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ABSTRACT

Some Irreducible Complex Representations of a Finite Group
with BN Pair.

Robert W. Kilmoyer, Jr.

"Submitted to the Department of Mathematics on July 15, 1969
in partial fulfillment of the requirement for the degree of
Ph.D."

In this thesis the irreducible constituents of the per-
mutation representation of G on the homogeneous space G/B
are studied where G 1s a finite group with BN pair and B
is a Borel subgroup of G.

§1 establishes the correspondence x <+ x between the
irreducible constituents x of the induced character (lp)
and the irreducible characters x of the Hecke algebra
H=Hc(G,P), where G 1s an arbitrary finite group and P a
subgroup of G. A theorem is proved which expresses x(g),

g ¢ G, purely in terms of the character x on H.

§2 is a resumé of the known properties of finite groups
with BN pair which are needed for this thesis.

In 83 a semisimple algebra H (also called a Hecke
algebra) 1is attached to every finite Coxeter system (W,I). H
is a generalization of both Hq(G,B) and C[W]l}, 1f G 1is a
finite group with BN pair having (W,I) as its associated
Coxeter system. The center of H 1s characterized and the
one-dimensional representations of H are classified.

§4 consists of a complete classification of the irre-
ducible representations of the Hecke algebra attached to a
dihedral group.

In §5 a distinguished absolutely irreducible representa-
tion 7 of H (the reflection representation), and its com-
pounds are constructed. w, the corresponding irreducible
character of G, 1s uniquely characterized by its multipli-
cities in the induced representations from parabolic subgroups
of G.

In 56 a theorem is proved about the stabilizers of the
orbits of certain permutation representations of a Weyl group
W. Information is obtained about the structure of double co-
sets of W.

In §7 a polynomial p(x,y) 1in two variables (the
Poincaré polynomial) is attached to every finite Coxeter
system. The results of §6 are applied inductively to obtailn



ABSTRACT--2.

a multiplicative formula for p(x,y) and hence for [G: B].
In §8 and §9 the results of §1 are applied to the lin-

ear representations and the reflection representation to ob-

tain formulas for the degrees of the corresponding irreduci-
ble representations of G.

Thesis Supervisor: Bertram Kostant

Title: Professor of Mathematics
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§1. HECKE ALGEBRAS AND THE IRREDUCIBLE CHARACTERS

OF A FINITE GROUP

Let G be a finite group and P a subgroup of G.
Denote by A = C[G] the group algebra of G over the com-
plex number field C. Then e(P) = |P|"! 7} x 1is an idem-
potent in A; and the left A-module Ae(P)xegffords the
character (lP)G induced from the trivial character 1lp of
P. Ae(P) 1is equivalent to the permutation representation of
G on G/P. We identify End, (Ae(P)) with the semisimple
subalgebra e(P)Ae(P) of A as an algebra of right operators,
where e(P)Ae(P) operates on Ae(P) by right multiplication.

e(P)Ae(P) 1s called the Hecke algebra over C of G
relative to P, and is denoted by HC(G,P). It is clear that
for x and y in G one has e(P)xe(P) = e(P)ye(P) if and
only if PxP = PyP; that is, if and only if x and y 1lie
in the same (P,P) double coset of G. Moreover, if D 1is
a complete set of representatives for the (P,P) double co-
sets of G, then {e(P)ae(P)|a ¢ D} 1s a C-basis for
Ho(G,P). For each double coset PaP, (PaP)~! = Pa"!P is
also a double coset. Thus we may choose D in such a way
that if a 1s the representative of PaP, then a~! is the
representative of (PaP)~!. We also make the convention that
1, the identity of G, 1s the representative of the double co-

set P.



PROPOSITION 1: 1In the above notation put

X, = |P[7! ] x, and put t(Xy) = [P: PN aPa-!], a ¢ D,
xePaP
then
(1)  z(X;) = |(PaP)/P|, hence t(X;) depends only on the
double coset PaP.

(11) ] ©(Xy) = [G: PJ.
aeD

(111) o(Xg) = z(X,71).

(1v) X = t(Xz)e(P)ae(P).

(v) {Xjla e D} 1is a C-basis of Hy(G,P). X, is the iden-
tity of H(G,P).

(vi) «¢: Ho(G,P) » C, extended to Ho(G,P) by linearity,
is an algebra homomorphism.

= ¢ c -1
(vii) One has X X, = ch ny pXes Where n,Tp = | (PaPNcPb~1P)/P].

c

are rational integers,
a,b

In particular the n
a,b,c ¢ D,
PROOF: (i) The cosets of G/P which lie in PaP form
a P-orblt under the action of P by left multiplication. The
stabilizer of this orbit is P N aPa~!.
(11) is immediate from (1).
(1ii) follows from the fact that |P N aPa~!|
= |a=lPa N P|.
(iv) Note that if x,y ¢ P, then xae(P) = yae(P)
if and only if y~lx € P n aPa~!., Thus e(P)ae(P)

= [P naPa”l[[P[72 ] x = g(Xy)71X,.
xePaP

(v) {Xjla ¢ D} 1is a basis because {e(P)ae(P)|la ¢ D} 1is a



basis. Note that X, = |P|[71 ] x = e(P).
xeP

(vi) follows from the observation that ¢ 1s Jjust
the restriction to H,(G,P) of the trivial character 1g
of G.

(vi1) XX, = [P[72C T x)C Jy) = |P|=1 | (n,° [ 2).
xePaP yePDbP ceD *“zePcP

Comparing the coefficient of ¢ on both sides of this equa-

tion we have

C
a,b

n [P|71|{(x,y)|x ¢ PaP, y ¢ PbP, xy = c}|

|P|~!|{x|x ¢ PaP, x~lc ¢ PbP}|

|P|=1|{x|x ¢ PaP, x ¢ cPb~1P}|

| (PaP n cPb™1lP)/P]|.

We call {Xj|a ¢ D} the natural basis of the Hecke
algebra HC(G,P). As the constants of structure {nafb}
relative to this basis are rational integers, the Hecke
algebra of G relative to P 1is really defined over Z;
namely, let H(G,P) = Hy(G,P) be the free Z-module whose
basis is {X,|a ¢ D}, and define multiplication in H(G,P)
by XXy = CZDnafbxc. We call H(G,P) the Hecke ring of G
relative to P. If k 1is an arbitrary fileld, put Hk(G,P)
= k ® H(G,P); and call Hk(G,P) the Hecke algebra over k
of é relative to P. Call ¢: H(G,P) - Z the trivial
character of H(G,P).

We shall show that information about the representation

theory of HC(G,P) can be used to deduce informatlon on the



irreducible complex representations of G which appear as
the irreducible constituents of the induced representation
Ae(P). Our method 1s based on an observation that is valid
in any finite dimensional semisimple C-algebra.

Let A be a finite dimensional semisimple C-algebra.
Let rn: A +» End V Dbe a representation of A on the finite
dimensional complex vector space V. Thus V 1is a left A~
module where a+v = n(a)v for a ¢ A, ve V. Put dim =

dim V. Let x be the character of =; i.e., x(a)

trace n(a) for all a € A. Call x 1irreducible if and
only if = 1s irreducible. In any case (1) = dim =,

A 1s the direct sum of simple two-sided ideals each
of which 1s isomorphic to a finite dimensional matrix algebra
over C. The identities of these simple subalgebras are the
minimal central idempotents of A. Thus there is a natural
one-to-one correspondence between the set of all minimal
central idempotents of A and the set of all irreducible
characters of A; namely, if i is an irreducible character
of A and € 1is a minimal central idempotent of A, then
x corresponds to e < y(e) # 0. If x corresponds to e,
then x(1) = x(&) = dim # where % is an irreducible repre-
sentation of A affording the character ¥.

Let A Dbe a finite dimensional semisimple C-algebra,
and let e Dbe an arbitrary ldempotent in A. Consider V=Ae
as a left A-module by left multiplication in A. Then we may

identify the commuting algebra, EndA V with the semisimple



subalgebra eAe of A as an algebra of right operators,
where eAe operates on V by right multiplication. If
{VI,VZ,...,Vm} is a complete set of A-irreducible con-

stituents of V, then

<
n
=

V., 8 U
io74

i=1
where Ui is a C-vector space such that dim U; 1is equal to
the multiplicity of Vy in V. A operates on Vi ® Uy by
as(vy 8 uy) = (a-vi) B uj, ae A, vy e Vi, uy e Ujg. We may
identify End, V = eAe with g End U;. Let e; be the
minimal central idempotent in 1R1 corresponding to V,

(1 <1 <m). It is clear then that f; = éje = eé;e 1s a
minimal central idempotent in eAe. 1In fact, under right
multiplication in A, fy 1is Just the projection of V onto
the primary component V; @ U; of V. Thus eger £y = eeje
sets up a one-to-one correspondence between the set of all
minimal central ldempotents e; of A which correspond to
the distinct irreducible constituents of Ae and the set of
all minimal central idempotents of eAe. We summarize the

facts pertinent to this situation that we will be needing in

the following:

LEMMA 1: Let A be a finite dimensional semisimple
C-algebra and e an arbitrary idempotent in A. Identify
the (semisimple) subalgebra eAe with EndA Ae as an algebra
of right operators. Let w: A > End M be an irreducible

representation of A such that M 1s equivalent to an



irreducible constituent of the left A-module Ae. Let ¥

be the character of 7 and & the corresponding minimal

central ldempotent of A. Then the following conclusions

are valid:

(1) f = ee = eée 1s a minimal central idempotent in eAe.

. (1i1i) = restricted to eAe induces an irreducible repre-
sentation n: eAe » End(e-*M).

(11i) x|eAe = x 1s an irreducible character of eAe.

(iv) A+f 1is a primary component of Ae of type x.

(v) x(e) = x(f) = dim(e+M) = multiplicity of = 1in Ae
= multiplicity of = in Af = dim .

(vi) e «+ e (resp. x +*> x) sets up a one-to-one corres-
pondence between the set of all minimal central idem-
potents (resp. irreducible characters) of A which
correspond to the distinet A-irreducible constituents
of Ae and the set of all minimal central idempotents
(resp. irreducible characters) of eAe.

PROOF: (1) and (iv) are obvious from the discussion of

the preceding paragraph. To see (1ii), note that e*M #¥ 0

because M 1s A-isomorphic to an irreducible constituent of

Ae. e*M 1is eAe-irreducible because 1f x 1s any non-zero

vector in e+M, one has (elAe)x = (eA)x = e*M. Thus = is

irreducible, Obviously x 1is the character of =n, hence

x 1is an irreducible character of eAe, proving (iii). It

is clear that x(e) = x(ée) = x(f). Also x(e) = trace 7w(e)



= dim(e+M). In the notation of the preceding paragraph we

may take & = &y, £ =fy, Af =Vy @ Uy, 7 = m,: ehe > End Uy,

and x the character of Ty Thus x(e) x(f) = dim Uy

= dim 7 = the multiplicity of Vi in Af the multiplicity
of V4 in Ae. This establishes (v). (vi) is also immediate

from the preceding paragraph.

Applying lemma 1 to the case where A = C[G], e = e(P)

we have the following

PROPOSITION 2: Let H = HC(G,P) be the Hecke algebra

of the finite group G relative to the subgroup P. Put

-~

Xl = e(P) = the identity of H. Let x Dbe an irreducible

character (complex) of G such that x 1s a constituent of

-~

(1p)%. Let #: C[G] » End M be a representation affording

X, and €& the minimal central idempotent of C[G] corres-

ponding to x. Then

(1) £ = éX1 = X,€X, 1s a minimal central idempotent of H.

(11) = restricted to H yields an irreducible representation
m of H on MP = (v e M|x:v = v for all x e P}.

(111) x{H = x 1is an irreducible character of H.

(iv) Af 1is a primary G-module of type x.

(v)  x(e) = x(£) = aim(MF) = (%,(15)%), = (x|P,1p)p

the multiplicity of =7 in Af.

it

(vi) & «+ e (resp. x ++ x) sets up a one-to-one corres-
pondence between the set of all minimal central idem-

potents (respectively irreducible characters) of C[G]
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which appear as irreducible constituents of (1P)G
and the set of all minimal central idempotents (respec-

tively irreducible characters of H.

COROLLARY: 1In the above notation, if x 1is a charac-
ter of H of degree 1; that is, x 1s an algebra homomor-
phism of H into C, then f = f(x) 1s a primitive idem-

potent in C[G], and x 1is irreducible.
This corollary was proved by Janusz in [9].

There is quite a bit more that we can say about the
relationship between the minimal central idempotents and the
irreducible characters of H. The following theorem was

proved independently by C. Curtis, [4].

THEOREM 1: Let H = HC(G,P) be ghe Hecke algebra of
the finite group G relative to the subgroup P of G. Let
{Xgla ¢ D} be the natural basis of H, where D 1s a set
of double coset representatives for P\G/P. For any two
characters x and ¢ of H, put <x,¢>R = aZDx(Xal)w(Xa)c(Xa)‘l.
Then the following conclusions are valid:
(1) If x 4is an irreducible character of H, then the
minimal central idempotent of H corresponding to x
is given by
£(x) = <x,x>;1x(Xl)aéDx(Xgl)c(Xa)'IXa

(i1) If x is an irreducible character of H and x the
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unique irreducible character of G such that x|H = x,
then

(1) = x(x)e: Placxp’s
(11i) If x and ¢ are distinct irreducible characters of

H, then <x,:p>P = 0.

PROOF: By proposition 1 if x 1is the unique irreduci-

x, then f(yx)

ble character of G such that x|H
= e(P)é(x)e(P), where e(x) is the minimal central idempotent

of C[G] corresponding to x. Now &(x) = |G|~'x(1) ] x(x~1)x.

xeG
Thus f(x) = [G]"1x(1) ] x(x~1)e(P)xe(P)
xeG
= |a]71x(1) §J ] x(x"1!)e(P)ae(P)
aeD xePaP
= [G: P]=1x(1) aéDx(x;1>c(xa)-1xa (1)

But then x(X;) = x(£(x)) = [G: P]71x(1) ZDx(xgl)x(Xa)c(xa)-l
= [G: P]‘li(l)<x,x>P. Thus x(1) = X(XI?EG! P]<X,X>Els
proving (ii). (1) follows from equation (1) upon substituting
<x,x>;1x(X1) for [G: P]-13(1). Finally, if ¢ is an
irreducible character of H distinect from x, then 0=¢(f(x))
} <X’X>;1X(X1)a§Dx(X;1)W(Xa)C(Xa)‘l = <x,x>p x(X;)<x,¥>p.

Hence <x,y>p = 0, proving (iii).

Note that theorem 1 tells us that if an irreducible
character x of HC(G,P) is known, in the sense that x(X,)

is known for all a e D, then the degree x(l) of the cor-
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responding irreducible character of G 1s known. Actually,
the conclusion of theorem 1 can be sharpened so as to give
all the values x(g) of the irreducible character x of G
provided sufficlent information is known about the conjugacy
classes of G, and how they intersect the (P,P) double co-
sets of G. I wish to thank C. Curtis for pointing out to me
the fact that the following proposition appears (without

proof) in [10].

PROPOSITION 3 (Littlewood): Let _G be a finite group
and let e = ZGAgg be a primitive idempotent in C[G]
affording theg;rreducible character x. Let S be a con-
Jugacy class In G and let g e S, then
t(g™l) = |Z(&)] ] Ag,
geS

where Z(g) denotes the centralizer of g in G.

Proposition 3 can be sharpened to deal with the case of
a primary ldempotent f of C[G]. By a primary idempotent f
we mean an idempotent f such that C[G]-f 1is a primary
C[G]-module of type x for some irreducible character x of

G. Thus the character of G afforded by C[G]:f 1is just

x(f)x.

PROPOSITION 4: Let f = ) A\g'g be a primary idem-
geG
potent in C[G] of type x. Let S be a conjugacy class of

G and let g e S, then x(g™!) = x(£)71|z(g)] [ 4.
€S

g
PROOF: Put z = x(f)"1x(1)|G|~! ] xfx~!, Then
XeG
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x(z) = x(1) while if ¢ 1s any irreducible character of
G distinect from x, then ¢(z) = 0. 2z 1s obviously central;
hence it follows that 2z 1s equal to the minimal central
idempotent corresponding to x. That 1s,

x ()" Ix (D) |a|7t ) xfx71 = x(1)|6|7! ] x(x"1)x. (2)

xeG xeG

The assertion of proposition 4 now follows from collecting
together the conjugacy classes on both sides of eguation (2),
and comparing the coefficients.

