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Abstract

The Nitrogen-Vacancy (NV) defect in diamond has shown considerable promise in
the field of small scale magnetometry due to its high localization and retention of fa-
vorable optical properties at ambient conditions. Current methods of magnetometry
with the NV center achieve high sensitivity to fields aligned with the defect axis; how-
ever, with most present methods transverse fields are not directly measurable. The
all-optical method of NV magnetometry provides a means to detect transverse fields
by monitoring changes in the overall fluorescence profile. In this work the all-optical
method is extended to ensembles of non-interacting NV centers. By establishing an
external bias field aligned with the (1, 1, 1) axis, the magnitude of an unknown trans-
verse field can be unambiguously identified through the measurement of the signal
curvature. The angular orientation can be determined up to a two-fold degeneracy
by observing the change in signal curvature produced when the bias field is shifted
off-axis. The magnetometry method explored in this thesis thus provides good sensi-
tivity to transverse fields, while reducing to a minimum the experimental apparatus
required to operate the magnetometer.

Thesis Supervisor: Paola Cappellaro
Title: Esther and Harold E. Edgerton Associate Professor of Nuclear Science and
Engineering

3



WA1749MPMM!!sep" 5P/Pl@975Mqwti!!rgamir,1tN3ilgirrenNMIENT@jfilim?#M9521 NAWMWWW1



Acknowledgments

I would like to thank Professor Paola Cappellaro for her continued support and assis-

tance throughout the duration of this project. I value the insight and intuition gained

through our many discussions about the NV center and its fascinating dynamics and

applications, of all of which I had no prior knowledge when beginning this project.

I am especially grateful for the numerous comments and suggestions she provided

to me as I worked to develop the incoherent and unorganized scribbles of my own

notes into a comprehensible text. Much of the clarity in this paper is due to her

detailed feedback.

5



6



Contents

1 Introduction 15

2 Background 17

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Spin Structure of the Nitrogen-Vacancy Defect . . . . . . . . . 17

2.1.2 Detection of Magnetic Fields with the

N V Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 All-Optical NV Magnetometry . . . . . . . . . . . . . . . . . . 20

2.1.4 Non-degenerate Time-Independent Perturbation Theory . . . 21

2.1.5 The Seven-Level Model of the NV Spin Level Structure . . . . 22

3 Model Details 25

3.0.6 Calculation of ij3 via Non-degenerate TIPT . . . . . . . . . . 26

3.0.7 Numerical Details of the Transition Rates . . . . . . . . . . . 28

3.0.8 Reformulation of the Model Equations as a Linear Matrix System 29

3.0.9 Extension to Ensembles . . . . . . . . . . . . . . . . . . . . . 31

4 Detection of Magnetic Fields 37

4.0.10 Parallel Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.0.11 Transverse Fields . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Conclusion 51

5.0.12 Future Work to Be Explored. . . . . . . . . . . . . . . . . . . 52

7



A Approximate Nullspace of M 55

B Noise Model 57

8



List of Figures

2-1 The seven level model in the absence of an external magnetic field, con-

sisting of the ground state and excited state triplets and a metastable

singlet. Only spin-conserving radiative transitions and non-radiative

transitions to the metastable state are considered. . . . . . . . . . . . 18

2-2 A depiction of the Zeeman splitting of the triplet ground state. ..... 19

2-3 The normalized PL intensity as a function of the transverse magnetic

field amplitude. The parallel projection onto the defect axis is held

constant at B, = .03T. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3-1 (Left) The tetrahedral geometry to be considered. The tetrahedral

angle is 109.5' and p is the angle between B and z. (Right) The

tetrahedral geometry projected into the transverse plane. The angle of

symmetry is 1200 and # is the offset of the tetrahedron with the x-axis,

which is defined along the transverse field component. . . . . . . . . . 32

3-2 Rotation profiles of the observed signal within the x-y plane. p, the

angle between B and 2, increases from top to bottom from 20' to 85'

to 90'. For all, BI= .03T and F is set to 10. The intensities are

normalized to the p = 0' intensities. . . . . . . . . . . . . . . . . . . . 34

3-3 A full 47r rotation map of the NV tetrahedron. p is the polar angle of

the external magnetic field and # is the azimuthal angle. JBI is .M1T

and F is set to 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9



4-1 A demonstration of the increased sensitivity of the NV center to per-

turbing transverse fields around the LAC regions - .05T and .1T.

On the left is the single NV case, while on the right the full ensem-

ble is considered. Circled are the 3 symmetry points about which a

perturbing parallel field could be readily identified with the methods

discussed in the text. F = 10 in both cases. The small deviations that

occur near the LAC points are due to divergences in the coefficients

coj that develop as a manifestation of the Perturbation Theory and are

not physical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-2 The geometry of the perturbing magnetic field. T is the angle between

the perturbing field and the z-axis, and Q is the angle between the

perturbing field and the x-axis. . . . . . . . . . . . . . . . . . . . . . 41

4-3 A plot demonstrating the effect of the transverse field on the observed

signal when the system is biased around the excited state LAC. Clearly

the observed signal approaches a steady value for B, > .002T. In

generating this plot B, = .05T and F = 10. . . . . . . . . . . . . . . . 42

4-4 A series of plots depicting the dependencies of the signal curvature

on B, (Top), / (Middle) and F (Bottom). Clearly, a change in the

transverse field magnitude is the dominant cause for changes in the

observed signal curvature. It is therefore proposed that by monitoring

the changes in the signal curvature the transverse perturbation mag-

nitude can be determined. . . . . . . . . . . . . . . . . . . . . . . . . 43

4-5 (Blue) A plot of the curvature of the signal profile evaluated at B2 =

.052T and F = 10 as a function of B,. (Green) A fitted curve -=
.052

58038 ; 2 to extract the leading order dependence of the signal cur-

vature upon B .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10



4-6 The rotational symmetry of the total transverse field (red). The dot-

ted circle represents the projections of equal B1 and is what would be

observed experimentally. For a fixed transverse bias field B (black),

any transverse perturbing field b1 (blue) that creates a B1 with the

observed magnitude is an allowable solution due to the rotational in-

variance of the signal curvature. For the case lal > 1 there is one

positive solution for b1 for all values of Q in the range [0, 27r]. For the

case |a| = 1 there is one positive solution for b 1 for all values of Q in

the range [E, ]. For the case lal < 1 there are only positive solutions

for b1 for the negative angle interval when I sin QI < Ial. Usually there

are 2 possible solutions on this interval, but when Isin QI = IaI there

is only one tangent solution. . . . . . . . . . . . . . . . . . . . . . . . 47

11



12



List of Tables

3.1 The rate values used in the calculations presented in this thesis. All

transition rates not shown are taken to be 0. . . . . . . . . . . . . . . 29

3.2 The parallel and perpendicular projections of an external magnetic

field B = BXJ + Bs onto the 4 possible defect axes. The angles 0, #
and <po are defined in the text. . . . . . . . . . . . . . . . . . . . . . . 32

13

............



14



Chapter 1

Introduction

The accurate measurement of magnetic fields at small scales can be beneficial for a

variety of scientific endeavors. For example, measuring with high spatial resolution

the magnetic field produced by nuclear spins of a protein can yield information re-

garding its molecular structure [1-3], and dynamic imaging can reveal the manner

in which proteins fold and unfold [4-8]. Furthermore, intracellular processes and

mechanisms can be better studied by monitoring the distribution and evolution of

magnetic moments within the cell [9-141, with better spatial resolution yielding bet-

ter understanding. Currently used methods of small scale magnetometry, including

superconducting quantum interference devices [15-17], atomic vapor based magne-

tometry [18, 19], and magnetic resonance force microscopy [20-221, are either not

capable of resolving changes on a nanometer scale, or require special operating condi-

tions, such cryogenic temperatures or large sample sizes, which are technically chal-

lenging and not suitable in certain contexts. Thus for high precision measurements

that are to be performed in ambient conditions, a new method of magnetometry is

necessary.

