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Abstract

The lead time of a manufacturing system is the amount of time a part spends in it. This quantity
is important because customers demand short and reliable lead times, and because many products
lose value in storage. It is random because of some of the events that occur during the production
process, including unpredictable machine failures, uncertain processing times, and quality variations.
Knowledge of the probability distribution of lead time can be useful in deciding how to design or
operate a system, and in making delivery date commitments.

We describe an analytic method for determining the steady-state probability distribution of the
lead time of a three-machine, two-buffer production line in which the buffers are finite. The method
is an extension of recent work by the authors on the probability distribution of the sojourn time of a
two-machine line. We consider the movement of a reference part from its arrival until its departure.
We first compute the conditional probability that the lead time T = τ , given the state of the line
when the part arrives. This is done by solving a set of recurrence equations which are developed from
a detailed analysis of the reference part’s movement through the first buffer, from the first to the
second buffer, and through the second buffer. The conditioning is removed by using the steady-state
probability distribution of the three-machine line.

We provide two kinds of numerical evidence for the accuracy of this method. First, we show that
it satisfies Little’s Law. Then we compare the distribution calculated by the new method with the
simulated lead time distribution for several cases and show very close agreement. Several numerical
examples then are examined to observe the shapes of the probability distributions and how they
are influenced by the parameters of the machines and the sizes of the buffers. Other numerical
experiments demonstrate the effect of the existence and location of a bottleneck. Finally, we suggest
future research directions.

Keywords: lead time, transfer line, production line, unreliable machines, finite buffers
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1 Introduction

1.1 Problem and Motivation

The lead time of a manufacturing system is the amount of time a part spends in it. This quantity
is important because customers demand short and reliable lead times and because many products lose
value in storage. It is uncertain because of the random events that occur during the production process,
including machine failures, varying processing times, quality problems, and other events. The probability
distribution of lead time is important to determine the reliability of meeting proposed delivery dates.
Vendors can never predict lead times with certainty, but customers often require them to make firm
delivery promises. (They may have a contractual obligation to compensate a customer if they fail to
meet the promise. Even without such an obligation, they suffer a loss of reputation and goodwill if they
do not deliver on time.) They therefore attempt to design and operate their production system so that
no more than a small fraction of their deliveries are late.

Lead time limitation is important for other reasons. The quality of food deteriorates if too much time
elapses between the farm and the customer (or between the farm and the freezing or canning process). In
the semiconductor industry, lead times are on the order of weeks or months, and technological progress
is so rapid that products can lose significant value during such time periods. The same is true for the
clothing industry, where value loss is due to the changing of fashions. Again, manufacturers attempt
to ensure that no more than a specified fraction of their products spend more than a small period in
factories or storage.

1.2 Literature

Some prior literature on lead time analysis is based on classical queueing theory. In such models, ma-
chines are reliable with random service times. In most such models, buffers are assumed to be infinite.
Chow (1980) determines the lead time distribution of a cyclic queue with two exponential servers and
infinite buffers. Leemans (2001) analyzes a Markovian two-class two-server queue with non-preemptive
heterogeneous priority structures. The lead time distribution is derived based on the technique of tag-
ging and randomization. Ayhan et al. (2004) consider a multiple-stage cyclic queueing network with
N customers, general service times, and infinite buffers. The bounds on the nth departure time from
each stage are investigated. Azaron et al. (2006) investigate the optimal design of multi-stage assemblies

3



Shi and Gershwin 3M2B Lead Time August 18, 2016

modeled as an open queueing network. The arrival process of product orders is Poisson and each station
has a single server with exponential service times. They obtain the lead time distribution by applying the
longest path analysis. In Wu and McGinnis (2012), the authors model manufacturing systems as general
queueing networks and analyze their mean queue time. Lagershausen and Tan (2015) focus on closed
queueing networks where machines have phase-type service time distributions and buffers are finite. They
model such a network as a continuous time Markov chain with finite state space. By conducting first
passage time analysis, the authors find the distributions of inter-departure, inter-start and cycle time.

On the other hand, researchers have studied lead time using models with unreliable machines and,
in most cases, finite buffers. Tan (2003) proposes a performance evaluation methodology that can be
applied to a wide range of discrete production systems with unreliable machines and finite buffers. The
methodology first generates the transition matrix of the Markov chain, and then solves the transition
equations to find the steady-state probabilities of the system, from which the performance measures are
computed. The author then derives the conditional transient lead time distribution given the initial state
of the system. Shi and Gershwin (2016) develop an analytical solution for the lead time distribution
of two-machine one-buffer production lines with unreliable machines and a finite buffer. Machines are
assumed to have geometric failure and repair probabilities. They first find the conditional lead time
probability distribution of a part based on the position of the part and the state of the downstream
machine. The unconditional probability is then derived by applying the total probability theorem. The
research reported below is an extension of this work. Shi (2012) uses this method to study the production
line profit maximization problem subject to both a production rate constraint and a part sojourn time
constraint in a given buffer. The author extends Shi and Gershwin (2009) to develop an algorithm
that solves the optimization problem efficiently and accurately. Colledani et al. (2014) extend Shi and
Gershwin (2016) to two-machine one-buffer lines where machines follow a general Markovian model. The
lead time distribution is derived. In addition, they conduct integrated analysis of quality and production
logistics performance in their study.

Biller et al. (2013) study a model in which machines obey Bernoulli reliability but buffers are infinite.
The first machine is a release machine and it controls the availability of raw material. The authors
maximize the production rate of the line subject to an average lead time constraint by controlling the
parameters of the release machine. Meerkov and Yan (2014) advance Biller et al. (2013) to production
lines where machines have exponentially distributed up and down times. They also assume that buffer
sizes are infinite.

1.3 Outline

Section 2 defines the material flow model and introduces a new model which focuses on the movement
of a single part. The analysis of the probability distribution of the lead time is presented in Section
3. The numerical experiments in Section 4 provide evidence that the method calculates the distribution
correctly and they demonstrate some of the effects of the system parameters on the distribution. Section 5
concludes and summarizes the contributions of the paper, and it suggests research directions. Appendices
A–E provide the equations that are needed to calculate the distribution and they describe the algorithms
that were used for the numerical results in Section 4.
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2 Flow Line Model

The technique we present to determine the lead time of a production line requires the analysis of two
dynamic systems. The first, which we refer to here as the Material Flow System (MFS) (Section 2.1),
describes the flow of material in the line. It is used to determine the steady-state probability distribution
of inventory and machine repair states. This distribution is then used to derive expressions for the
production rate and average in-process inventory.

The second, which we call the Reference Part Movement System (RPMS), is developed in Section
2.2. It is based on the MFS, but it focuses on the movement of a single part. We use it to determine
the probability distribution of the lead time of that part, conditioned on the state of the system when it
arrives. We calculate the unconditional distribution of the lead time from it.

2.1 Material Flow System Model

We need the MSF for two reasons: the RPMS model is built on it; and its steady-state probability
distribution is used in Section 3 to derive the lead time probability distribution.

2.1.1 Description

The MFS model considered in this paper is the Gershwin (1994) version of the Buzacott model of a
three-machine, two-buffer transfer line. (See Figure 1.) The processing times of all machines are equal,
deterministic, and constant. Time is scaled so that operations take one time unit. Transportation time
is ignored. Buffer Bi is finite and can hold Ni <∞ parts (for i = 1, 2). All machines are unreliable with
geometrically distributed times to failure and to repair. The probabilities of failure and repair of machine
Mi during one time unit are pi and ri, respectively. Mi is blocked when its downstream buffer Bi is full
and is idle. Similarly, Mi is starved and consequently idle when its upstream buffer Bi−1 is empty. Idle
machines cannot fail or affect the number of parts in the buffer.

M1 M2 B 2 M3B 1 B 3B 0

Figure 1: Three-machine line. M1 −B1 −M2 −B2 −M3 is the system that is modeled in detail; B0 and
B3 are external fictitious buffers that are introduced to insure that M1 is never starved and M3 is never
blocked.

The first machine is never starved and the last is never blocked. It is equivalent, and sometimes
convenient, to say that there is an infinite buffer (B0) which is never empty upstream of the first machine.
That buffer is called the raw material buffer. Similarly, there is an infinite finished goods buffer (B3)
downstream of the last machine which is never full. Parts in B0 and B3 are not considered to be in the
system. The calculation of lead time and inventory only considers parts while they are in B1 and B2.

The lead time of a part is the time that the part spends in the three-machine two-buffer line. To
provide a precise definition of the lead time of the production line model considered, we must first explain
how inventory is defined. The model assumes that

• there is no space for a part at a machine, and therefore the inventory of the line is the total number
of parts in the two buffers B1 and B2.
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• when Mi processes a part, it moves the part from its upstream buffer to its downstream buffer.
During the time unit when the part is being processed, it is still considered residing in the upstream
buffer, rather than in the machine.

• if Mi attempts to process a part and fails, the part remains, undamaged, in the buffer upstream of
Mi.

These assumptions imply that when M1 performs an operation during some time unit t, it moves a
part from the raw material buffer into B1. During that time unit t, that part is considered outside the line
and therefore it does not contribute to the inventory. The part enters the line as soon as M1 completes
its operation and adds it to buffer B1. As a result, the time that a part spends in the line starts from the
instant it enters B1, after being processed by M1. Similarly, when M3 performs an operation during a
time unit, it moves a part from B2 to the finished goods buffer, which is outside of the line. During that
time unit, that part is still residing in B2 and therefore it is still part of the inventory. The part leaves
the line as soon as M3 completes its operation and removes it from B2. Consequently, the time that a
part spends in the line ends at the instant it leaves B2, after being processed by M3. As a result, the
lead time of a part is computed from the instant it enters B1 until the instant it leaves B2. In addition,
in this model, all events occur at integer times. At every event, each machine adds one part, removes one
part, or does neither. Therefore, lead times are always integers.

2.1.2 Notation and Dynamics

The state of the MFS at time t is a set of five random variables, ν1(t), ν2(t), α1(t), α2(t), α3(t). νi(t) is
the number of parts in Bi at time t and satisfies 0 ≤ νi(t) ≤ Ni, i = 1, 2, where Ni is the size of Bi. αi(t)
is the repair state of Mi at time t. αi(t) = 0, 1, i = 1, 2, 3. αi(t) = 1 means Mi is operational at time t;
αi(t) = 0 means Mi is under repair at time t.

Figure 2 illustrates the sequence of events in this model. The convention is that the states of machines
are determined at the beginning of a time unit while the buffer levels are computed at the end of a time
unit. Both time instants and time units are plotted on a horizontal line. A time instant (t− 1, t, or t+ 1
in the figure) is the end of one time unit and the beginning of the next. The interval between the time
instants t and t+ 1 is time unit t.

t � 1 t � 1 t t t + 1

⌫i(t � 1) determined

↵i(t � 1) determined ↵i(t) determined

⌫i(t) determined

Figure 2: Convention of the Gershwin (1994) version of the Buzacott model

Each machine, if it is operational and not idle, attempts to perform an operation and, if the machine
fails, that state change is considered to occur at the beginning of the time unit. Similarly, if a machine
is under repair, and that repair is completed during the current time unit, that state change is also
considered to occur at the beginning of the time unit. (After a repair, the machine successfully performs
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an operation during the same time unit.) The dynamics of the machine state αi(t) is therefore described
by a pair of Bernoulli random processes. In particular

If αi(t) = 0, αi(t+ 1) =

{
1 with probability ri
0 with probability 1− ri

The failure process can only occur if a machine is not starved or blocked:

If αi(t) = 1,



αi(t+ 1) = 1 if Mi is starved or blocked,

αi(t+ 1) =

{
1 with probability 1− pi
0 with probability pi

}
if Mi is neither starved nor blocked.

If Mi succeeds in doing an operation on a part, that part will leave buffer Bi−1 and enter Bi at the
end of the current time unit. The change of νi, the level of Bi is therefore

νi(t+ 1) = νi(t) + αi(t+ 1)− αi+1(t+ 1), i = 1, 2

if the buffer is neither empty nor full at time t, that is, if 1 ≤ νi(t) ≤ Ni − 1.

