SOME IRREDUCIBLE COMPLEX REPRESENTATIONS
OF A FINITE GROUP WITH BN PAIR
byROBERT WILLIAM KILMOYER, JR.A.B., Lebanon Valley College(1961)
SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF
PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY
September, 1969
Signature Redacted
Signature of Author

Some Irreducible Complex Representations of a Finite Group with BN Pair.

Robert W. Kilmoyer, Jr.
"Submitted to the Department of Mathematics on July 15, 1969 in partial fulfillment of the requirement for the degree of Ph.D."

In this thesis the irreducible constituents of the permutation representation of G on the homogeneous space G / B are studied where G is a finite group with $B N$ pair and B is a Borel subgroup of G.
§l establishes the correspondence $\tilde{x} \leftrightarrow x$ between the irreducible constituents \tilde{x} of the induced character ($\left.l_{P}\right)^{G}$ and the irreducible characters x of the Hecke algebra $H=H_{C}(G, P)$, where G is an arbitrary finite group and P a subgroup of G. A theorem is proved which expresses $\tilde{\chi}(g)$, $\mathrm{g} \varepsilon \mathrm{G}$, purely in terms of the character x on H .
§2 is a resumé of the known properties of finite groups with BN pair which are needed for this thesis.

In $\S 3$ a semisimple algebra H (also called a Hecke algebra) is attached to every finite Coxeter system (W,I). H is a generalization of both $H_{C}(G, B)$ and $C[W]$, if G is a finite group with BN pair having (W,I) as its associated Coxeter system. The center of H is characterized and the one-dimensional representations of H are classified.
$\S 4$ consists of a complete classification of the irreducible representations of the Hecke algebra attached to a dihedral group.

In 55 a distinguished absolutely irreducible representation π of H (the reflection representation), and its compounds are constructed. $\tilde{\pi}$, the corresponding irreducible character of G, is uniquely characterized by its multiplicities in the induced representations from parabolic subgroups of G.

In $\S 6$ a theorem is proved about the stabilizers of the orbits of certain permutation representations of a Weyl group W. Information is obtained about the structure of double cosets of W.

In $\S 7$ a polynomial $p(x, y)$ in two variables (the Poincaré polynomial) is attached to every finite Coxeter system. The results of $\$ 6$ are applied inductively to obtain

ABSTRACT--2.

a multiplicative formula for $p(x, y)$ and hence for $[G: B]$.
In $\S 8$ and $\S 9$ the results of $\S 1$ are applied to the linear representations and the reflection representation to obtain formulas for the degrees of the corresponding irreducible representations of G.

Thesis Supervioor: Bertram Kostant
Title: Professor of Mathematics

TABLE OF CONTENTS

§1. Hecke algebras and the irreducible characters of afinite group. 3
52. Coxeter systems and groups with BN pair 14
53. The Hecke algebra associated to a finite Coxeter system 23
54. Classification of the irreducible representations of the Hecke algebra of a dinedral group. 38
§5. The reflection representation of $H_{C}(G, B)$ and its compounds 42
§6. Double cosets in Weyl groups. 65
57. The Poincaré polynomial of a Coxeter system 74
§8. The degrees of the irreducible characters of a finite group G with $B N$ pair whose restrictions to H(G,B) are one-dimensional. 88
§9. The degree of the reflection character and its dual 91
Index 103
Bibliography. 104
Biographical note 106

§1. HECKE ALGEBRAS AND THE IRREDUCIBLE CHARACTERS

OF A FINITE GROUP

Let G be a finite group and P a subgroup of G. Denote by $A=C[G]$ the group algebra of G over the complex number field C. Then $e(P)=|P|^{-1} \sum_{x \in P} x$ is an idempotent in A; and the left A-module $A e(P)$ affords the character $\left(I_{P}\right)^{G}$ induced from the trivial character I_{P} of P. Ae(P) is equivalent to the permutation representation of G on G / P. We identify $E d_{A}(A e(P))$ with the semisimple subalgebra $e(P) A e(P)$ of A as an algebra of right operators, where $e(P) A e(P)$ operates on $A e(P)$ by right multiplication. $e(P) A e(P)$ is called the Hecke algebra over C of G relative to P, and is denoted by $H_{C}(G, P)$. It is clear that for x and y in G one has $e(P) x e(P)=e(P) y e(P)$ if and only if $P x P=P y P$; that is, if and only if x and y lie in the same (P, P) double coset of G. Moreover, if D is a complete set of representatives for the (P, P) double cosets of G, then $\{e(P) a e(P) \mid a \varepsilon D\}$ is a C-basis for $H_{C}(G, P)$. For each double coset $P a P,(P a P)^{-1}=P a^{-1} P$ is also a double coset. Thus we may choose D in such a way that if a is the representative of $P a P$, then a^{-1} is the representative of $(\mathrm{PaP})^{-1}$. We also make the convention that l, the identity of G, is the representative of the double coset P.

PROPOSITION 1: In the above notation put
$X_{a}=|P|^{-1} \sum_{x \in P a P} x$, and put $\zeta\left(X_{a}\right)=\left[P: P \cap a P a^{-1}\right], \quad a \varepsilon D$, then
(1) $\quad \zeta\left(X_{a}\right)=|(\operatorname{PaP}) / P|$, hence $\zeta\left(X_{a}\right)$ depends only on the double coset PaP.
(ii) $\sum_{a \varepsilon D} \zeta\left(X_{a}\right)=[G: P]$.
(iii) $\zeta\left(X_{a}\right)=\zeta\left(X_{a}^{-1}\right)$.
(iv) $X_{a}=\zeta\left(X_{a}\right) e(P) a e(P)$.
(v) $\left\{X_{a} \mid a \varepsilon D\right\}$ is a C-basis of $H_{C}(G, P) . X_{l}$ is the dentity of $H_{C}(G, P)$.
(vi) $\zeta: H_{C}(G, P) \rightarrow C$, extended to $H_{C}(G, P)$ by linearity, is an algebra homomorphism.
(vii) One has $X_{a} X_{b}=\sum_{c \varepsilon D} n_{a, b}^{c} X_{c}$, where $n_{a, b}^{c}=\left|\left(P a P \cap c P b^{-1} P\right) / P\right|$. In particular the $n_{a, b}^{c}$ are rational integers, $a, b, c \in D$.

PROOF: (i) The costs of G / P which lie in PaP form a P-orbit under the action of P by left multiplication. The stabilizer of this orbit is $P \cap \mathrm{aPa}^{-1}$.
(ii) is immediate from (i).
(iii) follows from the fact that $\left|P \cap \mathrm{aPa}^{-1}\right|$
$=\left|a^{-1} P a \cap P\right|$.
(Iv) Note that if $x, y \in P$, then $\operatorname{xae}(P)=\operatorname{yae}(P)$
if and only if $y^{-1} x \in P \cap \mathrm{aPa}^{-1}$. Thus $e(P) a e(P)$
$=\left|P \cap \mathrm{aPa}^{-1}\right||\mathrm{P}|^{-2} \sum_{x \in \mathrm{PaP}} \mathrm{x}=\zeta\left(\mathrm{X}_{\mathrm{a}}\right)^{-1} \mathrm{X}_{\mathrm{a}}$.
(v) $\left\{X_{a} \mid a \varepsilon D\right\}$ is a basis because $\{e(P) a e(P) \mid a \varepsilon D\}$ is a
basis. Note that $X_{1}=|P|^{-1} \sum_{x \in P} x=e(P)$.
(vi) follows from the observation that ζ is just the restriction to $H_{C}(G, P)$ of the trivial character I_{G} of G.

$$
\text { (vii) } X_{a} X_{b}=|P|^{-2}\left(\sum_{x \in P a P}^{x}\right)\left(\sum_{y \in P b P} y\right)=|P|^{-1} \sum_{c \in D}\left(n_{a, b}^{c} \sum_{z \varepsilon P c P}^{z}\right) .
$$

Comparing the coefficient of c on both sides of this equaltion we have

$$
\begin{aligned}
n_{a, b}^{c} & =|P|^{-1}|\{(x, y) \mid x \varepsilon P a P, y \varepsilon P b P, x y=c\}| \\
& =|P|^{-1}\left|\left\{x \mid x \varepsilon P a P, x^{-1} c \varepsilon P b P\right\}\right| \\
& =|P|^{-1}\left|\left\{x \mid x \varepsilon P a P, x \varepsilon c P^{-1} P\right\}\right| \\
& =\left|\left(P a P \cap c b^{-1} P\right) / P\right| .
\end{aligned}
$$

We call $\left\{X_{a} \mid a \varepsilon D\right\}$ the natural basis of the Heck algebra $H_{C}(G, P)$. As the constants of structure $\left\{n_{a, b}{ }^{c}\right\}$ relative to this basis are rational integers, the Hecke algebra of G relative to P is really defined over Z; namely, let $H(G, P)=H_{Z}(G, P)$ be the free Z-module whose basis is $\left\{X_{a} \mid a \varepsilon D\right\}$, and define multiplication in $H(G, P)$ by $X_{a} X_{b}=\sum_{c \in D} n_{a, b}^{c} X_{c}$. We call $H(G, P)$ the Heck ring of G relative to P. If k is an arbitrary field, put $H_{k}(G, P)$ $=k \not H(G, P)$; and call $H_{k}(G, P)$ the Heck algebra over k of G relative to P. Call $\zeta: H(G, P) \rightarrow Z$ the trivial character of $H(G, P)$.

We shall show that information about the representation theory of $H_{C}(G, P)$ can be used to deduce information on the
frreducible complex representations of G which appear as the irreducible constituents of the induced representation $\mathrm{Ae}(\mathrm{P})$. Our method is based on an observation that is valid in any finite dimensional semisimple C-algebra.

Let A be a finite dimensional semisimple C-algebra. Let $\pi: A \rightarrow$ End V be a representation of A on the finite dimensional complex vector space V. Thus V is a left $A-$ module where $a \cdot v=\pi(a) v$ for $a \varepsilon A, v \varepsilon V$. Put dim π $=\operatorname{dim} V$. Let x be the character of π; i.e., $x(a)$ $=$ trace $\pi(a)$ for all $a \varepsilon A$. Call x irreducible if and only if π is irreducible. In any case $x(1)=\operatorname{dim} \pi$.

A is the direct sum of simple two-sided ideals each of which is isomorphic to a finite dimensional matrix algebra over C. The identities of these simple subalgebras are the minimal central idempotents of A. Thus there is a natural one-to-one correspondence between the set of all minimal central idempotents of A and the set of all irreducible characters of A; namely, if \tilde{X} is an irreducible character of A and \bar{e} is a minimal central idempotent of A, then \tilde{x} corresponds to $\tilde{e} \Leftrightarrow \tilde{x}(\tilde{e}) \neq 0$. If \tilde{x} corresponds to \tilde{e}, then $\tilde{x}(l)=\tilde{x}(\tilde{e})=\operatorname{dim} \tilde{\pi}$ where $\tilde{\pi}$ is an irreducible representation of A affording the character \tilde{x}.

Let A be a finite dimensional semisimple C-algebra, and let e be an arbitrary idempotent in A. Consider $V=A e$ as a left A-module by left multiplication in A. Then we may identify the commuting algebra, $E_{A} A$ with the semisimple
subalgebra eAe of A as an algebra of right operators, where eAe operates on V by right multiplication. If $\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ is a complete set of A-irreducible constituents of V, then
where U_{i} is a C-vector space such that $\operatorname{dim} U_{i}$ is equal to the multiplicity of V_{i} in V. A operates on $V_{i} \otimes U_{i}$ by $a \cdot\left(v_{i} \otimes u_{i}\right)=\left(a \cdot v_{i}\right) u_{i}, a \varepsilon A, v_{i} \varepsilon V_{i}, u_{i} \varepsilon U_{i}$. We may identify End $V=$ eAe with $\underset{i=1}{\oplus}$ End U_{i}. Let \tilde{e}_{i} be the minimal central idempotent in A corresponding to V_{i} ($1 \leq 1 \leq m$). It is clear then that $f_{i}=\tilde{e}_{i} e=e \tilde{e}_{i} e$ is a minimal central idempotent in eAe. In fact, under right multiplication in A, f_{i} is just the projection of V onto the primary component $V_{i} \otimes U_{i}$ of V. Thus $\tilde{e}_{i} \rightarrow f_{i}=e \tilde{e}_{i} e$ sets up a one-to-one correspondence between the set of all minimal central idempotents e_{i} of A which correspond to the distinct irreducible constituents of $A e$ and the set of all minimal central idempotents of eAe. We summarize the facts pertinent to this situation that we will be needing in the following:

LEMMA 1: Let A be a finite dimensional semisimple C-algebra and e an arbitrary idempotent in A. Identify the (semisimple) subalgebra eAe with End A Ae as an algebra of right operators. Let $\tilde{\pi}: A \rightarrow$ End M be an irreducible representation of A such that M is equivalent to an
irreducible constituent of the left A-module Ae. Let \tilde{x} be the character of $\tilde{\pi}$ and \tilde{e} the corresponding minimal central idempotent of A. Then the following conclusions are valid:
(i) $f=e e ̃=e e ̃ e$ is a minimal central idempotent in eAe.
(ii) $\tilde{\pi}$ restricted to eAe induces an irreducible representation π : eAe \rightarrow End $(e \cdot M)$.
(iii) $\tilde{x} \mid e A e=x$ is an irreducible character of eAe. (iv) A•f is a primary component of Ae of type \tilde{x}. (v) $\bar{x}(e)=x(f)=\operatorname{dim}(e \cdot M)=$ multiplicity of $\tilde{\pi}$ in Ae $=$ multiplicity of $\tilde{\pi}$ in $A f=\operatorname{dim} \pi$.
(vi) $\tilde{e} \leftrightarrow e$ (resp. $\tilde{x} \leftrightarrow x$) sets up a one-to-one correspondence between the set of all minimal central idempotents (resp. irreducible characters) of A which correspond to the distinct A-irreducible constituents of Ae and the set of all minimal central idempotents (resp. irreducible characters) of eAe.

PROOF: (i) and (iv) are obvious from the discussion of the preceding paragraph. To see (ii), note that $e \cdot M \neq 0$ because M is A-isomorphic to an irreducible constituent of Ae. $e \cdot M$ is eAe-irreducible because if x is any non-zero vector in $e \cdot M$, one has (eAe) $x=(e A) x=e \cdot M$. Thus π is irreducible. Obviously x is the character of π, hence x is an irreducible character of eAe, proving (iii). It is clear that $\tilde{x}(e)=\tilde{x}(\tilde{e} e)=x(f)$. Also $\tilde{x}(e)=$ trace $\tilde{\pi}(e)$
$=\operatorname{dim}(e \cdot M)$. In the notation of the preceding paragraph we may take $\tilde{e}=\tilde{e}_{i}, f=f_{i}, A f=V_{i} \otimes U_{i}, \pi=\pi_{i}:$ eAe \rightarrow End U_{i}, and x the character of π_{i}. Thus $x(e)=x(f)=\operatorname{dim} U_{i}$ $=\operatorname{dim} \pi=$ the multiplicity of V_{i} in $A f=$ the multiplicity of V_{1} in Ae. This establishes (v). (vi) is also immediate from the preceding paragraph.

Applying lemma l to the case where $A=C[G], e=e(P)$ we have the following

PROPOSITION 2: Let $H=H_{C}(G, P)$ be the Hecke algebra of the finite group G relative to the subgroup P. Put $X_{1}=e(P)=$ the identity of H. Let \tilde{x} be an irreducible character (complex) of G such that \tilde{X} is a constituent of $\left(I_{P}\right)^{G}$. Let $\tilde{\pi}: C[G] \rightarrow$ End M be a representation affording \tilde{x}, and \tilde{e} the minimal central idempotent of $C[G]$ corresponding to \tilde{x}. Then
(i) $f=\tilde{e} X_{1}=X_{1} \tilde{e} X_{1}$ is a minimal central idempotent of H.
(ii) $\tilde{\pi}$ restricted to H yields an irreducible representation π of H on $M^{P}=\{v \varepsilon M \mid x \cdot v=v$ for all $x \varepsilon P\}$.
(1ii) $\tilde{x} \mid H=x$ is an irreducible character of H.
(iv) Af is a primary G-module of type \tilde{x}.
(v) $\quad \bar{x}(e)=x(f)=\operatorname{dim}\left(M^{P}\right)=\left(\tilde{x},\left(l_{P}\right)^{G}\right)_{G}=\left(\tilde{x} \mid P, l_{P}\right)_{P}$ $=$ the multiplicity of $\tilde{\pi}$ in Af.
(vi) $\tilde{e} \leftrightarrow e$ (resp. $\tilde{x} \leftrightarrow x$) sets up a one-to-one correspondence between the set of all minimal central idempotents (respectively irreducible characters) of $C[G]$
which appear as irreducible constituents of $\left(I_{P}\right)^{G}$ and the set of all minimal central idempotents (respectively irreducible characters of H.

COROLLARY: In the above notation, if x is a character of H of degree 1 ; that is, x is an algebra homomorphism of H into C, then $f=f(x)$ is a primitive idempotent in $C[G]$, and \tilde{x} is irreducible.

This corollary was proved by Janusz in [9].

There is quite a bit more that we can say about the relationship between the minimal central idempotents and the irreducible characters of H. The following theorem was proved independently by C. Curtis, [4].

THEOREM 1: Let $H=H_{C}(G, P)$ be the Hecke algebra of the finite group G relative to the subgroup P of G. Let $\left\{X_{a} \mid a \varepsilon D\right\}$ be the natural basis of H, where D is a set of double coset representatives for $P \backslash G / P$. For any two characters x and ψ of H, put $\langle x, \psi\rangle_{P_{:}}=\sum_{a \varepsilon D} x\left(X_{a}^{-1}\right)_{\psi}\left(X_{a}\right)_{5}\left(X_{a}\right)^{-1}$. Then the following conclusions are valid:
(i) If x is an irreducible character of H, then the minimal central idempotent of H corresponding to x is given by

$$
f(x)=\langle x, x\rangle_{P}^{-1} x\left(X_{1}\right) \sum_{a \varepsilon D} x\left(x_{a}^{-1}\right) \zeta\left(X_{a}\right)^{-1} X_{a}
$$

(ii) If x is an irreducible character of H and \tilde{x} the
unique irreducible character of G such that $\tilde{x} \mid H=x$, then

$$
\tilde{x}(1)=x\left(X_{1}\right)[G: P]\langle x, x\rangle_{P}^{-1}
$$

(iii) If x and ψ are distinct irreducible characters of H, then $\langle x, \psi\rangle_{P}=0$.

PROOF: By proposition 1 if \tilde{x} is the unique irreducibile character of G such that $\tilde{x} \mid H=x$, then $f(x)$ $=e(P) \tilde{e}(\tilde{x}) e(P)$, where $\tilde{e}(\tilde{x})$ is the minimal central idempotent of $C[G]$ corresponding to \tilde{x}. Now $\tilde{e}(\tilde{x})=|G|^{-1} \tilde{x}(I) \sum_{x \in G} \tilde{x}\left(x^{-1}\right) x$.

Thus $f(x)=|G|^{-1} \tilde{x}(1) \sum_{x \in G} \tilde{x}\left(x^{-1}\right) e(P) x e(P)$

$$
\begin{align*}
& =|G|^{-1} \tilde{x}(1) \sum_{a \varepsilon D} \sum_{x \in P a P} \tilde{x}^{\tilde{x}}\left(x^{-1}\right) e(P) a e(P) \\
& =[G: P]^{-1} \bar{x}(1) \sum_{a \varepsilon D} x\left(X_{a}^{-1}\right) \zeta\left(X_{a}\right)^{-1} X_{a} \tag{1}
\end{align*}
$$

But then $x\left(X_{1}\right)=x(f(x))=[G: P]^{-1} \tilde{x}(1) \sum_{a} x\left(X_{a}^{-1}\right) x\left(X_{a}\right) \zeta\left(X_{a}\right)^{-1}$ $\left.=[G: P]^{-1} \tilde{x}(1)<x, x\right\rangle_{P}$. Thus $\tilde{x}(1)=x\left(X_{1}\right)[G: P]\left\langle x, x>P^{-1}\right.$, proving (ii). (i) follows from equation (I) upon substituting $\langle x, x\rangle_{P}^{-1} x\left(X_{1}\right)$ for $[G: P]^{-1} \tilde{x}(I)$. Finally, if ψ is an irreducible character of H distinct from x, then $0=\psi(f(x))$ $=\langle x, x\rangle_{P}^{-1} x\left(X_{1}\right) \sum_{a \in D} x\left(X_{a}^{-1}\right) \psi\left(X_{a}\right) \zeta\left(X_{a}\right)^{-1}=\langle x, x\rangle_{P}^{-1} x\left(X_{1}\right)\langle x, \psi\rangle_{P}$. Hence $\langle\chi, \psi\rangle_{P}=0$, proving (iii).

Note that theorem 1 tells us that if an irreducible character x of $H_{C}(G, P)$ is known, in the sense that $x\left(X_{a}\right)$ is known for all a εD, then the degree $\tilde{x}(1)$ of the cor-
responding irreducible character of G is known. Actually, the conclusion of theorem l can be sharpened so as to give all the values $\tilde{x}(g)$ of the irreducible character \tilde{x} of G provided sufficient information is known about the conjugacy classes of G, and how they intersect the (P, P) double cosets of G. I wish to thank C. Curtis for pointing out to me the fact that the following proposition appears (without proof) in [10].

PROPOSITION 3 (Littlewood): Let G be a finite group and let $e=\sum_{g \in G} \lambda_{g} g$ be a primitive idempotent in $C[G]$ affording the irreducible character x. Let S be a conjugacy class in G and let $g \varepsilon S$, then

$$
\zeta\left(g^{-1}\right)=|Z(g)| \sum_{g \varepsilon S} \lambda^{\lambda} g,
$$

where $Z(g)$ denotes the centralizer of g in G.

Proposition 3 can be sharpened to deal with the case of a primary idempotent f of $C[G]$. By a primary idempotent f we mean an idempotent f such that $C[G] \cdot f$ is a primary $C[G]$-module of type x for some irreducible character x of G. Thus the character of G afforded by $C[G] \cdot f$ is just $x(f) \cdot x$.

PROPOSITION 4: Let $f=\sum_{g \in G} \lambda_{g} \cdot g$ be a primary idempotent in $C[G]$ of type x. Let S be a conjugacy class of G and let $g \varepsilon S$, then $x\left(g^{-1}\right)=x(f)^{-1}|Z(g)| \sum_{g \in S} \lambda g$.

PROOF: Put $z=x(f)^{-1} x(1)|G|^{-1} \sum_{x \in G} x f^{-1}$. Then
$x(z)=x(1)$ while if ψ is any irreducible character of G distinct from x, then $\psi(z)=0 . z$ is obviously central; hence it follows that z is equal to the minimal central idempotent corresponding to x. That is,

$$
\begin{equation*}
x(f)^{-1} x(1)|G|^{-1} \sum_{x \in G} x f x^{-1}=x(1)|G|^{-1} \sum_{x \in G} x\left(x^{-1}\right) x . \tag{2}
\end{equation*}
$$

The assertion of proposition 4 now follows from collecting together the conjugacy classes on both sides of equation (2), and comparing the coefficients.

Applying proposition 4 to the idempotent $f=f(x)$
obtained in the proof of theorem 1 we thus obtain

THEOREM 2: Assume the hypothesis of theorem 1. Let $g \varepsilon G$ and S be the conjugacy class of g in G, then one has

$$
\tilde{x}\left(g^{-1}\right)=[G: P]|S|^{-1}\left\langle x, x_{P}^{-1} \sum_{a \in D}\right| P a P \cap S \mid x\left(x_{a}^{-1}\right) \zeta\left(X_{a}\right)^{-1}
$$

§2. COXETER SYSTEMS AND GROUPS WITH BN PAIR

In this section we recall some known properties of finite groups with $B N$ pair and their associated Coxeter systems. We omit all proofs in this section. Most of these results can be found in [1].

Coxeter Systems: Let W be a group generated by a set $\left\{w_{i} \mid 1 \varepsilon \mathrm{I}\right\}$ of distinct nonidentity involutions. Then every element w of W has an expression of the form $w=w_{1_{1}} w_{i_{2}} \ldots w_{1_{m}}$ (ifeI, $1 \leq j \leq m$). This expression is called a reduced expression if it is not possible to write w as a product of less than m of the involutions w_{1}, $i \varepsilon I$. If $w=w_{1_{1}} w_{1_{2}} \cdots w_{i_{m}}$ is a reduced expression for w, put $\ell(w)=m . \quad \ell(w)$ is called the length of w.

PROPOSITION 5: Let W be a group generated by a set $\left\{w_{i} \mid i \varepsilon I\right\}$ of distinct nonidentity involutions. Then the following are equivalent:
(1) (Axiom of Cancellation): If $w_{1_{1}} w_{1_{2}} \ldots w_{1_{m}}$ is not a reduced expression, then there exist integers p and q between l and m such that $w_{i_{1}} w_{i_{2}} \ldots w_{i_{m}}$ $=w_{1_{1}} w_{i_{2}} \ldots \hat{w}_{1_{p}} \ldots \hat{w}_{i_{q}} \ldots w_{1_{m}}$ (where \sim means omit).
(ii) If $w_{1_{1}} w_{1_{2}} \ldots w_{1_{m}}$ is a reduced expression, but $w_{1_{1}} w_{i_{1}} w_{i_{2}} \ldots w_{1_{m}}$ is not a reduced expression, then there exists an integer $p(1 \leq p \leq m)$ such that $w_{i_{1}} w_{1_{1}} \ldots w_{1_{m}}=w_{1_{1}} \ldots \hat{w}_{1_{p}} \ldots w_{i_{m}}$; and this last expression is reduced.
(ii1) Let $m_{i j}=\left|\left\langle w_{i} w_{j}\right\rangle\right|$. Then the generators $\left\{w_{i} \mid i \varepsilon\right.$ I $\}$ together with the relations $w_{i}^{2}=1,\left(w_{i} w_{j}\right)^{m_{i j}}=1$ ($1, \mathrm{j} \varepsilon \mathrm{I}, \mathrm{m}_{i j}<\infty$) form a presentation for the group W.

If the conditions (i)-(iii) of proposition 5 are satisfied, then (W,I) is called a Coxeter system. If (W,I) is a Coxeter system, then one has $\ell\left(w_{i} w\right)=\ell(w) \pm 1$ for all $\mathrm{w} \in \mathrm{W}$, $\mathrm{i} \varepsilon \mathrm{I}$.

For the rest of this section Coxeter system will always mean finite Coxeter system; that is, $|W|<\infty$.

Let (W,I) be a Coxeter system; and let $w \in$ W. If $w_{1_{1}} w_{1_{2}} \cdots w_{1_{m}}=w$ is a reduced expression for w, one defines the support of $w(\operatorname{supp}(w))$ to be the subset $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ of I. The supp(w) depends only upon w, not upon the choice of the reduced expression for w. For every subset J of I put W_{J} equal to the group generated by $\left\{w_{i} \mid i \varepsilon J\right\}$. Then (W_{J}, J) is again a Coxeter system. One has $w \varepsilon W_{J}$ if and only if $\operatorname{supp}(w) \subseteq J$.

The Coxeter system (W,I) is called irreducible if it is impossible to partition I into two disjoint subsets I' and $I^{\prime \prime}$ such that w_{i} commutes with w_{j} for all i εI^{\prime}, J ع J'. It is easy to see that every finite Coxeter system is the direct product of irreducible Coxeter systems in the obvious sense.