A suitable candidate is the Nitrogen-Vacancy defect in diamond, which promises

nanoscale precision even when operated at room temperature [23-25]. A NV center

occurs when a nitrogen substitutional defect is located next to a vacancy in the

lattice structure, which can occur naturally or can be induced through laboratory
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methods [26-30]. Of interest to this project is the NV- center1 , in which an additional

electron is located within the defect site.

The NV center is known as a color center because it fluoresces within the visible

spectrum when optically excited. As will be discussed in more detail, the intensity

of the emitted light is intimately related to the spin state of the NV center, and

because quantum spins interact with magnetic fields in a well-understood manner, by

monitoring changes in the intensity of the NV center fluorescence emission, the local

magnetic field profile can be reconstructed.

In this work, we quantitatively analyze a method of NV magnetometry known

as the all-optical method [31, 32], both analytically and numerically, and ultimately

extend this model to include the effect of ensembles of NV centers rather than a

single defect center. In Section II we introduce the relevant features of the NV center

that make all-optical magnetometry possible. In particular, we introduce the effects of

magnetic fields on the NV spin states, via the Zeeman effect, and introduce the optical

rate equation model. In Section III we develop the model equations in more detail

and modify them to be more convenient for computational analysis. Finally, section

IV presents the results of the solved model equations and discusses the implications

of the results on future experimental implementations of the all-optical method of

NV magnetometry.

'Henceforth, the NV- center will be referred to simply as the NV center

16



Chapter 2

Background

2.1 Background

2.1.1 Spin Structure of the Nitrogen-Vacancy Defect

The ground state of the NV defect is a spin-I triplet. There is a zero-field splitting

of the triplet state of Dgs = 2.87 GHz due to spin-spin interactions that places the

10) state below the 1 ) states. This triplet ground state can be excited with 532

nm wavelength laser light into an excited triplet state with D,, = 1.42 GHz zero-

field splitting1 . The subsequent relaxation process will yield an amount of photons

dependent upon the relaxation path.

The dominant mode of relaxation is through spin-conserving transitions [33,34];
for example, a state belonging to the excited state manifold will transition to its

equivalent spin state in the ground state manifold, emitting a photon in the process

to satisfy overall energy conservation. However, the total number of photons emitted

after repeated optical stimulations is highly dependent upon the initial polarization of

the state [35,361. This is due to the finite probability that the 1t) states will transition

to the 10) state via a metastable singlet state 2, a process known as intersystem crossing

'It is the preservation of this unique spin level structure at room temperatures that allows NV
magnetometry to be operable in ambient conditions

2 Note: the opposite phenomenon, the excited 10) state transitioning to a 1 ) state via the
metastable state, is negligible compared to the probability of radiative decay.

17



14)
ISC Path

Via Singlet State

Optical
Transitions 7

12),13)
MW Transitions

I1)

Figure 2-1: The seven level iodel in the absence of an external magnetic field. con-
sisting of the ground state and excited state triplets and a inetastable singlet. Only

spin-conserving radiative transitions and llon-raldiative transitiolns to the Ietasta)le
state are considered.

(ISC). This transition excites phollonIs ill place of photon1s. so on average the observed

number of, photolls ellitted bly the l ) states is less than that of the 10) state. Fig. 2- 1

gives a visual representation of the electronic and spin level structure of the NV defect.

2.1.2 Detection of Magnetic Fields with the

NV Center

Spins interact with external magnetic fields through what is known as the Zeeman

Effect. where spins alignled with the magnetic field will occupy a lower energy state

than spins anti-aligneld to it. In particular for the spin- 1 triplet state of the NV defect

and a magnetic field aligned with the defect axis, the energy of the 1+) state is shifted

downward by the amount pqB ~ (0.1.16 meV T) - B. the energy of the |-) is shifted

upward by the same amount and the energy of the 10) state is unaffected, as can be

seen inl Fig. 2 - 2.

Experimentally. this splitting cal be observed by performing microwave (MW)

sweeps while optically exciting the NV center and observing the PL decrease when

18



Energy(GHz)

0.01 002 0.03 0.04

Figure 2-2: A dlepiction of' the Zeemiani splitting of' the triplet, grouind state.

the MW\ i's resonanit with the 10) --- ) transition at tI he applliedl mnagnietic field 1371.381.

Monitoring the elet in~ resomniie (ESR ) spectra of' the NV cenlter provides a

mietlhod of extracting the mnaginitude of the external magnletic field pro jectedl onto the

defect axis (Ilie( to the known relation b)etweein the energy sp~litting andI thle external

linagnetic field: however, this (detection miethodl is in1sensitive to t ranisverse fields.

Similarly, another NV magietonietivinetlio( is the use of a Ramsey-type pulse

s(jlIeiice- fo)r DC fields and~ Spin-echo measurements for AC fields 13 421. These

niethods conisists of' a resonian t MWNN pullse followedl by a period of* tree evohitioii InI

2

wvinch the ) states will pjick il) a Iphiase duel( to their interaction with the external

iagnectic field. followved bya fnal NR pu ~llse which p)rojects the s"tate b~ack onto

22

the original axis. This final pulse Zrnslates the phase iflerence obtaine

(luring the periodl of free evolution (which is proportional to the magnetic field) to

a niasirahle (ifference in spin state Eopulations. An additio al pulse is Iserted

in the id ale of the echo sequence 14f1 that will "flip" the state afi nd the direction

of the spin evolution, allowing the phase (liflereince to continue to increase eveil as

the external field magnetic field chnges sign. while canceliig (t, the (-flet s of static.

iagnetic noise, such as that arising fom a spin bath eiiviroiiiieit sp.

Whil these tecliliques cikn achieve good seisitivity, they are also insensitive to

trnsvhersdl f'tehosqe [3 ht wl"fi"te stiat lvdrive thresiln

transverse fields. In addition. they require the ability to resoantly drive the spil

19



transitions via MW fields. Therefore, a third method of NV magnetometry, known

as the all-optical method, is now introduced that is capable of directly detecting the

presence of a transverse magnetic field and considerably simplifies the experimental

apparatus since it only requires laser excitation and light detection.

2.1.3 All-Optical NV Magnetometry

In the absence of continuous or pulsed MW driving, an aligned magnetic field will

cause no changes in the photoluminescence (PL) intensity as its magnitude is varied;

the same, however, is not true for transverse fields. In strong transverse fields, the

mS basis with respect to the spin axis is not a good eigenbasis in which to analyze

the system; instead, an eigenbasis with respect to the axis of the magnetic field would

serve better [44]. Eigenstates in this new basis can be expressed as superpositions of

the previous m, states and as a consequence there will be a nonzero overlap between

the 10) in the new basis and the ims = ) of the old basis. Through this effect, the

contrast in photons emitted by the 10) and the 1 ) states is reduced; however the net

intensity of the photon light is also reduced due to the larger population of + ) states

(see Fig. 2 - 3). While this behavior is intuitive for the case of a strong transverse

field, this reduction in PL intensity will occur even in the regime of small transverse

fields as long as the transverse field is nonzero. It may therefore be possible to detect

the presence of transverse fields by monitoring a change in the intensity of emitted

light.

For a single NV center, this approach is strictly limited to the detection of trans-

verse fields. However for ensembles of NV centers this limitation is removed. The

diamond lattice has a face-centered cubic structure; correspondingly, there are four

possible spatial orientations for the NV defect [45]. An external magnetic field par-

allel to one NV center will be at an angle with the symmetry axis of another NV

center within the sample. Therefore, when considering ensembles of NV centers, the

all-optical method of magnetometry can be used to detect magnetic fields of any

orientation.

