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Abstract

In this thesis we obtain analytical approximations to the probability distribution of the
elastic tensor and fracture strengths of material models with random heterogeneities. We
start by investigating the effective elastic properties of one-, two-, and three-dimensional
rectangular blocks whose Young's modulus varies spatially as a lognormal random field.

We decompose the spatial fluctuations of the Young's log-modulus F = In E into first-
and higher-order terms and find the joint distribution of the effective elastic tensor by
multiplicatively combining the term-specific effects. Through parametric analysis of the
analytical solutions, we gain insight into the effective elastic properties of this class of
heterogeneous materials.

Building on this analysis we find analytical approximations to the probability distribution

of fracture properties of one-dimensional rods and thin two-dimensional plates for
systems in which: only the Young's modulus varies spatially as an isotropic lognormal
field and more generally, both the Young's modulus and the local material strength vary
spatially as possibly correlated lognormal fields. The properties considered are the
elongation, strength, and toughness modulus at fracture initiation and at ultimate failure.
For all quantities at fracture initiation our approach is analytical in I D and semi-

analytical in 2D. For ultimate failure, we quantify the random effects of fracture
propagation and crack arrest by fitting regression models to simulation data and combine

the regressions with the distributions at fracture initiation. Through parametric analysis,
we gain insight into the strengthening/weakening roles of the Euclidean dimension, size
of the specimen, and the correlation, variance and correlation function of the random
fields.

Finally, we extend the approach to investigate the elasticity of non-lognormal random

heterogeneous materials. First we investigate the elastic bulk stiffness of two-dimensional

checkerboard specimens in which square tiles are randomly assigned to one of two
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component phases. This is a model system for multi-phase polycrystalline materials such
as granitic rocks and many ceramics. We study how the bulk stiffness is affected by
different characteristics of the specimen and obtain analytical approximations to the
probability distribution of the effective stiffness. In particular we examine the role of
percolation of the soft and stiff phases. In small specimens, we find that the onset of
percolation causes significant discontinuities in the effective modulus, whereas in large
specimens the influence of percolation is smaller and gradual. Secondly we study the
effective stiffness of multi-phase composite systems in which the Young's modulus
varies as a filtered Poisson point process and find that the homogenization approach
initially developed for lognormal systems produces accurate results also for this class of
non-lognormal systems.

Thesis Supervisor: Markus J. Buehler
Title: Professor of Civil and Environmental Engineering
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Chapter 1: Introduction

In this chapter we discuss heterogeneity as a common trait of natural and synthetic

materials, with a particular focus on materials with random heterogeneity. We further

discuss the mechanical behavior of certain heterogeneous materials and present

established methodologies for describing their effective mechanical properties. Then we

describe the objectives of our work and the methodology we use along with some of the

challenges faced.

1.1 Heterogeneity in Natural and Synthetic Materials

A heterogeneous material is one that is composed of domains of phases with different

material properties or in which a single phase has mechanical properties that vary in

space. Examples of such materials are cement, bone, granitic rocks, cellular solids, soils,

wood, and fiber composites. Composite materials find widespread use in civil-,

aero/astro-, automotive-, and electrical engineering. From an engineering standpoint it is

thus criticai have an in-depth undersianding of the many classes of the role of different

types of heterogeneity on the bulk properties of materials.

We distinguish between ordered heterogeneous materials and disordered, or random,

heterogeneous materials. An ordered heterogeneous material is composed of domains of

different phases arranged in a deterministic pattern. For example, a laminate composite

with a given layering pattern and deterministic properties of the various phases is an

ordered heterogeneous material. In this thesis we focus on the effective stiffness and

strength of certain classes of random heterogeneous materials. First we classify and give

some examples of random heterogeneous materials.
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Figure 1.1: a Synthetic random heterogeneous materials. From top to bottom: Cement paste, fiber

reinforced cermet, and an interpenetrating three-phase cermet composed of boron carbide (black regions),
aluminum (white regions), and another ceramic phase (gray regions). b Natural random heterogeneous
materials. From top to bottom: Fontainebleau sandstone, cellular structure of cancellous bone, and 'stack-

of-coins' structure of aragonite crystals that make up gastropod nacre. Adapted and reprinted from [1-3]
with permission of Springer. Elsevier and the Nature Publishing Group.

Random heterogeneous materials are materials whose microstructural characteristics can

only be characterized statistically [I]. Figures 1.la and b show examples of synthetic

and natural random heterogeneous materials. Figure I.Ia shows from top to bottom: a

backscattered electron micrograph of cement paste, an optical image of the transverse

plane of a fiber-reinforced ceramic-metal (cermet) composite made of alumina fibers in

an aluminum matrix, and a processed optical image of a cermet primarily composed of

boron carbide and aluminum [1, 3]. Panel b shows, from top to bottom: a planar section

of Fontainebleau sandstone obtained via X-ray microtomography, a scanning electron

micrograph of the porous cellular structure of cancellous bone, and a scanning electron

micrograph of a fractured nacreous shell [1-3]. The images distinguish the distinct phases

in each heterogeneous system. Notably, the mechanical properties of the individual
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phases may also vary randomly in space. Indeed, many material systems exhibit

heterogeneity at several length scales. For example, Figure 1.2 shows an example color

plot of the spatial variation of the indentation modulus inside a sample of osteonal bone

tissue (note the different length scales in the second image of Figure 1.1b and Figure

1.2) [4].

80 -

70

60 32

> 40

30

20

i' 0

0 10 20 30 40 50 60 70 80 90

X [sm]

Figure 1.2: 2D interpolated color plot of the reduced indentation modulus, showing both a clear

modulation along the lines of the lamellae inside an osteon, as well as regions of much lower moduli where

the osteocyte lacunae and Haversian systems are present. Adapted and reprinted from [4] with permission

of Cambridge University Press.

Theoretical, numerical, and experimental studies have shown that ordered heterogeneous

material systems, both natural and synthetic, can exhibit mechanical performance

superior to that of their elemental building blocks [5-13]. For example, reference [9]

shows through theoretical analysis that in a notched laminate composite with stiff

platelets embedded in a soft matrix the stress concentration at the notch tip decreases with

decreasing thickness and stiffness of the matrix phase. Similarly, references [7, 14, 15]

show that in materials with periodically varying material properties, crack tip stress

singularities can vanish and at bi-material interfaces. Furthermore, both experimental and
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numerical studies have shown that the impressive mechanical performance of biological

materials is due to the intricate, hierarchical organization of building blocks with

contrasting material properties [5, 16-21].

Although the mechanisms are not well understood, by analogy to ordered composites it is

reasonable to assume that the fluctuations of mechanical properties in random

heterogeneous systems have similar effects on their bulk mechanical characteristics. Most

studies on the properties of random material systems have been numerical and

experimental. For example, in reference [22] the authors conducted numerical

experiments on a random material system modeled after bone and found that the effective

stiffness of such systems decreases with increasing spatial variability of the local

mechanical properties. Other recent numerical and experimental studies suggest that the

disordered distributions of mechanical properties in natural systems can enhance their

bulk mechanical fracture properties [23-30]. For example in references [23, 24, 30],

motivated by experimental nano-indentation and atomic force microscopy results on bone

[4, 24], the authors conducted numerical experiments to study the fracture properties of

systems with randomly, and continuously, varying Young's modulus fields. These studies

showed a positive correlation between heterogeneity in the Young's modulus field and

improved fracture mechanical performance. In reference [25] the heterogeneous nature of

nacre lamellae was studied in detail and nacre's impressive mechanical performance were

attributed to microstructural characteristics such as the disordered arrangement of nano-

asperities, the organic inclusions in ceramic lamellae and the locally varying Young's

modulus.

1.2 Effective Mechanical Properties of Heterogeneous Materials

Depending on the length scale of the fluctuations in the microstructural characteristics,

the stochastic microstructure can result in stochastic macroscopic mechanical properties.

For example, it is well documented that macroscopic properties such as bulk stiffness and

strength of steels, concrete, ceramics, rocks, and bone should be treated as random

15



variables [4, 24, 25, 31-35]. Under certain conditions, loosely speaking when the

macroscopic length scale far exceeds the length scale of the random fluctuations, the

effective bulk properties of random heterogeneous materials can become deterministic.

These conditions are referred to as the ergodic limit. For example, in reference [36]

Veneziano studied, under ergodicity conditions, the deterministic bulk effective stiffness

of one-, two-, and three-dimensional blocks with a locally isotropic lognormal

distribution of the Young's modulus.

In the context of structural design, it is essential to characterize the distribution of the

bulk mechanical properties of engineering materials. We highlight two important reasons:

1. A detailed understanding of such distributions will lead to more accurate

reliability analysis, which in turn can lead to better performing structures; and

2. In the numerical and theoretical analysis of large structural systems there is a

practical limit to the resolution at which fluctuations in mechanical properties can

be resolved. In order to propagate uncertainty from one length scale to the next it

is thus critical to be able to obtain the effective mechanical properties.

Since the early work of Maxwell, Lord Rayleigh, and Einstein [37-39], determining the

effective properties of heterogeneous material systems has been a widely studied subject;

see for example [1, 40-43] for book reviews spanning several decades. When the

properties of a heterogeneous system are random, the goal of homogenization is to find

the joint probability distribution of the bulk properties.

Maxwell's work was concerned with the effective conductivity of a dispersion of spheres,

Lord Rayleigh considered the effective conductivity of arrays of spheres, and Einstein

studied the effective viscosity of a dilute dispersion of spheres. In solid mechanics, elastic

homogenization is the problem of determining the bulk or effective moduli of

heterogeneous elastic bodies from the geometric arrangement and properties of the

component phases [1, 44-47]. The typical setup considers a homogeneous matrix in

which inclusions made of one or several other phases are present. Some popular
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approaches include Maxwell-type approximations, [48, 49], implicit self-consistent

approximations [50-53], and differential effective-medium approximations [54, 55]

based on the work of Bruggeman on conductivity approximations [56].

Maxwell-type approximations consider systems with dilute inclusions and find the

effective elasticity tensor by approximating the stress/strain field as the superposition of

the stress/strain field due to each individual inclusion. Implicit self-consistent

approximations determine the effective elasticity tensor such that the incremental

elasticity contribution of each individual phase averages to zero. Finally, differential

effective-medium approximations describe the effective elasticity of heterogeneous

systems by considering the differential contribution of each individual phase sequentially

in the dilute inclusion limit.

The approaches listed above approximate the effective elasticity of systems with

deterministic heterogeneity. Less theoretical work has been devoted to approximating the

distribution of the effective mechanical properties of random heterogeneous materials.

Popular numerical approaches are various stochastic finite element methods (SFEM) [57-

62], coupled with Monte Carlo and spectral methods to derive the distribution of

quantities of interest. Although computationally expensive, the distributions of effective

mechanical properties are obtained in a straightforward manner through Monte Carlo

methods by sampling the state space of random microstructures directly and finding

numerically evaluating the system response. In the spectral approach one discretizes both

stochastic and Euclidean space simultaneously and transforms the regular finite element

problem for deterministic material microstructure to a larger problem that envelops the

distribution of microstructural characteristics [57]. This approach is particularly powerful

when the length scale of microstructural heterogeneity is comparable to the dimensions of

the specimen and a coarse discretization of stochastic space is sufficient.

Other numerical approaches have focused on spring-network discretizations of the

random microstructures [63-66], first and second order reliability methods commonly

referred to as FORM/SORM [67, 68]. The first and second order reliability methods are
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typically used to characterize the probability of failure of structures with random

components by approximating their failure surface as either hyper-planes or quadratic

hyper-surfaces. One interesting analytical technique is the use of variability response

functions (VRF's), first introduced by Shinozuka [69]. VRF's can be used to find the

analytical solutions to response variability of statically determinate beam structures [69,

70]. To analyze more general problems, generalized variability response functions

(GVRF's) have been developed, however these also require Monte Carlo simulation [71,

72].

Analytical approaches have clear advantages over numerical approaches in efficiency and

accuracy and for the study and control of sources of variation. A goal of this thesis is thus

to develop a better understanding of the stochastic bulk mechanical properties of classes

of random heterogeneous materials through analytical methods. We focus on random

heterogeneous systems in which the length scale of heterogeneities is comparable to the

macroscopic length scale and thus the effective mechanical properties must be treated as

random variables.

In the next subsections we describe in detail the research objectives and the general

approach we use.

1.3 Research Objectives

We aim at developing a fundamental understanding of the bulk mechanical properties

(stiffness, strength and fracture toughness) of single- and multi-phase materials when the

arrangement and micro-scale properties of the phases vary randomly in space. This

understanding is especially critical for strength and toughness, as these properties are

controlled by local stress/strain concentrations and defects and therefore remain highly

variable also for large specimens. Novelties relative to previous work are:
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1. The bulk properties are treated not as deterministic quantities but as random

variables (hence in essence the problem is to propagate variability from smaller to

larger scales in a highly complex system); and

2. Randomness of the bulk properties is characterized analytically or semi-

analytically (i.e. numerically but not simulation-based), with clear advantages

over Monte Carlo approaches in efficiency and accuracy and for the study and

control of sources of variation.

As already indicated there are many types of single and multi-phase random

heterogeneous materials and in this work we consider only a few representative cases.

Materials and properties we study ar:

* Chapter 1: The bulk stiffness of one-, two-, and three-dimensional rectangular

blocks in which Young's modulus varies spatially as a lognormal field;

* Chapter 2: The bulk strength of I and 2-dimensional rectangular blocks in which

Young's modulus varies spatially as a lognormal field;

* Chapter 3: The bulk strength of one and two-dimensional rectangular blocks in

which the Young's modulus and the local strength vary spatially as lognormal

fields;

" Chapter 4: The bulk stiffness of two-dimensional random checkerboard plates;

and

* Chapter 5: The bulk stiffness of multi-phase composites with randomly

distributed inclusions.

Illustrative examples of the mechanical property fluctuations we consider are given in

Figure 1.3. By comparison with Figures 1.1 and 1.2 we argue that these are simple

model systems for a wide range of natural and synthetic materials. Further motivation for

the chosen parametric descriptions of the modulus and strength distributions is given in

the respective chapters.
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Figure 1.3: Examples of random fields from the a lognormal, b checkerboard, and c random inclusion

models considered in this thesis.

In each case (defined by a combination of material class and property of interest), we

1. Develop analytical or semi-analytical approximations to the distribution of the

bulk properties; and

2. Use the results to study how the distribution depends on parameters like the

Euclidean dimension and size of the specimen and the random characteristics of

the heterogeneities.

1.4 General Approach and Challenges

In reference [73], Veneziano et al. analyzed the effective permeability Kejj of

rectangular blocks with fluctuating hydraulic point conductivity K(x) using an analysis

of variance (ANOVA) decomposition of the log-conductivity field ln K(x). The

distribution of Keff was approximated for the case of isotropic lognormal K(x).

In this thesis we use a similar ANOVA based approach to analyze the bulk mechanical

properties of random heterogeneous rectangular blocks. The basis of the approach is to

decompose the natural logarithm of a random field into individual components whose

homogenized effects can be found analytically, either exactly or in approximation. The

individual effects are then combined to solve the original homogenization problem. As

20
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shown in Chapter 2, this approach works very well for the elastic homogenization of

rectangular blocks with isotropic lognormal modulus E(x). However, in the

homogenization of strength variables and when dealing with non-lognormal Young's

modulus distributions, new challenges arise. These challenges are introduced below and

addressed in greater detail in the pertinent chapters.

Effective Strength under Random Modulus

The strength of elastic-brittle materials is commonly characterized by the elongation at

failure U, the ultimate load L (strength), and the energy release rate gc (or fracture

toughness K,c). There are several challenges to finding the distribution of these strength

parameters. One is that the energy release rate, which is typically evaluated by means of

the J-Integral, is not suitable for analytical treatment. It is thus necessary to find an

alternative energy metric that is well correlated with gc and is more suitable for

theoretical analysis. In Chapter 3 we show that the strain energy T is one such metric.

A second challenge is that the failure of heterogeneous materials involves not just

fracture initiation (I) at the notch tip, but the propagation of fracture through the

specimen (ultimate failure U). For different applications, one may be interested in

characterizing strength under either I or U conditions. This differentiation is the basis of

our proposed divide-and-conquer strategy of first obtaining the distribution of (U, LI, TI)

at fracture initiation and then finding the distribution of the ultimate strengths

(Uu, Lu, Tu) accounting for fracture propagation and crack arrest.

Effective Strength under Random Modulus and Strength

Analyzing materials with random but spatially uniform strength (say in terms of a failure

strain Er) poses minimal additional complexities; an obvious approach is to condition the

bulk strengths on Er and find their unconditional distribution through convolution with

the probability density of Er. Notably, a similar approach also works for the fracture

initiation strengths of materials with spatially varying strength as the fracture initiation
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strengths depend on the random strength field only through the random strength at the

crack tip. By contrast, the ultimate fracture strengths depend on the random strength field

through its values along the entire crack path. The ultimate strengths thus exhibit a

complex dependence on the spatially varying random strength E. and we use a similar

approach to describe the distributions of Xu as for deterministic strength.

Effective Stiffness of Multi-Phase Materials

Finally, we consider the problem of determining the distribution of the bulk elasticity

tensor when the material is a composite with randomly located single- or multi-phase

inclusions. In these cases the log-modulus field F(x) is not normal, which is significant

because the analytical treatment devised in Chapter 2 makes assumptions and

approximations that are accurate under normality. However we believe that in many

cases accurate results may be obtained by the ANOVA approach, replacing F(x) with a

normal random field with the correct second moment properties. Indeed this is the case

for the filtered Poisson point process considered in Chapter 6.

Hnwever, in the checkerboard systems nf Chanter 5 higher order ANOVA terms interact

with marginal fluctuation terms and influence the effective stiffness in complex ways.

This effect is mainly due to percolation and as a result the approach of Chapter 2 is

inadequate, specifically the effect of higher order terms cannot be considered

deterministic. By investigating in detail the effects of the individual ANOVA components

in checkerboard systems we find an alternate model for the second order interaction that

captures the effect of percolation well for a range of system parameters.
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Chapter 2: Bulk Effective Stiffness of Rectangular

Blocks With Lognormal Young's Modulus

The research and review presented in this chapter has been published in:

L. S. Dimas, D. Veneziano, T.Giesa, M.J. Buehler, Random Bulk Properties of

Heterogeneous Rectangular Blocks with Lognormal Young's Modulus: Effective

Moduli, JAM, 2015.

We investigate the effective elastic properties of disordered heterogeneous materials

whose Young's modulus varies spatially as a lognormal random field. For one-, two-, and

three-dimensional rectangular blocks, we decompose the spatial fluctuations of the

Young's log-modulus F = In E into first- and higher-order terms and find the joint

distribution of the effective elastic tensor by multiplicatively combining the term-specific

effects. The analytical results are in good agreement with Monte Carlo simulations.

Through parametric analysis of the analytical solutions, we gain insight into the effective

elastic properties of this class of heterogeneous materials. The results have applications to

structural/mechanical reliability assessment and design.

2.1. Introduction

Elastic homogenization is the problem of determining the bulk or effective moduli of

heterogeneous elastic bodies from the geometric arrangement and properties of the

component phases. The literature on elastic homogenization is vast; see for example [1,

40-43] for book reviews spanning several decades. The typical setup, which is

appropriate for many natural and manufactured materials, considers a homogeneous

matrix in which inclusions made of one or several other phases are present. A less studied

case is when the local elastic properties of a single material vary spatially in a random but

continuous manner, for example due to spatial variations in material density (as in bone)

or in the arrangement and properties of unresolved micro-constituents (as in cement, soils
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and other geologic materials). Of course, one may combine the two sources of variability

by considering multi-phase composites in which the elastic properties vary not only from

phase to phase, but also spatially within each phase.

Here we address the homogenization problem for single-phase rectangular blocks of

Euclidean dimension n = 1. 2, or 3. in which the elastic Young's modulus E varies

spatially as an isotropic lognormal field. Recent experimental studies indicate that various

materials exhibit similar local variations in mechanical properties [4, 13, 24, 25]. Several

of these, and related, investigations suggest that the local variation in mechanical

properties lead to enhanced bulk mechanical properties [23-25]. There is thus a

significant interest in developing a fundamental understanding of the bulk properties of

materials with such local heterogeneities. In Figure 2.1 we present two realizations of 2D

normal log-stiffness fields. The fields are simulated with a simple exponential correlation

function with normalized correlation lengths of 0.125 and 0.5 for (a) and (b)

respectively. When the size of the block is very large compared with the characteristic

scale of the heterogeneities (a case we refer to as the ergodic limit), the effective

properties become deterministic [36]. In the literature a block at this length scale is

commonly referred to as a representative volume element (RVE) [74]. However, for

blocks of finite size, which is the case considered here, the effective properties are

stochastic and must be characterized through joint probability distributions.