Applying proposition 4 to the idempotent f = f(x)

obtained in the proof of theorem 1 we thus obtain

THEOREM 2: Assume the hypotheslis of theorem 1. Let
g e G and S be the conjugacy class of g 1in G, then one

has

x(g™}) = [G: P]IS["‘1<)(,)(>_1 } |PaPns|x(xz1)c(x_)"1L.
P aeD a a



§2. COXETER SYSTEMS AND GROUPS WITH BN PAIR

In this section we recall some known properties of
finite groups with BN palr and their assoclated Coxeter
systems. We omit all proofs in this section. Most of these
results can be found in [1].

Coxeter Systems: Let W be a group generated by a

set {wili ¢ I} of distincet nonidentity involutions. Then
every element w of W has an expression of the form
w = W11w12"'wim (13 e I, 1 <J <m). This expression is
called a reduced expression if it is not possible to write
w as a product of less than m of the 1lnvolutions wy, 1 e I.
If w = wi1w12"‘wi is a reduced expression for w, put

m
2(w) = m. 2(w) 1is called the length of w.

PROPOSITION 5: Let W be a group generated by a set

{W1|1 e I} of distinct nonidentity involutions. Then the
following are equivalent:

(1) (Axiom of Cancellation): If w; Wy ...W is not a
1,%1, i

reduced expression, then there exist integers p and

q between 1 and m such that w11wiz"'wim
= wilwiz...wip...wiq...w1m (where ~ means omit).
(1i) Ir Wy Wy ooooWy is a reduced expression, but

1 2 m

wiwilwiz...wim is not a reduced expression, then there

exists an integer p (1 < p < m) such that

wiwil o .Wim

is reduced.

wil...wi ...wim; and this last expression

p

-14-
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>|. Then the generators {wy|1 e I}

(ii1) Let m,, = |<w

13 1"3
together with the relations wi = 1, (wiwj)miJ =1

(1, ¢ I, m < ») form a presentation for the group W.

iJ

If the conditions (1)-(iii) of proposition 5 are satis-
fied, then (W,I) is called a Coxeter system. If (W,I)
is a Coxeter system, then one has z(wiw) = ¢(w) + 1 for all
we W, 1¢€lI.

For the rest of this section Coxeter system will always
mean finite Coxeter system; that 1is, |W| < =,

Let (W,I) be a Coxeter system; and let w e W, If
wi;wiz...wim = w 1s a reduced expression for w, one defines
the support of w (supp(w)) to be the subset {11,12,...,1m}
of I. The supp(w) depends only upon w, not upon the
choice of the reduced expression for w. For every subset J
of I put W; equal to the group generated by {wili e J}.
Then (WJ,J) 1s again a Coxeter system. One has w e Wy 1if
and only if supp(w) < J.

The Coxeter system (W,I) 1s called irreducible if it
is impossible to partition I 1into two disjoint subsets I'
and I" such that wy; commutes with Wy for all 1 ¢ I',

J e Jd'., It is easy to see that every finite Coxeter system
1s the direct product of irreducible Coxeter systems 1in the
obvious sense.

Let (W,I) be a Coxeter system. There exists in W
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a unique element of maximal length. This element will
always be denoted by w,. W, is characterized by the
property that one has &(ww,) = 2(wy) - 2(w) for all w e W.

The finite irreducible Coxeter systems have been
classified as follows:

(a) The Weyl groups of the simple complex Lie

algebras (Coxeter systems of Lie type).

(b) The dihedral groups.

(e) H, and H,.

If W 1s the Weyl group of the simple complex Lie
algebra O} of rank ¢, we take I = {1,2,...,2}, {aj]|1 <1 < 2}
to be a set of simple roots of Q} relative to a Cartan sub-
algebra h of 9, and wy, 1 € I to be the reflection with
respect to the simple root ay . Thus the groups W which

appear in (a) are also the finite irreducible groups gener-

ated by reflections in a finite dimensional Euclidean vector

space.
The dihedral group D of order 2m has the presenta-
. = 2 = 2 = m =
tion: Dy <wl,w2|w1 w2 = (ww,) 1>. Here we take
I ={1,2}.
The groups H, and H, have the presentations:
_ 2_.2__2_ 5 _ 3 .
H, = <w1,w2,w3|wl-w2-w3- (ww,)® = (w,w,) 1>,
H, = <w1,w2,w3,wulw1 wo=wiEw = (w oW, ) =(w,w,) (w,w, ) =1>.

Let (W,I) be a finite irreducible Coxeter system.
Put my j equal to the order of wiwJ for all 1,J € I. The

elements Wy and wJ are conjugate in W 1f and only if



there exists a sequence 1 12,...,1 of elements of I

1? s

such that 11 = 1i, is = j, and mikik+1 is odd. Thus from
the classification of the finite irreducible Coxeter systems
it is easily seen that there are at most two conjugacy
classes of the elements {wili e I}'. If W 1s of Lie type,
then L and w'j are conjugate 1f and only 1f they corres-
pond to the reflections with respect to simple roots oy
and ay of the same length. Thus if we identify I with
the points of the Dynkin diagram D of‘ﬁ? , the qonjugacy
classes of the elements {wili e I} are determined by the
points of D which lie on opposite sides of a multiple bond.

Let (W,I) be a finite Coxeter system. Let J and
K be subsets of I. 1In each coset wWy of W/W; there 1is
a unique element of minimal length called the distinguished
coset representative (der) for that coset. If w' 1is the
der for wa, then w' 1s characterized by the property
that a(w'u) = 2(w') + 2(u) for all u ¢ W;. In each double
coset wwaJ of WK\W/WJ there exists a unique element of
minimal length w called the distinguished double coset
representative (dder) for WwaJ. w 1s characterized by
the property that a(wu) = 2(w) + 2(u) for all u e W, and
L(vw) = 2(v) + 2(w) for all v e Wy

Let (W,I) be a finite irreducible Coxeter system of

Lie type so that we may identify W with the Weyl group of a

17

simple complex Lie algebracgf. Let h be a Cartan subalgebra

ofeT s {“1”"’“2} a set of simple roots of %& relative to



18

h, sY the corresponding set of positive roots, and A the
set of all roots of qr relative to h, We take I

= {1,2,...,2}, and Wy, i eI to be the reflection with
2(“1,5)
Tor aa i
; (¢1,%1)
for all ¢ ¢ h, where ( , ) denotes the Killing form of

respect to the simple root oy . That is, wi(£)=g-

qy. Thus h forms a natural irreducible module for W. Let
¢ be a permutation of the set I = {1,2,...,2}. The element
WigWage e Weg is called a Coxeter transformation in W. The
Coxeter transformations in W are all conjugate to one
another. The order of a Coxeter transformation 1is called the
Coxeter number of W. Let ¢ be a Coxeter transformation in
W, and let h be the Coxeter number of W. As the order of

¢ 1s h, the characteristic polynomial of ¢ 1in the natural

representation of W on the Cartan subalgebra 1s of the form

3

L
I [T - exp(2Ti™y]
J=1 h

where the my are positive Integers and we may assume that

0 <m <m < -*- <m < h, {ml,mz,...,m } are called the

1 L L

exponents of qy or of W; and {d1’d2""’d1} are called
the degrees of W, where di = my + l. We list the properties
of q& and W concerning the exponents and the degrees that

we will need for future reference 1n the following

PROPOSITION 6:

(1) m =1, m =h-1 (h = the Coxeter number of W)

(11) § my = N = |a*|, the number of positive roots
J=1

on?.
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(1i1) N = %zh.

(1v) 2(w,) = N.

(v) If the Dynkin diagram of ‘g' is not simply laced,
so that there are two nonempty conjugacy classes {wili € Il}
and {wili e I,} of the involutions {wili e I}, put

vpo= I, e, = |I

,|s and let w, = Wy W e eWy be any

reduced expression for w then exactly li h of the iJ

0>

271
lte in I, and Zt,h of the 1, liedn I, (1 < < N). [17]
y .d
(vi) Put p(T) = 1 (IEE_:Il). p(T) 41s called the
1=1 T -

Poincaré polynomial ofﬁ? . One has

p(T) = J 7r(w),
weW

(vii) p(1) =

dy, = |W|.
1 i

1

il =Re

Following 1s a list of the exponents for the Weyl groups

of the simple complex Llie algebras.

(3&) Myyees,My

(Ay) 1,2,3500.,8

(By) 1,3,5,0..,22=1

(Cyg) 1,3,5,00.,22=1

(D,) 1,3,5,...,20-3,8-1
(Eg) 1,4,5,7,8,11

(E;) 1,5,7,9,11,13,17
(Eg) 1,7,11,13,17,19,23,29
(Fy) 1,5,7,11

(Gz) 135
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Groups with BN pair: A group with BN pair (called

a Tits System in [1]) is a group G together with a pair of
subgroups B and N such that

(a) G 1s generated by B U N.

(b) T=BNN 1s a normal subgroup of N.

(¢) N/T = W 1is a group generated by a set

{w;]1 ¢ I} of distinct nonidentity involutions.

(d) wyBwy # B for all 1 e I.

(e) wyBwc BwB U BwywB for all 1e I, we W.
[If we W, by wB (respectively Bw) we mean nB (respec-
tively Bn) where n - w under the natural projection
N+ W= N/T. The coset wB or Bw depends only on w
because T 1s a subgroup of BJ] The group W 1s called the
Weyl group of G.

If G 1s a group with BN pair, then in the above
notation (W,I) 1s a Coxeter system, called Coxeter system

associated to G.

PROPOSITION 7: (Bruhat Decomposition) Let G be a

group with BN pair, then the (B,B) double cosets of G

are indexed by the Weyl group W of G. That is, one has

G = U BwB
weW

is a disjoint union.

If G 4is a group with BN pailr whose associated
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Coxeter system is (W,I), then for each subset J of I

GJ = BW;B 1s a subgroup of G. Moreover, every subgroup of
G which contains B is equal to Gy for some J c I.

The mapping J »+ Gy 1s a lattice isomorphism frdm the
lattice of subsets of I onto the lattice of subgroups of

G which contain B. The subgroups of G conjugate to B
are called Borel subgroups, and the subgroups of G con-
Jjugate to the GJ, J €I, are called parabolic subgroups
of G. The following proposition is valid concerning the

parabolic subgroups.

PROPOSITION 8: (i) Two parabolic subgroups containing

the same Borel subgroup are never conjugate in G unless they
are equal. (11) Every parabolic subgroup is its own normal-
izer in G. (ii1i) If two parabolic subgroups P; and P,

are conjugate in G, and if Pi cP, 1=1,2, where P 1is

a third parabolic subgroup, then P1 and P2 are conjugate
in P.

In the sequel we shall deal only with finite groups
with BN pair. It s a theorem of Feit and Higman [6] that
if G 41is a finite group with BN palr, then the associated
Coxeter system (W,I) of G 1s isomorphic to a direct
product of ordinary Weyl groups (the Weyl groups of simple
complex Lie algebras) and dihedral groups of order 16. Thus
in particular, the finite Coxeter systems of type (H;) and

(Hu) can never appear as the Weyl group of a finite group G
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with BN pair.
We call a finite group G with BN pair irreducible
if the associated Coxeter system (W,I) of G 1is irreducible.
We need a proposition on the double cosets in G also

for future reference.

PROPOSITION 9: Let G be a finite group with BN

pair and (W,I) the associated Coxeter system. Let J,K
be subsets of I. Then the mapping Wj\W/Wy = GJ\G/GK,
WywWyg - GJwGK is bijective. In particular, if
{u;,u,,...,u,} 1s the set of distinguished double coset
representatives for wi\W/wK, then {ul,...,um} is also a

complete set of representatives for G \G/Gy.
J K



§3. THE HECKE ALGEBRA ASSOCIATED

TO A FINITE COXETER SYSTEM

Let G be a finite group with BN pair, and let (W,I)
be the associated Coxeter system. According to the Bruhat
decomposition, the (B,B) double cosets of ¢ are indexed
by the Weyl group W of G. Thus one ha$ a natural basis
{Xylw ¢ W} for H(G,B), where X, = |B|"! | x. This Hecke

XxeBwB
ring was first studied by N. Iwahori [8] in the case where G
is a Chevalley group and B a Borel subgroup. In [2] Iwahori
has proved, using a theorem of J. Tits (unpublished), that if
G 1is any finite group with BN pair and k a field such
that the characteristic of k does not divide the order of
G, and such that k 1s a splitting field for both G and
W, then Hk(G,GJ) and H, (W,W;) are isomorphic as k-
algebras, in particular Hg(G,B) = Ho(W,{1}) = C[W],

The following theorem is due to H. Matsumoto [11].

THEOREM 3: Let G be a finite group with BN pair
whose assoclated Coxeter system is (W,I): For each i ¢ I
put q; = IBwiB/B[ = [B: BN wiBwll], then one has

{xwiw , 1 e (wyw)

Qiniw + (qi—l)Xw, irf l(WiW)

g(w) + 1
(1) Xo Xy =
witwW g (w) - 1

for all 1i e I, we W,

(1ii) The generators {Xwili e I} together with the relations:

-23-



X, X = Xy X; = X

17wy witl Wy
2 _
xwi = ayX) + (q3-1)Xy, (3)
X X X eee = X X X o ...
w1 3 _4) wJ Wy wJ
B — Y i
M43 M43

(1,J € I, myy = |<wiw >|)

form a presentation for H(G,B).
Let ¢: H(G,B) » Z be defined as in §1. That is,
c(Xw) = [B: BN wBw~1]. Then ¢ 1is an algebra homomorphism

and ;(Xwi) = g4, 1 e I.

PROPOSITION 10: One has qy = q'j if miJ is odd;

and hence qy = q‘j whenever Wy and wJ are conjugate in
w.

PROOF: By (3) one has qiqjqi = q49394--
Hence qy = qJ if mij is odd. The second assertion of the

proposition follows then from §2.

REMARK: There exist finite groups with BN pair

such that qy # ay when my g is even. For example, the

twisted Chevalley groups have this property; ecf. [12,13,19,20].

However, in all the known examples ay and qJ are either
equal or are both powers of the same prime for all 1,] e I.

It is not an open question as to the existence of a finite

24
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group G with BN pair such that qy and qJ are not both
powers of the same prime for some 1,J e I.

We would like to study some representation theory of a
C-algebra whose constants of structure satisfy (3), only with
the aq4 being of a slightly more general nature. The next

proposition shows that such an algebra exists.

PROPOSITION 11: Let (W,I) be a finlite Coxeter system

and M be a vector space over C having basis {X |w ¢ W}.
Let {qg4|1 ¢ I} be a set of complex numbers such that

qq = a3 if wy; and wy are conjugate in W (i,J ¢ I).
Then there exists on M a unique assoclative C-algebra

structure such that

X > 2(wyw) L(w) + 1

wiw

e(w) - 1

Qg Xyyw t (ay-1)Xy, 2(wyw)

Moreover, the generators {Xw1|i e I} and the relations

Xy, X1 = XXy, 1€l
Xwi = in + (qi—l)Xwi i1elI (U)
X X X se0 =2 X, X, X, oo i,J ¢ 1
W:L WJ Wi WJ Wi w >
Mi3 M13

form a presentation of the C-algebra M.
PROOF: This proposition, in much greater generality,

is given as an exercise in [1, p.55].
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We denote the algebra M obtained in the preceding
theorem by H(ql,...,ql), where I = {1,2,...,2}, and we
refer to H(ql,...,qg) as a Hecke algebra over C associ-
ated to (W,I). Thus H(1l,1,...,1) is just C[W] the group
algebra of W, while if W happens to be the Weyl group of
some finite group G with BN pair, then H(ql,...,ql)
becomes HC(G,B) upon the appropriate choice of q; as
positive integers. Note that the structural constants of
H(ql,...,ql) are certain polynomials in the q; with rational
integer coefficients, so that this algebra 1is really defined
over the subring Z[ql,...,qzj of C.

REMARK: Using the techniques of Iwahori and Tits
mentioned before, it is easy to show that whenever H(ql,...,ql)
is semisimple, then it is C-isomorphic with C[W] as a
C-algebra. It does not seem, however, that there is any
natural isomorphism as long as the rank is greater than one.
Nevertheless, it is reasonable to expect the representation
theory of H(ql,...,qz) to resemble that of C[W] in the
sense that given a representation of H(ql,...,ql), one
should be able to obtain an analogous representation of C[W]

1"

by setting g4y = 1" everywhere. We shall see later that
this 1s the case for certaln representations that we con-
struct.

As an immedlate consequence of proposition 11 we have

that the map Xwi + g4 can be uniquely extended to an algebra

homomorphism «z: H(ql,...,ql) + C where if Wy Wy eeeWy o is



any reduced expression for w e W, then z(X,) = qi1qiz"'qim'
We shall refer to ¢ as the trivial representation of
H(gy,.0059,).

Our next result is that H(ql,...,qz) is semisimple
if the q; are positive real numbers, but we need a few
lemmas.