An ongoing field of research is the use of the NV center to make precision mea-

20
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1.0

0.8

0.6

0.4-

0.000 0.002 0.004 0.006 0.008 0.010

Figure 2-3: The normalized PL Intensity as a function of the transverse magnetic field

amplit ude. The parallel projection onto the defect axis is held const ant at B. - .03T.

snremiienits of a small magnetic field; however. with the increased sensitivity coies

an expected decrease in simplicity of experimental (esignl. The imethods developed

ill this thesis project aim to accomplish the opposite: a relatively quick and simple

method of detecting simmall iiiagmietic fields at the expense of decreased precision in the

measurement. The results of this project caii le uised to develop a tool for performing

fast measurements when the ultimate sensitivity is hot the primary concern (although

nanoscale spatial resolution is still obtainable, even with such aii "imprecise" device).

or an apparatus that cali be lised ill tabletop demonstrations in either laboratory

settings or a presentation to a general audience, since the ineasuremnent methods will

be simple to perforum.

2.1.4 Non-degenerate Time-Independent Perturbation Theory

Perturbative anialysis is useful for systems in which small changes are made to an

exact ly-solva ble unperturbed Hamiltonian, as is the case with the interaction of ai

external magnetic field with the NV defect. The total eigenstates and eigenvalies

are then expanded in a power series around the small perturbation and truncated at

ali appropriate order. That is to say., w(' 1)egin with an muperturbed Hamiltonian Ho

withii uiuhperturbed eigenstates 11()) such that

HO Il ) = E ni) (2.1)

21



A small perturbation is added to the original Hamiltonian such that

Htot = Ho + 6H (2.2)

where 6H is small compared to Ho. The eigenvalues are then modified according to

the equation:

I (m0 | 6H |no) |2
E,= E, + n6H I no) + EO- E +.. (2.3)

m: n n m

Similarly, the eigenstates will change according to the equation:

In) = In ) + E E E6 H ) ... (2.4)
mon n

These results will be used in the next section to calculate the Zeeman interaction for

the NV defect.

2.1.5 The Seven-Level Model of the NV Spin Level Structure

The NV system can be described by a seven-level model that comprises the electronic

spin triplets in the ground and first excited state, as well as a singlet metastable level.

The zero field eigenstates { i)} form a complete basis. Therefore, the new eigenstates

that result from the application of the external magnetic field (denoted as ji)') can

be expressed as a linear combination of the original states [31]:

7

-i) = Z ic (B) Ij) (2.5)
j=1

where the coefficients aij(B) will be determined via Perturbation Theory (PT) in the

following section and are functions of the external magnetic field. To describe the

optical processes, we would need to work in an extended Hilbert space to analyze the

time-evolution of the 7 x 7 density operator. However, only the diagonal elements of

the density matrix are non-negligible and thus we can reduce the complex evolution

22



to rate equations for the seven population levels.

Transition rates are represented as kij for the transition from the i-th population

level to the j-th population level. In a similar manner to Eq. 2.5, the new relaxation

rates (denoted as k' ) will evolve as combinations of the zero-field transition rates 131]:

7

kij= I C ajq|2kpq (2.6)
p,q=1

The time evolution of the spin state populations can be well approximated with

the classical rate equations [311:

dn
dt=Y k ,r - k 3 mi (2.7)

j=A

However, for the purposes of the all-optical measurement approach, the above

equation will be solved in the steady-state condition, with -- -+ 0. Physically, thisdt

corresponds to an experimental setup in which the NV center is optically excited

long enough for transient behavior to diminish, and then photon collection will occur

while the NV center is continuously illuminated such that the steady-state condition

is maintained for the entirety of the measurement period. Thus, the equation to be

solved is:
7

0 = k - k hi (2.8)
i,j=1A

where the spin state populations are denoted as hi to indicate they are the steady-

state populations. The spin populations represent the probabilities for a single NV

center to be in the specified spin state, thus the following normalization condition is

imposed on {ni} [31]:
7

1 (2.9)

Recall that the decay of the excited state manifold to the ground state manifold

via the metastable state excites phonon production rather than photon emission, thus

the only radiative decays are those from the excited state manifold directly to the

23



ground state manifold. Thus the rate of total radiative decay, R, is defined with the

following equation 131]:
6 3

R = E k hi (2.10)
i=4 j=1

where r/ represents the collection efficiency of the photon detector.
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Chapter 3

Model Details

In the seven-level model the complete Hilbert space will be decomposed into 3 in-

dependent subspaces - the ground state manifold, with the basis {1) , 12), 3)}, the

excited state manifold, with the basis {4) , 5) ,16)}, and the metastable singlet {7)}.

In this manner the Hamiltonians of each subspace may be considered independently

as well, as the total Hamiltonian will be of simple block-diagonal form. This will

simplify the calculations, because the singlet will exhibit no Zeeman interactions, and

the evolution of the excited state manifold due to the external magnetic field will be

analogous to that of the ground state manifold. The dimensionality of the problem

can thus be reduced from 7 to 3 by limiting the analysis to the calculation of the

Zeeman interactions of the ground state manifold only. Furthermore, the subspace

independence implies that there will be no state mixing between subspaces, and as

such the amount of coefficients og is greatly reduced.

Defining the quantization axis to lie along the NV defect axis, the ground state

Hamiltonian is thus composed of two terms1 :

HgS = hDgS>z2 - 41gB (3.1)

'For reference, the spin-1 operators, in the S, eigenbasis, are:

0 L- 0 0 -i 0 1 0 0

S= 0 % SU= 0 ,S 0 0 0

0 0 0 0 0 0 -1

25



where only the zero-field splitting of the ground state manifold and the Zeeman

interaction with the external magnetic field are considered. Here, h is the Planck

constant, p is the Bohr magneton and Dg,= 2.87GHz. The analogous excited state

Hamiltonian can be found be replacing Dg, with Des = 1.42GHz.

When considering a single NV center, the transverse field can be taken to lie along

the x-axis without loss of generality. However, we are interested in performing our

analysis in the most general way and in particular in extending it to ensemble of NVs,

oriented along the four different crystal axes. We thus initially retain the most general

form of the Hamiltonian. This allows us to show that even in the most general case

the problem can still be reduced to a 2-parameter model, defined by a longitudinal

and transverse magnetic field. Thus, the ground state Hamiltonian is:

Hgs = hDgsS - pgBzSz - pgB.S. - pgB (3.2)

3.0.6 Calculation of ai via Non-degenerate TIPT

For small transverse fields ("L < 1) the effect of the transverse field on the spin

eigenstates can be calculated via Time Independent Perturbation Theory. The total

Hamiltonian of the system is decomposed as follows:

Htot = HO + 6H (3.3)

with the unperturbed and perturbing Hamiltonians defined as

Ho = Hg, = hDgs S- pgBzSz

6H = -pgB.S. - pgBYSY (3.4)

The unperturbed eigenvalues are the usual Sz eigenvalues 1-), 10), 1+).

The presence of a finite Bz breaks the degeneracy of the states 1t) and thus Non-

degenerate PT can be used. Applying Eq. 2.3 with the given definitions of HO and
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6H the new energies are found to be:

(/ pg)2 1 iy2E+ hDgs - pgB- + JBx + iB +..
2 (hDgs - pgBz)

Eo (-g)2 |Bx - iBy|2  (Jig)2 |B, + iBY| 2 +
2 (hDgs -+ gBz)) 2 _h_____pg__

E_=h~ysp(hz+s+ ...g(3.)