The general form of this equation (Gershwin 1994) also accounts for the cases in which Bi is either
starved or blocked. It can be written

νi(t+ 1) = νi(t) + Ii(t+ 1)− Ii+1(t+ 1), i = 1, 2 (1)

in which random variable Ii(t + 1) is the indicator of whether a part is moved by Mi from Bi−1 to Bi.
That is,

I1(t+ 1) =


1 if α1(t+ 1) = 1 and ν1(t) < N1

(i.e., M1 is up and not blocked)

0 if α1(t+ 1) = 0 or {a1(t+ 1) = 1 and ν1(t) = N1}
(i.e., M1 is down or blocked)

I2(t+ 1) =



1 if α2(t+ 1) = 1, ν1(t) > 0, and ν2(t) < N2

(i.e., M2 is up, not starved, and not blocked)

0 if α2(t+ 1) = 0 or
{
a2(t+ 1) = 1 and {ν1(t) = 0 or ν2(t) = N2}

}
(i.e., M2 is down or starved or blocked)
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I3(t+ 1) =


1 if α3(t+ 1) = 1 and ν2(t) > 0

(i.e., M3 is up and not starved)

0 if α3(t+ 1) = 0 or {a3(t+ 1) = 1 and ν2(t) = 0}
(i.e., M3 is down or starved)

2.2 Reference Part Movement System Model

2.2.1 Description

We assume that parts in the buffer follow a first-in first-out (FIFO) discipline. In previous analyses of
this and similar systems, the discipline was not specified because it did not affect the production rate or
average inventory. However, the discipline does affect the probability distribution of the lead time, so we
must specify it here.

Because we have made the FIFO assumption, we can make the following definition. The position
of a part in a buffer is one more than the number of parts that will leave the buffer before it (Shi and
Gershwin 2016). If a part’s position is k, we also say that it is the kth part in the buffer. Note that the
position of a part is always 1 or greater.

Assume a part enters the system at the end of time unit t′. We call it the reference part. Assume
there are ν1(t

′) parts in buffer B1 (including the reference part) and ν2(t
′) parts in buffer B2 when the

reference part arrives. The reference part experiences the following sequence of events:

1. It goes into buffer B1 at position ν1(t
′) after being processed by M1. It cannot enter B2 without

going through B1 first.

2. It stays in B1 until the ν1(t
′)− 1 parts in front of it are processed by M2. Then it is processed by

M2 at some time s > t′.

3. After it is processed by M2, it is added to B2 at the end of time unit s. The level of B2 (which is
now the position of the reference part) at the end of s is ν2(s).

4. After it enters B2, it stays in B2, waiting for M3 until the ν2(s)−1 parts in front of it are processed
by M3.

5. It is processed by M3 at some time u > s, and it leaves B2 and therefore the line at the end of time
unit u.

The reference part enters B1 at the end of time unit t′ and leaves B2 at the end of time unit u.
Consequently, its lead time is T = u− t′.

2.2.2 Notation and Dynamics

Define χi(t) to be the position of the reference part in buffer Bi at time t. χi(t) is only meaningful when
the reference part is in buffer Bi. We call the dynamic system which describes the movement of the
reference part the Reference Part Movement System (RPMS). The movement of the part is determined
only by events downstream of it. Therefore, when the reference part is in B1, the state of the RPMS
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consists of the random variables χ1, ν2, α2 and α3. When the reference part is in B2, the state of this
system consists of χ2 and α3.

We refer to the period from t′ to s in which the reference part is in B1 as phase 1. Phase 2 is the
period from s to u during which the reference part is in B2. Since the part is only in Bi during phase i,
χ1(t) is only meaningful for t′ ≤ t < s and χ2(t) is only meaningful for s ≤ t < u.

Upon the arrival of the part at B1, phase 1 starts and χ1(t
′) = ν1(t

′). The RPMS at time t′ is shown
in Figure 3. At the end of time unit s, the reference part leaves B1 and enters B2. Therefore, phase 1
ends and phase 2 starts. At the end of s, χ2(s) = ν2(s) and the RPMS is shown in Figure 4.

M1 M2

�1(t
0) = ⌫1(t

0)

M3

⌫2(t
0)

the reference part

Figure 3: Start of phase 1 (at the end of time unit t′)

To find the lead time of the reference part, we need to consider the lengths of time that the reference
part spends in the two phases by studying its movements in each.

Phase 1 For t′ ≤ t < s, we model the dynamics of both χ1(t) and ν2(t) as M2 moves parts from B1 to
B2 and M3 moves parts out of the system from B2. The dynamics of χ1(t) are

χ1(t+ 1) = χ1(t)− I2(t+ 1) (2)

Equation (2) indicates that once the reference part enters B1, its position is unaffected to anything
that happens to the upstream machine M1. In addition, (2) shows that χ1 cannot increase with t. It
decreases whenever M2 moves parts out of B1. It stays unchanged if M2 either fails or is blocked by a
full B2. Therefore, χ1 is affected by M2 directly and M3 indirectly. On the other hand, equation (1) for
i = 1 shows that ν1 can increase, decrease, or remain unchanged with t, depending on the part inflow
from M1 and outflow to M2.

Changes in χ1 and ν2 are related because

1. Whenever M2 performs an operation, it removes a part from B1 and adds it to B2 (i.e., I2 = 1).
That is, the operation reduces χ1 by 1 and increases ν2 by 1.

2. (a) If χ1(t
′) + ν2(t

′) > N2 (i.e., if the total number of parts in the two buffers when the reference
part arrives is greater than the size of B2), and M3 is down, ν2 will increase as M2 keeps

M1 M2

⌫1(s)

M3

�2(s) = ⌫2(s)

the reference part

Figure 4: Start of phase 2 (at the end of time unit s)
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transferring parts from B1 to B2. If M3 stays down long enough, B2 will become full (ν2 = N2)
while the reference part is in B1. A full B2 will in turn block M2. As a result, I2 will be 0 and
χ1 will remain unchanged until the blockage of M2 ends.

(b) If χ1(t
′) + ν2(t

′) ≤ N2, B2 will not become full before the reference part is processed by M2 no
matter how long M3 is down.

The reference part can only leave B1 at the end of time unit t if χ1(t− 1) is 1 and M2 is up and not
blocked during t. If both conditions are satisfied, the reference part leaves B1 at the end of t, and we
refer to the value of t as s.

Phase 2 The reference part enters B2 at the end of time unit s. Upon arrival, the position of the
reference part in B2 is χ2(s) = ν2(s). Its remaining time in the line depends on how χ2(t) changes for
t > s. The dynamics of χ2 are

χ2(t+ 1) = χ2(t)− α3(t+ 1) (3)

That is, when the reference part is in B2, its position is unaffected by anything that happens to the
upstream machines M1 and M2. χ2 decreases with t as long as M3 moves parts out of B2, and it remains
constant when M3 is down. By contrast, ν2 can increase, decrease, or remain unchanged with t, depending
on the part inflow from M2 and outflow to M3. Note that M3 cannot be starved as the reference part is
in B2; it cannot be blocked either due to the assumption that there is an infinite finished goods buffer
downstream of M3. The reference part can only leave B2 (and therefore the line) at the end of some time
unit t if its position χ2(t − 1) is 1 and M3 is up during t. If both conditions are satisfied, the reference
part leaves the system at the end of t, and we refer to that value of t as u. The time that the reference
part spends in B2 is u− s, and u depends on χ2(s) and the state of M3 for s < t ≤ u.

To summarize, once the reference part enters the three-machine two-buffer line at the end of time
unit t′, its lead time T = u − t′ depends only on χ1(t

′), ν2(t
′), and whether M2 and M3 are up, down,

blocked, or starved for each t ≥ t′ until it leaves the line.

3 Derivation of the Lead Time Distribution

3.1 Overview

We derive the steady-state probability distribution of the lead time of the three-machine two-buffer line
in this section. In our approach, we assume that the MFS is in steady state. We analyze the movement
of a reference part that enters the line at the end of some time unit t′ when the RPMS is in state
(χ1(t

′), ν2(t
′), α2(t

′), α3(t
′)) and derive equations for a set of conditional probabilities for the lead time in

Sections 3.2 and 3.3. The unconditional probability distribution is determined from them in Section 3.4.
We no longer need to make a distinction between t′ and a generic t. We use prob() to represent

the probability of an event. For example the probability mass function of the lead time is denoted by
prob(T = τ).

Define A(t) to be the event that the reference part enters the system at the end of time unit t. To
calculate prob(T = τ):

• We derive, in Section 3.2, a set of recurrence equations for prob(T = τ |χ1(t) = x1, ν2(t) =
n2, α2(t) = a2, α3(t) = a3, A(t)). This is the conditional probability that the reference part has
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lead time T = τ given that χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, and given that it arrived
at time t (1 ≤ x1 ≤ N1, 0 ≤ n2 ≤ N2, a2 = 0, 1 and a3 = 0, 1);

• We find, in Section 3.3, the steady-state conditional probability prob(χ1(t) = x1, ν2(t) = n2, α2(t) =
a2, α3(t) = a3|A(t)). This is the probability that χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3,
given that the reference part arrived at time t (1 ≤ x1 ≤ N1, 0 ≤ n2 ≤ N2, a2 = 0, 1, a3 = 0, 1).
This derivation requires the steady-state probability distribution of the MFS.

• Finally, in Section 3.4, we find the steady-state probability prob(T = τ |A(t)) by using the Total
Probability Theorem (Bertsekas and Tsitsiklis 2008):

prob(T = τ |A(t)) =

N1∑
x1=1

N2∑
n2=0

1∑
a2=0

1∑
a3=0

[
prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t))×

prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))

]
.

(4)

Note that prob(T = τ |A(t)) is exactly the lead time distribution we are looking for, i.e.,

prob(T = τ) = prob(T = τ |A(t)) (5)

This is because the event {T = τ} is actually the event that a part arrives at the line at some time t
and it spends τ time units in it. Since A(t) is the event that a part arrives at some time t, {T = τ} is a
subset of A(t). This implies equation (5). (Note that since we are considering the MFS in steady state,
the value of t does not affect the probability.)

However this reasoning does not imply that we can drop A(t) from the conditions in any of the
probabilities on the right side of equation (4). This is because all of those probabilities involve {χ1(t) =
x1}. That event occurs at the same time as the arrival of the part in event A(t). That is, even though
we are considering the system in steady state, the quantities on the right side of (4) involve events that
happen at the same time t.

Before we proceed with the derivation of the lead time distribution, it is important to observe that
the set of possible values of the lead time T depends on the state of the RPMS when the reference part
enters the line.

Assume that the reference part is at position χ1 in B1 and that there are ν2 parts in B2. Then there
are χ1− 1 parts in B1 and ν2 parts in B2 ahead of the reference part. χ1 and ν2 determine the minimum
possible value of T . For example, if χ1 = ν2 = 10, then we know that the lead time T cannot be 1 time
unit. To determine the minimum precisely, we must consider two cases.

• First, suppose that ν2 > 0. If M2 and M3 stay up, M3 will process those ν2 parts (while M2 moves
parts from B1 to B2), as well as the χ1 − 1 parts that were originally in B1, before it can work on
the reference part. In other words, given no failures of M2 and M3, the reference part will wait
for χ1 + ν2 − 1 time units before it can be processed by M3, and therefore, its minimum lead time
is χ1 + ν2 time units. If either of M2 or M3 fails during the process, the lead time will be longer.
Consequently, T ≥ χ1 + ν2 when ν2 > 0.

• Next, suppose that ν2 = 0. After one time unit, if M2 is up, it will put one part into B2; and M3

will be starved during that time unit. The reference part will then be the (χ1−1)th part in B1, and
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there will be one part in B2. Therefore there will still be χ1 − 1 parts in front of the reference part
in the line. If M2 and M3 stay up, M3 will have to process those χ1− 1 parts before it can work on
the reference part. As a result, assuming no failures of M2 and M3 occur, the reference part must
wait for the time unit during which M3 is starved plus χ1−1 time units during which M3 processes
the preceding χ1 − 1 parts. That is, the reference part must wait for 1 + (χ1 − 1) = χ1 time units
before it can be processed by M3. Consequently, the minimum lead time of the reference part is
χ1 + 1 time units. If any of M2 or M3 fails during the process, the lead time will be longer. As a
result, T ≥ χ1 + 1 when ν2 = 0.

Combining the two cases, T must satisfy T ≥ χ1 + max(ν2, 1) and therefore

prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t)) = 0 if τ < x1 + max(n2, 1) (6)

Equation (6) indicates that the minimum value of the lead time of a three-machine two-buffer line is
2 time units, when χ1 = 1 and ν2 = 0 or 1. On the other hand, there is no upper bound on the lead time.

3.2 Derivation of prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t))

In this section, we find prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t)), the first set of
factors in (4), by tracking the movement of the reference part in the reference part movement system. For
example, suppose that the RPMS is in state (χ1(t), ν2(t), α2(t), α3(t)) = (x1, n2, 1, 1) where x1 ≥ 2, n2 ≥ 1
after the reference part enters B1. If both M2 and M3 stay up and not blocked, then at the end of the
next time unit, M2 will move a part from B1 to B2 and M3 will move a part from B2 to out of the line and
the RPMS will be in state (x1 − 1, n2, 1, 1). By tracing how the reference part moves from time step to
time step, we are able to determine the relationship between the lead time of the reference part and the
state of the RPMS, and therefore to find prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t)).
This leads to a set of recursive equations for the probabilities.

