreducible charac-

ter j(k) whose restriction to HC(G,B) is x(k), where

{x('10 < i < L} are the compounds of the reflection

character of HC(G,B). Now

ej = ( (Xw)) Xw = B~1( C(Xw)) x =e(G

weWg weWg wEWg xeGg

is the idempotent of C[G] affording the character (lGj)G

Thus by the Frobenius reciprocity theorem ((k) ,(G )G)

= (i(k)IGJ,1Gj = (k)(e(Gj)) = X(k)(ej). But by theorem 7,

X (k)(ej) = (|J, Jp). P'(l) is uniquely determined by (22)
because X(1) is uniquely determined by the fact that

X(1)(ej) = lI-JI. It remains to prove that the representa-

tions affording the X(k) are defined over Q. By propo-

sition 23, the W(k) are defined over Z (except possibly

when G is of type G2 and /qq2 is not rational.) (We

exclude this case from the present theorem; it will follow

later, from the calculation of the degrees of the characters,

that this case can never occur.) Let e(k) be the minimal

central idempotent in C[G] corresponding to i(k). Then

by proposition 2 (k)e(B) = e(k) is the minimal central

idempotent in HC G,B) corresponding to the irreducible

character X(k) of HC(GB). Thus by the formula (i) of

theorem 1 e(k) = a Xw where aw c Q for all w e W. It
kweW

follows that e(k)e(B) is an element of Q[G]. Now let J

be any subset of I having cardinality 1-k where t = III.
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Then by theorem 7 we have i(k)(ej) = (k) = 1; and it follows

from the corollary to proposition 2 that &(k)e is a

primitive idempotent in C[G] affording the character x(k)*

But 6(k)e = &(k)e(B)e = e(k)e Hence &(k)ej e Q[G],

so that i(k) is afforded by the rational irreducible G-

module Q[G]&(k)e J

REMARK: The character pt), called the Steinberg

character, was first constructed by R. Steinberg for any

finite group of Lie type [18]. C. Curtis, [5], has shown

that iO exists for any finite group with BN pair, and

using methods different from ours has shown that x is

uniquely determined by the fact that (i(t),(lB)G) = 1 and

(x(2.),(lP)G) = 0 for any parabolic subgroup P of G

having rank exceeding 1. It seems quite likely that the

i(k) are also uniquely determined by the multiplicities (22),

but we have no proof of this as yet.

For future reference we now define the weights of H

when H is a Hecke algebra associated to an irreducible

Coxeter system of Lie type. It will be seen that upon setting

gi = 1 (1 < i < ) one recovers the usual definition of the

weights.

Let v: H -+ End h be the reflection representation of

H. For each i e I let Ji = I-{i}. Then as an Hj -module

we have h = hji @ hji where hj is the subspace of h

spanned by the aj, j c Ji. Thus hi is one-dimensional



I
affording the trivial representation of H*1. It is clear

.1
that w(eji) is the orthogonal projection on h ~. Thus

eji*aj = 0 for i # j, eji-ai X 0.

Let {X 1 ,2'' 'XZ} be the dual basis of

{a',a,.a'} relative to the inner product B, where

a= (qi + ) a It follows that one has a = XCij~i
B(ai,ai) i=1

where (Cii) = C is the Cartan matrix of H. We call X,

the weight of H associated to the root aj.

PROPOSITION 25: Let {A 3 A 2 .'' X} be the weights

of H. Then one has

(i) Xwi-Xi = qjXi - ai, Xw A = qij for i J.

(ii) eji-Xi = Ai.

(iii) ej,-h = C-X.

PROOF: Immediate from the definition.

It is clear that the weights can be computed in each

case by finding the inverse of the Cartan matrix of H.

According to proposition 14, X 2 is central in H.

As the reflection representation w: H -* End h is absolutely

simple it follows that 7(X ) is a scalar multiple of the

identity operator. Let {wili e I}, {wili C I2} be the

two conjugacy classes of the elements {wili c I}. If there

is only one conjugacy class we put I = I, 12 = 0. Let

1 1 22 =121 and put qi = p, i eI; q1 = q, i c 12'

2 t, h(-1i)
PROPOSITION 26: One has i(Xw0 ) = (pt lq12) T $

62
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where h is the Coxeter number of W. (That is, h is the

order of a Coxeter transformation of W.)

PROOF: If w = w iwi2. . .wN is a reduced expression

hai
for wo, then N = hR. Exactly - of the i lie in Ii

h2
and exactly 2 of the i lie in I2, (1 < J < N). Now

det w(XWi) = for all i c I. Hence det f(X )

- pt-1) (-q-l1) ]2 = j 2th( -i) , where n is

some root of unity. But if we replace p and q by 1 we

obtain the action of w0 on h; and w2 = 1. Hence we must

have n = +1.

PROPOSITION 27: The eigenvalues of w(Xw ) are

Z h(Z-1)
+(p q 2) 2T

PROOF: Immediate from the preceding proposition.

It is known that if i E I, then w0 *ai = -aj for

some j E I. Thus w0  induces a permutation of the set I,

and as w0 preserves the Killing form, wo induces a graph

automorphism of the Dynkin diagram of W.

PROPOSITION 28: Let i e I and let w0 (a,) = -a
zzh(L-1)

(j e I). Then Xw -ai = -(p iq 2) 2 ta .

PROOF: We have wiw0 = w0 w. From the proof of

proposition 14 it follows that XwjXw = XwXwj . Thus

XwiXwo1aj = -Xw0*aj. As the (-l)-eigenspace of (Xwi) is

one-dimensional spanned by aj we have that Xwoeaj = Ca,



64

for some c c R. Now w = 1 so that by proposition 21

w(Xw ) is self adjoint relative to B. Hence B(Xw *aj,Xw -aj)
o h(t-i) 0 0

= B(cj,XS2aj), c2 B(ai,ai) = (p 1q2)1" B(aaj). But

wi and wj are conjugate by wo so that B(aiai)
Tu L2) h(L-1)

B(aj,caj). Thus c = s(p q 2) Z2 where E is a root

of unity. Setting p = q = 1 we obtain the action of wo

on h, hence e = -1, proving the proposition.



6. DOUBLE COSETS IN WEYL GROUPS

Let (W,I) be a finite Coxeter system. If J is

subset of I, then each coset wWj of W/Wj contains a

unique element of minimal length, called the distinguished

coset representative (der) of wW . The dcr w of wW

is distinguished by the fact that t( wj) = 2(') + 1 for

all j e J. If J1 and J2 are subsets of I, then each

double coset Wj 1wWj2  of W \W/W contains a unique element

of minimal length called the distinguished double coset repre-

sentative (ddcr) of Wg. W . The ddcr w' of Wj WWJ
1 2 1 2

is distinguished by the fact that one has L(wjw') =(w )+l

for all j e J1 and t(w'wj) = t(w') + 1 for all j e J2

(cf. section 2).