2 (hDgs + pgBz)

and applying Eq. 2.4 the new eigenstates are found to be:

|+) =+0) - pig(Bx +iBY) 00) .
S(hDgs - pgBz)

10) = 00) + tg(Bx - iBY) 0 pg(Bx + iBY)
K (hDgS - pIgBz) / + ji(hD + pgBz )

-) -tg(Bx - iBY) 00\) +... (3.6)
V2 (hDgs + pgBz)

Generally, the new eigenstates should be renormalized, however in this case the

perturbation will be considered to be sufficiently small that the eigenvectors remain

approximately normalized. The physical quantities of interest for this system are the

energies of the states Ej and the norm-squared coefficients laij 2. From the above

expressions it is clear that both quantities depend on the magnitude of the transverse

field component (BI = B2 + B 2) without regard for the orientation of the transverse

field in the x-y plane. Therefore, for every NV center to be considered, the relevant

field quantities are B11 and B1 and all formulas derived shall be written in terms of

these 2 quantities such that the generalization to ensembles is manifestly visible.

From Eq. 3.6, the coefficients ai can be easily identified, recalling the mapping

of 10) -+ 1), +) -+ 2),I-) a 13). For completeness all non-zero aij coefficients are
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listed here:

a11 = 1

pgB1a 12
V2 (hDgs - pgB11)

pugB1a13 h p gB||
/2~ (hDgs + 1uigB 11)

pgB1
a2 1  --

/ (hDgs - pugB|1)

a 22 = 1

pugB1

\/'2 (hDgs + pgB11)

a33 = 1

a 44 = 1

pgB 1
a45 -

a /2 (hDes - pugBj1 )
pgB1a46 - v2 (hDe gB)

,pgB1a 54  -- (D - )
N/r2 (hDes - p~gBj )

a 55 = 1

pg B1

v/2- (hDes + pugB11)

a6 6 = 1

a77 = 1

3.0.7 Numerical Details of the Transition Rates

In this model only spin-conserving radiative transitions and ISC transitions via the

metastable singlet state are considered. The metastable state is assumed to only

couple with the ground state 10) and the excited state 1 ). Furthermore, the transition

rates depend only on the absolute value of m, so transition rates involving the 1+) and

I-) states will be equal. Table 1 shows the exact numerical values used in developing

the results presented in this thesis [33J.

Excitation rates (kji, i E {1, 2, 3}, j E {4, 5, 6}) can be related to the correspond-

ing relaxation rates with a constant of proportionality Fij known as the optical pump-

ing parameter for that transition. In general Fij is different for the different radiative

decay processes. However, in this model only spin-conserving radiative transitions

are considered, and as can be seen in Table 1 these transition rates are all equal. The

laser excitation process can similarly be considered independent of the initial spin

polarization, and thus the ratio Fij = kji/kii = F is a constant of the experiment.
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Transition Rate [MHz]

kgl 77

k52  77

k63  77

k57  30

k67  30

knl 3.3

Table 3.1: The rate values used in the calculations presented in this thesis.
transition rates not shown are taken to be 0.

All

3.0.8 Reformulation of the Model Equations as a Linear Ma-

trix System

To simplify the analysis, it is desired to reformulate the model equations (Eqs. 2.6 -

2.10) as matrix equations in order to reduce the overall number of equations to be

solved directly. The evolution of the basis states (Eq. 2.5) does not aim to benefit

from any reformulation, as the new basis states have already been calculated via

Perturbation Theory and can thus be directly operated on in place of the original

basis states. Therefore we began with Eq. 2.6.

The matrix A is defined such that:

A =aij 12 1i) (j I (3.8)

Furthermore, the matrices K and K' are defined such that:

K ki i) (j

K' k' ji) (jj (3.9)

With these definitions, it is clear to see that Eq. 2.6 can be reformulated as:

K' = AKAT (3.10)
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It should be noted that the above equation is valid for any choice of A; however, from

Eq. 3.7 it can be seen the A derived for this system is symmetric, and as such A and

AT will be equivalent. In fact, when only considering the first order correction to the

basis states obtained via Perturbation Theory (Degenerate or Non-degenerate), the

hermiticity of the Hamiltonian implies A will be always symmetric.

In reformulating Eq. 2.8 we define the vector In) such that each element of the

vector is the steady-state probability hi as defined in Eq. 2.9. Upon inspection of

Eq. 2.8, it is clear that there are two types of terms present: the first is a sum of the

possible decays into the spin state of interest, which is dependent upon the other spin

populations, while the second is a sum of all the possible decays out of the spin state

of interest and is independent of the populations of the other spin states. With this

recognized, it follows that Eq. 2.8 can be alternatively expressed as 2

( = (K' - Diag (K'fI)))T In)

= I~n) (3.11)

The first term i- Al represents tt utays into a spin state, wile the second teiri

represents the decays out of a spin state. In this representation, solving for the steady-

state spin populations is recast as the problem to find the nullspace of M, which is a
3well-studied problem

With this approach, the normalization condition of n is alternatively expressed

as:

(nI1) = 1 (3.12)

To recast Eq. 2.10 into a matrix equation, for brevity in the final result the vector

2Notation: 6 is the seven dimensional all-zeros vector (0 0 0 0 0 0 0), II) is the seven dimensional
all-ones vector Z ji), Diag(d) defines the matrix D such that Dij a6M 1 , where 6oj is the Kronecker
Delta.

3 Note that with this representation the transient case becomes similarly recast into a well-studied
form: i = Mf
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IG) and the matrix E are defined as:

I G) 1 1) + 12) + 13)

E 1 4) (41 + 15) (51 + 16) (61 (3.13)

It is clear that the total radiative rate can then be expressed as:

R = rl (nJ EK' lG) (3.14)

3.0.9 Extension to Ensembles

When considering an ensemble of NV centers, there exists a potential ambiguity in

distinguishing angular and gradient effects in the total observed PL signal. A more

complete analysis of the system would allow for a spatially-varying external field;

however, for simplicity the external field will be assumed to be slowly varying over

the ensemble region (VV7B << 1). This work will focus on the leading order term only,B ave

but corrections due to small spatial variations can be added in a Taylor expansion of

the signal calculation.

As discussed in the previous section, the response of the NV center to an external

magnetic field can always be treated as a 2-dimensional problem with the relevant

parameters being B11 and B1 , the parallel and transverse projections of the external

field onto the defect axis respectively. In calculating B11 and B1 , however, the full 3-

dimensionality of the diamond lattice must be maintained. Symmetry considerations

dictate the diamond lattice to be tetrahedral. Defining the coordinate axes such that

2 lies along one of the bond axes (hereby denoted as P for Principle Axis 4 ) and 1

lies along the transverse field direction, it is straightforward to calculate the parallel

and perpendicular projections of B on the other 3 bond axes (hereby denoted as Q,

R, S5 ); the results are shown in Table 2. In calculating the results of Table 2, the

4 Note: All such references to "parallel" and "transverse" projections should be understood to be
taken with respect to the Principle Axis

'Alternatively, one can consider the representations P -÷ (111), Q -+ (111), i - (i1i), S -
(Mi1)
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S

B,

P (po =120'
,1\0 = 109.5

Q ~ Rk

1S Q

Figure 3-1: (Left) The tetraheldral geometry to be considered. The tetralhedral angle

is 109.5' and p is the angle between B and i. (Right) The tetrahedral geometry

projected into the trainsverse plane. The angle of' synnetry is 120' and 3 is the
Offset of the tetrahedron with the x-axis, which is defied almg the transverse field
compllolent.