Define the linear functional € on H(ql,...,qz)

by e( ] cyXy) =c1, ¢, e C.

weW
0 if wu #1
LEMMA 2: (X X ) = {' (w,u € W),
W t(Xy) 1if wu =1

PROOF: By 1nduction on &(w). If 2(w) = 0, then

W 1 and the result is clear. Otherwise we may write

w=w'wy with w' e W, 1 eI and e(w') = 2(w) - 1. Now we

make two cases.
Case 1: z(wiu) = 2(u) + 1. In this case XWXu
= XwrXyyXy = Xyr'Xyqu. Now wu # 1 and so w'(wyu) # 1.

Thus by induction e(X,Xy) = e(Xw.Xwiu) = 0,

Case 2: z(wiu) = 2(u) - 1. In this case XwXu

= X Xu = Xw'Xwixu

= XWV{C(Xwi)Xwiu + (C(Xwi) - :Dxu}'

w'wy

Now clearly w'u # 1 1in this case so that e(Xy'X,) = 0 by
induction. On the other hand, we have wu = 1 if and only if

w'(wyu) = 1, so again by induction

)

iu

{'O if wu #1

e(X. X ) = e(X ,X
v e t(Xyq ) o (Xy1)=2(X,) if wu=1l

27



28

PROPOSITION 12: Let x = Ja X and y = ]Jb,X,

be arbitrary elements of H(ql,...,ql), a,,b, € C. Then

e(xy) = wgw a, b -15(Xy) = e(yx).

PROOF: This is an immediate consequence of lemma 2.

LEMMA 3: For each x e H(q ,...,q,), X = wgwcwxw,

c, € C, put x¥ = Zwakxw—l, where c, denotes the complex
We

conjugate of ¢ then the following properties of the mapping

w’

x » x¥ are valid:

|
»

(1)  (x®)* =
(11) (ex)® = cx*
(111)  (xy)* = y*x*
(iv) If the qy are positive real numbers,
then xx¥* =0 implies x = O,
PROOF: (i) and (ii) are obvious from the definition.
To prove (iii) it suffices to show that (XwXu)* = X:X;,

w,u ¢ W, and this can be shown quite easily by induction on

the length of w. Now suppose xx* = 0. Let x = 1 cuwXus
WweW

then 0 = xx* = e¢{xx*) = [ c o z(X;) = [ l|e,|%z(Xy). But

weW weW
if the q4 > 0, 1 ¢ I, then c(Xw) >0 Ywe W. Thus we must

have |cy] =0V we W and x = 0.

THEOREM 4: 1If the gy > 0, 1 ¢ I, then H(ql,...,qz)

is a semisimple C-algebra.
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PROOF: Let J Dbe the radical of H(ql,...,ql), and
let x be an element of J. Then y = xx¥ 1s also an element
of J and by lemma 3 we have y* =y, Let k be the smallest
positive integer such that yK = 0. Suppose k > 1. If k
is even k = 2n and 0 = yK = y2n = (yn)(yn)* so that by

lemma 3 we have yP = 0, a contradiction. If n 1is odd,

~
|

k=2n+ 1, then O

"
e

by lemma 3 we have y 0, again a contradiction. Hence
k=1, and 0 =y = xx* which implies x = 0 by lemma 3.
Thus J = (0) and H(ql,...,qz) is semisimple,

We now characterize the center of H(q1""’qz) in

terms of the natural basis ({X,|w ¢ W}.

PROPOSITION 13: Let H = H(q,,...,q,) and

x = ] aX, be an element of H. Then x is central in H

weW
if and only if the following condition 1is satisfied on the

coefficients a,, w e W: Forall weW and 1 e I such

that z(wiwwi) = ¢(w) + 2, one has

AiBy wwy = By + (qi-l)awiw
(5)

Awiw = awwi

PROOF: Since H 1s generated by {Xwili e I} it

follows that x will be central 1f and only if xX = Xys X

Wy i

for all 1 ¢ I. Let 1 ¢ I and let T be a set of dis-
tinguished coset representatives for W/<wi>, that 1is,

z(wiw) = 2(w) + 1 for all w e I'. Then we may express X as
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follows in two ways:

x= ] aX + )] a, X (6)
wer " w wel wiw win
X = ) a -1X -1 + 7 oa ., -1 (7)
w-ler ¥ v w-lep W TWiXWTIwW,

Now if one multiplies equations (6) and (7) on the left and
right respectively by Xwi’ one obtains after making the
appropriate substitutions, the following necessary and
sufficient condition for Xy ; to commute with x (broken

into four separate cases).

() g(wew) = 2(w) + 1
a = 3
z(wwi) = g(w) + 1 wiw wWi1
(11) z(wiw) = g(w) + 1 qiawiw = Ay + (q4-1)ay
z(wwi) = g(w) = 1 a, = awiwwi
(8)
(111) z(wiw) = 2(w) - 1 qiawwi = ayiw + (qi-l)aw
2.(wwi) = 2(w) + 1 ay < awiwwi
z(wiw) = g(w) -1
(iv) a = g
p(ww,) = t(w) - 1 WyW wWi

But for x to be central it 1is necessary and sufficient for
(8) to be satisfied for all w e W, 1 ¢ I. It follows by
making the appropriate substitution for w 1in the four parts
of (8) that (8) may be replaced by the single condition (5),

proving the proposition.
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PROPOSITION 14: Keeping the above notation, let w,

be the unique element of W having maximal length, then

(1) Xwo is central in H 1f and only if w, is central
in W.

(11) Xio is always central in H.

PROOF: (1) 1s an immediate consequence of proposi-

tion 13. For each 1 ¢ I there exists a unique J € I such

that WiW, = wowJ Thus wi,wJ are conjugate in W so one
has gy = q4. It follows that Xwino = qixwiw0+ (qi-l)Xw
= qJXWoWJ + (qj-l)Xw = Xy ij. Similarly XWJXWo = Xy Xuy -
= = 2

Thus Xwinoxwo Xu XWJXWO Xwoxw Xw , and Xwo is central
because 1t commutes with Xwi’ ie I.

PROPOSITION 15: Put ¢ = |} z(X,),

weW
(1) If ¢ # 0, then c¢~! ] X, 1is a primitive central
weW

idempotent in H affording the trivial representation ¢.
(11) If ¢ = 0, then H 1s not semisimple.
PROOF: Let x = ] X,. By proposition 13 we know that
X 1s central in H. Noze¥et 1 eI and let T Dbe the set

of distinguished coset representatives for W/<wi>, as in

the proof of proposition 13. We may write x = Z Xy * Z Xy

z Ewer wel
(X, + Xy ) X, Then X, x = qq4(X + X, ) X = q.X.
! WeT "1 ! b weTl w +
It follows that if w ¢ W, then X x = ¢(X_ )x and hence

W
= (] t(X,))x = cx. Thus 1if c

weW
central nilpotent and H 1is not semisimple. But if ¢ # 0,

= 0, then x 1s a
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then c¢~!x is an idempotent as asserted.
REMARK: It seems likely that H will be semisimple

if and only if ] z(X,) # 0, but we have no result in this
weW
direction of a general nature.

For the remainder of this section we assume that
qs > 0, 1 ¢ I, so that H = H(q;,...,q,) 1s semisimple. Let

J be an arbitrary subset of I. Denote by HJ the sub-

algebra of H generated by X, and {X, |1 € J}. Thus Hy
i
is just a Hecke algebra over C assoclated to the Coxeter

subsystem (WJ,J). It is clear that H; will be semi-
simple also because ay > 0, 1 ¢ I. The trivial representa-

tion of HJ is given by iy = c4HJ, and

ey = ( ) CJ(XW9"1 )} X, 1s the primitive central idem-
weW s WEWJ

potent of HJ affording Thus if n: HJ + End V 1s any

CJ-
representation of Hj, then w(eJ) is the projection on the
HJ-submodule eJ-V consisting of a certain number of copies

of the trivial representation of H Applying lemma 1 to

J.
this situation we observe the following simple reciprocity

theorem for future reference,

PROPOSITION 16: Let =#: H -+ End V Dbe an irreducible

representation affording the character x, then for any sub-
set J of I one has x(e;) = the multiplicity of = in

HeJ = the dim e_-V = the multiplicity of ¢ in n[H

J J J’
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The linear characters (one-dimensional representations)
of an algebra are just the multiplicative linear functionals
on that algebra. The linear characters of H(G,B) have been
classified by N. Iwahori [8], when G 1is a Chevalley group
and B a Borel subgroup of G. It is not difficult to
extend his argument to our algebra H = H(ql,...,ql).

Recall that as (W,I) 1is a finite irreducible Coxeter
system, there are at most two conjugacy classes {wili £ Il}
and {wy|i e I,} of the elements {w;|1 e I}. If there is
only one conjugacy class we make the convention that I, =1,

I, = 4. Put a4 = p for all 1 e I,, @4 =q for all 1ie I,.

PROPOSITION 17: Let H = H(ql,...,ql). If I, = g,

then there are exactly two linear characters ¢ and o of
H, where o(X,) = (-l)E(W), weW. If I, # @, then there
are two additional linear characters 9, and o, of H,

where

P ie I1
o.(X,.) = {
177wy -1 1eI

{-—1 ice I1
g, (X,.) =
27 W1 q 1€l

PROOF: It is clear that o¢ can be extended uniquely
to a multiplicative linear functional by our presentation for
H. Similarly, if there are two conjugacy classes, then o,

and o, can be extended to multiplicative linear functionals.
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It suffices to show that these are all of the linear charac-

ters of H. But if Cl,...,C are the conjugacy classes of

m
the elements {wili e I}; and if ¢ 1is any multiplicative

linear functional on H, then ¢(Xwi) must be equal to -1 or
a4 because these are the only roots of the quadratic equation
x2 = qq + (q4-1)x which is satisfied by Xwi' Furthermore ¢

must be constant on the conjugate classes C;,...,C Hence

m.

the number of linear characters is 2M

COROLLARY: Assume that there are two conjugacy classes
of the involutions {wy|i ¢ I}; i.e., I, # #. Let
WS Wy Wgo-.eWig be a reduced expression for w e W. Put
2,(w) equal to the number of ij such that ij e I,, and
2,(w) equal to the number of iJ such that ij e I, (12j5m).
Then zl(w) and lz(w) depend only upon w, not upon the

choice of reduced expression for w e W. Moreover, one has

(w) 2, (w)
o, (X,) = p*1t"(-1)*2
b (9)

£y ()25 (W)

0,(Xy) = (-1)

PROOF: (9) 1s obvious from the proposition. Taking
p,a > 1, it follows that 11(w),12(w) are uniquely deter-
mined, independent of the choice of reduced expression for w.

Iwahori has also shown in [8] the existence of a

canonical involution of HC(G,B). This involution exists for

H = H(ql,...,qz).
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LEMMA 4: X, 1s invertible for all w € W.

PROOF: It suffices to show that X is invertible,

Wi
1 e I. But it follows from the fact that X&,i=q-x1 +(q-1)Xwi,
that in any irreducible representation of H, the eigenvalues
-1
of Xwi are gy and -1. Hence Xwi is given by
-1 _ -1
Xy = a7 (Xyy + (1-q1)X)).

~ —1
PROPOSITION 18: Let X, = ;(Xw)o(Xw)Xw_l, and for

x = ] ayX, in H put %= ] a.X,. Then the mapping
weW weW

x + X 1is an algebra automorphism of H, having order 2.
PROOF: It is obvious that % = x, hence it suffices
to prove that the {iwi|i e I} satisfy the relations of our
presentation (4) of H. Now iwi = -qEIXQ;, and hence in any
representatlon of H must also have only the eigenvalues ay
or -1. Thus iwi satisfies the same quadratic equation as
Xwy» namely iﬁi = q4X, + (qi-l)Xwi. Let 1,j e I,
myy = |<win>|, and put wiiji'°' = WyWiWgee. T WL These are
M3 M3
the two distinct reduced expressions for w. Thus one has
A 1 ~

P -1,-1_-1 - Y
xwiijxwi... = C() o (K K K Xy oo = 2 (KO (KX X Ky Koo oo

REMARK 1: Note that this canonical involution, x -+ X
induces a natural pairing of the irreducible characters of H;
namely, if x 1s an irreducible character of H, then

x(x) = x(x) is also such. If H = C[W], then x(w)
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= sgn(w)x(w) for all w e W. Note that in the notation of

proposition 17 one has f = o, 5, = o,.

REMARK 2: If H = H(ql,...,ql), qq > 0, 1 e I, one
can show, using the characterization of the center of H
given in proposition 13, that if one puts

<X>Xx> = wa(Xw~1)x(Xw)c(Xw)'1, then <x,x> # 0 and
we

e = <x,x>"! ] x(Xg-1)z(X,)"'X, 1is the minimal central idem-
weW

potent in H corresponding to x. By theorem 1 we know, of
course, that this 1s true when either H = C[W] or H 1is the

Hecke algebra of H(G,B) of some finite group with BN pair.

LEMMA 5: The map Xw + Xy=1» extended by linearity
to H, is an anti-automorphism of H of order two.
PROOF: This is an immediate consequence of proposition

18.

Let =#: H » Mn(C) be a representation of H by n x n
complex matrices. Then the preceding lemma enables us to
define the contragredient representation =¥ of 7, hamely

w*(Xw) = w(Xw_l)t. If x 1s the character of =, we denote
the character of #* by x¥. Thus x*(X,) = (X,~1). Using
our presentation, (4), of H we can also define = the
complex conjugate of = by w(X,) = ?TT;T for all w e W.
Denote the character of 7 by x. Thus Xx(Xg) = x(X,). It

is clear that x 1is irreducible, so are x*¥ and X.
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PROPOSITION 19: One has x¥* = ¥.

PROOF: It suffices to prove the proposition when

is irreducible. Let x be irreducible and let e
= <xox>"l I x(Xy=1)z(X,)"!X, be the minimal central idem-
weW

potent in H corresponding to x. Then

x¥(e)

ax>Tl T x (X)) s (X)) TIXTX =)

weW

x>l L I Xg=1) 20X )7, Now  z(X)=! > 0
weW

so that Y*(e) # 0. But this implies x* = x, hence x*=Y.

COROLLARY: x(Xy-1) = X(X.), <x,x> = wzw|x(xw)|2;(xw)-1
€
> 0. If x(X,) 1is real for all w e W, then x(Xu-1)=x(X,).



§4. CLASSIFICATION OF THE IRREDUCIBLE REPRESENTATIONS

OF THE HECKE ALGEBRA OF A DIHEDRAL GROUP

In this sectlion we assume that the Coxeter system
(W,I) 4is dihedral of order 2m; that is, I = {1,2}, and
W has the presentation:

W = <w1,wzlwf = wg = (w,w,)™ = 1>,

Let H = H(ql,qz) be a Hecke algebra, over C,
associated to (W,I) as in section 3. We assume that a,
and q, are positive real numbers so that H is semi-
simple by theorem 4. Recall also that qQ, =q, if m is
odd,

We shall classify, in this section, all the irreducible

complex representations of H.

LEMMA 6: Let g and q_, Dbe positive real numbers
_ 1 2

such that qQ, = 4q if m 1is odd. Let s be a positive

2
integer such that 1 < s < m;l if m is odd- and 1 < s < m52

if m 1is even. Let a and b be complex numbers such that

ab = q, + g, + 2Yq,q, cos 2;5. Let A, and A, Dbe the

2 x 2 complex matrices:

-1 a a, 0
A, = » A, = . (10)
0 a, b -1

Then the following statements are valid:
2 -

(11) A1 and A2 do not commute.
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(111) A}A, and A,A, have the same minimal polynomial

2rs
m
(iv) The eigenvalues of AA,, (AZAI) are /qlq2 exp

equal to x2 - 2/q1q2 cos X +q,q,.

[+27is/m].
(v) If m 1is even one has (AIAZ)’“/2 = (AzAl)m/z.

m-1 m-1
(vi) If m 1s odd, one has (AlAz) z A = (A2A1) 2 A,.