(a) (b)

Figure 2.1: Realizations of 2D normal log-stiffness fields with a simple exponential correlation kernel for

normalized correlation lengths of (a) 0. 125 and (b) 0. 5.
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Numerically, this problem is typically addressed through various stochastic finite element

methods (SFEM) [57-62]. These studies focus on the numerical analysis of the problem,

with spectral and Monte Carlo methods among the notable techniques to derive

distributions of quantities of interest through numerical simulation. Other numerical

approaches have focused on spring-network discretizations of the random microstructures

[63, 64]. There is also significant interest in analytical solutions to the problem [69, 70,

75-77]. A particularly interesting technique is the use of variability response functions

(VRF's), first introduced by Shinozuka [77]. VRF's can be used to find the analytical

solutions to response variability of statically determinate beam structures [70, 77]. To

analyze more general problems, generalized variability response functions (GVRF's)

have been developed. These require the use of a limited number of Monte Carlo

simulations and can describe the response variability of statically indeterminate beam

structures and certain 2D systems [71, 72]. To the best of the authors' knowledge no

studies have investigated the usefulness of GVRF's for the variable response prediction

of 3D systems.

In this study we use afull analytical approach and develop analytical expressions for the

joint distributions of the effective elastic tensor. Our approach is to make an ANOVA

decomposition of the Young's log-modulus field F(x) = In E(x) as the sum of the

average value inside the block, the marginal fluctuations along the coordinate axes

("main effects"), and interactions of order 2, ... ,n. Then we evaluate the effect of each

ANOVA term on the effective moduli in tension Eeff,i and shear Geff,ij. The desired

distribution of the bulk moduli is the product of these term-specific effects. The term

effects are obtained exactly or with high accuracy for the low-order ANOVA components

and under simplifying approximations for the higher-order interactions. The most drastic

approximation is that the higher-order effects are deterministic and can be estimated from

the ergodic results. Since the higher-order terms make relative small contributions to the

effective moduli, the resulting approximations are accurate. A similar ANOVA approach

was used by Veneziano and Tabaei [73] to approximate the distribution of the effective

hydraulic conductivity of heterogeneous porous blocks. Here we adapt that methodology

to the elastic problem.
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After validation through Monte Carlo simulation, we use the ANOVA results to analyze

how the distribution of the effective moduli varies with the Euclidean dimension n, the

size and shape of the block, and the variance and correlation of the F(x) field. In addition

to contributing to the fundamental understanding of the mechanics of disordered

materials, these results can be used to assess and control the reliability of structures made

of random composite materials.

2.2 Probabilistic Model and ANOVA Decomposition

We consider a rectangular n-dimensional block 12 with side lengths L1, ... , Ln, made of

linear elastic material. We assume that Poisson's ratio v is a deterministic constant while

Young's modulus varies spatially as an isotropic lognormal field E(x). Hence the log-

modulus F(x) = ln E(x) is isotropic normal. These fields are specified through the mean

modulus mE, the variance of the log-modulus F, and the isotropic correlation function

of the log-modulus pF(r). Interest is in the distribution of the full elastic tensor Cijkl,

which includes the normalized effective Young's moduli Eff = Eef fj /mp and the

shear modulieij = GeffiJ/mG where mG = 2(1+v) m. Since E'ff, and G'ffJi do

not depend on mE and MG, in what follows we consider the distributions of Eeji and

Geffij under mE = MG = 1-

Under certain conditions (lim pF(r) = 0 and Li -- oo), the effective moduli Eeff, and
r-+0o

Geffij become deterministic functions of the variance Uy2 and the Euclidean dimension

n and are independent of pF(r). We refer to these conditions as the ergodic limit. Using

an incremental perturbation approach in which fluctuations of F in progressively higher

frequency ranges w < IwI < w + dw are added, Veneziano [36] found that under these

ergodic conditions and for mE = 1,
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e-aF, n=1

Eeff = e-dF, n 2 (2.1)
__7 2

le 15 n 3

The corresponding ergodic value of the shear modulus is Geff = c -Eeff, with Eeff in

Eq. 2.1 and c = 1*

To study the effective Young's moduli, we subject the rectangular blocks to tension and

shear. In the tension experiments we displace one block face uniformly in the direction of

its normal, while fixing to 0 the corresponding displacements on the opposite face and the

tractions on the rest of the boundary. In the shearing experiments, say on the (x 1, x 2 )-

plane, we simplify the analytical treatment by modulating the applied shear such that

cross-sections at different x 3 locations undergo the same average shear deformation. This

is accomplished by scaling the applied shear force by the average modulus at location x 3;

see details in the supplementary material. On each given (x1, x 2)-plane, the shear forces

are applied uniformly along the boundary.

The ANOVA decomposition of the log-modulus F(x) inside rectangular blocks of

different Euclidean dimension n is as follows.

n = 1:

F(x1 ) = T1 + E1(x1 ), (2.2)

where F1 is the average of F along the rod and E1(x1 ) = F(x1) - F1 is the fluctuation

around that average value. F, has mean value - 1 and El averages to zero along the
2

length of the rod.

n = 2:
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F(x1,X 2 ) = F1 2 + E1(X 1 ) + E2 (X 2 ) + E1 2 (X1 , X2)- (2.3)

In analogy with the one-dimensional case, the block average F1 2 has mean value mF =

- 2u and all three E terms have zero mean (actually, they average to zero along each

coordinate direction). When (X 1, X2 ) in Eq. 2.3 is considered random with uniform

distribution inside the block 12, the four components on the right hand side of Eq. 2.3 are

independent normal.

n = 3:

F(x1,X 2 , X3 ) = F 1 2 3 + E1(X 1 ) + E2 (X 2 ) + E3 (X 3 ) + E1 2 (X 1 , X2 ) + E 13 (X 1, X 3 ) 2

+ E 23 (X 2 , X3 ) + E12 3 (X 1 , X2 , X 3),

Again, the block average F123 has mean value mF = - oF and the e terms average to

zero along the coordinate directions. When (X 1, X2 , X3) is considered random with

uniform distribution in f2, the eight components on the right hand side of Eq. 2.4 are

independent normal.

For each decomposition, Table 1 gives expressions for the individual components and

their variances.

Table 2.1: ANOVA fluctuation terms and their associated variances for n = 2 and n = 3.
n = 2

Components

El(X1) = F2 (X 1) - F12

E2(X2) = F1 (X2 ) - F1 2

E12(XlX2)= F(x1,X 2 ) - F1 2 - E1(X1) -E2(X2)

Variances
2 = r 2

or,2 = Var[,cl] = 2~
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q,= Var[, 2 ] = (P, - P,,),

u,2 = Var[E12] = (1- - p2 + P 2)*

n = 3

Components

E (X1) = F2 3 (X1 ) - F123

E2 (X 2 ) = F13 (X2 ) - F12 3

c3(X3) = F12 (X 3 ) - F1 2 3

E 12 (X 1 , X2) = 3 ( X1 , X2 ) - F1 2 3 - E1 (X 1 ) - E2(X2)

E1 3 (X 1,X 3 ) = F2 (X1, X3 ) - F1 2 3 - El(Xj) - E3(X3)

E2 3 (X 2 , X 3 = F 1 (X 2 , X 3) ~ 1 2 3 - E2 (X2) - 3 (X 3 )

E123 (Xl,X2 X3)

F(x1,X2,X 3 ) - F 23 - E 1 (X 1 ) - (X2)- E 3 (X 3 ) -E12(X1, X2)

- E 13 (X 1 , X 3) - 2 3 (X 2 , X 3)

Variances
2 = 2

Of123  P123 6IF

(23 - P123)cYF

I2= (p13 - P12)U

Or3 (12 - P 1 2 3 )'IF

c,2 = (p3 - ;51 - p2 + p 2 3 )C F

2 = - P12 - P1 3 + P1 2 ) F

23 = (1 P1  P2 -1 3 + p1 +13 + p 23 -p 12 3)u?

2.3 Distribution of the Bulk Moduli

This section summarizes our analytical results on the distribution of the effective elastic

moduli. In all cases, the log-moduli In Eeffj and In Geff,ij are approximated as having
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joint normal distribution with mean values, variances and correlations given below and in

Supporting Information: Part A. The derivations (Supporting Information: Part A) make

simplifying approximations: in some cases a distribution is assumed to be lognormal

when its exact form is "between normal and lognormal" and the variance contributions

from ANOVA terms of order > 2 are always neglected. The accuracy of the results is

assessed in Section 4 using Monte Carlo simulation.

Results for the mean values p and variances u2 of the log-moduli are summarized below.

Expressions for the correlation coefficients in 2D and 3D are given in Supporting

Information: Part A.

2.3.1 n = 1 (one-dimensional bar of length L 1)

In the one-dimensional case, Eeff is the harmonic average of E(x) along the rod and

Geff = 1 Eeff. One can estimate the first two moments of ln Eeff by either workingff-2(1+v)Eefefbyitr

directly with F(x) = ln E(x) or using the ANOVA decomposition in Eq. 2.2. The results

are very similar, Using the ANOVA decomposition one obtains (see Siinnorting

Information: Part A)

(25mInEeff =0 2 2Lk +PeF(eaF 1)], (2.5)

n Eef I n[k + PeF(e0 - 1)],

and

min Geff = ln(c) + min E(2.6

n Gef = n Eeff 
(

where PeF is the average correlation of E = eF for two points uniformly and

independently located along the rod. For details on the calculation of this average
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correlation, see Supporting Information: Part A and Part B. Notice that, except for the

term in(c) where c = 1+, the moments of In Eeff and In Geff are identical. The
2(1+v)'ffaeietclTh

spatial average F1 contributes additively to In Eeff and In Geff and the fluctuation term

e 1 (X) contributes through its harmonic average.

It is interesting to compare the moments in Eq. 2.5 with those of the log average modulus

ln(f). The latter is approximately normal with parameters,

n 2 i(2.7)
2 = 2

Hence Eeff has the same distribution as e- (1 + PeF(eF - 1))] T. The factor

- 21 + peF(e"F - 1))decreases from I to e-Fas the average correlation PeF

decreases from I (constant modulus E = eF along the rod) to 0 (ergodic limit in which

the average correlation of E along the rod is zero).

2.3.2 n = 2 (LI x L 2 blocks)

Using the ANOVA Decomposition in Eq. 2.3, one finds (see Supporting Information:

Part A.3)

1 + ;eT 2 (eT2o 2

Min Eeff,1 = (5 5P12 )U+ -In

ofn Eeff, I 1 + eee 2 (e + In2) 1 -

and

min Geff12 = ln(c) - 8122
1 + 1 In[e(0Y2i-2 2( + + Teei

i=1
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2 == - 2 In 2i+~.(i - 1)]1,ClnfGeff,12 P1 2 UF + i=1 L el \

where the various average correlations p are explained in Supporting Information: Part A.

The distribution of In Eeff,2 is obtained by interchanging the indices 1 and 2 in Eq. 2.8.

Eq. 2.8 can be understood as follows. The contribution to in EefA from the first two terms

in Eq. 2.3 is obtained by reference to a I -D problem with appropriate log-modulus

variance and correlation function: compare the expression - -c + In 1 +
8 2

PeF2 (e52 U - 1 in Eq. 2.8 with Eq. 2.5. The contribution of E2 (X 2 ) to ln Eeff1 is the

arithmetic average of e'2(x), while the second-order fluctuation E1 2 (X 1, X2) is assumed to

contribute an ergodic factor to min Eeff1 from Eq. 2.1. For the log-effective shear

modulus, the effect of the spatial average F12 is as in Eq. 2.8, while the main effects

E1(X 1) and E2(X 2) contribute through the harmonic averages of eEl(x) and eE2(x). Also in

this case the second order fluctuation effect is approximated as a deterministic ergodic

factor.

The following special cases of Eq. 2.8 are noted:

1. Two-dimensional ergodic case (p = p2 = 51 = 0). Under these conditions Eq.

2.8 gives - e n E cr = -Oin accordance with Eq. 2.1 for n = 2;

2. One-dimensional case(p 2 = 1171 = T1 2 = 0) =* (minEeff 1 = [i +

PeF(eu - 1)]e-O, UIEn Ee = n[ + TeF(eF - 1)]). This coincides with Eq.

2.5;

3. One-dimensional ergodic case (P2 = 1PeF = = P12 = 0 (min Eeffi

e-Nf, 2n Eeff,1 = 0), in accordance with Eq. 2.1 for n = 1.
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Case 2 above is significant as it shows that the one-dimensional parameters in Eq. 2.5 are

recovered in the limit L 1/L 2 -+ oo; hence the 2D results are consistent with the I D

analysis. Similar special cases apply to the shear modulus in Eq. 2.9.

2.3.3 n = 3 (L 1 x L 2 x L 3 block)

Using the ANOVA Decomposition in Eq. 2.4, the following expressions are derived in

Supporting Information: Part A.4:

minflEeff, 1k +P1  2 + T12 3 )rF - 1(12 + U13) + 1 12 3
1 8 3

+ In 1 + ;eF2 3 (e 23 r ) (2.10)

In 1 + TeF1-F123 (e(T1123)CT - l

2 e e11-
3 

'.23I ln Effl = In 1 1 + T J 2 3 (e;52 3 - 1) + In 11+ PeFTi1~2a e3~ za )

1 1 1
min Geff,1 2 = n(c) 112 123 F

1 - +In [1 + e (e 1i - E)] (2.11)2

InGeff,12 T123UF + eEi e~

where o22 , o3 and U 23 are given in Table 2.1 and the average correlations p, for any

given index list Jare found using the distribution of R1 in Supporting Information: Part B.

In analogy to the n = 2 case, for Eeff1we find the contribution from F123 + E1(x1) by

using the I -D results with an appropriate variance and correlation function. The

remaining main effects E 2 (x) and E3 (x) contribute through the arithmetic averages of

eE2(x) and eE3(x), as in the two-dimensional case. Finally, we use deterministic ergodic
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approximations for the effects of E12 (X 1 , X2 ), E23 (X 2 , X 3 ), E13 (X 1 , X3 ), and

E1 2 3 (X 1 , X 2 , X 3 ).

The distribution of the effective shear modulus GerffA is found in a way similar to the

n = 2 case. This includes the effect of the spatial average F123 and the effects of the two

in-plane fluctuations e1(X) and E2(X), which contribute through the harmonic averages of

el(X) and e 2(x). We eliminate the influence of the third main effect, E3(X), by scaling

the shear stresses by ee3(X3) along the X 3-direction, as previously explained. The average

shear strain is thus the same in each (X 1, X2)-plane through the block. Again, we use

ergodic approximations to account for E 12 (X 1, X2) and E123 (X 1, X 2, X 3), while E13(X 1 , X3)

and E2 3 (X2, X 3) are assumed to have no influence on Ge ff..

The remaining three-dimensional elastic moduli are obtained by permuting the indices in

Eqs. 2.10 and 2.11.

2.3.4 Correlation Coefficients

Expressions and derivations for the correlation coefficients for all pairs of log-moduli are

presented in Supporting Information: Part A. In total there are three correlation

coefficients in 2D and fifteen correlation coefficients in 3D.

The variance of the spatial average F12 in 2D and F1 2 3 in 3D is an important common

contributor to the variance of all log-moduli. This is why the correlation coefficient tends

to be large for all pairs of log-moduli (see Section 2.4). Pairs of log-moduli that depend

on main effects in the same way (through either arithmetic or harmonic averaging) are

especially highly correlated.

2.4. Validation and Parametric Analysis
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To validate the analytical approximations, we use Monte Carlo simulation. For each

simulation of the modulus field, the elastic problem is solved directly in ID and through a

finite element model in 2D and 3D, with linear four- and eight-node elements,

respectively. The system is resolved on an 80x80 grid (6,400 elements) in 2D and a

20x20x20 grid (8,000 elements) in 3D.

We simulate the Gaussian process F(x) with a Karhunen-Lobve expansion, with 80,

6400, and 8000 modes for the one-, two- and three-dimensional system, respectively.

This is more than sufficient to accurately describe F-fields with the minimum correlation

lengths used (L 1/8 for n = 1 and 2, L 1/4 for n = 3). The Karhunen-Loeve expansion of

the Gaussian process is a singular value decomposition of the covariance kernel [78]. All

reported numerical distributions are based on 10,000 Monte Carlo simulations.

2.4.1 Example Validation Results

To illustrate, we present a few comparisons between numerical and analytical results

involving different space dimensions n, specimen sizes, and parameters of the normal

log-modulus F = In E. For n = 1, we consider a bar of unit length L, correlation distance

ro = 0.125, standard devation oq = 0.3 and two alternative correlation functions,

pF(r) = er/ro and pF = e(r/ro . In 2D, we analyze a rectangular specimen with

side lengths L, = 1 and L2 = 100, correlation length ro = 2, standard deviation UF = 0.5

and correlation function pF(r) = e-/rO. In 3D, we analyze a cubic specimen with L = 1,

ro = 0.25, qF= 0.3 and correlation function pF(r) = er/ro.

The results are summarized in Figure 2.2 through a comparison of the marginal and

bivariate distributions of the effective log moduli F = In Ee! , and F1, = ln Geff i. For

n = 1, we show only the distribution of the effective Young's modulus since Eeff and

Geff are deterministically related. The red ellipses are theoretical 2-sigma dispersion

ellipses (consider that for a sample size of 10,000, simulations from the normal

distribution should be approximately enveloped by the 3-sigma dispersion ellipse). In all
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cases there is good agreement between analytical approximations and simulation results.

Discrepancies, which are minor and limited to blocks with high aspect ratios, largely

originate from the assumption of joint normality of the effective log-moduli: for highly

elongated 2D specimens (see Figure 2.2b), the transversal modulus is an upper-bound to

the longitudinal modulus and this condition is inconsistent with joint normality. For n =

3 the correlation coefficients range between R = 0.9941 and R = 0.9996 and the

difference between the analytical predictions and the numerical results is never more than

0.5% of R. Similarly good agreement between analytical and simulation results have

been obtained for different block geometries and stochastic properties of the log-

modulus.
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Figure 2.2: (a) I D rod. Comparison of theoretical (red) and numerically predicted distributions (blue) of

F1 for ro/L = 0. 12S. GF = 0. 3 and correlation function e r/ro or e-(r/ro)^2 . (b) Comparison of
theoretical and simulated distributions of the 2D elastic tensor for a rectangular block with parameters

L 2 /L 1 = 100, r0/L 1 = 2, OF = 0. S and correlation function e-r/ro. (c) Similar comparison for a cubic

specimen with ro/L = 0. 2S, OF = 0. 3 and correlation function e-r/ro.

37

CD)

CD

(C)

(a)



As a benchmark of the efficacy of standard homogenization rules we also compute the

Voigt and Reuss bounds for specimens with lognormal Young's modulus distributions.

We find that for a 2D square specimen with lognormal stiffness, and exponential

correlation kernel with parameters ro = 0.125 and 0 F = 0.8 the average Voigt estimate is

almost a factor 2 larger than the average Reuss estimate. The discrepancy between the

estimates depends on the parameters of the stochastic Young's modulus field. In future

work we will present simple rules for the point estimates of effective stiffnesses based on

the methodology developed here.

2.4.2 Parametric Analysis

Having found that the ANOVA approach produces accurate results, we use the analytical

formulas to investigate how the distribution of the effective moduli varies with different

controlling factors. In all cases (for n = 1, 2, and 3) the mean value of the log effective

moduli is bound from above by zero meaning that heterogeneity always has a softening

effect (see also Figure 2.2).

n = 1

Figure 2.3 shows the first two moments (mean m and standard deviation a) of In Eeff

for I D specimens. The moments are displayed for two different correlation functions

p(r) and a range of effective specimen lengths L/ro, where ro is the correlation distance.

Since the mean values are very nearly proportional to a and the standard deviations are

very nearly proportional to aF, we calculate these moments under the reference condition

qF= 0.5 and divide them by 0.25 and 0.5, respectively, to produce the standardized

quantities m/ur and a/aF that are plotted in the figure. The effective shear modulus is

deterministically related to the effective tensile modulus and is not shown. Interpretation

of the plots is made easier by considering two extreme conditions:
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1. In the low correlation limit L/ro >> 1, Eeff approaches the I D ergodic value with

m = -uF2 (see Eq. 2.1) and a = 0;

2. In the high correlation limit L/ro « 1. Eeff equals the random but nearly uniform

value of E inside the rod; hence m = -0.5UF and a = aF.

As the effective rod length L/ro varies from 0 to infinity, p and P vary smoothly between

these two limits. The different exponents of the radii in the correlation functions lead to

different decay rates of p and ], the Gaussian correlation function exhibits significantly

faster decay.

-05 1

-0.75 0,5

IF e

-1 CL
001 01 1 10 100 0.01 01 1 10 100

L/r(O L/r,,

Figure 2.3: Normalized mean and standard deviation of the effective Young's modulus of a ID rod as a

function of the dimensionless specimen length L/ro, for correlation functions e-(rIo) and e-(r/ro)2 . As

L/ro -* oo the mean value tends to the deterministic ergodic limit, while the standard deviation tends to 0.

n = 2

Figure 2.4 shows the first two moments (through the mean values Li, standard deviations

Li, and correlation coefficients R) of the log effective moduli F = In Eeffi and =

In Geff for 2D blocks. The plots cover a wide range of aspect ratios L2 /L1 and

normalized correlation lengths rO/L1 . As for n = 1, we calculate the mean values and

standard deviations for uF = 0.5 and normalize them by 0.5 and 0.25 to obtain the

normalized moments plotted in the figure. The correlation coefficients do not display a

simple dependence on cF. but to avoid cluttering we show them only for uF = 0.5 (in
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other work, not presented here, we have calculated R for different values of UFand

observed similar trends).
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Figure 2.4: Parameters of the effective elastic tensor of a 2D rectangular block as a function of the aspect

ratio L 2/L 1 and the normalized correlation distance r0/L 1 . The correlation function is er/ro. The

correlation coefficients are shown for O-F = 0- S. The longitudinal, square-like and transversal regimes are

indicated in the lower left panel.