To present the derivation equations, we define the following notation for convenience. For a2 = 0, 1;
a3 = 0, 1; 1 ≤ x1 ≤ N1, 0 ≤ n2 ≤ N2 :

Πa2a3
t (τ, x1, n2) = prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t))

ΠBa3
t (τ, x1) = prob(T = τ |χ1(t) = x1, ν2(t) = N2, α2(t) = 1, α3(t) = a3, A(t))

Πa2S
t (τ, x1) = prob(T = τ |χ1(t) = x1, ν2(t) = 0, α2(t) = a2, α3(t) = 1, A(t))

In this notation, B indicates that buffer B2 is full (i.e., ν2(t) = N2) and therefore M2 is blocked (i.e.,
α2(t) = 1); and S indicates that buffer B2 is empty (i.e., ν2(t) = 0) and therefore M3 is starved (i.e.,
α3(t) = 1).

We need to find Πa2a3
t (τ, x1, n2), ΠBa3

t (τ, x1), and Πa2S
t (τ, x1) for all applicable τ , x1 and n2. According

to (6), Πa2a3
t (τ, x1, n2) = ΠBa3

t (τ, x1) = Πa2S
t (τ, x1) = 0 for all τ < x1 + max(n2, 1). Therefore, we just

need to find the probabilities for all other combinations of τ , x1 and n2.

It is important to point out that for the RPMS, the states of the form (1, n2, a2, a3) (i.e., where x1 = 1)
are special. This is because if M2 stays up and not blocked, the reference part will leave B1 and enter
B2 at the end of next time unit. Consequently, the reference part leaves phase 1 and enters phase 2 as
described in 2.2.2, and the state of the RPMS is changed from (x1, n2, a2, a3) to (x2, a3).
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3.2.1 2 ≤ x1 ≤ N1

When 2 ≤ x1 ≤ N1, there are five sets of recurrence equations depending on the value of n2. They are
cases in which n2 = 0, n2 = 1, n2 = N2 − 1, n2 = N2, and 2 ≤ n2 ≤ N2 − 2.

We use the following example to demonstrate how to construct the recurrence equations. Suppose
that χ1(t) = x1 ≥ 2 and 2 ≤ ν2(t) = n2 ≤ N2 − 2 and α2(t) = α3(t) = a2 = a3 = 1 when the reference
part enters the line at the end of time unit t. We discuss what may happen during time unit t+ 1. There
are four possibilities depending on the new states of M2 and M3. Note the reference part is in B1 at the
end of time unit t, and it remains in B1 at the end of t + 1 in all four cases. As a consequence, χ1(t)
and χ1(t + 1) are meaningful and χ1(t + 1) must be determined. On the other hand, neither χ2(t) nor
χ2(t+ 1) are meaningful.

1. Both M2 and M3 fail, with probability p2p3. There is no change of the position of the reference
part or the level of B2. The reference part will still be the x1th part in B1 and the level of B2 is
still n2. Therefore, χ1(t+ 1) = x1, ν2(t+ 1) = n2, α2(t+ 1) = 0 and α3(t+ 1) = 0.

2. M2 fails while M3 stays up, with probability p2(1− p3). M2 does not change the level of B1 or B2

while M3 removes a part from B2. The reference part is still the x1th part in B1 and the level of
B2 is decreased by 1. Therefore, χ1(t+ 1) = x1, ν2(t+ 1) = n2− 1, α2(t+ 1) = 0 and α3(t+ 1) = 1.

3. M2 stays up while M3 fails, with probability (1− p2)p3. M2 moves a part from B1 to B2 while M3

does not remove anything from B2. The reference part will then be the (x1 − 1)st part in B1 and
the level of B2 is increased by 1. Therefore, χ1(t + 1) = x1 − 1, ν2(t + 1) = n2 + 1, α2(t + 1) = 1
and α3(t+ 1) = 0.

4. Both M2 and M3 stay up, with probability (1− p2)(1− p3). M2 moves a part from B1 to B2 while
M3 removes a part from B2. The reference part will then be the (x1 − 1)st part in B1, and the
number of parts in B2 is unchanged. Therefore, χ1(t + 1) = x1 − 1, ν2(t + 1) = n2, α2(t + 1) = 1
and α3(t+ 1) = 1.

To develop a set of equations to determine the probabilities, note that no matter what happens to
M2 and M3 during time unit t+ 1, this time unit has passed. For the reference part to have a lead time
of τ time units counted from the end of time unit t (when it arrived), it must have a residual lead time
of τ − 1 time units counted from the end of time unit t+ 1. At the end of time unit t+ 1, the four state
variables of the RPMS are χ1(t+ 1), ν2(t+ 1), α2(t+ 1), and α3(t+ 1).

Consider a hypothetical second reference part that enters the line at the end of time unit t + 1, and
assume that the values of the state variables are the same as the first scenario discussed above for the
original reference part, i.e., χ1(t+1) = x1, ν2(t+1) = n2, α2(t+1) = 0 and α3(t+1) = 0. The probability
that the second reference part has a lead time of τ−1 given these variables is prob(T = τ−1|χ1(t+1) =
x1, ν2(t+ 1) = n2, α2(t+ 1) = 0, α3(t+ 1) = 0). Both the original and the second reference part have the
same conditions in terms of χ1(t + 1), ν2(t + 1), α2(t + 1) and α3(t + 1). Consequently, the distribution
of the residual lead time of the original reference part is the same as the distribution of the lead time of
the second reference part.

Repeating this analysis for the other three scenarios and then applying the Total Probability Theorem

13



Shi and Gershwin 3M2B Lead Time August 18, 2016

lead to the following recurrence equation:

prob
(
T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = 1, α3(t) = 1, A(t)

)
=

p2p3prob
(
T = τ − 1|χ1(t+ 1) = x1, ν2(t+ 1) = n2, α2(t+ 1) = 0, α3(t+ 1) = 0, A(t+ 1)

)
+p2(1− p3)prob

(
T = τ − 1|χ1(t+ 1) = x1, ν2(t+ 1) = n2 − 1, α2(t+ 1) = 0, α3(t+ 1) = 1, A(t+ 1)

)
+(1− p2)p3prob

(
T = τ − 1|χ1(t+ 1) = x1 − 1, ν2(t+ 1) = n2 + 1, α2(t+ 1) = 1, α3(t+ 1) = 0, A(t+ 1)

)
+(1− p2)(1− p3)prob

(
T = τ − 1|χ1(t+ 1) = x1 − 1, ν2(t+ 1) = n2, α2(t+ 1) = 1, α3(t+ 1) = 1, A(t+ 1)

)
(7)

We disregard the t arguments in (7) because the conditional lead time probability distribution is in
steady state so it depends only on the current state of the RPMS. In the new notation, equation (7)
becomes

Π11(τ, x1, n2) = p2p3 Π00(τ − 1, x1, n2) + p2(1− p3) Π01(τ − 1, x1, n2 − 1)

+ (1− p2)p3 Π10(τ − 1, x1 − 1, n2 + 1) + (1− p2)(1− p3) Π11(τ − 1, x1 − 1, n2).
(8)

Equation (8) is the recurrence equation for the conditional probability that the lead time of the
reference part is τ given that χ1(t) = x1, ν2(t) = n2, α2(t) = 1, α3(t) = 1 (x1 ≥ 2, 2 ≤ n2 ≤ N2 − 2) upon
its arrival. With the same analysis, we derive such recurrence equations for all combinations of τ , x1, n2,
α2 and α3 for 2 ≤ x1 ≤ N1, 0 ≤ n2 ≤ N2, a2 = 0, 1 and a3 = 0, 1. We list them in Appendix A.

3.2.2 x1 = 1

When the reference part enters the line, it is the first (in fact, the only) part in buffer B1. If M2 is up
and not blocked during the next time unit, the reference part will move from B1 to B2. If M2 is blocked
or down, the reference part will stay in B1. As an example, suppose that both M2 and M3 are up (i.e.,
a2 = a3 = 1) and 2 ≤ n2 ≤ N2− 1 when the reference part arrives. As we did in Section 3.2.1, we discuss
what could happen during time unit t + 1. Since the reference part is in B1 during time unit t, χ1(t) is
meaningful and χ2(t) is not. In the cases in which the reference part stays in B1 at the end of time unit
t+ 1, χ1(t+ 1) is meaningful and χ2(t+ 1) is not. However, in the cases where the reference part moves
to B2, χ1(t+ 1) is not meaningful and χ2(t+ 1) is.

1. Both M2 and M3 fail, with probability p2p3. Consequently, the reference part will still be the first
part in B1 and the level of B2 will remain unchanged. As a result, χ1(t + 1) = 1, ν2(t + 1) = n2,
α2(t+ 1) = 0 and α3(t+ 1) = 0.

2. M2 fails while M3 stays up, with probability p2(1 − p3). At the end of time unit t + 1, M2 does
not move the reference part from B1 to B2 while M3 removes a part from B2. The reference part
will still be the first part in B1 and level of B2 is decreased by 1. As a result, χ1(t + 1) = 1,
ν2(t+ 1) = n2 − 1, α2(t+ 1) = 0 and α3(t+ 1) = 1.

3. Both M2 and M3 stay up, with probability (1 − p2)(1 − p3). At the end of time unit t + 1, M2

moves the reference part from B1 to B2 while M3 removes a part from B2. As a result, χ1(t+ 1) is
not meaningful, while and χ2(t+ 1) is. In particular, χ2(t+ 1) = ν2(t+ 1) = n2, α2(t+ 1) = 1 and
α3(t+ 1) = 1.

14



Shi and Gershwin 3M2B Lead Time August 18, 2016

4. M2 stays up while M3 fails, with probability (1 − p2)p3. At the end of time unit t + 1, M2 moves
the reference part from B1 to B2 while M3 cannot remove anything from B2. Therefore, χ1(t + 1)
is not meaningful, while and χ2(t+ 1) is. In particular, χ2(t+ 1) = ν2(t+ 1) = n2 + 1, α2(t+ 1) = 1
and α3(t+ 1) = 0.

The movement of the reference part from B1 to B2 requires new probabilities to be defined. For w ≥ 1
and 1 ≤ x2 ≤ N2, let

π1(w, x2) = prob(the reference part spends w time units at B2|χ2(s) = x2, α3(s) = 1, B(s))

π0(w, x2) = prob(the reference part spends w time units at B2|χ2(s) = x2, α3(s) = 0, B(s))

where B(s) is the event that the reference part enters B2 at the end of some time unit s. Then, from the
Total Probability Theorem, we establish the following recurrence equation:

Π11(τ, 1, n2) = p2p3 Π00(τ − 1, 1, n2) + p2(1− p3) Π01(τ − 1, 1, n2 − 1)

+ (1− p2)(1− p3) π1(τ − 1, n2) + (1− p2)p3 π0(τ − 1, n2 + 1)
(9)

Equation (9) does not have the same form as (8). This is because of π1(w, x2) and π0(w, x2), which do
not appear in the previous equations. To determine these quantities, we observe that once the reference
part enters B2, the time it spends there is the same as the time that a part spends in the buffer of a
two-machine one-buffer line consisting of M2, B2, and B3. This is precisely the quantity calculated by
Shi and Gershwin (2016), in which they developed the equations that π1(w, x2) and π0(w, x2) satisfy for
all w ≥ 1 and 1 ≤ x2 ≤ N2. The equations for π1(w, x2) and π0(w, x2) from Shi and Gershwin (2016) are
provided in Appendix D.

We can now derive the recurrence equations for all combinations of τ , x1, n2, a2 and a3 for x1 = 1,
0 ≤ n2 ≤ N2, a2 = 0, 1 and a3 = 0, 1. There are different sets of equations for n2 = 0 or 1 (which involve
the possibility of starvation of M3), n2 = N2 − 1 or N2 (which involve the possibility of blockage of M2),
and 2 ≤ n2 ≤ N2 − 2. They are listed in Appendix B. Recall that the equations in Appendices A and B
are only for the values of τ , x1, and n2 that satisfy (6). The probabilities of all other values of τ , x1, and
n2 are 0.

Finally, in order to determine all these probabilities using recurrence equations (A.1) to (A.5) and
(B.1) to (B.4), we must specify a set of initial conditions. The initial conditions should involve only
the states (x1, n2, a2, a3) of the RPMS and the value of τ such that probabilities prob(T = τ |χ1(t) =
x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3) can be determined from π1(w, x2) and π0(w, x2) alone. The RHS
of the equations for these probabilities should only contain π1(w, x2) or π0(w, x2) or both.