PROOF: ab-q -a
2
AA, = s
q,b -9,
-q, q,a
AAy =
-b ab-q,

Hence (i), (i1), (11i), and (iv) are immediate. To verify (v),

note that when m 1s even we have by (iv), that the eigen-

values of (AIAZ)g are equal to (qlqz)rf*rl exp(+mis). That

is, (AIAZ)51 = +(q1q2)% if s 1is even, and (AIAZ)xil

= -(c‘;lq‘?)!‘r‘l when s 1is odd. Since the same is true of

(AZAI)@ we have (v). It remains to prove (vi). As m 1is

odd we have q, =g, = q, say; and by (iv) the eigenvalues

of A,A, are q-exp(#2mis/m). Thus (AA)™ = g™+I, and
(AlAz)m-l = quzlA;l

Now the eigenvalues of (AIAZ)E§L are qmi; exp(+1ie) where

27s m=1 .
Ea b Hence we have the equation:

@
il

m-1 m-1
(AlAz)m"1 - 29 2 cos 9(A1A2) 2 4 gf-1 = ¢
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that is,

m-1 m=1
qMAIAT! - 29 2 cos 6(AA) 2 + g™l =0

hence
, m-1 m-1
mp-1 _ p) 2 m-1 -
QA7 2q cos e(AIAz) AL+ Aq 0 (11)
similarly
_ m-1 m-1
qull - 29 2 cos 6(AA ) 2 A, +A,Q"1 =0 (12)
Now qul = Ay + (1-q)-I (4=1,2), and hence
mea=1 _ a=1ly = oMm-1 _
q™ (A, AT") = q"77 (A, - A)).
Thus subtracting (12) from (11) we obtain
m-1 m=1 m=1
-2q 2 cos o[(AA,) 2 A, - (AA) 2a,1=0 (13)

But our hypothesis implies that cos & # 0. Hence (vi) follows

from equation (13).

THEOREM 5: Let H = H(ql,qz) be a Hecke algebra over
C associated to the dihedral group of order 2m. Let s Dbe

a positive integer such that 1 < s < m;l if m 1is odd and

l <s < Eig if m 1is even. Let the 2 x 2 complex matrices

A, and A, be defined as in (10) where ab = q, +a, * 2/q1q2

. cos 278,

Then there exists a unique irreducible matrix
representation

ng: H > M(2; C)

such that ns(le) = A ws(sz) = A,. Moreover, the {rg}

1’
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together with the one-dimensional representations of H
form a complete set of inequivalent irreducible representa-
tions of H.

PROOF: It follows from the presentation, (4), of H,
together with (1), (v), and (vi) of lemma 6 that the map
Xwy > Ay (1=1,2) can be uniquely extended to an algebra
homomorphism L H + M(2; C). The representation n, of H

is irreducible because A, and A, do not commute by (1i1)

of the lemma. The g are inequivalent by (iii). Thus if

m 1is even we have found E%E inequivalent two-dimensional
representations. By proposition 17 there are precisely U4
distinct one-dimensional representations of H when m 1is
even. As M(m%g) + 4 = 2m, it follows that {ng|l <5 < m%g}
together with the four one-dimensional representations of H
form a complete set of inequivalent irreducible representa-
tions of H. Similarly, if m 1is odd, then u(m%l) +2 = 2m,
and it follows that {m |1 < s < B=l} together with the two

2
one-dimensional representations of H form a complete set

of inequivalent irreducible representations of H.



§5. THE REFLECTION REPRESENTATION OF HC(G,B)

AND ITS COMPOUNDS

In this section H = H(ql,qz,...,qz) denotes a Hecke
algebra attached to a finite irreducible Coxeter system
(W,I) of Lie type (cf. §83). Thus W 1is the Weyl group of
a simple complex Lie algebra(ﬁ’. Let {a,,0,,...,0p}
be a set of simple roots of Q} relative to a Cartan sub-
algebra of qy and h the real vector space spanned by
{a;,...,a,}. Denote by ( , ) the Killing form of % . We
take I = {1,2,...,2}, and wy, 1 € I, to be the reflec~
tion with respect to the root ay - We assume the qy s 1eTI,
are positive real numbers so that H 1s semisimple by the-
orem 4,

We shall define a representation of H on h that
coincides with the natural action of W on h when qq = 1

for all 1 ¢ I.

Let mygq = |<wiwj>|, and put
[ay + ay + 2/§Iag'cos 2w/mij]1/2
g7 2 cos 1r/mij ’ mij#z
(14)
uiJ = 0 s mij=2'

We define the symmetric bilinear form B on h as follows:

B(ai,ai) = % (qi + 1)(ai,ai)

[}

B(ai,aj) uij(ai,aj)g 1# 3.
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(a; + 1)B(ag,ay)

Put C = —_—
13 B(ai,ai)

and call C = (Cij) the Cartan matrix of the Hecke algebra

H. Following is a list of all the Cartan matrices of H,

along with their determinants.
(Az): Q=——0=¢+ +=0—0
— 1 2 L-1 2

Let q3 = p, 1 <1 <2

p+l -/p

-Yp p+l -v/p

C = -/p  p+l

o‘ —/_5

—/E p+l

- Jaxg
detC=P—__—-——l-——1+p+p2+- + pt
p -

(Bz) : Omeer Q0= = = + =0——0= 0
—_— 1 2 3 -2 -1 &

Let q; = P» 1l <1< -1, q, = Q.

>

p+tl ~/p
-Yp p+tl -=/p

det C i Pt
e 4
« /D
= ptrlg+l TP g
-/p p+l -2v =
- Eig g+l

L 2 J oaxa
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. —
(D) (o TP o W
| L 1 2 2-3 2?5\\\0

Let q; = P 1 <1<1.

p+l -/p
-/p p+l -Vp
-/p p+l
C = ..w
p+l -/p
-Yp p+l -/p -/p
-/p ptl
-/p p+l
L
det C = (p+l)(p2;i +1)
|
(Fo): 1T 3 5 ¢
Let gy =p, 1 <1< 6.
[ ptl /B )
-/p p+l -/p
C = -/p p+l -/p -Vp
-/p p+l
-/p p+l -/p
-/p p+l

6
det C = E——f—%- (p2+p+1) = p® + p® - p3 + p +1




EO—OwWm

(Eq): 0 0 0 0 0
— 1 2 3 6 7
Let 9; = P 1<1<7.
[ p+l -/p )
-/p p+l -/p
-/p p+l -vp
C = -/p p+l -/p -/p
-Yp p+l
-/p p+l -/p
A -/p p+l N

(p+1) (p3+1)

det C = = (p+1)(p® - p3 + 1)

(p3+1)
6
(Ei): ?
0 0 0 0 0 0 0
1 2 3 Y 5 7 8
Let q4 =p, 1 <1 < 8
r-p+l -/p
-Yp p+l -/p
-/p p+l -/p
C = -/p p+l =/p -V/p
-Yp p+l
-/p p+l -/p
-V
i P op+l |

(plS+1) (p+1) 84 n7_ w5_ nb_ 3
det C = = pl+ - p°- pt-p°+ p +1
(p5+1) (p3+1) P
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(F,): 0——0=—=0——0
3 1 2 3 y

Let q, =g, =p, g, =q, = q.

p+l -/p

-Yp p+tl -2¢/E%9

-Jﬁgi g+l -/q

-Y/q q+l

343
det C = p2q2 - pq + 1 =RQ° +1
pq + 1

(6,): ==

r -
p+1 -3 Eiﬂ§£§§
- p+a+v/pg q+l
N 3 B
(e % + 1

det C = pq - vVpq + 1
pq + 1

PROPOSITION 20: The bilinear form B 1is positive

definite.
PROOF: It suffices to prove that the principal minors

of the matrix (B(“isaj)) are all positive, and for this it
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suffices to show that the principal minors of the Cartan
matrix are all positive. Now the preceding list shows that
the determinants of all the Cartan matrices are positive,
and any principal minor of a Cartan matrix can be con-
strued as the determinant of the Cartan matrix of the Hecke
algebra associated to a Weyl group of some semisimple Lie
algebra of smaller rank. Hence B 1is positive definite.

Now for 1 ¢ I define Xy ¢ End h by

X3(8) = aq& - (a;+1)B(ag,8) a5 (15)
B(ai,ai)
As B 1is an inner product on h 1t is clear that Rai Is the
-1 eigenspace for X;, while, (Raif', the B-orthogonal com-
plement of R“i’ is the gy-eigenspace for ii' In particular

-1 and q; are the only eigenvalues of ii’ and hence we

have:

. ¥ 32 = . _1Y%
LEMMA 7: (Xi) = q4 I+ (qi 1)Xi.

LEMMA 8: iiijii... = ijiiij... (16)
g—-\f‘—-———)\-———-\/-—'——"'I
Mi3 Mij

1
PROOF: Let Vij = Rai + Raj and Uij = Vij' It 1s

clear from the definition of Xi’ that ViJ is stable under

~ ~

the action of X; and XJ. Moreover, X; and X, operate
as the scalars ay and qJ respectively on Uij so that

UiJ is also stable under the action of ii and ij. Now it
is clear that (16) holds on Uy (keeping in mind that =0



if mij

respect to the basis {“i’“J} are

is odd); and on'vijluﬁnmtrices of ii and ij with

—2((11,(11)111‘11
"'l ( q. 0
@q,0q) J
and
' (a,,a )uij -1
3>
respectively.
Now, y on
u(ai’a‘j)z , qy + CIJ + 2 quJ cos mj_j mij#E
U o
ij =
(ai,ai)(aj,aj) 0 my =2

It follows therefore from the representation theory of the

Hecke algebra of the dihedral groups (lemma 6) that on Vij

we have Xixjxi"' = XinXj...
{ J o\ W,

T v

mij mij

and this proves the lemma.
It follows from the presentation (4) of H together

-~

with the above lemmas that the map X + X5 can be uniquely

Wi
extended to an algebra homomorphism =: H -~ End h; namely, 1if
w11w12"'wim is any reduced expression for w e W, then
m(Xy) = Xiliiz...iim. We call =: H » End h the reflection
representation of H because it reduces to the usual repre-

sentation of W on h as a group generated by reflections

when all the q; are set equal to 1. We use the notation
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X*o0 = 7(x)*a when x ¢ H, a € h."

PROPOSITION 21: Relative to the inner product B,

“(Xwi) is self adjoint. The adjoint of = (X,) 1is w(X,-1).
PROOF: The first statement is easily checked from the
definition of n(Xwi) = ii' The second assertion follows from

the fact that if wi1wiz"'wim i1s a reduced expression for

Woe W, then X, = Xy, Xy, ...Xy, , and Xy-1
m

1 1

-(q,+1)B(as,0y)
Note that i1f we put ajy = 1 e , then we
B(a",a')
171
have
Xwi'(aj) = qi(lj + aijai, i,j e 1.
we have the relations -T

ajy = =(a3 + 1)

aiJ = aJi =0 if miJ = 2

. (17)
aijaji = a4 + QJ if mij = |
aijaji = a4 + qj + tiqj if miJ =6
o

REMARK: It is not difficult to show, using the fact
that the Dynkin graph of W 1is a tree, that given any set
{bij} of 22 complex numbers which satisfy equations (17),

there exist complex numbers {cl,c ..,cl} such that 1f

2°°
G'

i
Thus the reflection representation is determined up to complex

equivalence by equations (17).

= cja;, (1 <1 < 2), then one has wa(aj) = qqaj + byjyoy.

kg



Let v: H-+ End V be a representation of H on the
complex vector space V. We say that v has an integral
form or simply that v 1is defined over Z 1if there exists
a basis of V such that the matrices of v(X,), relative
‘to that basis, have rational integral coefficients for all

w e W.

PROPOSITION 22: If W 1is not of type (Gz)’ and 1if
the q; (1 <1 <12) are positive integers, then the reflec-
tion representation of H 1is defined over Z. If W 1s of
type (G,), then H 1s defined over Z if and only if gq,,q,
and /ETE; are positive integers.

PROOF: If W 1s not of type (Gz) and the aq,

(1 <1 <) are positive integers, or if W 1s of type (G,)
such that a;,9, and /ETE; are positive integers, then
the fact that the reflection representation =r 1s defined
over Z 1s immediate from the preceding remark. Suppose con-
versely that W 1s of type (G,) and that = 1s defined over
Z. If we denote by x the character of =, then
X(le) =q, -1, x(X,,) = a, - 1, X(lewz) = /q,q9,. Hence
a,,9, and /ETE; must be integers.

k

Let Ah denote the k-fold exterior product of h; we

k
consider Ah as a subspace of the exterior algebra of h.
k

Define the operator i§k) ¢ End Ah by

i§k)(glagzﬁ._.Agk) = qr (K=K, () X4 (g,) oo ~X3 ()

(51,52,...,Ek € h).
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Ozl = (k00 (19)
\ v N " ]
M3 m,

PROOF: It is obvious that equation (19) holds from

the definition because the relation is satisfied in End h.

L

Now let U = Rai and V = U™ = the orthogonal complement of

U relative to the inner product B. Then
k k k-1
Ah = AV ® ( A V)-U

is a linear direct sum. As U 1is the (~1l)-eigenspace for

Xi and V 1is the qi-eigenspace for it follows from

19

X
k
AV 1s an eigenvector

the definition that every element of
for X§k) with eigenvalue qi, and every element of

§k) with elgenvalue ~1.

(kXIV)*U is an eigenvector for X
Hence the eigenvalues of i§k) are qq and -1; and equation
(18) is verified.

It 1s immediate from the lemma that the mapping

Xus i§k) can be extended unlquely to an algebra homomor-

i
k
phism "(k): H » End (Ah). We call the representation
k
(k). H > End Ah the ktP compound of =, and denote the
character of =(kK) by x(k). We identify Rfh with the

trivial representation w°(Xw) = £(X,) (cf §3).

PROPOSITION 23: Assume the conditions of proposition

22 are satisfied. Then the “(k) are defined over 12

(0 <k < 2).
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PROOF: One has Xwi(“J) = q4ay + ajjoy where the
a4 are integers 1 < 1i,j < 2. We choose as a canonical
k
basis for Ah {aj "a3 ~...~ay } where (1,,1,,...,1)) runs
over all sequences of positive integers such that

il < 12< cee < ik. We apply ij to ailﬂ...~aik:

(k-1)y
W
J

ij’(ailﬁo'o‘aik) = qJ ail"ouol‘ijaik

= q:;(k_l)[(q‘j(!il + ajilaj) A ses A (anik + ajikaj)] =

k
m+1 A
q O.i ~ ui A eee ~ ai + Z ("“1) a as~0 ‘-onﬁai ~Aese~0
i h 2 k k) 31,737 m 1k

(20)

is omitted.

A
where the symbol a4 means that the factor oy
‘ m

m

Now rearranging (20) so as to get everything expressed in
k

terms of the canonical basis of Ah only involves changing

the signs of certain coefficients. Hence relative to this

basis, the matrix of n(k)(XWi) has integral coefficients

and consequently “(k) is defined over Z.

THEOREM 6: If the Coxeter system (W,I) 1is irre-
ducible, then the representatlions n(k): H - End %h are
distinct and absolutely irreducible (0 < k < £).

PROOF: To simplify the notation let h = C & h,
H=C®H, and extend B to a symmetric nondegene?ate bi~
lineaerorm on h in the obvious way. We argue by induction
on the rank of W. If the rank is one, then Rh and kh

are both l-dimensional, hence irreducible. Suppose then that



53

rank (W) = 2 > 1, and let J be a subset of I such that
|J] = ¢~1 and the Dynkin diagram of W; 1is connected, where

Wy = <wy|i e J>. Then hj = iEJ Ca; can be identified with
a Cartan subalgebra of a simple complex Lle algebra of rank

2-1, and H; = the subalgebra of H generated by Xyy 11 € I3

is a Hecke algebra over C associated to WJ. Let V = H#

be the omthogonal complement of hJ relative to B. Then

k _ k k-1
Ah = AhJ @ A hJ \' (21)

Now considering %h as an HJ—module by restriction, V 1is
l-dimensional affording the representation "(0)(Xwi) = dy,
i € J. Thus it follows from the definition of the action of
H on h that kXIhJ AV o= kKIhJ-. . But by induction

k k-1
Ah and A h are distinct and irreducible as HJ—modules.

J J
Thus as an H-module, either %h is irreducible or (21) is
the decomposition of Kh into distinct irreducible constitu-
ents. But it 1s easily seen that KhJ is not stable under
the action of H. Hence kh is irreducible. It remains to
show that kh is not H-isomorphic with K'h if k # k'

(0 < k,k' < £). 1In the proof of lemma 9 we have seen that

-
the dimension of the gs-eigenspace for n(k)(X ) dis  ( kl).

Wi
k k-1
Hence if Ah and A h are H-equivalent we must have
£y = (. % 2-1y o (2-1 -
(3) = (%) and (" 7) = (% v) which implies that k = k'.
This completes the inductlon argument.
Recall that the involution x -+ x of proposition 18

sets up a natural pairing among the irreducible characters of
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H. The compound characters x(k) of the reflection charac-
ter are naturally paired as we shall see below, but first we

need a lemma.

L

LEMMA 10: Ah affords the linear character o,
where c(Xw) = (_1)2(w)’ We W,

PROOF: Let 1 ¢ I, and choose a basis {El,...,gl}
of h such that Xwi-gj = qi-gj, (1 <J < 2-1) and
Xwi*€g = —-&4. Then by the definition of the action of H on
L
Ah it 1is obvious that if ¢ = E,~8,~-..~E), oOne has Xwi-g
= ~-¢, Thus x(z)(Xwi)= -1, and as x(l) is linear we must

have x(m)(Xw) = (—l)g(w) = g(X,) for all w e W.