PB B,

B, Sill 0( cos0 + B c(Os 00 B2 -(B, sin 00 (0s + B co) s0))2

I? B, siln 0 cs ((3 + 'pO) + B, 0os 0  VB 2 - (B1, sill 0 cos(83 + + )+ B, cos 0o)2

S B, sill 0( os( -3 'o) + B, (0s 0 \B2 - (B, Sill 0() cos(3 -'po) + B, (os 0))2

Table 3.2: The parallel and perpendicular projections of aii external magnetic field

B = B -+ B) onto the 4 possible defect axes. The angles 0(. 13 and ;o are defined
in the text.

following angles are defiined: 0o ~ 109.5' is the bond angle, '3 is the angle between

the transverse axis projection Q and the transverse field direction, ,o = 120' is the

angular spacing of the three axes projections in the x-y plane. Fig. 3 - 1 provides a

visual representation of this coordinate configuration.

As can be clearly seen in Table 2. at most 3 tetrahedral axes can be considered

svnmietricallv. in which the parallel and perpendicullar projections of the external

field will be equal. In this coor(illate sYsteim this occurs when B, = 0. These

coordinates were chosen to make this feature manifest but no generality was lost in

this coor(dinate defillition - there (loes not exist an external field orientation in which

the parallel or perpendicular l)roj.ectionls onto every tetrahedral axis are identical.
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The most symmetric configuration will always be when the external field is perfectly

aligned with a tetrahedral axis.

With the projections defined, the total signal observed is a simple average over the

4 possible orientations with the assumption that the interactions between neighboring

NV centers can be neglected. Thus:

I 
= R(Bf, Bf) (3.15)

n

where h F, Q, R, S.

Due to the trifold rotational symmetry of this geometry, a periodic signal profile

develops in the presence of a finite transverse field, as can be seen in Fig. 3 - 2.

Interestingly, in the quasi-parallel regime, in which B. < B,, the signal peaks occur

when the tetrahedral axes are anti-aligned with the transverse field. This is due to

the bond angle being obtuse, so in the quasi-parallel regime a transverse field anti-

aligned with a transverse tetrahedral axis has a larger parallel projection onto that

axis than when aligned with it. As the system is rotated into the quasi-transverse

regime, in which B. > B,, the aligned configurations transition from local minima

to local maxima as the minima shift towards the midpoint between the aligned and

anti-aligned configurations. Finally, for completely transverse fields the aligned and

anti-aligned configurations are perfectly symmetric, as the vector configuration is such

that each - rotation maps B into its vertical image. That is to say, the angles formed2

by B(O) and B(/+3 P) with the tetrahedral axes define vertical, congruent pairs. Note

that this is always true for B1 , but the symmetry is broken by the presence of a finite

B,. As B, is taken to 0 the vertical symmetry becomes realized. A full 47r rotation

map is shown in Fig. 3 - 3. In this figure, the discrete rotational symmetry of the

NV tetrahedron is clearly visible with the bright peaks within the middle of the plot.
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Figure 3-2: Rotation profiles of the observed signal within the x-v plane.

between B and :. increases from top to bottom from 20' to 850
.03T and F is set to 10. The intensities are nornalized to the p

to 90'. For all,
= 0 intensities.
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Figure 3-3: A full 4-r rotation map of the NV tetrahedron. /) is the polar angle of the
external magnetic field and 3 is the azimuthal angle. JB is .01T and F is set to 10.
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Chapter 4

Detection of Magnetic Fields

The aim of this work is to develop a method of detecting small magnetic fields.

In many current methods of NV magnetometry an external bias field is applied to

provide a reference for the unknown perturbing fields and in order to measure the

unknown, small fields at the most sensitive working point. With this in mind, for

the analysis that follows, the total magnetic field will be comprised of two terms: the

known bias field and the unknown perturbing field, ie. B = 0 + b. The goal is to

calculate b in terms of B0 (a known parameter) and B-dependent measurement of

the PL intensities. To do this, the problem will be broken up into 2 parts: developing

a method to determine bl, and developing a method to determine b1 . With this

information the entire vector b can be reconstructed.

4.0.10 Parallel Fields

It is predicted that near the Level Avoided Crossing (LAC) regions the PL intensity

will be highly responsive to small, transverse field perturbations, as can be seen in

Fig. 4-1. The LAC regions are found when B, = hDgs/apg, hDe,/,pg, or B, ~ .103T,

.051T respectively. Indeed, close to these two points, our perturbative approach starts

to break down.

It is interesting to note that with finite B1 , 3 regions appear which are symmetric
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tioralied ItenityNormalized Intensity

B. = 0.0T B = 0.0 T

sy=O0.002T 0.8 - B 1 = 0.002 T

0.6-

0.4 
-

0.50-

002 004 0.06 0.08 0'10 0.2 0.02 O.04 0.06 0 08 0.10 0.12

Figure 4-1: A demonstration of the increased sensitivity of the NV center to perturb-

ing transverse fields around the LAC regions ~ .05T and ~ .T. On the left is the

single NN' case. while on the right the full ensemble is considered. Circled are the 3

symmetry pOIts about which a perturbing parallel field could he readily identified

with the Imethods disclussed in the text. F = 10 in both cases. The small deviations

that occur near the LAC points are due to divergences in the coefficients o u that

develop as a manifestation of the Perturbation Theory and are not physical.

under small variations in B, - the 2 LAC regions and the midpoint between themi.

It can be imagined that a biasing external field is established such that the NV

center is placed within one of these 3 symietric regions. Then. being regions of high

sensitivity. the magnitude of the parallel projection of the perturbing field can be

determined from the difference in the observed signal and the signal predicted at the

synn netry point. Only the magnitude of the parallel perturbation can be ininediately

determined from the observed signal due to the syimmet rv of the region: however, the

sign of the perturbation call be obtained 1y shifting t he biasing field off the synunetry

point by a small amount and observing the change in the signal.

Mathematically. this is to say that at the svnmmetry poit = ( but elsewhere

() and tls has a sign. Therefore 1y measuring the sign of , along with the

direct measurement of S the parallel perturbation can be determined uniquely. This

method of determining the parallel projection of the perturbing field will be referred

to as the syunietric approach.

A different . umore intuitive approach would be to use the regions of maxinum

'Note that B = 0 is not considered in this analysis although it is a location where - vaiishes

and. when including the negative projections. indeed forms a symnetry point. The reason for its

oilission is that the curvature is poor at that location and thus from a practical consideration it is

eliminated as a possibilitv.
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slope rather than minimum slope as the biasing points as these regions will exhibit

the largest sensitivity to parallel variations. However, the curvature profile of the

signal is a function of the transverse perturbing field and so the specific location of

maximum slope is not known a priori. The location of the local minima is, as it will

always occur at the LAC point. Therefore it is recommended to use one of these

extrema points as the bias points as they will be symmetric with any value of B2.

For small perturbations, an expansion can be performed around the symmetry

points:

S(Bz) _ S(pi) + a2S (BZ - i) 2 + 4S (BZ - +) + (4.1)
02Bz Pi 2 4Bz i, 24

where pi denotes a symmetry point: - .05T, - .075T, or - .1T. Here only even

derivatives are nonzero when evaluated at pi due to symmetry considerations. For

sufficiently small perturbations Bz - pi the higher order terms can be neglected and

the perturbation can be solved for directly:

_ a 2s ( B - pi)2

S(Bz) = S(pi) + a2  2
a2Bz P 2

OS _2_

s - 2S (B - p A)OBz BZPi 2Bz P

Therefore:

/ -1

b Z O S ( 2 B z

/ -1
AS 0 2 S

~~BZ O2Bz ) (4.2)
ABz (2B

where b--B - p. Generally 2 - is a function of B_L and the optical pumping

parameter F and can be extracted by curve-fitting a signal profile such as that shown

in Fig. 4 - 1. Unfortunately, B, is not a fully known quantity, as it will contain a

perturbation as well. It is yet to be seen if there is an optimal F value which minimizes
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the dependence of 2 on B,, in which case the dependence of the signal curvature

on B. can be neglectedptio good approximation and the symmetric approach can be

applied in all experimental situations. An alternative approach would be to determine

B, before attempting to quantify b,; a method of measuring B, will be discussed later

in the section.