To understand Figure 2.4, it is useful to think of three reference regimes: the longitudinal

regime when the specimen is highly elongated in the stretching direction (hence when

L 2 /L 1 « 1 for F1 and L2 /L 1  1 for F2 ), the square-like regime L2 /L 1 ~ 1, and the

transversal regime when the specimen is much thinner in the stretching direction. We

denote by Lmiun = min{L1, L 2} and L.nax = max{L1, L 2 } the minimum and maximum side

lengths of the specimen; hence when Lmmi < r m Lax, the 2D specimen behaves like a

ID rod. Properties of the effective moduli under limiting conditions involving the above

regimes are:

1. When Lmin < r Lmax, the modulus E varies longitudinally along the rod but

not transversally. The effective longitudinal modulus equals the harmonic average
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of E with m/uF = -1, whereas the effective transversal modulus equals the

arithmetic average of E with m/oF = 0;

2. Irrespective of the aspect ratio L 2/L 1 , in the low correlation limit ro «Lmin,

Eeff1 and Eeff2 approach the 2D ergodic value with m/UF = -5/8;

3. When ro >> Lmax, Eeff1 and Eeff2 equal the random but nearly uniform value of E

inside the specimen. Therefore m/F = -0.5 for both moduli.

In Cases I and 2 the effective moduli are deterministic (therefore oU/F = 0), whereas in

Case 3 the effective moduli are maximally uncertain with r/aF = 1. Many of the plots in

Figure 2.4 display transitions between two or more of the above limiting cases (of course

the limiting cases themselves are never exactly realized due to finite range of the

parameter values considered). Next we point at some such transitions and at general

features of the results.

MF1

First consider the mean value of the effective log-modulus F1 in the case of low

correlation (rO/L1 = 0.01, black curve). As L 2/L 1 increases, one observes a transition

from the first (longitudinal) to the second (ergodic) limiting condition. By the time the

specimen is square, the transition is essentially complete and mF1 remains nearly constant

in the transversal regime. At the other correlation extreme (highest correlation with

rO/Li = 100, yellow curve), all modulus fluctuations are negligible for longitudinal and

square-like specimens. Hence in these cases the third limiting condition is met and

mF1 /c, = -0.5. As the ratio L2/L 1 becomes very large, the transversal limit is

approached and the first limiting condition is met. The behavior of mF1 in other

correlation cases can be understood by considering that values of m/UF2 close to 0, -0.5,

-5/8 and -1 are respectively associated with arithmetic averaging, no averaging,

ergodic conditions, and harmonic averaging of the modulus field.

mF2
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The plots of mF2 are similar but inverted relative to those of mF1 . The transitions between

different regimes occur at the same aspect ratios L2/L 1, but since stretching is now in the

x2 direction, the longitudinal and transversal regimes are interchanged.

mr

Apart from the factor c = the main difference between the effective shear and
2(1+V)'

longitudinal moduli is that the main-effect fluctuations of F have a harmonic

exponentiated-averaging effect in shear and a harmonic or arithmetic exponentiated-

averaging effect in tension. Under ergodic conditions, these main effects are negligible

and the -5/8 rule applies to all moduli, in shear and tension. In combination, these

considerations lead to the approximate rule mr = ln(c) + mintmF, mF2 l

The normalized standard deviations in Figure 2.4b are identical for all three log-moduli.

The reason is that the variance of the log arithmetic average of a lognormal field is very

nearly the same as the variance of its log harmonic average. In general, for a given

correlation length ro, a decreases as the specimen size increases. This is why, for any

given dimensionless correlation distance rO/L1, a decreases as the aspect ratio L2/L 1

increases. The highest values of o, close to aF, are found when the log modulus F has

near-perfect correlation inside the specimen.

Correlations

Figure 2.4c shows the correlation coefficients R for the three pairs of log-moduli. A

general observation is that in all cases R is above 0.9. The highest values, close to 1, are

obtained in the ergodic and high-spatial-correlation regimes. The lowest values are

between moduli that depend significantly on the first-order fluctuations of the log-

modulus, but are obtained through different averaging operations (arithmetic or

harmonic) of E. Examples for F1 and F2 are cases with low correlation and small L 2 /L1

or high correlation and large L 2/L 1. Relatively low correlations are also seen between F1
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or F2 and D when one of the F moduli is close to the arithmetic average of E (stretching

in the transversal direction).

n = 3

Figure 2.5 uses a format similar to Figure 2.4 to show results for a 3-D rectangular block

with L1 = L2 = L = 1 and different normalized correlation lengths ro/L and box heights

L 3 /L. Since we have set L 1 = L 2 , the log Young's moduli F1 and F2 and the log shear

moduli F1 3 and F2 3 have identical distributions. As for n = land n = 2, we calculate all

parameters for aF = 0.5 and divide the mean values and standard deviations by 0.5 and

0.25, respectively. Also like for n = 2. the correlation coefficients are shown for UF =

0.5. Of the eight unique correlation coefficients

(RF1,F2 , RF1,F3, RF1,r1 2 , RFIF13 , RF3,r1 2 'RF 3,F1 3 'R1 1 2 ,7 1 3 R1 1 3 ,1 2 3 ) we display three

representative ones (RF1,F13 , RF3,JF13 . RF1,F3 )'

(C)

C 0.95

'0.01 0.1

F
3

F
3

Ft Fl1' 13 10 1 13

1 10 100 0.01 0.1 1 10 100
L 3/L L 3/L

13

13

F 1F3

0.01 0.1 1 10 100
L3 /L

r0/L = 0,01

ro/L = 0 05
r 0 /L = 0 125

r 0IL 1 0

r 0/L = 20.0

r 0 /L 100.0

Figure 2.5: Parameters of the effective tensor for a 3D rectangular block with side lengths L, = L2 = L
and L 3 as a function of the aspect ratio L3 /L and the normalized correlation distance r0/L 1 . The
correlation function is e-r/ro. The correlation coefficients are for O-F = 0. S. The plate-like, cube-like, and
elongated regimes are indicated in the center low panel.
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Results are qualitatively similar to those for n = 2. In particular one may notice transitions

between various regimes: the thin-plate regime when L 3 /L « 1, the cube-like regime

when L3 /L ~ 1, and the elongated regime when L3 /L >> 1. The quantitative differences

from the 2D case are mainly explained by the fact that, as L3 /L --> 0, the block in Figure

2.5 becomes a thin square plate, whereas under L2 /L1 --> 0 the block in Figure 2.4

becomes a thin I D rod. A closer analogy can be drawn (and much closer results are

observed) between the log-moduli F2 in Figure 2.4 and F3 in Figure 2.5.

2.5. Conclusions

We have studied the effective elastic moduli of one-, two-, and three-dimensional

rectangular blocks when the log Young's modulus F(x) = ln E(x) varies spatially as a

normal random field. By using an ANOVA decomposition that expresses F(x) as a

constant plus a number of first- and higher-order fluctuation terms and analyzing each

ANOVA term in turn, we developed analytical (joint lognormal) approximations to the

distribution of the effective elastic tensor. To our knowledge, this is the first time that this

problem has been addressed analytically. The advantage of an analytical approach over

simulation is that the results are either in closed form or computable at relatively low

cost, making it possible to use them for parametric analysis and ultimately for reliability-

based design and optimization.

Due to various simplifying assumptions, the results are approximate, but we have found

very good correspondence with Monte Carlo simulations for a wide range of geometric

and stochastic parameters. The accuracy of the first two moment predictions (mean

values, variances and correlation coefficients of the log-moduli) is high. The main

differences come from the fact that the assumption ofjoint lognormal distribution is not

always verified: for certain geometric configurations and loading conditions, one

modulus may be known to be larger than another, whereas under joint lognormality

constraints of this type cannot be imposed.
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We used the analytical results to explore the dependence of the distribution of the log

effective elasticity tensor on various geometric parameters (Euclidean dimension n = 1,

2 or 3, specimen size, aspect ratios) and probabilistic characteristics (log-modulus

variance, correlation distance, shape of the correlation function). We identified limiting

conditions under which it is easy to understand the main features of the distribution of the

log-effective elasticity tensor and highlighted transition regimes between these limiting

conditions.

In all cases we observed a softening in the mean effective log-moduli induced by the

heterogeneity. Moreover, simple approximate rules were obtained and verified through

simulation. One is that the log-variances of all tensor components can be taken to be the

same. Another is that in most cases the log-moduli are very strongly correlated; hence in

first-order approximation one could assume perfect dependence, reducing the

computational task to evaluating only the mean values and common variance of the log-

moduli. Exceptions to this second rule involve moduli that depend significantly on

different averages (typically arithmetic for one, harmonic for the other) of the

exponentiated first-order fluctuations of F(x).

Future extensions of this work include:

1. Application of the moments of the effective moduli as parameters of building

blocks in larger scale structural systems;

2. Application of the ANOVA approach and the lognormal approximation to other

classes of randomly heterogeneous materials, in particular materials with different

types of random multi-phase inclusions and possibly random within-phase

variation of the elastic modulus;

3. Development of simple rules to approximate the effective elasticity tensor given a

spatial pattern of Young's modulus E(x). While much work has been done on this

problem in the past, we are interested in seeing whether homogenization rules

based on the ANOVA/lognormal approach can outperform existing rules.

4. Application of the ANOVA approach to other effective properties, such as the

effective strength and fracture toughness of randomly heterogeneous specimens.
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The general aim of these extensions is to develop analytical tools to characterize and

control the mechanical effects of random material heterogeneities, and make it possible to

design materials with superior reliability properties.
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Supporting Information

Part A: Derivation of Distributions

In the derivations below the following notation is used:

* J = (J1 , ... ,js = set of s -< n coordinate directions in n-space

" JC = complement of J= set of (n - s) coordinate directions not in J

* x1, xf, x1 ,, x1 2 = coordinate vectors associated with J,Jc,]1,J2

* 2j = s-dimensional box with side lengths Lj,,..., Lj, (for s = n, f2j = d2; otherwise

Q; is an s-dimensional slice of D)

* Rj = random distance between two points uniformly and independently

distributed in f2,.

SR (r) = random distance between a point uniformly distributed in f2j and a

second point uniformly and independently distributed in a similar slice translated

by r in the x, direction. Hence Rj = R 1 (0).

i p = E[pF(Rj)] = average correlation of F for two points uniformly and

independently distributed inside f2g.

* (r) = E [PF (R, (r) )]. For r = 0,;p (0) = ;5.

* F1 = average value of F inside 12j. F1 is a random function of x_;c, with variance

2 s t

Figure 2.A1 illustrates the distances Rj and Rj(r).
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Figure 2.AI: (a) Block geometry for n = 1, n = 2, and n = 3 and distances Ri between random points
in the blocks. (b) Illustration of random distances Ri(r).

A.1 n = 1

Derivation of Eq. 2.5

For a one-dimensional bar of length L1 , the elongation u is related to the stress ci as

1dx
U =a -- Eeff (2.AI)

jo E(x) u/L1  I

where I = f . We obtain a lognormal approximation to the distribution of Eeff by

first finding the mean value, variance, and correlation function of 1/E(x). Then we find

the mean value and variance of !, and finally the mean value and variance of 1/1I. An

approximation is made in the last step where it is assumed that I is lognormal (the exact

distribution of I is neither normal nor lognormal). For each lognormal or assumed
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lognormal variable, we give below the mean and variance of the variable itself and the

mean and variance of its natural logarithm. For random processes, we also give the

correlation and log-correlation functions, which are denoted by p(r) and pin(r),

respectively. We starts from the mean mE = 1 and the variance o and correlation

function pF(r) of the log-modulus F(x) = In E(x). Other parameters are listed below in

the order in which they are calculated:

mE = n1; nE UF; Pin E(r) = PF(r)

E(x)~ 2 21 2 e PF(r) - 1 (2.A2a)
min E - TF u = e2 F 1 PE(r) = PeF(r) =

2 eaF-{M =n(1 /; = 1n(1/E) F Pl(1/E)( = pF (2.A2b)
E2(x) E , 2( 1' E r = 2F(r)

Mll/E ek 2 e 2a, F (r)k

mi = e-; F2 = (e - )
2 ~ 2 (2.A2c) mini= - 2ln[1 +PeF(e0JF-1)]; a = n[1 + eF(eUF - 1(A

PeF = E[PeF(R1)] = foLPeF(r)fR(r)dr (2.A2d)

In Eq. 2.A2d fR1 (r) is the probability of the random distance between two points

uniformly and independently distributed along the rod; see Supporting Information: Part

B. Eq. 2.5 follows from Eq. 2.A2c, the assumption that I has lognormal distribution, and

the relationship E = 1/I.

Derivation of Eq. 2.6

We write

F(x1 ) = T1 + E 1(x 1) (2.A3)

where
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F1: N mT, = lnc

E(x1): N fm El =

- 1 ; Or' pU

0; o. = (1 - P pe1 (r)

eE,(XI): LNE2 2G2 2 eh(~~e E : LN meEl = e 1; =

The log-effective modulus eff is given by

Feff = F1 -

- ,E = e [PF()- 1 - 11
- 1 E1 _2

L1 (xi]x
In I Ielx1dI

[L J0

where in good approximation - in e-E1(x1)dx1] has normal distribution with mean

value and variance given by (see Eq. 2.A2c)

m = tln[1 + AeE1(e'F - )- ,
2 (2.A6)

if 2 = n [1 -.1 1'_,

By adding the mean value and variance of"F1 one obtains

10,2
mreff = ln(c) - 2 u + 2ln[1 + #eEi(e E1

"Feff = Pi + In[i + Peel (e -)

(2.A7)

Except for the term In c, these results are identical to those for the log-effective Young's

modulus Feff (notice the similarities between the terms PeFand ;5e,,

A.2 n = 2
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Derivation of Eq. 2.8

Consider the ANOVA decomposition of F(x1 , x 2 ) in Eq. 2.3. We assess the effect of

different terms on Eetj as follows:

First two terms in Eq. 2.3

If one considers only the first two terms in Eq. 2.3, the log-modulus becomes F1 2 +

El(xl) = F2 (x1 ) and is a function only of x1 . To evaluate the effective modulus under

these conditions, notice that

F(x 1,x2) N (mF - ~~UF F F

- 2 #2(x1) ~ N (mi = - c ; 2y = 32r-; pp,(r) = P2(r)

- e2(x) ~ LN (meF 2  - - e (-e2)2(e#2e4 _ 1); peP2 (2.A8)

e2 (r)UF _

eP26 F - 1

where p2(r) = E[pF(R2 ,,)]=(see Supporting Information: Part B). Notice that for r =

0, 7 (0) = 77.

This case is analogous to the one-dimensional problem analyzed in Part A. 1, except that:

1. The mean modulus is e ~(12) not I;

2. The log-variance is #2u not u-2; and

3. The log-correlation function is pp (r) not pF(r)
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Accounting for these differences in the results for the one-dimensional case and recalling

that P2(x1) = IF12 + E1(x1), one obtains that in good approximation the effective

modulus has log-normal distribution with parameters

m = e212)a[1 + #e 2(ea -O ) (2.A9)

un= ln[1 + 3e2 (e720i - 1)]

Notice that ur, in Eq. 2.A9 is the same as the first term in the log-variance in Eq. 2.8.

Hence that component of variance comes from the first two terms in the ANOVA

decomposition of Eq. 2.3.

- Third term in Eq. 2.3

Under F(x1,x 2) = E2 (X 2 ), the log-modulus depends only on x2 and

1
Eeff = 1 J e-2(X2)dx 2  (2.A 10)

where

x)N (mE 2 = 0; u 2 = (Al - P12)UF; pE2 (r) = #,(r) #12 (2.A 11)
P1 - P12

The correlation function in Eq. 2.Al I is obtained from F1 (x2 ) = F1 2 + E2 (X 2 ). Since for

random x2 the terms P12 and E2 (x 2 ) are uncorrelated, the covariance function of F1 (x 2 )

is Cov[F1 (x2 ), 51 (x 2 + r)] = 2 + ozpg 2 (r). The correlation function pE2(r) in Eq.

2.AI I follows from this relationship and Cov[F1(x2 ),F1 (x2 + r)] = p1 (r)aj (in

analogy with Eq. A8), 0F 2 = # 1 2(r) (from Table 1), and 2 (Al- ~2)UF from

Eq. 2.A 11.
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It follows from Eq. 2.AI I that eE2(X2) is a lognormal process with mean value, variance

and correlation function

meE2 = ef(-1 12)TF

UeE
2 

- ( 12)o 112)o - (2.A 12)

et,2pe2(r) - 1 el1p(r)-12]1T - 1

eeoz - 1 e(1-P12)UF - 1

Finally, from Eqs. 2.A10 and 2.A 12, the effect on Eejj is a random factor with mean

value, variance and log-variance (the last quantity, under the approximation of lognormal

distribution)

m = meE2 =e 1~12)G

2= #eE20,2E2 = -eE2eG51~ 12)C 1 12)U - 1] (2.A 13)

a2 = - ln(m 2) + ln(m 2 + .2) = ln[1 + 0eE2 (e(1-P12)aW - 1)]

Fourth term in Eq. 2.3

In the ergodic case, the effect of [E12 (X 1 , X2 ) - 1 2 on Eeff is a factor e 212; see Eq.

2.1 for n = 2. Therefore the ergodic approximation to the effect of E12 (X 1, X2 ) on Eeff is

the deterministic factor

1 2 ~2 1 2 (
e 2e -_'12 = e-912 = - 1 P1-2+12)UF (2.A 14)

where we have used a 2 = (1 - #1 - #2 + # 12 )aF from Table 2.1.

Equation 2.8 follows from multiplicatively combining the effects in Eqs. 2.A9, 2.A13 and

2.A 14.
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Derivation of Eq. 2.9

The ANOVA decomposition of F(x 1 , x2 ) is

F(x1 , x 2 ) = F1 2 + E 1(X1 ) + E2 (X 2 ) + E 2 (X1, X 2 )

where

F: N mT = ln(c) -

El(x): N fmE = 0, CfE

1 ; 22 r r2 = p 2UF

- (p2 - 12 )"p, (r) =
p2(r) - p1 2

P2 - P1 2

eEl(X 1): LN
1

ImeE, = e I Il, =, ef[ (ae1 - 1), Pe-1(r)

e[T2(r-TI1aF -1

e(T2 12W$ - 1

The properties of E 2 (x 2 ) jn Eq. 2.Al5 are similar tn thnse of E1 (x1) (interchange the

indices I and 2) and the second-order interaction field E12 (x1, x2) is normal with mean

value 0 and variance rf2 = (1 - p1 - 2 + p)a.

The effect of El(x1 ) on erf is an additive variable with mean value and variance given

by Eq. 2.A6 with parameters in Eq. 2.A 16. The effect of E2 (X 2 ) is similar (interchange 1

with 2). Finally, the effect ofE1 2 (x 1,x 2) is approximated as a deterministic additive

constant equal to bu,2 where b =1 = - (value under tension).
2 8 8

In summary, in the 2D case the distribution of the log-effective shear modulus F, is

approximately normal with mean value and variance
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1 2 12 l 1+ Emr I n(C) - - 2+ n1+e eE - -__2ff2 21 2Z. [ e ~ I EJ

2 (2.A 17)

=l,_ - p12aJ + In 1 + IeEi (e"Z - 1
i=1

Correlation Coefficients

Next we derive expressions for the correlation coefficients of different pairs of effective

log-moduli in the 2D case.

RFeff1,FeJf2

We start from the correlation between the log-effective moduli Feff, and Feff2. Note that

F1 2 has the same random effect on Fe/f, and Feff2 and that, in our approximate two-

dimensional analysis, the effect of E1 2 (x 1 , x2 ) is considered determinist and is the same

for Fef f and Feff2 . The main issue is to determine the variances and covariance of the

effects of El(x1 ) and E2 (X 2 ) on the log-effective moduli. Since the reasoning on El(x1 )

and E2 (X 2 )iS symmetrical, it suffices to consider the effect Of E 1(x 1 ) on Feff, and Feff2 .