Let (W,I) be a Coxeter system. There exists in W
a unique element of maximal length. This element will always be denoted by $w_{0} . w_{0}$ is characterized by the property that one has $\ell\left(W_{0}\right)=\ell\left(w_{0}\right)-\ell(W)$ for all $w \in W$.

The finite irreducible Coxeter systems have been classified as follows:
(a) The Weyl groups of the simple complex Lie algebras (Coxeter systems of Lie type).
(b) The dihedral groups.
(c) H_{3} and H_{4}.

If W is the Weyl group of the simple complex Lie algebra of of rank ℓ, we take $I=\{1,2, \ldots, \ell\},\left\{\alpha_{i} \mid 1 \leq i \leq \ell\right\}$ to be a set of simple roots of of relative to a Cartan subalgebra h of \mathcal{G}, and $w_{i}, i \varepsilon I$ to be the reflection with respect to the simple root α_{i}. Thus the groups W which appear in (a) are also the finite irreducible groups generated by reflections in a finite dimensional Euclidean vector space.

The dihedral group D_{m} of order $2 m$ has the presentation: $D_{m}=\left\langle w_{1}, w_{2} \mid w_{1}^{2}=w_{2}^{2}=\left(w_{1} w_{2}\right)^{m}=1\right\rangle$. Here we take $I=\{1,2\}$.

The groups H_{3} and H_{4} have the presentations: $H_{3}=\left\langle w_{1}, w_{2}, w_{3} \mid w_{1}^{2}=w_{2}^{2}=w_{3}^{2}=\left(w_{1} w_{2}\right)^{5}=\left(w_{2} w_{3}\right)^{3}=l\right\rangle$, $H_{4}=\left\langle w_{1}, w_{2}, w_{3}, w_{4} \mid w_{1}^{2}=w_{2}^{2}=w_{3}^{2}=w_{4}^{2}=\left(w_{1} w_{2}\right)^{5}=\left(w_{2} w_{3}\right)^{3}=\left(w_{3} w_{4}\right)^{3}=1\right\rangle$.

Let (W, I) be a finite irreducible Coxeter system.
Put $m_{i j}$ equal to the order of $w_{i} w_{j}$ for all $1, j \varepsilon I$. The elements w_{i} and w_{j} are conjugate in W if and only if
there exists a sequence $i_{1}, 1_{2}, \ldots, i_{s}$ of elements of I such that $i_{1}=1,1_{s}=j$, and $m_{1_{k} 1_{k+1}}$ is odd. Thus from the classification of the finite irreducible Coxeter systems it is easily seen that there are at most two conjugacy classes of the elements $\left\{w_{i} \mid i \varepsilon\right.$ I\}. If W is of Lie type, then w_{i} and w_{j} are conjugate if and only if they correspond to the reflections with respect to simple roots α_{i} and α_{j} of the same length. Thus if we identify I with the points of the Dynkin diagram D of \mathcal{O}, the conjugacy classes of the elements $\left\{w_{1} \mid i \varepsilon I\right\}$ are determined by the points of D which lie on opposite sides of a multiple bond. Let (W,I) be a finite Coxeter system. Let J and K be subsets of I. In each coset $w W_{J}$ of W / W_{J} there is a unique element of minimal length called the distinguished coset representative (dcr) for that coset. If w ' is the der for $w W_{J}$, then w^{\prime} is characterized by the property that $\ell\left(w^{\prime} u\right)=\ell\left(w^{\prime}\right)+\ell(u)$ for all $u \varepsilon W_{J}$. In each double coset $W_{K} w W_{J}$ of $W_{K} \backslash W / W_{J}$ there exists a unique element of minimal length \tilde{w} called the distinguished double coset representative (ddcr) for $W_{K} w W_{J}$. \tilde{W} is characterized by the property that $\ell(\tilde{w} u)=\ell(\tilde{w})+\ell(u)$ for all $u \varepsilon W_{J}$ and $\ell(v \tilde{w})=\ell(v)+\ell(\tilde{w})$ for all $v \varepsilon W_{K}$.

Let (W,I) be a finite irreducible Coxeter system of Lie type so that we may identify W with the Weyl group of a simple complex Lie algebra of. Let h be a Cartan subalgebra of of,$\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ a set of simple roots of of relative to
h, Δ^{+}the corresponding set of positive roots, and Δ the set of all roots of of relative to h. We take I $=\{1,2, \ldots, \ell\}$, and $w_{1}, 1 \varepsilon I$ to be the reflection with respect to the simple root α_{i}. That is, $w_{1}(\xi)=\xi-\frac{2\left(\alpha_{1}, \xi\right)}{\left(\alpha_{1}, \alpha_{1}\right)} \alpha_{1}$ for all $\xi \varepsilon \mathrm{h}$, where (,) denotes the killing form of
of. Thus h forms a natural irreducible module for W. Let σ be a permutation of the set $I=\{1,2, \ldots, \ell\}$. The element $\mathrm{w}_{1 \sigma} \mathrm{w}_{2 \sigma} \cdots \mathrm{w}_{\ell \sigma}$ is called a Coxeter transformation in W . The Coxeter transformations in W are all conjugate to one another. The order of a Coxeter transformation is called the Coxeter number of W. Let c be a Coxeter transformation in W, and let h be the Coxeter number of W. As the order of c is h, the characteristic polynomial of c in the natural representation of W on the Carton subalgebra is of the form

$$
\prod_{j=1}^{\ell}\left[T-\exp \left(\frac{2 \pi_{1} m_{j}}{h}\right)\right],
$$

where the m_{1} are positive integers and we may assume that $0 \leq m_{1} \leq m_{2} \leq \cdots \leq m_{\ell} \leq h . \quad\left\{m_{1}, m_{2}, \ldots, m_{\ell}\right\}$ are called the exponents of of or of W; and $\left\{d_{1}, d_{2}, \ldots, d_{\ell}\right\}$ are called the degrees of W, where $d_{1}=m_{1}+l$. We list the properties of of and W concerning the exponents and the degrees that we will need for future reference in the following

PROPOSITION 6:

(i) $m_{1}=1, m_{\ell}=h-1 \quad(h=t h e$ Coxeter number of $W)$
(ii) $\sum_{j=1}^{\&} m_{j}=N=\left|\Delta^{+}\right|$, the number of positive roots of O.
(iii) $N=\frac{1}{2} \ell h$.
(iv) $\ell\left(w_{0}\right)=N$.
(v) If the Dynkin diagram of of is not simply laced, so that there are two nonempty conjugacy classes $\left\{w_{1} \mid i \varepsilon I_{1}\right\}$ and $\left\{w_{1} \mid i \in I_{2}\right\}$ of the involutions $\left\{w_{1} \mid 1 \varepsilon I\right\}$, put $\ell_{1}=\left|I_{1}\right|, \ell_{2}=\left|I_{2}\right|$, and let $w_{0}=w_{1_{1}} w_{1_{2}} \ldots w_{1_{N}}$ be any reduced expression for w_{0}; then exactly $\frac{1}{2} \ell_{1} h$ of the i_{j} lie in I_{1} and $\frac{1}{2} \ell_{2} h$ of the I_{j} lie in $I_{2}(1 \leq j \leq N)$.[17]
(vi) Put $p(T)=\prod_{i=1}^{\ell}\left(\frac{T_{i}-1}{T-1}\right) . p(T)$ is called the

Poincare polynomial of of. One has

$$
p(T)=\sum_{W \in W} T^{\ell(W)}
$$

(vii) $p(1)=\prod_{i=1}^{\ell} d_{i}=|w|$.

Following is a list of the exponents for the weyl groups of the simple complex Lie algebras.

(\underline{g})	$\frac{m_{1}, \ldots, m_{\ell}}{\left(A_{\ell}\right)}$
$\left(B_{\ell}\right)$	$1,2,3, \ldots, \ell$
$\left(C_{\ell}\right)$	$1,3,5, \ldots, 2 \ell-1$
$\left(D_{\ell}\right)$	$1,3,5, \ldots, 2 \ell-1$
$\left(E_{6}\right)$	$1,3,5, \ldots, 2 \ell-3, \ell-1$
$\left(E_{7}\right)$	$1,4,5,7,8,11$
$\left(E_{8}\right)$	$1,5,7,9,11,13,17$
$\left(F_{4}\right)$	$1,7,11,13,17,19,23,29$
$\left(G_{2}\right)$	$1,5,7,11$
	1,5

Groups with BN pair: A group with BN pair (called a Tits System in [l]) is a group G together with a pair of subgroups B and N such that
(a) G is generated by $B \cup N$.
(b) $T=B \cap N$ is a normal subgroup of N.
(c) $N / T=W$ is a group generated by a set $\left\{w_{i} \mid i \varepsilon I\right\}$ of distinct nonidentity involutions.
(d) $w_{i} B w_{i} \neq B$ for all $i \varepsilon I$.
(e) $w_{i} B w \subseteq B w B \cup B w_{1} w B$ for all $i \in I, w \varepsilon W$. [If $w \in W$, by $w B$ (respectively $B w$) we mean $n B$ (respectively $B n$) where $n \rightarrow w$ under the natural projection $N \rightarrow W=N / T$. The coset $W B$ or $B w$ depends only on w because T is a subgroup of B.] The group W is called the Weyl group of G.

If G is a group with $B N$ pair, then in the above notation (W,I) is a Coxeter system, called Coxeter system associated to G.

PROPOSITION 7: (Bruhat Decomposition) Let G be a group with $B N$ pair, then the (B, B) double cosets of G are indexed by the Weyl group W of G. That is, one has

$$
G=\underset{W \varepsilon W}{U} B w B
$$

is a disjoint union.

If G is a group with $B N$ pair whose associated

Coxeter system is (W,I), then for each subset J of I $G_{J}=B W_{J} B$ is a subgroup of G. Moreover, every subgroup of G which contains B is equal to G_{J} for some $J \subseteq I$. The mapping $J \rightarrow G_{J}$ is a lattice isomorphism from the lattice of subsets of I onto the lattice of subgroups of G which contain B. The subgroups of G conjugate to B are called Borel subgroups, and the subgroups of G conjugate to the $G_{J}, J \subseteq I$, are called parabolic subgroups of G. The following proposition is valid concerning the parabolic subgroups.

PROPOSITION 8: (i) Two parabolic subgroups containing the same Borel subgroup are never conjugate in G unless they are equal. (ii) Every parabolic subgroup is its own normalizer in G. (iii) If two parabolic subgroups P_{1} and P_{2} are conjugate in G, and if $P_{i} \subset P, i=1,2$, where P is a third parabolic subgroup, then P_{1} and P_{2} are conjugate in P.

In the sequel we shall deal only with finite groups with $B N$ pair. It $\&$ a theorem of Feit and Higman [6] that if G is a finite group with $B N$ pair, then the associated Coxeter system (W,I) of G is isomorphic to a direct product of ordinary Weyl groups (the Weyl groups of simple complex Lie algebras) and dihedral groups of order 16. Thus in particular, the finite Coxeter systems of type (H_{3}) and $\left(H_{4}\right)$ can never appear as the weyl group of a finite group G
with BN pair.
We call a finite group G with $B N$ pair irreducible if the associated Coxeter system (W,I) of G is irreducible.

We need a proposition on the double cosets in G also
for future reference.

PROPOSITION 9: Let G be a finite group with BN pair and (W,I) the associated Coxeter system. Let J,K be subsets of I. Then the mapping $W_{J} \backslash W / W_{K} \rightarrow G_{J} \backslash G / G_{K}$, $W_{J} w W_{K} \rightarrow G_{J} w G_{K}$ is bijective. In particular, if $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is the set of distinguished double coset representatives for $W_{J} \backslash W / W_{K}$, then $\left\{u_{1}, \ldots, u_{m}\right\}$ is also a complete set of representatives for $G_{J} \backslash G^{\prime} / G_{K}$.

§3. THE HECKE ALGEBRA ASSOCIATED

TO A FINITE COXETER SYSTEM

Let G be a finite group with $B N$ pair, and let (W, I) be the associated Coxeter system. According to the Bruhat decomposition, the (B, B) double cosets of G are indexed by the Weyl group W of G. Thus one has a natural basis $\left\{X_{W} \mid w \in W\right\}$ for $H(G, B)$, where $X_{W}=|B|^{-1} \sum_{X \in B} x$. This Hecke ring was first studied by N. Iwahori [8] in the case where G is a Chevalley group and B a Borel subgroup. In [2] Iwahori has proved, using a theorem of J. Tits (unpublished), that if G is any finite group with $B N$ pair and k field such that the characteristic of k does not divide the order of G, and such that k is a splitting field for both G and W, then $H_{k}\left(G, G_{J}\right)$ and $H_{k}\left(W, W_{J}\right)$ are isomorphic as k algebras, in particular $H_{C}(G, B)=H_{C}(W,\{1\})=C[W]$.

The following theorem is due to H. Matsumoto [11].

THEOREM 3: Let G be a finite group with $B N$ pair whose associated Coxeter system is (W,I). For each i ε I put $q_{i}=\left|B w_{i} B / B\right|=\left[B: B \cap w_{i} B w_{i}^{-1}\right]$, then one has
(i) $X_{w_{1}} X_{w}= \begin{cases}X_{w_{i} w} & , \text { if } \ell\left(w_{i} w\right)=\ell(w)+1 \\ q_{1} X_{w_{1} w}+\left(q_{i}-1\right) X_{w}, & \text { if } \ell\left(w_{i} w\right)=\ell(w)-1\end{cases}$
for all $i \in I, W \in W$.
(ii) The generators $\left\{X_{W_{i}} \mid i \in I\right\}$ together with the relations:

$$
\begin{align*}
& X_{1} X_{W_{i}}=X_{W_{i}} X_{1}=X_{W_{i}} \\
& x_{w_{i}}^{2}=q_{1} X_{1}+\left(q_{i}-1\right) x_{w_{1}} \tag{3}\\
& \underbrace{x_{w_{1}} x_{w_{j}} x_{w_{i}} \ldots}_{m_{i j}}=\underbrace{x_{w_{j}} x_{w_{i}} x_{w_{j}} \cdots}_{m_{i j}} \\
& \left(i, j \in I, m_{i j}=\left|\left\langle w_{i} w_{j}\right\rangle\right|\right)
\end{align*}
$$

form a presentation for $H(G, B)$.
Let $\zeta: H(G, B) \rightarrow Z$ be defined as in 51 . That is, $\zeta\left(X_{W}\right)=\left[B: B \cap W^{\prime} w^{-1}\right]$. Then ζ is an algebra homomorphism and $\quad \zeta\left(X_{W_{1}}\right)=q_{i}, i \varepsilon I$.

PROPOSITION 10: One has $q_{i}=q_{j}$ if $m_{i j}$ is odd; and hence $q_{i}=q_{j}$ whenever w_{i} and w_{j} are conjugate in W.

PROOF: By (3) one has $q_{i} q_{j} q_{i} \ldots=q_{j} q_{i} q_{j} \ldots$.

$$
m_{i j} \quad m_{i j}
$$

Hence $q_{i}=q_{j}$ if $m_{i j}$ is odd. The second assertion of the proposition follows then from $\$ 2$.

REMARK: There exist finite groups with BN pair such that $q_{i} \neq q_{j}$ when $m_{i j}$ is even. For example, the twisted Chevalley groups have this property; cf. [12,13,19,20]. However, in all the known examples q_{i} and q_{j} are either equal or are both powers of the same prime for all in $\varepsilon \mathrm{I}$. It is not an open question as to the existence of a finite
group G with $B N$ pair such that q_{i} and q_{j} are not both powers of the same prime for some $1, f \varepsilon I$.

We would like to study some representation theory of a C-algebra whose constants of structure satisfy (3), only with the q_{i} being of a slightly more general nature. The next proposition shows that such an algebra exists.

PROPOSITION 11: Let (W,I) be a finite Coxeter system and M be a vector space over C having basis $\left\{X_{W} \mid W \varepsilon W\right\}$. Let $\left\{q_{i} \mid 1 \varepsilon I\right\}$ be a set of complex numbers such that $q_{i}=q_{j}$ if w_{i} and w_{j} are conjugate in W (i,j εI). Then there exists on M a unique associative C-algebra structure such that

$$
x_{w_{1}} x_{w}=\left\{\begin{array}{cl}
x_{w_{1} w} & , \ell\left(w_{1} w\right)=\ell(w)+1 \\
q_{1} x_{w_{1} w}+\left(q_{1}-1\right) x_{w}, \ell\left(w_{1} w\right)=\ell(w)-1
\end{array}\right.
$$

Moreover, the generators $\left\{X_{W_{i}} \mid i \varepsilon I\right\}$ and the relations

$$
\begin{array}{cc}
X_{w_{i}} X_{1}=X_{1} X_{w_{i}} & i \varepsilon I \\
X_{w_{i}}=q_{i} X+\left(q_{i}-1\right) X_{w_{i}} & i \varepsilon I \tag{4}\\
\underbrace{X_{w_{i}} X_{w_{j}} X_{w_{i}} \ldots}_{\mathrm{m}_{1 j}}=\underbrace{i, j \varepsilon I}_{\mathrm{m}_{w_{j}} X_{w_{i}} X_{w_{j}} \cdots}
\end{array}
$$

form a presentation of the C-algebra M.
PROOF: This proposition, in much greater generality, is given as an exercise in [1, p.55].

We denote the algebra M obtained in the preceding theorem by $H\left(q_{1}, \ldots, q_{\ell}\right)$, where $I=\{1,2, \ldots, \ell\}$, and we refer to $H\left(q_{1}, \ldots, q_{\ell}\right)$ as a Hecke algebra over C associated to (W,I). Thus $H(1, l, \ldots, 1)$ is just $C[W]$ the group algebra of W, while if W happens to be the Weyl group of some finite group G with $B N$ pair, then $H\left(q_{1}, \ldots, q_{\ell}\right)$ becomes $H_{C}(G, B)$ upon the appropriate choice of q_{i} as positive integers. Note that the structural constants of $H\left(q_{1}, \ldots, q_{\ell}\right)$ are certain polynomials in the q_{i} with rational integer coefficients, so that this algebra is really defined over the subring $Z\left[q_{1}, \ldots, q_{\ell}\right]$ of C.

REMARK: Using the techniques of Iwahori and Tits mentioned before, it is easy to show that whenever $H\left(q_{1}, \ldots, q_{\ell}\right)$ is semisimple, then it is C-isomorphic with $C[W]$ as a C-algebra. It does not seem, however, that there is any natural isomorphism as long as the rank is greater than one. Nevertheless, it is reasonable to expect the representation theory of $H\left(q_{1}, \ldots, q_{\ell}\right)$ to resemble that of $C[W]$ in the sense that given a representation of $H\left(q_{1}, \ldots, q_{\ell}\right)$, one should be able to obtain an analogous representation of $C[W]$ by setting $" \mathrm{q}_{1}=1$ " everywhere. We shall see later that this is the case for certain representations that we construct.

As an immediate consequence of proposition 11 we have that the map $X_{W_{1}} \rightarrow q_{i}$ can be uniquely extended to an algebra homomorphism $\zeta: H\left(q_{1}, \ldots, q_{\ell}\right) \rightarrow C$ where if $w_{1_{1}} w_{1_{2}} \ldots w_{1_{m}}$ is
any reduced expression for $w \in W$, then $\zeta\left(X_{W}\right)=q_{1_{1}} q_{1_{2}} \ldots q_{1_{m}}$. We shall refer to ζ as the trivial representation of $H\left(q_{1}, \ldots, q_{\ell}\right)$.

Our next result is that $H\left(q_{1}, \ldots, q_{\ell}\right)$ is semisimple If the q_{i} are positive real numbers, but we need a few lemmas.

Define the linear functional ε on $H\left(q_{1}, \ldots, q_{\ell}\right)$
by $\quad \varepsilon\left(\sum_{W \in W} c_{W} X_{W}\right)=c_{1}, c_{W} \varepsilon C$.
LEMMA 2: $\quad \varepsilon\left(X_{W} X_{u}\right)=\left\{\begin{array}{ll}0 & \text { if } w u \neq 1 \\ \zeta\left(X_{W}\right) & \text { if } w u=1\end{array}(w, u \varepsilon W)\right.$.
PROOF: By induction on $\ell(w)$. If $\ell(w)=0$, then
$w=1$ and the result is clear. Otherwise we may write $w=w^{\prime} w_{i}$ with $w^{\prime} \varepsilon W$, $i \varepsilon I$ and $\ell\left(w^{\prime}\right)=\ell(w)-I$. Now we make two cases.

Case 1: $\quad \ell\left(w_{i} u\right)=\ell(u)+1$. In this case $X_{w} X_{u}$
$=X_{w}, X_{w_{1}} X_{u}=X_{w^{\prime}}, X_{w_{i}} u$. Now $w u \neq 1$ and so $w^{\prime}\left(w_{i} u\right) \neq 1$.
Thus by induction $\varepsilon\left(X_{W} X_{u}\right)=\varepsilon\left(X_{W}, X_{W_{1} u}\right)=0$.
Case 2: $\ell\left(w_{i} u\right)=\ell(u)-1$. In this case $X_{w} X_{u}$
$=X_{w}{ }^{\prime} w_{i} X_{u}=X_{w}, X_{w_{i}} X_{u}$
$=X_{w},\left\{\zeta\left(X_{w_{i}}\right) X_{w_{i}} u+\left(\zeta\left(X_{w_{i}}\right)-1\right) X_{u}\right\}$.
Now clearly $w^{\prime} u \neq 1$ in this case so that $\varepsilon\left(X_{W} \cdot X_{u}\right)=0$ by induction. On the other hand, we have wu $=1$ if and only if $w^{\prime}\left(w_{i} u\right)=1$, so again by induction

$$
\varepsilon\left(X_{w} X_{u}\right)=\varepsilon\left(X_{W^{\prime}}, X_{w_{i} u}\right)=\left\{\begin{array}{l}
0 \text { if wu } \neq 1 \\
\zeta\left(X_{W_{i}}\right) \zeta\left(X_{w},\right)=\zeta\left(X_{w}\right) \text { if wu =1. }
\end{array}\right.
$$

PROPOSITION 12: Let $x=\sum a_{w} X_{w}$ and $y=\sum b_{w} X_{w}$ be arbitrary elements of $H\left(q_{1}, \ldots, q_{\ell}\right), a_{w}, b_{w} \varepsilon C$. Then $\varepsilon(x y)=\sum_{W \varepsilon W} a_{W} b_{W}-1 \zeta\left(X_{W}\right)=\varepsilon(y x)$.

PROOF: This is an immediate consequence of lemma 2.

LEMMA 3: For each $x \in H\left(q_{1}, \ldots, q_{\ell}\right), x=\sum_{w \in W} c_{w} X_{W}$, $c_{W} \varepsilon C$, put $x^{*}=\sum_{W \varepsilon W} \bar{c}_{W} X_{W}-1$, where \bar{c}_{W} denotes the complex conjugate of c_{W}, then the following properties of the mapping $x \rightarrow x^{*}$ are valid:
(i) $\left(x^{*}\right)^{*}=x$
(ii) $(c x)^{*}=\bar{c} x^{*}$
(iii) $(x y)^{*}=y^{*} x^{*}$
(iv) If the q_{i} are positive real numbers, then $x x^{*}=0$ implies $x=0$.

PROOF: (i) and (ii) are obvious from the definition. To prove (iii) it suffices to show that $\left(X_{W} X_{u}\right)^{*}=X_{u}^{*} X_{W}^{*}$, $W, u \varepsilon W$, and this can be shown quite easily by induction on the length of w. Now suppose $x x^{*}=0$. Let $x=\sum_{W \in W} c_{W} X_{W}$, then $0=x x^{*}=\varepsilon\left(x x^{*}\right)=\sum_{W \in W} c_{W} \bar{c}_{W} \zeta\left(X_{W}\right)=\sum_{W \in W}\left|c_{W}\right|^{2} \zeta\left(X_{W}\right)$. But If the $q_{1}>0,1 \varepsilon I$, then $\zeta\left(X_{W}\right)>0 \forall W \in W$. Thus we must have $\left|c_{W}\right|=0 \forall W \in W$ and $x=0$.

THEOREM 4: If the $q_{i}>0, i \varepsilon I$, then $H\left(q_{1}, \ldots, q_{\ell}\right)$ is a semisimple C-algebra.

PROOF: Let J be the radical of $H\left(q_{1}, \ldots, q_{\ell}\right)$, and let x be an element of J. Then $y=x x^{*}$ is also an element of J and by lemma 3 we have $y^{*}=y$. Let k be the smallest positive integer such that $y^{k}=0$. Suppose $k>1$. If k is even $k=2 n$ and $0=y^{k}=y^{2 n}=\left(y^{n}\right)\left(y^{n}\right)^{*}$ so that by lemma 3 we have $y^{n}=0$, a contradiction. If n is odd, $k=2 n+1$, then $0=y^{k}=y^{k+1}=\left(y^{n+1}\right)\left(y^{n+1}\right)^{*}$ so that by lemma 3 we have $y^{n+1}=0$, again a contradiction. Hence $\mathrm{k}=\mathrm{l}$, and $0=\mathrm{y}=\mathrm{x} \mathrm{x}^{*}$ which implies $\mathrm{x}=0$ by lemma 3 . Thus $J=(0)$ and $H\left(q_{1}, \ldots, q_{\ell}\right)$ is semisimple.

We now characterize the center of $H\left(q_{1}, \ldots, q_{\ell}\right)$ in terms of the natural basis $\left\{X_{W} \mid W \in W\right\}$.

PROPOSITION 13: Let $H=H\left(q_{1}, \ldots, q_{\ell}\right)$ and

 $x=\sum_{W \varepsilon W} a_{w} X_{W}$ be an element of H. Then x is central in H if and only if the following condition is satisfied on the coefficients $a_{W}, w \in W$: For all $W \in W$ and $1 \varepsilon I$ such that $\ell\left(w_{1} w_{i}\right)=\ell(w)+2$, one has$$
\begin{align*}
q_{i} a_{w_{i} w w_{i}} & =a_{w}+\left(q_{i}-1\right) a_{w_{i} w} \\
a_{w_{i} w} & =a_{w w_{i}} \tag{5}
\end{align*}
$$

PROOF: Since H is generated by $\left\{X_{W_{i}} \mid i \varepsilon I\right\}$ it follows that x will be central if and only if $x_{W_{i}}=X_{w_{1}} x$ for all $1 \varepsilon I$. Let $1 \varepsilon I$ and let r be a set of distinguished coset representatives for $W /\left\langle w_{i}\right\rangle$, that is, $\ell\left(w_{i} w\right)=\ell(w)+1$ for all $w \varepsilon \Gamma$. Then we may express x as
follows in two ways:

$$
\begin{gather*}
x=\sum_{w \varepsilon \Gamma} a_{w} X_{w}+\sum_{w \varepsilon \Gamma} a_{w_{i}} X_{w_{i} w} \tag{6}\\
x=\sum_{w^{-1}} \sum_{\varepsilon \Gamma} a_{w^{-1}} X_{w^{-1}}+\sum_{w^{-1}} \sum_{\varepsilon \Gamma} a_{w^{-1}}{ }_{W_{1}} X_{w^{-1}} w_{i} \tag{7}
\end{gather*}
$$

Now if one multiplies equations (6) and (7) on the left and right respectively by $X_{W_{i}}$, one obtains after making the appropriate substitutions, the following necessary and sufficient condition for $X_{W_{i}}$ to commute with x (broken into four separate cases).

$$
\ell\left(w w_{1}\right)=\ell(w)-1
$$

$$
\begin{align*}
& \ell\left(w_{i} w\right)=\ell(w)+1 \\
& \ell\left(w w_{i}\right)=\ell(w)+1
\end{align*} \quad a_{w_{i} w}=a_{w w_{i}}
$$

$$
\ell\left(w_{1} w\right)=\ell(w)+1
$$

$$
\begin{equation*}
q_{i} a_{w_{i} w}=a_{w w_{i}}+\left(q_{i}-1\right) a_{w} \tag{ii}
\end{equation*}
$$

$$
a_{w}=a_{w_{i} w w_{i}}
$$

$$
\begin{equation*}
\ell\left(w_{i} w\right)=\ell(w)-1 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
q_{i} a_{w w_{i}}=a_{w_{i} w}+\left(q_{i}-1\right) a_{w} \tag{iii}
\end{equation*}
$$

$$
\ell\left(w w_{i}\right)=\ell(w)+1
$$

$$
a_{w}=a_{w_{i} w w_{i}}
$$

$$
\begin{align*}
& \ell\left(w_{i} w\right)=\ell(w)-1 \tag{iv}\\
& \ell\left(w w_{1}\right)=\ell(w)-1
\end{align*}
$$

$$
a_{w_{i} w}=a_{w w_{i}}
$$

But for x to be central it is necessary and sufficient for (8) to be satisfied for all $w \in W, 1 \varepsilon$ I. It follows by making the appropriate substitution for w in the four parts of (8) that (8) may be replaced by the single condition (5), proving the proposition.