In this section we prove a theorem, based on a theorem

of B. Kostant, about the structure of double coset decomposi-

tions. We use the following notations and conventions through-

out this section: W is the Weyl group of a semisimple complex

Lie algebra%' ; h is a Cartan subalgebra of ; A is the

set of roots of relative to h; A+ is the set of

positive roots relative to some ordering of h; I = {l,2,...,2},

and {acii c I} is the set of simple roots. If 0 = C a A,
i=1

we put supp(a) ={ c Ilci j 0}, ht( ) = ci. RS is the
i=i

reflection corresponding to the root a, i.e. R OW

= - 2(_,5)a, where ( , ) denotes the Killing form. Put

Rai = wi, i C I. If J _C, put Wi = <wili c J>, and put

-65-
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h equal to the subspace of h spanned by {aiji E J1. Aj

= A n h., A+ = A+ n hj. J denotes orthogonal complement

relative to the Killing form.

The following theorem is due to B. Kostant [13]:

THEOREM 10 (Kostant):

(i) Let w E W be arbitrary. Then (w-l)h has a

basis of roots , t} such that w = R 61R .R t;

(ii) If w c W and w = R ...R where {yp,...,ys}
Y1 Ys

is a set of linearly independent roots, then {y 1 ,...,y5 }

form a basis for (w-l)h.

COROLLARY: Let J c I, w e W, and w = R 6.".Rat where

{y, .. , 6t}is a set of linearly independent roots,, then

w e W1  if and only if aIc AJ (1 < i < t).

PROOF: Assume a A 1  (1 < i < t) then clearly

Ra Wj and hence so is w. Conversely if w e Wj, then

h c hw which implies that (w-l)h _c h. But by theorem 10,

is a basis of (w-l)h. Hence ai E h flA AJO

THEOREM 11: Let J1 ,J 2 be subsets of I and let w*

be the distinguished double coset representative for the double

coset W1W*WJ . Then the stabilizer of w*WJ in W is

equal to WK where

K = {j E J 1tw*1 w w C 2

PROOF: It is clear that WK is contained in the

stabilizer. Suppose that w is an element of Wj1 which

stabilizes the coset w*Wj . Then w- ~ww* r W . By theorem
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10 and the corollary we can write w = Ra...Rat where

is a set of linearly independent roots in A+1.

As w* is distinguished we have that w-1(8) C A+ for any

root a in A + Now w* ww* = R B-().. RW1(at

andw (t)} is a set of linearly independent

roots. Thus by the corollary to theorem 10 we have that

w~1(0i) C A (1 < i < t). Hence it suffices to prove that

+"2 +
if a C A and w~1(a) C A, then R8 C WK; and to prove

this it suffices to prove that supp(a) is contained in K.

We prove this by induction on ht(a). If ht(s) = 1 there

is nothing to prove. Suppose that ht(a) > 1. Then we can

write = 8' + aj where a' s A+1 , j J1 , and ht(8')

- ht(a) - 1. Let w~1(a') = c a + c2a + -*- + C

w~1(aj) = d1a, + d2c 2 + --- + dra.. Then w-1 (8) = (c1+d)cx

+ - + (cf, + dL)at. By hypothesis on 8, ci + di = 0 if

i J2 . But since w* is distinguished, ci - 0, di > 0.

Hence ci = di = 0 if i / J2 . This means that 8' and ac

satisfy the same hypothesis as 8. By the induction assump-

tion we must have supp(a'), supp(aj) c K. But supp(a)

= supp(a') U supp(a ). Hence supp(a) c K.

As a corollary to theorem 11 we have the following:

PROPOSITION 29: Let the notation be as in theorem 11,

and let r be the set of distinguished coset representatives

for WJ/WK, then {yw*Iy c ri is the set of distinguished

coset representatives for (W W W2 J 2. Each element of
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W W has a unique expression of the form yw*u where

Y C r, U E W J. One has t(yw~u) = t(y) + t(w*) + t(u).

PROOF: By theorem 11 we know that {yw*|y c r} is a

set of distinct representatives for the W wWj /Wj. So it
1 2 2

suffices to show that yw, is distinguished when y E r. For

this it suffices to show that t(yw*wj) = t(yw*) + 1 for all

j e J2 . Suppose that t(yw*wj) = t(yw*) - 1 for some j C J2 -

Then since w* is distinguished, by the axiom of cancellation

we must have yw*wj = y 'w for some y' c Wjj, and t(y')

= i(y) - 1. But then w 1y 1y'w* = w E W implies that

y-'y' c the stabilizer WK of wWJ2  in W 1 . Then

y C yWK' But since y is distinguished coset representative

for WJ/WK it follows that t(y') g t(y), and this is a

contradiction. Hence yw* is a distinguished coset repre-

sentative for WJw W2 /Wj , and consequently each element of

yw*WJ has a unique expression of the form yw*u for some

u C Wg .

Theorem 11 does not show how one can find the ddcr's.

The remainder of this section is devoted to showing how some

ddcr's can be found in special cases.

LEMMA 11: Let J be a subset of I and wj the

unique element of maximal length in Wj, then an element u

of W is a dcr of W/W. if and only if t(uwj) = t(u)

PROOF: It is clear that the condition is necessary
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(cf. section 2). Suppose that 1(uw ) = t(u) + Z(w ). If

j e J we can write wj = W w' where w' e W and L(w

= t(w ) + t(w'). Suppose t(uw ) < t(u). Then t(uwJ)

= i(uwjw') < t(uw ) + (w') < 2,u) + L(w') < t(u) + t(wj)

= t(uwj), a contradiction. Hence t(uwj) = t(u) + 1 for

all j e J, and u is a dcr of W/W .

LEMMA 12: Let J c I, then there is a unique dcr

w* of W/Wj of maximal length.

PROOF: If wj is the unique element of maximal length

in Wj, and w* is a dcr of W/W of maximal length, then

L(w*w ) = (w*) + L(wj). It follows that w*w' must be the

unique element w0 of maximal length in W. Hence w* = W0w

is uniquely determined.

LEMMA 13: Suppose that u is a dcr of W/Wj, and

that u does not have maximal length among the dcr of

W/Wj, then there exists i c I such that t(w iu) = t(u) + 1

and wiu is again a dcr of W/W .

PROOF: Let w be the unique element of maximal

length in W . The assumption on u implies that uw is

not equal to w0 , the unique element of maximal length in

W. Hence there exists i E I such that t(wiuw ) = t(uw )+l

= t(u) + Z(w ) + 1 = (w iu) + t(wj). Thus Z(w iu) = t(u) + 1

and wiu is a dcr of W/W. by lemma 11.

LEMMA 14: If u is a dcr of W/W and u is an

involution, then u is a ddcr of W \W/W
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PROOF: Let j e J, then t(uw ) = Z(w u) = Z(u) + 1.

LEMMA 15: Let J be a subset of I, and assume that

w*, the unique dcr of W/Wj of maximal length is an involu-

tion. Then w* is also a ddcr of WJ\W/W and the stabil-

izer of w*W i in W is equal to Wi.

PROOF: The fact that w* is a ddcr of Wj\W/W fol-

lows from lemma 14, as w* is an involution. If the stabil-

izer of w*Wj in Wi is not equal to Wj, then by theorem

11 this stabilizer is equal to WK where K is some proper

subset of J. Thus there exists a dcr y of WJ/WK such

that t(y) > 1. But then by proposition 29 yw* is a dcr

of W/W i and t(yw*) = t(y) + l(w*) > t(w*). This contra-

dicts our assumption about w*.