The processes E (x1 ) and eeixi) are respectively normal and lognormal, with parameters

2Tp2 (r) T1 2
E(X,):m = ,o = (p2 -_P P )2,p (r) =-

p2 -p 12 (2.A18)
1 e[52(r)-l2IJ _ 1

e (x1): m e ci = e % , 0 =2e- E al eg i - 1),peei(r) = _ _

Under F(x1, x 2 ) = E1 (x 1), the variables I = 1/Eeff, and I, = Eeff2 are given by

i = -f e -- (xl)dxl (2.A 19)
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L,

12 = 1/L1 f 0 LeE(xldxl

Since E1(x1) and -E 1 (x1 ) are statistically equivalent, the distributions of I and 12 are the

same and have the following mean value, variance, log-mean value and log-variance (the

last two quantities, under the assumption of lognormality):

-1 T22 - 2
MI= ef (i= Pe EiaOei

1 (2.A20)
2 2T1

min(i) = 1 - )Ik = (n[1 +;,E,((ee1 - 1)]

In addition, the covariance between I, and 12 is

Cov[1, I] = e Z1ER1[e~4E1(Rj)aE1 - 1] (2.A21)

Equation 2.A21 is obtained by noting that E1 (X 1 ) and -E 1 (x1 ) have cross-covariance

function -pEI (r) 2 . It follows that the cross-covariance function of ei(x1) and e-e(x1)

is

Cov[el(x1), e-1(x1+2)] = o- El 2ei 1 ei [ PEI(r)2 - (2.A22)
e4 - 1

where we have used the expression for 2j1 in Eq. 2.A18. As stated in Eq. 2.A21, the

covariance between I, and 12 is the expected value of this cross-covariance for two points

independently and uniformly distributed in [0, L 1].

Using relations for lognormal distributions, the covariance between Feff1 = - ln(11 ) and

Feff2 = ln(12) is
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e COV[111, 121
COV[Feff,Feff2 ] = -Cov[ln(1j),ln(2)] = -In(1 + 2M, (2.A23)

= - ln(ERl[e-Pe1(Rj)o{])

In summary, we found that under F(x1,x 2) = E1(x1) the log-moduli Feff, = - ln(1 1)

and Feff2 = ln(1 2 ) have approximate normal distribution with parameters

1 1I (2
meff 2aE 'ln 1+ Teel A,~ E1 -)I ff1

2 2 =-
Feff Feff2 I 1 _

COV[Fef f, Feff2] = - ln(ER, [e Pe(RI)tae]

=- MFeff2

(2.A24)

If now one includes all the ANOVA terms, Feff, and Fefj 2 have common variance and

covariance

2

o2 -- i 2 + In 1 + Teei (eai - )

2
(2.A25)

COV[Feffi, Feff2] P1 2UF - in (ERi -eLL)

The correlation coefficient is found as the ratio COV[Feff,Feff 20 *eff

RFeff,Feff

Consider now the correlation coefficient between Feff and Feff,1. Notice that F12 and

E (x1) have the same random effect on Feff and Feff,1, whereas E 2 (x 2 ) affects the log-

moduli through the following additive random effects:
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* Effect on Feff: Additive term - ln(11), where I, = f e-E2(X2)dX 2

* Effect on Feff : Additive term ln(12), where '2 = 1L eE2(x2)dx 2

Following the analysis for the correlation coefficient between Feff, and Feff2, Eqs.

2.A I 8-2.A23, the covariance between the additive terms - ln(1l) and ln(1 2) is

- ln(ER 2 [e PE2 (R2)O22 ]) (2.A26)

When the effects of F1 2 and E (x1) are included, the covariance between FeU and Fej,1

becomes

COV[FefflFeff) = 2 + In[1 + /ee(e"'1 - 1)] - ln(ER2[e -c2(R2)Oz2) (2.A27)

For Cov[Ferf,2, Ferf], interchange I with 2 in Eq. 2.A27. The correlation coefficients are

CoV [Feff eff
found as the ratios 2

A.3 n = 3

We now consider the joint distribution of the effective Young's and shear log-moduli for

a three-dimensional rectangular box.

Derivation of Eq. 2.10

First Two Terms in Eq. 2.4

Considering only the first two terms in Eq. 4, the log-modulus F1 2 3 + E1 (X1 ) = F2 3 (X1 )

varies only with x1. To evaluate the effective modulus under these conditions, notice that

2 ~ = 2 2 = -2; pp,,(r)= #23(r) (2.A28)
IVV2t1X23 N M,. F; FP23 PFPFP23 /
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2 3 (X) ~ LN MF = e (123) 2 F2

ee23(r _2

= e-(1P23)0T(eP2304 - 1); PeF23 (r) ~F -

eT2 3 OF -1

where A2 3(r) = E[pF(R23 (r))] and R 2 3(r) is the random distance between two points

independently and uniformly distributed on two parallel (L 2 x L 3) rectangles separated

by distance r. For the distribution of this distance, see Eq. 2.B8. The case r = 0 gives

R2 3 (0) = R2 3 and #23(0) = #23-

Evaluation of the distribution of Eeff is analogous to the one-dimensional problem in

Section A. 1, except that:

1. The mean modulus is e_(123 not I;

2. The log-variance is # 2 3 qF not uF2; and

3. The log-correlation function is p23 (r) not p(r)

Accounting for these differences, one obtains that in good approximation Eeff has

lognormal distribution with parameters

m = e~ "23 [1 + PeF2 3 (e23 ) (2.A29)

a2 .= ln[1 + Pez2 3 (e234 - 1) ]

- Effect of e Terms Without 1 in the Index List

Under

F(x1,x 2 , X 3 ) = E2 (X 2 ) + E3 (X 3 ) + E2 3 (X 2 , X 3 ) = 1 (X2, X3) - F1 2 3 (2.A30)
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the log-modulus F is a function only of x 2 and x 3 and

L L2 L3 _Eeff = L2 L3 1  2 feF1x2x3>-F123 dx 3  (2.-A31l)

Using Table 2.1, F1 (x2 , x 3 ) - P123 is a normal random field with parameters

MA - 1P1= 0

- = 12 -#123 (2.A32)

P~ 12(r(r) = - 1231123( - P123

Therefore eIFI(x2.x3)P123 is a lognormal field with mean value, variance and correlation

function given by

-C(P51_P123)UFmerl-F123 = e2m-n3

U 2_ _ = e(01-n23)o[e(01-13)TF - 1]
ei F123 P 1

e FjF2P1-13r 1 e[Ti(r)_0123]14
Pe1-123 ( 1-123 - 1 e(51 P123)- ' - 1

It follows from Eqs. 2.A31 and 2.A33 that Eeff has mean value, variance and log-

variance (the last quantity, under the approximate assumption of lognormality)

m = me~i.F1 2 3 = e _1~5)"

2 = --e(r 3 e 1 123)aF[e(P1P123) - 1] (2.A34)
Pep'1123'e_ F l2  I'eiFI F12L

ul= ln(m2 ) + ln(m2 + a 2 ) = ln[1 + Aer-P 1 2 3 (e(1~" - 1)]

where eFIF123 = E [PeF1ii2 3 (R23)]-
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* Effects of E12 (X 1, X 2 ) and E13 (X 1 , X 3)

The term E1 2 (X1 , X2 ) is similar to E12 (X 1, X 2 ) in the two-dimensional problem. We show

in Section 2.4 that the effect of that term on Eeff is accurately estimated from the ergodic

result in Eq. 2.1 for n = 2. Considering that in the three-dimensional case E12(X 1, X2 ) has

mean value zero and variance cI2 = (A3 - #13 - #23 + # 1 2 3 )oF, the ergodic

approximation to its effect on Eeff is the deterministic factor

e -612 = e-(3-23P13+P123)UF (2.A35)

The corresponding factor for E1 3 (X 1 , X3 ) is

1U2 1
e -813 -e02-P12-P23+P123)UF (2.A36)

* Effect of E12 3 (X 1, X3 )

We use the ergodic results in Eq. 2.2 for n = 3 to approximate the effect on Eeff as the

deterministic factor

meE12 3 e - 23 = e2)O23 e 023 (2.A37)

whereUf23 = (1-51 -#2 -#3 +#12 +#13 +)23 - #123)'F from Table 2.1. The

coefficient 1/30 in the exponent of Eq. 2.A37 makes this factor close to 1.

By multiplicatively combining the effects in Eqs. 2.A29, 2.A34, 2.A35, 2.A36 and 2.A37,

one obtains that the distribution of Eeff in the three-dimensional case is approximately

lognormal with parameters in Eq. 2.10.

Derivation of Eq. 2.11
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Consider the average shear Y 1 2 produced by shear stresses T 1 2 . To make the problem

analytically tractable, we consider the case when the boundary traction r1 2 is constant on

any plane normal to X3 , but varies with X3 as eE3(x3), i.e. we consider shear tractions

e E3 (X3)
T1 2 (X 3 ) = T 1 2 1 f (2.A38)

3- f eE3(u)du

Under the tractions in Eq. 2.A38 and '(X 1 , X 2, X3), the average shear strain Y 12 is

independent of X 3 and the variance of Ieff,12 = 1n(i 2 /7 1 2 ) is given by Eq. 2.A 17 using

parameters appropriate to the 3D case. One might further assume that the other two

second-order terms, E1 3(X 1 , X3 ) and E2 3 (X 2,X 3), have no effect on Feff,12 and that the

effect of the third-order term g 23 (X 1 ,X 2, X 3) is a deterministic additive constant 1ka23-15 2

Under these assumptions

m1n(c) 12 12 12
Mr'eff, ~ ) - 2 2 + 15 2 3

2

+ tin [1 + PeEi (euEi - 1)] - ,2.A39)
i=1

offf -#135+ ln 1 + #er oe"Z -

aeff,12 P5123 YF+ A
i=1

Correlation Coefficients

We derive expressions for the correlation coefficients of selected pairs of log-moduli for

n = 3. Expressions for other pairs are found by appropriately permuting indices.

RFeff,,Feff2
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For the case of a three-dimensional rectangular block, the log-modulus may be

decomposed as

F(x1 ,X 2 , X 3 ) = T3 (X 1 , X2 ) + E3 (X 3 ) + E1 3 (X 1, X 3 ) + E2 3 (X 2 , X3 ) (2.A40)

+ E1 23 (X 1,X2,X 3 )

where F 3 (X 1 , X 2 ) = F1 2 3 + E1 (X 1) + E 2 (X 2 ) + E12 (X 1 , X 2 ) is the average of the F field in

the X 3 direction.

We evaluate the variances and covariance of Feff, and Feff2 under the simplifying

approximation that the contributions from the last 3 terms in Eq. 2.A40 are negligible.

Under this condition, we estimate the variance and covariance contribution from

F3 (X 1, X 2) by using the 2D results in Eq. 2.A25 (applied to F3 (X 1, X2) rather than

F(x1 , X2)). The term E3 (X 3) makes an identical random contribution to the log-effective

moduli. This common effect can be found by following the procedure in Eqs. 2.A 10-

2.A13. The final result is as follows:

The log-effective moduli Feff1 have the same variance, given by

071 = 0523 ~ T123)UF

2 - r r 23 -T1231C-

Pei = f--e) -dr (2.A41)
e L, fo L, e(T2-T23 -lZ -

(similarly for E2 and 83). The covariance between Feff. and Feff2 is

COV [Feff1,, Feff2I

= p12 2 + ln[1 + Pe 3 (e"-3 - 1)] - 2 ln (ER, [e~ei(Ri)0E]) (2.A42)

i=1
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where pe, (r) = .3 23. The correlation coefficient is found as the ratio
j523 j5123

COV[Feffj,Feff
2]

2
aSe f f

Rreff.1
2 ,reff,13

F1 2 3 and E1 (x1 ) have identical effects on eff,12 and Feff,13. Also, under the simplifying

assumptions stated above, no other ANOVA term makes positive contributions to the

variances of both eff,12 and Feff,13- It follows that

COV[Feff,12 , ereff, 3 ] = + 1n[1 + AeE1(e -1)] (2.A43)

RFeff leff,12

This is similar to the covariance between Feff and Feffj in 2D. Adaptation of Eq. 2.11 to

the 3D case gives

COV[Feff,1, F erI_1

p 23 aF + In[1 + PeeI(ec11 - 1)] - ln(ER2 [e Pc2(R2)CE2] (2.A44)

RFeff3,reff,12

The effect of F1 2 3 is the same on both log-moduli. The first-order fluctuations E (x1 )

and E2 (x 2 ) contribute to Fef,1 2 through the harmonic averages of the exponentiated

processes eei(xi) and e12(x2), whereas the contributions to Feff,3 are the arithmetic

averages of the same processes. All other ANOVA terms have been assumed to have no

effect on the variance of reff,12 It follows that
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2

COV[Feff,3 , Feff,12] = p 12 3UF + - In (ER, [e -pEj(Ri)UiE I) (2.A45)

Part B: Distribution of Certain Random Distances

The main task in calculating the mean value and log-variance of Eeff and Geff in Eqs.

2.5,2.6 and 2.8-2.11 is the calculation of #t terms, defined as the expected value of p(R1 )

or p[R1(r)], where p(d) is some correlation function, Rj is the random distance between

two points uniformly and independently distributed in f2j, and Rj(r) is the random

distance between a point uniformly distributed in f2j and a point with uniform distribution

in f2j,r, a region obtained by translating f2j by r in the x1 direction. In the latter case, the

index list J does not include 1. !2j is a straight line segment in one dimension, a rectangle

in two dimensions, and a box in three dimensions. The distributions of Rj and R1(r) are

given below.

B.1 Distribution of R,

For a segment of length Lj the probability density function of Rj is

2s
fR,(S) = -1 _ (2.B 1)

Li Li

and for a rectangle with side lengths L 1 and L 2 the probability density fR 12 (s) is (see for

example [79]),

1 [s1

fR1 2 (S) 2 1 1/2 g [(LL)1/2, (Li/L 2)] (2.B2)

where g(w, a) = 2w[g1 (w, a) + 92 (w, a) + 92 (w/a, 1/a)] and
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g1 (w, a) =7 + w 2 - 2w(a + 1/a),
0,

0 < w < ja 2 + 1/a 2

otherwise

_ 2 (w2 _ 1)1/2 - 2ar cos ( - a- 2 (w - 1)2 0 < w < 1 + 0

92 (0, otherwise

Alternatively, using R1 2 = Ri + R2, one may calculate fR 12 numerically as

in/2

f (r) = r fR 1 [r cos(0)]fR2[rsin(O)]dO, 0 r L2 + L2 (B3)

For a square (a = Ll/L2= 1), accurate estimates of #12 result from replacing the square

by a disc having the same area. The probability density of the distance R1 2 inside a disc

of radius r is (Tu and Fischbach, 2002)

2s s 2  4s s
fR 12 ( S r47 _S2 -7  sin-1 ) 0 s 2r (B4) fR2 r =; r7r r (r)

The distribution of R1 2 3 for a three-dimensional box has a far more complicated

analytical form; see for example Philip (1991). However, in analogy with a two-

dimensional rectangle one may use the relationship R2 23 = R 2 + R 2 and find JR123

ir/2

J (r) = r J [r s R [r sin(O)] dO, 0 < r < L_ + L2 + L2 (B5)

In the special case of a cube, a good approximation to P123 comes from considering the

distance R1 2 3 within a ball of the same volume. The probability density function of R 12 3

for a ball of radius r is (e.g. Tu and Fischbach, 2002)

3s2  9s 3  3 s-
fR123(S) ) 6 s 2r (B6)

B.2 Distribution of Rj(r)

The distribution of R1 (r) can be found from the relationship
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Rj (r) = Rj + r2

It follows that the probability density function of R 1(r) is obtained from the probability

density function of Rj as

fRJ(r)(S) 2 - r2fR_max + r 2

where Rj,max is the maximum possible value of Rj.

(2.B8)
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Chapter 3: Probability Distribution of Fracture

Elongation, Strength, and Toughness of Notched

Rectangular Blocks with Lognormal Young's

Modulus

The research and review presented in this chapter has been published in:

L. S. Dimas, D. Veneziano, T.Giesa, M.J. Buehler, Probability Distribution of

Fracture Elongation, Strength, and Toughness of Notched Rectangular Blocks

with Lognormal Young's Modulus, IMPS, 2015.

We find analytical approximations to the probability distribution of fracture properties of

one-dimensional rods and thin two-dimensional plates when Young's modulus varies

spatially as an isotropic lognormal field. The properties considered are the elongation,

strength, and toughness modulus at fracture initiation and at ultimate failure. This is an

extension of the previous chapter that, under the same conditions, dealt with the

distribution of the bulk elastic moduli. For all quantities at fracture initiation our

approach is analytical in I D and semi-analytical in 2D. For ultimate failure, we quantify

the random effects of fracture propagation and crack arrest by fitting regression models to

simulation data and combine the regressions with the distributions at fracture initiation.

The results are validated through a series of Monte Carlo simulations. Through

parametric analysis, we gain insight into the strengthening/weakening roles of the

Euclidean dimension and size of the specimen and the variance and correlation function

of the log-modulus field.

3.1. Introduction

Experimental investigations indicate that the elastic properties of many natural and man-

made materials exhibit large random-looking local fluctuations [4, 24, 25]. A
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fundamental question is how these small-scale fluctuations affect the bulk strength of the

material. Some studies suggest that the fluctuations enhance fracture performance in

natural materials such as bone and nacre [22-29]. In layered materials it is well known

that the crack driving stresses decrease when fracture propagates in the direction of

increasing stiffness [14, 15, 80, 81]. Under certain conditions, the stress concentration at

the crack tip completely vanishes and the uncracked part of the specimen behaves like

pristine composite [9]. Qualitatively similar results have been obtained for materials with

periodically but smoothly varying elastic properties [7, 82-84]. Other studies have

focused on materials with random local variation of the elastic modulus, using mainly

numerical tools. These include finite element formulations suited for probabilistic

analysis [85-87], first and second order reliability methods commonly referred to as

FORM/SORM [67, 68], and Monte Carlo simulation [65, 66]. Numerical methods are

general, but they are often computationally inefficient and not well suited to

systematically investigate the dependence of the bulk mechanical properties on the

subscale heterogeneities, conduct parametric analyses, or optimize new materials. For the

latter purposes one needs analytical or semi-analytical tools.

In Chapter 2 we reported analytical approximations for the joint distribution of the

effective elastic moduli in tension and shear. That study considered n-dimensional

rectangular blocks (n = 1, 2 or 3) whose Young's modulus E(x) varies spatially as an

isotropic lognormal field. A key step of the approach was to make an analysis-of-variance

(ANOVA) decomposition of the log-modulus field by expressing F(x) = ln E(x) as the

sum of the average inside the block, marginal fluctuations along the coordinate axes

("main effects"), and interactions of order 2, ... , n. Following this decomposition, the

joint distribution of the bulk modulus was obtained by multiplicatively combining the

effects of the individual ANOVA terms. An interesting specific finding, which is used in

the present study, is that accurate results on the bulk moduli are obtained by treating the

effects of the interaction terms of order 2 or higher as deterministic ("ergodicity

assumption").
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Here we derive the probability distribution of fracture properties of notched thin rods

(n = 1) and thin rectangular plates (n = 2); see Figure 3.1a. Like in Chapter 2, we

consider Poisson's ratio v to be deterministic constant and the elastic modulus E(x) to

vary spatially as an isotropic lognormal field with mean value 1. Hence the log-modulus

F(x) = ln E(x) is isotropic Gaussian with some variance F, mean value -O.5oF, and

some correlation function PF(r). Under these conditions the probabilistic model is

completely specified by -F and pF(r).

We study the fracture properties of the blocks in tension when one face normal to the x,

direction is displaced by an increasing amount U1 relative to the opposite face. We fix to

zero the tractions on the remaining boundary and allow Poisson contraction. We assume

that a small process zone develops around the crack tip while the remaining specimen

remains linear elastic. The crack propagates when a longitudinal strain at the edge of the

process zone exceeds a critical value. In a homogeneous material, this is equivalent to

fracture propagating when the strain intensity factor exceeds some threshold value. In a

discrete lattice model, this failure criterion corresponds to using a critical failure strain

that scales with the inverse square root of the discretization length.
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(a) (b)

LL(

=T1

Ui =UJ

Figure 3.1: (a) Specimen geometry and (b) measures of fracture strength for I D rods and 2D plates. In the

I D rods the modulus varies only in the x1 -direction and in 2D plates there are modulus variations both

along the x1-direction and x 2-direction.

In this setting, we are after the probability distribution of six random variables: the

elongation U1 , load LI, and toughness modulus T, when fracture initiates at the notch tip

(subscript 1) and the corresponding quantities U,, Lu, and Tu which are the largest values

of U, L, and T experienced by the specimen until fracture percolation occurs (ultimate

failure, subscript U). We collectively refer to {Uj, L,, TI) as the initial fracture strengths

and to tUu, Lu, Tul as the ultimate fracture strengths. These 6 quantities are

schematically illustrated in Figure 3.1b. As shown in that figure, the toughness modulus

is defined as the work done by the external forces per unit specimen length in I D or unit

specimen area in 2D [88]. A more commonly used measure of fracture toughness is the

energy release rate at fracture initiation, g,. Here we use T, because it has a very simple

interpretation, is trivial to evaluate, and has a high correlation with g. For example,

Figure 3.2 shows a scatterplot of 1000 (TI, g,) values from Monte Carlo simulation. In

this case we considered a 2L x L rectangular specimen with notch depth a = L/2 and

normal log-modulus field F(x) with correlation function pF(r) -
2 r/L and standard

deviation c-F = 0.3. Values of g, were obtained by numerically calculating the J-integral

in a region around the notch tip. We use modified expressions for the .1-integral that are

path-independent also for systems with a modulus field that varies in x1 and x2 [89-91].
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The strong linear dependence with correlation coefficient 0.92 indicates that T, is a

suitable substitute for g.