PROPOSITION 14: Keeping the above notation, let w_{0} be the unique element of W having maximal length, then (i) $X_{W_{0}}$ is central in H if and only if w_{0} is central in W.
(ii) $X_{W_{0}}^{2}$ is always central in H.

PROOF: (i) is an immediate consequence of proposiLion 13. For each $i \varepsilon I$ there exists a unique $f \in I$ such that $w_{i} w_{0}=w_{0} w_{j}$. Thus w_{1}, w_{j} are conjugate in W so one has $q_{i}=q_{j}$. It follows that $X_{w_{i}} X_{w_{0}}=q_{i} X_{w_{i} w_{0}}+\left(q_{i}-1\right) X_{w_{0}}$ $=q_{j} X_{W_{0} W_{j}}+\left(q_{j}-1\right) X_{W_{0}}=X_{w_{0}} X_{w_{j}}$. Similarly $X_{W_{j}} X_{W_{0}}=X_{W_{0}} X_{w_{i}}$. Thus $X_{w_{i}} X_{w_{0}} X_{w_{0}}=X_{w_{0}} X_{w_{j}} X_{w_{0}}=X_{w_{0}} X_{w_{0}} X_{w_{i}}$, and $X_{W_{0}}^{2}$ is central because it commutes with $X_{W_{i}}$, i εI.

PROPOSITION 15: Put $c=\sum_{W \in W} \zeta\left(X_{W}\right)$,
(i) If $c \neq 0$, then $c^{-1} \sum_{W \varepsilon W}^{W \varepsilon W} X_{W}$ is a primitive central idempotent in H affording the trivial representation ζ.
(ii) If $c=0$, then H is not semisimple.

PROOF: Let $x=\sum_{W \in W} X_{W}$. By proposition 13 we know that x is central in H. Now let $i \varepsilon I$ and let r be the set of distinguished coset representatives for $W /\left\langle w_{1}\right\rangle$, as in the proof of proposition 13. We may write $x=\sum_{w \in \Gamma} X_{w}+\sum_{w \in \Gamma} X_{W_{1}} w$ $=\left(X_{1}+X_{W_{i}}\right) \sum_{w \varepsilon \Gamma} X_{w}$. Then $X_{w_{i}} x=q_{i}\left(X_{1}+X_{w_{i}}\right) \sum_{w \varepsilon \Gamma} X_{w}=q_{i} x$. It follows that if $w \in W$, then $X_{W} X=\zeta\left(X_{W}\right) x$ and hence $x^{2}=\left(\sum_{W \in W} \zeta\left(X_{W}\right)\right) x=c x$. Thus if $c=0$, then x is a central nilpotent and H is not semisimple. But if $c \neq 0$,
then $c^{-1} x$ is an idempotent as asserted.
REMARK: It seems likely that H will be semisimple If and only if $\sum_{w \in W} \zeta\left(X_{W}\right) \neq 0$, but we have no result in this direction of a general nature.

For the remainder of this section we assume that
$q_{i}>0, i \varepsilon I$, so that $H=H\left(q_{1}, \ldots, q_{\ell}\right)$ is semisimple. Let J be an arbitrary subset of I. Denote by H_{J} the subalgebra of H generated by X_{1} and $\left\{X_{W_{1}} \mid i \varepsilon J\right\}$. Thus H_{J} is just a Hecke algebra over C associated to the Coxeter subsystem $\left(W_{J}, J\right)$. It is clear that H_{J} will be semisimple also because $q_{i}>0,1 \in I$. The trivial representation of H_{J} is given by $\zeta_{J}=\zeta / H_{J}$, and $e_{J}=\left(\sum_{W \in W_{J}} \zeta_{J}\left(X_{W}\right)\right)^{-1} \sum_{W \in W_{J}} X_{W}$ is the primitive central idempotent of H_{J} affording ζ_{J}. Thus if $\pi: H_{J} \rightarrow$ End V is any representation of H_{J}, then $\pi\left(e_{J}\right)$ is the projection on the H_{J}-submodule $e_{J} \cdot V$ consisting of a certain number of copies of the trivial representation of H_{J}. Applying lemma l to this situation we observe the following simple reciprocity theorem for future reference.

PROPOSITION 16: Let $\pi: H \rightarrow$ End V be an irreducible representation affording the character x, then for any subset J of I one has $x\left(e_{J}\right)=$ the multiplicity of π in $\mathrm{He}_{J}=$ the dim $e_{J} \cdot V=$ the multiplicity of ζ_{J} in π / H_{J}.

The linear characters (one-dimensional representations) of an algebra are just the multiplicative linear functionals on that algebra. The linear characters of $H(G, B)$ have been classified by N. Iwahori [8], when G is a Chevalley group and B a Borel subgroup of G. It is not difficult to extend his argument to our algebra $H=H\left(q_{1}, \ldots, q_{\ell}\right)$.

Recall that as (W,I) is a finite irreducible Coxeter system, there are at most two conjugacy classes $\left\{w_{i} \mid i \varepsilon I_{1}\right\}$ and $\left\{w_{1} \mid i \varepsilon I_{2}\right\}$ of the elements $\left\{w_{i} \mid 1 \in I\right\}$. If there is only one conjugacy class we make the convention that $I_{1}=I$, $I_{2}=\varnothing$. Put $q_{i}=p$ for all $i \varepsilon I_{1}, q_{i}=q$ for all $i \varepsilon I_{2}$.

PROPOSITION 17: Let $H=H\left(q_{1}, \ldots, q_{\ell}\right)$. If $I_{2}=\varnothing$,

 then there are exactly two linear characters ζ and σ of H, where $\sigma\left(X_{W}\right)=(-1)^{\ell(w)}, w \varepsilon W$. If $I_{2} \neq \varnothing$, then there are two additional linear characters σ_{1} and σ_{2} of H, where$$
\begin{aligned}
& \sigma_{1}\left(X_{W_{i}}\right)=\left\{\begin{array}{rlll}
p & 1 & \varepsilon & I_{1} \\
-1 & i & \varepsilon & I_{2}
\end{array}\right. \\
& \sigma_{2}\left(X_{W_{i}}\right)=\left\{\begin{array}{rlll}
-1 & i \varepsilon & I_{1} \\
q & i & \varepsilon & I_{2}
\end{array}\right.
\end{aligned}
$$

PROOF: It is clear that σ can be extended uniquely to a multiplicative linear functional by our presentation for H. Similarly, if there are two conjugacy classes, then σ_{1} and σ_{2} can be extended to multiplicative linear functionals.

It suffices to show that these are all of the linear characters of H. But if C_{1}, \ldots, C_{m} are the conjugacy classes of the elements $\left\{w_{1} \mid \mathcal{E} I\right\}$; and if ϕ is any multiplicative linear functional on H, then $\phi\left(X_{W_{1}}\right)$ must be equal to -1 or q_{i} because these are the only roots of the quadratic equation $x^{2}=q_{1}+\left(q_{i}-1\right) x$ which is satisfied by $X_{w_{1}}$. Furthermore ϕ must be constant on the conjugate classes C_{1}, \ldots, C_{m}. Hence the number of linear characters is 2^{m}.

COROLLARY: Assume that there are two conjugacy classes of the involutions $\left\{w_{i} \mid 1 \in I\right\} ; 1 . e ., I_{2} \neq \varnothing$. Let $w=w_{1_{1}} w_{1_{2}} \ldots w_{1_{m}}$ be a reduced expression for $w \in W$. Put $\ell_{1}(w)$ equal to the number of i_{j} such that $i_{j} \varepsilon I_{1}$, and $\ell_{2}(w)$ equal to the number of i_{j} such that $i_{j} \varepsilon I_{2}(1 \leqq j \leqq m)$. Then $\ell_{1}(w)$ and $\ell_{2}(w)$ depend only upon w, not upon the choice of reduced expression for $w \in W$. Moreover, one has

$$
\begin{align*}
& \sigma_{1}\left(X_{w}\right)=p^{\ell_{1}(w)}(-1)^{\ell_{2}(w)} \tag{9}\\
& \sigma_{2}\left(X_{w}\right)=(-1)^{\ell_{1}(w)_{q_{2}}^{\ell_{2}(w)}}
\end{align*}
$$

PROOF: (9) is obvious from the proposition. Taking $p, q>1$, it follows that $l_{1}(w), \ell_{2}(w)$ are uniquely determined, independent of the choice of reduced expression for w.

Iwahori has also shown in [8] the existence of a canonical involution of $H_{C}(G, B)$. This involution exists for $H=H\left(q_{1}, \ldots, q_{\ell}\right)$.

LEMMA 4: X_{W} is invertible for all $w \in W$.
PROOF: It suffices to show that $X_{W_{i}}$ is invertible, $i \varepsilon I$. But it follows from the fact that $X_{W_{i}}^{2}=q \cdot X_{1}+(q-1) X_{W_{i}}$, that in any irreducible representation of H, the eigenvalues of $X_{W_{1}}$ are q_{i} and -1. Hence $X_{w_{1}}^{-1}$ is given by $X_{W_{i}}^{-1}=q_{i}^{-1}\left(X_{W_{i}}+\left(1-q_{i}\right) X_{i}\right)$.

PROPOSITION 18: Let $\hat{X}_{W}=\zeta\left(X_{W}\right) \sigma\left(X_{W}\right) X_{W}^{-1}$, and for $x=\sum_{w \varepsilon W} a_{w} X_{w}$ in H put $\hat{x}=\sum_{w \in W} a_{w} \hat{X}_{w}$. Then the mapping $\mathrm{x} \rightarrow \hat{\mathrm{x}}$ is an algebra automorphism of H , having order 2. PROOF: It is obvious that $\hat{\hat{x}}=x$, hence it suffices to prove that the $\left\{\hat{X}_{W_{i}} \mid i \varepsilon I\right\}$ satisfy the relations of our presentation (4) of H. Now $\hat{X}_{W_{i}}=-q_{i}^{-1} X_{w_{i}}^{-1}$, and hence in any representation of H must also have only the eigenvalues q_{1} or -1. Thus $\hat{X}_{W_{1}}$ satisfies the same quadratic equation as $X_{W_{i}}$, namely $\hat{X}_{W_{i}}^{2}=q_{i} X_{1}+\left(q_{i}-1\right) \hat{X}_{W_{i}}$. Let $i, j \varepsilon I$, $m_{i j}=\left|\left\langle w_{i} w_{j}\right\rangle\right|$, and put $w_{i} w_{j} w_{i} \ldots=w_{j} w_{i} w_{j} \ldots=w$. These are $m_{i j} \quad m_{i j}$
the two distinct reduced expressions for w. Thus one has

REMARK 1: Note that this canonical involution, $x \rightarrow \hat{x}$ induces a natural pairing of the irreducible characters of H; namely, if x is an irreducible character of H, then $\hat{x}(x)=x(\hat{x})$ is also such. If $H=C[W]$, then $\hat{x}(w)$
$=\operatorname{sgn}(w) x(w)$ for all $w \in W$. Note that in the notation of proposition 17 one has $\hat{\zeta}=\sigma, \hat{\sigma}_{1}=\sigma_{2}$.

REMARK 2: If $H=H\left(q_{1}, \ldots, q_{\ell}\right), q_{i}>0$, i εI, one can show, using the characterization of the center of H given in proposition 13, that if one puts $\langle x, x\rangle=\sum_{W \varepsilon W} x\left(X_{W^{-1}}\right) x\left(X_{W}\right) \zeta\left(X_{W}\right)^{-1}$, then $\langle x, x\rangle \neq 0$ and $e=\left\langle x, x^{-1} \sum_{W \in W} x\left(X_{W^{-1}}\right) \zeta\left(X_{W}\right)^{-1} X_{W}\right.$ is the minimal central idempotent in H corresponding to x. By theorem l we know, of course, that this is true when either $H=C[W]$ or H is the Hecke algebra of $H_{C}(G, B)$ of some finite group with $B N$ pair.

LEMMA 5: The map $X_{W} \rightarrow X_{W-1}$, extended by linearity to H, is an anti-automorphism of H of order two.

PROOF: This is an immediate consequence of proposition 18.

Let $\pi: H \rightarrow M_{n}(C)$ be a representation of H by $n \times n$ complex matrices. Then the preceding lemma enables us to define the contragredient representation π^{*} of π, namely $\pi^{*}\left(X_{W}\right)=\pi\left(X_{W}-1\right)^{t}$. If x is the character of π, we denote the character of π^{*} by x^{*}. Thus $x^{*}\left(X_{W}\right)=\left(X_{W^{-1}}\right)$. Using our presentation, (4), of H we can also define $\bar{\pi}$ the complex conjugate of π by $\bar{\pi}\left(X_{W}\right)=\overline{\pi\left(X_{W}\right)}$ for all $w \in W$. Denote the character of $\bar{\pi}$ by \bar{x}. Thus $\bar{x}\left(X_{W}\right)=\overline{x\left(X_{W}\right)}$. It is clear that x is irreducible, so are x^{*} and \bar{x}.

PROPOSITION 19: One has $x^{*}=\bar{x}$.

PROOF: It suffices to prove the proposition when x is irreducible, Let x be irreducible and let e $=\langle x, x\rangle^{-1} \sum_{W \in W} x\left(X_{W^{-1}}\right)_{\zeta}\left(X_{W}\right)^{-1} X_{W}$ be the minimal central idempotent in H corresponding to x. Then

$$
\begin{aligned}
\bar{x}^{*}(e) & \left.=\langle x, x\rangle^{-1} \sum_{w \in W} x\left(x_{W}-1\right) \zeta\left(x_{W}\right)^{-1} \overline{x\left(x_{w}-1\right.}\right) \\
& \left.=\langle x, x\rangle^{-1} \sum_{W \in W}\left|x\left(x_{W^{-1}}\right)\right|^{2} \zeta\left(x_{W}\right)^{-1} \text {. Now } \zeta\left(x_{W}\right)^{-1}\right\rangle 0
\end{aligned}
$$

so that $\bar{x}^{*}(e) \neq 0$. But this implies $\bar{x}^{*}=x$, hence $x^{*}=\bar{x}$.

COROLLARY: $\quad x\left(X_{W}-1\right)=\overline{x\left(X_{W}\right)},\langle x, x\rangle=\sum_{W \in W}\left|x\left(X_{W}\right)\right|^{2} \zeta\left(X_{W}\right)^{-1}$
>0. If $X\left(X_{W}\right)$ is real for all $w \in W$, then $X\left(X_{W-1}\right)=x\left(X_{W}\right)$.
§4. CLASSIFICATION OF THE IRREDUCIBLE REPRESENTATIONS
OF THE HECKE ALGEBRA OF A DIHEDRAL GROUP

In this section we assume that the Coxeter system (W, I) is dihedral of order $2 m$; that is, $I=\{1,2\}$, and W has the presentation:

$$
w=\left\langle w_{1}, w_{2} \mid w_{1}^{2}=w_{2}^{2}=\left(w_{1} w_{2}\right)^{m}=l\right\rangle
$$

Let $H=H\left(q_{1}, q_{2}\right)$ be a Hecke algebra, over C, associated to (W,I) as in section 3. We assume that q_{1} and q_{2} are positive real numbers so that H is semisimple by theorem 4. Recall also that $q_{1}=q_{2}$ if m is odd.

We shall classify, in this section, all the irreducible complex representations of H.

LEMMA 6: Let q_{1} and q_{2} be positive real numbers such that $q_{1}=q_{2}$ if m is odd. Let s be a positive integer such that $I \leq s \leq \frac{m-1}{2}$ if m is odd and $I \leq s \leq \frac{m-2}{2}$ if m is even. Let a and b be complex numbers such that $a b=q_{1}+q_{2}+2 \sqrt{q_{1} q_{2}} \cos \frac{2 \pi s}{m}$. Let A_{1} and A_{2} be the 2×2 complex matrices:

$$
A_{1}=\left(\begin{array}{rr}
-1 & a \tag{10}\\
0 & q_{1}
\end{array}\right) \quad, \quad A_{2}=\left(\begin{array}{ll}
q_{2} & 0 \\
b & -1
\end{array}\right)
$$

Then the following statements are valid:
(i) $\quad A_{i}^{2}=q_{i} \cdot I+\left(q_{i}-1\right) A_{i} \quad(i=1,2)$
(ii) A_{1} and A_{2} do not commute.
(iii) $A_{1} A_{2}$ and $A_{2} A_{1}$ have the same minimal polynomial equal to $x^{2}-2 \sqrt{q_{1} q_{2}} \cos \frac{2 \pi s}{m} x+q_{1} q_{2}$.
(iv) The eigenvalues of $A_{1} A_{2},\left(A_{2} A_{1}\right)$ are $\sqrt{q_{1} q_{2}} \exp$ $[\pm 2 \pi 1 \mathrm{~s} / \mathrm{m}]$.
(v) If m is even one has $\left(A_{1} A_{2}\right)^{m / 2}=\left(A_{2} A_{1}\right)^{m / 2}$. (vi) If m is odd, one has $\left(A_{1} A_{2}\right)^{\frac{m-1}{2}} A_{1}=\left(A_{2} A_{1}\right)^{\frac{m-1}{2}} A_{2}$.

PROOF:

$$
\begin{aligned}
& A_{1} A_{2}=\left(\begin{array}{cc}
a b-q_{2} & -a \\
q_{1} b & -q_{1}
\end{array}\right), \\
& A_{2} A_{1}=\left(\begin{array}{cc}
-q_{2} & q_{2} a \\
-b & a b-q_{1}
\end{array}\right)
\end{aligned}
$$

Hence (i), (ii), (iii), and (iv) are immediate. To verify (v), note that when m is even we have by (iv), that the eigenvalues of $\left(A_{1} A_{2}\right)^{\frac{m}{2}}$ are equal to $\left(q_{1} q_{2}\right)^{\frac{m}{4}} \exp (\pm \pi 1 s)$. That is, $\left(A_{1} A_{2}\right)^{\frac{m}{2}}=+\left(q_{1} q_{2}\right)^{\frac{m}{4}}$ if s is even, and $\left(A_{1} A_{2}\right)^{\frac{m}{2}}$ $=-\left(q_{1} q_{2}\right)^{\frac{m}{4}}$ when s is odd. Since the same is true of $\left(A_{2} A_{1}\right)^{\frac{m}{2}}$ we have (v). It remains to prove ($v i$). As m is odd we have $q_{1}=q_{2}=q$, say; and by (iv) the eigenvalues of $A_{1} A_{2}$ are $q \cdot \exp (\pm 2 \pi i s / m)$. Thus $\left(A_{1} A_{2}\right)^{m}=q^{m} \cdot I$, and

$$
\left(A_{1} A_{2}\right)^{m-1}=q^{m A_{2}^{-1}} A_{1}^{-1} .
$$

Now the eigenvalues of $\left(A_{1} A_{2}\right)^{\frac{m-1}{2}}$ are $q^{\frac{m-1}{2}} \exp (\pm 1 \theta)$ where $\theta=\frac{2 \pi s}{m} \cdot \frac{m-1}{2}$. Hence we have the equation:

$$
\left(A_{1} A_{2}\right)^{m-1}-2 q^{\frac{m-1}{2}} \cos \theta\left(A_{1} A_{2}\right)^{\frac{m-1}{2}}+q^{m-1}=0
$$

that is,

$$
q^{m} A_{2}^{-1} A_{1}^{-1}-2 q^{\frac{m-1}{2}} \cos \theta\left(A_{1} A_{2}\right)^{\frac{m-1}{2}}+q^{m-1}=0
$$

hence

$$
\begin{equation*}
q^{m_{1}-1}-2 q^{\frac{m-1}{2}} \cos \theta\left(A_{1} A_{2}\right)^{\frac{m-1}{2} A_{1}}+A_{1} q^{m-1}=0 \tag{11}
\end{equation*}
$$

similarly

$$
\begin{equation*}
q^{m} A_{1}^{-1}-2 q^{\frac{m-1}{2}} \cos \theta\left(A_{2} A_{1}\right)^{\frac{m-1}{2}} A_{2}+A_{2} q^{m-1}=0 \tag{12}
\end{equation*}
$$

Now $q A_{1}^{-1}=A_{1}+(1-q) \cdot I \quad(i=1,2)$, and hence

$$
q^{m}\left(A_{2}^{-1}-A_{1}^{-1}\right)=q^{m-1}\left(A_{2}-A_{1}\right)
$$

Thus subtracting (12) from (11) we obtain

$$
\begin{equation*}
-2 q^{\frac{m-1}{2}} \cos \theta\left[\left(A_{1} A_{2}\right)^{\frac{m-1}{2}} A_{1}-\left(A_{2} A_{1}\right)^{\frac{m-1}{2}} A_{2}\right]=0 \tag{13}
\end{equation*}
$$

But our hypothesis implies that $\cos \theta \neq 0$. Hence (vi) follows from equation (13).

THEOREM 5: Let $H=H\left(q_{1}, q_{2}\right)$ be a Heck algebra over C associated to the dihedral group of order $2 m$. Let s be a positive integer such that $1 \leq s \leq \frac{m-1}{2}$ if m is odd and $l \leq s \leq \frac{m-2}{2}$ if m is even. Let the 2×2 complex matrices A_{1} and A_{2} be defined as in (10) where $a b=q_{1}+q_{2}+2 \sqrt{q_{1} q_{2}}$ - $\cos \frac{2 \pi s}{m}$. Then there exists a unique irreducible matrix representation

$$
\pi_{s}: H \rightarrow M(2 ; C)
$$

such that $\pi_{s}\left(X_{W_{1}}\right)=A_{1}, \pi_{S}\left(X_{W_{2}}\right)=A_{2}$. Moreover, the $\left\{\pi_{S}\right\}$

together with the one-dimensional representations of H

 form a complete set of inequivalent irreducible representations of H .PROOF: It follows from the presentation, (4), of H, together with (i), (v), and (vi) of lemma 6 that the map $X_{W_{i}}+A_{i}(i=1,2)$ can be uniquely extended to an algebra homomorphism $\pi_{s}: H \rightarrow M(2 ; C)$. The representation π_{s} of H is irreducible because A_{1} and A_{2} do not commute by (ii) of the lemma. The π_{s} are inequivalent by (iii). Thus if m is even we have found $\frac{m-2}{2}$ inequivalent two-dimensional representations. By proposition 17 there are precisely 4 distinct one-dimensional representations of H when m is even. As $4\left(\frac{m-2}{2}\right)+4=2 m$, it follows that $\left\{\pi_{s} \left\lvert\, 1 \leq s \leq \frac{m-2}{2}\right.\right\}$ together with the four one-dimensional representations of H form a complete set of inequivalent irreducible representations of H. Similarly, if m is odd, then $4\left(\frac{m-l}{2}\right)+2=2 \mathrm{~m}$, and it follows that $\left\{\pi_{s} \left\lvert\, l \leq s \leq \frac{m-1}{2}\right.\right\}$ together with the two one-dimensional representations of H form a complete set of inequivalent irreducible representations of H.

In this section $H=H\left(q_{1}, q_{2}, \ldots, q_{\ell}\right)$ denotes a Hecke algebra attached to a finite irreducible Coxeter system (W,I) of Lie type (cf. §3). Thus W is the Weyl group of a simple complex Lie algebra of. Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right\}$ be a set of simple roots of of relative to a Cartan subalgebra of of and h the real vector space spanned by $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$. Denote by (,) the killing form of of. We take $I=\{1,2, \ldots, \ell\}$, and $w_{i}, i \varepsilon I$, to be the reflection with respect to the root α_{i}. We assume the q_{i}, i εI, are positive real numbers so that H is semisimple by theorem 4.

We shall define a representation of H on h that coincides with the natural action of W on h when $q_{i}=l$ for all i ε I.