For the rest of this section we restrict ourselves to

the following situation: The Dynkin graph D of (W,I) is

a tree. Thus there exists 1 e I such that the point cor-

responding to i0 in D is joined to at most one other

point j0 of D. Evidently i is a terminal point of D.

After relabeling the set I = {l,2,...,t}, we may assume that

1o = 1, Jo = 2. Put J = I-{1}, and K = I-{1,2}. We then

have the following propositions about the ddcr's of W \W/W

PROPOSITION 30: I = the identity of W is a ddcr

of W \W/W . The stabilizer of 1-W in W is Wi.

PROPOSITION 31: wi is a ddcr of WJ\W/W . The



stabilizer of w1 W in W 1  is WK.

PROOF: The fact that w1  is a ddcr of W \W/W is

obvious. By theorem 11, the stabilizer of w in W is

WK' where K' = {J J1 w w 1 e J}. In other words, K'

= {j Jw 1 = W W }. By our assumption on the subsets J

and K we have K' = K.

PROPOSITION 32: Let w, be the unique dcr of W/W

of maximal length, and assume that w0  is central. Then w*

is an involution, w* is a ddcr for WJ\W/Wg, and the

stabilizer of w*Wg in Wg is Wi.

PROOF: We have w = w*wj where w is the unique

element of maximal length in W .. Thus w, = w0 wj is an

involution, being the product of two commuting involutions.

The additional assertions of proposition 32 follow now from

lemma 15.

PROPOSITION 33: Assume that w1 is not the ddcr of

Wj\W/W of maximal length. Let y* be the unique dcr of

WJ/WK of maximal length; and suppose that y, is an involu-

tion. Then u = wy1*w1  is a ddcr for W \W/Wi. Moreover,

the stabilizer of uW in W is either WK or W de-

pending upon whether u is or is not the unique ddcr of

Wj\W/W of maximal length.

PROOF: The stabilizer of wW i in W is WK by

proposition 31. Hence by proposition 29 y~w1 is a dcr

for W/Wj, and L(y~wl) = E(y*) + L(wl). Thus y9w1 is the

71
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unique dcr of W/W of maximal length contained in the

double coset W w 1W . By lemma 13 there exists i e I such

that t(wiy*wl) = t(y*wl) + 1, and w y~wl is again a dcr

of W/WJ. From our choice of y* it follows that i must

be equal to 1. Thus w yw1  is a dcr of W/W . wIy*w1

is an involution because y* is an involution. Hence by

lemma 14 wy1*w1  is a ddcr of W \W/W . Now the assump-

tions on y* together with lemma 15 imply that the stabilizer

of y*WK in WK is WK. Thus by theorem 11, conjugation by

y* induces a permutation of the set {wkIk c K}. As w,

commutes with wk, k e K it follows that wly~wl = u also

permutes the set {wklk E K} under conjugation, and hence

by theorem 11 WK is contained in the stabilizer of uW in

W .. Thus the stabilizer of uW in W is either W or

WK, as K is a maximal subset of J. If this stabilizer is

W., then by lemma 13 u must be the unique ddcr of

Wj\W/Wj of maximal length. Conversely if u is the unique

ddcr of WJ\W/W of maximal length, then as u is an involu-

tion we have by lemma 15 that the stabilizer of uWJ in Wi

is W .

PROPOSITION 34: Let L c J and assume that u is a

ddcr for WL\W(I-J)UL/WL. Then u is also a ddcr for

WJ\W/Wg .

PROOF: By definition L(w iu) = t(uwi) = 1(u) + 1 for

all i c L; but if j c J-L, then j I (I-J)UL and conse-

quently w is not in the support of u. Thus t(w u) = t(uwj)
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= 1(u) + 1.

It turns out that if I is connected (that is, the

corresponding Lie algebra q is simple) then the pre-

ceding propositions are sufficient to determine the ddcr

of Wj\W/Wj along with their stabilizers, as we shall see

in the next section.



7. THE POINCARE POLYNOMIAL

OF A FINITE COXETER SYSTEM

Let (W,I) be a finite irreducible Coxeter system.

Let {wili C Ii} and {wili E 121 be the conjugacy classes

of the elements {wili c I}. If there is only one conjugacy

class we put Ii = I, 12 = 0. Let w e W and w,1w12...wim

be a reduced expression for w. By the corollary to proposi-

tion 17, i1 (w) ={ij|1j E I,, 1 < j < ml and Z2(w)

= {ijlij e 12, 1 < j < m}l are positive integer valued

functions on W, independent of the choice of reduced

expression for w. We have I(w) = z 1(w) + z2 (w). If

w,u C W, then ti(wu) = t i(w) + ti(u), (i = 1,2).

Let Z[x,yl be the polynomial ring in two variables

over Z. If S is any subset of W define

p(S) = I x 1 y 22(
weS

We call p(W) the Poincar6 polynomial of W. If J is a

subset of I, and W is of type (I ) we also use the

notation p(0 ) for p(W ) provided that there is no con-

fusion about how the variables x and y are arranged,

where q is a semisimple complex Lie algebra.

In this section we are going to compute p(%) = p(W)

when (W,I) is of Lie type (I ). We obtain a multiplicative

formula for p(W) for each type 0 .

If (W,I) is the Coxeter system of a finite group G
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with BN pair, then [B: B n w~1 Bw] =C(X) in the nota-

tion of 3. Thus [G: B] = C c(Xw) is obtained from p(W)
wsW

by simply replacing x and y by the positive integers p

and q, where p = C(Xwi ) for all i c Ii and q = C(Xwi)

for all i e 12. Hence we obtain a completely algebraic

proof for a multiplicative formula for [G: B]. In par-

ticular this applies to the groups of Chevalley [3], Stein-

berg [19], Suzuki [20], and Ree [13, 14].

PROPOSITION 35: Let J be a subset of I, then

p(Wj) divides p(W).

PROOF: Let r be the set of distinguished coset

representatives (dcr) for W/Wj1 , then clearly p(W)

- p(r)p(WJ).

PROPOSITION 36: Let J c I, and {ui ,...,um} be the

complete set of distinguished double coset representatives

(ddcr) for Wj\W/Wj. Let WKi be the stabilizer of uiWj

in Wj1 , then one has

m p(Wj)
p(W) = =p(u )pg) (23)

i~iPCKi)vuPWJ

PROOF: By theorem 11 the stabilizer of uiWj in W

is of the form WKi where Ki is a subset of J. By

proposition 29 if ri is the set of dcr for W J/WKi, then

riui is the set of dcr for (WjuiWj)/Wj, and L(yiuiw)

= L(yi) + t(ui) + t(w) for all yi E ri. By proposition 35

p(ri) = P(WJ)/P(WKi). Hence (23) is obvious.



It is clear from proposition 36 that one can compute

p(W) by induction on the rank provided that one knows suf-

ficient information about the ddcr and the stabilizers of

their cosets. We can obtain this information using the re-

sults of 6, and we now proceed to calculate p(W) case by

case.

(A ):0-- - - --
1 2 2

As the diagram is simply laced, there is only one conjugacy

class I, = I. Let J = {2,3,...,t}, then W . is of type

(A 1 ). We prove by induction on t that p(A )/p(AL_1 )

= - 1 . The result is clear when s = 1, So assume
x- 1

t > 1. By propositions 30 and 31 1 and wi are ddcr of

WJ W/W. The stabilizer of 1-Wi in Wi is Wj; the

stabilizer of w1 -Wj in W is WK where K = {3 ,4,...,t1.