I

-ii

0)5 F-

0
0 0.2 0.4 0.6

TI
0.8

Figure 3.2: Scatterplot and correlation coefficient between strain energy release rate at fracture initiation

g1, and initial toughness modulus T,. One thousand Monte Carlo simulations of a 2L x L specimen in

which the log-modulus field F(x) is normal with double exponential correlation function, standard
deviation 0 F = 0. 3, and correlation length ro = 0. SL.

The ultimate toughness Tu is similarly defined, as the work done by the external forces

per unit specimen length or area when fracture percolates through the material. Note that

a one-dimensional rod fails upon fracture initiation; hence in the 1 D case T, = Tu. The

same is true for 2D plates with spatially uniform Young's modulus (o2 = 0 and E(x) E

mE = 1). The fracture strengths under E(x) E 1 are referred to here as the "uniform

strengths" and are denoted by U0, Lo. and To.

It is attractive to state results in terms of dimensionless quantities obtained by dividing

the initial and ultimate strengths by the corresponding uniform strengths. Thus, using

lower case letters for the dimensionless variables, we seek the distributions of u1 =

U1 /U 0 , 11 = L 1/LO, ... and tu = TUITo. These quantities are independent of the mean
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value of the elastic modulus (which without loss of generality we have set to 1) and the

strain intensity factor at which failure initiates and propagates.

The distributions of u1 , 1I and t, are obtained in Section 3.2 and those of uu, 1u, and tu

are derived in Section 3.3. Section 3.4 validates the analytical results through Monte

Carlo simulation and Section 3.5 uses the analytical expressions to parametrically

investigate how the distributions of the initial and ultimate fracture strengths depend on

the geometry of the specimen and the characteristics of the random modulus fluctuations.

Section 3.6 summarizes the main findings and points at future research directions.

3.2. Initial Fracture Strengths

A key problem to obtain the distributions of l and t, is to find the joint distribution of the

elongation at fracture initiation u1 and the effective Young's modulus in the direction of

stretching Eeff. This is sufficient because 1i and t1 are related to Eeff and u as 1, =

Eeff- Eeff U2EL u and t, = E or, since MEME mE

In 11 = Iln Eeff + n u,
(3.1)

In t, = ln Eeff + 2 In ul.

In our approximate analytical treatment, we assume that this joint distribution is

lognormal (simulation results support this approximation, although we know that the

exact distribution is not strictly lognormal). Hence we need to find the mean values,

variances and covariance of In Eeff and In ul. The first two moments of In Eeff for un-

notched specimens were derived in Chapter 2. Here we use those results, having verified

that a small notch affects minimally the bulk stiffness. We choose a notch depth of a =

L/5. Results of numerical simulation not presented here indicate that the first and second

moment properties of the normalized fracture initiation elongation In u, are insensitive to

notch depth. The first and second moment properties of the fracture initiation load and

toughness are influenced by the notch depth only through the effective stiffness.
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For n = 1 (modulus variations are only present along the xl-direction), we analytically

derive the first two moments of ln u using the ANOVA decomposition of the log-

modulus field F(x) = In E(x); see Chapter 2 for such decomposition. For n = 2

(modulus variations are present both along the x,-and x2 -direction), we again use the

ANOVA approach for the covariance between In u and In Eeff, but for the mean value

and variance of In u, we use a different method. The reason is that, contrary to the log-

effective modulus In Eeff analyzed in Chapter 2, the second order term E1 2 in the two-

dimensional ANOVA decomposition of F(x) contributes non-negligibly to the variance

of In ul. Since it is difficult to obtain that contribution analytically, we find the moments

of In u1 using the following semi-analytical sensitivity strategy.

The log elongation In u, is some functional g(F(x)) of the log-modulus field. We

discretize space and use Taylor series expansion around the specimen average value F to

approximate In u, as a linear function of the log-moduli F = F(x) at the grid points xi.

This gives

In u = g (F(x)) ~E bi(Fi - (3.2)

where the sensitivity coefficients bi are obtained by numerically calculating the change in

In ul due to a perturbation of Fi. This is done using a finite-element model (see Section

3.4 and the Supporting Information for details). Since at large distances from the notch

tip the bi coefficients are negligible, it is sufficient to consider a limited region around the

notch. The reason why the deviations of the local log-moduli F are from the specimen

average value F not the theoretical mean MF is that when all the F equal F (this

corresponds to a spatially uniform modulus), the elongation at fracture initiation equals

the uniform value UO and the log-dimensionless displacement In ul is zero.

Expressions for the moments of the initial fracture strengths are given below. Detailed

derivations are provided in the Supporting Information.
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3.2.1 1D (one-dimensional bar of length L1 )

The normalized displacement at fracture initiation u1 equals eO/E where, for any given

elongation U1, co and e are the longitudinal strains at the location of the notch under

uniform and random elastic modulus, respectively. In both cases, the strain at any point

along the rod is given by the (constant) longitudinal stress divided by the tensile modulus

E at that location. In turn, for any given U1 the longitudinal stress is proportional to the

harmonic average of E(x). These considerations give

U1
0 L1 '

( U1  _O

E = ---
(0) fE (x) x E (x) '(3.3)

SE(x) 'E(x)

U, = E= ( E() (eF(O)-F(x)).
s E(x)

where x = 0 is the location of the notch and (h(x)) = _ h(x) dx is the spatial
L, -L 1/2

average of a quantity h that varies along the rod.

Using Eq. 3.3, the first two moments of u, are found as the first two moments of the

spatial average (eF(O)-F(x)). The results are (see Supporting Information)

=u e[1-PF(r)]Y4 d'r,

LL 1

2 2 2 e [1-PF(r1)]OF+[1-PF(r2)oF(
L L,_ _ (3.4)
2 2

.e[1-PF(r1)PF(r2)+PF(r1"rZ)5 - 1 dr1 dr2,

1
= In(mU1 ) -21"U '
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uln U1= -2 In(mu,) + In(u21 + m,).

where the expressions for the log moments follow from the simplifying assumption that

u, has lognormal distribution. The Supporting Information uses the expression of In u, in

Eq. 3.3 and results on In Eeff in Chapter 2 to further show that

cov[ln Eeff ,n u] = - ln Eeff ~nl u). (3.5)

Finally, from Eq. 3.1 and the moments derived above, we obtain the first two moments of

In I and In tj, as

Mini, Min Eeff in u

2 + U + 2 - COv[ln Eeff , ln u], (3.6)
1n 1 1 = 6 lflEeff+ u

and

in= Min Eeff + 2 Minu ,,

U12 +4 4 *nj 2 l + 4 -COv[ln Eeff in u1]. (3.7)

3.2.2 2D (two-dimensional rectangle with dimension L, x L2)

Equation 3.2 gives

Mnu,= 0

a nuj = E bibcov[(Fi - P)(F - F)] ~ bIb pFxI)( ~12 (3.8)

where T12 is the average correlation of F for two points independently and uniformly

distributed inside the specimen. A simplifying assumption made for the variance in Eq.
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3.8 is that the non-homogeneous random field F - F has the same second-moment

properties as the isotropic field F - mF, except for the reduced variance (1 - 1 2)r. In

Section 3.4 we evaluate the accuracy of this and other approximations.

To find an expression for the covariance between In Eeff and In u,, we consider the

ANOVA decomposition of F(x), which has the form F(x1,x 2) = F12 + E1 (X 1 ) +

E 2 (x 2) + El 2(X 1, X2). The main effect E2 has no influence on In u and the second order

term E12 contributes negligibly to the variance of In Eeff. It follows that the covariance

we are seeking is the same as the covariance between In Eeff and In u for a I D rod with

log modulus F'(x1 ) = F12 + E 1(xj). Making these changes in Eq. 3.5 gives

cov[Feff,ln u1] = (F- gnEeff -- UI).(.

where iU2IFf is the variance n U, in Eq. 3.4 under the stiffness field F'.

The first two moments of In 1, and ln tj are given by Eqs. 3.6 and 3.7, like in the ID case.

3.3. Ultimate Fracture Strengths

The normalized ultimate fracture strengths uu, l, and tu are bounded from below by the

corresponding fracture initiation strengths. Here we seek a simple model that respects this

constraint and accurately describes data generated via Monte Carlo simulation, using the

discrete mechanical model described below in Section 3.4.1. Examples of simulation data

are shown in Figure 3.3a as scatter plots of In Xu vs In X, for X = u, 1 and t. All these

simulation results are for a square specimen with side length L and log-modulus F(x)

with standard deviation 6 F = 0.3 and spatial correlation function pF(r) = e- 8 r/L. Hence

the correlation length equals L/8. Ignoring for the moment the left censoring at Xj, for all

three strength measures the mean value of In Xu in an approximately linear function of

In X. Other common features are that the distribution of In Xu is positively skewed and
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the scatter is approximately independent of X1 . Finally, one observes that in cases when

the skewness is moderate the distribution of (In Xu I ln X) is close to normal.
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Figure 3.3: (a) Log-log scatterplots of ultimate strength XU versus initial strength X, for X = u, 1, and t,

1000 Monte Carlo simulations of a square specimen with unit side length. The log-modulus F(x) is normal

with simple exponential correlation function PF(r), standard deviation 6F = 0. 3 and correlation length

ro = 0. 12S. The red lines indicate fitted 10 1h 5 0th , and 90th percentiles prior to censoring. (b) Probability

P(In Xu = In X1 ) as a function of in X, based on the fitted models.

To capture these features and include the normal distribution as a special case, we fit

linear regression models with K-stable distribution S(a,fl, a, P) of the response variable

In XU. L -stable distributions (see for example [92]) have four parameters: the so-called

stability index 0 < a 5 2 with value 2 in the normal case, the skewness parameter -1 5

fl 5 1, the scale parameter a > 0, and the location parameter -00 < P < 00. All

parameters are assumed independent of X1, except for y which varies like pt = c, +

c1 ln X1 . Hence, considering left-censoring at ln X1, the final model for ln Xu is

In Xu ~ maxtln X, , S(a, fl, a, c, + cl In X1)}, (3.10)
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In a more complex model, one could allow the parameters of the L-stable distribution to

vary with X1 . However, this would significantly increase the complexity of the model and

as we show in Section 3.4.2, the model in Eq. 3.10 already produces highly accurate

results.

Given a simulation set of (X,, XU[) pairs, the regression parameters a, fl, a, c0 , and c1 in

Eq. 3.10 are found by maximizing the likelihood

1 (a, fl, U, cO, cl) CC 1 Faf,,co+c In x (in X1i) 17 fa,1fa,c,+c1 in x j(in X), (3.11)
X,,=X y, Xj,<Xy,

where F and f are the H-stable cumulative distribution and density function,

respectively, with parameters as given.

Once the censored regression model in Eq. 3.10 is estimated, the probability density

function of In Xu is given by

finx (x) = f-fmaxu,S(a,a,co+ciu)(x)fn x, (u)du, (3.12)

where finx, is a normal density and fmax{u,s(,a,co+ciu)1(X) is a left-censored 0-stable

density, with a probability mass at u due to censoring.

As an example, the red lines in Figure 3.3a give the 10th 50 th and 9 0 th percentiles of the

fitted distribution of In Xu prior to censoring. These fitted percentiles correspond well to

the scatter of the simulation values. For each strength measure X = {u, 1, t}, Figure 3.3b

uses the fitted L -stable regression models to show the probability that Xu = X (no

increase in strength from fracture initiation to ultimate failure) as a function of the

strength at fracture initiation. Consistently with the scatter plots in Figure 3.3a and

intuition, this probability increases as the strength at fracture initiation increases (because

79



a high fracture initiation strength implies that the region near the notch tip is relatively

stiff and, after that stiff region fails, the fracture is likely to propagate through the

specimen in an unstable way). It is interesting and again intuitively expected that

P(Xu = X1) is more sensitive to X, for displacement at failure (X= u) than for load

resistance (X= 1). The reason is that the relative stiffness at the notch tip is more highly

correlated with the displacement at failure than with the initial load resistance. The

sensitivity for toughness (X= t) is intermediate, since toughness is roughly the product of

u and 1.

3.4. Numerical Models and Validation of the Analytic Results

We validate the theoretical results using Monte Carlo simulation. For each simulated

modulus field, we solve the 1 D problem directly: we compute the effective stiffness Eeff

as the harmonic average of E(x) along the rod, obtain the initial elongation u from Eq.

3.4, and find 1I and t1 from Eq. 3.1. In 2D, we use a finite element model to obtain the

fracture initiation strengths and a spring network model to propagate the fracture and

evaluate the ultimate strengths. Section 3.4.1 describes these numerical models and

shows examples of fracture simulation results for the 2D case and Section 3.4.2 presents

validation results.

3.4.1 Numerical Models

The finite element model for square 2D specimens consists of an 80x80 grid of linear

four node elements and is developed in MATLAB. The spring network model is

composed of 80x80 FCC lattice unit cells with axial elements forming bonds between

nearest neighbors and is simulated with code developed in Python. Similar spring

network models have been extensively used to solve mechanical problems [65, 93-95];

they have a simple parameterization and are especially well suited to study crack

propagation due to their accurate tracking of the fracture path [96]. We prefer the FEM

model for the initial fracture strengths, as it is computationally more efficient. In the FEM

model the strain at the notch tip is computed from the elongation of the lower boundary
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of the elements immediately ahead of the notch tip. In the spring network model the same

strain is found as the maximum elongation of the bonds in the immediate vicinity of the

notch tip. Simulations to verify consistency between the finite element and discrete lattice

models exhibit very good agreement (see Part B of the Supporting Information).

We simulate Gaussian fields F(x) with a Karhunen-Lobve expansion (a singular value

decomposition of the covariance kernel [78]), with 80 and 6400 modes for the I D and 2D

system, respectively. The numerical distributions reported below for the fracture

initiation strengths are based on 10,000 Monte Carlo simulations. As simulating the entire

crack path is computationally more demanding (40 minutes per simulation on a Dell

Precision T5500 with an Intel Xeon 5600 series processor), numerical distributions for

the ultimate fracture strengths are based on only 1,000 Monte Carlo simulations.

To illustrate the ultimate strength calculations, Figure 3.4 shows fracture paths and

associated load-elongation relationships for unit square specimens with three simulated

log-modulus fields. The log-modulus realizations are from Gaussian fields F(x) with

correlation function pF(r) = e 8 r and standard deviation 6 F = 0.3, 0.3 and 0.7 for

panels a, b and c, respectively. Numbers identify peaks of the force-elongation curves

and corresponding locations of the crack tip. Specifically, "1" corresponds to the location

of the initial notch tip and "2" indicates the last crack arrest event, following which

fracture propagates in an unstable way through the rest of the specimen. System a fails in

an unstable way upon fracture initiation, whereas both systems b and c experience crack

arrest. The fracture path is nearly straight in cases a and b, whereas it is very erratic in

case c due to the higher spatial variation of the modulus.
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Figure 3.4: Example fracture paths and corresponding load elongation curves for notched square

specimens with unit side length. The log-modulus F(x) is a normal field with simple exponential

correlation function PF(r), correlation length ro = 0. 125, and standard deviation a aF = 0. 3 b aF = 0. 3

C OF = 0. 7. The number '1' indicates the location of the initial crack tip and '2' indicates the last crack-

arrest event. Specimen a fails upon initial crack propagation while both b and c exhibit crack arrest.

In case a the fracture initially moves towards areas with lower modulus, while in b it

initially moves towards stiffer regions. Hence the force-displacement plots are consistent

with what has been observed in layered materials when fracture propagates towards softer

or stiffer layers [7, 15, 81, 82]. To verify this interpretation, we considered a bi-material

specimen patterned to idealize case b. This is done by using for the two materials the

modulus near the crack tip and the average modulus near the crack arrest location in b.

As is shown in the Supporting Information, results for the two systems are similar,

confirming that softening/stiffening environments ahead of the crack tip play a similar

role in layered and the present disordered materials. However, as displayed in Figure

3.4c, a disordered modulus with high spatial gradients guides the fracture away from stiff

regions and causes it to percolate along low-modulus valleys. This reduces the

effectiveness of the crack arrest mechanism relative to layered or periodic heterogeneity.
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3.4.2 Validation Runs

Next we make some comparisons between simulation and analytical results for I D and

2D specimens. We consider rods of unit length and square plates with unit side length. In

all cases, u-F = 0.3 and PF(r) = e-8r

Figures 3.5a and 3.5b show the empirical (blue, from 10,000 simulations) and analytical

distributions (red) of the initial log-strengths, respectively for ID and 2D specimens. In

the one-dimensional case the analytical results match the numerical results very well. In

the 2D case there are small discrepancies: the sensitivity model in Eq. 3.2 underestimates

the standard deviation of ln u1 by about 10% and gives mIn , = 0, whereas the mean

value from simulation is slightly positive. That said, the analytical results are quite

accurate and capture well the dominant features of the distributions.

Figure 3.5c compares the empirical and model distributions of the ultimate log-strengths

In XU in the 2D case. Again, the analytical distributions accurately fit the empirical

results. In particular, the skewness and lower and upper tails of the distributions are very

accurately described.
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Figure 3.5: Comparison of analytical fracture strength distributions (red) with histograms from Monte

Carlo simulations (blue). a initial strengths for a rod of unit length, and b initial strengths for a square plate

with unit side length, and c ultimate strengths for a square plate of unit side length. Simulation of 10,000

samples in cases (ab) and 1,000 samples in case c. In all cases the log-modulus field F(x) is normal with

simple exponential correlation function pF(r), standard deviation UF = 0. 3, and correlation length ro =

0.125.

3.5. Parametric Analysis

As the final step, we use the analytical results to study how the distribution of the six

fracture strength parameters in I D and 2D systems depends on the Euclidean dimension

and size of the specimen and the spatial fluctuations of the elastic log-modulus. To aid

interpretation, we include also some results for the log-effective modulus In Eeff.

3.5.1 Initial Fracture Strengths
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The mean value m and standard deviation a of in u1 , In Eeff, In 11 and In t and the

covariance between In u1 and In Eeff are shown in Figure 3.6 for rods and Figure 3.7 for

square plates. The moments of In Eeff are displayed as dashed lines. Results are shown

for two correlation functions pF(r) (simple exponential in blue, double exponential in

red) and cover a wide range of the normalized correlation length ro/L, which varies in

log scale on the horizontal axis. Since the mean values, variances and covariance are very

nearly proportional to oF, the results are presented through the ratios m/ur2, a/aF, and

cov(in Eeff, In u)/uF. Normalization facilitates the evaluation of sensitivity to the

geometry of the specimen and the characteristics of the log-modulus field.

Rods

The first two moments of In ul and In Eeff are plotted in the top row of Figure 3.6. It is

instructive to first consider these properties under the limiting conditions of very low

spatial correlation of the log-modulus (I « 1) and very high spatial correlation (1 >> 1):
L L

1. In the low correlation limit the rod approaches ergodic conditions, in which the

log effective modulus is deterministic and equals -aF2. One can see these

conditions nearly realized when r0 /L = 0.1. Concurrently, m,"u, and 61nu,

approach their maximum values, which are mij, 1/or = 0.5 and aInu,/aF = 1.

2. In the high correlation limit the rod has spatially uniform modulus and in Eeff has

the same distribution as F at any given location. Therefore In Eeff has mean value

-0.5aF and variance qF2. Under the same limiting conditions, u, -+ 1 and the

mean and standard deviation of In u1 vanish.

The next two rows of Figure 3.6 show the normalized mean m/aF and standard

deviation u/0F of the log initial strength In 11 and toughness modulus In t1 . Since the

strain field around the notch tip x = 0 is proportional to the applied stress divided by

E(0), the load when the critical strain intensity factor is reached must be proportional to

E(0). This is why, irrespective of the correlation model and correlation distance, the
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distribution of In 1, is identical to that of F. The toughness modulus t1 is proportional to

the product of the load 1I and the elongation u1 ; hence mint, = mini, + minu, and

2 2 +2nu 1
gf t, ~ a11, + O12,l ,, where the approximation holds exactly when cov[ln Eef , In ul]

0 (the covariance is indeed small; see the last panel of Figure 3.6).

ln(E

Ind I

0

ln(0 ) -0.5

0. 1

cov in(E .), I(u )

-)F(r)= r p (r) = e

m/T 2T/U
F

--
05

I 10 0.1 1 10
r0/L r /L

0.2

J/(7 0
F

-0.2
0.1 1 10

r /L

Figure 3.6: Parameters of the initial fracture strength distributions for ID rods as a function of the
normalized correlation length ro/L. Blue and red curves show results for simple- and double-exponential
correlation functions.