PROPOSITION 24: One has x K) = y(2-k),

PROOF: Let 2 be a nonzero vector in Kh, and let

k 2~k
& € Ahy n e A h. Then Egan

c+x for some unique scalar ¢

k
and we have a nonsingular pairing < , > between Ah and
-k
A h, namely <f,n> =c¢. Let 1 e I and let ¢ = E1~eeenEps
n = Tll,....,.nz_k, E’;J € h, T]J € h. Then (Xwi'g) ~ (Xwi'n)

(8-
qi( 2)(Xw1'€1)*--o‘(xwi'5k) » Kwgeng)aee o (Xygong )

= inwi-(g~n) = -qi(£+n). In other words <Xwi’5:xwi'”>

L}

=Qq4<E,n>. Now we can rewrite this equation in the form
<X+ &yn> = <£,—q;1XQ;-n> = <g,iw1n>. Hence for any w ¢ W
we have the equation <Xy+£,n> = <£,X3'.n> . This implies,
using the natural identification of %h with (szh)*, that
the contragredient H-module (*1kn)*  (cf. proposition 19) is

k k
equivalent to Ah. But as the Ah are all defined over R



-k
it follows from proposition 19 that ( A h)* is equivalent

Ra—k A
to A h. Hence we have x(k) = x(l“k) as asserted.

THEOREM 7: Let J Dbe any subset of I,

e, = (% Q(Xw))—l ] X,, then X(k)(eJ) = (|I;J|).

J WewJ weWy

PROOF: Let hJ be the subspace of h spanned by
{ai|i e J}, and hj = the orthogonal complement of hJ with
respect to the bilinear form B. Then h'l obviously affords

J

|I-J| copies of the trivial representation of H;. One has
_ i k k 1 k-1 3

h = h; @ h; and hence Ah = iSO(AhJ)A( A"h}). Now it 1sk

easily seen from the definition of the action of H on Ah,

that as an HI—module one has
t| - l)
k-1

i
We assert that AhJ does not contain the trivial representa-

tion of HJ if 1 > 0. Indeed let Jl,Jz,...,Jm be the

decomposition of J 1nto connected subsets considering the
elements of I as points of the Dynkin graph of W. Then

h, = th ® th e " 8 th is the decomposition of hJ into

J
i
distinect irreducible H;-submodules. Thus Ah
i i J i J
-— 1 2 LI I ) ~ m
=& (A th) ~ (A th) N (A th), where the summation

is extended over all sequences (11,12,...,im) of positive
m

integers such that ) iJ = 1. Moreover, each direct sum-
i J=1 i
mand of AhJ is an HJ-sumedule. Suppose AhJ contains a
vector & which affords the trivial representa%ion of HJ.
J
Then ¢ = 511 N 512 A e a gim’ where Eij e A hJj' But
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then the pairwise orthogonality of the hJi implies that

J in hJJ.

By theorem 6 we must have iJ =0, 1<Jj<m, thus 1 =0,

each Eij affords the trivial representation of H

proving the assertion. Now by proposition 16 n(k)(eJ) is
k k

the projection of Ah onto the primary component of Ah

corresponding to the trivial representation of H,;. Hence

= el

K 0 | I-J| | 1-7]
e;-Ah = [AhJ)( k 1 and in particular dim e;+ Kh = (' 7').
The assertion of the theorem now follows from proposition 16.

In the case of = = "(1)’ the reflectlion representa-
tion, these multiplicities are enough to distinguish it when

the rank is greater than 1, as we shall see below.

THEOREM 8: Let (W,I) be an irreducible Coxeter
system of Lie type and H = H(ql,...,ql) a Hecke algebra
assoclated to W over C. Suppose #: H -+ End V 1s an
irreducible complex representation of H, affording the
character x of H. Assume that x(eJ) = |I-J| for every
subset J of I. If W 1is not of type (Gz)’ then = 1is
equivalent to the reflection representation of H.

PROOF: Taking J equal to the empty set @, we have
eg = X , the identity of H. Thus dim V = x(ey) = 1] = ®.
Let 1 e I, and take J = {i}. Then n(eJ) is the projec-

tion on the q4-elgenspace for the operator (X, ,.). As x(eJ)

Wi
= |I-J| = 2-1, the dimension of the q;-elgenspace for

(X, ) 1s 2-1. Thus the (-1l)-eigenspace for w(Xwi) is

Wy
one-dimensional for all 1 € I. Let uy be a nonzero vector
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in the (-1)-eigenspace of n(Xwi), 1 ¢ I. We break the rest

of the proof into a number of assertions.

ASSERTION (a): If ¢ ¢ V, then Xwi-g = q4& + cuy

for some ¢ e C.

PROOF: Note that w(Xy, - qiX,;) must be a scalar
multiple of the orthogonal projection on the (-1)-eigenspace
for u(Xwi). Assertion (a) follows from the fact that this

eigenspace 1s one -dimensional spanned by uj.

ASSERTION (b): {u,,u .su,} form a basis for V.

2’.'
PROOF: It is clear from assertion (a) that the sub-

space spanned by {u;,...,u,} 1s H-stable. By the irreduci-
bility of V 1t must coincide with V; and since dim V = ¢,
the wuy are linearly independent.

Let Xyy-uy = qyuy + byyuy (1 <1, < 2). It is clear

that bii = —(qi + l).

ASSERTION (c): w(Xy;) and "(XWJ) commute if and only

ir bij = in = 0, in which case one has Xwi(uj) = qqUy,
ij(ui) = qjuy, (1 # 3).
PROOF: This can be checked directly from the defini-

tions.

ASSERTION (a): Let 1 # J, then ﬂ(Xwi) and w(Xy,)

V3

commute if and only if myy = 2 (myy = ]<wiwj>|).

PROOF: 1If myy = 2, then Xwi and X commute,

w3
hence so do w(Xy;) and w(Xyy). Suppose that m(Xwy) and



n(XwJ) commute with miJ > 2. Then as the Dynkin graph of

W 1s a tree, it follows that there exists a partition of I

into two disjoint nonempty subsets I' and I" such that

m(Xy4) commutes with w(ij) for all 1 e I', J e I". But

then if V' = ] Cuy, V"= ] Cuy, one has by assertion
ieI! 1eI"

(¢) that V' and V" are H-stable, contradicting the

irreducibility of V.

ASSERTION (e): 1If mys > 2, then

PROOF: Let HiJ be the subalgebra of H generated by

X and the identity. Let V = Cuy + Cu,. Then H
1J 1 J ij

Wi’ij
is a Hecke algebra of the dihedral group of order 2mij, and
the restriction of =» to Hij induces a representation of
Hij on the subspace Vij of V. As my g > 2, n(Xwi) and
"(XWJ) do not commute on Vi4 by assertion (c¢). Conse-
quently Vij is an irreducible Hij—module. But W 1is of
Lie type so that mij = 3 or 4, It follows from theorem 5
that in either case Hij has precisely one irreducible two-
dimensional representation, and that the trace of XwinJ in
this representation is Q/EIEE cos %%—. Assertion (e) now
follows from the fact that the tracejof n(X,.X,.) on Vij
1s equal to byjybyi - (aq; + ajg).

Thus we have by the above assertions:
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Xyy(uy) = qyuy + byyuy i1, eI
byy = -(q3 + 1) 1el
byy = byy = 0 myy=2, 1,J ¢ I
bysbyy = Gy + ay + 2/qga; cos i;j, my3>2, 1, € I

The fact that = 1s equivalent to the reflection representa-
tion of H is now an immediate consequence of remark fol-

lowing proposition 21.

REMARK: Note that for the proof of theorem 8 we only
had to assume that x(ej;) = |I-J| when |[J| = 0 or 1.

Applying these results to the case where H 1s the
Hecke algebra of some finite irreducible group with BN

palr we have the following theorem:

THEOREM 9: Let G be a finite irreducible group with
BN pair, and assume that the Coxeter system (W,I) of G
i1s of Lie type. Then there exist irreducible complex
characters {x¥)]0 < k < 2} of G such that if (lGJ)G
denotes the induced character from the trivial character of
the parabolic subgroup Gy, then
9, )% = (157N (22)

~(1
Moreover, x( ) is uniquely determined by (22) if G is

not of type (Gz)' The representations affording the char-

i(k)

acters are all defined over Q.
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PROOF: By proposition 2 we know that for each k
(0 < k < &) there exists a unique complex irreducible charac-
ter i(k) whose restriction to Hy(G,B) 1is x(k), where
{x(i)|0 <1 < 2} are the compounds of the reflection
character of HC(G,B). Now

-1 -1
e; = z(X,.) X, = |B|7! g (X,,) x = e(G.),
J (WEWJ w ) WEWJ v I (WEWJ w ) ngJ J

is the idempotent of C[G] affording the character (lGJ)G.

Thus by the Frobenius reciprocity theorem (i(k),(lGJ)G)

= (i(k)|GJ,1GJ) = i(k)(e(GJ)) = x(k)(eJ). But by theorem 7,
x(k)(eJ) = (II;J|). ‘') 1s uniquely determined by (22)
because x(l) is uniquely determined by the fact that
x(l)(eJ) = |I-J|. It remains to prove that the representa-
tions affording the i(k) are defined over Q. By propo-
sition 23, the n(k) are defined over Z (except possibly

when G 1is of type G

, and /qlq2 is not rational.) (We

exclude this case from the present theorem; it will follow
later, from the calculation of the degrees of the characters,
that this case can never occur.) Let &(k) pe the minimal
central idempotent in C[G] corresponding to i(k). Then

by proposition 2 &(K)e(B) = e(k) 1is the minimal central
idempotent in HC(G,B) corresponding to the irreducible
character x(k) of Hp(G,B). Thus by the formula (i) of
theorem 1 e(k) = wgwawxw where a, ¢ Q for all we W. It

follows that &(K)e(B) 1is an element of Q[GJ]. Now let J

be any subset of I having cardinality #-k where 2 = |IJ.
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Then by theorem 7 we have i(k)(eJ) = (ﬁ) = 1; and it follows
from the corollary to proposition 2 that é(k)eJ is a
primitive idempotent in C[G] affording the character x(X).
But e(Kle_ = a(kle(B)e, = elkle_. Hence &(Kle. ¢ q[al,

J J J J
so that %(K) is afforded by the rational irreducible G-

module Q[G]é(k)eJ.

REMARK: The character i(z), called the Steinberg
character, was first constructed by R. Steinberg for any
finite group of Lie type [18]. C. Curtis, [5], has shown
that i(l) exists for any finite group with BN pair, and
using methods different from ours has shown that i(z) is
uniquely determined by the fact that (%(%),(15)%) =1 and
(i(z),(lP)G) = 0 for any parabolic subgroup P of G
having rank exceeding 1. It seems quite likely that the
i(k) are also uniquely determined by the multiplicities (22),
but we have no proof of this as yet.

For future reference we now define the weights of H
when H 1s a Hecke algebra associated to an irreducible
Coxeter system of Lie type. It will be seen that upon setting
q; =1 (1 <1 < ¢) one recovers the usual definition of the
weights.

Let =#: H-> End h be the reflection representation of
H. For each 1 ¢ I let Jy = I-{i}. Then as an HJi-module
we have h = hj, & hji where hJi is the subspace of h

4
spanned by the @y, J e Ji‘ Thus hJi is one-dimensional
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affording the trivial representation of HJi' It 1s clear
that n(eJi) is the orthogonal projection on hji' Thus
eyy°%y = 0 for 1 #1J, S FRLT] # 0.

Let {Al,xz,...,xz} be the dual basls of
{a;,u;,...,ai} relative to the inner product B, where
o) = la1 1) oey

It follows that one has a, = Css
B(ay,ay) 3 izl i1

where (Cij) = C 1s the Cartan matrix of H. We call j

the weight of H assoclated to the root aj.

PROPOSITION 25: Let {AI,AZ,...,xl} be the weights

of H. Then one has
(1) Xwythl = 93}y - o4, Xwilj = Q4lj for 1 # 3.
(iii) eJi'h = C’)\i.

PROOF: Immediate from the definition.

It is clear that the weights can be computed 1n each
case by finding the inverse of the Cartan matrix of H.
According to proposition 14, X;o is central in H,
As the reflection representation «: H -+ End h 1s absolutely
simple it follows that n(X;O) is a scalar multiple of the
identity operator. Let {ws|i e I/}, {wy|i e I,} be the
two conjugacy classes of the elements {wili e I}. If there
is only one conjugacy class we put I1 =1, 12 = f. Let
2, = llll, L, = |Izl and put q; =p, i e I35 a9y =q, 1 ¢ I,.

) 0. g, h(e-1)
PROPOSITION 26: One has w(Xy ) = (p 'a"?) X s




where h 1s the Coxeter:number of W. (That is, h 1is the

order of a Coxeter transformation of W.)

PROQF: 1If Wy wilwiz"'wiN is a reduced expression
hi,
for w,, then N=%&. Exactly —— of the 1y 1lie in I,
ht
and exactly _?"’- of the 1, 1llein I,, (1< <N). Now

det w(Xyy) = _qi'l for all 1 ¢ I. Hence det n(Xéo)

h(z 1)
, Wwhere n 1is

o ot R 1) B02 = n (Mgt

some root of unity. But if we replace p and g by 1 we

obtain the action of w, on h; and wg = 1., Hence we must

have n = +1.

PROPOSITION 27: The elgenvalues of w(Xwo) are

h(2-1)
+(p 1q*2y= 27

.

PROOF: Immediate from the preceding proposition.

It is known that if 1 ¢ I, then Wotay = —ay for

some J e I. Thus W induces a permutation of the set I,

and as w

o preserves the Killing form, w, induces a graph

automorphism of the Dynkin diagram of W.

PROPOSITION 28: Let 1 e I and let w (ai) j
h(z 1)

(3 ¢ I). Then Xwo'“i = -(p qzz) oy

PROOF: We have wiw0 = wowj. From the proof of
proposition 14 it follows that Xwixwo = Xwoij. Thus
XWino-aJ = 'XWO'“J' As the (-1)-eigenspace of w(Xyy) 1s

one-dimensional spanned by a3 we have that Xwo-aj = Ccay
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for some c¢ e R. Now wi = 1 so that by proposition 21

n(Xwo) is self adjoint relative to %. ?ence B(Xy -aJ,Xw ‘o)
= B(aj,xﬁ,oaj), ¢2B(ay,a;) = (p*! 12)_—9«_——B(a3 ay). But

wy and wy are conjugate by wg(zs?)that B(ay,0q)

= B(aj,ay). Thus c = e(p 1q12)“——r—— where ¢ 1is a root

of unity. Setting p = q = 1 we obtaln the action of w,

on h, hence ¢ = -1, proving the proposition.



§6. DOUBLE COSETS IN WEYL GROUPS

Let (W,I) be a finite Coxeter system. If J 1is
subset of I, then each coset wWj; of W/WJ contains a
unique element of minimal length, called the distinguished
coset representative (der) of wW;. The der w of wi
is distinguished by the fact that &(wwy) = 2(W) + 1 for
all J e Jd. If J1 and J2 are subsets of I, then each
double coset lewaz of WJI\W/WJ2 contains a unique element
of minimal length called the distinguished double coset repre-
sentative (dder) of lewaz. The dder w' of Wlesz
is distinguished by the fact that one has 1(wa') = 2(w')+l
for all J e J, and z(w'wj) = 2(w') + 1 for all J e J,

(cf. section 2).

In this section we prove a theorem, based on a theorem
of B. Kostant, about the structure of double coset decomposi-
tions. We use the following notations and conventions through-
out this section: W 1is the Weyl group of a semisimple complex
Lie algebra‘% ; h 1is a Cartan subalgebra ofo} ; A 1s the
set of roots of qy relative to hj; st is the set of

positive roots relative to some ordering of h; I = {1,2,...,2%},

and {og|1 e I} is the set of simple roots. If 8 = ] cjages

we put supp(s) = {1 e I|cy; # O}, ht(s) = c;. R, 1s the
' 1

. RB(E)

I 0

i
reflection corresponding to the root B8, i.e

= [ - Q%ELE%B, where ( , ) denotes the Killing form. Put
B,B
Ray = wy, 1eI. If J I, put Wy = <ws |1 ¢ J>, and put
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h equal to the subspace of h spanned by {aili e J}. Az

J

= AN hJ, A} = st n hJ. l denotes orthogonal complement
relative to the Killing form.

The following theorem is due to B. Kostant [13]:

THEOREM 10 (Kostant):

(1) Let w € W be arbitrary. Then (w-1)h has a

basis of roots {81”"’Bt} such that w = RBIRBZ...RBt;

(11) If we W and w = RYl"'RYs where {yp...,ys}

is a set of linearly independent roots, then {Y1"":Ys}

form a basis for (w-1l)h.