WK is of type (AZ- 2). I(WJ U WJwiWj)/WI = 1 + [W i: WKI

= 1 + Z = [W: Wj]. Hence {l,w1 } is the complete set of

ddcr of Wi W/WJ. By proposition 36

p(Aq) p(At. 1) x- 1 x + 1

p(A1 + = 1 + x-_- = _

p(Ap) A +2 )

Thus we have Pt - 1 for all Z. It follows
p(AL_ 1 ) x 1

1+1i - 1
that p(A) = k ( 1).

i=2



(B ):
1 2

The two conjugacy classes are

12

L-1 I

I1

= {L}. Let J = {2,3,...,qt-l,t

(B _ ).

}. Then W is

We prove the following by induction on t,

(i) The ddcr for Wj\W/W are {l,w1 ,w*}, where w*

= 123...(1-l)M(Z-1)...321. (The notation '1'2-im means

2 1

(ii) The

K = { ,4,...,1}.

stabilizer of w W

WK

(iii) The stabilizer of

in Wg is WK where

is thus of type (B,- 2 ).

w*Wj in W is W .

(iv) p(B )

p(Bgt 1)

(xt - 1)(Xt 1y + 1)

(x - 1)

(v) p(BI) = II
i=i

- l)(xil3L
x - 1

We first consider the case when

(B 2 )
1 2

It is easy to see by inspection that the ddcr for W \W/Wj

are {l,w1 ,w*},

is {1}. The stabilizer of

p(B 2 )

p(B) =

W* = 121, the stabilizer of

w*WJ

w W

in Wi is W .

1 + x(l + y) + x 2y = (1 + x)(l + xy)

(1+x)(l+xy)(l+y)

in W.

Thus

= (x2 -1)(xy+l)
(x -1

= ((X1)(y+1))((x
2 -1)(xy+))

(x-1) x - 1
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and

of type

j

= 2:

= {2}J

- 1)(xi-ly +

W Wi 2 ... wim )

( (xi

0
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Now assume t > 2. 1 and w1  are ddcr of Wj\W/Wj

and the stabilizers in W of 1W and w W are W and

WK respectively where K = {3,4,...,1} by proposition 31.

Now |(W . U W w1WJ)/WjI = 1 + [WJ: WKI = 1 + 2(t-l) = 2t-l;

while [W: We] = 21. It follows that there is precisely one

more double coset of Wj\W/Wj, and that this double coset

consists of precisely one W -coset. By the induction hypoth-

esis the unique dcr y* of WJ/WK is given by y*

= 234...(-l)L(t-l)...432. y* is an involution. Hence the

hypothesis of proposition 33 is satisfied and we have that:

w*= w ywi = 1234.. .(i-l)tt-l)... 4321 is a ddcr of

Wj\W/W . Thus {l,wj,w*} is the complete set of ddcr of

Wj\W/W . The stabilizer of w*W in W3  is W because

Ww*Wj contains only one Wj-coset. w* is obviously an

involution. This proves (i), (ii), and (iii). It remains to

establish (iv) and (v). By proposition 36 we have

p(B+) p(B2 .1 ) + p(w*)
p(B 1)= 1 + p(W1) +ppBw2 )p(BZ_i) p(BL-27

1 + x W)(x t 2 y + 1) + x2(L-1)y
x - 1

(xt - 1)(xt~ly + 1)

(x - 1)

t (xi - 1)(xi~y + 1)
Hence p(B) = x ') as asserted.

i=i

This completes the induction argument.
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2.-i

(D): 0-- 0-
1 2 Z-3 i -2

0

There is only one conjugacy class, I = I. Let J

= {2,3,...,.}, K= {3,4,...,1}. Thus W is of type D._1

if t | 4. (We consider (D3) as being the same as (A3).)

We prove the following by induction on 2:

(i) {l,wl,w*} is the complete set of ddcr for Wj\W/Wg,

where w* = 123...(t-2)(-1)t(t-2)...321. w* is an

involution.

(ii) The stabilizer of w W in W . is WK'

(iii) w* is also the unique maximal dcr. for W/W . The

stabilizer of w*W. in W . is W .

(iv) p(D) (x2 - l)(xt- 1 + 1) xt - 1 x2(t-1) - 1

pTD ) x - 1 x - 1 xt- 1 - 1

t-1 x21 - ) x .  
- 1

(v) p(D) = ( x x* _ 1
3
0

We first consider (D) 0-c , J = {2,3,4},
411 2 0

4

K = {2,3}. 1 and wi are ddcr of Wj\W/Wj by proposition

31; and the stabilizer of l-Wi in Wi is Wg, while the

stabilizer of w W in W is WK again by proposition 31.

Now 1(W. U W w1 Wj)/WjI = 1 + [Wa: WK] = 1 + 6 = 7, while

[W: Wi I = 8. It follows that there is exactly one addi-

tional double coset of Wj\W/Wj, and that this double coset

contains precisely one Wj-coset. Now it is easy to see that

the unique der of WJ/WK is y* = 2342. y* is an involu-
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tion, the hypothesis of proposition 33 is satisfied, hence

w* = wy1*w1 = 123421 is a ddcr of W \W/w. w* is

obviously an involution, proving (i) and (ii). As the double

coset W W*W contains only one W -coset we have that the

Wi-stabilizer of w*W is Wj, proving (iii). By proposi-

tion 36:

p(D) p(A 3 )
p(A3) + x p(A1 xA1 ) + x

= 1 + x (x3-l)(x 2 +1) + x6 (X4 -1)(x 3+1)
(x-1) x-1

Thus p(D = xl 4  6  4 -
4 x-1 x-1 x-1 x-1

Assuming that i > 4, the induction argument for D

is quite similar to the one just given for D and will be

omitted.

REMARK: Since the stabilizer of w*WJ in W is

WJ, it follows from theorem 11 that conjugation by w* in-

duces a permutation of the set {2,3,...,Z1. As w* pre-

serves the Killing form, w* induces a graph automorphism

of (D ._). It is not difficult to show that w* induces

the nontrivial graph automorphism of (D,_1 ).
4
0

(E 6 ): 0 0
1 2 3 5 6

There is only one conjugacy class, Ii = I. Let J

= {2,3,4,5,6}. Then Wi is of type (D). 1 is a ddcr of

WJ\W/WJ. The stabilizer of 1-W J in W is W . By propo-
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sition 31 w1  is a ddcr of W \W/W , the stabilizer of

w W in W is WK, where K = {3 ,4,5 ,6}. WK is of type

(A4). By proposition 34 applied to the subset L = {2,3,4,51

we have that u = 12345321 is a ddcr of Wj\W/Wi. From

the discussion of type (D.) we know that u induces a non-

trivial graph automorphism of {2,3,4.,5} under conjugation

(it interchanges 4 and 5). It follows from theorem 11 that

the stabilizer of uWJ in Wi is W J because this graph

automorphism cannot be extended to the graph of {2,3,4,5,6}.

Note that WL is of type (D).

Now J(W J U W w1W U WJUWJ)/Wi|

= 1 + [W: WK] + tWJ: WL] = 1 + 16 + 10 = 27

= [W: WJ].