In Eq. 4.2, " is a measurable quantity; however by direct inspection of Fig. 4--1

it is clear that 9S is degenerate, but the locations of equal ' are locations of unequalOB, B

S for Ib, < pil . Therefore it is recommended to observe the signal as well as the

response of the signal to small changes in BO to determine the perturbation b,.

It is important to recall the presence of the other NV modes as a strong magnetic

field parallel to one axis will be strongly transverse to the other axes. This effect can

be seen in Fig. 4 - 1 for the ensemble case, where even in the absence of a finite B,

there is a sharp drop in PL intensity. This is a manifestation of the effect seen in

Fig. 2 - 3 in which an increasing transverse field drops the PL intensity. However,

even in the ensemble case the LAC regions still demonstrate considerable sensitivity

to transverse perturbations. Furthermore, in this model the number of total NV

centers used is a simple multiplicative factor in the signal calculation, so with enough

NV centers the signal can always be made sufficiently high to be detectable. As such,

even in the case of ensembles the symmetric approach will be applicable.

A potential problem arises, however, by biasing the NV ensemble around the

symmetric regions, as the transverse fields experienced by the other NV modes are

of comparable strength to the zero-field splitting of the spin states. This model was

derived with perturbative methods assuming transverse fields will be small, and so

selecting such strong transverse fields may interfere with the perturbative approxi-

mation. Therefore only the excited state LAC region will be used in the remainder

of this thesis with the understanding that more accurate results can be obtained by

more elegant approximation methods, such as expanding around the LAC regions,

for example.
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| BO

Figure 4-2: The geometrv of the perturbing magnetic field. kfi is the angle between
the pertuibing field mnd the z-axis. and Q is the angle betweell the perturling field

a11(d t he x-axis.

4.0.11 Transverse Fields

i3 Rotations

III considering transverse perturbatiois it is useful t properly define the geometry

being considered. Fig. 4 - 2 demionst rates the iost general type of perturbilig field.

In the figure. T is the angle betweein the perturbiing field and the z-axis, n1(d Q2 is the

angle betweeln the perturlbig field an(1 the x-axis. To simplify the analysis. iii the

presece of a )ertlllbing field the x-axis will be redefined to lie along the transverse

proe(tion of the total magnetic field. This rotation can lbe alternatively viewed as a

chiage of .3 the anIglc betweein the tetrAhedral axcs 81d the x-axis.

Ali ambiguity exists when detcrilininhg the caiuse of all observed Z-shift 8s both

the imiagni tude of the p)ertuIrblilng field 8A11d the orienlt at iol will (etermine the 3-sihift.

I11deed. fronm silmple geometry:

Sill (4.3)
BO + by cos (

or after rearrangeieiIt:
B11 sin(Sj) (4

b) = (4.4)
sin(Q - 6I)

Therefore, with knowledge of 2 and the clianige II * b cua be extracted. or vice
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0.8 - - Ensemble-Averaged

0.6

0.4

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Figure 4-3: A plot (emonIstrating the effe('t of the tiransverse field on the observed
signal when the system is biased around the excited state LAC. Clearly the observed

signal approaels a stealdy vahie for B, > .002T. In generating this plot B. = .05T
and I = 10.

versa. Note the case where BO = 0. In this situation Q (an lhe d(etermnine(l (mod 2)

by observing any transverse belavior. However in this case. sice Q will be equal to

6/3. 1)1 will b1e nllIdeterlineld.

Unfortunately, observinlg the periodic signal profile that charatterizes these i ro-

tations may prove to be difficult to realize experimentally if the system is to be l)iase(l

in the quasi-transverse regime. As can he seen in Fig. 3 - 2 the magnitl(le of the

oscillatory / profile is very small. and without (leveloplment of a f'ormal noise mo(el

it is unknown if these signal changes will be observalle. Clearly. to proeeed further

in the analysis it is requirel to (evelop a mnetllo(d of determining either 1)- or Q that

piovi(des iore experimentally-feasible observatioms

Signal Curvature Profile

As can he seen in Fig. 4 -3. changes in the transverse field will cease to dire(tly infli-

enee the olserved signal beginnling at relatively smiall magnitudes: the only influene

the unknown transverse field will have on tle observed sigial will be in (etermlining

the ciirvature of the signal profile. Therefore a possible method of extractiig the

transverse field mlagnitulde would he to measure the cirvature of the signal profile.

amid then the parallel field magnitnde caii l)e (etermined as well as the transverse

orient at iou Q.
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Figure 4-4: A series of' plots depicting the dependencies of the signal curvature on
B.,. (Top). I (Middle) and F (Bottom). Clearly, a change in the transverse field
magnitude is the doiniaint cause for changes in the observed signal curvature. It
is therefore proposed that bY mointoring the chaiges in the signal curvature the
transverse perturbation magnitude can be determined.
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Figure 4-5: (Blue) A plot of the curvature of the sigial profile evaluated at B = .052T

and F = 10 as a f'unction of B,. (Green) A fitted curve (to

.052

extract the leading order dependence of the signal curvatuire 10pon Br.

In general. the curvature of the signal profile will be a function of B,. B2 . , and

F. Near the svnunetry points the (urvature of the signal profile is alIpproxilmlately

constant with respect to B. (ie. =0. as i dictated by snnet The

the signal curvature will not be influenced by the presence of a Iparallel perturlbatioll.

From Fig. 4 - 4 it is clear that the dominant source for changes in the observed

signal curvature will he the presenc' of a traiisverse perturbation. Furthermore, the

orientation of' that perturbation has little influence on the change of' curvature, only

the mnagnitude of the perturbation will cause an observable change.

Fig. 4 - 5 plots the curvature of the excited state LAC as a function of B, To

extract the B, dependence a curve was fit to this plot. shown in green in the figure.

F was set to 10 and .3 to 0. The functional form determined from this curve fitting

procedure is:

)2 S 586038

OB2 (B, - .0005T )2

Since B = (B 0B + b 1 )2, b1 can be solved for as:

b(- s2 OB Ob- (Bcol() + (BS)2 cos2 Q (4.6)
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where B1 , Os = 586038 ( + .0005T.
(9SObs)-/

Clearly when the observed perpendicular field matches the bias perpendicular

field, the transverse perturbation is 0; however there is a negative solution (b 1 =

-2B2 cos Q) predicted to exist as well. This solution is indicative of an underlying

symmetry that is physical and may very well become manifest if the bias transverse

field is nonzero. This symmetry, which shall be referred to as the "3 symmetry"

can be intuitively understood in Fig. 4 - 6, in which it is depicted as the "negative"

solution for b 1 given a positive angle Q or the "positive" solution for the negative

angle (the latter will be the interpretation used in this analysis) 2. An alternate

method of understanding this symmetry is by considering the negative B, branch

of the curvature plot in Fig. 4 - 5. As the curvature has no dependence on 3, in

an unperturbed situation the transverse field can always be taken to be positive;

however it could happen that a perturbation is perfectly anti-aligned with the bias

transverse field and has a magnitude of 2B. In this case B1 is effectively mapped to

-B 1 , which is an undetectable transformation with the sole observation of the signal

curvature. Thus these "0 symmetric" partners form a degenerate set, as there exists

a continuum of allowed solutions due to the continuity of cos Q.

When it is not the case that the observed transverse signal is equal to the bias

transverse field the solutions are split into 2 regions: BO < B1 , Ohs and BO > B1 , Os.