COROLLARY: Let J I, w e W, and w = RB1"’RBt where

{Bl,...,Bt} is a set of linearly independent roots, then
we Wy 1f and only 1f 8y e 45 (1 <1 <t).

PROOF: Assume B, € 4 (1 <1 <t) then clearly
RBi e Wy and hence so is w. Conversely 1f w e W;, then
hé c h¥ which implies that (w-1)h € hjy. But by theorem 10,

{By,...,8,} 1s a basis of (w-1)h. Hence B4 € hy Na = Bye

THEOREM 11: Let J,,J, be subsets of I and let wy

be the distinguished double coset representative for the double
coset Wle*WJZ. Then the stabilizer of w*WJ2 in WJl is
equal to Wy where

K=1{J ¢J |wg'wowg ed,l.

gV
PROOF: It is clear that WK is contained in the
stabilizer. Suppose that w 1s an element of le which

stabilizes the coset wyWy . Then wylww, € Wy, By theorem
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10 and the corollary we can write w = RBI"'RBt where

{81""’3t} is a set of linearly independent roots in A}l.
As wx 1is distinguished we have that wy (B) e st for any

+
A -
J1
and {w;l(sl),...,wzl(et)} is a set of linearly independent

-1 _
root B8 1in Now WwWyx wWwWg = Rw;l(sl)...szl(Bt) € wJ2
roots. Thus by the corollary to theorem 10 we have that
w;l(ei) € A; (1 <i < t). Hence it suffices to prove that
2
+

AJ1 I, then RB € WK
this it suffices to prove that supp(8) 1s contained in K.

; and to prove

if B ¢ and w;l(B) e A

We prove this by induction on ht(g). If ht(g) =1 there

is nothing to prove. Suppose that ht(8) > 1. Then we can

write g = g' + oy where B8' ¢ A}l, J ed,, and ht(g")

= ht(B) - 1. Let w;l(B') =cia; +Cc,a, + tre 4 Cpay,
w;l(aj) = d,a, + dya, + +++ + dyay. Then wgl(g) = (cy+d;)a,

+ «++ + (¢, + dy)ay. By hypothesis on 8, ¢y + dy =0 if

itv

1 £ J,. But since wy 1is distinguished, ¢y 2 0, djy 0.
Hence ¢4 =dy =0 1f 1 £ J,. This means that g' and oy
satisfy the same hypothesis as B8. By the induction assump-
tion we must have supp(B'), supp(aj) < K. But supp(B)

= supp(s') U supp(aj). Hence supp(B) < K.
As a corollary to theorem 11 we have the following:

PROPOSITION 29: Let the notation be as in theorem 11,

and let T be the set of distinguished coset representatives
for le/wK’ then {ywg|y € T} 1s the set of distinguished

coset representatives for (lew*sz)/sz. Each element of
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WJIW*WJ2 has a unique expression of the form ywgu where
vy e, uce WJZ. One has t(ywzu) = 2(y) + 2(wg) + 2(u).
PROOF: By theorem 11 we know that {yws|y ¢ I'} 1is a
set of distinct representatives for the lew*sz/sz. So it
suffices to show that ywy, 1s distinguished when 1y € T, For
this it suffices to show that z(yw*wj) = 2(ywg) + 1 for all
J € J,. Suppose that z(yw*wj) = ¢(ywg) - 1 for some j e J,.
Then since wy 1s distinguished, by the axiom of cancellation
we must have ywywy = y'wy for some «y' ¢ le’ and 2(y'")
= 2(y) - 1. But then wz'y ly'w, = Wy e Wy implies that
y~ly' e the stabilizer Wy of Wy, in Wy . Then
y' € wa. But since y is distinguished coset representative
for WJI/WK it follows that 2(y') Z 2(y), and this is a
contradiction. Hence ywy 1s a distinguished coset repre-
sentative for Wle*sz/sz, and consequently each element of
yw*sz has a unique expression of the form ywgu for some

ue Wy o
Ja

Theorem 11 does not show how one can find the dder's.
The remainder of this section 1s devoted to showing how some

dder's can be found in speclal cases.

LEMMA 11: Let J be a subset of I and wj the
unique element of maximal length in WJ, then an element u
of W is a decr of W/W; if and only 1f g(uwy) = 2 (u)
+ 2(wJ).

PROOF: It is clear that the condition is necessary



(ef. section 2). Suppose that n(qu) = g2(u) + z(wJ). If

= ' '
J ¢ J we can write wj wa where w' ¢ WJ and z(wJ)

2(wJ) + 2(w'). Suppose l(uwj) < 2(u). Then 2(qu)

2(uij') < z(uwj) + 2(w') < 2(u) + 2(w') < 2(u) + 2(wy)

z(qu), a contradiction. Hence z(uwj) = 2(u) + 1 for

all J eJ, and u 1is a der of w/WJ.

LEMMA 12: Let J < I, then there 1s a unique decr
wg of W/W; of maximal length.

PROOF: If Wy

in W and wy 1s a der of W/W; of maximal length, then

J!
z(w*wJ) = 2(wy) + 2(wy). It follows that wyw; must be the

unique element w of maximal length in W. Hence wy, = w.w

0 0 J

is uniquely determined.

LEMMA 13: Suppose that u 1is a der of W/WJ, and
that u does not have maximal length among the der of
W/WJ, then there exists 1 € I such that 2(wiu) = 2(u) + 1
and wqu 1is again a dcr of W/WJ.

PROGF: Let w

J

length in WJ. The assumption on u implies that uw y is

not equal to w

be the unique element of maximal

02 the unique element of maximal length in

W. Hence there exists 1 ¢ I such that z(wiqu) = 2(qu)+l

= g(u) + z(wJ) + 1 = l(wiu) + z(wJ). Thus 2(wiu) g(u) + 1

and wqu 1s a der of W/Wy by lemma 11.

LEMMA 14: If u 1is a der of W/wJ and u 1is an

involution, then u 1s a dder of WJ\W/WJ.

is the unique element of maximal length
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PROOF: Let J e J, then l(uwj) = 2(wju) = g2(u) + 1.

LEMMA 15: Let J be a subset of I, and assume that
Wg, the unique decr of W/wJ of maximal length 1s an 1nvolu-

tion. Then w is also a dder of WJ\W/WJ and the stabll-

*

lzer of wyW; in wJ is equal to W;.

PROOF: The fact that wy 1s a ddcr of WJ\W/WJ fol-
lows from lemma 14, as wy, 1s an involution. If the stabil-
izer of w*WJ in Wy 1is not equal to WJ, then by theorem
11 this stabilizer i1s equal to WK where K 1s some proper
subset of J. Thus there exists a dcr vy of WJ/WK such
that #£(y) > 1. But then by proposition 29 yw, 1is a decr
of W/W; and L(ywy) = 2(y) + 2(wg) > 2(wy). This contra-

dicts our assumption about wy.

For the rest of this section we restrict ourselves to
the following situation: The Dynkin graph D of (W,I) 1is
a tree. Thus there exists io e I such that the point cor-
responding to io in D 1is Joined to at most one other
point Jo of D. Evidently io is a terminal point of D.
After relabeling the set I = {1,2,...,%}, we may assume that

i, =1, J, = 2. Put J = I-{1}, and K = I-{1,2}. We then

0
have the following propositions about the dder's of WJ\W/WJ:

PROPOSITION 30: I = the identity of W 1is a ddcr

of WJ\W/WJ. The stabilizer of 1-W; in W; 1is Wy,

PROPOSITION 31: w is a dder of WJ\W/WJ. The

1
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stabilizer of wle in wJ is WK'

PROOF: The fact that w, 1s a dder of W \W/W; 1is

obvious. By theorem 11, the stabilizer of wle in wJ is
We, where K' = {j e J|w1wa1 e J}. In other words, K

= {J ¢ lele = ijl}. By our assumption on the subsets J
and K we have K' = K.

PROPOSITION 32: Let w,; be the unique der of W/WJ

of maximal length, and assume that W, is central. Then w,

is an involution, w, 1is a dder for Wi\W/WJ, and the

stabilizer of wgW in W is W

dJ J J’

PROOF: We have w_ = WxW g where w

0 is the unique

J
element of maximal length in Wj;. Thus wy = WoWy is an

involution, being the product of two commuting involutions.
The addltional assertions of proposition 32 follow now from

lemma 15.

PROPOSITION 33: Assume that L is not the dder of

WJ'\W/WJ of maximal length. Let vy, be the unique dcr of
Wy/Wy of maximal length; and suppose that vy, 1s an involu-
tion. Then u = W YW, is a dder for Wi\W/wJ. Moreover,
the stabilizer of qu in wJ is either WK or WJ de-
pending upon whether u 1is or is not the unique ddcr of
wJ‘\W/wJ of maximal length.

PROOF: The stabilizer of wle in WJ is WK by
proposition 31. Hence by proposition 29 yuw, 1is a dcr

for W/WJ, and z(y*wl) = L(yg) + z(wl). Thus y,Ww, is the
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unique der of 'W/WJ of maximal length contained in the
double coset wale. By lemma 13 there exists 1 ¢ I such
that a(wyysw,) = 2(ygw,) + 1, and WiYgW, is again a dcr
of W/W;. From our choice of vy, 1t follows that 1 must
be equal to 1. Thus w ygw, 1is a dcr of W/WJ. W YW,

is an involution because ys 1s an involution. Hence by
lemma 14 w,yyw, 1is a dder of WJ\W/WJ. Now the assump-
tions on vy, together with lemma 15 imply that the stabilizer
of y*wK in Wy 1is WK. Thus by theorem 11, conjugation by
vy 1nduces a permutation of the set {wk|k e K}. As w,
commutes with w,, k ¢ K 1t follows that W yuw, = U also
permutes the set {wklk e K} under conjugation, and hence

by theorem 11 WK is contained in the stabilizer of qu in
I J in WJ is either WJ or
Wg, as K is a maximal subset of J. If this stabilizer is

W Thus the stabilizer of uW
WJ, then by lemma 13 u must be the unique ddcr of

WJ\W/WJ of maximal length. Conversely if u 1s the unique
dder of wi\W/WJ of maximal length, then as u 1is an involu-
tion we have by lemma 15 that the stabilizer of uwJ in Wy

is WJ.

PROPOSITION 34: Let Lc J and assume that u 1is a

dder for wﬁ\w(I-J)UL/wL' Then u 1s also a dder for
PROOF: By definition z(wiu) = ¢(uwy) = ¢(u) + 1 for
all 1 ¢ L; but 1f J ¢ J-L, then J £ (I-J)UL and conse-

quently Wy is not in the support of u. Thus z(wju) = z(uwj)
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= 2(u) + 1.

It turns out that if I 1is connected (that is, the
corresponding Lie algebra Q} is simple) then the pre-
ceding propositions are sufficlent to determine the ddcr
of WJ\W/WJ along with their stabilizers, as we shall see

in the next section.



§7. THE POINCARE POLYNOMIAL

OF A FINITE COXETER SYSTEM

Let (W,I) be a finite irreducible Coxeter system.
Let {wy|i ¢ I;} and {w;|1 ¢ I,} be the conjugacy classes
of the elements {wili e I}. If there 1s only one conjugacy
class we put I, = I, I, = . Let we W and Wi WioeeeWip

be a reduced expression for w. By the corollary to proposi-

1<J <m} and g,(w)

tion 17, g ,(w) = l{ijliJ e I,

= I{ijlij e I,, 1 <Jj <m}| are positive integer valued
functions on W, independent of the choice of reduced
expression for w. We have &(w) = zl(w) + zz(w). If
w,u € W, then g3(wu) = zi(w) + 24(u), (1 =1,2).

Let Z[x,y] be the polynomial ring in two varilables

over Z. If S 1s any subset of W define

o(s) = I le(W)yzz(w)
weS

We call p(W) the Poincaré polynomial of W. If J 1is a
subset of I, and wJ is of type (%) we also use the
notation p(Q}) for p(wJ) provided that there is no con-
fusion about how the variables x and y are arranged,
where Q} is a semisimple complex Lie algebra.

In this section we are going to compute p(Q}) = p(W)
when (W,I) 1s of Lie type (q ). We obtain a multiplicative
formula for pi{W) for each type 0} .

If (W,I) 1is the Coxeter system of a finite group G

~Th-



with BN pair, then [B: B N w™1Bw] = t(X,) 1n the nota-
tion of §3. Thus [G: B] = ] z(X,) 1s obtained from p(W)
by simply replacing x and w;w by the positive integers p
and q, where p = c(Xwi) for all 1 ¢ I, and q = c(Xwi)
for all 1 ¢ Iz‘ Hence we obtain a completely algebraic
proof for a multiplicative formula for [G: B]. In par-
ticular this applies to the groups of Chevalley [3], Stein-

berg [19], Suzuki [20], and Ree [13, 14].

PROPOSITION 35: Let J be a subset of I, then

p(W;) divides p(W).
PROOF: Let T ©be the set of distinguished coset

representatives (der) for W/Wj, then clearly p(W)

= p(r)p(WJ).

PROPOSITION 36: Let J < I, and {ul,...,um} be the

complete set of distinguished double coset representatives
(dder) for WJ\W/WJ. Let wKi be the stabilizer of uyW;
in WJ, then one has
m p(WJ) . (23)
p(W) = i£1 5TWE—7p(ui)p( J) 3
i

PROOF: By theorem 11 the stabilizer of uin in wJ

is of the form wKi where K1 is a subset of J. By

proposition 29 if Iy 1s the set of der for WJ/WKi’ then

rju; is the set of der for (WyuiWy)/Wy, and 2(yjusw)
= z(yi) + 2(ui) + 2(w) for all y; e I'y. By proposition 35

p(ri) = p(WJ)/p(WKi). Hence (23) is obvious.
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It is clear from proposition 36 that one can compute
p(W) by induction on the rank provided that one knows suf-
ficient information about the ddcr and the stabilizers of
their cosets. We can obtain thils information using the re-
sults of §6, and we now proceed to calculate p(W) case by
case.

(Az): 0 0 -
1 2

= O

As the diagram is simply laced, there is only one conjugacy

class I, = I. Let J = {2,3,...,8}, then W, 1s of type

J
1_1). We prove by induction on ¢ that p(Az)/p(Al_l)
x2+1 -1
x -1
¢ > 1. By propositions 30 and 31 1 and w, are ddcr of

(A

. The result is clear when & =1, so assume

Wy W/WJ. The stabilizer of 1-Wjy in Wy is Wy; the

stabilizer of w *Wy 1n W is Wy where K = {3,4,...,2}.

J

W, 1is of type (A I(WJ U wale)/wJ| =1 + [wJ: WK]

K
=1+ 2 = [W: Wy]. Hence {1l,w;} 1s the complete set of

2-2)'

dder of Wy W/Wy. By proposition 36

p(A,) p(Ag.;) x¥ -1 xPfl o
=1+ x =1+ x = .
p(Al_IS plA,_, x -1 x - 1
(Ag) L+l
Thus we have Pi7e =X -1 for all &. It follows
p(Az_l) x -1
s+41 x1 -1

that p(A,) = 1 (——7).
L i=2 X 1
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(B,

The two conjugacy classes are I, = {1,2,...,2-1}, and

I, = {¢}. Let J = {2,3,...,8-1,2}. Then WJ is of type

(B ). We prove the following by induction on ¢, (222):

=1
(1) The dder for wJ'\W/WJ are {1l,w;,wyg}, where wyg

2 _
w11wiz'°'wim)' wy = 1.

(1i) The stabilizer of wle in wJ is WK where

K= {3,4,...,2}. Wg 1s thus of type (Bz-z)'

(1i1) The stabilizer of wgW; 1in Wy is WJ.