Let $m_{i j}=\left|\left\langle w_{i} w_{j}\right\rangle\right|$, and put

$$
\begin{array}{ll}
u_{i j}=\frac{\left[q_{i}+q_{j}+2 \sqrt{q_{i} q_{j}} \cos 2 \pi / m_{1 j}\right]^{1 / 2}}{2 \cos \pi / m_{i j}}, & m_{i j} \neq 2 \\
u_{i j}=0 & , m_{i j}=2 . \tag{14}
\end{array}
$$

We define the symmetric bilinear form B on h as follows:

$$
\begin{aligned}
& B\left(\alpha_{i}, \alpha_{i}\right)=\frac{1}{2}\left(q_{i}+1\right)\left(\alpha_{i}, \alpha_{i}\right) \\
& B\left(\alpha_{i}, \alpha_{j}\right)=u_{i j}\left(\alpha_{i}, \alpha_{j}\right), i \neq j
\end{aligned}
$$

Put

$$
c_{i j}=\frac{\left(q_{i}+1\right) B\left(\alpha_{1}, \alpha_{j}\right)}{\overline{B\left(\alpha_{1}, \alpha_{1}\right)}}
$$

and call $C=\left(C_{i f}\right)$ the Tartan matrix of the Heck algebra H. Following is a list of all the Carton matrices of H, along with their determinants.
$\left(\mathrm{A}_{\ell}\right):$

Let $q_{i}=p, l \leq i \leq \ell$

$$
C=\left[\begin{array}{cccc}
p+1 & -\sqrt{p} & & \\
-\sqrt{p} & p+1 & -\sqrt{p} & \\
& -\sqrt{p} & p+1 & \\
& & \ddots & -\sqrt{p} \\
& & -\sqrt{p} & p+1
\end{array}\right]_{\ell \times \ell}
$$

$$
\operatorname{det} c=\frac{p^{\ell+1}-1}{p-1}=1+p+p^{2}+\cdots+p^{\ell}
$$

$\left(\mathrm{B}_{\ell}\right):$

Let $q_{i}=p, 1 \leq i \leq \ell-1, q_{\ell}=q$.
$\operatorname{det} C \quad\left[\begin{array}{cccc}p+1 & -\sqrt{p} & & \\ -\sqrt{p} & p+1 & -\sqrt{p} & \\ & -\sqrt{p} & p+1 & \\ & & \ddots & -\sqrt{p} \\ & & -\sqrt{p} & \\ & & -1 & -2 \sqrt{\frac{p+1}{2}} \\ & & & \\ & & & \\ & & & \end{array}\right]_{\ell \times \ell}$
$\left(D_{\ell}\right) \quad 0-0-\cdots \quad 0-1$
Let $q_{i}=p, 1 \leq 1 \leq \ell$.
$C=\left[\begin{array}{lllllll}p+1 & -\sqrt{p} & & & & \\ -\sqrt{p} & p+1 & -\sqrt{p} & & & \\ & -\sqrt{p} & p+1 & & & \\ & & \ddots & & & \\ & & & p+1 & -\sqrt{p} & & \\ & & & -\sqrt{p} & p+1 & -\sqrt{p} & -\sqrt{p} \\ & & & & -\sqrt{p} & p+1 & \\ & & & & -\sqrt{p} & & p+1\end{array}\right]_{\ell \times \ell}$

$$
C=\left[\begin{array}{cccccc}
p+1 & -\sqrt{p} & & & & \\
-\sqrt{p} & p+1 & -\sqrt{p} & & & \\
& -\sqrt{p} & p+1 & -\sqrt{p} & -\sqrt{p} & \\
& & -\sqrt{p} & p+1 & & \\
& & -\sqrt{p} & & p+1 & -\sqrt{p} \\
& & & & -\sqrt{p} & p+1
\end{array}\right]
$$

$\operatorname{det} C=\frac{p^{6}+1}{p^{2}+1} \cdot\left(p^{2}+p+1\right)=p^{6}+p^{5}-p^{3}+p+1$
$\left(E_{7}\right):$

Let $q_{i}=p, I \leq i \leq 7$.
$C=\left[\begin{array}{lllllll}p+1 & -\sqrt{p} & & & & & \\ -\sqrt{p} & p+1 & -\sqrt{p} & & & & \\ & -\sqrt{p} & p+1 & -\sqrt{p} & & & \\ & & -\sqrt{p} & p+1 & -\sqrt{p} & -\sqrt{p} & \\ & & & -\sqrt{p} & p+1 & & \\ & & & -\sqrt{p} & & p+1 & -\sqrt{p} \\ & & & & & -\sqrt{p} & p+1\end{array}\right]$
$\operatorname{det} C=\frac{(p+1)\left(p^{9}+1\right)}{\left(p^{3}+1\right)}=(p+1)\left(p^{6}-p^{3}+1\right)$

$\operatorname{det} C=\frac{\left(p^{15}+1\right)(p+1)}{\left(p^{5}+1\right)\left(p^{3}+1\right)}=p^{8}+p^{7}-p^{5}-p^{4}-p^{3}+p+1$

$\left(\mathrm{F}_{4}\right):$

Let $q_{1}=q_{2}=p, q_{3}=q_{4}=q$.

$$
\begin{aligned}
& C=\left[\begin{array}{llll}
p+1 & -\sqrt{p} & & \\
-\sqrt{p} & p+1 & -2 \sqrt{\frac{p+q}{2}} & \\
& -\sqrt{\frac{p+q}{2}} & q+1 & -\sqrt{q} \\
& & -\sqrt{q} & q+1
\end{array}\right] \\
& \operatorname{det} C=p^{2} q^{2}-p q+1=\frac{p^{3} q^{3}+1}{p q+1}
\end{aligned}
$$

$\left(G_{2}\right):$

$$
\begin{aligned}
& \text { Let } q_{1}=p, q_{2}=q . \\
& {\left[\begin{array}{cc}
p+1 & -3 \sqrt{\frac{p+q+\sqrt{p q}}{3}} \\
-\sqrt{\frac{p+q+\sqrt{p q}}{3}}
\end{array}\right]} \\
& \operatorname{det} C=p q-\sqrt{p q}+1=\frac{(p q)^{3 / 2}+1}{p q+1}
\end{aligned}
$$

PROPOSITION 20: The bilinear form B is positive definite.

PROOF: It suffices to prove that the principal minors of the matrix $\left(B\left(\alpha_{i}, \alpha_{j}\right)\right)$ are all positive, and for this it
suffices to show that the principal minors of the Cartan matrix are all positive. Now the preceding list shows that the determinants of all the Carton matrices are positive, and any principal minor of a Carton matrix can be construed as the determinant of the Carman matrix of the Hecke algebra associated to a Weyl group of some semisimple Lie algebra of smaller rank. Hence B is positive definite.

Now for $1 \varepsilon I$ define $\tilde{X}_{1} \varepsilon$ End h by

$$
\begin{equation*}
\tilde{X}_{1}(\xi)=q_{1} \xi-\frac{\left(q_{1}+1\right) B\left(\alpha_{i}, \xi\right) \alpha_{i}}{B\left(\alpha_{i}, \alpha_{i}\right)} . \tag{15}
\end{equation*}
$$

As B is an inner product on h it is clear that $R \alpha_{i}$ is the -l eigenspace for \tilde{X}_{i}, while, $\left(R a_{i}\right)^{\perp}$, the B-orthogonal complement of $R \alpha_{1}$, is the q_{1}-eigenspace for \tilde{X}_{1}. In particular -1 and q_{i} are the only eigenvalues of \tilde{X}_{1}, and hence we have:

LEMMA 7: $\quad\left(\tilde{X}_{i}\right)^{2}=q_{i} \cdot I+\left(q_{i}-1\right) \tilde{X}_{i}$.
LEMMA 8: $\underbrace{\tilde{x}_{i} \tilde{x}_{j} \tilde{x}_{i} \ldots}_{m_{i j}}=\underbrace{\tilde{x}_{j} \tilde{x}_{i} \tilde{x}_{j} \ldots}_{m_{i j}}$
PROOF: Let $V_{i j}=R \alpha_{i}+R \alpha_{j}$ and $U_{i j}=v_{i j}^{\perp}$. It is clear from the definition of \tilde{X}_{i}, that $V_{i j}$ is stable under the action of \tilde{x}_{i} and \tilde{x}_{j}. Moreover, \tilde{x}_{i} and \tilde{x}_{j} operate as the scalars q_{i} and q_{j} respectively on $U_{i j}$ so that $U_{i j}$ is also stable under the action of \tilde{x}_{i} and \tilde{x}_{j}. Now it is clear that (16) holds on $U_{i j}$ (keeping in mind that $q_{i}=q_{j}$
if $m_{i j}$ is odd); and on $V_{1 j}$ thematrices of \tilde{X}_{i} and \tilde{X}_{j} with respect to the basis $\left\{\alpha_{i}, \alpha_{j}\right\}$ are

$$
\left[\begin{array}{cc}
-1 & \frac{-2\left(\alpha_{i}, \alpha_{j}\right) u_{i j}}{\left(\alpha_{i}, \alpha_{i}\right)} \\
0 & q_{i}
\end{array}\right] \text { and }\left[\begin{array}{cc}
q_{j} \\
-\frac{2\left(\alpha_{j}, \alpha_{i}\right)}{\left(\alpha_{j}, \alpha_{j}\right)} u_{i j} & -1
\end{array}\right]
$$

respectively.
Now,

$$
\frac{4\left(\alpha_{i}, \alpha_{j}\right)^{2}}{\left(\alpha_{i}, \alpha_{i}\right)\left(\alpha_{j}, \alpha_{j}\right)} u_{i j}^{2}=\left\{\begin{array}{cc}
q_{i}+q_{j}+2 \sqrt{q_{i} q_{j}} \cos \frac{2 \pi}{m_{i j}} & m_{i j} \neq 2 \\
0 & m_{i j}=2
\end{array}\right.
$$

It follows therefore from the representation theory of the Heck algebra of the dihedral groups (lemma 6) that on $V_{i j}$ we have

$$
\underbrace{\tilde{x}_{i} \tilde{x}_{j} \tilde{x}_{i} \cdots}_{m_{i j}}=\underbrace{\tilde{x}_{j} \tilde{x}_{i} \tilde{x}_{j} \cdots}_{m_{i j}}
$$

and this proves the lemma.
It follows from the presentation (4) of H together with the above lemmas that the map $X_{W_{i}} \rightarrow \tilde{X}_{i}$ can be uniquely extended to an algebra homomorphism $\pi: H \rightarrow$ End h; namely, if $w_{1_{1}} w_{1_{2}} \ldots w_{i_{m}}$ is any reduced expression for $w \varepsilon W$, then $\pi\left(X_{W}\right)=\tilde{X}_{i_{1}} \tilde{X}_{i_{2}} \ldots \tilde{X}_{1_{m}}$. We call $\pi: H \rightarrow$ End h the reflection representation of H because it reduces to the usual representation of W on h as a group generated by reflections when all the q_{i} are set equal to 1 . We use the notation
$x \cdot \alpha=\pi(x) \cdot \alpha$ when $x \varepsilon H, \alpha \varepsilon h$.

PROPOSITION 21: Relative to the inner product B, $\pi\left(X_{W_{1}}\right)$ is self adjoint. The adjoint of $\pi\left(X_{W}\right)$ is $\pi\left(X_{W^{-1}}\right)$.

PROOF: The first statement is easily checked from the definition of $\pi\left(X_{w_{i}}\right)=\tilde{X}_{i}$. The second assertion follows from the fact that if $w_{i_{1}} w_{1_{2}} \ldots w_{i_{m}}$ is a reduced expression for $\mathrm{w} \varepsilon \mathrm{W}$, then $\mathrm{X}_{\mathrm{W}}=\mathrm{X}_{\mathrm{W}_{1_{1}}} \mathrm{X}_{\mathrm{W}_{1_{2}}} \ldots \mathrm{X}_{\mathrm{w}_{\mathrm{i}_{\mathrm{m}}}}$, and $\mathrm{X}_{\mathrm{W}^{-1}}$ $=X_{W_{i_{m}}} X_{W_{1_{m-1}}} \ldots X_{W_{1_{1}}}$.

Note that if we put $a_{i j}=-\left(q_{i}+1\right) B\left(\alpha_{i}, \alpha_{j}\right), ~ t h e n ~ w e$
have

$$
X_{W_{i}} \cdot\left(\alpha_{j}\right)=q_{i} \alpha_{j}+a_{i j} \alpha_{i}, \quad i, j \varepsilon I
$$

we have the relations

$$
\begin{align*}
a_{i j} & =-\left(q_{i}+1\right) \\
a_{i j} & =a_{j i}=0 \quad \text { if } \quad m_{i j}=2 \\
a_{1 j} a_{j i} & =q_{i}=q_{j} \quad \text { if } \quad m_{i j}=3 \tag{17}\\
a_{1 j} a_{j i} & =q_{i}+q_{j} \quad \text { if } \quad m_{i j}=4 \\
a_{i j} a_{j i} & =q_{i}+q_{j}+\sqrt{q_{i} q_{j}} \quad \text { if } \quad m_{i j}=6
\end{align*}
$$

REMARK: It is not difficult to show, using the fact that the Dynkin graph of W is a tree, that given any set $\left\{b_{i j}\right\}$ of ℓ^{2} complex numbers which satisfy equations (17), there exist complex numbers $\left\{c_{1}, c_{2}, \ldots, c_{\ell}\right\}$ such that if $\alpha_{i}^{\prime}=c_{i} \alpha_{i}, \quad(1 \leq i \leq \ell)$, then one has $X_{w_{i}} \cdot\left(\alpha_{j}^{\prime}\right)=q_{i} \alpha_{j}^{\prime}+b_{i j} \alpha_{i}^{\prime}$. Thus the reflection representation is determined up to complex equivalence by equations (17).

Let $v: H \rightarrow$ End V be a representation of H on the complex vector space V. We say that v has an integral form or simply that v is defined over Z if there exists a basis of V such that the matrices of $v\left(X_{W}\right)$, relative to that basis, have rational integral coefficients for all $\mathrm{W} \varepsilon \mathrm{W}$.

PROPOSITION 22: If W is not of type $\left(G_{2}\right)$, and if the $q_{i}(l \leq i \leq \ell)$ are positive integers, then the reflecttion representation of H is defined over Z. If W is of type $\left(G_{2}\right)$, then H is defined over Z if and only if q_{1}, q_{2} and $\sqrt{q_{1} q_{2}}$ are positive integers.

PROOF: If W is not of type $\left(G_{2}\right)$ and the q_{i} ($1 \leq 1 \leq \ell$) are positive integers, or if W is of type (G_{2}) such that q_{1}, q_{2} and $\sqrt{q_{1} q_{2}}$ are positive integers, then the fact that the reflection representation π is defined over Z is immediate from the preceding remark. Suppose conversely that W is of type $\left(G_{2}\right)$ and that π is defined over Z. If we denote by x the character of π, then $x\left(x_{w_{1}}\right)=q_{1}-1, x\left(x_{w_{2}}\right)=q_{2}-1, x\left(x_{w_{1} w_{2}}\right)=\sqrt{q_{1} q_{2}}$. Hence q_{1}, q_{2} and $\sqrt{q_{1} q_{2}}$ must be integers.
k
Let Λh denote the k-fold exterior product of h; we k
consider Λh as a subspace of the exterior algebra of h. Define the operator $\tilde{X}_{1}^{(k)} \varepsilon$ End Λh by

$$
\begin{gathered}
\tilde{X}_{i}^{(k)}\left(\xi_{1} \wedge \xi_{2} \wedge \ldots \wedge \xi_{k}\right)=q_{i}^{-(k-1)} \tilde{X}_{i}\left(\xi_{1}\right) \wedge \tilde{X}_{i}\left(\xi_{2}\right) \wedge \ldots \wedge \tilde{X}_{i}\left(\xi_{k}\right) \\
\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k} \varepsilon h\right) .
\end{gathered}
$$

LEMMA 9: $\left(\tilde{X}_{i}^{(k)}\right)^{2}=q_{i} \cdot I+\left(q_{i}-1\right) \tilde{X}_{i}^{(k)}$

PROOF: It is obvious that equation (19) holds from the definition because the relation is satisfied in End h. Now let $U=R \alpha_{i}$ and $V=U^{\perp}=$ the orthogonal complement of U relative to the inner product B. Then

$$
\stackrel{k}{\Lambda} h=\frac{k}{\Lambda} V \oplus\left({ }^{k-1} \Lambda V\right) \cdot U
$$

is a linear direct sum. As U is the (-I)-eigenspace for \tilde{X}_{i} and V is the q_{i}-eigenspace for \tilde{X}_{i}, it follows from the definition that every element of ${ }_{\Lambda}^{k} V$ is an eigenvector for $\tilde{X}_{i}^{(k)}$ with eigenvalue q_{i}, and every element of $\left({ }^{k-1} V\right) \sim U$ is an eigenvector for $\tilde{X}_{i}^{(k)}$ with eigenvalue -1 . Hence the eigenvalues of $\tilde{X}_{i}^{(k)}$ are q_{i} and -1 ; and equation (18) is verified.

It is immediate from the lemma that the mapping $X_{W_{i}} \rightarrow \tilde{X}_{i}^{(k)}$ can be extended uniquely to an algebra homomorphism $\pi^{(k)}: H \rightarrow \operatorname{End}(\stackrel{K}{\Lambda} h)$. We call the representation $\pi(k): H \rightarrow$ End Λh the $k^{t h}$ compound of π, and denote the character of $\pi(k)$ by $x^{(k)}$. We identify in with the trivial representation $\pi^{\circ}\left(X_{W}\right)=5\left(X_{W}\right) \quad(c f 53)$.

PROPOSITION 23: Assume the conditions of proposition 22 are satisfied. Then the $\pi(k)$ are defined over Z ($0 \leq k \leq \ell$).

PROOF: One has $X_{w_{i}}\left(\alpha_{j}\right)=a_{1} \alpha_{j}+a_{i j} \alpha_{i}$ where the $a_{i j}$ are integers $1 \leq i, j \leq \ell$. We choose as a canonical basis for ${ }^{k} h\left(\alpha_{i_{1}} \wedge^{\alpha} \alpha_{1_{2}} \wedge \ldots \alpha_{1_{k}}\right\}$ where ($\left.1_{1}, 1_{2}, \ldots, 1_{k}\right)$ runs over all sequences of positive integers such that

$$
\begin{align*}
& i_{1}<i_{2}<\ldots<i_{k} \text {. We apply } X_{W_{j}} \text { to } \alpha_{1_{1}} \wedge \ldots \wedge \alpha_{i_{k}} \text { : } \\
& x_{w_{j}} \cdot\left(\alpha_{1_{1}} \wedge \ldots \alpha_{i_{k}}\right)=q_{j}^{-(k-1)} X_{w_{j}} \alpha_{i_{1}} \wedge \ldots x_{W_{j}} \alpha_{1_{k}} \\
& =q_{j}^{-(k-1)}\left[\left(q_{j} \alpha_{i_{1}}+a_{j 1_{1} \alpha_{j}}\right), \ldots,\left(q_{j} \alpha_{i_{k}}+a_{j i_{k} \alpha_{j}}\right)\right]= \\
& q_{j} \alpha_{i_{1}}, \alpha_{1_{2}}, \ldots, \alpha_{i_{k}}+\sum_{m=1}^{k}(-1)^{m+1} a_{j i_{m}} \alpha_{j} \wedge \alpha_{i_{1}} \ldots \ldots \hat{\alpha}_{1_{m}} \ldots \ldots \alpha_{i_{k}}, \tag{20}
\end{align*}
$$

where the symbol $\hat{\alpha}_{i_{m}}$ means that the factor $\alpha_{i_{m}}$ is omitted. Now rearranging (20) so as to get everything expressed in terms of the canonical basis of $\frac{k}{\Lambda}$ only involves changing the signs of certain coefficients. Hence relative to this basis, the matrix of $\pi^{(k)}\left(X_{w_{1}}\right)$ has integral coefficients and consequently $\pi^{(k)}$ is defined over z.

THEOREM 6: If the Coxeter system (W, I) is ireducible, then the representations $\pi(k): H \rightarrow$ End $K h$ are distinct and absolutely irreducible ($0 \leq k \leq \ell$).

PROOF: To simplify the notation let $h=C \underset{R}{\otimes h}$,
 in near form on h in the obvious way. We argue by induction on the rank of W. If the rank is one, then ℓ_{h} and Λ_{h} are both l-dimensional, hence irreducible. Suppose then that
rank $(W)=\ell>1$, and let J be a subset of I such that $|J|=\ell-1$ and the Dynkin diagram of W_{J} is connected, where $W_{J}=\left\langle W_{1} \mid i \varepsilon J\right\rangle$. Then $h_{J}=\sum_{i \varepsilon J} C \alpha_{i}$ can be identified with a Carton subalgebra of a simple complex Lie algebra of rank $\ell-1$, and $H_{J}=$ the subalgebra of H generated by $\left\{X_{W_{i}} \mid i \varepsilon J\right\}$ is a Heck algebra over C associated to W_{J}. Let $V=h_{J}^{\perp}$ be the orthogonal complement of h_{J} relative to B. Then

$$
\begin{equation*}
\stackrel{k}{\Lambda} h={ }_{\Lambda}^{k} h_{J} \oplus{ }^{k-1} h_{J} \cdot v \tag{21}
\end{equation*}
$$

Now considering ${ }_{\Lambda}^{K} \mathrm{~h}$ as an H_{J}-module by restriction, V is l-dimensional affording the representation $\pi^{(0)}\left(\mathrm{X}_{\mathrm{w}_{i}}\right)=\mathrm{q}_{i}$, i εJ. Thus it follows from the definition of the action of H on h that ${ }^{k-1} h_{J}, V={ }^{k} \Lambda^{1} h_{J}$. . But by induction ${ }_{\Lambda h_{J}}$ and ${ }^{k}-1 h_{J}$ are distinct and irreducible as H_{J}-modules. Thus as an H-module, either ${ }_{\Lambda h}$ is irreducible or (21) is the decomposition of ${ }_{\Lambda}^{\mathrm{K}} \mathrm{h}$ into distinct irreducible constituents. But it is easily seen that $\stackrel{k}{\Lambda h_{J}}$ is not stable under the action of H. Hence $\frac{k}{\Lambda} h$ is irreducible. It remains to show that Λ_{h} is not H-isomorphic with $k^{\prime} h^{\prime}$ if $k \neq k^{\prime}$ ($0 \leq k, k^{\prime} \leq \ell$). In the proof of lemma 9 we have seen that the dimension of the q_{i}-eigenspace for $\pi^{(k)}\left(X_{w_{i}}\right)$ is $\binom{\ell-1}{k}$. Hence if ${ }_{\Lambda h}$ and ${ }_{\Lambda}{ }_{\Lambda}^{1} h$ are H-equivalent we must have $\binom{\ell}{k}=\binom{\ell}{k^{\prime}}$ and $\binom{\ell-1}{k}=\binom{\ell-1}{k^{\prime}}$ which implies that $k=k^{\prime}$. This completes the induction argument.

Recall that the involution $\mathrm{x} \rightarrow \hat{\mathrm{x}}$ of proposition 18
sets up a natural pairing among the irreducible characters of
H. The compound characters $x^{(k)}$ of the reflection character are naturally paired as we shall see below, but first we need a lemma.

LEMMA 10: $\quad \stackrel{\ell}{\mathrm{h}}$ affords the in near character σ, where $\sigma\left(X_{w}\right)=(-I)^{\ell(w)}, \mathrm{w} \varepsilon$ W.

PROOF: Let i εI, and choose a basis $\left\{\xi_{1}, \ldots, \xi_{\ell}\right\}$ of h such that $X_{w_{i}} \cdot \xi_{j}=q_{i} \cdot \xi_{j}, \quad(1 \leq j \leq \ell-1)$ and $X_{W_{1}} \cdot \xi_{l}=-\xi_{l}$. Then by the definition of the action of H on Λ_{h}^{ℓ} it is obvious that if $\xi=\xi_{1} \wedge \xi_{2} \wedge \ldots \wedge \xi_{l}$, one has $X_{W_{i}} \cdot \xi$ $=-\xi$. Thus $x^{(l)}\left(X_{W_{1}}\right)=-1$, and as $x^{(l)}$ is linear we must have $x^{(\ell)}\left(X_{W}\right)=(-1)^{\ell(w)}=\sigma\left(X_{W}\right)$ for all $w \in W$.

PROPOSITION 24: One has $\hat{x}^{(k)}=x^{(\ell-k)}$.
PROOF: Let λ be a nonzero vector in k_{h}, and let $\xi \varepsilon \Lambda h, \eta \varepsilon{ }_{\Lambda}^{\ell-k} h$. Then $\xi \wedge \eta=c \cdot \lambda$ for some unique scalar c and we have a nonsingular pairing < , > between $\frac{k}{\Lambda h}$ and ${ }_{\Lambda}^{\ell-k} h$, namely $\langle\xi, n\rangle=c$. Let $i \varepsilon I$ and let $\xi=\xi_{1} \cdots \cdots \xi_{k}$, $n=\eta_{1}, \ldots, \eta_{\ell-k}, \xi_{j} \varepsilon h, \eta_{j} \varepsilon h$. Then $\left(X_{W_{1}} \cdot \xi\right),\left(X_{W_{1}} \cdot n\right)$ $=q_{i}^{-(\ell-2)}\left(X_{w_{i}} \cdot \xi_{1}\right) \wedge \ldots \wedge\left(X_{w_{i}} \cdot \xi_{k}\right) \wedge\left(X_{w_{1}} \cdot n_{1}\right) \wedge \ldots\left(X_{w_{1}} \cdot n_{\ell-k}\right)$ $=q_{i} X_{w_{i}} \cdot(\xi \wedge n)=-q_{i}(\xi \wedge n)$. In other words $\left\langle X_{w_{i}} \cdot \xi, X_{W_{i}} \cdot n\right\rangle$ $=-q_{i}\langle\xi, n\rangle$. Now we can rewrite this equation in the form $\left\langle X_{W_{i}} \cdot \xi, n\right\rangle=\left\langle\xi,-q_{i}^{-1} X_{W_{i}}^{-1} \cdot n\right\rangle=\left\langle\xi, \hat{X}_{W_{i}} \eta\right\rangle$. Hence for any $w \in W$ we have the equation $\left\langle X_{W} \cdot \xi, n\right\rangle=\left\langle\xi, \hat{X}_{W}^{-1} \cdot n\right\rangle$. This implies, using the natural identification of ${ }_{\Lambda}^{k} h$ with $\left({ }_{\Lambda}^{\ell-k} h\right)^{*}$, that the contragredient H-module $\left({ }^{\ell} \Lambda^{k} h\right)^{*}$ (cf. proposition 19) is equivalent to $\hat{k} h$. But as the $\hat{k} h$ are all defined over R
it follows from proposition 19 that $\left({ }^{\ell-k} h\right)^{*}$ is equivalent to ${ }^{\ell}-\mathrm{k} h$. Hence we have $\hat{x}^{(k)}=x^{(\ell-k)}$ as asserted.

THEOREM 7: Let J be any subset of I, $e_{J}=\left(\sum_{W \in W_{J}} \zeta\left(X_{W}\right)\right)^{-1} \sum_{W \in W_{J}} X_{W}$, then $x^{(k)}\left(e_{J}\right)=(|I-J|)$.

PROOF: Let h_{J} be the subspace of h spanned by $\left\{\alpha_{i} \mid 1 \varepsilon J\right\}$, and $h_{J}^{\perp}=$ the orthogonal complement of h_{J} with respect to the bilinear form B. Then h_{J}^{\perp} obviously affords |I-J| copies of the trivial representation of H_{J}. One has $h=h_{J} \oplus h_{J}^{1}$ and hence ${ }_{\Lambda}^{k} h=\underset{i=0}{k}\left(\frac{1}{\Lambda} h_{J}\right) \cdot\left(\Lambda_{\Lambda}^{k} h_{J}^{1}\right)$. Now it is easily seen from the definition of the action of H on $\frac{k}{\Lambda}$, that as an H_{J}-module one has

$$
\left.\left(\frac{1}{\Lambda} h_{J}\right)-\left({ }^{k-i} h_{J}^{\frac{1}{J}}\right) \simeq\left(\frac{1}{\Lambda} h_{J}\right)^{(|I-J|} k\right)
$$

We assert that $\frac{1}{\Lambda} h_{J}$ does not contain the trivial representtimon of H_{J} if $1>0$. Indeed let $J_{1}, J_{2}, \ldots, J_{m}$ be the decomposition of J into connected subsets considering the elements of I as points of the Dynkin graph of W. Then $h_{J}=h_{J_{1}} \oplus h_{J_{2}} \oplus \cdots \oplus h_{J_{m}}$ is the decomposition of h_{J} into distinct irreducible H_{J}-submodules. Thus ${\stackrel{i}{\Lambda} h_{J}}_{h^{\prime}}$ $=\oplus\left(\Lambda^{1}{ }^{1} h_{J_{1}}\right) \wedge\left(\Lambda^{1_{2}} h_{J_{2}}\right) \wedge \cdots,\left(\Lambda^{i_{m}} h_{J_{m}}\right)$, where the summation is extended over all sequences ($1_{1}, i_{2}, \ldots, i_{m}$) of positive integers such that $\sum_{j=1}^{m} i_{j}=i$. Moreover, each direct summana of $\stackrel{i}{\Lambda} h_{J}$ is an $\stackrel{j=1}{H_{J}-\text { submodule. Suppose }} \stackrel{i}{\Lambda} h_{J}$ contains a vector ξ which affords the trivial representation of H_{j}. Then $\xi=\xi_{i_{1}}, \xi_{i_{2}}, \cdots, \xi_{i_{m}}$, where $\xi_{i_{j}} \varepsilon \Lambda h_{J_{j}}$. But
then the pairwise orthogonality of the $h_{J_{1}}$ implies that each $\xi_{i_{j}}$ affords the trivial representation of H_{J} in $h_{J j}$. By theorem 6 we must have $i_{j}=0,1 \leq j \leq m$, thus $i=0$, proving the assertion. Now by proposition $16 \pi^{(k)}\left(e_{J}\right)$ is the projection of $\stackrel{k}{\Lambda}$, onto the primary component of ${ }_{\Lambda}^{k}$ corresponding to the trivial representation of H_{J}. Hence $e_{J} \cdot \stackrel{k}{\Lambda}=\binom{0}{\Lambda h_{J}}\binom{|-J|}{k}$ and in particular $\operatorname{dim} e_{J} \cdot \stackrel{k}{\Lambda h}=\binom{|I-J|}{k}$. The assertion of the theorem now follows from proposition 16.