The initial conditions are the equations that involve (1, 0, a2, a3) and (1, 1, a2, a3) for τ = 2. Conse-
quently we have the following initial conditions:
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Π0S(2, 1) = r2π
1(1, 1)

Π1S(2, 1) = (1− p2)π1(1, 1)

Π00(2, 1, 0) = r2r3π
1(1, 1) + r2(1− r3)π0(1, 1)

Π10(2, 1, 0) = (1− p2)r3π1(1, 1) + (1− p2)(1− r3)π0(1, 1)

Π00(2, 1, 1) = r2r3π
1(1, 1)

Π01(2, 1, 1) = r2(1− p3)π1(1, 1)

Π10(2, 1, 1) = (1− p2)r3π1(1, 1)

Π11(2, 1, 1) = (1− p2)(1− p3)π1(1, 1)

(10)

According to Shi and Gershwin (2016), π1(1, 1) = 1− p3 and π0(1, 1) = r3. See Appendix D.
The set (10) of initial conditions, together with π1(w, x2) and π0(w, x2) for w ≥ 1, 1 ≤ x2 ≤ N2,

and recurrence equations (A.1) to (A.5) and (B.1) to (B.4) determine the non-zero Πα2α3(τ, x1, n2),
ΠBα3(τ, x1), and Πα2S(τ, x1) for all τ ≥ x1 + max(1, n2), 1 ≤ x1 ≤ N1 and 0 ≤ n2 ≤ N2. The procedure
is summarized in Algorithm 1 which is provided in Appendix E.

3.3 Derivation of prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))

3.3.1 Reformulation

In this section, we find prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)), the second set of factors
in (4), from the steady-state probabilities of the MFS. We start the analysis by noting that when the
reference part enters B1 at the end of time unit t, its position χ1(t) is equal to ν1(t), the level of B1. In
other words, χ1(t) = x1 = ν1(t) = n1. Therefore,

prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))

= prob(χ1(t) = n1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))

= prob(ν1(t) = n1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))

The last quantity, prob(ν1(t) = n1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)), is the same as prob(ν1(t) =
n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3|A(t)) because a part can only enter the line (at time t) if
M1 is up (i.e., α1(t) = 1).

Therefore,

prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))

= prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3|A(t))

=
prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t))

prob(A(t))

(11)

This can be further simplified. A(t) is the event that a part enters the three-machine two-buffer line
at the end of time unit t. Therefore prob(A(t)) is the probability that a part enters the line. (We no
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longer need to speak of the reference part.) Conservation of flow requires this to be the same as the
probability that a part leaves the line. That is precisely the production rate P of the MFS model of the
three-machine two-buffer line. As a consequence, (11) becomes

prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t))

=
1

P
prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t))

(12)

In the following, we find prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)) and P in
terms of the steady-state probabilities of the MFS. We introduce the following notation: in steady state,

p(n1, n2, a1, a2, a3) = prob(ν1(t) = n1, ν2(t) = n2, α1(t) = a1, α2(t) = a2, α3(t) = a3)

These probabilities are found by solving the steady-state Markov transition equation of the three-
machine line. (A general description of the transition equations appears in Gershwin 1994.) Gershwin
and Schick (1983) derived an analytical solution, but it is difficult to implement. In this study, we use
the exact numerical solution of Tan (2003) to calculate the steady-state probabilities. In the following,
we treat all p(n1, n2, a1, a2, a3) as known quantities.

The steady-state production rate P of the line is computed from those probabilities according to
either of the following expressions.

P =

N1−1∑
n1=0

N2∑
n2=0

1∑
a2=0

1∑
a3=0

p(n1, n2, 1, a2, a3) =

N1∑
n1=0

N2∑
n2=1

1∑
a1=0

1∑
a2=0

p(n1, n2, a1, a2, 1)

In the first expression, the sum is taken over all states in which M1 is operational and not blocked. It is
the probability that a part enters the system. In the second, which is the probability that a part exits
from the system, the sum is taken over all states in which M3 is operational and not starved.

3.3.2 prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t))

In order to evaluate (12), we show next how to express prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) =
a2, α3(t) = a3, A(t)) in terms of p(n1, n2, a1, a2, a3). To do so, we divide the set of non-transient states
(ν1(t), ν2(t), α1(t), α2(t), α3(t)) = (n1, n2, 1, a2, a3) into two subsets: A, those that can be reached only
when A(t) occurs (i.e., when a new part arrives); and Ā, those that can be reached whether or not A(t)
occurs.

Subset A: A is the set of (ν1(t), ν2(t), α1(t), α2(t), α3(t))=(n1, n2, 1, a2, a3) that satisfy one of the fol-
lowing conditions:

a1 = 1; a2 = 0, 1; a3 = 0, 1; 1 ≤ n1 ≤ N1 − 2; 0 ≤ n2 ≤ N2, (13)

or

a1 = 1; a2 = 0; a3 = 0, 1;n1 = N1 − 1; 0 ≤ n2 ≤ N2 (14)
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• Consider a state that satisfies (13). According to (1), it can be reached only from states of the form
(ν1(t − 1), ν2(t − 1), α1(t − 1), α2(t − 1), α3(t − 1)) = (n′1, n

′
2, a
′
1, a
′
2, a
′
3) where a′i = 0 or 1 and n′i

satisfy

n1 = n′1 + 1− a2 or n′1 = n1 − 1 + a2

n2 = n′2 + a2 − a3 or n′2 = n2 − 1 + a3

Since n1 ≤ N1 − 2, the equation for n1 implies that n′1 ≤ N1 − 1.

That equation means that one part entered B1 (and one part may have left it). Consequently, if
the system is in any state in A that satisfies (13), A(t) must have occurred. Therefore,

prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t))

= prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3)

= p(n1, n2, 1, a2, a3)

(15)

• Now consider a state that satisfies (14). It can be reached only from states of the form (ν1(t −
1), ν2(t− 1), α1(t− 1), α2(t− 1), α3(t− 1)) = (n′1, n

′
2, a
′
1, a
′
2, a
′
3) where a′i = 0 or 1 and n′i satisfy

N1 − 1 = n′1 + 1 or n′1 = N1 − 2

n2 = n′2 or n′2 = n2

In this case, one part entered B1 and no part left it. Again, A(t) must have occurred. Therefore,

prob(ν1(t) = N1 − 1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = 0, A(t))

= prob(ν1(t) = N1 − 1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = 0)

= p(N1 − 1, n2, 1, 0, 0)

(16)

Subset Ā: Ā is the set of (ν1(t), ν2(t), α1(t), α2(t), α3(t))=(n1, n2, 1, a2, a3) that satisfy one of the fol-
lowing conditions:

a1 = 1; a2 = 1; a3 = 0, 1;n1 = N1 − 1; 0 ≤ n2 ≤ N2 (17)

or

a1 = 1; a2 = 0, 1; a3 = 0, 1;n1 = N1; 0 ≤ n2 ≤ N2 (18)

In order to develop an expression for prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) =
a3, A(t)) under condition (18) we first state A(t) (the event that a part arrives in B1 at time t) explicitly.
A(t) is the event that M1 is operational at time t and B1 is not full at time t− 1. That is,
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A(t) = {α1(t) = 1 and ν1(t− 1) ≤ N1 − 1}

Consequently,

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)) =

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, ν1(t− 1) ≤ N1 − 1)

Our objective is to express this as a function of probabilities prob(ν1(t) = n1, ν2(t) = n2, α1(t) =
a1, α2(t) = a2, α3(t) = a3) = p(n1, n2, a1, a2, a3), the steady-state probability distribution of the MFS.
Note that if ν1(t) = N1, ν1(t − 1) cannot be less than N1 − 1. Therefore, ν1(t − 1) = N1 − 1 and this
expression is

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, ν1(t− 1) = N1 − 1)

Furthermore, for the level of B1 to increase from ν1(t − 1) = N1 − 1 to ν1(t) = N1, we must have
α1(t) = 1 and either {α2(t) = 0 and ν2(t − 1) < N2} or {α2(t) = 1 and ν2(t − 1) = N2}. Therefore, the
expression becomes

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = a3, A(t)) (19)

=prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = a3, ν1(t− 1) = N1 − 1, ν2(t− 1) < N2)

if α2(t) = 0 and

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 1, α3(t) = a3, A(t)) (20)

=prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 1, α3(t) = a3, ν1(t− 1) = N1 − 1, ν2(t− 1) = N2)

if α2(t) = 1.

The expressions in (19) and (20) can now ne written as the sum of some of the steady-state probabilities
of the MFS at time t− 1. For example, (19) can be expressed as

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = a3, A(t)) =

∑
prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = a3,

ν1(t− 1) = N1 − 1, ν2(t− 1) = n′2, α1(t− 1) = a′1, α2(t− 1) = a′2, α3(t− 1) = a′3)
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where the sum is taken over all n′2 < N2, a
′
1, a
′
2, a
′
3.

This can be written

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = a3, A(t)) =

∑
prob

(
ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = a3

ν1(t− 1) = N1 − 1, ν2(t− 1) = n′2, α1(t− 1) = a′1, α2(t− 1) = a′2, α3(t− 1) = a′3

)×××××××××
prob(ν1(t− 1) = N1 − 1, ν2(t− 1) = n′2, α1(t− 1) = a′1, α2(t− 1) = a′2, α3(t− 1) = a′3)

The conditional probability on the right side of the equation is the transition probability from a state
of the system at time t− 1 to a state at time t. It is a function of the repair and failure probabilities ri
and pi. We can abbreviate the last equation as

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = a3, A(t)) =

∑
prob(N1, n2, 1, 0, a3 N1 − 1, n′2, a

′
1, a
′
2, a
′
3) p(N1 − 1, n′2, a

′
1, a
′
2, a
′
3)

To analyze this expression, we must deal with cases separately. For example, let a3 = 1. Then, from
(1) and the definitions of I2 and I3,

n2 = n′2 + I2(t)− I3(t)

where

I3(t) = 1

Consequently,

n2 = n′2 − 1

Therefore.
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prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = 1, A(t)) =

prob(N1, n2, 1, 0, 1 N1 − 1, n2 + 1, 0, 0, 0) p(N1 − 1, n2 + 1, 0, 0, 0)+

prob(N1, n2, 1, 0, 1 N1 − 1, n2 + 1, 0, 0, 1) p(N1 − 1, n2 + 1, 0, 0, 1)+

prob(N1, n2, 1, 0, 1 N1 − 1, n2 + 1, 0, 1, 0) p(N1 − 1, n2 + 1, 0, 1, 0)+

prob(N1, n2, 1, 0, 1 N1 − 1, n2 + 1, 0, 1, 1) p(N1 − 1, n2 + 1, 0, 1, 1)+

prob(N1, n2, 1, 0, 1 N1 − 1, n2 + 1, 1, 0, 0) p(N1 − 1, n2 + 1, 1, 0, 0)+

prob(N1, n2, 1, 0, 1 N1 − 1, n2 + 1, 1, 0, 1) p(N1 − 1, n2 + 1, 1, 0, 1)+

prob(N1, n2, 1, 0, 1 N1 − 1, n2 + 1, 1, 1, 0) p(N1 − 1, n2 + 1, 1, 1, 0)+

prob(N1, n2, 1, 0, 1 N1 − 1, n2 + 1, 1, 1, 1) p(N1 − 1, n2 + 1, 1, 1, 1)

The first factor of the first term is the conditional probability that the machine states go from (0,0,0)
to (1,0,1) and the first buffer gains a part and the second buffer loses a part. But since the change of
the buffer levels is a consequence of the new machine states (1,0,1), the conditional probability is simply
the probability of the changes of all the machine states, which is r1(1− r2)r3. The rest of the conditional
probabilities can be evaluated similarly, and the last expression reduces to the last equation of (C.8). All
the other cases of equation (19) and all the cases of equation (20) can be treated similarly.

Expressions for prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)) for all states that
are in Ā are provided in Appendix C.

Equations (C.1) to (C.10) are used to find prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) =
a3, A(t)), 1 ≤ n1 ≤ N1, 0 ≤ n2 ≤ N2, a2 = 0, 1, a3 = 0, 1. (12) is then applied to find prob(χ1(t) =
x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)). The process is summarized in Algorithm 2, which appears in
Appendix E.

3.4 Calculating prob(T = τ)

The procedures to find the quantities discussed in Sections 3.2 and 3.3 are provided in Algorithms 1 and 2
in Appendix E. Once prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t)) and prob(χ1(t) =
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x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)) are found, applying (4) and (5) gives prob(T = τ).
The procedure to compute the lead time distribution prob(T = τ) is provided in Algorithm 3 which

also appears in Appendix E.

4 Numerical Studies

In this section, we provide numerical evidence for the correctness and accuracy of the analytical solution
of the lead time distribution for three-machine two-buffer lines derived here. We also indicate how the
distribution can provide insight to help line design.