Hence {1,w ,u} is the complete list of ddcr for W/W .

By proposition 36 we have

p(E 6 ) p(D5) p(D)

p(D5) - 1 + P(wi)p(A4) + P(u)p(D4 )

= 1 + x(x8 -l)(x 3+1) + x 8 (X5-1)(x4+1)
x-1 (X-)

(x9-1)(x 8+x4+1) _ x9-1 x12-1

(x-1) X-1 X4-1

Hence

p(E6) (x2_1)(X5_1)(X6_1)(X I-)(X9_1)(X12_1)
= (x-l)(x-)(x-l) (x8 -1))(x-l) )

5

(E7): 0--0--- --.- 0--0
1 2 3 4 6 7

There is only one conjugacy class Ii = I. Let J

= {2,3,4,5,6,71. Then Wi is of type (E6). By proposition
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31 w1 is a ddcr of Wi\W/Wi, and the stabilizer of wi

is WK where K = {3,4,5,6,7}. WK is of type (D5). Propo-

sition 34 applied to the subset L = {2,3,4,5,61 shows that

u = 1234564321 is a ddcr of WJ\W/W . By the discussion

of type (D), u induces, by conjugation, the nontrivial

graph automorphism of {2,3,4,5,6}. Thus by theorem 11 the

stabilizer of uW in W is WL because there is no way

to extend this graph automorphism to {2,3,4,5,6,7}. wo is

central in W and hence by proposition 32, w0 = wWw where

w* is a ddcr of Wj\W/Wj; w* is the unique dcr of W/W.

of maximal length, and the stabilizer of w*W in Wi is

equal to Wa. Now we have

|(W 3 U Wg w1W. U W uWi U W jw*Wj)/WjI

= 1 + [WJ: WK] + [Wi: WL] + 1

= 1 + [W(E 6 ): W(D 5 )] + [W(E6 ): W(D 5 )] + 1

= 1 + 27 + 27 + 1

= 56

= [W(E7 ): W(E 6)1 = JW: Wa.]

Hence {l,w1 ,u,w*} is the complete set of ddcr for

Wj\w/wj.

Note that L(w*) = t(w ) - L(w = 27. By proposition 36

p(E 7 ) p+ p(w P(E6) + p(u p(E 6 )
1+p(D) p() + p(w)

+ x (x9-1)(x 8+x4+1) + xio(x 9-l)(x 8+x4+1) + X27
(x-l) (x-l)
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x14-1)(X 5 +1)(x 9 +1) x 1 4-1 X10-1 18-1

(x-l) x-l x 5-1 x9-1

Hene (E (x 2_1( 6_1( 8_1(l)X2_1510 X 4_1)(Xl8_1)
Hence pCE 7 ) =Cx-l)x-l)(x-l)Cx-l)Cx-l)(X-1)(x-l)

REMARK: Note that w* = Ww J = wJwO. w0  is central,

but w is not central in W. Hence w* induces the unique

nontrivial graph automorphism of {2,3,4,5,6,7}; i.e., the

nontrivial graph automorphism of (E6).

6

(E ): 0- 0---0---0--- 0- 0
1 2 3 4 5 7 8

There is only one conjugacy class Ii = I. Let J

= {2,3,4,5,6,7,8}, and K = {3,4,5,6,7,8}. Then Wi is of

type (E7), WK is of type (E6). By proposition 31 wi is

a ddcr of WJ\W/Wj, and the stabilizer of wWj in W

is WK. Proposition 34 applied to the subset L = {2,3,4,5,6,7}

shows that u = 123456754321 is a ddcr of WJ\W/W . The

discussion of type (D ) shows that under conjugation, u

induces the unique nontrivial graph automorphism of

{2,3,4,5,6,7}. By theorem 11 the stabilizer of uW in Wi

is WL because this graph automorphism cannot be extended

to a graph automorphism of J = {2,3,4,5,6,7,8}. Now w02

the unique element of maximal length in W is central as W

is of type (E ); hence by proposition 32 w* is a ddcr of

Wj\W/Wi where w* = w0w = wJw0 , and the stabilizer of

wW in Wi is W . Note that t(w*) = t(w0 ) - t(wJ) = 57.

By the discussion of type (E7 ), y* = the unique dcr of
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WJ/WK is an involution. y* is also a ddcr of WK J K.

Hence the conditions of proposition 33 are satisfied, and we

have that w y~w1 = v is a ddcr of Wj\W/Wg. Under con-

jugation, y* induces the unique nontrivial graph auto-

morphism of K = {3,4,5,6,7,81 and wi commutes with the

elements wk, k e K. Hence by theorem 11 the stabilizer of

vW in W is WK as this graph automorphism cannot be

extended to {2,3,4,5,6,7,8}. Note that I(v) = 2 + t(y*)

= 2 + 27 = 29. We present a resume of what we have found so

far in the following table:

ddcr length stabilizer

1 0 W =W(E7)

w 1 WK=W(E6)

u 12 WL=W(D6)

v 29 WK=W(E6)

W* 57 W =W(E 7 )

I(W. U WjwiWj U WjuW U W vW U Ww*W )/WjI

= 1 + [W(E 7): W(E 6 )] + [W(E 7 ): W(D 6 )] + [W(E7 ): W(E 6 )] + 1

= 1 + 56 + 126 + 56 + 1 = 240 = [W(E8 ): W(E 7 )].

Hence {l,wi,u,v,wg} is the complete set of ddcr of

Wj\W/Wj. By proposition 36 we have

p(E8 ) p(E 7 ) p(E 7 ) p(E 7 )
1 + p(w E) + p(u ) + p(E6) + p(w*)

x(x 1 4-1)(x 5+1)(x 9 +1) + 12 (x
1 4-1)(x1 2 +x 6+1)(x 8 +x4+1)

= 1 + (x-l) (x-l)
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+ x 2 9 (x -1)(x 5 +1)(x 9+1) + x57
(x-l)

(x3 0 -l)(x 1 8+x 1 2 +x 6+1)(x 1 0 +l)

(x-l)

(x 3 0 -l)(x 2 4_l) (X2 0_l)

( x-1) (x 6-1) ( xl0 -)

It follows that

(x2 -l)(x8 _-)(x1 2 _l)(P 4-l) (x'-l)(x2 0-1)(x 2 4 -1)(x 3 0-1)

(F 0): C- 0 O0
1 2 3 4

There are two conjugacy classes I, = {1,21, 12 = {3,41.

Let J = {2,3,4}, K = {3,4}. By proposition 31 wi is a

ddcr of W \W/W , and the stabilizer of w1 W in W J is

WK. Note that p(w1 ) = x. Proposition 34 applied to the

subset L = {2,3} shows that u = 12321 is a ddcr of

Wj\W/W . Note that u is an involution. From the dis-

cussion of type (B ) it follows that u stabilizes the set

L under conjugation. It is easily seen that uw u X w .