In the case of $\pi=\pi(1)$, the reflection representation, these multiplicities are enough to distinguish it when the rank is greater than 1 , as we shall see below.

THEOREM 8: Let (W, I) be an irreducible Coxeter system of Lie type and $H=H\left(q_{1}, \ldots, q_{\ell}\right)$ a Hecke algebra associated to W over C. Suppose $\pi: H \rightarrow$ End V is an irreducible complex representation of H, affording the character x of H. Assume that $x\left(e_{J}\right)=|I-J|$ for every subset J of I. If W is not of type $\left(G_{2}\right)$, then π is equivalent to the reflection representation of H.

PROOF: Taking J equal to the empty set \varnothing, we have $e_{\varnothing}=X_{1}$, the identity of H. Thus $\operatorname{dim} V=x\left(e_{\varnothing}\right)=|I|=\ell$. Let $i \in I$, and take $J=\{i\}$. Then $\pi\left(e_{J}\right)$ is the projection on the $q_{i}-e i g e n s p a c e$ for the operator $\pi\left(X_{W_{i}}\right)$. As $x\left(e_{J}\right)$ $=|I-J|=\ell-I$, the dimension of the q_{i}-eigenspace for $\pi\left(X_{W_{1}}\right)$ is $\ell-1$. Thus the (-l)-eigenspace for $\pi\left(X_{W_{i}}\right)$ is one-dimensional for all $i \varepsilon I$. Let u_{i} be a nonzero vector
in the (-1)-eigenspace of $\pi\left(X_{W_{i}}\right)$, $i \varepsilon I$. We break the rest of the proof into a number of assertions.
$\underline{\operatorname{ASSERTION}(a)}:$ If $\xi \in V$, then $X_{W_{i}} \cdot \xi=q_{i} \xi+c u_{i}$ for some $c \in C$.

PROOF: Note that $\pi\left(X_{W_{i}}-q_{i} X_{1}\right)$ must be a scalar multiple of the orthogonal projection on the (-1)-eigenspace for $\pi\left(X_{w_{i}}\right)$. Assertion (a) follows from the fact that this eigenspace is one -dimensional spanned by u_{i}.

ASSERTION (b): $\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$ form a basis for V.
PROOF: It is clear from assertion (a) that the subspace spanned by $\left\{u_{1}, \ldots, u_{\ell}\right\}$ is H-stable. By the irreducibility of V it must coincide with V; and since $\operatorname{dim} V=\ell$, the u_{i} are linearly independent.

Let $X_{w_{i}} \cdot u_{j}=q_{i} u_{j}+b_{i j} u_{i} \quad(1 \leq i, j \leq \ell)$. It is clear that $b_{i 1}=-\left(q_{1}+1\right)$.

ASSERTION (c): $\pi\left(X_{W_{i}}\right)$ and $\pi\left(X_{W_{j}}\right)$ commute if and only if $b_{i j}=b_{j i}=0$, in which case one has $X_{w_{i}}\left(u_{j}\right)=q_{i} u_{j}$, $x_{w_{j}}\left(u_{i}\right)=q_{j} u_{i}, \quad(i \neq j)$.

PROOF: This can be checked directly from the definilions.

ASSERTION (d) : Let $i \neq j$, then $\pi\left(X_{w_{i}}\right)$ and $\pi\left(X_{w_{j}}\right)$
commute if and only if $m_{i j}=2\left(m_{i j}=\left|\left\langle w_{i} w_{j}\right\rangle\right|\right)$.
PROOF: If $m_{i j}=2$, then $X_{w_{i}}$ and $X_{W_{j}}$ commute, hence so do $\pi\left(X_{W_{i}}\right)$ and $\pi\left(X_{W_{j}}\right)$. Suppose that $\pi\left(X_{W_{i}}\right)$ and
$\pi\left(X_{W_{j}}\right)$ commute with $m_{i j}>2$. Then as the Dynkin graph of W is a tree, it follows that there exists a partition of I into two disjoint nonempty subsets I^{\prime} and $I^{\prime \prime}$ such that $\pi\left(X_{W_{i}}\right)$ commutes with $\pi\left(X_{W_{j}}\right)$ for all $i \varepsilon I^{\prime}, j \varepsilon I^{\prime \prime}$. But then if $V^{\prime}=\sum_{i \varepsilon I^{\prime}} C u_{i}, V^{\prime \prime}=\sum_{i \varepsilon I^{\prime \prime}} C u_{i}$, one has by assertion (c) that V^{\prime} and $V^{\prime \prime}$ are H-stable, contradicting the irreducibility of V.

ASSERTION (e): If $m_{i j}>2$, then

$$
b_{i j} b_{j i}=q_{i}+q_{j}+2 \sqrt{q_{i} q_{j}} \cos \frac{2 \pi}{m_{i j}}
$$

PROOF: Let $H_{i j}$ be the subalgebra of H generated by $X_{W_{i}}, X_{W_{j}}$ and the identity. Let $V_{i j}=C u_{i}+C u_{j}$. Then $H_{i j}$ is a Heck algebra of the dihedral group of order $2 m_{1 j}$, and the restriction of π to $H_{i j}$ induces a representation of $H_{i j}$ on the subspace $V_{i j}$ of V. As $m_{i j}>2, \pi\left(X_{w_{i}}\right)$ and $\pi\left(X_{W j}\right)$ do not commute on $V_{i j}$ by assertion (c). Consequently $V_{i j}$ is an irreducible $H_{i j}$-module. But W is of Lie type so that $m_{i j}=3$ or 4 . It follows from theorem 5 that in either case $H_{i j}$ has precisely one irreducible twodimensional representation, and that the trace of $X_{W_{i}} X_{W_{j}}$ in this representation is $2 \sqrt{q_{i} q_{j}} \cos \frac{2 \pi}{m_{1 j}}$. Assertion (e) now follows from the fact that the trace of $\pi\left(X_{w_{i}} X_{W_{j}}\right)$ on $V_{i j}$ is equal to $b_{i j} b_{j i}-\left(q_{i}+q_{j}\right)$.

Thus we have by the above assertions:

$$
\begin{array}{cc}
x_{w_{i}}\left(u_{j}\right)=q_{i} u_{j}+b_{i j} u_{i} & i, j \varepsilon I \\
b_{i i}=-\left(q_{i}+1\right) & i \varepsilon I \\
b_{i j}=b_{j i}=0 & m_{i j}=2, i, j \varepsilon I \\
b_{i j} b_{j i}=q_{i}+q_{j}+2 \sqrt{q_{i} q_{j}} \cos \frac{2 \pi}{m_{i j}}, & m_{i j}>2, i, j \in I
\end{array}
$$

The fact that π is equivalent to the reflection representation of H is now an immediate consequence of remark following proposition 21.

REMARK: Note that for the proof of theorem 8 we only had to assume that $x\left(e_{J}\right)=|I-J|$ when $|J|=0$ or 1 . Applying these results to the case where H is the Hecke algebra of some finite irreducible group with BN pair we have the following theorem:

THEOREM 9: Let G be a finite irreducible group with BN pair, and assume that the Coxeter system (W,I) of G is of Lie type. Then there exist irreducible complex characters $\left\{\tilde{x}^{(k)} \mid 0 \leq k \leq \ell\right\}$ of G such that if $\left(1_{G_{J}}\right)^{G}$ denotes the induced character from the trivial character of the parabolic subgroup G_{J}, then

$$
\begin{equation*}
\left(\tilde{x}^{(k)},\left(I_{G_{J}}\right)^{G}\right)_{G}=\binom{|I-J|}{k} \tag{22}
\end{equation*}
$$

Moreover, $\tilde{X}^{(1)}$ is uniquely determined by (22) if G is not of type $\left(G_{2}\right)$. The representations affording the characters $\tilde{x}^{(k)}$ are all defined over Q.

PROOF: By proposition 2 we know that for each k $(0 \leq k \leq \ell)$ there exists a unique complex irreducible character $\tilde{\chi}^{(k)}$ whose restriction to $H_{C}(G, B)$ is $x^{(k)}$, where $\left\{X^{(i)} \mid 0 \leq i \leq \ell\right\}$ are the compounds of the reflection character of $H_{C}(G, B)$. Now
$e_{J}=\left(\sum_{W \in W_{J}} \zeta\left(X_{W}\right)\right)^{-1} \sum_{W \in W_{J}} X_{W}=|B|^{-1}\left(\sum_{W \varepsilon W_{J}} \zeta\left(X_{W}\right)\right)^{-1} \sum_{x \in G_{J}} x=e\left(G_{J}\right)$,
is the idempotent of $C[G]$ affording the character $\left(l_{G J}\right)^{G}$. Thus by the Frobenius reciprocity theorem $\left(\tilde{x}^{(k)},\left(I_{G_{J}}\right)^{G}\right)$ $=\left(\tilde{x}^{(k)} \mid G_{J}, 1_{G_{J}}\right)=\tilde{x}^{(k)}\left(e\left(G_{J}\right)\right)=x^{(k)}\left(e_{J}\right)$. But by theorem 7, $x^{(k)}\left(e_{J}\right)=\left(\left|\frac{I-J}{k}\right|\right) \cdot \tilde{x}^{(1)}$ is uniquely determined by (22) because $x^{(1)}$ is uniquely determined by the fact that $x^{(l)}\left(e_{J}\right)=|I-J|$. It remains to prove that the representations affording the $\tilde{x}^{(k)}$ are defined over Q. By proposition 23 , the $\pi(k)$ are defined over Z (except possibly when G is of type G_{2} and $\sqrt{q_{1} q_{2}}$ is not rational.) (We exclude this case from the present theorem; it will follow later, from the calculation of the degrees of the characters, that this case can never occur.) Let $\tilde{e}(k)$ be the minimal central idempotent in $C[G]$ corresponding to $\tilde{x}(k)$. Then by proposition $2 \tilde{e}^{(k)} e(B)=e^{(k)}$ is the minimal central idempotent in $H_{C}(G, B)$ corresponding to the irreducible character $x^{(k)}$ of $H_{C}(G, B)$. Thus by the formula (i) of theorem $1 e^{(k)}=\sum_{W \in W} a_{W} X_{W}$ where $a_{W} \varepsilon Q$ for all $w \varepsilon W$. It follows that $\tilde{e}^{(k)} \mathrm{e}(\mathrm{B})$ is an element of $Q[G]$. Now let J be any subset of I having cardinality $\ell-k$ where $\ell=|I|$.

Then by theorem 7 we have $\tilde{x}^{(k)}\left(e_{J}\right)=\binom{k}{k}=1$; and it follows from the corollary to proposition 2 that $\tilde{e}^{(k)} e_{J}$ is a primitive idempotent in $C[G]$ affording the character $\tilde{x}^{(k)}$. But $\tilde{e}^{(k)} e_{J}=\tilde{e}^{(k)} e(B) e_{J}=e^{(k)} e_{J}$. Hence $\tilde{e}^{(k)} e_{J} \varepsilon Q[G]$, so that $\tilde{x}^{(k)}$ is afforded by the rational irreducible $G-$ module $Q[G] \tilde{e}^{(k)} e_{J}$.

REMARK: The character $\tilde{x}^{(\ell)}$, called the Steinberg character, was first constructed by R. Steinberg for any finite group of Lie type [18]. C. Curtis, [5], has shown that $\tilde{x}^{(\ell)}$ exists for any finite group with $B N$ pair, and using methods different from ours has shown that $\tilde{x}^{(\ell)}$ is uniquely determined by the fact that $\left(\tilde{x}^{(\ell)},\left(1_{B}\right)^{G}\right)=1$ and $\left(\tilde{x}^{(\ell)},\left(l_{P}\right)^{G}\right)=0$ for any parabolic subgroup P of G having rank exceeding 1 . It seems quite likely that the $\tilde{x}^{(k)}$ are also uniquely determined by the multiplicities (22), but we have no proof of this as yet.

For future reference we now define the weights of H when H is a Hecke algebra associated to an irreducible Coxeter system of Lie type. It will be seen that upon setting $q_{i}=1(1 \leq i \leq \ell)$ one recovers the usual definition of the weights.

Let $\pi: H \rightarrow$ End h be the reflection representation of H. For each $i \in I$ let $J_{i}=I-\{i\}$. Then as an $H_{J_{i}}$-module we have $h=h J_{i} \oplus \frac{1}{J_{1}}$ where $h_{J_{1}}$ is the subspace of h spanned by the $\alpha_{j}, j \in J_{i}$. Thus $h_{i}^{\frac{1}{j}}$ is one-dimensional
affording the trivial representation of ${ }^{H} J_{i}$. It is clear that $\pi\left(e_{J_{1}}\right)$ is the orthogonal projection on $h \frac{1}{J_{i}}$. Thus $e_{J_{i}} \cdot \alpha_{j}=0$ for $i \neq j, \quad e_{J_{i}} \cdot \alpha_{i} \neq 0$.

Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right\}$ be the dual basis of
$\left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{l}^{\prime}\right\}$ relative to the inner product B, where $\alpha_{i}^{\prime}=\frac{\left(q_{i}+1\right)}{B\left(\alpha_{i}, \alpha_{i}\right)} \alpha_{i}$. It follows that one has $\alpha_{j}=\sum_{i=1} C_{i j} \lambda_{i}$ where $\left(C_{i j}\right)=C$ is the Cartan matrix of H. We call λ_{i} the weight of H associated to the root α_{i}.

PROPOSITION 25: Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right\}$ be the weights of H. Then one has
(1) $\quad X_{W_{i}} \cdot \lambda_{i}=q_{i} \lambda_{i}-\alpha_{i}, \quad X_{w_{i}} \lambda_{j}=q_{i} \lambda_{j}$ for $i \neq j$.

$$
\begin{equation*}
e_{J_{i}} \cdot \lambda_{i}=\lambda_{i} \tag{ii}
\end{equation*}
$$

$e_{J_{i}} \cdot h=c \cdot \lambda_{i} \cdot$
PROOF: Immediate from the definition.

It is clear that the weights can be computed in each case by finding the inverse of the Carton matrix of H.

According to proposition $14, X_{W_{0}}^{2}$ is central in H, As the reflection representation $\pi: H \rightarrow$ End h is absolutely simple it follows that $\pi\left(X_{W_{0}}^{2}\right)$ is a scalar multiple of the identity operator. Let $\left\{W_{i} \mid i \varepsilon I_{1}\right\}$, $\left\{w_{i} \mid i \varepsilon I_{2}\right\}$ be the two conjugacy classes of the elements $\left\{w_{i} \mid i \varepsilon I\right\}$. If there is only one conjugacy class we put $I_{1}=I, I_{2}=\varnothing$. Let

$$
\begin{aligned}
\ell_{1}= & \left|I_{1}\right|, \ell_{2}=\left|I_{2}\right| \text { and put } q_{i}=p, i \varepsilon I_{1} ; q_{i}=q, i \varepsilon I_{2} . \\
& \underline{\text { PROPOSITION 26 }} \text { : One has } \pi\left(X_{W_{0}}^{2}\right)=\left(p^{\ell} q^{\ell}\right)^{\frac{h(\ell-1)}{\ell}},
\end{aligned}
$$

where h is the Coxeter number of W. (That is, h is the order of a Coxeter transformation of W.)
 for w_{0}, then $N=\frac{h \ell}{2}$. Exactly $\frac{h \ell_{1}}{2}$ of the i_{j} lie in I_{1} and exactly $\frac{h \ell_{2}}{2}$ of the i_{j} lie in $I_{2}, \quad(1 \leq j \leq N)$. Now $\operatorname{det} \pi\left(X_{W_{1}}\right)=-q_{i}^{\ell-1}$ for all $1 \varepsilon I$. Hence $\operatorname{det} \pi\left(X_{W_{0}}^{2}\right)$ $=\left[\left(-p^{\ell-1}\right)^{\frac{\ell}{2} h}\left(-q^{\ell-1}\right)^{\frac{\ell_{2} h}{2}}\right]^{2}=n\left(p^{\ell_{1}} q^{\ell}\right)^{\frac{h(\ell-1)}{\ell}}$, where n is some root of unity. But if we replace p and q by 1 we obtain the action of w_{0} on h; and $w_{0}^{2}=1$. Hence we must have $n=+1$.
$\frac{\text { PROPOSITION 27 }}{h(\ell-1)}$ The eigenvalues of $\pi\left(X_{W_{0}}\right)$ are $\pm\left(p^{\ell}{ }_{1} q^{\ell}\right)^{\frac{h(\ell-1)}{2 \ell}}$.

PROOF: Immediate from the preceding proposition.
It is known that if $1 \varepsilon I$, then $w_{0} \cdot \alpha_{i}=-\alpha_{j}$ for some $j \in I$. Thus w_{0} induces a permutation of the set I, and as w_{0} preserves the Killing form, w_{0} induces a graph automorphism of the Dynkin diagram of W.

PROPOSITION 28: Let $i \in I$ and let $w_{0}\left(\alpha_{i}\right)=-\alpha_{j}$ (j $\in \mathrm{I}$). Then $X_{W_{0}} \cdot \alpha_{i}=-\left(p^{\ell} 1_{q^{\ell}}\right)^{\frac{h(\ell-1)}{2}} \alpha_{j}$.

PROOF: We have $w_{1} w_{0}=w_{0} w_{j}$. From the proof of proposition 14 it follows that $X_{W_{i}} X_{W_{0}}=X_{W_{0}} X_{W_{f}}$. Thus $\mathrm{X}_{\mathrm{W}_{\mathrm{i}}} \mathrm{X}_{\mathrm{w}_{0}} \cdot \alpha_{j}=-\mathrm{X}_{\mathrm{w}_{0}} \cdot \alpha_{j}$. As the (-1)-eigenspace of $\pi\left(\mathrm{X}_{\mathrm{w}_{1}}\right)$ is one-dimensional spanned by α_{i} we have that $X_{w_{0}} \cdot \alpha_{j}=c \alpha_{i}$
for some $c \in R$. Now $w_{0}^{2}=1$ so that by proposition 21 $\pi\left(X_{W_{0}}\right)$ is self adjoint relative to B. Hence $B\left(X_{W_{0}} \cdot \alpha_{j}, X_{W_{0}} \cdot \alpha_{j}\right)$
$=B\left(\alpha_{j}, X_{W_{0}}^{2} \alpha_{j}\right), c^{2} B\left(\alpha_{1}, \alpha_{i}\right)=\left(p^{\ell_{1}} q^{\ell}\right)^{\frac{h(\ell-1)}{\ell}} B\left(\alpha_{j}, \alpha_{j}\right)$. But
w_{1} and w_{j} are conjugate by w_{0} so that $B\left(\alpha_{i}, \alpha_{1}\right)$
$=B\left(\alpha_{j}, \alpha_{j}\right)$. Thus $c=\varepsilon\left(p^{\ell} q^{\ell}\right)^{\frac{h(\ell-1)}{2 l}}$ where ε is a root of unity. Setting $p=q=1$ we obtain the action of w_{0} on h, hence $\varepsilon=-1$, proving the proposition.
56. DOUBLE COSETS IN WEYL GROUPS

Let (W,I) be a finite Coxeter system. If J is subset of I, then each coset $w W_{J}$ of W / W_{J} contains a unique element of minimal length, called the distinguished coset representative (der) of W_{J}. The der \tilde{w} of $w W_{J}$ is distinguished by the fact that $\ell\left(\tilde{w} w_{j}\right)=\ell(\tilde{w})+1$ for all $J \in J$. If J_{1} and J_{2} are subsets of I, then each double coset $W_{J_{1}} W W_{J_{2}}$ of $W_{J_{1}} \backslash W / W_{J_{2}}$ contains a unique element of minimal length called the distinguished double coset representative (ddcr) of $W_{J_{1}} w W_{J_{2}}$. The der w^{\prime} of $W_{J_{1}} W_{J_{2}}$ is distinguished by the fact that one has $\ell\left(w_{j} w^{\prime}\right)=\ell\left(w^{\prime}\right)+1$ for all $f \in J_{1}$ and $\ell\left(w^{\prime} w_{j}\right)=\ell\left(w^{\prime}\right)+1$ for all $j \varepsilon J_{2}$ (cf. section 2).

In this section we prove a theorem, based on a theorem of B. Kostant, about the structure of double coset decompositions. We use the following notations and conventions throughout this section: W is the Weyl group of a semisimple complex Lie algebra of ; h is a Carton subalgebra of $O f \Delta$ is the set of roots of $O f$ relative to $h ; \Delta^{+}$is the set of positive roots relative to some ordering of $h ; I=\{1,2, \ldots, \ell\}$, and $\left\{\alpha_{i} \mid i \in I\right\}$ is the set of simple roots. If $\beta=\sum_{i=1}^{\ell} c_{i} \alpha_{i} \varepsilon \Delta$, we put $\operatorname{supp}(\beta)=\left\{i \in I \mid c_{i} \neq 0\right\}, \operatorname{ht}(\beta)=\sum_{i=1}^{\ell} c_{i} \cdot R_{\beta}$ is the reflection corresponding to the root β, i.e. $R_{\beta}(\xi)$ $=\xi-\frac{2(\beta, \xi)}{(\beta, \beta)} \beta$, where $($,$) denotes the Killing form. Put$ $R \alpha_{i}=w_{i}, i \varepsilon I$. If $J \subseteq I$, put $W_{J}=\left\langle W_{i} \mid i \varepsilon J\right\rangle$, and put
h_{J} equal to the subspace of h spanned by $\left\{\alpha_{i} \mid i \varepsilon J\right\} . \Delta_{J}$ $=\Delta \cap h_{J}, \Delta_{J}^{+}=\Delta^{+} \cap h_{J} . \perp$ denotes orthogonal complement relative to the Killing form.

The following theorem is due to B. Kostant [13]:

THEOREM 10 (Kostant):

(i) Let $w \in W$ be arbitrary. Then $(w-l) h$ has a basis of roots $\left\{\beta_{1}, \ldots, \beta_{t}\right\}$ such that $w=R_{\beta_{1}} R_{\beta_{2}} \ldots R_{\beta_{t}}$;
(ii) If $w \in W$ and $w=R_{\gamma_{1}} \ldots R_{\gamma_{S}}$ where $\left\{\gamma_{1}, \ldots, \gamma_{S}\right\}$ is a set of linearly independent roots, then $\left\{\gamma_{1}, \ldots, \gamma_{S}\right\}$ form a basis for (w-1)h.

COROLLARY: Let $J \subset I, W \varepsilon W$, and $w=R_{\beta_{1}} \ldots R_{B_{t}}$ where $\left\{\beta_{1}, \ldots, \beta_{t}\right\}$ is a set of linearly independent roots, then $\mathrm{w} \varepsilon \mathrm{W}_{\mathrm{J}}$ if and only if $\beta_{i} \varepsilon \Delta_{J}(1 \leq i \leq t)$.

PROOF: Assume $\beta_{i} \varepsilon \Delta_{J}(I \leq 1 \leq t)$ then clearly $R_{\beta_{1}} \varepsilon W_{J}$ and hence so is w. Conversely if $w \varepsilon W_{J}$, then $h_{J}^{\frac{1}{J}} \subseteq h^{w}$ which implies that $(w-1) h \subseteq h_{J}$. But by theorem 10 , $\left\{\beta_{1}, \ldots, \beta_{t}\right\}$ is a basis of $(w-1) h$. Hence $\beta_{i} \varepsilon h_{J} \cap_{\Delta}=\Delta_{J}$.

THEOREM 11: Let J_{1}, J_{2} be subsets of I and let w_{*} be the distinguished double coset representative for the double coset $W_{J_{1}} W_{*} W_{J_{2}}$. Then the stabilizer of $W_{*} W_{J_{2}}$ in $W_{J_{1}}$ is equal to W_{K} where

$$
K=\left\{j \in J_{1} \mid W_{*}^{-1} W_{j} W_{*} \in J_{2}\right\}
$$

PROOF: It is clear that W_{K} is contained in the stabilizer. Suppose that w is an element of $W_{J_{1}}$ which stabilizes the coset $w_{*} W_{J_{2}}$. Then $w_{*}^{-1} w w_{*} \in W_{J_{2}}$. By theorem

10 and the corollary we can write $w=R_{\beta_{1}} \ldots R_{\beta_{t}}$ where $\left\{\beta_{1}, \ldots, \beta_{t}\right\}$ is a set of linearly independent roots in $\Delta_{J_{1}}^{+}$. As w_{*} is distinguished we have that $W_{*}^{-1}(\beta) \varepsilon \Delta^{+}$for any root β in $\Delta_{J_{1}}^{+}$. Now $W_{*}^{-1} w_{*}=R_{w_{*}^{-1}}\left(\beta_{1}\right) \cdots R_{W_{*}^{-1}}\left(\beta_{t}\right) \varepsilon W_{J_{2}}$ and $\left\{w_{*}^{-1}\left(\beta_{1}\right), \ldots, w_{*}^{-1}\left(\beta_{t}\right)\right\}$ is a set of linearly independent roots. Thus by the corollary to theorem 10 we have that $W_{*}^{-1}\left(\beta_{1}\right) \varepsilon \Delta_{J_{2}}^{+}(1 \leq i \leq t)$. Hence it suffices to prove that if $\beta \in \Delta_{J_{1}}^{+}$and $W_{*}^{-1}(\beta) \in \Delta_{J_{2}}^{+}$, then $R_{\beta} \in W_{K}$; and to prove this it suffices to prove that $\operatorname{supp}(\beta)$ is contained in K. We prove this by induction on $h t(\beta)$. If $h t(\beta)=1$ there is nothing to prove. Suppose that $h t(\beta)>1$. Then we can write $\beta=\beta^{\prime}+\alpha_{j}$ where $\beta^{\prime} \varepsilon \Delta_{J_{1}}^{+}, j \varepsilon J_{1}$, and $h t\left(\beta^{\prime}\right)$ $=h t(\beta)-1$. Let $w_{*}^{-1}\left(\beta^{\prime}\right)=c_{1} \alpha_{1}+c_{2} \alpha_{2}+\cdots+c_{\ell} \alpha_{\ell}$, $w_{*}^{-1}\left(\alpha_{j}\right)=d_{1} \alpha_{1}+d_{2} \alpha_{2}+\cdots+d_{\ell} \alpha_{\ell}$. Then $w_{*}^{-1}(\beta)=\left(c_{1}+\alpha_{1}\right) \alpha_{1}$ $+\cdots+\left(c_{\ell}+d_{\ell}\right) \alpha_{\ell}$. By hypothesis on $B, c_{i}+d_{i}=0$ if $1 \notin J_{2}$. But since w_{*} is distinguished, $c_{i} \geqq 0, d_{i} \geqq 0$. Hence $c_{i}=d_{i}=0$ if $i \notin J_{2}$. This means that β^{\prime} and α_{j} satisfy the same hypothesis as β. By the induction assumption we must have $\operatorname{supp}\left(\beta^{\prime}\right), \operatorname{supp}\left(\alpha_{j}\right) \subseteq K$. But $\operatorname{supp}(\beta)$ $=\operatorname{supp}\left(\beta^{\prime}\right) \cup \operatorname{supp}\left(\alpha_{j}\right)$. Hence $\operatorname{supp}(\beta) \subseteq K$.