Evidence for the correctness and accuracy of the distribution is obtained by applying Little’s law
as well as from comparisons with simulation. For insight, we describe the lead time distributions in a
line and its reverse. We also show an example of the relationship between the size of a buffer and the
variance and 95th percentile of the lead time distribution. Finally, we show examples of how the mean
time between failures (MTBF) affects the variance and 95th percentile of the lead time distribution.

4.1 Test with Little’s Law

In this section, we verify the calculation of prob(T = τ) by applying Little’s Law (Little 1961) to a few
three-machine two-buffer systems. In our notation, Little’s law is written as (n̄1 + n̄2)/P = E[T ] in which
n̄1, n̄2, and P are found from the three-machine two-buffer MFS model, and E[T ] is computed from the
PMF of T :

E[T ] =
∞∑
τ=2

τprob(T = τ). (21)

Table 1 shows that E[T ] = (n̄1 + n̄2)/P in all these experiments.

Table 1: Test with Little’s Law

case 1 2 3 4 5

r1, p1 .1, .01 .8, .096 .07, .01 .2, .02 .12, .009
r2, p2 .1, .01 .1, .01 .12, .008 .2, .02 .15, .009
r3, p3 .1, .01 .1, .01 .12, .008 .4, .048 .07, .01
N1 10 30 16 18 19
N2 10 22 23 35 17

P .819137 .861210 .847203 .874546 .848478
n̄1 5.983370 14.496551 6.606718 9.860994 12.468434
n̄2 4.016630 9.393820 6.665852 16.534348 9.779282

(n̄1 + n̄2)/P 12.207969 27.740476 15.666334 30.181748 26.220720
E[T ] 12.207969 27.740476 15.666334 30.181748 26.220720

4.2 Comparison with Simulation

In this section, we verify the accuracy of the lead time distribution by comparing it with a discrete
time simulation. In each example, the length of each simulation is 21,000,000 time units with the first
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1,000,000 time units being the warm up period, and we run the simulation 30 times and use the average
as the simulation result.

4.2.1 Example 1

Consider a balanced line first, where machines are identical with parameters pi = .01 and ri = .1 for
i = 1, 2, 3. The buffers are the same size, with N1 = N2 = 10. The analytical and simulation results
for the distribution are shown in Figure 5. They demonstrate the accuracy of the analytical lead time
distribution for this case.
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Figure 5: Example 1, prob(T = τ), analytical solution vs. simulation

The shape of prob(T = τ) indicates that most of the parts entering this line have a lead time of 2,
10, or 18 time units. In addition, there is a small fraction of parts whose lead times are longer than 18
time units. This is because the size of each buffer is equal to the mean time to repair (MTTR) of each
machine. Consequently, when one machine fails, both of the buffers tend to be full or empty frequently
and the other two machines are forced to be idle. In particular,

• if M1 fails for a long time, both B1 and B2 will become empty. After M1 is repaired, the system
will run with an inventory level of 1 in both buffers before the next machine failure occurs1. During
this period, each part spends 1 time unit in each buffer, which leads to a total lead time of 2 time
units.

• if M2 fails for a long time, B1 becomes full and B2 becomes empty. After M2 is repaired, the system
will run with an inventory level of 9 in B1 and an inventory level of 1 in B2

2. In other words, during
this period, each part spends 9 time units in B1 and 1 time unit in B2, adding to a total of 10 time
units.

1Immediately after the repair, M1 adds one part to B1. Since M2 was starved, it cannot remove a part, so n1 = 1 and
B2 remains empty. At the next time step, M1 adds a part to B1 and M2 can now remove one, so n1 remains equal to 1. M2

adds that part to B2. Since M3 was starved, it cannot remove a part so n2 is 1. After that, the buffer levels stay constant
at n1 = n2 = 1 until the next machine failure.

2The reason for these buffer levels is that the system behavior in this case is similar to that of the previous case.
Immediately after the repair, M2 removes one part from B1 and adds it to B2. M1 does not add a part to B1 because it
was blocked, while M3 cannot remove a part from B2 because it was starved. After that, all machines are up and not idle,
so the buffer levels stay constant until the next failure.
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• finally, if M3 fails for a long time, both buffers become full. After M3 is repaired, the system will
run with an inventory level of 9 in both buffers before the next failure takes place. During this
period, each part spends 9 time units in both B1 and B2 and therefore has a lead time of 18 time
units. If M3 fails again when the system is running with an inventory level of 9 in both buffers, the
lead times for those parts in the buffer will be longer than 18 time units.

4.2.2 Example 2

Table 2 has the parameters of the line of Example 2. It also contains ei = ri/(ri + pi), the isolated
efficiencies of the machines. The machine with the smallest ei is the bottleneck. Figure 6 shows that the
analytical and simulation results are very close.

i pi ri ei Ni

1 .01 .07 .875 16
2 .008 .12 .938 23
3 .008 .12 .938

Table 2: Example 2 parameters
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Figure 6: Example 2, prob(T = τ), analytical solution vs. simulation

In this line, the first machine is the bottleneck. Whenever it fails for a long time, the two buffers
become empty. After M1 is repaired, the system will run with an inventory level of 1 in both buffers
until the next machine failure. During this period, each part spends two time units in the system and
therefore has a lead time of 2. This explains why prob(T = 2) is large. The values of prob(T = 16) and
prob(T = 37) can be explained similarly. Moreover, since M1 is the bottleneck, most of the parts have
a small lead time.

4.2.3 Example 3

The parameters of this line are shown in Table 3. Figure 7 compares the analytical and simulation results
and illustrates the accuracy of the analytical solution.

M3 is the bottleneck of the line. Whenever it fails for a long time, the two buffers become full. After
M3 is repaired, the system will run with inventory levels of 18 in B1 and 16 in B2 until the next machine
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i pi ri ei Ni

1 .009 .12 .930 19
2 .009 .15 .943 17
3 .01 .07 .875

Table 3: Example 3 parameters
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Figure 7: Example 3, prob(T = τ), analytical solution vs. simulation

failure. During this period, each part spends 34 time units in the system and therefore prob(T = 34) is
large. The values of prob(T = 2) and prob(T = 19) can be explained similarly. Most of the parts have
a long lead time because M3 is the bottleneck.

4.3 Example 4: A Line and Its Reverse

Consider a three-machine line with parameters (po1, r
o
1, p

o
2, r

o
2, p

o
3, r

o
3, N

o
1 , N

o
2 ). The reverse of that line has

parameters (pr1, r
r
1, p

r
2, r

r
2, p

r
3, r

r
3, N

r
1 , N

r
2 ) = (po3, r

o
3, p

o
2, r

o
2, p

o
1, r

o
1, N

o
2 , N

o
1 ). Then the production rates of the

original line and its reverse are the same and the average buffer levels satisfy (Gershwin 1994)

n̄oi + n̄r3−i = N o
i = N r

3−i, i = 1, 2 (22)

where n̄oi and n̄r3−i are the average inventory levels of buffers Bo
i and Br

3−i in the original and the reversed
lines, respectively. In other words, by reversing a transfer line, we achieve the same production rate with
completely different average inventories. A line with bottleneck machine at its beginning is better than
its reverse which has the bottleneck at its end, because the former will achieve lower average inventory
levels and therefore smaller lead times. We illustrate with an example.

Consider the original line and its reverse in Table 4. M o
1 is the bottleneck machine of the original

line. When the line is reversed, it becomes M r
3 and it becomes the bottleneck of the reversed line. The

two lines have the same production rate, but the original line has much lower average inventory levels in
both buffers than the reversed line. The lead time distributions of the two lines are shown in Figure 8.

Figure 8 reveals that the two lines exhibit completely different lead time distributions. In the original
line, since the bottleneck machine M o

1 is at the beginning of the line, its frequent breakdowns cause the
system to run with an inventory level of 1 at both buffers most of the time. As a result, most of the
parts have a lead time of 2 (Figure 8(a)). On the other hand, since the bottleneck machine M r

3 is the
last machine of the reversed line, its breakdowns cause the system to run with inventory levels of 13 and
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Table 4: A line and its reverse

r1 p1 r2 p2 r3 p3 N1 N2 P n̄1 n̄2
original line .1 .1 .1 .01 .1 .01 12 14 .493214 1.284711 1.293355
reversed line .1 .01 .1 .01 .1 .1 14 12 .493214 12.706645 10.715289
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Figure 8: Lead time distributions of a line and its reverse

11. Consequently, a large number of parts have lead times of 24. Moreover, when M r
3 fails while there

are 24 parts in the system, the parts in the system will have even longer lead times. This is why there is
a large tail in Figure 8(b) for τ > 24.

The average lead time of the original line is 5.23 time units, while that of the reversed line is 47.49
time units. From the lead time perspective, the original line is much better than the reversed line, as it
produces parts at the same rate of its reversed line, but with a much lower lead time on average. The
example emphasizes the key production line design principle that, when it is possible, it is better to put
the bottleneck machine at the beginning, rather than at the end, of a line.

This principle is also illustrated by comparing the variance of the lead time and the probability
distribution of the lead time in the original and the reversed line. The variance of the lead time of the
original line is 54.86. The variance of the lead time of the reversed line is 500.23.

We compute prob(T ≤ τ) of the original line and the reversed line in Table 5 and Figure 9.
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Table 5: prob(T ≤ τ) of the original and reversed lines

τ prob(T ≤ τ) of the original line prob(T ≤ τ) of the reversed line

10 .8546 .0120
20 .9489 .0492
30 .9816 .2381
40 .9929 .4467
50 .9972 .6266
60 .9989 .7619
70 .9996 .8548
80 .9998 .9147
90 .9999 .9514
100 1.0000 .9730

Figure 9: prob(T ≤ τ) of the original and reversed lines

4.4 Example 5: Variance and prob(T ≤ τ) vs. N2

Consider a three-machine line with parameters: r1 = .07, p1 = .01, r2 = .12, p2 = .008, r3 = .12,
p3 = .008, and N1 = 100. We vary N2. The variance of the lead time and τ.95, the minimum value of τ
such that prob(T ≤ τ) ≥ .95, are illustrated in Figures 10 and 11.

These graphs show that there is a size of Buffer B2 that minimizes the variance of the lead time and
an optimal size of B2 to minimize τ.95. However, a similar experiment in which N1 was varied and N2

was held constant did not show the same behavior.
This experiment illustrates the importance of modeling buffers as finite. Such an observation could

not be made if buffers were modeled as infinite. This phenomenon should be studied systematically.

4.5 Example 6: Variance and prob(T ≤ τ) vs. MTBF

In this set of experiments, we observe the effect of the mean time between failures (MTBF) of a machine
on the variance and 95th percentile of the lead time of the line. Because of our assumption of geometric
up- And down-times of machines, the mean time to fail (MTTFi) and the mean time to repair (MTTRi)
of machine Mi are 1/pi and 1/ri respectively, and the mean time between failures is given by

MTBFi =
1

pi
+

1

ri
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Figure 10: The variance of lead time vs. N2

Figure 11: The minimum value of τ such that prob(T ≤ τ) ≥ .95

We vary MTBFi by varying pi and ri together to keep

ei =
ri

ri + pi

constant. This allows us to focus on the sensitivity of the results to the duration of the average up-down
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cycle of a machine, and to eliminate the effect of changing the isolated production rates of machines.

4.5.1 Varying MTBF1

In this experiment, we vary p1 and r1 together so that e1 = .8. The other parameters of the line are
r2 = .1, p2 = .01, r3 = .1, p3 = .01, and N1 = N2 = 20. Since e2 = e3 = .9091, M1 is the bottleneck of
the line. Figure 12 shows the effect of MTBF1 on the variance of the lead time and Figure 13 shows the
effect of MTBF1 on the 95th percentile of the lead time.

Figure 12 shows that the variance has a maximum at MTBFi ≈ 250. The 95th percentile of the lead
time increases with MBTF1, as shown in Figure 13.

4.5.2 Varying MTBF2

Here we vary r2 and p2 such that e2 = .8 and we choose r1 = .1, p1 = .01, r3 = .1, p3 = .01, and
N1 = N2 = 20. Now M2 is the bottleneck. The qualitative properties of these graphs differ from those
in Section 4.5.1. In Figure 14, the variance of the lead time appears almost linear in MTBF2. In Figure
15, τ95 has a maximum.

4.5.3 Varying MTBF3

Now we vary r3 and p3 such that e3 = .8 and we choose r1 = .1, p1 = .01, r2 = .1, p2 = .01, and
N1 = N2 = 20. M3 is the bottleneck. The qualitative properties of the graphs of Figures 16 and 17 are
similar to those of Figures 14 and 15.

5 Conclusion and Future Work

5.1 Summary

In this paper, we describe an analytical approach to find the lead time distribution of a Buzacott (discrete-
state, discrete-time) model of a three-machine two-buffer line with unreliable machines and finite buffers.
Using this distribution, we can find the mean and standard deviation, as well as any given percentile, of
the lead time.