Thus by theorem 11, the stabilizer of uW in W is WL'

Now w0  is central in W. Hence by proposition 32 w, is

a dder of W \W/WJ, where w* = W0wJ = WJW0 , and the

stabilizer of w*W in W is Wg. wJ is also the unique

dcr of W/W J of maximal length. Note that R.(w*) = Z(w 0 )-t(wj)

= 15. One has p(w0 ) = x12y 1 2, p(wj) = x 3y 6 , and hence

p(w*) = X9y6 . Now let y* = 232432. It is easy to see that
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y* is an involution and that y*w 3y* = w . Hence y* is a

dcr of WJ/WK and also a ddcr of WK WJ/WK. It follows

from lemma 13 that y* is the unique dcr of WJ/WK of

maximal length. Thus the conditions of proposition 33 are

satisfied, and v = wjy~w1 is a ddcr of Wg W/Wg. Z(v)=8,

and so again by proposition 33, the stabilizer of vWg in

W is WK. Note that one has p(v) = x5y 3 . We list the in-

formation we have accumulated so far in the following chart:

w=ddor t(w) p(w) W -stabilizer of wWg

1 0 1 W.

w 1 x WK

u 5 x4 y WL

v 8 x 5y 3  WK

W* 15 x9y6  WJ

j(W U W w W U W uW U W vW U W w*Wj)/W

= 1 + [Wj: WK] + [Wj: WL] + [WJ: WK] + 1

= 1 + [W(B 3 ): W(A 2 )] + [W(B 3 ): W(B2 )] + [W(B 3 ): W(A2 )] + 1

= 1 + 8 + 6 + 8 + 1 = 24 = [W(F4 ): W(B 3)] = 'W: WJl.

Hence {l,w1 ,u,v,w*} is the complete list of ddcr for

W W/W . By proposition 36 we have

p(F4 ) p(Wj) 4 p(Wj) p(Wj)

p(B 3 ) + xW + x4y -L + x 5 y K + x9 y6 ,

Now p(W ) = - _1 (x+1)(xy+l)(xy +1)

y2_1 y3-l
p(W K 2 1 y y-1



It

p(F

Hen

p(F

(G
2

p (WL)

follows that

4)

= (x2 +x+1)(xy+l)(x 2y+l)(x 2y2 +1)(x 2y2-xy+l).

ce

4) = (x+l)(y+1)(x2+x+1)(y2+y+1)(xy+l)(xy+l)(x 2y+l)

- (xy 2+1)(x 2y2-xy+l)(x 2y 2 +1)

= (x+l)(y+1)(x2+x+1)(y 2 +y+l)(x 2y+l)(xy 2 +1)(xy+l)

- (x2y2+1)(x 3y 3+1)

)
1 2

There are two classes of involutions

Let J = {2}. It is easy to see that

are {l,w,wlw 2w1 ,w 1w 2w1 w 2w1 }. One h

= (x+l)(x2 y2+xy+l). Hence p(G 2 ) = (

REMARK: One can show that if

Ii = {1}, 12

the ddcr of

= {21.

W/W

as

x+l)(y+1)(x 2y 2 +xy+l).

W is the dihedral

group of order 2m, then

p (W)

x2-'
X-1

Lx-1

-m1

y-1
(xy) -l
xy - 1

if m is odd,

if m is even.
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= (x+l)(y+1)(xy+l).

-1



8. THE DEGREES OF THE IRREDUCIBLE CHARACTERS OF G WHOSE

RESTRICTIONS TO HC(G,B) ARE ONE-DIMENSIONAL

Let G be a finite irreducible group with BN pair

whose associated Coxeter system is (W,I). Il and 12

represent the two conjugacy classes of the elements

{wili e I}. If there is only one conjugacy class we put

I2 = , I = I. Adhering to our usual convention we put

c(Xwj) = p, i C I,, and C(Xwi) = q, i E 2.

By proposition (17) there are two one-dimensional

characters c and a of H = HC(GB) if 12 = 0, while

if 12 # 0 there are two additional one-dimensional charac-

ters al and a2. For convenience we repeat the definition

of C,a,ala2:

C(Xw) = ptl(w) qt2(w)

a(Xw) = (-1 )t(w)

a (Xw) = P2 l(w)(-1 ) 2(w)

a2 (XW) = (_)tl(w)qt2(w)

where Zl(w) and 2(w) are defined as in the corollary to

proposition 17.

THEOREM 12: Denote by 5, , ;1, 02 the unique

irreducible characters of G whose restrictions to HC(GB)

are C, a, 1, a2 respectively. Then

(i) = 1G is the trivial character of G,

(ii) a(l) = C(Xw ) = [B: B fl woBw~ 1] = (p2 lq92)h/2

(iii) a(l) = f(p,q)/f(p,q-1 ) ,

-88-
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(iv) 02(1) = f(pq)/f(p-1q)

where i = 1111, L2 1121 and f(x,y) is the Poincare

polynomial of (W,I); h is the Coxeter number of W.

PROOF: (i) has been observed in 1.

(ii) Apply the formula (ii) of theorem 1 with

x = a. Then &(l) = [G: B][ I 4(X )-1]-1
wEW

= [ [ 4(Xw)][ 1 C(Xw)~ 11'-
wEW weW

= 1(Xw )-[ (Xw)][ I(Xw)] 1
0 weW weW

= (X o ).

(iii) Apply the formula (ii) of theorem 1 with

= Then al(l) = [G:B]. Ipi(w) -t2 (w) = f(pq)/f(p,q-1 ).
wCW

(iv) Interchange p and q in (iii).

a is the Steinberg character of G. The fact that

a(l) = [B: B n w0 Bw0
1 ] was proved by R. Steinberg [18] when

G is a finite Lie group, and by C. Curtis [5] for an arbi-

trary finite group G with BN pair. Note that if p = q

and if the Coxeter system (W,I) is of Lie type (%), then

;(l) = pN where N is the number of positive roots of 9 .

The specific formulas for & and &2 as functions of p

and q are easy to calculate using theorem 12 and the

Poincar6 polynomials of section 7. We give the formulas

below for the cases when (W,I) is irreducible of Lie type

(O ) such that the Dynkin diagram of (9) is multiply

laced.



a(1)

0 (1)
2

= g(pi-iq + 1) pi-1q + 1

i=1 (p1 ~- + q) 2=1 pi-1 + q

2 p2(i-1)(pi-lq+1)

1=1 (pi-1+q)

If p = q, these formulas become:

p(pt ~1 + 1)(p . + 1)
2(p + 1)

2

t(t-) p2-q+.

=ip -1+q

+ 1)(pi + 1)
2(p + 1)

q1 2 (p2 q+l)(pq 2 +1)(pq+l)(p2 q2+1) (p3q 3+ 1)
(p 2 +q)(p+q2 )(p+q)(p 2 + q 2 )(p3+q 3 )

p1 2 (p2 q+l)(pq 2 +1)(pq+l)(p2g2 +1)(p 3g 3+1)

(p2+q)(p+q 2 )(p+q)(p 2 +q 2 )(p 3+q 3 )

If p = q

S(1)= 02(l

01

these formulas become

p4 (p 3+1) 2 (p2 +l)(p 4+1)(p 6 +1)
'I

(1)

2(1)

If p = q t

= 3 (p2g 2 + pq + 1)

(p 2 + pq + q 2 )

p 3 (p2q2 + pq + 1
(p2 + pq + q 2 )

hese formulas become

p(p4 + p 2 + i)
) 2(l) = 3

(B ):
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(F4 ):

a2 (1)

a2



9. THE DEGREE OF THE REFLECTION CHARACTER AND ITS DUAL

Let G be a finite irreducible group with BN pair

whose associated Coxeter system (W,I) is of Lie type (I )

where q is a simple complex Lie algebra. Let H = HC(G,B)

and n: H -+ End h the reflection representation of H. We

use the notations and conventions established in section 5.