As a corollary to theorem 11 we have the following:
PROPOSITION 29: Let the notation be as in theorem 11, and let r be the set of distinguished coset representatives for $W_{J_{1}} / W_{K}$, then $\left\{\gamma W_{*} \mid \gamma \in \Gamma\right\}$ is the set of distinguished coset representatives for $\left(W_{J_{1}} W_{*} W_{J_{2}}\right) / W_{J_{2}}$. Each element of
$W_{J_{1}} W_{*} W_{J_{2}}$ has a unique expression of the form $\gamma W_{*} u$ where $\gamma \varepsilon \Gamma, u \varepsilon W_{J_{2}}$. One has $\ell\left(\gamma w_{*} u\right)=\ell(\gamma)+\ell\left(w_{*}\right)+\ell(u)$.

PROOF: By theorem 11 we know that $\left\{\gamma_{*} \mid \gamma \varepsilon \Gamma\right\}$ is a set of distinct representatives for the $W_{J_{1}} W_{*} W_{J_{2}} / W_{J_{2}}$. So it suffices to show that γw_{*} is distinguished when $\gamma \in \Gamma$. For this it suffices to show that $\ell\left(\gamma w_{*} w_{j}\right)=\ell\left(\gamma w_{*}\right)+1$ for all $j \in J_{2}$. Suppose that $\ell\left(\gamma w_{*} w_{j}\right)=\ell\left(\gamma w_{*}\right)-1$ for some $j \varepsilon J_{2}$. Then since w_{*} is distinguished, by the axiom of cancellation we must have $\gamma W_{*} W_{j}=\gamma^{\prime} W_{*}$ for some $\gamma^{\prime} \varepsilon W_{J_{1}}$, and $\ell\left(\gamma^{\prime}\right)$ $=\ell(\gamma)-1$. But then $w_{*}^{-1} \gamma^{-1} \gamma^{\prime} w_{*}=w_{j} \varepsilon W_{J_{2}}$ implies that $\gamma^{-1} \gamma^{\prime} \varepsilon$ the stabilizer W_{K} of $W_{*} W_{J_{2}}$ in $W_{J_{1}}$. Then $\gamma^{\prime} \varepsilon \gamma_{K}$. But since γ is distinguished coset representative for $W_{J_{1}} / W_{K}$ it follows that $\ell\left(\gamma^{\prime}\right) \geqq \ell(\gamma)$, and this is a contradiction. Hence $\gamma_{*} w_{*}$ is a distinguished coset representative for $W_{J_{1}} W_{*} W_{J_{2}} / W_{J_{2}}$, and consequently each element of $\gamma W_{*} W_{J_{2}}$ has a unique expression of the form $\gamma W_{*} u$ for some $u \in W_{J_{2}}$.

Theorem 11 does not show how one can find the ddcr's. The remainder of this section is devoted to showing how some deer's can be found in special cases.

LEMMA 11: Let J be a subset of I and W_{J} the unique element of maximal length in W_{J}, then an element u of W is a der of W / W_{J} if and only if $\ell\left(u w_{J}\right)=\ell(u)$ $+\ell\left(w_{J}\right)$.

PROOF: It is clear that the condition is necessary
(cf. section 2). Suppose that $\ell\left(u w_{J}\right)=\ell(u)+\ell\left(w_{J}\right)$. If $j \varepsilon J$ we can write $w_{J}=w_{j} w^{\prime}$ where $w^{\prime} \varepsilon W_{J}$ and $\ell\left(w_{J}\right)$ $=\ell\left(w_{j}\right)+\ell\left(w^{\prime}\right)$. Suppose $\ell\left(u w_{j}\right)<\ell(u)$. Then $\ell\left(u w_{J}\right)$ $=\ell\left(u w_{j} w^{\prime}\right) \leq \ell\left(u w_{j}\right)+\ell\left(w^{\prime}\right)<\ell(u)+\ell\left(w^{\prime}\right)<\ell(u)+\ell\left(w_{J}\right)$ $=\ell\left(u w_{J}\right)$, a contradiction. Hence $\ell\left(u w_{j}\right)=\ell(u)+1$ for all $f \in J$, and u is a der of W / W_{J}.

LEMMA 12: Let $J \subseteq I$, then there is a unique der W_{*} of W / W_{J} of maximal length.

PROOF: If w_{J} is the unique element of maximal length in W_{J}, and W_{*} is a der of W / W_{J} of maximal length, then $\ell\left(w_{*} w_{J}\right)=\ell\left(w_{*}\right)+\ell\left(w_{J}\right)$. It follows that $w_{*} w_{J}$ must be the unique element w_{0} of maximal length in w. Hence $w_{*}=w_{0} W_{J}$ is uniquely determined.

LEMMA 13: Suppose that u is a der of W / W_{J}, and that u does not have maximal length among the der of W / W_{J}, then there exists $i \varepsilon I$ such that $\ell\left(w_{1} u\right)=\ell(u)+1$ and $w_{i} u$ is again a der of W / W_{J}.

PROOF: Let w_{J} be the unique element of maximal length in W_{J}. The assumption on u implies that $u w_{J}$ is not equal to w_{0}, the unique element of maximal length in W. Hence there exists $i \varepsilon I$ such that $\ell\left(w_{i} u w_{J}\right)=\ell\left(u w_{J}\right)+l$ $=\ell(u)+\ell\left(w_{J}\right)+1=\ell\left(w_{1} u\right)+\ell\left(w_{J}\right)$. Thus $\ell\left(w_{i} u\right)=\ell(u)+1$ and $w_{1} u$ is a der of W / W_{J} by lemma ll.

LEMMA 14: If u is a der of W / W_{J} and u is an involution, then u is a der of $W_{J} \backslash W / W_{J}$.

PROOF: Let $f \varepsilon J$, then $\ell\left(u w_{j}\right)=\ell\left(w_{j} u\right)=\ell(u)+1$.

LEMMA 15: Let J be a subset of I, and assume that w_{*}, the unique der of W / W_{J} of maximal length is an involution. Then W_{*} is also a der of $W_{J} \backslash W / W_{J}$ and the stabileizer of $W_{*} W_{J}$ in W_{J} is equal to W_{J}.

PROOF: The fact that w_{*} is a der of $W_{J} \backslash W / W_{J}$ follows from lemma 14, as w_{*} is an involution. If the stabileizer of $w_{*} W_{J}$ in W_{J} is not equal to W_{J}, then by theorem 11 this stabilizer is equal to W_{K} where K is some proper subset of J. Thus there exists a der γ of W_{J} / W_{K} such that $\ell(\gamma) \geq 1$. But then by proposition $29 \quad \gamma w_{*}$ is a der of W / W_{J} and $\ell\left(\gamma w_{*}\right)=\ell(\gamma)+\ell\left(w_{*}\right)>\ell\left(w_{*}\right)$. This contradiets our assumption about w_{*}.

For the rest of this section we restrict ourselves to the following situation: The Dynkin graph D of (W,I) is a tree. Thus there exists $i_{0} \varepsilon I$ such that the point corresponding to i_{0} in D is joined to at most one other point j_{0} of D. Evidently i_{0} is a terminal point of D. After relabeling the set $I=\{1,2, \ldots, \ell\}$, we may assume that $1_{0}=1, f_{0}=2$. Put $J=I-\{1\}$, and $K=I-\{1,2\}$. We then have the following propositions about the der's of $W_{J} \backslash W / W_{J}$:

PROPOSITION 30: I = the identity of W is a deer of $W_{J} \backslash W / W_{J}$. The stabilizer of $l \cdot W_{J}$ in W_{J} is W_{J}.

PROPOSITION 31: w_{1} is a dder of $W_{J} \backslash W / W_{J}$. The
stabilizer of $W_{1} W_{J}$ in W_{J} is W_{K}.
PROOF: The fact that w_{1} is a ddcr of $W_{J} \backslash W / W_{J}$ is obvious. By theorem ll, the stabilizer of $W_{1} W_{J}$ in W_{J} is W_{K} where $K^{\prime}=\left\{j \varepsilon J \mid W_{1} W_{j} W_{1} \varepsilon J\right\}$. In other words, K^{\prime} $=\left\{j \in J \mid w_{1} w_{j}=w_{j} w_{1}\right\}$. By our assumption on the subsets J and K we have $K^{\prime}=K$.

PROPOSITION 32: Let w_{*} be the unique der of w / W_{J} of maximal length, and assume that w_{0} is central. Then w_{*} is an involution, w_{*} is a dder for $W_{J} \backslash W / W_{J}$, and the stabilizer of $W_{*} W_{J}$ in W_{J} is W_{J}.

PROOF: We have $w_{0}=w_{*} w_{J}$ where w_{J} is the unique element of maximal length in W_{J}. Thus $w_{*}=w_{0} w_{J}$ is an involution, being the product of two commuting involutions. The additional assertions of proposition 32 follow now from lemma 15.

PROPOSITION 33: Assume that w_{1} is not the dder of $W_{J} \backslash W / W_{J}$ of maximal length. Let γ_{*} be the unique der of W_{J} / W_{K} of maximal length; and suppose that γ_{*} is an involution. Then $u=w_{1} \gamma_{*} w_{1}$ is a dder for $W_{J} \backslash W / W_{J}$. Moreover, the stabilizer of $u W_{J}$ in W_{J} is either W_{K} or W_{J} depending upon whether u is or is not the unique dder of $W_{J} \backslash W / W_{J}$ of maximal length.

PROOF: The stabilizer of $W_{1} W_{J}$ in W_{J} is W_{K} by proposition 31. Hence by proposition $29 \quad \gamma_{*} W_{1}$ is a dcr for W / W_{J}, and $\ell\left(\gamma_{*} W_{1}\right)=\ell\left(\gamma_{*}\right)+\ell\left(W_{1}\right)$. Thus $\gamma_{*} W_{1}$ is the
unique der of W / W_{J} of maximal length contained in the double coset $W_{J} W_{1} W_{J}$. By lemma 13 there exists i ε I such that $\ell\left(w_{1} \gamma_{*} w_{1}\right)=\ell\left(\gamma_{*} w_{1}\right)+1$, and $w_{1} \gamma_{*} w_{1}$ is again a der of W / W_{J}. From our choice of γ_{*} it follows that i must be equal to 1 . Thus $W_{1} \gamma_{*} W_{1}$ is a der of W / W_{J}. $W_{1} \gamma_{*} W_{1}$ is an involution because γ_{*} is an involution. Hence by lemma $14 W_{1} \gamma_{*} W_{1}$ is a doer of $W_{J} \backslash W / W_{J}$. Now the assumptions on γ_{*} together with lemma 15 imply that the stabilizer of $\gamma_{*} W_{K}$ in W_{K} is W_{K}. Thus by theorem ll, conjugation by γ_{*} induces a permutation of the set $\left\{W_{k} \mid k \varepsilon K\right\}$. As w_{1} commutes with $w_{k}, k \in K$ it follows that $w_{1} \gamma_{*} W_{1}=u$ also permutes the set $\left\{w_{k} \mid k \in K\right\}$ under conjugation, and hence by theorem $11 W_{K}$ is contained in the stabilizer of $u W_{J}$ in W_{J}. Thus the stabilizer of $u W_{J}$ in W_{J} is either W_{J} or W_{K}, as K is a maximal subset of J. If this stabilizer is W_{J}, then by lemma $13 u$ must be the unique der of $W_{J} \backslash W / W_{J}$ of maximal length. Conversely if u is the unique der of $W_{J} \backslash W / W_{J}$ of maximal length, then as u is an involutimon we have by lemma 15 that the stabilizer of $u W_{J}$ in W_{J} is W_{J}.

PROPOSITION 34: Let $L \subseteq J$ and assume that u is a adder for $W_{L} \backslash W_{(I-J) \cup L} / W_{L}$. Then u is also a der for $W_{J} \backslash W / W_{J}$.

PROOF: By definition $\ell\left(w_{i} u\right)=\ell\left(u w_{i}\right)=\ell(u)+l$ for all i $\varepsilon \mathrm{L}$; but if $f \in J-L$, then $j \in(I-J) U L$ and consquently w_{j} is not in the support of u. Thus $\ell\left(w_{j} u\right)=\ell\left(u w_{j}\right)$
$=\ell(u)+1$.
It turns out that if I is connected (that is, the corresponding Lie algebra of is simple) then the preceding propositions are sufficient to determine the ddcr of $W_{J} \backslash W / W_{J}$ along with their stabilizers, as we shall see in the next section.
57. THE POINCARÉ POLYNOMIAL

OF A FINITE COXETER SYSTEM

Let (W,I) be a finite irreducible Coxeter system. Let $\left\{w_{i} \mid i \in I_{1}\right\}$ and $\left\{w_{i} \mid i \in I_{2}\right\}$ be the conjugacy classes of the elements $\left\{w_{i} \mid i \varepsilon I\right\}$. If there is only one conjugacy class we put $I_{1}=I, I_{2}=\varnothing$. Let $w \in W$ and $w_{1_{1}} W_{i_{2}} \ldots w_{i_{m}}$ be a reduced expression for w. By the corollary to proposiLion $17, \ell_{1}(w)=\left|\left\{i_{j} \mid i_{j} \varepsilon I_{1}, l \leq f \leq m\right\}\right|$ and $\ell_{2}(w)$ $=\left|\left\{i_{j} \mid i_{j} \varepsilon I_{2}, l \leq j \leq m\right\}\right|$ are positive integer valued functions on W, independent of the choice of reduced expression for w. We have $\ell(w)=\ell_{1}(w)+\ell_{2}(w)$. If $w, u \in W$, then $\ell_{1}(w u)=\ell_{1}(w)+\ell_{1}(u), \quad(i=1,2)$.

Let $Z[x, y]$ be the polynomial ring in two variables over Z. If S is any subset of W define

$$
p(S)=\sum_{W \varepsilon S} x^{\ell}{ }_{1}^{(w)} y^{\ell}{ }_{2}^{(w)}
$$

We call $p(W)$ the Poincare polynomial of W. If J is a subset of I, and W_{J} is of type (\mathcal{O}) we also use the notation $p(g)$ for $p\left(W_{J}\right)$ provided that there is no confusion about how the variables x and y are arranged, where O is a semisimple complex Lie algebra. In this section we are going to compute $p(g)=p(W)$ when (W, I) is of Lie type (\mathcal{O}). We obtain a multiplicative formula for $p(W)$ for each type of.

If (W, I) is the Coxeter system of a finite group G
with $B N$ pair, then $\left[B: B \cap W^{-1} B w\right]=\zeta\left(X_{W}\right)$ in the rotaLion of 53. Thus $[G: B]=\sum_{W \varepsilon W} \zeta\left(X_{W}\right)$ is obtained from $p(W)$ by simply replacing x and y by the positive integers p and q, where $p=\zeta\left(X_{W_{i}}\right)$ for all $i \varepsilon I_{1}$ and $q=\zeta\left(X_{w_{i}}\right)$ for all i εI_{2}. Hence we obtain a completely algebraic proof for a multiplicative formula for [G: B]. In particular this applies to the groups of Chevalley [3], Steinberg [19], Suzuki [20], and Ne [13, 14].

PROPOSITION 35: Let J be a subset of I, then $p\left(W_{J}\right)$ divides $p(W)$.

PROOF: Let Γ be the set of distinguished coset representatives (der) for W / W_{J}, then clearly $p(W)$ $=p(\Gamma) p\left(W_{J}\right)$.

PROPOSITION 36: Let $J \subseteq I$, and $\left\{u_{1}, \ldots, u_{m}\right\}$ be the complete set of distinguished double coset representatives (deer) for $W_{J} \backslash W / W_{J}$. Let $W_{K_{1}}$ be the stabilizer of $u_{i} W_{J}$ in W_{J}, then one has

$$
\begin{equation*}
p(W)=\sum_{i=1}^{m} \frac{p\left(W_{J}\right)}{p\left(W_{K_{i}}\right)} p\left(u_{i}\right) p\left(W_{J}\right) \tag{23}
\end{equation*}
$$

PROOF: By theorem ll the stabilizer of $u_{i} W_{J}$ in W_{J} is of the form $W_{K_{i}}$ where K_{i} is a subset of J. By proposition 29 if r_{1} is the set of der for $W_{J} / W_{K_{1}}$, then $\Gamma_{i} u_{i}$ is the set of der for $\left(W_{J} u_{i} W_{J}\right) / W_{J}$, and $\ell\left(r_{i} u_{i} w\right)$ $=\ell\left(\gamma_{i}\right)+\ell\left(u_{i}\right)+\ell(w)$ for all $\gamma_{i} \varepsilon \Gamma_{i}$. By proposition 35 $p\left(\Gamma_{i}\right)=p\left(W_{J}\right) / p\left(W_{K_{1}}\right)$. Hence (23) is obvious.

It is clear from proposition 36 that one can compute $p(W)$ by induction on the rank provided that one knows surficient information about the der and the stabilizers of their cosets. We can obtain this information using the resuits of 56 , and we now proceed to calculate $p(W)$ case by case.
$\left(A_{\ell}\right):$

As the diagram is simply laced, there is only one conjugacy class $I_{1}=I$. Let $J=\{2,3, \ldots, \ell\}$, then W_{J} is of type $\left(A_{\ell-1}\right)$. We prove by induction on ℓ that $p\left(A_{\ell}\right) / p\left(A_{\ell-1}\right)$ $=\frac{x^{\ell+1}-1}{x-1}$. The result is clear when $\ell=1$, so assume $\ell>1$. By propositions 30 and 311 and w_{1} are dder of $W_{J} W / W_{J}$. The stabilizer of $1 \cdot W_{J}$ in W_{J} is W_{J}; the stabilizer of $W_{1} \cdot W_{J}$ in W_{J} is W_{K} where $K=\{3,4, \ldots, \ell\}$. W_{K} is of type $\left(A_{\ell-2}\right)$. $\left|\left(W_{J} \cup W_{J} W_{1} W_{J}\right) / W_{J}\right|=1+\left[W_{J}: W_{K}\right]$ $=1+\ell=\left[W: W_{J}\right]$. Hence $\left\{1, W_{1}\right\}$ is the complete set of der of $W_{J} W / W_{J}$. By proposition 36

$$
\frac{p\left(A_{\ell}\right)}{p\left(A_{\ell-1}\right)}=1+\frac{p\left(A_{\ell-1}\right)}{p\left(A_{\ell-2}\right)}=1+x \frac{x^{\ell}-1}{x-1}=\frac{x^{\ell+1}-1}{x-1}
$$

Thus we have $\frac{p\left(A_{\ell}\right)}{p\left(A_{\ell-1}\right)}=\frac{x^{\ell+1}-1}{x-1}$ for all ℓ. It follows that $p\left(A_{\ell}\right)=\prod_{i=2}^{\ell+1}\left(\frac{x^{1}-1}{x-1}\right)$.
$\left(B_{\ell}\right):$

The two conjugacy classes are $I_{1}=\{1,2, \ldots, \ell-1\}$, and $I_{2}=\{\ell\}$. Let $J=\{2,3, \ldots, \ell-1, \ell\}$. Then W_{J} is of type $\left(B_{\ell-1}\right)$. We prove the following by induction on $\ell,(\ell \geqq 2)$: (i) The der for $W_{J} \backslash W / W_{J}$ are $\left\{1, w_{1}, W_{*}\right\}$, where W_{*} $=123 \ldots(\ell-1) \ell(\ell-1) \ldots 321$. (The notation $i_{1} i_{2} \ldots i_{m}$ means $\left.w_{1_{1}} w_{1_{2}} \ldots w_{1_{m}}\right) . \quad w_{*}^{2}=1$.
(ii) The stabilizer of $W_{1} W_{J}$ in W_{J} is W_{K} where $K=\{3,4, \ldots, \ell\} . W_{K}$ is thus of type $\left(B_{\ell-2}\right)$.
(iii) The stabilizer of $W_{*} W_{J}$ in W_{J} is W_{J}.
(iv) $\frac{p\left(B_{\ell}\right)}{p\left(B_{\ell-1}\right)}=\frac{\left(x^{\ell}-1\right)\left(x^{\ell-1} y+1\right)}{(x-1)}$
(v) $p\left(B_{\ell}\right)=\prod_{i=1}^{\ell}\left(\frac{\left(x^{i}-1\right)\left(x^{i-1} y+1\right)}{x-1}\right)$.

We first consider the case when $\ell=2$:
$\left(B_{2}\right)$

$J=\{2\}$

It is easy to see by inspection that the deer for $W_{J} \backslash W / W_{J}$ are $\left\{1, W_{1}, W_{*}\right\}, W_{*}=121$, the stabilizer of $w_{1} W_{J}$ in W_{J} is \{1\}. The stabilizer of $W_{*} W_{J}$ in W_{J} is W_{J}. Thus $\frac{p\left(B_{2}\right)}{p\left(A_{1}\right)}=1+x(1+y)+x^{2} y=(1+x)(1+x y)=\frac{\left(x^{2}-1\right)(x y+1)}{(x-1)}$. $p\left(B_{2}\right)=(1+x)(1+x y)(1+y)=\left(\frac{(x-1)(y+1)}{(x-1)}\right)\left(\frac{\left(x^{2}-1\right)(x y+1)}{x-1}\right)$.

Now assume $\ell>2.1$ and W_{1} are dder of $W_{J} \backslash W / W_{J}$ and the stabilizers in W_{J} of $l W_{J}$ and $W_{1} W_{J}$ are W_{J} and W_{K} respectively where $K=\{3,4, \ldots, \ell\}$ by proposition 31 . Now $\left|\left(W_{J} \cup W_{J} W_{1} W_{J}\right) / W_{J}\right|=1+\left[W_{J}: W_{K}\right]=1+2(\ell-1)=2 \ell-1$; while $\left[W: W_{J}\right]=2 \ell$. It follows that there is precisely one more double coset of $W_{J} \backslash W / W_{J}$, and that this double coset consists of precisely one $W_{J}-$ coset. By the induction hypothesis the unique der γ_{*} of W_{J} / W_{K} is given by $\gamma *$ $=234 \ldots(\ell-1) \ell(\ell-1) \ldots 432 . r_{*}$ is an involution. Hence the hypothesis of proposition 33 is satisfied and we have that:
$W_{*}=W_{1} \gamma_{*} W_{1}=1234 \ldots(\ell-1) \ell(\ell-1) \ldots 4321$ is a dder of $W_{J} \backslash W / W_{J}$. Thus $\left\{1, W_{1}, W_{*}\right\}$ is the complete set of dder of $W_{J} \backslash W / W_{J}$. The stabilizer of $W_{*} W_{J}$ in W_{J} is W_{J} because $W_{J} W_{*} W_{J}$ contains only one $W_{J}-\operatorname{coset} . W_{*}$ is obviously an involution. This proves (i), (i1), and (iii). It remains to establish (iv) and (v). By proposition 36 we have

$$
\begin{aligned}
\frac{p\left(B_{\ell}\right)}{p\left(B_{\ell-1}\right)} & =1+p\left(w_{1}\right) \frac{p\left(B_{\ell-1}\right)}{p\left(B_{\ell-2}\right)}+p\left(w_{*}\right) \\
& =1+x \frac{\left(x^{\ell-1}-1\right)\left(x^{\ell-2} y+1\right)}{x-1}+x^{2(\ell-1)} y \\
& =\frac{\left(x^{\ell}-1\right)\left(x^{\ell-1} y+1\right)}{(x-1)} . \\
\text { Hence } p\left(B_{\ell}\right) & =\prod_{i=1}^{\ell} \frac{\left(x^{i}-1\right)\left(x^{i-1} y+1\right)}{(x-1)} \text { as asserted. }
\end{aligned}
$$

This completes the induction argument.
$\left(D_{\ell}\right):$

There is only one conjugacy class, $I_{1}=\dot{I}$. Let J
$=\{2,3, \ldots, \ell\}, K=\{3,4, \ldots, \ell\}$. Thus W_{J} is of type $D_{\ell-1}$
if $\ell \geqq 4$. (We consider $\left(D_{3}\right)$ as being the same as ($\left.A_{3}\right)_{\text {. }}$) We prove the following by induction on ℓ :
(i) $\left\{1, W_{1}, W_{*}\right\}$ is the complete set of der for $W_{J} \backslash W / W_{J}$, where $w_{*}=123 \ldots(\ell-2)(\ell-1) \ell(\ell-2) \ldots 321 . w_{*}$ is an involution.
(ii) The stabilizer of $w_{1} W_{J}$ in W_{J} is W_{K}.
(iii) W_{*} is also the unique maximal der for W / W_{J}. The stabilizer of $W_{*} W_{J}$ in W_{J} is W_{J} :
(iv) $\frac{p\left(D_{\ell}\right)}{p\left(D_{\ell-1}\right)}=\frac{\left(x^{\ell}-1\right)\left(x^{\ell-1}+1\right)}{x-1}=\frac{x^{\ell}-1}{x-1} \frac{\left.x^{2(\ell-1}\right)-1}{x^{\ell-1}-1}$.
(v) $p\left(D_{\ell}\right)=\left(\prod_{i=1}^{\ell-1} \frac{x^{2 i}-1}{x-1}\right) \cdot \frac{x^{\ell}-1}{x-1}$.

We first consider $\left(D_{4}\right)$
$K=\{2,3\}$. 1 and w_{1} are der of $W_{J} \backslash W / W_{J}$ by proposition 31; and the stabilizer of $1 \cdot W_{J}$ in W_{J} is W_{J}, while the stabilizer of $W_{l} W_{J}$ in W_{J} is W_{K} again by proposition 31. Now $\left|\left(W_{J} U W_{J} W_{1} W_{J}\right) / W_{J}\right|=1+\left[W_{J}: W_{K}\right]=1+6=7$, while $\left[W: W_{J}\right]=8$. It follows that there is exactly one additional double coset of $W_{J} \backslash W / W_{J}$, and that this double coset contains precisely one W_{J}-coset. Now it is easy to see that the unique der of W_{J} / W_{K} is $\gamma_{*}=2342$. Y_{*} is an involu-
tion, the hypothesis of proposition 33 is satisfied, hence $w_{*}=w_{1} \gamma_{*} W_{1}=123421$ is a der of $W_{J} \backslash W / W_{J} . w_{*}$ is obviously an involution, proving (i) and (ii). As the double coset $W_{J} W_{*} W_{J}$ contains only one W_{J}-coset we have that the W_{J}-stabilizer of $W_{*} W_{J}$ is W_{J}, proving (iii). By proposition 36:

$$
\begin{aligned}
\frac{p\left(D_{4}\right)}{p\left(A_{3}\right)} & =1+x \frac{p\left(A_{3}\right)}{p\left(A_{1} \times A_{1}\right)}+x^{6} \\
& =1+x \frac{\left(x^{3}-1\right)\left(x^{2}+1\right)}{(x-1)}+x^{6}=\frac{\left(x^{4}-1\right)\left(x^{3}+1\right)}{x-1}
\end{aligned}
$$

Thus $p\left(D_{4}\right)=\frac{x^{2}-1}{x-1} \cdot \frac{x^{4}-1}{x-1} \cdot \frac{x^{6}-1}{x-1} \cdot \frac{x^{4}-1}{x-1}$.
Assuming that $\ell>4$, the induction argument for D_{ℓ} is quite similar to the one just given for D_{4} and will be omitted.