The asymptotic low-correlation results hold in good approximation for ! < 0.1. Those
L

for high correlation are approximately attained for 1 > 1 and L- > 10, depending on the
L L

type of correlation function (lower convergence occurs for the simple exponential
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model). Transition between the asymptotic conditions occurs more rapidly and around

= 0.3 for the double exponential correlation and more gradually and around L = 0.5L exoetaL n oeadaon

for the simple exponential correlation.

Plates

Using the same format, Figure 3.7 shows results for square specimen with side length L.

The sensitivity model in Eq. 3.2 gives mi~n,, = 0 for all correlation models and

correlation distances (as discussed in Section 3.4.1, the true mean value is small but

positive). The log displacement at fracture initiation, ln u1 , depends on the contrast

between the modulus in the immediate vicinity of the notch tip and the effective stiffness.

Like in the I D case, this contrast is highest in the ergodic limit L << 1, when the effective
L

stiffness becomes deterministic. In the high correlation limit the modulus is uniform and

In u1 is deterministic. We conclude that the behavior of anu, under limiting conditions is

qualitatively the same as in the I D case.

Finally we consider the log initial strength In 1I and toughness modulus In t1 . Since minu,

is estimated to be zero, we have mini, = Mint, = minEeff . Like in the I D case, the fact

that cov[Iln Eeff , In u1 ] is small implies accuracy of the relations Uirn 11e "rrff + Oin u,

and 2+ ,

In the 2D case, the distributions of the initial displacement u and initial toughness t, are

less sensitive to the shape of the correlation function and the correlation length than in the

1 D case. The opposite is true for the distribution of In 1I (because in the 1 D case this

distribution is the same irrespective of the correlation function).
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Figure 3.7: Same as Figure 3.6 for square plates.

Overall E fect of Heterogeneitv

Figures 3.6 and 3.7 show results in terms of the moments of the initial log-strengths X.

To more directly understand whether the heterogeneities increase or decrease the fracture

strengths, one can examine the un-logged mean and median values, mx = e"lnx+o sinX

and Xo.5 = el"Inx. This is done in Figure 3.8 for uF = 1, for both rods and square plates.

The mean and median values for any other value of rF are obtained as mx

(mxloF = 1) 4 and X0.5 = (XosIF = 1)F. Values larger than I indicate increased

strength and values below I indicate lower strength compared to the uniform case. Notice
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that due to the positive skewness of the lognormal distribution, the mean values always

exceed the median values.

-- Y = e pf(r)= "

-1mean va I Les -
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0.1 1 10

r /L

- median values
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I I
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0. 75
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Figure 3.8: Mean (solid lines) and median values (dashed lines) of the initial fracture strengths for I D rods
and 2D squares as a function of the normalized correlation length ro/L. Blue and red curves show results
for simple- and double- exponential correlation functions.

When the correlation length r, exceeds the size of the specimen L, the modulus field is

nearly uniform and the mean and median of all the strength measures are close to the

value under uniform modulus (normalized values in Figure 3.8 close to 1). In the case of

rods with low correlation, the heterogeneities increase the mean initial displacement and

toughness, whereas the mean load capacity remains the same. The median value exceeds

I for elongation at fracture initiation, is I for toughness, and is below I for load capacity.

For 2D specimens, the low-correlation median values are similar to the I D case, but the

mean values are lower due to the smaller log-variances (compare the standard deviations

in Figures 3.6 and 3.7). These results point at a complex pattern of strength enhancement
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and reduction due to random spatial variation of the modulus: in general the elongation at

failure initiation is enhanced, while the load at initial failure tends to be lower.

One can also examine the dispersion of the normalized (unlogged) strengths X. This is

conveniently done through the coefficient of variation Vx = ax/mx. Since for a

lognormal distribution Vx = e '2nx - 1, we refer to our previous discussion of auix in

Figures 3.6 and 3.7.

3.5.2 Ultimate Fracture Strengths

Next we consider how various parameters affect fracture propagation and crack arrest,

hence the regression model in Eq. 3.10. We consider a square specimen with unit side

length and Gaussian log-modulus F(x) with correlation function pF(r) = er/ro and

vary the correlation length ro = {0.125,0.25,0.5,1} and standard deviation UF =

{0.3,0.5,0.7}. For each parameter combination (ro, "F), we obtain maximum likelihood

estimates of the parameters in Eq. 3.10 for X = {u, 1, t} based on 250 Monte Carlo

simulations. We found that the stability index a has maximum likelihood values close to

1.3 for X = u, I and 1.35 for X = t and that in all cases the skewness parameter ft has

maximum likelihood value 1. Hence we fix a and fl to these values and estimate the

remaining three parameters (co, c1 , a) by maximum likelihood. Results are shown in

Figure 3.9. Noticeable features are:

0 The regression intercept co and residual dispersion o increase as a function of F.

This is due to the fact that higher log-modulus fluctuations produce larger and

more dispersed crack-arrest effects. The increase is not dramatic, due to the fact

that for large aF the fracture tends to propagate along "valleys" of the modulus

landscape (see for example the simulation in Figure 3.4c). When crack arrest

occurs, the ultimate displacement and toughness always increase above the

fracture initiation values, whereas that is not necessarily the case for the ultimate

load. This is why co tends to be lower for / compared with u and t;
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* co is larger for shorter correlation length ro, because less correlated log-modulus

fields produce larger crack-arrest effects;

* co and a2 for ln(t) are approximately the sum of c and cr2 for ln(u) and ln(l).

This is due to the fact that the ultimate elongation and load contribute in an

essentially multiplicative way to the ultimate toughness, and the present results

are in terms of log-moments; and

* The regression slope c1 has a somewhat complicated dependence on the standard

deviation uF and correlation length ro. Notice that c1 = 1 corresponds to a

regression line parallel to the lower bound In Xu = In X1, hence to statistically

identical crack-arrest effects for all initial strengths X1. At the other extreme, c1 =

0 indicates that the crack-arrest effects are negatively correlated with the initial

strength, to the point that the distribution of Xu is the same irrespective of X1 . For

highly correlated log-modulus fields (large ro), the ultimate load and toughness

approach the first condition, whereas for small ro and large o-F the ultimate

elongation and toughness approach the second condition.
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Figure 3.9: Parameters of the regression model in Eq. 3.10 for square specimens with unit side length.
Normal log-modulus F(x) with simple exponential correlation function pF(r), standard deviation OF
{0. 3, 0. 5, 0. 7) and correlation length ro = [0. 125, 0. 25, 0. 5, 1). Parameters are fitted by maximum
likelihood to 250 Monte Carlo simulations.

To better appreciate the effects of crack arrest and evaluate the overall strengthening or

weakening brought about by the heterogeneities at ultimate failure, Figure 3.10 compares

the distributions of In X, and In Xu for X = {ju, 1, t} in the case of a square specimen with

unit side length. The normal log-modulus F(x) has simple exponential correlation

function pF(r), standard deviation 0F = 0.5. and correlation length ro =

{O.125, 0.25,0.5,1}. The effects of crack arrest are most pronounced for displacement and

toughness and are larger for less correlated log-modulus fields. For low correlation, the

ultimate displacement is virtually always above the uniform value. This is largely true

also for the ultimate toughness. whereas the ultimate load benefits less from crack arrest

and its distribution remains centered on the value under uniform modulus. In order for

crack arrest to occur, the crack must encounter a sufficiently stiff patch on its path to
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overcome the increase in strain concentration. Also, as illustrated in Figure 3.1b, any

crack arrest leads to tu > t1 . but in order for lu > I to occur the crack must encounter

such a stiff patch that the elongation required to resume crack propagation more than

balances the decrease in effective stiffness due to the reduced size of the intact specimen.
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Figure 3.10: Marginal distributions of the normalized initial and ultimate log-fracture strengths for fF
0. S and ro = {O. 12S, 0. 2S, 0. S, 1).

Interestingly, the log-dispersion tends to be smaller for the ultimate strengths than the

initial strengths because the crack-arrest effects are negatively correlated with the

strengths at fracture initiation. We calculated the distributions in Figure 3.10 also for

other values of c-F and observed that the main effect of 0 F is contraction/dilation of the

distributions relative to the origin.

3.6. Conclusions
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We built upon the models and analysis strategy in Chapter 2 to study the distribution of

fracture strength characteristics of rods and plates in which the log-Young's modulus

F(x) = In E(x) varies spatially as an isotropic normal field. We distinguished between

two stages of the fracture process, fracture initiation at the notch tip and ultimate failure

following fracture propagation through the specimen (the two conditions coincide in the

case of I D rods). For each stage, we developed analytical or semi-analytical

approximations to the distribution of elongation U, strength L, and the toughness modulus

T. Qualitatively, our results are in agreement with previous work on fracture in materials

with randomly disordered Young's modulus distributions [23-25].

The methods depend to some extent on the Euclidean dimension of the specimen (n = 1

or 2), the quantity considered (U, L, or T), and the condition under which the probability

distribution is assessed (fracture initiation I or ultimate failure U). Specifically, we obtain

the distributions for rods by using an analysis-of-variance approach similar to that in

Chapter 2, whereas for 2D plates we use a semi-analytical sensitivity model. For the

effects of crack arrest, we fit regression models to simulation data. All results were

validated through Monte Carlo simulation and then used to study the influence of various

paramPtPrsz nn the distriutinn nf U, 1 nd. T nA t far niao a t fs

fracture propagation and crack arrest. To our knowledge this is the first time that these

fracture strength problems are addressed analytically or semi-analytically. We are also

unaware of previous studies in which the effects of crack arrest are related to the

probabilistic parameters of the stiffness field.

The study has provided fundamental insights into the fracture behavior of this class of

heterogeneous materials:

1. The strengths at fracture initiation display a complex behavior relative to their

values under uniform modulus (E(x)= me): The heterogeneities generally

increase the mean values, whereas the median value is lower or higher depending

on the Euclidean dimension of the specimen and the quantity considered (U, L,
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and T). Specifically, gains in the median occur for elongation U and toughness T,

whereas the median of the load L is lower than the uniform value;

2. In 2D specimens, crack arrest increases the strengths at ultimate failure relative to

their values at fracture initiation. This effect is modest for the ultimate load, but is

important for the ultimate elongation and toughness;

3. For limited variations of the modulus field we observe similar crack arrest

mechanisms as in laminates and composites with periodically varying modulus:

crack arrest occurs as the fracture propagates towards higher modulus regions and

its effect is controlled by the modulus contrast. As the variability of the modulus

field increases, low modulus valleys appear. Fracture tends to propagate along

these valleys, limiting the effectiveness of crack arrest and giving rise to different

fracture patterns than those observed in laminated composites; and

4. The dispersion of the fracture strength parameters is smaller in the 2D than the I D

case and for 2D specimens decreases somewhat from initial fracture to ultimate

failure conditions.

Possible further extensions of this work include:

1. Study the effects of statistical anisotropy, as a way to bridge between the present

isotropic materials and laminated composites;

2. Extend the methodology to random non-lognormal heterogeneous materials, for

example materials with single- or multi-phase inclusions or natural and

engineering materials such as bone and concrete; and

3. Study the effects of random spatially varying material strength (here the material

strength is considered deterministic).
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Supporting Information

Part A: Derivation Details

Equation 2.4

To find the mean value and variance of u, = (eF()-F(x)) in Eq. 2.3, we proceed in 3

steps:

1. Find the mean value and covariance function of the Gaussian process AF(x) =

F(O) - F(x);

2. Find the mean value and covariance function of the lognormal process RE(x) =

exp[F(O) - F(x)];

3. Find the mean value and variance of u = (eRE(x)).

Let py(r) and By(x1 , x2 ) denote the (stationary) correlation and (nonstationary)

covariance function of some random field Y(x) and Nt.} and LNfe} be the normal and

lognormal distribution with parameters (-). Using basic second-moment results and

properties of normal and lognormal distributions, we obtain

A F(x)-N1mAF = 0,BdF(r1,r2 ) = 1 - pF(rl) - pF(r2) + pF(rl r2

RE(x)-LN {mRE(r) = e 1-PF(r)]a'

BRE(Xl,X 2 ) = mRE(r1)MRE(r 2)[e AF(1>2) - 1])

ui-LN mu, =- mR E(r)dx,u, = dr BRE (rl, r2)dr2 .
f L, fo T, -L"/2 -t1/2

(3.A 1)

Substituting the expressions for BRE (rl, r2 ), mRE(rl), and BAF(rl, r2 ) in the parameters

of u, gives the mean value mu, and variance or, in Eq. 3.4.

96



Equation 5

To obtain the covariance between In ul and In Eeff, we observe that

E(O)
Inul =In( ) =ln E(O)

E(x)

1
+ In( )

Ex))

1
In Eeff=- In E

E (x)

or, with I = ( ),

In u, = In E(O) + In I

ln Eeff = - In I

Therefore

COv[In u1 , in Eeff] -uYn ,I - Cov[ln E(O), In I]

To find Cov[In E(O), In I], we use

CF12  = 62nE(O) + u + 2Cov[in E(O), In I]

and U1n E(o) = aF to obtain

Cov[In E(O), In I]
1
2 oy - of- a)

Substitution into Eq. 3.A4 gives the result in Eq. 3.5.

Coefficients of the Linear Sensitivity Model in Eq. 3.2
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To calculate the sensitivity coefficients bi in Eq. 3.2, we use a Finite Element model of a

notched square specimen with 80x80 linear four node elements. We set the log-modulus

of all elements to the homogeneous value Fhom except for one tile i in a neighborhood of

the notch tip. For each i, in separate experiments we set the element log-stiffness to Fi =

Fhom + In 2 and F = Fhom - In 2 in separate experiments and record the resulting values

Udn 2+ and ui,n 2_ of ul. The coefficient bi is then found as

=n Uiyn 2+ -In Ui on2_
21n2b(3.A7)

Part B: Model Comparisons

FEM and Spring Bead Models

Figure 3.B1 compares values of Feff, In ul, In 11, and In t generated by the finite

element and spring bead models for 1000 Monte Carlo simulations of a 2D square

specimen. The log- stiffness field F(x) = In E(x) is normal with simple exponential

corlAnraHALzed %1%Jrre 1I4LiJI ien6 Ui ith L = J.2L, 11d stanIUCrU deViatv

-F= 0.3. The log-stiffnesses predicted by the two models are virtually identical and the

remaining quantities show close correspondence, with correlation R > 0.95.

2. Stochastic Lognormal System and Bi-Material Composite

Figure 3.B2 compares the load-elongation curve of the system in Figure 3.3b to the

same curve for a bi-material composite analog, with stiffness representative of conditions

at points I and 2. The stiffness fields are also shown. The stress strain curves display

similar behavior (similar degree of crack arrest, similar ultimate elongation), indicating

that the bi-material analog captures important features of the crack-arrest mechanisms in

the stochastic system.
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Chapter 4: Strength and Fracture Toughness of

Heterogeneous Blocks with Joint Lognormal

Modulus and Failure Strain

The research and review presented in this chapter will be published in:

L. S. Dimas, D. Veneziano, M.J. Buehler, Strength and Fracture Toughness of

Heterogeneous Blocks with Joint Lognormal Modulus and Failure Strain, In

submission, 2015.

We obtain analytical approximations to the probability distribution of the fracture

strengths of notched one-dimensional rods and two-dimensional plates in which the

stiffness (Young's modulus) and strength (failure strain) of the material vary as jointly

lognormal random fields. The fracture strength of the specimen is measured by the

elongation, load, and toughness at two critical stages: when fracture initiates at the notch

tip and, in the 2D case, when fracture propagates through the entire specimen. This is an

extenslon of Chanter 3 on the e!astie and frmctmre properties ofsystems wvith random

Young's modulus and deterministic material strength. For I D rods our approach is

analytical and builds upon the ANOVA decomposition technique of Chapter 2. In 2D we

use a semi-analytical model to derive the fracture initiation strengths and regressions

fitted to simulation data for the effect of crack arrest during fracture propagation. Results

are validated through Monte Carlo simulation. Randomness of the material strength

affects in various ways the mean and median values of the initial strengths, their log-

variances, and log-correlations. Under low spatial correlation, material strength

variability can significantly increase the effect of crack arrest, causing ultimate failure to

be a more predictable and less brittle failure mode than fracture initiation. These insights

could be used to guide design of more fracture resistant composites, and add to the design

features that enhance material performance.
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4.1 Introduction

The initiation and propagation of fracture in notched linear elastic media is controlled by

the stresses, strains and material strength around the evolving fracture tip. In turn, the

stresses and strains depend on the boundary conditions, the specimen geometry

(including the prior fracture path), and the stiffness tensor field over the entire body.

Natural and synthetic materials often exhibit significant stochastic-looking fluctuations in

elastic modulus and strength [4, 24, 25, 31-33]. Several studies have found that

fluctuations in the modulus can enhance the fracture performance of materials such as

bone and nacre [22-29]. However, depending on the pattern of the fluctuations, the

opposite may also be true and when the fluctuations are stochastic, various weakening

and strengthening outcomes are usually possible. Understanding the influence of random

material heterogeneities on the bulk mechanical properties using analytical/numerical

predictive models is a critical first step for the reliability assessment and design of such

materials.

Previous research has focused on cases with random spatial variation of the elastic

modulus or the local strength, but not both. Studies that include fluctuations of the elastic

modulus use mostly numerical tools, typically variants of finite element analysis [85-87]

in combination with first and second order uncertainty propagation [67, 68] or Monte

Carlo simulation [65, 66]. While these numerical methods are general, they are

computationally inefficient and unsuited for parametric analysis, optimization or design.

Materials with random local variation of strength have also been analyzed. Following

Weibull's pioneering work [33], several studies view the failure of initially intact

specimens as a weakest-link problem, which is often amenable to analytical treatment

[97-99]. Other studies consider specimens in which fracture initiates at the tip of a pre-

existing notch and focus on the fracture path using numerical simulation [100-102]. We

know of no analytical investigation in which randomness of the bulk fracture strength of

notched specimens is related to randomness of the local strength field.
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This paper is the third in a series aimed at analytically characterizing the distribution of

the bulk elastic and strength properties of materials in which the elastic modulus and

local strength vary randomly in space. Chapter 2 developed approximations for the joint

distribution of the bulk stiffness tensor of n-dimensional rectangular blocks (n = 1, 2, or

3) when Young's modulus E(x) varies as an isotropic lognormal field. The approach

makes use of an analysis of variance (ANOVA) decomposition of the log-modulus

F(x) = ln E(x) as the sum of the average F inside the block, marginal fluctuations along

the coordinate axes ("main effects"), and interactions of order 2, ... ,n. The joint

distribution of the bulk stiffness tensor is obtained by multiplicatively combing the

effects of the individual ANOVA terms.

In Chapter 3 we derived the probability distribution of various strength properties of

notched thin rods (n = 1) and rectangular plates (n = 2); see Figure 4.1a. Also in this

case Young's modulus E(x) is assumed to vary as an isotropic lognormal field, but focus

is on the probability distribution of six specimen strength variables: the elongation U1,

load L1, and toughness modulus T, when fracture initiates at the notch tip (subscript I)
1* -- ____f __ _ _ _V Y

aiiun %.arkrpigulII 4UantiIics LJU, Ly, aiiu i ueFinu as LIM largest values U1 u, , aUd I

as fracture propagates through the specimen (ultimate failure, subscript U). As shown in

Figure 4.1b, the toughness modulus is defined as the work done by the external forces,

per unit specimen length in ID and unit specimen area in 2D [88]. As was shown in

Chapter 3, there is high positive correlation between the present T variable and measures

of fracture toughness based on the J-integral. For thin rods our method is analytical and

exploits the ANOVA decomposition of the log-modulus field mentioned above. In 2D,

the method is semi-analytical in that the effect of crack arrest on the ultimate strengths is

quantified by fitting regression models to simulation data.
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(a) (b)

T T)

Figure 4. 1: a Specimen geometry and b fracture strength measures for I D rods and 2 D plates. The

definitions are identical to in Chapter 3.

Here we extend the work of Chapter 3 by considering cases when Young's modulus and

the local strength are joint lognormal random fields. As before, we study the distribution

of U, L and T under initial (1) and ultimate failure conditions (U), as one face of the block

normal to the xr-direction is incrementally displaced relative to the opposite face, with

zero tractions on the rest of the boundary. A small process zone is assumed to develop

around the crack tip while the rest of the specimen remains linear elastic. The crack

initiates or propagates when the maximum longitudinal strain at the edge of the process

zone exceeds a randomn critical value (the "local material strength"'). In a continuous

linear brittle material this is equivalent to fracture propagating when the strain intensity

factor exceeds somne threshold value, whereas in a discrete lattice idealization the critical

failure strain should be proportional to the inverse square root of the discretization length.

This is a well-established way of modeling fracture propagation and has been shown to

produce results consistent with experiment [96, 103, 104].

More details on the model, in particular the representation of the stochastic modulus and

local material strength, are given in Section 4.2. Sections 4.3 and 4.4 present the

derivation of approximations to the distribution of the initial specimen strengths { U1, L1,
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T,} and ultimate specimen strengths {Uu, Lu, TU}, respectively. This is done for both ID

and 2D specimens. Section 4.5 validates the analytical approximations using Monte Carlo

simulation and Section 4.6 uses the analytical results to study the sensitivity of the bulk

strength distributions to various geometric and stochastic-model parameters. Conclusions

and an outlook on future developments are presented in Section 4.7.