This is of practical importance because make-to-order manufacturers must make early and reliable
delivery promises to maintain good customer relations. In the absence of a practical way to determine
the probability that delivery will take place on or before a certain time, either the manufacturer will
risk losing customers, or it will have to design its production system very conservatively or hold large
inventories, both of which will increase costs. With the method described here, effective factories can be
built with less excess productive capacity or with less need to hold inventory.

It is also important, for similar reasons, for producers of goods whose value deteriorates rapidly, either
because of spoilage (such as food) or obsolescence (such as fashion or technological advances.)

The approach is based on tracking the movement of a reference part in the MFS model of the three-
machine two-buffer line. Numerical experiments, including verification by Little’s law and comparison
with simulation, are provided to show the correctness of the distribution. In other numerical experiments,
we compare the lead time distributions of a line and its reverse and we show how the mean time between
failures (MTBF) of each of the three machines in a an example of a line affect the variance of the lead
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Figure 12: Variance of lead time vs. MTBF1

Figure 13: τ95 vs. MTBF1

time and τ.95, the minimum value of the time such that the probability that the lead time is greater than
that time is at least .95.

30



Shi and Gershwin 3M2B Lead Time August 18, 2016

Figure 14: Variance of lead time vs. MTBF2

Figure 15: τ95 vs. MTBF2
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Figure 16: Variance of lead time vs. MTBF3

Figure 17: τ95 vs. MTBF3
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5.2 Future Research

There are many future research directions that can follow from this work.

1. The methodology can be extended to lines with machines that have multiple failure modes. The
same approach can be applied but we need to consider different failure modes of M2 and M3 in
the recurrence equations. A further extension would be to consider machines whose repair/failure
behavior is described by general Markov chains. See Colledani et al. (2015). More general still
would be to consider continuous-time systems with discrete or continuous material.

2. It will be of interest to study the shapes of the lead time distribution of three-machine two-buffer
lines qualitatively and systematically. The study of three-machine two-buffer lines of Shi and
Gershwin (2013) classifies such production systems into five different types according to the machine
repair and failure parameters. It demonstrates that the qualitative behavior of average inventory
levels as a function of buffer sizes is very distinct in different types. Each type demonstrates a
different sensitivity of average inventories to buffer sizes. Since the average lead time of such a line
is closely related to the average inventory levels, the study of the lead time distribution for lines
of each type may provide deeper insights into the relationship between system lead time, machine
parameters, and buffer sizes. Shi and Gershwin (2013) show how their qualitative observations are
also relevant to longer lines.

3. This method can be extended to longer lines. For example, the movement of a reference part in a
four-machine system can be tracked. When it leaves B1 and enters B2 at position x2, the conditional
lead time probabilities of three-machine lines can be used to construct the initial conditions for the
four-machine line recurrence equations. This will allow us to determine the conditional lead time
probabilities of four-machine lines. Using the steady-state probability that a four-machine line
is in a given state, the lead time distribution of a four-machine line can be found. The lead
time distribution of four-machine lines can in turn be used to find that of five-machine lines.
Repeating this approach, the lead time distribution of a k-machine, k− 1-buffer lines can be found
for any k. Extensions to assembly/disassembly systems and to networks with loops are also useful.
See Colledani et al. (2015). An extension to re-entrant flow systems would be of great value to
semiconductor manufacturers.

4. Other buffer disciplines are sometimes observed in factories, such as Last In, First Out (LIFO) and
random selection of parts. The lead time distributions resulting from such disciplines will be very
different from those discussed here, although the mean lead times will be the same.

5. As noted above, Shi and Gershwin (2016) reported that the waiting time in a single buffer of
a long line can be approximately determined by applying their two-machine, one-buffer sojourn
time analysis to the buffer in the two-machine, one-buffer line corresponding to that buffer in the
decomposition method for calculating production rate and average buffer levels. That research can
now be extended to a three-machine, two-buffer segment of a long line or other network topologies.

6. An important problem of practical interest is the performance optimization of manufacturing sys-
tems with a constraint on τ.95 for a single buffer, for a segment of the system, or for the entire
line.
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7. The exact numerical steady-state probability distribution of a line is needed in order to determine
its exact lead time distribution in the method described here. This is impractical for lines that are
too long. It would be useful to determine an approximate lead time distribution for long lines.

A Recurrence Equations for prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) =

a2, α3(t) = a3, A(t)) where 2 ≤ x1 ≤ N1

The recurrence equations to find prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t)) where
2 ≤ x1 ≤ N1 are listed in this section.

• n2 = 0 (and 2 ≤ x1 ≤ N1)

Π00(τ, x1, 0) = (1− r2)(1− r3) Π00(τ − 1, x1, 0) + r2(1− r3) Π10(τ − 1, x1 − 1, 1)
+ r2r3 Π11(τ − 1, x1 − 1, 1) + (1− r2)r3 Π0S(τ − 1, x1)

Π10(τ, x1, 0) = p2(1− r3) Π00(τ − 1, x1, 0) + (1− p2)(1− r3) Π10(τ − 1, x1 − 1, 1)
+ (1− p2)r3 Π11(τ − 1, x1 − 1, 1) + p2r3 Π0S(τ − 1, x1)

Π0S(τ, x1) = (1− p2) Π11(τ − 1, x1 − 1, 1) + p2 Π0S(τ − 1, x1)
Π1S(τ, x1) = r2 Π11(τ − 1, x1 − 1, 1) + (1− r2) Π0S(τ − 1, x1)

(A.1)

• n2 = 1 (and 2 ≤ x1 ≤ N1)

Π00(τ, x1, n2) = (1− r2)(1− r3) Π00(τ − 1, x1, n2) + r2(1− r3) Π10(τ − 1, x1 − 1, n2 + 1)
+ r2r3 Π11(τ − 1, x1 − 1, n2) + (1− r2)r3 Π0S(τ − 1, x1, 0)

Π01(τ, x1, n2) = (1− r2)p3 Π00(τ − 1, x1, n2) + r2p3 Π10(τ − 1, x1 − 1, n2 + 1)
+ r2(1− p3) Π11(τ − 1, x1 − 1, n2) + (1− r2)(1− p3) Π0S(τ − 1, x1, 0)

Π10(τ, x1, n2) = p2(1− r3) Π00(τ − 1, x1, n2) + (1− p2)(1− r3) Π10(τ − 1, x1 − 1, n2 + 1)
+ (1− p2)r3 Π11(τ − 1, x1 − 1, n2) + p2r3 Π0S(τ − 1, x1)

Π11(τ, x1, n2) = p2p3 Π00(τ − 1, x1, n2) + (1− p2)p3 Π10(τ − 1, x1 − 1, n2 + 1)
+ (1− p2)(1− p3) Π11(τ − 1, x1 − 1, n2) + p2(1− p3) Π0S(τ − 1, x1)

(A.2)

• 2 ≤ n2 ≤ N2 − 2 (and 2 ≤ x1 ≤ N1)

Π00(τ, x1, n2) = (1− r2)(1− r3) Π00(τ − 1, x1, n2) + (1− r2)r3 Π01(τ − 1, x1, n2 − 1)
+ r2(1− r3) Π10(τ − 1, x1 − 1, n2 + 1) + r2r3 Π11(τ − 1, x1 − 1, n2)

Π01(τ, x1, n2) = (1− r2)p3 Π00(τ − 1, x1, n2) + (1− r2)(1− p3) Π01(τ − 1, x1, n2 − 1)
+ r2p3 Π10(τ − 1, x1 − 1, n2 + 1) + r2(1− p3) Π11(τ − 1, x1 − 1, n2)

Π10(τ, x1, n2) = p2(1− r3) Π00(τ − 1, x1, n2) + p2r3 Π01(τ − 1, x1, n2 − 1)
+ (1− p2)(1− r3) Π10(τ − 1, x1 − 1, n2 + 1) + (1− p2)r3 Π11(τ − 1, x1 − 1, n2)

Π11(τ, x1, n2) = p2p3 Π00(τ − 1, x1, n2) + p2(1− p3) Π01(τ − 1, x1, n2 − 1)
+ (1− p2)p3 Π10(τ − 1, x1 − 1, n2 + 1) + (1− p2)(1− p3) Π11(τ − 1, x1 − 1, n2)

(A.3)
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• n2 = N2 − 1 (and 2 ≤ x1 ≤ N1)

Π00(τ, x1, n2) = (1− r2)(1− r3) Π00(τ − 1, x1, n2) + (1− r2)r3 Π01(τ − 1, x1, n2 − 1)
+ r2r3 Π11(τ − 1, x1 − 1, n2) + r2(1− r3) ΠB0(τ − 1, x1 − 1)

Π01(τ, x1, n2) = (1− r2)p3 Π00(τ − 1, x1, n2) + (1− r2)(1− p3) Π01(τ − 1, x1, n2 − 1)
+ r2(1− p3) Π11(τ − 1, x1 − 1, n2) + r2p3 ΠB0(τ − 1, x1 − 1)

Π10(τ, x1, n2) = p2(1− r3) Π00(τ − 1, x1, n2) + p2r3 Π01(τ − 1, x1, n2 − 1)
+ (1− p2)r3 Π11(τ − 1, x1 − 1, n2) + (1− p2)(1− r3) ΠB0(τ − 1, x1 − 1)

Π11(τ, x1, n2) = p2p3 Π00(τ − 1, x1, n2) + p2(1− p3) Π01(τ − 1, x1, n2 − 1)
+ (1− p2)(1− p3) Π11(τ − 1, x1 − 1, n2) + (1− p2)p3 ΠB0(τ − 1, x1 − 1)

(A.4)

• n2 = N2 (and 2 ≤ x1 ≤ N1)

Π00(τ, x1, N2) = (1− r2)(1− r3) Π00(τ − 1, x1, n2) + (1− r2)r3 Π01(τ − 1, x1, n2 − 1)
+ r2r3 Π11(τ − 1, x1, n2 − 1) + r2(1− r3) ΠB0(τ − 1, x1)

Π01(τ, x1, N2) = (1− r2)p3 Π00(τ − 1, x1, n2) + (1− r2)(1− p3) Π01(τ − 1, x1, n2 − 1)
+ r2(1− p3) Π11(τ − 1, x1, n2 − 1) + r2p3 ΠB0(τ − 1, x1)

ΠB0(τ, x1) = r3 Π11(τ − 1, x1, n2 − 1) + (1− r3) ΠB0(τ − 1, x1)
ΠB1(τ, x1) = (1− p3) Π11(τ − 1, x1, n2 − 1) + p3 ΠB0(τ − 1, x1)

(A.5)

B Recurrence Equations for prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) =

a2, α3(t) = a3, A(t)) where x1 = 1

The recurrence equations to find prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t)) where
x1 = 1 are listed in this section.

• n2 = 0 (and x1 = 1)

Π00(τ, 1, 0) = (1− r2)(1− r3) Π00(τ − 1, 1, 0) + (1− r2)r3 Π0S(τ − 1, 1)
+ r2r3 p(τ − 1, 1) + r2(1− r3) q(τ − 1, 1)

Π10(τ, 1, 0) = p2(1− r3) Π00(τ − 1, 1, 0) + p2r3 Π0S(τ − 1, 1)
+ (1− p2)r3 p(τ − 1, 1) + (1− p2)(1− r3) q(τ − 1, 1)

Π0S(τ, 1) = (1− r2) Π0S(τ − 1, 1) + r2 p(τ − 1, 1)
Π1S(τ, 1) = p2 Π0S(τ − 1, 1) + (1− p2) p(τ − 1, 1)

(B.1)

• n2 = 1 (and x1 = 1)

Π00(τ, 1, n2) = (1− r2)(1− r3) Π00(τ − 1, 1, n2) + (1− r2)r3 Π0S(τ − 1, 1)
+ r2r3 p(τ − 1, n2) + r2(1− r3) q(τ − 1, n2 + 1)

Π01(τ, 1, n2) = (1− r2)p3 Π00(τ − 1, 1, n2) + (1− r2)(1− p3) Π0S(τ − 1, 1)
+ r2(1− p3) p(τ − 1, n2) + r2p3 q(τ − 1, n2 + 1)

Π10(τ, 1, n2) = p2(1− r3) Π00(τ − 1, 1, n2) + p2r3 Π0S(τ − 1, 1)
+ (1− p2)r3 p(τ − 1, n2) + (1− p2)(1− r3) q(τ − 1, n2 + 1)

Π11(τ, 1, n2) = p2p3 Π00(τ − 1, 1, n2) + p2(1− p3) Π0S(τ − 1, 1)
+ (1− p2)(1− p3) p(τ − 1, n2) + (1− p2)p3 q(τ − 1, n2 + 1)