REMARK: Since the stabilizer of $w_{*} W_{J}$ in W_{J} is
W_{J}, it follows from theorem 11 that conjugation by w_{*} indues a permutation of the set $\{2,3, \ldots, \ell\}$. As w_{*} pereserves the Killing form, w_{*} induces a graph automorphism of $\left(D_{\ell-1}\right)$. It is not difficult to show that w_{*} induces the nontrivial graph automorphism of ($D_{\ell-1}$).
$\left(E_{6}\right):$

There is only one conjugacy class, $I_{1}=I$. Let J $=\{2,3,4,5,6\}$. Then W_{J} is of type $\left(D_{5}\right)$. 1 is a der of $W_{J} \backslash W / W_{J}$. The stabilizer of $I \cdot W_{J}$ in W_{J} is W_{J}. By propo-
sition $31 W_{1}$ is a der of $W_{J} / W / W_{J}$, the stabilizer of $W_{1} W_{J}$ in W_{J} is W_{K}, where $K=\{3,4,5,6\} . W_{K}$ is of type $\left(A_{4}\right)$. By proposition 34 applied to the subset $L=\{2,3,4,5\}$ we have that $u=12345321$ is a der of $W_{J} \backslash W / W_{J}$. From the discussion of type $\left(D_{\ell}\right)$ we know that u induces a nontrivial graph automorphism of $\{2,3,4,5\}$ under conjugation (it interchanges 4 and 5). It follows from theorem 11 that the stabilizer of $u W_{J}$ in W_{J} is W_{J} because this graph automorphism cannot be extended to the graph of $\{2,3,4,5,6\}$. Note that W_{L} is of type (D_{4}).

Now $\left|\left(W_{J} \cup W_{J} W_{1} W_{J} \cup W_{J} u W_{J}\right) / W_{J}\right|$
$=1+\left[W_{J}: W_{K}\right]+\left[W_{J}: W_{L}\right]=1+16+10=27$
$=\left[\mathrm{W}: \mathrm{W}_{\mathrm{J}}\right]$.
Hence $\{l, w, u\}$ is the complete list of der for W / W_{J}. By proposition 36 we have

$$
\begin{aligned}
\frac{p\left(E_{6}\right)}{p\left(D_{5}\right)} & =1+p\left(w_{1}\right) \frac{p\left(D_{5}\right)}{p\left(A_{4}\right)}+p(u) \frac{p\left(D_{5}\right)}{p\left(D_{4}\right)} \\
& =1+x \frac{\left(x^{8}-1\right)\left(x^{3}+1\right)}{x-1}+x^{8} \frac{\left(x^{5}-1\right)\left(x^{4}+1\right)}{(x-1)} \\
& =\frac{\left(x^{9}-1\right)\left(x^{8}+x^{4}+1\right)}{(x-1)}=\frac{x^{9}-1}{x-1} \frac{x^{12}-1}{x^{4}-1}
\end{aligned}
$$

Hence

$$
p\left(E_{6}\right)=\frac{\left(x^{2}-1\right)\left(x^{5}-1\right)\left(x^{6}-1\right)\left(x^{8}-1\right)\left(x^{9}-1\right)\left(x^{12}-1\right)}{(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)} .
$$

There is only one conjugacy class $I_{1}=I$. Let J
$=\{2,3,4,5,6,7\}$. Then W_{J} is of type $\left(E_{6}\right)$. By proposition
$31 W_{1}$ is a dder of $W_{J} \backslash W / W_{J}$, and the stabilizer of $W_{1} W_{J}$ is W_{K} where $K=\{3,4,5,6,7\}$. W_{K} is of type $\left(D_{5}\right)$. Proposition 34 applied to the subset $L=\{2,3,4,5,6\}$ shows that $u=1234564321$ is a dder of $W_{J} \backslash W / W_{J}$. By the discussion of type $\left(D_{\ell}\right), u$ induces, by conjugation, the nontrivial graph automorphism of $\{2,3,4,5,6\}$. Thus by theorem 11 the stabilizer of $u W_{J}$ in W_{J} is W_{L} because there is no way to extend this graph automorphism to $\{2,3,4,5,6,7\} . w_{0}$ is central in W and hence by proposition $32, w_{0}=w_{*} W_{J}$ where W_{*} is a dder of $W_{J} \backslash W / W_{J} ; W_{*}$ is the unique der of W / W_{J} of maximal length, and the stabilizer of $W_{*} W_{J}$ in W_{J} is equal to W_{J}. Now we have
$\left|\left(W_{J} \cup W_{J} W_{1} W_{J} \cup W_{J} u W_{J} \cup W_{J} W_{*} W_{J}\right) / W_{J}\right|$
$=1+\left[W_{J}: W_{K}\right]+\left[W_{J}: W_{L}\right]+1$
$=1+\left[W\left(E_{6}\right): W\left(D_{5}\right)\right]+\left[W\left(E_{6}\right): W\left(D_{5}\right)\right]+1$
$=1+27+27+1$
$=56$
$=\left[W\left(E_{7}\right): W\left(E_{6}\right)\right]=\left[W: W_{J}\right]$.
Hence $\left\{1, w_{1}, u, w_{*}\right\}$ is the complete set of dder for
$W_{J} \backslash W / W_{J}$.
Note that $\ell\left(w_{*}\right)=\ell\left(w_{0}\right)-\ell\left(w_{J}\right)=27$. By proposition 36
$\frac{p\left(E_{7}\right)}{p\left(E_{6}\right)}=1+p\left(w_{1}\right) \frac{p\left(E_{6}\right)}{p\left(D_{5}\right)}+p(u) \frac{p\left(E_{6}\right)}{p\left(D_{5}\right)}+p\left(w_{*}\right)$

$$
=1+x \frac{\left(x^{9}-1\right)\left(x^{8}+x^{4}+1\right)}{(x-1)}+x^{10} \frac{\left(x^{9}-1\right)\left(x^{8}+x^{4}+1\right)}{(x-1)}+x^{27}
$$

$$
=\frac{\left(x^{14}-1\right)\left(x^{5}+1\right)\left(x^{9}+1\right)}{(x-1)}=\frac{x^{14}-1}{x-1} \cdot \frac{x^{10}-1}{x^{5}-1} \cdot \frac{x^{18}-1}{x^{9}-1}
$$

Hence $p\left(E_{7}\right)=\frac{\left(x^{2}-1\right)\left(x^{6}-1\right)\left(x^{8}-1\right)\left(x^{10}-1\right)\left(x^{12}-1\right)\left(x^{14}-1\right)\left(x^{18}-1\right)}{(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)}$.
REMARK: Note that $w_{*}=w_{0} w_{J}=w_{J} w_{0} . w_{0}$ is central, but w_{J} is not central in w_{J}. Hence w_{*} induces the unique nontrivial graph automorphism of $\{2,3,4,5,6,7\} ;$ i.e., the nontrivial graph automorphism of (E_{6}).
$\left(E_{8}\right):$

There is only one conjugacy class $I_{1}=I$. Let J $=\{2,3,4,5,6,7,8\}$, and $K=\{3,4,5,6,7,8\}$. Then W_{J} is of type $\left(E_{7}\right), W_{K}$ is of type $\left(E_{6}\right)$. By proposition $31 w_{1}$ is a dder of $W_{J} \backslash W / W_{J}$, and the stabilizer of $w_{1} W_{J}$ in W_{J} is W_{K}. Proposition 34 applied to the subset $L=\{2,3,4,5,6,7\}$ shows that $u=123456754321$ is a ddcr of $W_{J} \backslash W / W_{J}$. The discussion of type (D_{ℓ}) shows that under conjugation, u induces the unique nontrivial graph automorphism of
$\{2,3,4,5,6,7\}$. By theorem 11 the stabilizer of $u W_{J}$ in W_{J} is W_{L} because this graph automorphism cannot be extended to a graph automorphism of $J=\{2,3,4,5,6,7,8\}$. Now w_{0}, the unique element of maximal length in W is central as W is of type (E_{8}); hence by proposition $32 w_{*}$ is a ddcr of $W_{J} \backslash W / W_{J}$ where $w_{*}=w_{0} w_{J}=w_{J} w_{0}$, and the stabilizer of $w_{*} W_{J}$ in w_{J} is w_{J}. Note that $\ell\left(w_{*}\right)=\ell\left(w_{0}\right)-\ell\left(w_{J}\right)=57$. By the discussion of type (E_{7}), $\gamma_{*}=$ the unique dcr of
W_{J} / W_{K} is an involution. γ_{*} is also a dder of $W_{K} \backslash W_{J} / W_{K}$. Hence the conditions of proposition 33 are satisfied, and we have that $w_{1} \gamma_{*} w_{1}=v$ is a dder of $W_{J} \backslash W / W_{J}$. Under conjugation, γ_{*} induces the unique nontrivial graph automorphism of $K=\{3,4,5,6,7,8\}$ and w_{1} commutes with the elements $w_{k}, k \varepsilon K$. Hence by theorem ll the stabilizer of $v W_{J}$ in W_{J} is W_{K} as this graph automorphism cannot be extended to $\{2,3,4,5,6,7,8\}$. Note that $\ell(v)=2+\ell\left(\gamma_{*}\right)$ $=2+27=29$. We present a resumé of what we have found so far in the following table:

dder	length	stabilizer
1	0	$W_{J}=W\left(E_{7}\right)$
w	1	$W_{K}=W\left(E_{6}\right)$
u	12	$W_{L}=W\left(D_{6}\right)$
v	29	$W_{K}=W\left(E_{6}\right)$
W_{*}	57	$W_{J}=W\left(E_{7}\right)$

$\left|\left(W_{J} \cup W_{J} w_{1} W_{J} \cup W_{J} u W_{J} \cup W_{J} v W_{J} \cup W_{J} w_{*} W_{J}\right) / W_{J}\right|$
$=1+\left[W\left(E_{7}\right): W\left(E_{6}\right)\right]+\left[W\left(E_{7}\right): W\left(D_{6}\right)\right]+\left[W\left(E_{7}\right): W\left(E_{6}\right)\right]+1$
$=1+56+126+56+1=240=\left[W\left(E_{8}\right): W\left(E_{7}\right)\right]$.
Hence $\left\{l, w_{1}, u, v, w_{*}\right\}$ is the complete set of dder of
$W_{J} \backslash W / W_{J}$. By proposition 36 we have
$\frac{p\left(E_{8}\right)}{p\left(E_{7}\right)}=1+p\left(w_{1}\right) \frac{p\left(E_{7}\right)}{p\left(E_{6}\right)}+p(u) \frac{p\left(E_{7}\right)}{p\left(D_{6}\right)}+p(v) \frac{p\left(E_{7}\right)}{p\left(E_{6}\right)}+p\left(w_{*}\right)$
$=1+\frac{x\left(x^{14}-1\right)\left(x^{5}+1\right)\left(x^{9}+1\right)}{(x-1)}+x^{12} \frac{\left(x^{14}-1\right)\left(x^{12}+x^{6}+1\right)\left(x^{8}+x^{4}+1\right)}{(x-1)}$
$+x^{29} \frac{\left(x^{14}-1\right)\left(x^{5}+1\right)\left(x^{9}+1\right)}{(x-1)}+x^{57}$
$=\frac{\left(x^{30}-1\right)\left(x^{18}+x^{12}+x^{6}+1\right)\left(x^{10}+1\right)}{(x-1)}$
$=\frac{\left(x^{30}-1\right)\left(x^{24}-1\right)\left(x^{20}-1\right)}{(x-1)\left(x^{6}-1\right)\left(x^{10}-1\right)}$.
It follows that
$p\left(E_{8}\right)=\frac{\left(x^{2}-1\right)\left(x^{8}-1\right)\left(x^{12}-1\right)\left(x^{14}-1\right)\left(x^{18}-1\right)\left(x^{20}-1\right)\left(x^{24}-1\right)\left(x^{30}-1\right)}{(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)}$.
$\left(F_{4}\right):$

There are two conjugacy classes $I_{1}=\{1,2\}, I_{2}=\{3,4\}$. Let $J=\{2,3,4\}, K=\{3,4\}$. By proposition $31 w_{1}$ is a der of $W_{J} \backslash W / W_{J}$, and the stabilizer of $w_{1} W_{J}$ in W_{J} is W_{K}. Note that $p\left(w_{1}\right)=x$. Proposition 34 applied to the subset $L=\{2,3\}$ shows that $u=12321$ is a der of $W_{J} \backslash W / W_{J}$. Note that u is an involution. From the discussion of type (B_{ℓ}) it follows that u stabilizes the set L under conjugation. It is easily seen that $u w_{4} u \neq w_{4}$. Thus by theorem ll, the stabilizer of $u W_{J}$ in W_{J} is W_{L}. Now w_{0} is central in w. Hence by proposition $32 w_{*}$ is a der of $W_{J} \backslash W_{J} / W_{J}$, where $w_{*}=w_{0} w_{J}=w_{J} w_{0}$, and the stabilizer of $w_{*} W_{J}$ in W_{J} is $w_{J} . w_{*}$ is also the unique der of W / W_{J} of maximal length. Note that $\ell\left(w_{*}\right)=\ell\left(w_{0}\right)-\ell\left(w_{J}\right)$ $=15$. One has $p\left(w_{0}\right)=x^{12} y^{12}, p\left(w_{J}\right)=x^{3} y^{6}$, and hence $p\left(w_{*}\right)=x^{9} y^{6}$. Now let $\gamma_{*}=232432$. It is easy to see that
γ_{*} is an involution and that $\gamma_{*} w_{3} \gamma_{*}=w_{4}$. Hence γ_{*} is a der of W_{J} / W_{K} and also a der of $W_{K} W_{J} / W_{K}$. It follows from lemma 13 that γ_{*} is the unique der of W_{J} / W_{K} of maximal length. Thus the conditions of proposition 33 are satisfied, and $v=w_{1} \gamma_{*} W_{1}$ is a der of $W_{J} W / W_{J} \quad \ell(v)=8$, and so again by proposition 33 , the stabilizer of vW_{J} in W_{J} is W_{K}. Note that one has $p(v)=x^{5} y^{3}$. We list the information we have accumulated so far in the following chart:

$$
\begin{aligned}
& \frac{w=\text { udder }}{1} \quad \frac{\ell(w)}{0} \quad \frac{p(w)}{l} \quad \frac{W_{J} \text {-stabilizer of } w W_{J}}{W_{J}} \\
& w_{1} \quad 1 \quad x \quad W_{K} \\
& \begin{array}{llll}
u & 5 & x^{4} y & W_{L}
\end{array} \\
& \text { v } 8 \\
& 8 \quad x^{5} y^{3} \\
& 15 \quad x^{9} y^{6} \\
& \mathrm{~W}_{\mathrm{K}} \\
& w_{*} \quad 1 \\
& \left|\left(W_{J} \cup W_{J} w_{1} w_{J} \cup W_{J} u W_{J} \cup W_{J} v W_{J} \cup W_{J} w_{*} W_{J}\right) / W_{J}\right| \\
& =1+\left[W_{J}: W_{K}\right]+\left[W_{J}: W_{L}\right]+\left[W_{J}: W_{K}\right]+1 \\
& =1+\left[W\left(B_{3}\right): W\left(A_{2}\right)\right]+\left[W\left(B_{3}\right): W\left(B_{2}\right)\right]+\left[W\left(B_{3}\right): W\left(A_{2}\right)\right]+1 \\
& =1+8+6+8+1=24=\left[W\left(F_{4}\right): W\left(B_{3}\right)\right]=\left[W: W_{J}\right] . \\
& \text { Hence }\left\{1, w_{1}, u, v, w_{*}\right\} \text { is the complete list of udder for } \\
& W_{J} W / W_{J} \text {. By proposition } 36 \text { we have } \\
& \frac{p\left(F_{4}\right)}{p\left(B_{3}\right)}=1+x \frac{p\left(W_{J}\right)}{p\left(W_{K}\right)}+x^{4} y \frac{p\left(W_{J}\right)}{p\left(W_{L}\right)}+x^{5} y^{3} \frac{p\left(W_{J}\right)}{p\left(W_{K}\right)}+x^{9} y^{6} . \\
& \text { Now } p\left(W_{J}\right)=\frac{y^{2}-1}{y-1} \cdot \frac{y^{3}-1}{y-1}(x+1)(x y+1)(x y+1) \\
& p\left(W_{K}\right)=\frac{y^{2}-1}{y-1} \cdot \frac{y^{3}-1}{y-1}
\end{aligned}
$$

$$
p\left(W_{L}\right)=(x+1)(y+1)(x y+1)
$$

It follows that
$\frac{p\left(F_{4}\right)}{p\left(B_{3}\right)}=\left(x^{2}+x+1\right)(x y+1)\left(x^{2} y+1\right)\left(x^{2} y^{2}+1\right)\left(x^{2} y^{2}-x y+1\right)$.
Hence

$$
\begin{aligned}
p\left(F_{4}\right)= & (x+1)(y+1)\left(x^{2}+x+1\right)\left(y^{2}+y+1\right)(x y+1)(x y+1)\left(x^{2} y+1\right) \\
& \cdot\left(x y^{2}+1\right)\left(x^{2} y^{2}-x y+1\right)\left(x^{2} y^{2}+1\right) \\
= & (x+1)(y+1)\left(x^{2}+x+1\right)\left(y^{2}+y+1\right)\left(x^{2} y+1\right)\left(x y^{2}+1\right)(x y+1) \\
& \cdot\left(x^{2} y^{2}+1\right)\left(x^{3} y^{3}+1\right)
\end{aligned}
$$

$\left(G_{2}\right)$

There are two classes of involutions $I_{1}=\{1\}, I_{2}=\{2\}$. Let $J=\{2\}$. It is easy to see that the adder of W / W_{J} are $\left\{1, w_{1}, w_{1} w_{2} w_{1}, w_{1} w_{2} w_{1} w_{2} w_{1}\right\}$. One has $\frac{p(W)}{p\left(W_{J}\right)}$ $=(x+1)\left(x^{2} y^{2}+x y+1\right)$. Hence $p\left(G_{2}\right)=(x+1)(y+1)\left(x^{2} y^{2}+x y+1\right)$.

REMARK: One can show that if W is the dihedral
group of order 2 m , then

$$
p(W)= \begin{cases}\frac{x^{2}-1}{x-1} \cdot \frac{x^{m}-1}{x-1} & \text { if } m \text { is odd } \\ \frac{x^{2}-1}{x-1} \cdot \frac{y^{2}-1}{y-1} \cdot \frac{(x y)^{\frac{m}{2}}-1}{x y-1} & \text { if } m \quad \text { is even. }\end{cases}
$$

§8. THE DEGREES OF THE IRREDUCIBLE CHARACTERS OF G WHOSE RESTRICTIONS TO $\mathrm{H}_{\mathrm{C}}(\mathrm{G}, \mathrm{B})$ ARE ONE-DIMENSIONAL

Let G be a finite irreducible group with $B N$ pair whose associated Coxeter system is (W,I). I_{1} and I_{2} represent the two conjugacy classes of the elements $\left\{w_{i} \mid i \varepsilon I\right\}$. If there is only one conjugacy class we put $I_{2}=\varnothing, I_{1}=I$. Adhering to our usual convention we put $\zeta\left(X_{W_{i}}\right)=p, i \varepsilon I_{1}$, and $\zeta\left(X_{W_{i}}\right)=q$, i εI_{2}. By proposition (17) there are two one-dimensional characters ζ and σ of $H=H_{C}(G, B)$ if $I_{2}=\varnothing$, while if $I_{2} \neq \emptyset$ there are two additional one-dimensional character σ_{1} and σ_{2}. For convenience we repeat the definition of $\zeta, \sigma, \sigma_{1}, \sigma_{2}:$

$$
\begin{aligned}
& \zeta\left(X_{W}\right)=p^{\ell}(w) q^{\ell}(w) \\
& \sigma\left(X_{W}\right)=(-1)^{\ell(w)}, \\
& \sigma_{1}\left(X_{W}\right)=p^{\ell_{1}(w)}(-1)^{\ell_{2}(w)}, \\
& \sigma_{2}\left(X_{W}\right)=(-1)^{\ell}(w) q^{\ell_{2}(w)},
\end{aligned}
$$

where $\ell_{1}(w)$ and $\ell_{2}(w)$ are defined as in the corollary to proposition 17 .

THEOREM 12: Denote by $\tilde{\zeta}$, $\tilde{\sigma}, \tilde{\sigma}_{1}, \tilde{\sigma}_{2}$ the unique irreducible characters of G whose restrictions to $H_{C}(G, B)$ are $\quad \varsigma, \sigma, \sigma_{1}, \sigma_{2}$ respectively. Then
(1) $\tilde{\zeta}=l_{G}$ is the trivial character of G,
(ii) $\tilde{\sigma}(1)=\zeta\left(X_{w_{0}}\right)=\left[B: B \cap w_{0} B w_{0}^{-1}\right]=\left(p^{\ell} q_{q^{\ell}}\right)^{h / 2}$,
(iii) $\tilde{\sigma}_{1}(1)=f(p, q) / f\left(p, q^{-1}\right)$,
(iv) $\quad \tilde{\sigma}_{2}(1)=f(p, q) / f\left(p^{-1} q\right)$,
where $\ell_{1}=\left|I_{1}\right|, \ell_{2}=\left|I_{2}\right|$ and $f(x, y)$ is the Poincare polynomial of (W, I); h is the Coxeter number of W.

PROOF: (i) has been observed in 51.
(ii) Apply the formula (ii) of theorem 1 with
$\tilde{x}=\tilde{\sigma}$. Then $\tilde{\sigma}(1)=[G: B]\left[\sum_{W \in W} 5\left(X_{W}\right)^{-1}\right]^{-1}$

$$
\begin{aligned}
& =\left[\sum_{W \in W} \zeta\left(x_{W}\right)\right]\left[\sum_{W \in W} \zeta\left(x_{W}\right)^{-1}\right]^{-1} \\
& =\zeta\left(x_{w_{0}}\right) \cdot\left[\sum_{W \in W} \zeta\left(x_{W}\right)\right]\left[\sum_{W \in W} \zeta\left(x_{W}\right)\right]^{-1} \\
& =\zeta\left(x_{W_{0}}\right) .
\end{aligned}
$$

(iii) Apply the formula (ii) of theorem 1 with $\tilde{x}=\tilde{\sigma}_{1}$. Then $\tilde{\sigma}_{1}(1)=[G: B] \cdot \sum_{W \in W} p^{l_{1}(w)} q^{-l_{2}(w)}=f(p, q) / f\left(p, q^{-1}\right)$. (iv) Interchange p and q in (iii).
$\tilde{\sigma}$ is the Steinberg character of G. The fact that $\tilde{\sigma}(1)=\left[B: B \cap w_{0} \mathrm{Bw}_{0}^{-1}\right]$ was proved by R. Steinberg [18] when G is a finite Lie group, and by C. Curtis [5] for an rbitray finite group G with $B N$ pair. Note that if $p=q$ and if the Coxeter system (W, I) is of Lie type (g), then $\tilde{\sigma}(1)=p^{N}$ where N is the number of positive roots of of. The specific formulas for $\tilde{\sigma}_{1}$ and $\tilde{\sigma}_{2}$ as functions of p and q are easy to calculate using theorem 12 and the Poincare polynomials of section 7 . We give the formulas below for the cases when (W,I) is irreducible of Lie type (of) such that the Dynkin diagram of (of) is multiply laced.

$$
\begin{aligned}
\underline{\left(B_{\ell}\right)}: & \tilde{\sigma}_{1}(1)
\end{aligned} \quad=\prod_{i=1}^{\ell} \frac{q\left(p^{i-1} q+1\right)}{\left(p^{i-1}+q\right)}=q^{\ell} \prod_{i=1}^{\ell} \frac{p^{i-1} q+1}{p^{i-1}+q} .
$$

If $p=q$, these formulas become:

$$
\begin{aligned}
& \tilde{\sigma}_{1}(1)=\frac{p\left(p^{\ell-1}+1\right)\left(p^{\ell}+1\right)}{2(p+1)} \\
& \tilde{\sigma}_{2}(1)=\frac{p^{(\ell-1)^{2}\left(p^{\ell-1}+1\right)\left(p^{\ell}+1\right)}}{2(p+1)}
\end{aligned}
$$

If $p=q$ these formulas become

$$
\tilde{\sigma}_{1}(1)=\tilde{\sigma}_{2}(1)=\frac{p^{4}\left(p^{3}+1\right)^{2}\left(p^{2}+1\right)\left(p^{4}+1\right)\left(p^{6}+1\right)}{8(p+1)^{2}}
$$

$$
\underline{\left(G_{2}\right):} \quad \tilde{\sigma}_{1}(1)=\frac{q^{3}\left(p^{2} q^{2}+p q+1\right)}{\left(p^{2}+p q+q^{2}\right)}
$$

$$
\tilde{\sigma}_{2}(1)=\frac{p^{3}\left(p^{2} q^{2}+p q+1\right.}{\left(p^{2}+p q+q^{2}\right)}
$$

If $p=q$ these formulas become

$$
\tilde{\sigma}_{1}(1)=\tilde{\sigma}_{2}(1)=\frac{p\left(p^{4}+p^{2}+1\right)}{3}
$$

$$
\begin{aligned}
& \underline{\left(F_{4}\right)}: \quad \tilde{\sigma}_{1}(1)=\frac{q^{12}\left(p^{2} q+1\right)\left(p q^{2}+1\right)(p q+1)\left(p^{2} q^{2}+1\right)\left(p^{3} q^{3}+1\right)}{\left(p^{2}+q\right)\left(p+q^{2}\right)(p+q)\left(p^{2}+q^{2}\right)\left(p^{3}+q^{3}\right)} \\
& \tilde{\sigma}_{2}(1)=\frac{p^{12}\left(p^{2} q+1\right)\left(p q^{2}+1\right)(p q+1)\left(p^{2} q^{2}+1\right)\left(p^{3} q^{3}+1\right)}{\left(p^{2}+q\right)\left(p+q^{2}\right)(p+q)\left(p^{2}+q^{2}\right)\left(p^{3}+q^{3}\right)}
\end{aligned}
$$

99. THE DEGREE OF THE REFLECTION CHARACTER AND ITS DUAL

Let G be a finite irreducible group with $B N$ pair whose associated Coxeter system (W,I) is of Lie type (\mathcal{F}) where $o f$ is a simple complex Lie algebra. Let $H=H_{C}(G, B)$ and $\pi: H \rightarrow$ End h the reflection representation of H. We use the notations and conventions established in section 5 . By proposition 2 there exists a unique irreducible complex character \tilde{x} of G such that $\tilde{x} \mid H=x$, the reflection character of H. We call \tilde{x} the reflection character of G. In this section we calculate the degree of \tilde{x}.