4.2 Stochastic Model and Other Assumptions

We consider Poisson's ratio v to be deterministic constant, and both the elastic modulus

E(x) and failure strain Er(x) to be isotropic lognormal fields. Without loss of generality

(see below), we set the mean values of these fields to 1. Hence the log-modulus F(x) =

In E(x) and log failure strain In Er(X) are isotropic Gaussian with some variances cU and

U2 vaue two ar t
nE. and mean values -0.5UF and -0.5 nE,. The two fields are assumed to have the

same correlation function p(r) where r is spatial distance.

The similarity in the stochastic models of E(x) and cr(x) makes physical sense, since the

mechanisms that produce variations in Young's modulus typically control also the Iocal

strength. For example, in bone and nacre the variations in stiffness and strength are

largely due to fluctuations in the mineral content of the composite [4, 24, 25, 105]. The

assumption of lognormal distribution is made in part for analytical convenience and in

part because the lognormal distribution has been found to accurately describe the

modulus and strength of many materials [106-109]. This assumption breaks down for

multi-phase composites, for which the distributions are multi-modal; see Chapters 5 and

6.

Regarding dependence between the modulus and strength fields, we assume that at any

given location x0 the log-strength In Er(xo) depends on the log-modulus field F(x)

through only the local value F(xo). This Markov-like cross-dependence structure is

motivated by the observation that fracture strength and stiffness are local material
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properties. The correlation coefficient between In Er(xo) and F(x0 ), denoted by p, is

allowed to vary between -1 and 1.

The previous assumptions are embedded in the representation,

InEr(x) = bF(x)+ q (x) (4.1)

where b is a constant and F and q; are independent isotropic normal fields with possibly

different mean values and variances, but identical correlation function p(r). Simple

second-moment analysis leads to the following relationships between the parameters of

the model in Eq. 4.1 and the parameters of the in Er and F fields:

mn = (buF2 - aj2n e

b = p Er

bTF

The Markov-like property mentioned earlier between In Er and F follows from

independence between F and qj in Eq. 4.1.

Notice that the initial strength, elongation, and toughness depend on the log-modulus

F(x) over the entire specimen, whereas the critical strain Er(X) influences the same

quantities through only the value E* at the notch tip. By contrast, the ultimate strengths

depend on F(x) and Er(x) everywhere in the specimen.

Like in Chapter 3, it is convenient to make the fracture strengths (the elongation U, load

L, and toughness T) dimensionless. We do so by dividing these quantities by the

corresponding values UO, LO, and To when all the stochastic fluctuations are suppressed

(in the present case, when E(x) = 1 and Er (x) 1). Hence, using lower case letters for

the dimensionless variables, we seek the distributions of ul = U1/UO, I = L1/LO, ... and
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tu = T/TO. These 6 distributions are independent of the mean values of the elastic

modulus and failure strain, which for simplicity we have set to I.

4.3 Initial Fracture Strengths

We start by estimating the first and second moment properties of the initial strengths

X, = [u1 , 1I, ti] in one- and two-dimensionsal specimens. The approach is similar to in

Chapter 3, but includes stochasticity of the material strength. We denote by C*, E* and

F* = In E* the strength, modulus and log-modulus at the crack tip and by F the average

of the log-modulus over the specimen.

4.3.1 1D (one-dimensional rod of length L1)

In the ID case the (constant) stress a is related to the elongation U as a = Eeff U/L,

where Eeff = (1 f e- dx) . The strain at the crack tip, E = E(L 1 /2), is given by

E= = U/L1  (4.3)
E* E

Setting T* = e* in Eq. 4.3 and solving for U gives the elongation at failure U =

c*L1 i-. Under uniform conditions, the same elongation is UO = L 1. Therefore the
Eeff

dimensionless displacement at failure u = U1/UO satisfies

In u = ln E* + F* - Feff
(4.4)

where Feff = ln Eeff. The corresponding dimensionless failure load 1, and toughness t

are related to u and Feff as

In 1, = Feff + In u, , (4.5)
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ntl = Feff + 2 lnu

Finally, substitution of In u, in Eq. 4.4 gives

In l, = ln E* + F*,

In tj = 2 In E* + 2 F* - Feff. (4.6)

As for the case of deterministic strength, we approximate the distribution of the initial log

strength vector In X, = [In u, , in 11 , In t,] as multivariate normal. Its first and second

moments can be found by noting that In X, in Eqs. 4.4 and 4.6 is a linear function of the

random vector [In E*, F*, Feff], whose first two moments are obtained as follows.

The moments of the effective log stiffness Feff = In Eeff, where Eeff is the harmonic

average of E, do not depend on the strength model and were derived in Chapter 2 and the

moments of the sub-vector [in c*, F*] are externally specified; see Section 4.2. To

complete the second-moment characterization, one additionally needs the covariances

cov [In E*, Feff] and cov[F*, Feff]. Using In E* = bF* + 17* from Eq. 4.1 and noting that

r* = 77(L 1/2) is independent of F(x) and hence of Feff, one concludes that

cov [In E*, Feff] = b -cov[F*, Feff] (4.7)

Therefore it is sufficient to estimate only one of the above covariance terms. Our strategy

is to approximate cov[F*, Fe ff] as cov[F*, f] (thus replacing the harmonic average of E

with the geometric average), as the latter covariance is simpler to calculate. In numerical

simulations using a range of realistic specifications of the random modulus field this

approximation has proved accurate, although one may expect the accuracy to deteriorate

for extremely large uF. (In 2D, Eeff is close to the geometric average of E and an

approximation of this type is even more accurate.)

The approximating covariance is
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cov[F*,T] = ouFE[p(R*)]

where R* is the random distance between the notch tip and a point uniformly distributed

inside the specimen, p(r) is the spatial correlation function of F, and E[ ] denotes

expectation. In the I D case, R* has uniform distribution between 0 and L1/2.

4.3.2 2D (two-dimensional rectangle with dimensions L, x L 2)

In the 2D case, Eqs. 4.4 and 4.6 do not hold. Specifically, In u, retains linearity in In *

but has a complicated dependence on the log-modulus field F(x). However, Eq. 4.5 still

applies. Therefore our approach is to first develop a joint normal approximation to the

distribution of [Fe!, In u1] and then find the joint distribution of the initial log-strengths

[in u , In 1I, In t1] using the linear relationships in Eq. 4.5.

Analytical approximations of the first two moments of Fef! for 2D specimens were

derived in Chanter 2. Again notice that these momentc do not depend on the material

strength model. All one needs additionally are the mean value and variance of ln u and

the covariance between Fe!! and In u1 . To approximate these moments we use a first-

order second-moment (FOSM) approach similar to the one used in Chapter 3 for

deterministic strength. We discretize space into a Cartesian grid of points xi. Then we use

numerical perturbation analysis around the average log-modulus F to approximate in u

as a linear function of the log-moduli Fi = F(x). This gives

In u, ln E* + bi (Fi - (4.9)

where the sensitivity coefficients bi are the same as for deterministic strength; see Eq.

3.2. Using Eq. 4.9, we set F'i = Fi - F, approximate the F' field as was done for

deterministic strength, and find the mean value and variance of In u as
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Mln u, MlnE*p

2 2 1(4.10)
6 1nu, = oIn + Var bi F'11 + b1Cov[ln E*, F'i]

where Var[Z1 bi F'j] is the same as for deterministic strength. In analogy to the 1 D case,

the covariance terms cov[in E*, F'1 ] are approximated as

cov [in E* , F'] b4 p(r*) (4.11)

where b is the coefficient in Eq. 4.1 and r* is the distance of the 1th discretization point

from the notch tip. Equation 4.11 approximates cov [In * , F'*] as b4 , and, like for

deterministic strength, assumes in approximation that the spatial correlation function of

F' is the same as the correlation function of F. In numerical implementation, one may

limit the summations in Eq. 4.10 to values of i for which bi is significantly nonzero.

Finally, one needs the covariance between Feff and In u1 . As was noted in Section 4.3.1,

a good approximation to Eeff in the 2D case is the geometric average of E. Therefore, a

good approximation to Feff is the average F = iZ F where n is the number of

discretization points. Using F in place of Feff, the linearized expression of In u, in Eq.

4.9 gives

cov[Feff, In u1 ] ~ q b1) (n + b) E[p(R*)] - E[p(R12)] (4.12)

where the bi are the coefficients of the linearized sensitivity model in Eq. 4.9, b is the

coefficient of F(x) in Eq. 4.1, R* is the random distance between the notch tip and a

point uniformly distributed inside the specimen, R 1 2 is the random distance between two

points uniformly distributed inside the specimen, and E[] denotes expectation with
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respect to these random distances. The Supporting Information includes a detailed

derivation of Eq. 4.12.

4.3.3 3D Extension

The approach we have described for notched 2D specimens can be extended rather easily

to 3D blocks in which an initial imperfection induces a stress singularity at a known

location x*. Here we do not pursue this extension in detail, but simply indicate how

conceptually it can be made.

The reason why the extension is conceptually simple is that Eq. 4.5 still applies. Then the

key step is to find the second-moment properties of [Fef, In u1 ] in 3D. The second-

moment properties of Feff were derived in Chapter 2 and the mean and variance of In u,

and the covariance between Feff and In u, can be approximated using the same approach

as for 2D.

4.4 Ultimate Fracture Strengths

Clearly the normalized ultimate fracture strengths uu, lu, and tu are bounded from below

by the corresponding initial fracture strengths. To illustrate the relationship between these

two sets of quantities, Figure 4.2a shows scatter plots of in Xu vs In X, for X = u, 1, and

t. These simulation results are for a square specimen with side length L, spatial

correlation function p(r) = e- 8 r/L (the same correlation function applies to the log-

modulus F(x) and log-strength In E(x)), standard deviations F = OrnE = 0.3, and local

correlation coefficient p = -1. We choose a relatively short correlation distance ro =

L/8 to promote crack arrest and p = -1 to show an extreme case: when p = -1 and

Um 8 r = aF, the local log-strength and local log-modulus have opposite effects on local

crack propagation, creating conditions furthest removed from the deterministic strength

cases considered in Chapter 3. If one ignores the left censoring at In Xj, the mean value of
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In Xu varies approximately linearly with In X, and the scatter around the mean value may

be considered constant. These features were also observed for deterministic strength and

hold over a wide range of specimen size and random model parameters. However, in the

case with random strength the scatter around the mean is more symmetrical and a normal

regression model suffices (this is a simplification over the non-symmetrical Levy

regression model used in Chapter 3). Including left-censoring and using the above

observations, the final model for ln Xu is

In X - max[In Xj, .A(co + cl In X, , a)}. (4.13)

where N(m, a) is a normal random variable with mean value m and standard deviation

o. The parameters (co, c1 , a) vary with the size of the specimen, the characteristics of the

random modulus and strength fields, and the strength parameter considered (u, 1, or t).

An analysis of these dependences is made in Section 4.6.

Given a set of simulated (X1 ,Xu)-pairs, the parameters co, cl, and a are found by

maximizing the likelihood

I(cO, c1 , a) Oc 7 Fco+ci inxij,(ln X1i) 7 fco+ci inxj,a(ln Xue), (4.14)
Xj =XU X1.<XU.

where F and f are the normal cumulative distribution and density function, respectively,

with parameters listed in the subscript. From the regression model in Eq. 4.13, the

marginal probability density function of In Xu is obtained as

finXU(X) = fmaxu,N(cO +cl In x,,)}(x)fn x 1(x) du, (4.15)

where fin x,(x) is a normal density and fmax{u,V(co+ci In Xi,)l(X) is a left-censored normal

density, with a nonzero probability mass at u.
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As an example, the red lines in Figure 4.2a give the 10" , 5 0 th, and 9 0 th percentiles of the

fitted conditional distribution of In Xu given in X1, prior to censoring. Figure 4.2b shows

the model-based probability that crack arrest contributes to the ultimate strength.

P(ln Xu > In X 1), for X = u, I and t. This probability is significantly larger than in the

case of deterministic strength (dotted lines in Figure 4.2b). When only the modulus

varies spatially. crack arrest contributes to the ultimate strength only if the fracture

encounters a patch sufficiently stiff to overcome the increasing strain concentration.

When also the strength is random, crack arrest will contribute to the ultimate strength

both if the fracture encounters a sufficiently stiff or strong path and the probability

P(In Xu > In X1 ) thus increases.
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Figure 4.2: Square specimen. a Log-log scatterplots of the ultimate strength XU versus the initial strength

X, for X = u, 1, and t from 1000 Monte Carlo simulations. The log-modulus F(x) and log-strength

in Er(x) are normal with simple exponential spatial correlation function with correlation length ro/L =

0. 12S, standard deviations UF ~ aln= r = 0.3, and correlation p = -1 between F(x) and In E,(x) for any

given x. The red lines are fitted 10*', 50th, and 90 *' percentiles prior to censoring. b Probability P(InXu >

In X,) as a function of in X, based on the fitted models, for deterministic and random strength.

I
112

(a)

0 .5

-0.5

1 1.5

-0.5

1.5

0.5

-0.5
-I

''

-0.5.5



An important feature of Figure 4.2 is that the slope of the regressions is below 1,

indicating that crack-arrest has a compensatory effect on the ultimate strengths: the crack-

arrest effect is large when the initial strength is low and essentially nil when the initial

strength is high. The first condition occurs when the notch tip region is weak and fracture

is likely to propagate through stronger patches of material. The second condition occurs

when the notch tip region is strong and after crack initiation the fracture propagates in an

unstable way through the specimen. The smaller-than-I slope reduces the scatter of the

ultimate log-strengths relative to the initial log-strengths.

Another important feature of Figure 4.2 is that the probability P(ln Xu > In X1 ) is more

sensitive to ln X, for the displacement at failure uu than for the load l and toughness tu.

The reason is that the relative fracture resistance at the crack tip, now measured as a

combination of the local stiffness and strength, is more correlated with the fracture

initiation elongation ul than with the initial load 11 or toughness t1 . For considerations on

how different model parameters affect the regressions, see Section 4.6 and Part B of the

Supporting Information.

4.5 Validation of the Analytical Results

The analytical results of Sections 4.3 and 4.4 use various assumptions and

approximations. Here we validate them through comparison with Monte Carlo

simulation. In the I D case, following each simulation of the modulus and strength field

we solve the problem directly: we compute the effective stiffness Eeff as the harmonic

average of E(x) along the rod, record the modulus E* and strength E* at the notch tip,

and obtain the initial elongation at failure u, and the corresponding load I and toughness

t1 from Eqs. 4.4 and 4.6. In 2D we use a finite element model to obtain the fracture

initiation strengths and a spring network model to propagate the fracture and evaluate the

ultimate strengths. The numerical procedure for simulation, material discretization and

analysis is identical to that in Chapter 3 and is not repeated here.
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To exemplify. Figure 4.3 shows results for rods and square specimens under the same

stochastic parameter setting as in Figure 4.2: 6 F = ullEr = 0.3. p = -1, and p(r) =

e-r/L. Specifically, Figures 4.3a and 4.b show the empirical (blue. from 10,000 Monte

Carlo simulations) and analytical (red) distribution of the initial log-strengths for I D and

2D specimens. respectively. In both cases the analytical densities match very well the

histograms from simulation. Notably, the agreement in the 2D case is better than for

deterministic strength (see Figure 3.5). as randomness of the strength makes the

approximations of the linearized model in Eq. 4.8 less severe. Note that for this specific

parameter combination the I D load I is deterministic.

I n(u) 1n(I) ln(t)

LIII"' L
LA.J

-l 0 I 2 -l 1 1 2 -l I 2

Figure 4.3: Comparison of analytical fracture strength distributions (red) with histograms from Monte

Carlo simulations (blue). a Initial strengths for a rod, b initial strengths for a square plate, and c ultimate

strengths for a square plate. Simulation of 10,000 samples in cases (a,b) and 1,000 samples in case c.

Randomness of F(x) and in Er(x) is the same as in Figure 4.2.

Figure 4.3c shows similar comparisons for the ultimate strength parameters in the 2D

case. Due to the higher computational demand for propagating the fracture through the

specimen, the simulation sample size is reduced to 1,000. Again, the analytical
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distributions fit very well the empirical results. Validation analyses under different model

specifications produce qualitatively similar conclusions.

4.6 Parametric Analysis

Next we use the analytical results of Sections 4.3 and 4.4 to study how the distributions

of the strength vectors X, and Xu (X = u, 1, t) depend on the Euclidean dimension and

size of the specimen and the stochastic model of the modulus and failure strain. Since

Chapter 3 already made a sensitivity study for the case of deterministic material strength,

here we focus on the role of randomness of the failure strain and its correlation with the

elastic modulus.

4.6.1 Initial Strengths

First we analyze in some detail the initial strengths of I D rods and then comment on the

differences in the 2D case. In all cases the spatial correlation function is assumed to be

exponential, p(r) = e-r/ro, with correlation length parameter r0 .

For rods, Table 4.1 gives ordinary and log-moments of the initial strengths under the

limiting conditions of low-spatial correlation (rO/L « 1, Feff -) -uF deterministic) and

high spatial correlation (ro/L >> 1, Feff -> F* random). The moments follow directly

from Eqs. 4.4 and 4.6 and the limiting values of Feff noted above. These limiting cases

produce simple expressions and bracket results for intermediate degrees of spatial

correlation. The log-mean values E[ln X1] are not listed as they are related to the median

strengths X105 as E[ln Xj] = ln X1.,. The symbols next to the expressions indicate the

relative importance of variability in the modulus and the failure strain: = indicates

symmetrical effects of the two log-variances, E indicates higher sensitivity to the log-

modulus variance, Er indicates higher sensitivity to the variance of the log-failure strain,

and 0 denotes equal effects with opposite signs. As it is clear from Eq. 4.6, for the initial
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load 11 the two effects are always symmetrical. For the other two strength measures,

variability of the failure strain becomes more dominant as the spatial correlation ro/L

increases (compare right and left columns in Table 4.1). Below we sequentially discuss

the behavior of the mean and median values, log-variances, and log-correlations of the

initial strengths.

Mean and Median Values

An important question is whether, on average, the strengths and log-strengths of

heterogeneous rods are above or below their homogeneous values. This corresponds to

the mean and median of the dimensionless strengths X, being above or below 1.

Interestingly, the mean values tend to exceed I and the medians tend to be below 1.

Therefore, whether randomness is on average beneficial or detrimental depends to a large

extent on whether one considers the bulk strengths or their logs. Other notable features

are:

* The median strengths do not depend on the correlation p between the log-failure

strain and the log-modulus and all decrease as randomness of the failure strain

increases. Therefore, as judged through the median strengths, randoWness of the

failure strain has a deleterious effect. Increasing the spatial correlation ro/L does

not affect the load I, but reduces the median values of the other two strengths;

" The behavior of the mean values is more complex: the mean strengths increase

with ain. when p > 0 (except for E[u] when ro/L >> 1) and decrease when p <

0 (except for E[t1], which has a minimum for some non-zero ai1l.). Hence, in

general, both the sign and magnitude of the correlation coefficient p matter for the

mean strengths.
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Table 4.1: Values of the first and second moments of the initial logged strengths in X, and initial unlogged
strengths X, under the limiting conditions of low spatial correlation ro/L « 1 (the log-modulus and log-
strength are ergodic and the log-effective stiffness Fef is deterministic, Fef = -o) and high spatial

correlation ro/L >> 1 (the log-modulus and log-strength are spatially uniform and Feff = F*).

a = 1n E,- b = 0 F C = OFl ln E p = corr[In Er, F]

ro/ L < 1 ro/L >> 1

UI eb2+pab E 1 n/a

mean epab . pab

ea 2
+2b

2
+4pab E e a 2

+2pab Er

U, e- O.5a 2 +o.5b
2  0 e-O.5a 2  

Er

median I e-O.5a?-O.sb
2  e-o 5a2 -O.Sb

2

2-a r e-a2
-O.5b 2  

Er

Inu a2 + b2 + 2pab = a2  Er

var in 11 a2 + b 2 + 2pab = a2 + b 2 + 2pab

in t, 4(a2 + b2 + 2pab) = 4a2 + b2 + 4pab Er

In ul, 1 1 n/a 1fj+ C2 + 2pc Er

2 + pc
In ul, In 1 n/a + c 2 + 4pc Er

2 + c2 + 3pc
n ,n 1 n/a E

(1+c2 +2pc)(4+c2 +4pc)
Corr -__-- - -_--_- _ ----__ _ __ _ _ __ _ _ _ _

In u, Fef1  n/a p n/a

Inlh1,Fe1 1  n/a 1+c 2 +2pc E

2p + c+4
Inlti, Feff n/a V4+c 2 + 4pc ErI
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For 2D plates one cannot obtain simple analytical results. Numerical analysis shows that

the dependence of the mean and median strengths on lnlf and p is qualitatively similar

to the I D case. However, the quantitative effects are generally smaller. In particular, the

increases of E[X] with aE , for positive p are more modest than in ID. For example, in

the ergodic limit when p = 1 and uF =in Er = 0.5 the value of E[t] in 2D square

specimens increases by a factor of -2 as opposed to -5 in 1 D rods (-40% of

strengthening effect in ID is preserved in 2D). The values of E[u,] and E[11] are 20 -

40% lower in 2D. In the high-correlation limit the discrepancies between the one- and

two-dimensional values are smaller.