These two regions can be made more obvious with the substitution B1 , Os aBO

for an arbitrary a. Then, Eq. 4.6 becomes:

b =-BO cos Q B1 /a2 - sin2 Q (4.7)

In this equation it is obvious that b1 will be degenerate under the mapping a -+

-a. This is a manifestation of the rotational invariance of the system, and there is

no loss of information by restricting a to be positive, as this is analogous to fixing

the coordinate axes along the total transverse field. Furthermore, b1 will be double-

valued with respect to the mapping Q -+ -Q as the RHS of Eq. 4.7 is an even function

2Positive angle refers to an angle belonging to the angular region [- E, E] in which cos Q > 0
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of Q.

jal > 1 Solutions

The region B' < B1 , Obs corresponds to a > 1. In this case the term under the

radical will always be positive. To obtain the correct limiting behavior as a -÷ 1 the

i in Eq. 4.7 must be handled properly. In doing this, the angular direction of b1 is

limited to the quartercircle [0, 1] and b1 is confined to be strictly positive:

bi = -B (cos Q - a2 - sin2 Q) VQ : 0 < Q < (4.8)

Note that no information is lost by limiting the angular distribution of b1 to this

subregion as the full degeneracy of the solution is recovered by calculating the double-

valued solutions with the mapping Q -+ -Q for this region, and calculating the 3

symmetric partners. Given a transverse perturbation bi at a given angle Rj that

solves Eq. 4.8, and a transverse bias field, the / symmetric partner can be calculated

with the relationship:

bj bI + 2B- cosn (4.9)

The / symmetric set is then build up from the set of (ba, Qj) that constitute the

positive solutions to Eq. 4.8.

It can be clearly seen that the / symmetric partners vanish if the transverse

bias field is set to 0. This provides a simple means of removing the ambiguity in

the observed curvature of the signal profile. Alternatively, the degeneracy can be

partially lifted by probing the slope of the curvature profile in a similar manner as

discussed for determining the magnitude of a parallel perturbation. If the slope is

positive, then b1 - BO < 0; if the slope is negative, then b1 - Bj > 0.

jal < 1 Solutions

The region BO > B1 , Obs corresponds to a < 1. Now, the term under the radical

in Eq. 4.7 may at times be negative, corresponding to the transverse perturbation
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Figure 4-6: The rotational synietry of the total transverse field (red). The (totte(l

circle represents the pr)ojections of equal B, and is what would be observed experi-

mnitally. For a fixed transverse bias field B' (1lack). any transverse perturbing field

bL (blue) that creates a B1 with the olbserved magnitude is an allowable solution due

to the rotational invariance of the signal curvature. For the case ial > 1 there is oiie

positive solutioii fI bL fI all values of Qi2 in the range [0, 27]. For the case 1a(= 1

there is oiie positive solution fo1 1L for all values of 2 in the range [T -]. For the

case (Ia < I there are only )ositive solutions for b1 for the negative angle interval

wieii sin 2| <; a . Usually there are 2 possible solutions on this interval, but when

sin = a there is oily one tangent solition.
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having an imaginary component. This is not physical and thus places a bound on

the allowed angular distribution of the transverse perturbation. Indeed, the bound

becomes:

I sin Ql < lal (4.10)

When lal < 1, / 2 - sin2 Q < cos Q for all choice of Q. This means that the two

solutions for b1 will have the same sign, and thus will both be considered. This is

unlike the previous case Jai > 1 when the two solutions had opposite signs, and the

negative solution was rejected in favor of the calculation of the 3 symmetric partner.

For b1 to be strictly positive, Q must be further restricted to the negative angle regime

[2, g] in addition to the bound presented in Eq. 4.10. Since the RHS of Eq. 4.7 is

even with respect to Q = r, without loss of information Q can be restricted to the

negative quartercircle [i,7r] with the understanding that degenerate solutions exist

for the mapping - -Q.

As seen in Eq. 4.7, for any Q such that Isin QJ < lai there are two allowable

solutions for b1 . With the geometrical interpretation given in Fig. 4 - 6, these 2

solutions can be considered a secant solution. The tangent solution, or the solution

when b 1 is singularly valued for a given angle, occurs when Isin I = Ial.

It is corroborative to the analysis that the solutions produced by the 1/B2 depen-

dence of the signal curvature produce degenerate solutions that encode /-invariance

of the curvature. This matches the graphical observations of Fig. 4 - 4.

If is unknown, then the following bounds can be placed on bI

B1 , Obs - BI < b-L < B1 , Obs + B2 (4.11)

as can be clearly seen from Fig. 4-6. Notice that the difference between the maximum

possible perturbation and the minimum possible perturbation is equal to 2BO; as the

magnitude of the transverse bias field is reduced the transverse perturbation can be

more tightly bound. When BI = 0 the magnitude of the transverse perturbation can

be unambiguously identified.
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Experimental Procedure

The second derivative of the observed signal can be discretized in the following man-

ner:
_2S S(pi + ) - 2S(pi) + S(pi - C)

(4.12)
&B. C2

where ( is a small offset to the biasing field.

Combined with Eq. 4.2 it is clear that the parallel and transverse projections of

the perturbing field can be determined by performing 3 separate measurements: a

first at Bz? % .05T to observe the overall signal, a second at Bz ' .05T +( to extract

the slope of the signal, and finally a third measurement at Bz O .05T - ( to extract

the curvature of the signal. With these three quantities the parallel projection can

be calculated with Eq. 4.2. From the curvature measurement the parameter a can be

extracted, and then the transverse perturbation can be restricted to reside in one of

two regimes: Ial ; 1 and IaI < 1. The Ial ; 1 regime is defined by Eq. 4.8, Eq. 4.9,

and the understanding that degenerate solutions exist for the mapping Q -+ -Q; the

Jal < 1 regime is defined by Eq. 4.7, Eq. 4.10, the additional restriction of Q to the

negative quartercircle [!, 7r] and the understanding that degenerate solutions exist for

the mapping Q - -Q over this angular region.

As the technique for detecting parallel perturbations requires a finite transverse

field, if this is to be true for all possible perturbations then the external bias field must

have a finite transverse component. The presence of a finite transverse bias field means

that observations of the transverse perturbation will suffer inherent ambiguities that

will require the simultaneous measurement of the the third derivative of the signal

profile (g for C = ) and the # rotation of the perturbation to fully resolve.

The first of these is possibfe by performing a second series of measurements at slightly

offset transverse bias field (ie. 9 - a2 - S , necessitating 6
pi,B.+E pi, B.

measurements in total. However, the observation of the # rotation will be difficult to

observe in the quasi-parallel regime and may in turn require the bias field be shifted

into the quasi-transverse regime for a larger oscillation amplitude.

Alternatively, the magnitude of the transverse field can be detected unambiguously
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by setting the bias field to have no transverse component, in which case any transverse

effects, such as the formation of signal curvature or a 3 rotation, can be directly

attributed to the presence of a transverse perturbation. With no transverse bias field,

the ability to detect parallel perturbations with the symmetric approach is limited to

cases when there simultaneously exists a finite transverse perturbation. However this

inconvenience can be neglected by instead using the existing methods of parallel field

detection which do not require the presence of a finite transverse field, such as the

observation of ESR spectra or via Ramsey pulse sequencing. In this way transverse

perturbations can be detected with relative simplicity.