By proposition 2 there exists a unique irreducible complex

character x of G such that XjH = X, the reflection

character of H. We call - the reflection character of G.

In this section we calculate the degree of x.

By theorem 9 if J is a maximal proper subset of I,

then (j,(lG )G = 1. Hence by proposition 2 the restric-

tion of x to HC(G,GJ) is a linear character of HC(G,GJ).

Consider HC(G,GJ) as a subalgebra of H. There is no con-

fusion if we also denote by X the restriction of j to

HC(GJG). Now if {ui,...,um} is the complete set of dis-

tinguished double coset representatives for Wj\W/Wj, then

this set can also be taken as a complete set of double coset

representatives for Gj\G/Gi. Thus {Yuill < i < ml is our

canonical basis for HC(G,GJ), where Yu, = IGI 1  I x.

xEGJuiGJ

By theorem 1 we have the degree of X:

m
X(l) = ( X(Yui)X(YuI)C(Yui)-1)~1 - [G: Gi].

i=i

Thus the degree of j will be determined once we know

X(Yui), CC(ui), and [G: Gi]. We describe a method for

-91-
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finding these quantities using the results of sections 6

and 7. Recall that in section 7 we defined for any subset S

of W: p(S) = Ix (w) y2(W) = p(S; x,y), where Ii and
weS

12 represent the two conjugacy classes of the elements

{wili e I}. Let qi = p for all i E I,, qi = q for all

i e 12 and put f(S) = p(S; p,q) for every subset S of

W. It is clear then that one has f(S) = C(Xw). Now
wCS

[G: Gj] = [G: B]/[Gj: B]. Hence one has [G: Gj] = f(W)/f(Wj).

If W is of type (0j) we always choose the maximal

subset J of I exactly as we did in section 7. Thus

[G: Gj] has already been computed for every type (O ).

Now Yui = IG JK'1- x = [Gj: B]-1- i Xw'

xcGjuiGj wEWJuiWJ

(24)

If we let Ki be the unique subset of J such that

WKi is the stabilizer of uiWj in W. (cf, theorem 11),

and r the set of dcr for WJ/WKi, then

Yui = [Gj: B-1- IX YXui X X = X Xuiej, where
ycri wsW ycr

ej = Gj~ 1 [ x = ( C(Xw))-l Xw. Thus
xEG wCW weW

S(Yui) C(XY ).C(Xui f(ui) (WK) Now for our
yr ui (i

particular choice of the subset J, the complete set of

ddcr of Wj\W/W have been listed in 7 for each case along

with p(ui) and p(WJ)/p(WK ); thus to obtain c(Yui) one

only needs to replace x by p and y by q.
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The linear character x of H(GG ) is afforded by

the one-dimensional space e -h. We have chosen J = I-{1}

in each case. e-h contains the weight XAidf. 5). Let C

be the Cartan matrix of H, d = det C. Put =d
2.

= ma + I ai. By Cramer's rule, m = det Mi, where Mil
i=2

is the (1-1)-minor of C. d and m have been computed in

each case in 5. Now ej-aj = 0 for j # 1. Thus p =e -y

= meJ-a,; that is, eg *a 1 = m-1-y. Note that by proposition

25 we have X lop =p - dal. We summarize these facts in the

following

PROPOSITION 37: Let the notation be as above. Then

(i) eg aj = 0, j / 1

(ii) ej *-al = m-1 j

(iii) Xw -p = q - dal

(iv) Xw j. = qj-y, j # 1.

Now from 1 it follows that

Yui = C(Yui)ejuiej = 4(Yuj)eje(B)uie(B)ej

C ui)c(Xui JXuiJ

f(Wj)

f(WKi) ejX UieJ

Furthermore, Yui- = X(Yui)p. Thus to obtain x(Yui) one

has only to compute ejXu,-p. This in turn can be done using

proposition 37.



94

m
PROPOSITION 38: One has I X(Yui) = 0.

1=1
m

PROOF: Indeed I X(Yu.) = |(x). This
J~l ui xcG

must be equal to zero because j is not the trivial charac-

ter of G.

An inspection of the case by case treatment given in

7 reveals that the unique dcr w* of W/W. of maximal

length is an involution (and hence the ddcr of Wj\W/wj of

maximal length) if and only if W is not of type (A ) or

(E6 ). Moreover in this case, when w = 1, we have w0 a1

= -a,. This enables us to calculate x(Yw*) quite easily

as follows:

LEMMA 16: Assume G is not of type (A ) or (E6),
I h(t-1)

then one has Xw 00a = ~(p iq 2) 2 a, where 11 = jIlt,

2.2 1121, and h is the Coxeter number of (WI).

PROOF: This is an immediate consequence of proposition

28.

PROPOSITION 39: Assume that the unique dcr w* of

W/W of maximal length is an involution (and hence by lemma

15 a ddcr of W \W/Wg), then one has

h(t-1)
X(Yw) = ~(ptq2) ZX C(X )-l

PROOF: Recall that in this case the stabilizer of

wwW* in Wi is Wj. Thus Y* = Xw~ej. Let & = eJ-al.



95

Then x(Yw,)c = Yw,- = X ej- = X*. We also have

w = W~wj, X, = X, X , and hence Xw -* = x(YW*)C(XWJ )-.

Now by the lemma 16 we have

z h(L-1)
Xwo -ax = -(p Iq 2 ) 2T -a1 , while if j / 1, then

z h(L-1)
Xw -a = -(p 1q 2) 21 aT , for some j' 1. But

& = ej-al = al + I agcg. It follows that
i=2
h(i-i)

Xw '0 = -(p q2) 21 -E. Hence
0

.t # h(L-1)
X(Yw*)C(Xwj) = -(p iq 2) 2t .

Using the methods outlined in this section it is poss-

ible to obtain the degree of the reflection character in each

case. We have carried out this computation; and the results

are listed below.

It is of interest to notice that if the Dynkin graph

of G is simply laced, then X(l) = [ pmi where
i=1

{ml ,m2 ,.. ,,M } are the exponents of the Weyl group of G.

In the case of (G2 ) it is easy to show from the

formula given for j(l) that one must have /V c c Z.

(Ad): C 0- - -, 0
1 2 9

ui = ddcr C(Yui) x(Y ui)

1 1 1

(p - )



1+1 -
[G: G ] = ,pi

p - 1t

(p - 1)

(B1 ):

u = ddcr

1

2

(Yu)

1

wi p(pl-1-1)(pt-2q+l)
(p-1)

[G: G ] (p-1)(p q+l).
p-1 3

<xX>Gj = - 1

p(p - 1)

p + p2 + *.. + pt.

qi=p
1-i

X(Yui)

pt1- 1

-p

<X3X>Q = (p+q)(pg-lq+l)
GJ pq(pt- 2q+i)

(pg).(pt -1)(p-2q+i)

(p+q)(p-1)

If p=q, as in the case of the

becomes:

X(l) = -(q+q2

(D ):

u i =dder

1

Wi

Chevalley groups,

+o -- +qt~1+2qt+qt+l+qt+2+.