(B.2)
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• 2 ≤ n2 ≤ N2 − 1 (and x1 = 1)

Π00(τ, 1, n2) = (1− r2)(1− r3) Π00(τ − 1, 1, n2) + (1− r2)r3 Π01(τ − 1, 1, n2 − 1)
+ r2r3 p(τ − 1, n2) + r2(1− r3) q(τ − 1, n2 + 1)

Π01(τ, 1, n2) = (1− r2)p3 Π00(τ − 1, 1, n2) + (1− r2)(1− p3) Π01(τ − 1, 1, n2 − 1)
+ r2(1− p3) p(τ − 1, n2) + r2p3 q(τ − 1, n2 + 1)

Π10(τ, 1, n2) = p2(1− r3) Π00(τ − 1, 1, n2) + p2r3 Π01(τ − 1, 1, n2 − 1)
+ (1− p2)r3 p(τ − 1, n2) + (1− p2)(1− r3) q(τ − 1, n2 + 1)

Π11(τ, 1, n2) = p2p3 Π00(τ − 1, 1, n2) + p2(1− p3) Π01(τ − 1, 1, n2 − 1)
+ (1− p2)(1− p3) p(τ − 1, n2) + (1− p2)p3 q(τ − 1, n2 + 1)

(B.3)

• n2 = N2 (and x1 = 1)

Π00(τ, 1, n2) = (1− r2)(1− r3) Π00(τ − 1, 1, n2) + (1− r2)r3 Π01(τ − 1, 1, n2 − 1)
+ r2r3 Π11(τ − 1, 1, n2 − 1) + r2(1− r3) ΠB0(τ − 1, 1)

Π01(τ, 1, n2) = (1− r2)p3 Π00(τ − 1, 1, n2) + (1− r2)(1− p3) Π01(τ − 1, 1, n2 − 1)
+ r2(1− p3) Π11(τ − 1, 1, n2 − 1) + r2p3 ΠB0(τ − 1, 1)

ΠB0(τ, 1) = r3 Π11(τ − 1, 1, n2 − 1) + (1− r3) ΠB0(τ − 1, 1)
ΠB1(τ, 1) = (1− p3) Π11(τ − 1, 1, n2 − 1) + p3 ΠB0(τ − 1, 1)

(B.4)

C Equations for prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) =

a3, A(t))

The equations for all prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)), a2 =
0, 1, a3 = 0, 1, 1 ≤ n1 ≤ N1, 0 ≤ n2 ≤ N2, are listed in this section. Recall that, in the equations
below, p(n1, n2, a1, a2, a3) is the steady-state probability that the MFS is in state (n1, n2, a1, a2, a3).

First, recall that, for a1 = 1; a2 = 0, 1, a3 = 0, 1, 1 ≤ n1 ≤ N1 − 2, 0 ≤ n2 ≤ N2 and a1 = 1, a2 =
0, a3 = 0, 1, n1 = N1 − 1, 0 ≤ n2 ≤ N2, from (15)

prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)) = p(n1, n2, 1, a2, a3) (C.1)

For a1 = 1, a2 = 1, a3 = 0, 1, n1 = N1 − 1, 0 ≤ n2 ≤ N2:

1. n2 = 0

prob(ν1(t) = N1 − 1, ν2(t) = 0, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t)) = 0
prob(ν1(t) = N1 − 1, ν2(t) = 0, α1(t) = 1, α2(t) = 1, α3(t) = 1, A(t)) = 0

(C.2)
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2. n2 = 1

prob(ν1(t) = N1 − 1, ν2(t) = 1, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t))
= r1r2(1− r3) p(N1 − 1, 0, 0, 0, 0) + r1(1− p2)(1− r3) p(N1 − 1, 0, 0, 1, 0)
+ (1− p1)r2(1− r3) p(N1 − 1, 0, 1, 0, 0) + (1− p1)(1− p2)(1− r3) p(N1 − 1, 0, 1, 1, 0)

prob(ν1(t) = N1 − 1, ν2(t) = 1, α1(t) = 1, α2(t) = 1, α3(t) = 1, A(t))
= r1r2r3 p(N1 − 1, 1, 0, 0, 0) + r1r2(1− p3) p(N1 − 1, 1, 0, 0, 1)
+ r1(1− p2)r3 p(N1 − 1, 1, 0, 1, 0) + r1(1− p2)(1− p3) p(N1 − 1, 1, 0, 1, 1)
+ (1− p1)r2r3 p(N1 − 1, 1, 1, 0, 0) + (1− p1)r2(1− p3) p(N1 − 1, 1, 1, 0, 1)
+ (1− p1)(1− p2)r3 p(N1 − 1, 1, 1, 1, 0) + (1− p1)(1− p2)(1− p3) p(N1 − 1, 1, 1, 1, 1)
+ r1r2r3 p(N1 − 1, 0, 0, 0, 0) + r1r2 p(N1 − 1, 0, 0, 0, 1)
+ r1(1− p2)r3 p(N1 − 1, 0, 0, 1, 0) + r1(1− p2) p(N1 − 1, 0, 0, 1, 1)
+ (1− p1)r2r3 p(N1 − 1, 0, 1, 0, 0) + (1− p1)r2 p(N1 − 1, 0, 1, 0, 1)
+ (1− p1)(1− p2)r3 p(N1 − 1, 0, 1, 1, 0) + (1− p1)(1− p2) p(N1 − 1, 0, 1, 1, 1)

(C.3)

3. 2 ≤ n2 ≤ N2 − 2

prob(ν1(t) = N1 − 1, ν2(t) = n2, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t))
= r1r2(1− r3) p(N1 − 1, n2 − 1, 0, 0, 0) + r1r2p3 p(N1 − 1, n2 − 1, 0, 0, 1)
+ r1(1− p2)(1− r3) p(N1 − 1, n2 − 1, 0, 1, 0) + r1(1− p2)p3 p(N1 − 1, n2 − 1, 0, 1, 1)
+ (1− p1)r2(1− r3) p(N1 − 1, n2 − 1, 1, 0, 0) + (1− p1)r2p3 p(N1 − 1, n2 − 1, 1, 0, 1)
+ (1− p1)(1− p2) (1− r3)p(N1 − 1, n2 − 1, 1, 1, 0) + (1− p1)(1− p2)p3 p(N1 − 1, n2 − 1, 1, 1, 1)

prob(ν1(t) = N1 − 1, ν2(t) = n2, α1(t) = 1, α2(t) = 1, α3(t) = 1, A(t))
= r1r2r3 p(N1 − 1, n2, 0, 0, 0) + r1r2(1− p3) p(N1 − 1, n2, 0, 0, 1)
+ r1(1− p2)r3 p(N1 − 1, n2, 0, 1, 0) + r1(1− p2)(1− p3) p(N1 − 1, n2, 0, 1, 1)
+ (1− p1)r2r3 p(N1 − 1, n2, 1, 0, 0) + (1− p1)r2(1− p3) p(N1 − 1, n2, 1, 0, 1)
+ (1− p1)(1− p2)r3 p(N1 − 1, n2, 1, 1, 0) + (1− p1)(1− p2)(1− p3) p(N1 − 1, n2, 1, 1, 1)

(C.4)

4. n2 = N2 − 1

prob(ν1(t) = N1 − 1, ν2(t) = N2 − 1, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t))
= r1r2(1− r3) p(N1 − 1, N2 − 2, 0, 0, 0) + r1r2p3 p(N1 − 1, N2 − 2, 0, 0, 1)
+ r1(1− p2)(1− r3) p(N1 − 1, N2 − 2, 0, 1, 0) + r1(1− p2)p3 p(N1 − 1, N2 − 2, 0, 1, 1)
+ (1− p1)r2(1− r3) p(N1 − 1, N2 − 2, 1, 0, 0) + (1− p1)r2p3 p(N1 − 1, N2 − 2, 1, 0, 1)
+ (1− p1)(1− p2)(1− r3) p(N1 − 1, N2 − 2, 1, 1, 0) + (1− p1)(1− p2)p3 p(N1 − 1, N2 − 2, 1, 1, 1)

prob(ν1(t) = N1 − 1, ν2(t) = N2 − 1, α1(t) = 1, α2(t) = 1, α3(t) = 1, A(t))
= r1r2r3 p(N1 − 1, N2 − 1, 0, 0, 0) + r1r2(1− p3) p(N1 − 1, N2 − 1, 0, 0, 1)
+ r1(1− p2)r3 p(N1 − 1, N2 − 1, 0, 1, 0) + r1(1− p2)(1− p3) p(N1 − 1, N2 − 1, 0, 1, 1)
+ (1− p1)r2r3 p(N1 − 1, N2 − 1, 1, 0, 0) + (1− p1)r2(1− p3) p(N1 − 1, N2 − 1, 1, 0, 1)
+ (1− p1)(1− p2)r3 p(N1 − 1, N2 − 1, 1, 1, 0) + (1− p1)(1− p2)(1− p3) p(N1 − 1, N2 − 1, 1, 1, 1)
+ r1r2r3 p(N1 − 2, N2, 0, 0, 0) + r1r2(1− p3) p(N1 − 2, N2, 0, 0, 1)
+ r1r3 p(N1 − 2, N2, 0, 1, 0) + r1(1− p3) p(N1 − 2, N2, 0, 1, 1)
+ (1− p1)r2r3 p(N1 − 2, N2, 1, 0, 0) + (1− p1)r2(1− p3) p(N1 − 2, N2, 1, 0, 1)
+ (1− p1)r3 p(N1 − 2, N2, 1, 1, 0) + (1− p1)(1− p3) p(N1 − 2, N2, 1, 1, 1)

(C.5)
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5. n2 = N2

prob(ν1(t) = N1 − 1, ν2(t) = N2, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t)) = 0

prob(ν1(t) = N1 − 1, ν2(t) = N2, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t))
= r1r2(1− r3) p(N1 − 1, N2 − 1, 0, 0, 0) + r1r2p3 p(N1 − 1, N2 − 1, 0, 0, 1)
+ r1(1− p2)(1− r3) p(N1 − 1, N2 − 1, 0, 1, 0) + r1(1− p2)p3 p(N1 − 1, N2 − 1, 0, 1, 1)
+ (1− p1)r2(1− r3) p(N1 − 1, N2 − 1, 1, 0, 0) + (1− p1)r2p3 p(N1 − 1, N2 − 1, 1, 0, 1)
+ (1− p1)(1− p2)(1− r3) p(N1 − 1, N2 − 1, 1, 1, 0) + (1− p1)(1− p2)p3 p(N1 − 1, N2 − 1, 1, 1, 1)
+ r1r2(1− r3) p(N1 − 2, N2, 0, 0, 0) + r1r2p3 p(N1 − 2, N2, 0, 0, 1)
+ r1(1− r3) p(N1 − 2, N2, 0, 1, 0) + r1p3 p(N1 − 2, N2, 0, 1, 1)
+ (1− p1)r2(1− r3) p(N1 − 2, N2, 1, 0, 0) + (1− p1)r2p3 p(N1 − 2, N2, 1, 0, 1)
+ (1− p1)(1− r3) p(N1 − 2, N2, 1, 1, 0) + (1− p1)p3 p(N1 − 2, N2, 1, 1, 1)

(C.6)
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For a1 = 1, a2 = 0, 1, a3 = 0, 1, n1 = N1, 0 ≤ n2 ≤ N2:

1. n2 = 0

prob(ν1(t) = N1, ν2(t) = 0, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t)) = 0
prob(ν1(t) = N1, ν2(t) = 0, α1(t) = 1, α2(t) = 1, α3(t) = 1, A(t)) = 0

prob(ν1(t) = N1, ν2(t) = 0, α1(t) = 1, α2(t) = 0, α3(t) = 0, A(t))
= r1(1− r2)(1− r3) p(N1 − 1, 0, 0, 0, 0) + r1p2(1− r3) p(N1 − 1, 0, 0, 1, 0)
+ (1− p1)(1− r2)(1− r3) p(N1 − 1, 0, 1, 0, 0) + (1− p1)p2(1− r3) p(N1 − 1, 0, 1, 1, 0)

prob(ν1(t) = N1, ν2(t) = 0, α1(t) = 1, α2(t) = 0, α3(t) = 1, A(t))
= r1(1− r2)r3 p(N1 − 1, 1, 0, 0, 0) + r1(1− r2)(1− p3) p(N1 − 1, 1, 0, 0, 1)
+ r1p2r3 p(N1 − 1, 1, 0, 1, 0) + r1p2(1− p3) p(N1 − 1, 1, 0, 1, 1)
+ (1− p1)(1− r2)r3 p(N1 − 1, 1, 1, 0, 1) + (1− p1)(1− r2)(1− p3) p(N1 − 1, 1, 1, 0, 1)
+ (1− p1)p2r3 p(N1 − 1, 1, 1, 1, 0) + (1− p1)p2(1− p3) p(N1 − 1, 1, 1, 1, 1)
+ r1(1− r2)r3 p(N1 − 1, 0, 0, 0, 0) + r1(1− r2) p(N1 − 1, 0, 0, 0, 1)
+ r1p2r3 p(N1 − 1, 0, 0, 1, 0) + r1p2 p(N1 − 1, 0, 0, 1, 1)
+ (1− p1)(1− r2)r3 p(N1 − 1, 0, 1, 0, 0) + (1− p1)(1− r2) p(N1 − 1, 0, 1, 0, 1)
+ (1− p1)p2r3 p(N1 − 1, 0, 1, 1, 0) + (1− p1)p2 p(N1 − 1, 0, 1, 1, 1)