Due to the -invariance of the signal curvature, no information regarding the

angular orientation of the transverse perturbing field can be obtained in the absence of

a transverse bias field. This can be remedied by performing a second measurement of

the signal curvature with a small but nonzero transverse bias field. As the magnitude

of the transverse perturbation will have been calculated from the signal curvature

measurements with zero transverse bias field, Q can then be determined up to the

double-valued degeneracy of the mapping Q -+ -Q.
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Chapter 5

Conclusion

There are many situations when it is desired to detect the presence of a small ex-

ternal magnetic field. The Nitrogen-Vacancy defect in diamond is capable of precise

magnetometry in ambient conditions by observing changes in the fluorescence inten-

sity. While many sophisticated methods of detecting fields parallel to the defect axis

exist, these methods are unable to detect transverse fields. The all-optical method

of NV magnetometry provides such a method of transverse field detection via the

observation of an overall decrease in PL intensity associated to the spin state mixing

induced by the transverse field. In this thesis the all-optical method of magnetometry

is extended to consider ensembles of non-interacting NV centers.

It is found that the excited state LAC region exhibits high sensitivity to transverse

fields. By biasing one of the defect axes of the NV ensemble around this region it is

shown that through the measurement of the PL intensity drop, the slope of the signal

curve and the curvature of the signal curve the magnitude of a parallel perturbation

can be calculated. Furthermore, through the measurement of the signal curvature, a

limiting bound can be placed on the magnitude of a transverse perturbation whose

width is proportional to the transverse component of the biasing field. When the bias

field is perfectly aligned with a defect axis and thus has no transverse component,

the magnitude of the transverse perturbation can be unambiguously identified. It is

therefore recommended that for the detection of transverse fields an external magnetic

field perfectly aligned with a defect axis be applied to bias the system in the excited
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state LAC regime. If desired, the angular orientation of the transverse perturbation

can be determined up to a two-fold degeneracy by repeating the measurement of

the signal curvature with the bias field shifted slightly off-axis. For the detection of

parallel fields an additional small biasing field transverse to the chosen defect axis

must additionally be applied to the system to ensure that a finite curvature is always

present in the signal profile.

5.0.12 Future Work to Be Explored

1. As can be seen clearly in Eq.3.6 and Fig.4-1 the perturbative approach breaks

down at the LAC regimes. While this does not impact the overall results it

does make it difficult to characterize the immediate vicinity of the LAC regions

with the present model. A more proper approach will assume the parallel field

to be at the excited state LAC region and expand around variations about

that point. Only the coefficients i, i,j E 4,5,6 are expected to change with

this new perturbation approach as the perturbation condition P9B < 1 is still

maintained at the excited state LAC region.

2. A proper noise model should be developed with the photon shot noise as the

dominant source of uncertainty. A demonstration of how this calculation might

proceed is given in the appendix. Unfortunately, due to the complex dependence

of signal and noise from the magnetic field, it is difficult to use these results to

predict the sensitivity of the all-optical magnetometry method.

3. There exist two isotopes of nitrogen: N14 and N15. N 4 is the more abundant of

the two and carries spin-1. Therefore its nuclear spin will interact with magnetic

fields via Zeeman interactions and with the NV electronic spin via hyperfine

interactions. The total Hamiltonian is composed of three parts: the NV electron
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Hamiltonian, the N" Hamiltonian and the interaction Hamiltonian [46-48].

HTOt = HNV + HN14 + HNVN14

HN14 =hQIz2 hN I

HNVN14= AzSzIz + AL (SxIx + Syly) (5.1)

where Q = -4.95MHz is the intrinsic quadrupolar interaction of the nuclear

spin, 7N = -. 308kHz/T is the gyromagnetic ratio of the nuclear spin, and

Az = -2.162MHz, A1 - 2.62MHz are the parallel and transverse components

of the hyperfine tensor respectively.

In normal operations the effect of the local nuclear spin can be neglected but

near the LAC regions these effects become more prominent 1491. The hyperfine

interactions can create spin state mixing between states such as im, min) = 10, 0)

and Ins, mi) = I+1, -1) if these states are close in energy such as at the LAC

region, which in turn will influence the PL intensity. The accuracy of our model

will be improved by including such effects.
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Appendix A

Approximate Nullspace of M

For the most general M, it is nontrivial to solve the Eq. 3.11 exactly. However, it

is solvable numerically and with proper approximations it is solvable analytically as

well. For the analytical approach, it is helpful to express the coefficients aji explicitly

in terms of small parameters that can then be used in expansions. The following new

variables are defined:

6a pgB1
Dgs

Ca pgB 11  (A.1)
Dgs

6 a and Ca are reduced, unitless representations of B, and B, respectively. In this

representation, the four recurring non-trivial terms in the coefficients aij are:

pgB 1

V F (hDgs - pigB11)
pgBi

v2 (hDgs + pgB11)
tgB1  -

\/'2 (hDes - pgB11)
pgB 1

v/' (hDes + pagBjj)

6a

6a

N/2 (1 + Ca)

6a

-v (Des/Dgs - Ca)

6a

v/2 (Des/Dgs + Ea)
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Recall that the perturbative methods used to determine the coefficients Oj require

5a < 1. Therefore keeping only leading order in 6 ,, successive row reduction is

performed until the matrix M is of the form

* * * * * * *

* * * * * *

* * * * *

* * * *

* * *

* *

* *

at which point direct inspection reveals the bottom row terms to be negligibly small

and they are subsequently taken to be zero. Thus, by hand, the matrix M is forced

to have a one-dimensional nullspace with the unnormalized nullvector n'.
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Appendix B

Noise Model

The results obtained from solving Eq. 3.14 yield the expected photon signal when

averaged over the system decay and photon emission statistical distribution function.

In order to develop a model to characterize the noise in the predicted signal, it is

necessary to consider the sources of statistical uncertainty. The dominant source will

be the photon shot noise, which follows Poisson statistics [50, 51]. The shot noise

appears through the rates k'; therefore it will be imposed that for a given collection

time T:

(k )_2 = (k .)2T 2 + (k' )T (B.1)

as dictated by Poisson statistics.

In quantum mechanics, the variance in the expected value of a quantum operator

is given by the formula:

A02 = (02) - (6)2 (B.2)

In light of Eq. B.2 the Signal operator S is defined as:

6 3

S = rr k' ji) (ij (B3.3)
i=4 j=1

S is defined such that the expected value of S when operating on a generic wavefunc-
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tion 17) yields Eq. 2.10. That is to say:

3 3

(S) = ? Z (k' )i
i=4 j=1

(B.4)

Thus Eq. B.2 will be used with regards to S to develop the statistical uncertainty in

the observed photon signal.

It is necessary to express the uncertainty in S as a function only of the expectation

values (k' ), as they can be obtained via Eq. 2.6. For the term (S)2 this is already

accomplished; however for the term (S 2) to be a function of (k' ) the Poisson statistics

must be imposed.

Indeed,

S 2 2 2 k i (i )
6 3

i=4 j=1

i,m=4 j,n=1

6 3

= /2 T2 k' k i (l
i=4 j,n=1

Therefore, taking the expectation value of Eq. B.5 and using Eq. B.1:

4 3

(S2) =T2 Eiii (
i=4 j=1 \

(k)T2 +
n7j

( += 2 hi(kl )T
i=4 j=1

(k 3 )T + Z(kl )T
ij nfj /n

q2 h T(k' (1 + (k T)

i=4 j,n=1

(B.6)

where we've also made use of the fact that for independent quantities a and b, (ab) =

(a)(b).
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(kl3kf )T2
/ji

6 3

m=4 n=1
k, I |m) (M

k1 k1ij Mn li (ijrn rnj



Eq. B.6 can be recast as the matrix equation:

(S2 ) = r n E Diag(Y + TK') TK'G (B.7)

Therefore with Eq. 3.14 & B.7 the variance of the observed signal can be expressed

with the following equation:

AS 2 = [i 2 E Diag(' + TK'G) -rK'G - (Rr)2 (B.8)
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