(1v) PBe) (et - DGttty 1)
P(Be-y) (x - 1)

((xi - 1)(xi-1y + 11)

L
(v) p(Bz) = iE X - 1

We first consider the case when & = 2:

(B,) o—=0 J = {2}
1 2

It 1s easy to see by inspection that the ddcr for Wj\W/WJ
are {l,w, ,ws}, wy =121, the stabllizer of w,W; in Wy

is {1}. The stabilizer of wgWy 1in W; is WJ. Thus

p(B,)

ETK%T =1+ x(1+y)+x?y=(1+x)(1+xy)-= (szi)ix{;l)
2—

p(B,) = (14x)(Lexy) (Lay) = (LEpl{yad)y (=D xyrd))
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Now assume & > 2. 1 and w, are dder of WJ\W/WJ

and the stabilizers in wJ of 1wJ and wle are WJ and
Wy vrespectively where K = {3,4,...,2} by proposition 31.
Now |(Wy U Wyw W)/Wy| = 1+ [Wy: Wyl = 1 4 2(2-1) = 2¢-1;
while [W: WJ] = 22, It follows that there is precisely one
more double coset of WJ\W/WJ, and that this double coset
consists of precisely one wJ—coset. By the induction hypoth-
esis the unique decr vy, of WJ/WK is given by vsx

= 234...(2-1)2(2-1)...432. y4 1is an involution. Hence the

hypothesis of proposition 33 is satisfied and we have that:

Wg = W YW, = 1234, .. (2-1)2(2=-1)...4321 1is a dder of
WJ\W/WJ. Thus {1,w,;,Wg} 1s the complete set of dder of

WJ\W/WJ. The stabilizer of wyW in Wy 1s W; Decause

J
wa*wJ contains only one Wj-coset. Wy 1s obviously an
involution. This proves (1), (ii), and (i1i1i1). It remains to

establish (iv) and (v). By proposition 36 we have

p(Bg) L+ p(wy) p(Bg_y) ¢ plwe)
55,7 T 1R B,y PO
=1+ x GRS D1 ¢ Stk 2 20 DN x2(2-1)y
X ~1
o (xb - 1(xtly +01)
(x = 1)
b x1 o 1y (xtly 401 ced
Hence p(Bz) = 1 (x - 1) as asserted.

i=)

This completes the induction argument.
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-1

0

(Dy): 0
L-3 L7

o

0
1 a
There 1s only one conjugacy class, I1 =1, Let J

= {2,3,...,2}, K= {3,4,...,2}., Thus WJ is of type D

4, (We consider (D3) as being the same as (A,))

2=1
i«

v

We prove the following by induction on &:

(1) {1l,w ,wg} 1s the complete set of dder for wJ\W/wJ,
where wy = 123...(2-2)(2-1)2(2-2)...321. wy 1is an
involution.

(11) The stabilizer of wle in wJ is wK.

(11i) wy 1is also the unique maximal der- for W/W;. The

stabilizer of w*WJ in WJ is WJ.

(iv) p(Dy) C(x2 - D)(xEL 4 1) - x2 - 1 x2(&=-1) _ 1

p(D,_,) x -1 x -1 x*¥1 -1

3
0
We first consider (Du) 0————G<i , J = {2,3,4},

1 2 0
4

K = {2,3}. 1 and w, are dder of W;\W/W; Dby proposition
31; and the stabilizer of l~wJ in WJ is WJ, while the
stabilizer of w WJ in WJ is wK again by proposition 31.
Now |(Wjy U wale)/le =1+ [W;: Wgl=14+6=7, while

(w: Wyl = 8. It follows that there is exactly one addi-
tional double coset of WJ\W/WJ, and that this double coset
contains precisely one WJ—coset. Now it 1is easy to see that

the unique dcr of wJ/wK is yg = 2342. yyx 1is an involu-
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tion, the hypothesis of proposition 33 is satisfied, hence
Wy = W yew, = 123421 is a dder of Wi\W/Wj. wy 1s
obviously an involution, proving (i) and (ii). As the double

coset W_wyW

J contains only one WJ—coset we have that the

J
proving (iii). By proposi-

Wy-stabillzer of wgW; 1s W,,
tion 36:

p(D,) ) p(Aj) .

p(A3) * oA, <A T ¥

=1 4 x {3-D)(x2+1) e o (x4-1)(x341)
(x-1) x-1
2 4 6 4
_ x%-1 x*'-1 x°-1 x*'-1

Thus  p(D,) x-1  x-1 x-1 x-1'

Assuming that ¢ > 4, the induction argument for D,
is quite similar to the one just given for D“ and will be
omitted.

REMARK: Since the stabilizer of wgWy; 1in Wy is
WJ, it follows from theorem 11 that conjugation by w, in-
duces a permutation of the set {2,3,...,2}. As wyg pre-
serves the Killing form, w; induces a graph automorphism

of (D,_,). It is not difficult to show that w, induces

the nontrivial graph automorphism of (Dz—l)'

4
0

(EG): 0 - é O 0
1 2 3

There 1s only one conjugacy class, I, = I. Let J

= {2,3,4,5,6}. Then W, 1s of type (Ds)’ 1 is a ddcr of

J

wJ\W/wJ. The stabilizer of 1+W; in W; 1is wJ. By propo-
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sition 31 w, 1is a ddcr of WJ\W/WJ, the stabilizer of

1
w,Wy in W; is Wy, where X = {3,4,5,6}. Wy 1s of type
(A,). By proposition 34 applied to the subset L = {2,3,4,5}
we have that u = 12345321 4is a dder of WJ\W/WJ. From
the discussion of type (Dz) we know that u 1induces a non-
trivial graph automorphism of {2,3,4,5} under conjugation
(it interchanges 4 and 5). It follows from theorem 11 that
the stabilizer of qu in W; 1s WJ because thils graph
automorphism cannot be extended to the gfaph of {2,3,4,5,6}.
Note that W; 1is of type (D).

Now l(wJ U W,w Wy U WyuWy) /Wy

J
1+ [WJ: WK] + [WJ: WL] =1+ 16 + 10 = 27

Hence {1,w ,u} 1is the complete 1list of dder for W/W;.
By proposition 36 we have

p(Eg) p(Ds) p(Ds)
sy -t p(w)p(a,y *+ p(Wp(Dyy

+ x(xa-l)(x3+l) N g (x5-1) (x4+1)

=1 x-1 XD
_ (x%-1)(x8+x441) _ x°-1 x12-1
(x-1) x-1 x*-1
Hence
(E.) = (x2-1) (x5-1)(x5-1)(x8-1) (x%-1) (x12-1)
Pi%e (x-1) (x-1) (x-1) (x-1) (x=1) (x-1)
5
(E,): o 0 O 0 0

1 2 3 4 6 7
There is only one conjugacy class I; = I. Let J

= {2,3,4,5,6,7}. Then Wy is of type (Es)’ By proposition
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31 w, is a dder of WJ\W/WJ, and the stabllizer of w,W;

1s Wy where K = {3,4,5,6,7}. W, 1s of type (Ds)' Propo-
sition 34 applied to the subset L = {2,3,4,5,6} shows that
u = 1234564321 is a dder of WJ\W/WJ. By the discussion
of type (Dz)’ u induces, by conjugation, the nontrivial
graph automorphism of {2,3,4,5,6}. Thus by theorem 11 the
stabilizer of uwJ in WJ is WL because there is no way
to extend this graph automorphism to {2,3,4,5,6,7}. w, 1is
central in W and hence by proposition 32, w, = Wgw; where
Wy 1s a dder of WJ\W/WJ; Wy 1s the unique der of W/Wj
of maximal length, and the stabilizer of wgWy in W; 1is

equal to WJ. Now we have

[(Wy U Wyw Wy U WyuWy U WyweWy)/Wy |

1+ [Wye Wg] + [Wy: Wyl +1
1 + [W(Eg): W(Dg)] + [W(Eg): W(Dg)] + 1

14+ 27 + 27 + 1
56
[W(E,): W(Eg)] = [W: W1,

Hence {l,wl,u,w*} is the complete set of ddecr for
Wy\W/W
Note that 2(wy) = 2(w ) - z(wJ) = 27. By proposition 36

D(E7) = p(EG) p(EG)
) 1+ p(wl)ETBET + p(u)5(5;7 + p(wy)

21 4 x (X0-1)(xB4x41) o y10(x%-1) (x84xM41) . 427
(x~1) (x-1)
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(x1%-1)(x5+41)(x9+41) _ xl%-1 x10-1 xl83

(x-1) x-1 x5-1 x9%-1

(x2-1)(x%-1)(x®-1)(x1%-1)(x12-1) (x1*-1)(x1%-1)
Hence p(E7) = " (3 1) (x-1) (x-1) (x-1) (x-1) (x=1) (1) '

REMARK: Note that wy = WoWy = WgWo. W, 1s central,

0

but Wy is not central in WJ. Hence wy 1nduces the unique

nontrivial graph automorphism of {2,3,4,5,6,7}; i.e., the

nontrivial graph automorphism of (Eg).

T6
(Eg): 0——0 0 o 0 0 0
1 2 3 4 5 7 8

There 1s only one conjugacy class I, =1. Let J

= {2,3,4,5,6,7,8}, and K = {3,4,5,6,7,8}. Then W; 1is of
type (E7), Wy 1s of type (Es)' By proposition 31 w, is

a dder of W;\W/Wj, and the stabilizer of w Wy in W;

is Wg. Proposition 34 applied to the subset L = {2,3,4,5,6,7}
shows that u = 123456754321 4is a dder of Wy\W/W;. The
discussion of type (Dz) shows that under conjugation, u
induces the unique nontrivial graph automorphism of

{2,3,4,5,6,7}. By theorem 11 the stabilizer of uW. in Wy

J

is W because thils graph automorphism cannot be extended

L
to a graph automorphism of J = {2,3,4,5,6,7,8}. Now Wi

the unique element of maximal length in W 1is central as W
is of type (Es); hence by proposition 32 w, 1is a dder of

wJ\W/wJ where Wy = W W, = wiW,, and the stabilizer of

wgWy; in Wy 1is W Note that 2(wg) = 2(wy) - 2(w;) = 57.

J.
By the discussion of type (E,;), Y4 = the unique decr of
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WJ/WK is an involution. y4 1s also a dder of WK\WJ/WK’
Hence the conditions of proposition 33 are satisfied, and we
have that w y,w, = v 1s a dder of wJ\W/WJ. Under con-
Jugation, vy4 1induces the unique nontrivial graph auto-
morphism of K = {3,4,5,6,7,8} and w, commutes with the
elements Wi k ¢ K. Hence by theorem 11 the stabilizer of

vW in W is Wy as this graph automorphism cannot be

J J
extended to {2,3,4,5,6,7,8}. Note that 2(v) = 2 + 2(y,)
= 2 + 27 = 29. We present a resumé of what we have found so

far in the following table:

dder length stabilizer
1 0 Wy=W(E,)
w 1 Wy=W(E;)
u 12 Wp,=W(Dg)
v 29 WK=W(E6)
W 57 Wy=W(E,)
| (Wy U Wyw Wy U WyuWy U WyviWy U WiweWy) /Wy

1+ [W(E): WEQT + [W(E,): W(D)] + [W(E,): W(E] + 1

1+ 56+ 126 + 56 + 1 = 240 = [W(Eg): W(E,)].
Hence {l,w;,u,v,wy} 1s the complete set of dder of
Wi\W/W;. By proposition 36 we have

p(Eg) p(E7) p(E7) p(E7)
5TEST =1 + P(Wl)m + p(U)p-(-Da— + p(V)m + plwy)

(x1%-1) (x3+1) (x%+1) (x1%=1)(x124+x641) (x8+x"+1)
=1 + XX (x-l) + Xlz (x-l)
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c29{xl*=1) (x5+1) (x2+1) 57
(x-1)

-+

_ (x30-1)(x184x124x0+41) (x1%+1)
(x-1)

(x30_1)(x24_1)(x20_1)
(x=-1)(x®-1)(x10-1)

It follows that

(E.) = (x2-1)(x8-1)(x12-1) (x1%-1) (x18-1)(x20-1)(x2"4- l)(x3°—l)
Pilg) = TxCT) (x=1) (x=1)(x=1) (X=1) (X=1) (x-1) (X-1)

(F,): 0—— O0—=>0—70

There are two conjugacy classes I, = {1,2}, I, = {3,4}.
Let J = {2,3,4}, K = {3,4}. By proposition 31 w, 1is a
dder of WJ\W/WJ, and the stabilizer of wle in WJ is
Wx. Note that p(w,) = x. Proposition 34 applied to the
'subset L = {2,3} shows that u = 12321 1is a dder of
WJ\W/WJ. Note that u 1s an involution. From the dis-
cussion of type (Bz) it follows that u stabilizes the set
L under conjugation. It 1is easily seen that uw,u # L
Thus by theorem 11, the stabilizer of uwJ in Wy 1is wL.
Now w, 1is central in W. Hence by proposition 32 wy 1is
a dder of WJ\W/WJ, where Wy = W Wy = WyW,, and the
stabilizer of wyW; in Wy 1s Wjy. wy 1s also the unique
der of W/W; of maximal length. Note that 2(wy) = 2w )=-2(wy)
= 15. One has p(w,) = x12y12, p(wy) = x3y®, and hence

p(wy) = x%y®. Now let vy = 232432. It is easy to see that
*



86

Y4 1s an involution and that YaWaYg = Wy . Hence vy, 1s a
der of WJ/WK and also a dder of Wy WJ/WK. It follows
from lemma 13 that yy4 1s the unique decr of wJ/wK of
maximal length. Thus the conditions of proposition 33 are
satisfied, and v = w;ygw, 1s a dder of W, W/Wsy. L(v)=8,
and so again by proposition 33, the stabilizer of va in

W. 1s Wy. Note that one has .p(v) = x5y3, We list the in-

J
formation we have accumulated so far 1n the following chart:

w=dder 2(w) p(w) WJ—stabilizer of wa
1 0 1 WJ
W, 1 X wK
u 5 xty Wy,
v 8 x3y3 Wy
Wy 15 x3y® Wy

u u
|(wJ U Wow, W U WouW, U W v, wa,wJ)/w i

1+ [Wy: Wg] + [Wy: Wpl + [Wy: Wyl + 1
1+ [W(B3): W(A,)] + [W(By): W(B,)] + [W(B,): W(A,)] + 1

1+8+6+8+1=24=[WF,): WBy] = [W: Wyl

Hence {l,wl,u,v,w*} is the complete 1list of dder for
wJ W/W;. By proposition 36 we have

p(Fy) p(Wy) p(Wy) p(W
58y =1 + X_T——T + X y—TW—T + x3y _TW_T + x%y°®

3.
Now p(Wy) = 7 (x#1) (xy+1)(xy +1)

2
-1
p(Wy) = Lyt - .
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p(Wp) = (x+1)(y+1)(xy+l).

It follows that

i—g:—))' = (x24x+1)(xy+1)(x2y+1)(x2y2+1) (x2y2-xy+l).
Hence
P(F,) = (x+1)(y+1) (x?+x+1) (y2+y+1) (xy+1) (xy+1) (x2y+1)
o (xy2+41)(x2y2-xy+1)(x2y2+1)
= (X+1)(y+1) (x24x+1) (y2+y+1) (x2y+1) (xy2+1) (xy+1)
« (x2y2+41)(x3y3+1)
(G,) ===

1 2
There are two classes of involutions I, = {1}, I, = {2}.

Let J = {2}. It is easy to see that the ddecr of W/wJ

(W)
are {l,wl,wlwzwl,wlwzwlwzwl}. One has %TWET

= (x+1)(x2y2+xy+l). Hence p(G,) = (x+1)(y+1)(x2y2+xy+1).
REMARK: One can show that if W 1s the dihedral

group of order 2m, then

2 m
-1 x=-1
=1 ° x=T if m 1is odd,

p(W) = R
x%2-1 y2-1 (xy)2-1 if m 1is even.

x-1 y-1 xy - 1




§8. THE DEGREES OF THE IRREDUCIBLE CHARACTERS OF G WHOSE

RESTRICTIONS TO Hp(G,B) ARE ONE-DIMENSIONAL

Let G be a finite irreducible group with BN palr
whose associated Coxeter system is (W,I). I, and I,
represent the two conjugacy classes of the elements
{wi[i ¢ I}. If there is only one conjugacy class we put
12 =g, Il = I. Adhering to our usual convention we put
;(Xwi) =p, 1 eI, and c(Xwi) =q, 1 eI,.

By proposition (17) there are two one-dimensional
characters ¢ and ¢ of H = HC(G,B) if I, = g, while
if I, # @ there are two additional one-dimensional charac-
and o

ters o For convenience we repeat the definition

1 2°

of t7,0,0,,0,:

t(X,) = pzl(w)qzz(w) ’
a(x,) = (-1

o (X,) = plx(w)(_l)lz(w) ,
o, (X,) = (_1)11(W)q12(w)

where 2,(w) and 2,(w) are defined as in the corollary to

proposition 17.

THEOREM 12: Denote by &, o, o,, ¢, the unique

1’

irreducible characters of G whose restrictions to HC(G,B)
are ¢, 0, 0,, 0, respectively. Then

(1) r =1 is the trivial character of G,

(11) §(1) = c(X, ) = [B: BN weBwgl] = (p*1g*2)h/2

(111) §,(1) = f(p,a)/f(p,a”}) ,

~88-~
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(1v) 0,(1) = f(p,q)/f(p7la) ,

where &, = |I,|, &, = |I,| and f(x,y) 1s the Poincaré

polynomial of (W,I); h 1is the Coxeter number of W.
PROOF: (1) has been observed in §1.