(C.7)

2. 1 ≤ n2 ≤ N2 − 2

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t)) = 0
prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 1, α3(t) = 1, A(t)) = 0

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = 0, A(t))
= r1(1− r2)(1− r3) p(N1 − 1, n2, 0, 0, 0) + r1(1− r2)p3 p(N1 − 1, n2, 0, 0, 1)
+ r1p2(1− r3) p(N1 − 1, n2, 0, 1, 0) + r1p2p3 p(N1 − 1, n2, 0, 1, 1)
+ (1− p1)(1− r2)(1− r3) p(N1 − 1, n2, 1, 0, 0) + (1− p1)(1− r2)p3 p(N1 − 1, n2, 1, 0, 1)
+ (1− p1)p2(1− r3) p(N1 − 1, n2, 1, 1, 0) + (1− p1)p2p3 p(N1 − 1, n2, 1, 1, 1)

prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = 0, α3(t) = 1, A(t))
= r1(1− r2)r3 p(N1 − 1, n2 + 1, 0, 0, 0) + r1(1− r2)(1− p3) p(N1 − 1, n2 + 1, 0, 0, 1)
+ r1p2r3 p(N1 − 1, n2 + 1, 0, 1, 0) + r1p2(1− p3) p(N1 − 1, n2 + 1, 0, 1, 1)
+ (1− p1)(1− r2)r3 p(N1 − 1, n2 + 1, 1, 0, 0) + (1− p1)(1− r2)(1− p3) p(N1 − 1, n2 + 1, 1, 0, 1)
+ (1− p1)p2r3 p(N1 − 1, n2 + 1, 1, 1, 0) + (1− p1)p2(1− p3) p(N1 − 1, n2 + 1, 1, 1, 1)

(C.8)
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3. n2 = N2 − 1

prob(ν1(t) = N1, ν2(t) = N2 − 1, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t)) = 0

prob(ν1(t) = N1, ν2(t) = N2 − 1, α1(t) = 1, α2(t) = 0, α3(t) = 0, A(t))
= r1(1− r2)(1− r3) p(N1 − 1, N2 − 1, 0, 0, 0) + r1(1− r2)p3 p(N1 − 1, N2 − 1, 0, 0, 1)
+ r1p2(1− r3) p(N1 − 1, N2 − 1, 0, 1, 0) + r1p2p3 p(N1 − 1, N2 − 1, 0, 1, 1)
+ (1− p1)(1− r2)(1− r3) p(N1 − 1, N2 − 1, 1, 0, 0) + (1− p1)(1− r2)p3 p(N1 − 1, N2 − 1, 1, 0, 1)
+ (1− p1)p2(1− r3) p(N1 − 1, N2 − 1, 1, 1, 0) + (1− p1)p2p3 p(N1 − 1, N2 − 1, 1, 1, 1)

prob(ν1(t) = N1, ν2(t) = N2 − 1, α1(t) = 1, α2(t) = 0, α3(t) = 1, A(t))
= r1(1− r2)r3 p(N1 − 1, N2, 0, 0, 0) + r1(1− r2)(1− p3) p(N1 − 1, N2, 0, 0, 1)
+ (1− p1)(1− r2)r3 p(N1 − 1, N2, 1, 0, 0) + (1− p1)(1− r2)(1− p3) p(N1 − 1, N2, 1, 0, 1)

prob(ν1(t) = N1, ν2(t) = N2 − 1, α1(t) = 1, α2(t) = 1, α3(t) = 1, A(t))
= r1r2r3 p(N1 − 1, N2, 0, 0, 0) + r1r2(1− p3) p(N1 − 1, N2, 0, 0, 1)
+ r1r3 p(N1 − 1, N2, 0, 1, 0) + r1(1− p3) p(N1 − 1, N2, 0, 1, 1)
+ (1− p1)r2r3 p(N1 − 1, N2, 1, 0, 0) + (1− p1)r2(1− p3) p(N1 − 1, N2, 1, 0, 1)
+ (1− p1)r3 p(N1 − 1, N2, 1, 1, 0) + (1− p1)(1− p3) p(N1 − 1, N2, 1, 1, 1)

(C.9)

4. n2 = N2

prob(ν1(t) = N1, ν2(t) = N2, α1(t) = 1, α2(t) = 0, α3(t) = 1, A(t)) = 0
prob(ν1(t) = N1, ν2(t) = N2, α1(t) = 1, α2(t) = 1, α3(t) = 1, A(t)) = 0

prob(ν1(t) = N1, ν2(t) = N2, α1(t) = 1, α2(t) = 0, α3(t) = 0, A(t))
= r1(1− r2)(1− r3) p(N1 − 1, N2, 0, 0, 0) + r1(1− r2)p3 p(N1 − 1, N2, 0, 0, 1)
+ (1− p1)(1− r2)(1− r3) p(N1 − 1, N2, 1, 0, 0) + (1− p1)(1− r2)p3 p(N1 − 1, N2, 1, 0, 1)

prob(ν1(t) = N1, ν2(t) = N2, α1(t) = 1, α2(t) = 1, α3(t) = 0, A(t))
= r1r2(1− r3) p(N1 − 1, N2, 0, 0, 0) + r1r2p3 p(N1 − 1, N2, 0, 0, 1)
+ r1(1− r3) p(N1 − 1, N2, 0, 1, 0) + r1p3 p(N1 − 1, N2, 0, 1, 1)
+ (1− p1)r2(1− r3) p(N1 − 1, N2, 1, 0, 0) + (1− p1)r2p3 p(N1 − 1, N2, 1, 0, 1)
+ (1− p1)(1− r3) p(N1 − 1, N2, 1, 1, 0) + (1− p1)p3 p(N1 − 1, N2, 1, 1, 1)

(C.10)

D Recurrence Equations for π1(w, x2) and π0(w, x2) from Shi and

Gershwin (2016)

Shi and Gershwin (2016) derived the lead time distribution for two-machine one-buffer lines. They showed
that for w < x2, π

1(w, x2) and π0(w, x2) are 0; and for w ≥ x2, π
1(w, x2) and π0(w, x2) are found using

the following recurrence equations:

• w = 1

π1(1, 1) = 1− p3, (D.1)

π0(1, 1) = r3, (D.2)
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• 2 ≤ w ≤ N2

π1(w, 1) = p3π
0(w − 1, 1), (D.3)

π0(w, 1) = (1− r3)π1(w − 1, 1), (D.4)

π1(w, x2) = p3π
0(w − 1, x2) + (1− p3)π1(w − 1, x2 − 1), 2 ≤ x2 ≤ w − 1, (D.5)

π0(w, x2) = r3π
1(w − 1, x2 − 1) + (1− r3)π0(w − 1, x2), 2 ≤ x2 ≤ w − 1, (D.6)

π1(w, x2) = (1− p3)π1(w − 1, x2 − 1), x2 = w, (D.7)

π0(w, x2) = r3π
1(w − 1, x2 − 1), x2 = w, (D.8)

• w > N2

π1(w, 1) = p3π
0(w − 1, 1), (D.9)

π0(w, 1) = (1− r3)π0(w − 1, 1), (D.10)

π1(w, x2) = p3π
0(w − 1, x2) + (1− p3)π1(w − 1, x2 − 1), 2 ≤ x2 ≤ N2, (D.11)

π0(w, x2) = r3π
1(w − 1, x2 − 1) + (1− r3)π0(w − 1, x2), 2 ≤ x2 ≤ N2. (D.12)
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E Algorithms to Find the Lead Time Distribution

Algorithm 1: Find prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t)), a2 =
0, 1, a3 = 0, 1, 1 ≤ x1 ≤ N1, 0 ≤ n2 ≤ N2

Step 1: Find π1(w, x2) and π0(w, x2) according to Appendix D
Step 2: Compute initial conditions according to (10), and set x1 = 1
Step 3: for τ ≥ 3 do

for n2 = 0 to min(N2, τ − 1) do
if n2 = 0 then

evaluate (B.1)
else if n2 = 1 then

evaluate (B.2)
else if n2 = N2 then

evaluate (B.4)
else

evaluate (B.3)
end

end

end
Step 4: for x1 = 2 to N1 do

for τ ≥ x1 + 1 do
for n2 = 0 to min(N2, τ − x1) do

if n2 = 0 then
evaluate (A.1)

else if n2 = 1 then
evaluate (A.2)

else if n2 = N2 − 1 then
evaluate (A.4)

else if n2 = N2 then
evaluate (A.5)

else
evaluate (A.3)

end

end

end

end
Step 5: End
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Algorithm 2: Find prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)), a2 =
0, 1; a3 = 0, 1; 1 ≤ x1 ≤ N1; 0 ≤ n2 ≤ N2

Step 1: Find the steady-state probabilities p(n1, n2, a1, a2, a3), 0 ≤ n1 ≤ N1; 0 ≤ n2 ≤ N2;
a1 = 0, 1; a2 = 0, 1; a3 = 0, 1, and the production rate P of the three-machine two-buffer line using
the exact numeric solution of Tan (2003)
Step 2: for n1 = 1 to N1 do

for n2 = 0 to N2 do
if n1 = N1 − 1, n2 = 0 and a2 = 1 then

determine prob(ν1(t) = N1 − 1, ν2(t) = 0, α1(t) = 1, α2(t) = 1, α3(t) = a3, A(t)) from
(C.2)

else if n1 = N1 − 1, n2 = 1 and a2 = 1 then
determine prob(ν1(t) = N1 − 1, ν2(t) = 1, α1(t) = 1, α2(t) = 1, α3(t) = a3, A(t)) from
(C.3)

else if n1 = N1 − 1, 2 ≤ n2 ≤ N2 − 2 and a2 = 1 then
determine prob(ν1(t) = N1 − 1, ν2(t) = n2, α1(t) = 1, α2(t) = 1, α3(t) = a3, A(t)) from
(C.4)

else if n1 = N1 − 1, n2 = N2 − 1 and a2 = 1 then
determine prob(ν1(t) = N1 − 1, ν2(t) = N2 − 1, α1(t) = 1, α2(t) = 1, α3(t) = a3, A(t))
from (C.5)

else if n1 = N1 − 1, n2 = N2 and a2 = 1 then
determine prob(ν1(t) = N1 − 1, ν2(t) = N2, α1(t) = 1, α2(t) = 1, α3(t) = a3, A(t)) from
(C.6)

else if n1 = N1 and n2 = 0 then
determine prob(ν1(t) = N1, ν2(t) = 0, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)) from (C.7)

else if n1 = N1 and 1 ≤ n2 ≤ N2 − 2 then
determine prob(ν1(t) = N1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)) from
(C.8)

else if n1 = N1 and n2 = N2 − 1 then
determine prob(ν1(t) = N1, ν2(t) = N2 − 1, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)) from
(C.9)

else if n1 = N1 and n2 = N2 then
determine prob(ν1(t) = N1, ν2(t) = N2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)) from
(C.10)

else
determine prob(ν1(t) = n1, ν2(t) = n2, α1(t) = 1, α2(t) = a2, α3(t) = a3, A(t)) from (C.1)

end

end

end
Step 3: Find prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)) from (12)
Step 4: End
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Algorithm 3: Find prob(T = τ)

Step 1: Determine prob(χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3|A(t)),
a2 = 0, 1; a3 = 0, 1; 1 ≤ x1 ≤ N1; 0 ≤ n2 ≤ N2 according to Algorithm 2
Step 2: Set τ = 2
Step 3:
Step 3a: Determine prob(T = τ |χ1(t) = x1, ν2(t) = n2, α2(t) = a2, α3(t) = a3, A(t)),
a2 = 0, 1; a3 = 0, 1; 1 ≤ x1 ≤ N1; 0 ≤ n2 ≤ N2, by recurrence according to Algorithm 1
Step 3b: Determine prob(T = τ) from (4)
Step 3c: Evaluate the stopping criterion
if the stopping criterion is satisfied then

go to Step 4
else

Set τ = τ + 1 and go back to the beginning of Step 3
end

Step 4: End
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