1 2

C(Yui)

1

p(pt -1-) (p1-2+1)

(p-1)

p2(1-1)

1 96

i(i) =

.

this

x(Yui)

1

p1-1-

-pL-1

(1<i<t 1),qt=q.



(p-1)

p(pI. 1 )(p-2+l)
(p-1) (p+1)

) XX>Gj = (p- 1 +1)(p+i)
p(pl-2 +i)

= p+p 3+p 5+.. .+p2 t-3+pt-l.

4

O - -

1 2 3 5 6

C(Yui)

1 1

wi p(p8-1)(p 3+1)

(p-1)

u p8 (p5 -i)(p4+1)

(p-1)

d = det C = p2+ (p2+p+l)

(p3+p2_i)(pli)(p3+1)

p2_p 2-1

-p (p
5-1)

(p-1)

= p 6 +p 5 -p 3+p+i

m = (p+1)(p4 +1)

[G:Gg] = (p9 1_)(p 12 -i) =

(p-i)(p4-1)

<X, X>G

(p2 +p+1) 2 (p6 +p 3+1)(p 2-p+1)(p 4-p 2 +1)

(p2+p+1) 2 (p2-p+l)(p4 -p 2+1)

p(,p
4 +1)

x(i) = p(p4 +1)(p6 +p 3+1) = p

[G: Gg]

x(i) =

97

(E6 ):

u =ddcr

1

+ p4+ p5+ p7+ p8+ pil
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5
0

C 0 - -0 - .0 ---
1 2 3 4 6 7

x (Yu)

11

p(p 9-1) (p1 2 _i)

(p-i)(p4-i)

p 1 0 (p9 -i)(p 2-i)

(p-l)(p4 -l)

w* p 2 7

ir(Xw ) = -p 5 4 -I, C(XwJ)

d = det C = (p+1)(p 9+1)
(p3+1)

(p2 +) (p-1) (p 3+p 2-i)
(p6+i)(p3-i)(p-i)(p4-i)

-(p 9-1)(p 1 2-)

p5 (p9-i)(p 3+1)(p 3-pi)

= p3 6

= p7+p6-p4-p3+p+i

m = (p6+1)(p 2+p+i) = p+ 1 = P+p5-p3+p+
p2+1 p2+1 p-1

(p1 4 -i)(p5+1)(p 9+1)
(p-1) p-1 p 5-1

<XPX>GJ =
(p9 +i)(p5 +i)(p4 -i)

p(p6+1)(p-i)

X(i) = p(p 6+1)(p 1 4-1) = p + ps + p7 + p9
(p 2+1)(p 2_i)

+ pl1 + p 1 3 + p17.

ui=ddcr

Wi

u

[G:GjJ p 9-1



99

6

0--- ---- -8
1 2 3 4 5 7 8

ddcr=u

1

wi

1

p(p 14 -i)(p9 +1)(p5 +1)

(p-1)

u p1 2 (p1 4-i)(p12 +p 6 +i)
(p-1)

-(p8+p4+1)

v p29(p14_i)(p5+j)(p9+1)

(p-1)

p 5 7

1

(p1 4-i)(p 3 +p2-)(p 2 -p+i)

(p-1)

-(p 5+1)

p 6 (pl4-l)(p
6 +p 3 +1)

(p-1)

-(p 8 +p4 +1)(p 3-i)

p 19(p 14-i)(p3-p-i)

(p-1)

- (p2-p+i) (p5 +1)

-p
4 2

d= (p1 5+i)(p+i) = p8 +p 7-p5 -p 4-p 3+p+l
(p5+1)(p 3+1)

m=(p+i)(p 6-p 3+1)

W(X0 ) = -p 1 0 5 .1,
0

[G: GI] = i93i)
kp-iLk,-Lk 1

<XX>Gj - p(p-1)

-(1) = P(P24_1)(p'0+1)

c (X,)= p 6 3

(p2 4-i)(p2 0-i)
S- I 1f A '

= p+p 7 +p 1 1 +pl 3 +p 1 7 +p 1 9 +p 2 3 +p 2 9

(pb.-)



(F ):

ddcr = u1

wi

1 2 3 4

1

p(p+l) (pq+1(pq2+1)

q =p (i=1,2); q,=q (i=3,4)

1

(p41) (pq+1) (p+pq-1)

p'4 q(q2 +q+1)(pq2 +1)

p q3(p+1)(pq+1)(pq
2+1)

p9q6

d = det C = p2q 2

p2 (p2q-1)(q
2+q+1)

p 3q(pq+1)(p+1(pq-q-1)

-96 3

- pq + 1 = 9393 + 1
pq + 1

m = pq 2 + 1

[G: G I = (p2+p+1)(pq+1)(p2 q+1)(p2 q 2+1)(p 2q2-pq+1)

<XX>G
(p2 +p+1)(p 3 g3+1)(p+q)

pq(pq 2 + 1)

x( pq(pq
2 +1)(p

2 q+1)
(p+q)

(G
2 1 2

1

p (q+l)

p 2q(q+1)

p3q2

/V + 1,

(p 2 g 2 +1)

q = p, q = q

X(YU)

1

p+/q -1

p/ v - p - V

-p3/2q1/2

-(pq)3/2.I.1T(Xw )

m = q + 1

100

u

v

WI.

u=dder

1

wi

w 1w 2 Wi

W=W 
1 W 2 W 1 W = w

d = det C = pq -



[G: G ] = (p + 1)(p 2q 2 + pq + 1)

2(p + /jq + q) (pq - /p~ + 1
J pq(q + 1)

x(l) = pq(p+l)(q+l)(pq+/Vr+l)
2(p + /pq< + q)

Finally we give a formula for the dual X ')of the

reflection character. Recall that if(Z1) is the unique

irreducible complex character of G whose restriction to

H = Hc(G,B) is the character ^, where X is the reflec-

tion character of H; and (x) = X(i) for all x E H (Cf.

section 3). From theorem 1 we have

X 1-Z) = (X)[ X(Xw)X(XWi1(Xw)1. (25)
wEW wCW

Now X(Xw) = X(Xw) = (_)-(w)C(Xw)X(Xw1). Moreover,

1(Xw) = C(Xw) C(Xw 1) = p lqg'2 I C(Xw '
w 0 wCW wEW

From the definition of the reflection representation

w: H -* End h it is easy to see that Awi is the matrix

representing ff(Xwi) relative to the basis

then AW 1 is obtained by replacing p by p 1 and q by
i

q-1 in all the entries of Awi. It follows that for any

w e W, the inverse of Aw, the matrix representing w(Xw),

can be obtained by replacing p by p-1, q by q~ 1 in

the entries of Aw-1. Hence we have the following theorem.
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THEOREM 13: Let j be the reflection character of

G and : the dual of x in the above sense. Then there

exists a rational function r(x,y) c Q(xy) such that

x(l) = r(p,q) and j(1) = pLi q2r(p-1,q-1).
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Parabolic subgroup, 21.
Poincar6 polynomial, 74
W* , 36.

Reflection representation, 48; compounds of, 51.
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Xwo, 31.
Xw, 25.
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