(11) Apply the formula (ii) of theorem 1 with

x = o. Then &(1) = [G: BI[ } z(X,)~t1"!
welW
=[] cx )1 J o(X,)"1]-!
WZW w wéw v
= g(X, )0 ) e(x I ] e(x,)1?
Yo wgw v wéw v
= c(Xwo).
(iii) Apply the formula (ii) of theorem 1 with

x = 6,. Then §,(1) = [G:B]. ] pll(W)q"Z(W) = f(p,q)/f(p,q”t).

(iv) Interchange p aﬁgw q in (1ii).

¢ 1is the Steinberg character of G. The fact that
a(l) = [B: B N wonalj was proved by R. Steinberg [18] when
G is a finite Lie group, and by C. Curtis [5] for an arbi-
trary finite group G with BN pair. Note that 1f p = q
and if the Coxeter system (W,I) is of Lie type (%f), then
o(l) = pN where N 1s the number of positive roots of Q} .
The specific formulas for 61 and 62 as functions of p
and q are easy to calculate using theorem 12 and the
Poincaré polynomials of section 7. We give the formulas
below for the cases when (W,I) 1is irreducible of Lie type
(%,) such that the Dynkin diagram of (% ) 1is multiply

laced.



g(pi-lq + 1) _
1 (pi7! 4 q) i

fl
H=.

(Bl): o,(1) .

. L 2(i-1pi-1 L i-1
02(1) n B 1-$p q+l) _ pz(z-1) 1 E{_lgfi
1=1 (p*7l+q) 1=1P7 ° *q

If p = q, these formulas become:

p(p*~! + 1)(p* + 1)

6,(1)
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= 2(p + 1)
) p(2=1)%(p8=1 4 1)(p* + 1)
°2(1) = 2(p + 1)
(F,): 5 (1) = q!2(p2g+1) (pg?+1)(pg+l) (p2q2+1)(p3q3+1)
— 1 (p2+4q) (p+q2)(p+q) (p%+ q?)(p3+q?)
- _ p'?(p2?q+1) (pg?+1) (pg+1) (p2q2+1) (p3g3+1)
G,(1) =

(p2+q) (P+q2) (p+q) (p2+q2)(p3+q3)

If p =q these formulas become

<yl - _ p4(p3+1)2(p?41)(p“+1) (p+1)
¢,(1)= g,(1) 8(pil)?

q3(p%9® + pq + 1)

(p?2 + pq + q2)

(Gp):

81(1)

p3(p2q9% + pg + 1
(p? + pq + q2)

0,(1) =

If p = q these formulas become

- - 4 2 +1
G0 = a0 = Rttt )




§9. THE DEGREE OF THE REFLECTION CHARACTER AND ITS DUAL

Let G be a finite irreducible group with BN pair
whose associated Coxeter system (W,I) 1s of Lie type G} )
where (§ is a simple complex Lle algebra. Let H = HC(G,B)
and #: H -+ End h the reflection representation of H. We
use the notatlons and conventions established in section 5.
By proposition 2 there exists a unique irreducible complex
character x of G such that x|H = x, the reflection
character of H. We call x the reflection character of G.
In this section we calculate the degree of X

By theorem 9 if J 1is a maximal proper subset of I,
then (;(,(lGJ)G)G = 1, Hence by proposition 2 the restric-
tion of x to H,(G,Gy) 1is a linear character of Ho(G,Gy).
Consider HC(G,GJ) as a subalgebra of H. There is no con-
fusion if we also denote by x the restriction of x to

HC(GJ,G). Now if {u,,...,u } 1is the complete set of dis-

m
tinguished double coset representatives for Wi\W/wJ, then
this set can also be taken as a complete set of double coset
representatives for Gj\G/Gj. Thus {Yuill <1 <m} 1is our
canonical basis for H,(G,Gy), where Y, , = le;1-1 ) X,
xeGJuiGJ

-

By theorem 1 we have the degree of x:
~ m -
x(1) = (izlx(Yui)x(Yuil)c(Yui)"l] 1.[G: Gyl.

Thus the degree of x will be determined once we know

X(Yui)’ t(Yyy), and [G: Gy]. We describe a method for

-91-
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finding these quantities using the results of sections 6

and 7. Recall that in section 7 we defined for any subset S

of W: p(S) = 7] le(w)yzz(w) = p(S; x,y), where I, and

weS
I represent the two conjugacy classes of the elements

2
{wy|i e I}. Let q4 =p for all ie I, q =q for all
i eI, and put f(S) = p(S; p,q) for every subset S of

W. It 1s clear then that one has f£(S) = ) z(X,). Now
weS

[G: GJ] = [G: B]/[GJ: B]. Hence one has [G: GJ] = f(w)/f(WJ).
If W 1is of type (ﬁy) we always choose the maximal
subset J of I exactly as we did in section 7. Thus
[G: G;] has already been computed for every type (% ).
Now Yy, = [Gg[=1- ] x = [Gy: B]"!. ] Xy
xeGyuyGy wsWJuin
(24)
If we let Ki be the unique subset of J such that
Wy is the stabilizer of uiwJ in Wy (c¢f, theorem 11),

i
and T the set of der for wJ/wKi, then

i
Yy, = [Gy: BI7L. ] X Xuy I Xy = ] X, *Xy,ey, where
Yely WEWJ yeTy
ey = IGJ|"1 ZG x = ( zw z(X,))"! Zw Xy. Thus
Xe J we J W; J
= - (Wy)
C(Yui) = ] C(XY)-c(Xui) = f(uy) TTW%_T . Now for our

vyeTl 1
particular choice of the subset J, the complete set of

dder of WJ‘\W/WJ have been listed in §7 for each case along
with p(ui) and p(WJ)/p(WKi); thus to obtain ;(Yui) one

only needs to replace x by p and y by aq.
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The linear character x of H(G,GJ) is afforded by
I-{1}

the one-dimensional space eJ-h. We have chosen J

in each case. eJ-h contains the weight Ap¢f.§5). Let C
be the Cartan matrix of H, d = det C. Put yu = dAl

L
= ma, + izzaiai. By Cramer's rule, m = det M;, where M,
is the (1l-1)-minor of C. d and m have been computed in
each case in §5. Now eyroy = 0 for J #1. Thus u =€y u
= mey-a,; that is, ejca, = m-l.y. Note that by proposition
25 we have le'u =y - d“l' We summarize these facts in the

following

PROPOSITION 37: Let the notation be as above. Then

(1) eJ-aJ =0, J#1
(11) eyra, = m-ly

- (111) le-u = q,u - da,
(iv) XWJ‘P = QJ'u’ J# 1.

Now from §1 it follows that

Yy, = c(Yui)eJuieJ = c(Yui)eJe(B)uie(B)eJ

Uy

-1
C(Yui)C(Xui) eJXuieJ

f(wJ) X
—_— e e
Furthermore, Yui-u = X(Yui)u- Thus to obtain X(Yui) one

has only to compute ejX,, *u. This in turn can be done using

uj
proposition 37.
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x(Yui) = 0,

m
PROPOSITION 38: One has }

i=1

PROOF: Indeed

(&N
e =
—

X(Yui) = |GJI‘1-szi(x). This
€

must be equal to zero because x 1s not the trivial charac-

ter of G.

An inspection of the case by case treatment given in
§7 reveals that the unique der wy of W/wJ of maximal
length is an involution (and hence the dder of WJ\W/WJ of
maximal length) if and only if W 1s not of type (Az) or
(Es)‘ Moreover in this case, when wi = 1, we have W, -a,

0

= -a,. This enables us to calculate Xx(Yyy) quite easily

as follows:

LEMMA 16: Assume G 1s not of type (Az) or (Es)’

then one has Xwo-a1 = -(p lq 2)” 2% a , where 2, = 1T, 1,
£, = |I,|], and h 1is the Coxeter number of (W,I).

PROOF: This is an immediate consequence of proposition
28.

PROPOSITION 39: Assume that the unique der wy of

W/W of maximal length is an involution (and hence by lemma

J
15 a dder of WJ\W/WJ), then one has

h(g2-1)

x(Yw*) = —(pzlqiz) 72 (X, )t

wr
PROOF: Recall that in this case the stabillizer of

wgWy; in Wy 1s W;. Thus Y, = Xy,e;. Let g = ej-a,.
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Then x(Yw*)g = Yy, 't = Xyg€5°€ = Xw*-g. We also have
Wo = WaWg, Xwo = Xw*Xst and hence Xwoog = x(YW*);(XwJ)~£.

Now by the lemma 16 we have

¢« 2. h(2=1)

Xwo-al = —(p'1q'2)7 2T +a,, while if § # 1, then
o g, h(2=1)

Xwo-aJ = —(p ' 1q72)y 22 oy for some J' # 1. But

%
£ =egyca; =a + ] aja;. It follows that
i=2
0. g..h(e-1)
Xwo'g = -(p ' 1q”2) 2% .. Hence

h(g=1)
X(Yy)e(Xy ) = -(p"1g"2) 2T .

Using the methods outlined in this section it is poss-
ible to obtain the degree of the reflection character in each
case. We have carried out this computatlion; and the results
are listed below.

It is of interest to notice that if the Dynkin graph
of G is simply laced, then x(1) = § p™  where
{ml,mz,...,mz} are the exponents of tgé Weyl group of G.

In the case of (G,) 1t is easy to show from the

formula given for x(1) that one must have vpq e 2.

(A,): Om——Omeme 4y ()
_— 1 2 L
u; = dder c(¥y,) X(Yui)
1 1 1
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£+1 1 241 -1

pitl ) _
———— Xs»X> =
p-1 "7~ X705 7 p(p¥ - 1)

[G: GJ]

L _
;((1)=E_(_L__l'l=p+p2+...+pl,

(p - 1)
(Bz): 0—LD— . . - -——{I:::?O, q4=p (1<i<e l),q£=q.
1 2 -1 £
u, = dder c(Yui) x(Yyy)
1 1 1
W) p(pz-l_l)(pz_zqil) pz—l_l
(p-1)
W, p2(2-1) ~pt-1
l__ 2=1 + L-1 +
(G: a;] = (p*-1)(p*~ q+1). Asx>g. = (p q)ggz g+l) .
p-1 J pa(p*~“q+l)

(1) = (pa):(p*-1)(p?=2q+1)
(p+q) (p-1)

If p=q, as in the case of the Chevalley groups, this

becomes:

x(1) = %(q+q2+-'-+q2‘1+2q£+q2+1+q1+2+...+q22-1).

2-1
(D)
o 0——0
1 2 2=
L
u,=dder g (Yy,) X(Yui)
1 1 1
W, p(p*~1-1)(p*=2+1) pt-l-1
(p-1)
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(pn-l)(pl-l+1) Y <X>X>G = (p2-1+1)(p+l)
(p-1) J  p(pt=2+1)

(a: GJ] =

p(pt~1) (p¥~2+1)

x(1) = = p+p34pS+e e +p28=34p2-l,

(p-1) (p+1)
4
(E) 0
0 0] L 0, 0
1 2 3 5 6
uy=dder z(Yy,) x(Yyy)
1 1 1
w; p(p®-1)(p3+1) (p3+p2-1)(p“-1)(p3+1)
(p-l) pz...l
u p8(p3-1)(p+l) -p4(p5-1)
(p-1) (p-1)

6
d = det C = S?E%(p2+p+1) = pb+pS-pl+p+l

m = (p+l)(p“+1)

[6:6,] = (B2=L)(B7=1) o (p24p41)2 (pbap3+1) (p2-p+1) (p*-p2+1)

(p-1)(p*-1)
<Y ,X> = (p2+p+l) (p —p+l)(p —p2+l)
oG p(p“+1)

x(1) = p(p“*+1)(p®+p3+1) = p + p“*+ p°+ p’+ pB+ p!!



5
(E,): 0
- 0 O v$————o———~o
1 2 3 b 6 7
uy=dder 2 (Yy, ) X(Yui)
1 1 1
W, p(p%-1)(pl2-1) (p2+1) (p-1)(p3+p2-1)
(p-1)(p“-1) (p5+1) (p3-1)(p-1) (p4-1)

- (p?-1)(pl2-1)

u pl0(p9-1)(pl2-1) p5(p2-1)(p3+1) (p3-p-1)
(p-1)(p*-1) p2-1
Wy p27 ‘ ) _p18

m(Xy) = -p>*+I, c(X,;) = p3®

(p3+1)

_ (p®+1)(p2+p+1) _ pb+1 p3-1 _ . o
" p2+1 p2+1 p-1 P +p =-p“+p+l
[G:g.] = (P1A=1)(p®+1)(p%+1) _ pl*-1 p!'®-1 p!®-1

T (p-1) p-1  p5-1 po-1

9+41) (p5+1) (p*-1
xxogy = B 2(p )(p-1)
J P(p®+1)(p-1)

6 1y
K1) = ?(g +1)(§ 1) = p 4+ pS 4 p7 4+ p% 4 pll o+ pld 4 pl?,
p°+1)(p“-1)
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6
(Eg) i
0 0 0 0 0 0 0
1 2 3 4 5 7 8
dder=u, 2 (Yy,) X(Yui)
1 1 1
W, p(pl*-1)(p%+1)(pS+1)
(p-1) (p14-1) (p3+p2-1) (p2-p+1)
(p-1)
«(p>+1)
u  pl2(pl4-1)(pl2+pb+1) pé(pl4=1) (pb+p3+1)
(p-1) (p-1)
« (p8+p"+1) - (p8+p"*+1) (p3-1)
v p2%(pl4-1)(pS+1)(p°+1) S(pl*-1)(p3-p-1)
(p-1) (p-1)

« (p2=p+1) (p3+1)

Wy p57 -p42

154 +1
a= §§5+1§3é§+1§ = pO4p7-p®-pi-piiptl

m=(p+1) (pé-p3+1)

"(Xy ) = -p0°-1, c(ij) = pb?

[G G ] - (230_1)(p2h 1)(p20 )
(p-1)(p&-1)(pl0-1)

p30_1

<X,X>GJ = p(p-1)

- 24 _q 1047
x(1) = p(p(ps_igp ) = pip7+plleplispl74plo4p234p29
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(F,): O O==30—0 q,=p (1=1,2); q,=q (1=3,4)
— 1 2 3 4
dder = uy C(Yui) X(Y“i)
1 1 1

W) p(p+1) (pq+1(pq2+1) (p+1) (pa+1) (p+pa-1)

u p*a(q2+q+1) (pq?+1) p2(p2q-1)(q2+q+1)

v p3q3(p+1)(pa+l)(pg?+1)  p3a(pa+l)(p+l(pg-q-1)

Wy p9q6 _p6q3

343
d =det C = p2q2 - pq + 1 = R°8° *+1
pg + 1

m=pg? + 1
[G: 6,1 = (p2+p+1)(pa+l)(p?q+1l)(p?q?+1)(p?q®-pa+l)

- (p2+p+1) (p3g3+1)(p+tq)

< >
X6y pq(pg? + 1)
: _ pa(pg?+1)(p2q+1)(p2qg2+1)
x(1) =
(p+q)
(G,) o==0 a =p,q =4
1 2
u=dder z(Y,) X(Yu)
1 1 1
L p(q+l) p+/pq -1
W WaW,y p2a(g+l) p’pq - p - /pq
We=W W W W W p3q? -p3/2q1/2
d = det C = pq - /pq + 1, "(Xwo) = -(pq)3/2.1.
m=gq+ 1
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[G: G;] = (p + 1)(p2q2 + pq + 1)
. _2(p + /pq + q)(pq - ¥pg + 1
X:X>G =

J pa(q + 1)

(1) = Ra(p+1)(q+1)(pa+/Pa+l)
2(p + Ypaq + q)

Finally we give a formula for the dual i(z‘n of the
reflection character. Recall that x(%=1 is the unique
irreducible complex character of G whose restriction to
H = Hy(G,B) 1s the character x, where x 1is the reflec-
tion character of H; and x(x) = x(%) for all x ¢ H (cf.
section 3). From theorem 1 we have

$(2=ly = 7 o(x

EIEml zwi(xw)i<x,-1>c(xw>1*1 : (25)
we We

Now x(X,) = x(X,) = (-1)£(W)c(xw»«x;ll). Moreover,
Te(Xy,) = c(Xwo) ) c(X;l) = p'lg*2 b oo(x,)"t.
w weW weW

From the definition of the reflection representation
n: H~> End h 1t is easy to see that Awi is the matrix
representing n(Xwi) relative to the basis {a,,00e5apl),
then A;; is obtained by replacing p by p~! and q by
q~! 4in all the entries of Awi' It follows that for any
w ¢ W, the inverse of A, the matrix representing w(X,),
can be obtained by replacing p by p~l!, @ by g~! in

the entries of Aw"' Hence we have the following theorem.
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THEOREM 13: Let x be the reflection character of

G and i the dual of x 1n the above sense. Then there
exists a rational function r(x,y) ¢ Q(x,y) such that

- 2 2 2
x(1) = r(p,q) and x(1) = p 1q 2r(p-t,q~1).
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