By theorem 9 if J is a maximal proper subset of I, then $\left(\tilde{x},\left(I_{G_{J}}\right)^{G}\right)_{G}=1$. Hence by proposition 2 the restriction of \tilde{x} to $H_{C}\left(G, G_{J}\right)$ is a linear character of $H_{C}\left(G, G_{J}\right)$. Consider $H_{C}\left(G, G_{J}\right)$ as a subalgebra of H. There is no confusion if we also denote by x the restriction of \tilde{x} to $H_{C}\left(G_{J}, G\right)$. Now if $\left\{u_{1}, \ldots, u_{m}\right\}$ is the complete set of distinguished double coset representatives for $W_{J} \backslash W / W_{J}$, then this set can also be taken as a complete set of double coset representatives for $G_{J} \backslash G / G_{J}$. Thus $\left\{Y_{u_{i}} \mid 1 \leq i \leq m\right\}$ is our canonical basis for $H_{C}\left(G, G_{J}\right)$, where $Y_{u_{i}}=\left|G_{J}\right|^{-1} \sum_{x \in G J} \sum_{i} G_{J}$. By theorem 1 we have the degree of \tilde{x} :

$$
\tilde{x}(1)=\left(\sum_{i=1}^{m} x\left(Y_{u_{i}}\right) x\left(Y_{u_{i}^{-1}}\right) \zeta\left(Y_{u_{i}}\right)^{-1}\right)^{-1} \cdot\left[G: G_{J}\right]
$$

Thus the degree of \tilde{x} will be determined once we know $x\left(Y_{U_{i}}\right), \zeta\left(Y_{u_{i}}\right)$, and $\left[G: G_{J}\right]$. We describe a method for
finding these quantities using the results of sections 6 and 7. Recall that in section 7 we defined for any subset S of $W: p(S)=\sum_{w \varepsilon S} x^{\ell}(w) y^{\ell}(w)=p(S ; x, y)$, where I_{1} and I_{2} represent the two conjugacy classes of the elements $\left\{W_{i} \mid i \varepsilon I\right\}$. Let $q_{i}=p$ for all $i \in I_{1}, q_{i}=q$ for all i εI_{2} and put $f(S)=p(S ; p, q)$ for every subset S of W. It is clear then that one has $f(S)=\sum_{W \varepsilon S} \zeta\left(X_{W}\right)$. Now $\left[G: G_{J}\right]=[G: B] /\left[G_{J}: B\right]$. Hence one has $\left[G: G_{J}\right]=f(W) / f\left(W_{J}\right)$. If W is of type (O) we always choose the maximal subset J of I exactly as we did in section 7. Thus [G: G_{J}] has already been computed for every type (\mathcal{O}). Now $Y_{u_{i}}=\left|G_{J}\right|^{-1} \cdot \sum_{x \in G_{J} u_{i} G_{J}} x=\left[G_{J}: B\right]^{-1} \cdot \sum_{w \in W_{J} u_{i} W_{J}} X_{W}$.

If we let K_{i} be the unique subset of J such that $W_{K_{1}}$ is the stabilizer of $u_{i} W_{J}$ in W_{J} ($c f_{\text {, theorem }} 11$), and Γ_{i} the set of der for $W_{J} / W_{K_{1}}$, then $Y_{u_{1}}=\left[G_{J}: B\right]^{-1} \cdot \sum_{\gamma \varepsilon \Gamma_{i}} X_{\gamma} X_{u_{1_{W}}} \sum_{W_{J}} X_{W}=\sum_{\gamma \varepsilon \Gamma_{i}} X_{\gamma} \cdot X_{u_{i}} e_{J}$, where $e_{J}=\left|G_{J}\right|^{-1} \sum_{x \in G_{J}} x=\left(\sum_{W \in W_{J}} \zeta\left(X_{W}\right)\right)^{-1} \sum_{w \in W_{J}} X_{W}$. Thus $\left.\zeta\left(Y_{u_{i}}\right)=\sum_{\gamma \in \Gamma} \zeta\left(X_{\gamma}\right) \cdot \zeta\left(X_{u_{i}}\right)=f\left(u_{i}\right) \frac{f\left(W_{J}\right)}{f\left(W_{K_{i}}\right.}\right)$. Now for our particular choice of the subset J, the complete set of dder of $W_{J} \backslash W / W_{J}$ have been listed in 57 for each case along with $p\left(u_{i}\right)$ and $p\left(W_{J}\right) / p\left(W_{K_{i}}\right)$; thus to obtain $\zeta\left(Y_{u_{i}}\right)$ one only needs to replace x by p and y by q.

The linear character x of $H\left(G, G_{J}\right)$ is afforded by the one-dimensional space $e_{J} \cdot h$. We have chosen $J=I-\{I\}$ in each case. $e_{J} \cdot h$ contains the weight λ_{1} (cf.55). Let C be the Cartan matrix of $H, d=\operatorname{det} C$. Put $\mu=d \lambda_{1}$ $=m \alpha_{1}+\sum_{i=2}^{\ell} a_{i} \alpha_{i}$. By Cranmer's rule, $m=\operatorname{det} M_{11}$ where M_{11} is the (1-1)-minor of $C . d$ and m have been computed in each case in $\S 5$. Now $e_{J} \cdot \alpha_{j}=0$ for $j \neq 1$. Thus $\mu=e_{J} \cdot \mu$ $=m e_{J} \cdot \alpha_{1}$; that is, $e_{J} \cdot \alpha_{1}=m^{-1} \cdot \mu$. Note that by proposition 25 we have $X_{W_{1}} \cdot \mu=\mu-d \alpha_{1}$. We summarize these facts in the following

PROPOSITION 37: Let the notation be as above. Then
(i) $e_{J} \cdot \alpha_{j}=0, j \neq 1$
(ii) $e_{J} \cdot \alpha_{i}=m^{-1} \mu$
(iii) $X_{W_{1}} \cdot \mu=q_{1} \mu-d \alpha_{1}$
(iv) $X_{w_{j}} \cdot \mu=q_{j} \cdot \mu, j \neq 1$.

Now from §l it follows that

$$
\begin{aligned}
Y_{u_{i}} & =\zeta\left(Y_{u_{i}}\right) e_{J} u_{i} e_{J}=\zeta\left(Y_{u_{i}}\right) e_{J} e(B) u_{i} e(B) e_{J} \\
& =\zeta\left(Y_{u_{i}}\right) \zeta\left(X_{u_{i}}\right)^{-1} e_{J} X_{u_{i}} e_{J} \\
& =\frac{f\left(W_{J}\right)}{f\left(W_{K_{i}}\right)} e_{J} X_{u_{i}} e_{J}
\end{aligned}
$$

Furthermore, $Y_{u_{i}} \cdot \mu=x\left(Y_{u_{i}}\right) \mu$. Thus to obtain $x\left(Y_{u_{i}}\right)$ one has only to compute $e_{J} X_{u_{i}} \cdot \mu$. This in turn can be done using proposition 37.

PROPOSITION 38: One has $\sum_{i=1}^{m} x\left(Y_{u_{i}}\right)=0$.
PROOF: Indeed $\sum_{i=1}^{m} x\left(Y_{u_{i}}\right)=\left|G_{J}\right|^{-1} \cdot \sum_{x \in G} \tilde{x}(x)$. This must be equal to zero because \tilde{x} is not the trivial character of G.

An inspection of the case by case treatment given in 57 reveals that the unique der w_{*} of W / W_{J} of maximal length is an involution (and hence the dder of $W_{J} \backslash W / W_{J}$ of maximal length) if and only if W is not of type (A_{ℓ}) or $\left(E_{6}\right)$. Moreover in this case, when $w_{*}^{2}=1$, we have $w_{0} \cdot \alpha_{1}$ $=-\alpha_{1}$. This enables us to calculate $x\left(Y_{W_{*}}\right)$ quite easily as follows:

LEMMA 16: Assume G is not of type (A_{ℓ}) or $\left(E_{6}\right)$, then one has $X_{W_{0}} \cdot \alpha_{1}=-\left(p^{\ell_{1}} q^{\ell}\right)^{\frac{h(\ell-1)}{2 \ell}} \alpha_{1}$, where $\ell_{1}=\left|I_{1}\right|$, $\ell_{2}=\left|I_{2}\right|$, and h is the Coxeter number of (W, I).

PROOF: This is an immediate consequence of proposition 28.

PROPOSITION 39: Assume that the unique der w_{*} of W / W_{J} of maximal length is an involution (and hence by lemma 15 a dder of $W_{J}\left(W / W_{J}\right)$, then one has

$$
x\left(Y_{W_{*}}\right)=-\left(p^{\ell}{ }_{1} q^{\ell}\right)^{\frac{h(\ell-1)}{2 \ell}} \zeta\left(X_{W_{J}}\right)^{-1}
$$

PROOF: Recall that in this case the stabilizer of $w_{*} W_{J}$ in W_{J} is W_{J}. Thus $Y_{W_{*}}=X_{W_{*}} e_{J}$. Let $\xi=e_{J} \cdot a_{1}$.

Then $x\left(Y_{W_{*}}\right) \xi=Y_{W_{*}} \cdot \xi=X_{W_{*}} e_{J} \cdot \xi=X_{W_{*}} \cdot \xi$. We also have $w_{0}=w_{*} w_{J}, X_{W_{0}}=X_{W_{*}} X_{W_{J}}$, and hence $X_{W_{0}} \cdot \xi=x\left(Y_{W_{*}}\right) \zeta\left(X_{W_{J}}\right) \cdot \xi$. Now by the lemma 16 we have

$$
\begin{aligned}
& x_{w_{0}} \cdot \alpha_{1}=-\left(p^{\ell} q^{\ell}\right)^{\frac{h(\ell-1)}{2 \ell}} \cdot \alpha_{1}, \text { while if } j \neq 1 \text {, then } \\
& x_{w_{0}} \cdot \alpha_{j}=-\left(p^{\ell} q^{\ell}\right)^{\frac{h(\ell-1)}{2 l}} \alpha_{j}, \text { for some } j^{\prime} \neq 1 \text {. But } \\
& \xi=e_{J} \cdot \alpha_{1}=\alpha_{1}+\sum_{i=2}^{\ell} a_{1} \alpha_{i} \text {. It follows that } \\
& x_{W_{0}} \cdot \xi=-\left(p^{\ell} q^{\ell}\right)^{\frac{h(\ell-1)}{2 \ell}} \cdot \xi . \text { Hence } \\
& \quad x\left(Y_{W_{*}}\right) \zeta\left(x_{W_{J}}\right)=-\left(p^{\ell_{1}} q^{\ell}\right)^{\frac{h(\ell-1)}{2 \ell}} .
\end{aligned}
$$

Using the methods outlined in this section it is possidle to obtain the degree of the reflection character in each case. We have carried out this computation; and the results are listed below.

It is of interest to notice that if the Dynkin graph of G is simply laced, then $\tilde{x}(1)=\sum_{i=1}^{\ell} p^{m_{i}}$ where $\left\{m_{1}, m_{2}, \ldots, m_{\ell}\right\}$ are the exponents of the Well group of G.

In the case of (G_{2}) it is easy to show from the formula given for $\tilde{x}(1)$ that one must have $\sqrt{p q} \varepsilon Z$.
$\left(\mathrm{A}_{\ell}\right):$

$$
u_{i}=\operatorname{ddcr}
$$

1

w_{1}

$$
\zeta\left(Y_{u_{i}}\right)
$$

$$
x\left(Y_{u_{1}}\right)
$$

$$
1
$$

I

$$
\frac{p\left(p^{\ell}-1\right)}{(p-1)}
$$

$$
-1
$$

$\left[G: G_{J}\right]=\frac{p^{\ell+1}-1}{p-1}, \quad\left\langle x, x>G_{J}=\frac{p^{\ell+1}-1}{p\left(p^{\ell}-1\right)}\right.$
$\tilde{x}(1)=\frac{p\left(p^{\ell}-1\right)}{(p-1)}=p+p^{2}+\cdots+p^{\ell}$.
(B_{ℓ}): $\quad \underset{1}{0-0} \cdots \underset{\ell-1}{0} 0, q_{i}=p(1 \leq i \leq \ell \quad 1), q_{\ell}=q$.

$$
u_{1}=\operatorname{ddcr} \quad \zeta\left(Y_{u_{i}}\right) \quad x\left(Y_{u_{i}}\right)
$$

$$
\begin{array}{lll}
1 & 1 & 1
\end{array}
$$

$$
w_{1} \frac{p\left(p^{l-1}-1\right)\left(p^{l-2} q+1\right)}{(p-1)} \quad p^{\ell-1}-1
$$

$$
\left.w_{*} p^{2(\ell-1}\right\} \quad-p^{\ell-1}
$$

$\left[G: G_{J}\right]=\frac{\left(p^{l}-1\right)\left(p^{l-1} q+1\right)}{p-1} ; \quad\langle x, x\rangle_{G_{J}}=\frac{(p+q)\left(p^{l-1} q+1\right)}{p q\left(p^{l-2} q+1\right)} ;$

$$
\tilde{x}(1)=\frac{(p q) \cdot\left(p^{\ell}-1\right)\left(p^{\ell-2} q+1\right)}{(p+q)(p-1)}
$$

If $\mathrm{p}=\mathrm{q}$, as in the case of the Chevalley groups, this becomes:

$$
\dot{x}(1)=\frac{1}{2}\left(q+q^{2}+\cdots+q^{l-1}+2 q^{l}+q^{l+1}+q^{\ell+2}+\cdots+q^{2 l-1}\right) .
$$

$$
\begin{array}{ccc}
\frac{\left(D_{\ell}\right)}{}: & 0-0-\cdots & \\
u_{1}=d d c r & \zeta\left(Y_{u_{1}}\right) & x\left(Y_{u_{1}}\right) \\
1 & 1 & 1 \\
w_{1} & \frac{p\left(p_{\ell}^{\ell-1}-1\right)\left(p^{\ell-2}+1\right)}{(p-1)} & p^{\ell-1}-1 \\
w_{*} & p^{2(\ell-1)} & -p^{\ell-1}
\end{array}
$$

$$
\begin{aligned}
& \left.\left[G: G_{J}\right]=\frac{\left(p^{\ell}-1\right)\left(p^{\ell-1}+1\right)}{(p-1)},<x, x\right\rangle_{G_{J}}=\frac{\left(p^{\ell-1}+1\right)(p+1)}{p\left(p^{\ell-2}+1\right)} \\
& \tilde{x}(1)=\frac{p\left(p^{\ell}-1\right)\left(p^{\ell-2}+1\right)}{(p-1)(p+1)}=p+p^{3}+p^{5}+\cdots+p^{2 \ell-3}+p^{\ell-1} .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
u_{i}=\operatorname{ddcr} & \zeta\left(\mathrm{Y}_{\mathrm{u}_{i}}\right) & x\left(\mathrm{Y}_{\mathrm{u}_{i}}\right) \\
1 & 1 & 1
\end{array} \\
& w_{1} \frac{p\left(p^{8}-1\right)\left(p^{3}+1\right)}{(p-1)} \\
& \frac{\left(p^{3}+p^{2}-1\right)\left(p^{4}-1\right)\left(p^{3}+1\right)}{p^{2}-1} \\
& u \quad \frac{p^{8}\left(p^{5}-1\right)\left(p^{4}+1\right)}{(p-1)} \\
& \frac{-p^{4}\left(p^{5}-1\right)}{(p-1)} \\
& d=\operatorname{det} C=\frac{p^{6}+1}{p^{2}+1}\left(p^{2}+p+1\right)=p^{6}+p^{5}-p^{3}+p+1 \\
& m=(p+1)\left(p^{4}+1\right) \\
& {\left[G: G_{J}\right]=\frac{\left(p^{9}-1\right)\left(p^{12}-1\right)}{(p-1)\left(p^{4}-1\right)}=\left(p^{2}+p+1\right)^{2}\left(p^{6}+p^{3}+1\right)\left(p^{2}-p+1\right)\left(p^{4}-p^{2}+1\right)} \\
& \langle x, x\rangle_{G J}=\frac{\left(p^{2}+p+1\right)^{2}\left(p^{2}-p+1\right)\left(p^{4}-p^{2}+1\right)}{p\left(p^{4}+1\right)} \\
& \bar{x}(1)=p\left(p^{4}+1\right)\left(p^{6}+p^{3}+1\right)=p+p^{4}+p^{5}+p^{7}+p^{8}+p^{11}
\end{aligned}
$$

$\underline{\left(\mathrm{E}_{7}\right):}$

$u_{i}=d d c r$
1
w_{1}
$\zeta\left(\mathrm{Y}_{\mathrm{u}_{1}}\right)$
1

$$
x\left(Y_{u_{i}}\right)
$$

1
u

$$
\frac{p^{10}\left(p^{9}-1\right)\left(p^{12}-1\right)}{(p-1)\left(p^{4}-1\right)} \quad \frac{p^{5}\left(p^{9}-1\right)\left(p^{3}+1\right)\left(p^{3}-p-1\right)}{p^{2}-1}
$$

$$
w_{*} \quad p^{27} \quad-p^{18}
$$

$$
\pi\left(X_{W_{0}}\right)=-p^{54} \cdot I, \quad \zeta\left(X_{W J}\right)=p^{36}
$$

$$
d=\operatorname{det} C=\frac{(p+1)\left(p^{9}+1\right)}{\left(p^{3}+1\right)}=p^{7}+p^{6}-p^{4}-p^{3}+p+1
$$

$$
m=\frac{\left(p^{6}+1\right)\left(p^{2}+p+1\right)}{p^{2}+1}=\frac{p^{6}+1}{p^{2}+1} \cdot \frac{p^{3}-1}{p-1}=p^{6}+p^{5}-p^{3}+p+1
$$

$$
\left[G: G_{J}\right]=\frac{\left(p^{14}-1\right)\left(p^{5}+1\right)\left(p^{9}+1\right)}{(p-1)}=\frac{p^{14}-1}{p-1} \cdot \frac{p^{10}-1}{p^{5}-1} \cdot \frac{p^{18}-1}{p^{9}-1}
$$

$$
\left\langle x, x>G_{J}=\frac{\left(p^{9}+1\right)\left(p^{5}+1\right)\left(p^{4}-1\right)}{p\left(p^{6}+1\right)(p-1)}\right.
$$

$$
\bar{x}(1)=\frac{p\left(p^{6}+1\right)\left(p^{14}-1\right)}{\left(p^{2}+1\right)\left(p^{2}-1\right)}=p+p^{5}+p^{7}+p^{9}+p^{11}+p^{13}+p^{17}
$$

$\left(\mathrm{F}_{4}\right):$

$$
q_{i}=p \quad(i=1,2) ; q_{i}=q \quad(i=3,4)
$$

dder $=u_{i}$
1
w_{1}
u
v
v

$$
\zeta\left(Y_{u_{i}}\right)
$$

1

$$
p(p+1)\left(p q+1\left(p q^{2}+1\right)\right.
$$

$$
(p+1)(p q+1)(p+p q-1)
$$

$$
p^{4} q\left(q^{2}+q+1\right)\left(p q^{2}+1\right)
$$

$$
p^{2}\left(p^{2} q-1\right)\left(q^{2}+q+1\right)
$$

$$
p^{5} q^{3}(p+1)(p q+1)\left(p q^{2}+1\right)
$$

$$
p^{3} q(p q+1)(p+1(p q-q-1)
$$

$$
p^{9} q^{6}
$$

$$
-p^{6} q^{3}
$$

$d=\operatorname{det} c=p^{2} q^{2}-p q+1=\frac{p^{3} q^{3}+1}{p q+1}$
$m=p q^{2}+1$
$\left[G: G_{J}\right]=\left(p^{2}+p+1\right)(p q+1)\left(p^{2} q+1\right)\left(p^{2} q^{2}+1\right)\left(p^{2} q^{2}-p q+1\right)$
$\langle x, x\rangle_{G_{J}}=\frac{\left(p^{2}+p+1\right)\left(p^{3} q^{3}+1\right)(p+q)}{p q\left(p q^{2}+1\right)}$
$\tilde{x}(1)=\frac{p q\left(p q^{2}+1\right)\left(p^{2} q+1\right)\left(p^{2} q^{2}+1\right)}{(p+q)}$
$\underline{\left(G_{2}\right):}$

$$
\mathrm{q}=\mathrm{p}, \mathrm{q}=\mathrm{q}
$$

$u=d d e r$
$\zeta\left(Y_{u}\right)$

$$
x\left(Y_{u}\right)
$$

1
1
1
W_{1}

$$
p(q+1)
$$

$$
p+\sqrt{p q}-1
$$

$$
w_{1} w_{2} w_{1} \quad p^{2} q(q+1)
$$

$$
p \sqrt{p q}-p-\sqrt{p q}
$$

$$
w_{*}=w_{1} w_{2} w_{1} w_{2} w_{1} \quad p^{3} q^{2}
$$

$$
-p^{3 / 2} q^{1 / 2}
$$

$$
d=\operatorname{det} C=p q-\sqrt{p q}+1, \pi\left(X_{w_{0}}\right)=-(p q)^{3 / 2} \cdot I
$$

$$
m=q+1
$$

$\left[G: G_{J}\right]=(p+1)\left(p^{2} q^{2}+p q+1\right)$
$\langle x, x\rangle_{G_{J}}=\frac{2(p+\sqrt{p q}+q)(p q-\sqrt{p q}+1}{p q(q+1)}$
$\tilde{x}(1)=\frac{p q(p+1)(q+1)(p q+\sqrt{p q}+1)}{2(p+\sqrt{p q}+q)}$
Finally we give a formula for the dual $\tilde{x}^{(\ell-1)}$ of the reflection character. Recall that $\tilde{x}^{(\ell-1)}$ is the unique irreducible complex character of G whose restriction to $H=H_{C}(G, B)$ is the character \hat{x}, where X is the reflectLion character of H; and $\hat{x}(x)=x(\hat{x})$ for all $x \in H$ (cf. section 3). From theorem 1 we have

$$
\begin{equation*}
\left.\left.\tilde{x}^{(l-1}\right)_{1}\right)=\sum_{W \varepsilon W} \zeta\left(X_{W}\right)\left[\sum_{W \in W} \hat{x}\left(X_{W}\right) \hat{x}\left(X_{W}-1\right) \zeta\left(X_{W}\right)\right]^{-1} . \tag{25}
\end{equation*}
$$

Now $\left.\hat{x}\left(X_{w}\right)=x\left(\hat{X}_{w}\right)=(-1)^{\ell(w)_{\zeta}\left(X_{W}\right)} x^{\left(X_{w}^{-1}\right.}\right)$. Moreover,
$\sum_{W} \zeta\left(X_{W}\right)=\zeta\left(X_{W_{0}}\right) \sum_{W \in W} \zeta\left(X_{W}^{-1}\right)=p^{\ell}{ }_{1} q^{\ell} \sum_{W \in W} \zeta\left(X_{W}\right)^{-1}$.
From the definition of the reflection representation $\pi: H \rightarrow$ End h it is easy to see that $A_{W_{i}}$ is the matrix representing $\pi\left(X_{W_{1}}\right)$ relative to the basis $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$, then $A_{w_{i}}^{-1}$ is obtained by replacing p by p^{-1} and q by q^{-1} in all the entries of $A_{w_{i}}$. It follows that for any $w \varepsilon W$, the inverse of A_{W}, the matrix representing $\pi\left(X_{W}\right)$, can be obtained by replacing p by p^{-1}, q by q^{-1} in the entries of $A_{w}-1$. Hence we have the following theorem.

THEOREM 13: Let \tilde{x} be the reflection character of G and $\tilde{\tilde{x}}$ the dual of \tilde{x} in the above sense. Then there exists a rational function $r(x, y) \varepsilon Q(x, y)$ such that $\tilde{x}(1)=r(p, q)$ and $\hat{\tilde{x}}(1)=p^{\ell}{ }_{1} q^{\ell} r^{r}\left(p^{-1}, q^{-1}\right)$.

Axiom of cancellation, 14.
B(,) , 42 .
Bruhat decomposition, 20.
Cartan matrix of $\mathrm{H}, 43$.
Contragredient representation, 36.
Coxeter system, 14; Hecke algebra of, 26; Poincare polynomial of, 74.
$x^{*}, 36$.
$x, 36$.
$x, 35$.
$\langle x, x\rangle_{P}, 10$.
der, 17
dder, 17
Exponents, 18.
Group with BN pair, 20.
$G_{J}, 21$.
Hecke algebra, 3; associated to a Coxeter system, 26.
$H\left(q_{1}, \ldots, q_{l}\right), 26 ;$ Center of, 29; Trivial representation of, 26 ; weights of, 61.
$\ell(w), 14$.
$\ell_{1}(w), \ell_{2}(w), 34$.
$m_{i j}, 15$
Parabolic subgroup, 21 .
Poincaré polynomial, 74
$\pi^{*}, 36$.
Reflection representation, 48; compounds of, 51.
$\sigma\left(X_{W}\right), \sigma_{1}\left(X_{W}\right), \sigma_{2}\left(X_{W}\right), 33,88$.
$W_{J}, 15$
$X_{W_{0}}, 31$.
$X_{W}, 25$.
$\hat{X}_{W}, 35$.
$\zeta\left(X_{W}\right), 26$.

BIBLIOGRAPHY

[1] Bourbaki, N., Groupes et algèbres de Lie, Chapters 4, 5,6, Hermann, Paris, 1968.
[2] Brauer, R., and Sah, C., Theory of finite groups, a symposium, Benjamin, New York, 1969.
[3] Chevalley, C., "Sur certains groupes simples," Tohoku Math. J., 7 (1955), 14-66.
[4] Curtis, C. W., "On centralizer rings and characters of representations of finite groups," Math. Zeit. 107 (1968), 402-406.
[5] ----------, "The Steinberg character of a finite group with a (B-N) pair," Journal of Algebra, 4 (1966), 433-441.
[6] Feit, W., and Higman, G., "The nonexistence of generalized polygons," J. Algebra, l (1964), 114-131.
[7] Iwahori, N., "Generalized Tits system on p-adic semisimple groups," (appendix) Proc. Symp. In Pure Math., vol. IX (1965), 81-83.
[8] ------------, "On the structure of the Hecke ring of a Chevalley group over a finite field," J. Fac. Sci. Univ. Tokyo (I), 10 (1964), 215-236.
[9] Janusz, G., "Primitive Idempotents in group algebras," Proc. Am. Math. Soc., 17 (1966), 520-523.
[10] Littlewood, D. E., Theory of group characters and matrix representations of groups, Oxford, 1940.
[11] Matsumoto, H., "Générateurs et relations des groupes de Weyl géneralises," C. R. Acad. Sc. Paris, 253 (1964), 3419-3422.
[12] Pasiencier, S., and Wang, H., "Commutators in a semisimple Lie group," Amer. Math. Soc. Trans. 13 (1962), 907-913.
[13] Ree, R., "A family of simple groups associated with the simple Lie algebra of type (F_{4})," Amer. J. Math. 83 (1961), 401-420.
[14]
-------, "A family of simple groups associated with the simple Lie algebra of type (G_{2})," Amer. J. Math. 83 (1961), 432-462.
[15] Solomon, L., "The orders of the finite Chevalley groups," J. Algebra, 3 (1966), 376-393.
[16] Steinberg, R., "A geometric approach to the representations of $\mathrm{Gl}(\mathrm{n}, \mathrm{q})$," Trans. Amer. Math. Soc., 71 (1951), 274-282.
[17] -----------, "Finite reflection groups," Trans. Amer. Math. Soc., 91 (1959), 493-504.
[18] -----------, "Prime power representations of the finite linear groups II," Canadian J. Math., 9 (1957), 347-351.
[19] -----------, "Variations on a theme of Chevalley," Pacific J. Math., 12 (1960), 875-891.
[20] Suzuki, M., "A new type of simple group of finite order," Proc. Nat. Acad. Sci., 46 (1960), 868-870.
[21] Tits, J., "Théorème de Bruhat et sous-groupes paraboliques," Compt. Rend. Acad. Sc., 254 (1962), 2910-2912.

BIOGRAPHICAL NOTE

Robert W. Kilmoyer, Jr. was born July 13, 1939 in Lebanon, Pennsylvania. He entered Lebanon Valley College at Annville, Pennsylvania, in 1957, and received his A.B. from that institution in 1961. From 1961 to 1966 he was a graduate student in mathematics at the Massachusetts Institute of Technology. He has been a member of the mathematics faculty at Clark University since September, 1966.

He is married, has two children, and currently
resides at 18 Pocasset Avenue, Worcester, Massachusetts.