Log-variances

A second feature of significance is the variance of the log-strengths and the contributions

to it from the modulus, the critical strain, and their correlation p. Besides being important

in their own right, the log-variances are responsible for the difference between the mean

and median strengths noted above.

In the limit of very low spatial correlation, the effective stiffness becomes deterministic,

the strengths depend exclusively on the elongation at fracture initiation, and var[in u1] =

var[ln 11] = 1var[In t1]. If the modulus and failure strain are positively correlated (p >
4

0), randomness of the failure strain increases the variance of all the log-strengths,

whereas when p < 0 the log-strength variances increase or decrease depending on p and

the ratio UF/ulnfEr

Similar considerations apply under high spatial correlation, but the failure strain becomes

the more dominant contributor to the log-variances of the initial strengths (except for the

initial load, which does not depend on rO/L).

The log-strength variances of 2D specimens exhibit a qualitatively similar dependence on

p and OF/UlnE,, but their values are lower than for I D rods. For example, under very low

spatial correlation with p = 1 and qF =ln , = 0.5, the variances var[ln u1 ], var[ln 11],
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and var[ln t1 ] are respectively 1, 1, and 4 in ID versus 0.75, 0.75, and 1.5 in 2D. In the

very high correlation limit these variances become 0.25, 1, and 2.25 in I D and 0.5, 0.7

and 1.2 in 2D. The variances of the three log-strengths are more similar for plates than

for rods.

Los-correlations

Finally, we look at the correlation between initial log-strength pairs and between the log-

strengths and the log-effective modulus Fef. While Table 4.1 and the discussion below

apply to I D rods, results for 2D plates are similar.

As noted already, in the limit of no spatial correlation the effective stiffness is

deterministic and ln u1 is the only source of variability for all the strengths. This is why

all the log-initial strengths are perfectly correlated.

For high spatial correlation, the log-strength correlations exhibit a complex dependence

on p and c = UF/ lnEr. As Figure 4.4a shows, p is a lower bound to all the log-strength

correlations. Therefore, when p = 1 all the log-strengths are perfectly correlated. When

p < 1, the correlations between In ul and the other two initial log-strengths increase from

p to 1 as the standard deviation ratio c decreases from oo (no material strength variability)

to 0 (no elastic modulus variability). This behavior can be understood by considering that

for high spatial correlation the initial elongation u, depends only on the material strength

while 1I and t1 depend also on the log-modulus. In order for these correlations to be

significantly below 1, it must be that 1 > 1, D fln e,, and p «1. For the load 1I and
L

toughness t1 , notice that under either c = 0 and c = oo their uncertainty comes

exclusively from the modulus or exclusively from the material strength; hence under

these extreme scenarios their correlation is 1. As it is clear from Eq. 4.5, the correlation is

minimum for uF = U*nl (c = 1

Figure 4.4b shows the correlations between the log-strengths In X, and the log-effective

modulus Feff in the high spatial correlation limit (for very low-spatial correlation, Feff is
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deterministic). Since F is spatially constant, corr[ln u, , Feff] = corr[ln u, , F*] =

corr[ln * , F*] = p for all c. The correlation of Feff with either In 1I or In t1 approaches

1 as c -* oo and p as c -> 0. Therefore, the correlations of In X, with Fejj are

significantly below I only if p < 1. For In 11 and In t1 , an additional condition for low

correlation is that aF « n ulEr'

-- c = 0.1 C = I C = 0 -C = 1(9)

0.5

-0.5

- I
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Figure 4.4: Correlation coefficients of the log-strengths and log-effective modulus in ID rods with high

spatial correlation of the modulus and failure strain (ro/L >> 1). Correlation between a log-strength pairs

and b log-strength and the log-effective modulus for different p and select values of c = OF/orT Iner'

4.6.2 Ultimate Strengths of 2D Specimens

A key feature of heterogeneous 2D specimens is the increase in strength from crack

initiation to complete specimen severance as a result of crack arrest. As shown in Figure

4.2, the relationship between the initial and ultimate strengths can be quantified through

censored linear regressions of the type In Xu = max{InX,, co + clin X, + S}. where co
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and cl are constants and 6 is a normal random variable with zero mean and some

standard deviation T. Figure 4.5 shows the regression parameters (co, c1 , () estimated

from simulation experiments for the elongation at failure (X = u). Results for the other

two strength measures (load I and toughness t) are given in the Supporting Information,

Part B. The parameters in Figure 4.5 are for uF = 0.3 and all combinations of ro/L =

tO.125,0.25,1}, Uln Er = {O, 0.3, 0.7}, and p = {-1, 0,1}. The case oin Er = 0 (top row).

which corresponds to deterministic fracture strain, was already considered in Chapter 3.

Our main interest here is the sensitivity of the parameters to lnE and p.
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Figure 4.5: Parameters of the regression model in Eq. 4.13 for the elongation X = u of a square specimen.
F(x) and in Er(x) have exponential spatial correlation function with correlation length r0 /L =

{0. 12S, 0. 2S, 1}, standard deviations 9F = 0. 3 and O , (0, 0. 3, 0. 7) and correlation p (-1, 0, 1).
In each case, the parameters are fitted to 100 Monte Carlo simulations.

To interpret Figure 4.5. it is useful to note the effects of varying the parameters co, c1

and a one-at-a-time:
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* Increasing co increases the average crack-arrest effect Xu / X, (this and other

comments that follow technically apply to the log-strengths);

* Increasing cl makes the crack-arrest effect less dependent on the initial strength

X1. For example, when c1 = 0 the ultimate strength Xu is independent of X,

(except for the constraint XU > X1 ), meaning that the initial strength X, and

crack arrest effect Xu / X, compensate each other in determining Xu. At the other

extreme, for c1 = 1 the crack-arrest effect XU / X, is independent of XI;

* Increasing cy increases the dispersion of Xu /X1.

Figure 4.5 shows that, for the elongation u:

1. The dispersion a increases with alnE,, especially when ulnfr > UF. This is

true for all p. The increase is most pronounced when the spatial correlation

ro/L is low, as this condition produces high strength gradients along the

fracture path and therefore significant crack-arrest effects;

2. The slope c1 exhibits no clear dependence on p and some positive association

with crn E,. For large in Er, C1 is quite sensitive to the spatial correlation.

Specifically, for low ro/L the ultimate displacement uU and u, are nearly

independent, whereas for large ro/L the crack-arrest effect uu / u is nearly

independent of ul.

3. The regression parameter that is most affected by randomness of the failure

strain is the intercept co, which controls the average crack-arrest effect. Like

for a, dependence of co on u E, is strongest for low spatial correlation (small

ro/L). The correlation between the log-modulus and log-failure strain, p, has a

secondary effect on co.

In the Supporting Information we show the regression parameters of the strengths X = 1,

and t obtained by fitting the model in Eq. 13 to the same 100 Monte Carlo simulations

used for X = u in Figure 4.5. Qualitatively the regression parameters for X = 1, and t

exhibit the same dependencies on u E, and p as for X = u. As for deterministic strength,
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the regression intercept co is significantly smaller for X = I than for X = u and X= t,

indicating that also when the material strength is random, crack arrest has more

significant strengthening effects on the displacement and toughness than on the failure

load. Moreover, the regression slope c1 is larger for X = I than for X = u and X= t,

indicating a stronger negative correlation between ln(Xu/X,) and In X, for u and t than

for 1.

Low spatial correlation of the material properties has interesting strength implications. It

produces ultimate strengths Xu that are nearly independent of the strength at fracture

initiation X, (see low values of cl). Also notice that, when the spatial correlation is low

and rnlfEr is increased, the increase of the crack-arrest dispersion a is more than

compensated for by a large increase of the intercept co. The net effect is an apparent

healing induced by crack arrest, whereby ultimate failure is a less brittle and more

predictable failure mode than fracture initiation.

To better appreciate the effect of random failure strain on the ultimate strengths, Figure

4.6 compares the distributions of the normalized initial and ultimate log-elongation for

ro/L = 0.125, 6 F = 0.3, p = {-1, 0, 1), and 0 lnEr = {0, 0.3, 0.7} in square specimens.

The ultimate log-elongation is almost always above the homogeneous value and the mean

value of In uU increases with increasing einr. Notice that the correlation p has more

influence on the dispersion at initial than ultimate failure and that the log-dispersion at

ultimate failure is typically smaller than at fracture initiation (except for p = -1, a7 n1Er =

0.3). In general, Figure 4.6 confirms that crack arrest is a significant strengthening

mechanism for In uu and that the ultimate elongation is more predictable than the

elongation at fracture initiation. In Part C of the Supporting Information we make similar

comparisons for X = I and X= t. Those distributions exhibit similar qualitative

characteristics as for X = u. As for the case of deterministic strength, crack arrest has a

more pronounced strengthening effect on fracture elongation u and fracture toughness t

than on the fracture load 1.
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The results presented here are for square specimens. In rectangular specimens the crack-

arrest effect depends on the aspect ratio L 1 /L 2 and displays continuous variation between

the (zero) effect for rods and the effects noted above for square specimens.

I nitial - ultim ate

II L

p=0

-2 (I 2
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) =L
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Figure 4.6: Marginal distributions of the normalized initial and ultimate log elongation in u for ro/L =

0. 125, OF = 0. 3, p = (-1, 0, 1), and Gj, Er = (0, 0. 3,0. 7).

4.7 Conclusions

Here we have extended the probabilistic analysis of fracture strength to include the effect

of random fracture strain. Specifically, we have analyzed the distribution of the

elongation, load and toughness at fracture initiation and ultimate failure for notched I D

rods and 2D plates when YoungIs modulus E (stiffness) and the local fracture strain Er

(material strength) vary as isotropic lognormal fields. Since Chapter 3 considered the

case of random Young's modulus, emphasis here is on the role of randomness of the

material strength (measured by the log-variance o ? and the standard deviation ratio
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C = CLTn E/OcnEr) and the dependence between stiffness and material strength (measured

by p = corr[in Er , In E]). The approach is analytical or semi-analytical. This has distinct

advantages over purely numerical simulation, which is not suitable for sensitivity

analysis, reliability analysis or material design.

The main conclusions on the normalized fracture strengths (the fracture strengths divided

by their values when the modulus and failure strain are spatially homogeneous and equal

to their respective mean values) are as follows:

1. The median normalized strengths at fracture initiation are generally smaller than

1, decrease with increasing ci Er, and are not affected by p. By contrast, the mean

values are generally above 1. Therefore, whether on average a specimen is

weakened or strengthened by failure strain heterogeneity largely depends on

whether one reasons in arithmetic or log scale. The mean values depend on both

lEr and p. When p > 1, heterogeneity of the material strength tends to increase

the mean values at fracture initiation. The opposite is true when p < 0;

2. Like the mean values, the log-variances of the initial strengths vary with OinE, p,

and the specific initial strength considered (u1 , 1I, or tj). Similar trends apply to

2D plates, but the log-variances are smaller than for 1 D specimens.

3. The correlation coefficients between log-strength pairs and between the log-

strengths and the log-effective modulus are generally close to 1. These correlation

coefficients can be significantly below I only when p « 1. Additional conditions

for low correlation depend on the pair of variables considered; see for example

Section 4.6.1 for I D rods.

4. In 2D specimens, increasing the randomness of the material strength makes crack-

arrest events more frequent and increases the ratio Xu / X, between ultimate and

initial strengths.

5. When the modulus and material strength have low spatial correlation, randomness

of the material strength can significantly increase the effect of crack arrest,

causing ultimate failure to be a more predictable and less brittle failure mode than

fracture initiation.
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Based on these results, one can suggest guidelines for material design that depend on the

specific design objectives. For example, if there is concern with the reliability and

median value of the initial strengths, the heterogeneity in strength should be minimized

and, when it cannot be avoided, should be negatively correlated with the local modulus.

On the other hand, if the ultimate strengths are the main concern, randomness of the

strength is beneficial and the correlation p with the local modulus is less important.

Moreover, high spatial correlation of the local strength and modulus is deleterious to the

ultimate strengths, whereas low spatial correlation can be used to promote crack arrest.

In bone, the local heterogeneity due to the variable degree of mineralization is widely

recognized as being a key contributor to its remarkable fracture mechanical properties.

Notably, the degree of mineralization is highly correlated with both local strength and

stiffness and varies spatially over very short length scales (on the order of nano- and

micrometers). These characteristics of the bone microstructure are consistent with what

we have highlighted as favorable design specifications for the ultimate strengths.

An imnortant future extensirn ic t connsider materials with non-!ognorrmna heterogeneity,

in particular materials composed of a matrix and single or multi-phase inclusions.

Materials in this broad class differ by the geometry of the inclusions (laminae, filaments,

etc.), the mechanical properties of the matrix and the inclusions, and the possible

presence of interface weaknesses. We are currently expanding our theoretical analysis to

materials with some of these characteristics.

126



Supporting Information

Part A: Derivation of Covariance in Eq. 4.12

To obtain the covariance in Eq. 4.12, we use the linearized model in Eq. 9 to obtain

cov[ln Eeff,, lnU] ~cv [n, bi (Fi - F) +cov[,nE*] (4.A

The first term in Eq. 4.AI is

cOv [, bi (Fi -) = bi cov[F, F] - b) a. (4.A2)

The covariance cov[F, F] on the right hand side of Eq. 4.A2 is given by E[p(Ri)],
n

where p (r) is the spatial correlation function of F and Ri is the random distance of the ith

discretization point from a point uniformly distributed inside the specimen. Since the

coefficient bi is significantly nonzero only for points close to the notch tip x*, one may

simplify the calculations by replacing E[p(Ri)] with E[p(R*)], where R* is the random

distance of a uniformly distributed point from the notch tip. The variance a; in Eq. 4.A2

is given by a E[p(R12 )], where R1 2 is the random distance between two points

uniformly and independently distributed inside the specimen.

The term cov[F,In(E*)] in Eq. 4.AI is given by

cov[,ln E*] = bcov[F*,7] = bo E[p(R*)]. (4.A3)

Substitution into Eq. 4.AI gives the expression in Eq. 4.12.
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Part B: Crack-Arrest Effects in 2D Plates

In the paper, we found that each log-ultimate strength In Xu can be related to the

corresponding log-initial strength ln X, through a censored linear regression model with

normal residuals; see Eq. 4.13. Figure 4.2 gives example regressions and Figure 4.5

shows how for a square specimen the regression parameters for the failure elongation

X = u vary with selected parameters of the stochastic model (the log-strength standard

deviation 1l E,, the correlation p between the log-modulus and log-material strength, and

the spatial correlation distance ro/L).

Figures B1 and B2 show similar regression parameter plots for the other two measures of

fracture strength, the load at failure X = 1 and the fracture toughness X= t. The

parameters are obtained by fitting the regression in Eq. 13 to the same 100 Monte Carlo

simulations that were used for the elongation X = u. Qualitatively the regression

parameters for X = 1 and t exhibit the same dependencies on Uln E, and p as for X = u.

Notably, as was the case for deterministic strength, the regression intercept co is

significantly smaller for X = 1 than for X = u and X= t, indicating that also for random

strength crack arrest has less of a strengthening effect on the failure load than it does on

elongation and toughness. Moreover, the regression slope c1 is larger for X = 1 than for

X = u and X= t. This indicates that for the latter strengths there is a stronger negative

correlation between the crack-arrest effect ln(Xu/X) and the initial strength ln X1 .
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Figure B2: Same as Figure BI for the toughness X = t.

129

/ = 11

r /1



Part C: Initial and Ultimate Strength Distributions

Figures C1 and C2 compare marginal distributions of the normalized initial and ultimate

log-load and log-toughness for ro/L = 0.125, uF = 0.3, p = {-1, 0, 11, and ulnlE =

{0, 0.3, 0.7) in a square specimen. These distributions exhibit similar qualitative

characteristics as for the fracture elongation X = u in Figure 4.6. As in the case of

deterministic strength Chapter 3. crack arrest has a more pronounced strengthening effect

for the elongation u and toughness t than for the load I. Also note that, like for X= u, the

log-distributions at ultimate failure

failure.

are less dispersed than the log-distributions at initial
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Figure Cl: Distributions of the normalized initial and ultimate
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p =

In I
log-failure load In I for ro/L = 0.125, OF

130



initial -- ultimatc

r'

1 I1

ilt=

-2 () 2
In t

-2 () 2
In1 I

Figure C2: Same as Figure CI for the toughness X = t.
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Chapter 5: The Effective Stiffness of Random

Checkerboard Plates

The research and review presented in this chapter will be published in:

L. S. Dimas, D. Veneziano, M.J. Buehler, The Effective Stiffness of Random

Checkerboard Plates, In submission, 2015.

We investigate the elastic bulk stiffness Eeff of two-dimensional checkerboard

specimens in which square tiles are randomly assigned to one of two component phases.

This is a model system for a wide class of multi-phase polycrystalline materials such as

granitic rocks and many ceramics. We study how the bulk stiffness is affected by

different characteristics of the specimen (size relative to the tiles, stiff fraction, modulus

contrast between the phases) and obtain analytical approximations to the probability

distribution of Eejj as a function of these parameters. In particular we examine the role

of percolation of the soft and stiff phases, a phenomenon that is important in

polycrystalline materials and composites with inclusions. In small specimens, we find

that the onset of percolation causes significant discontinuities in the effective modulus,

whereas in large specimens the influence of percolation is smaller and gradual. The

analysis is an extension of the elastic homogenization methodology presented in Chapter

2 which was devised for blocks with lognormal spatial variation of the modulus. Results

are validated through Monte Carlo simulation. Compared with lognormal specimens with

comparable first two moments, checkerboard plates have more variable effective

modulus and are on average less compliant if there is prevalence of stiff tiles and more

compliant if there is prevalence of soft tiles. These differences are linked to percolation.

5.1 Introduction

In Chapter 2 we considered the stochastic homogenization of n-dimensional rectangular

blocks (n = 1, 2, or 3) in which Young's modulus E(x) varies spatially as an isotropic
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lognormal random field. We expressed the log-modulus field F(x) = In E(x) as the sum

of the spatial average, marginal fluctuations along the coordinate axes ("main effects"),

and interactions of order 2, ... , n ("ANOVA decomposition"). Then we obtained, exactly

or in approximation, the random effects of the individual ANOVA terms and

multiplicatively combined the component effects to approximate the joint distribution of

the bulk elastic tensor of the block. A defining feature of this approach is that the

contributions from the various ANOVA terms are analytically quantified. This feature is

important when making sensitivity and reliability analyses and when designing or

optimizing heterogeneous materials.

While some heterogeneous materials at certain length scales, like bone, nacre and

concrete, display continuous spatial variation of their mechanical properties and may be

represented through a lognormal model [106-109], other important classes of composites

(like materials with inclusions or granular assemblies) have multimodal modulus

distribution [4, 25, 110]. For example, random stiff inclusions are often used in

reinforced polymers and multi-phase Voronoi tessellations have been used to represent

collagen [111], granitic rocks [112], and other polycrystalline materials [113, 114]. It

would be of interest to extend the homogenization approach of Chapter 2 to these classes

of discrete heterogeneous materials.

A novel phenomenon in the homogenization of multi-phase materials relative to the

lognormal case is percolation: when the softer phases percolate transversally to the

direction of stretching, the body is very compliant, whereas longitudinal percolation of

the stiffer phases causes an increase of the bulk modulus.

Here we study the elastic homogenization of what is arguably the simplest multi-phase

granular material: a two-dimensional specimen partitioned into square tiles where a soft

or stiff phase with known elastic modulus is randomly assigned to each tile. We call these

"checkerboard materials", as depicted in Figure 5.1. While they are seldom found in

nature, checkerboard materials allow one to investigate the role of percolation in a simple

setting and constitute a model system for more complicated granular structures. Their
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modulus distribution is binary and very different from a lognormal distribution.

Therefore, checkerboard materials are a convenient test bed to gauge the generality of the

ANOVA decomposition approach and make inroads into the complexities of multi-phase

systems.

0

0

,4

1. 4

XI

Figure 5.1: Illustration of checkerboard systems and boundary conditions. This is a model system for
several polycrystalline systems such as granitic rocks and ceramic materials.

Checkerboard materials have received considerable interest in the heat and electron

transport literature [115-119] and in percolation [119-122]. By contrast, we are not aware

of any previous studies on elastic homogenization.

In extending the ANOVA decomposition technique to checkerboard materials, we

address two related sets of questions:

1. How does the bulk modulus in tension depend on the various ANOVA

components? What are the roles of percolation of the soft and stiff phases, the size

of the specimen relative to the tiles, and the stiffness contrast between the phases?

This line of inquiry into the factors that affect the bulk stiffness of checkerboard

materials is pursued in Section 5.2;
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2. Another set of questions address the distribution of the effective modulus Eeff:

How can one approximate the distribution of Eeff? How does the distribution

vary with the main controlling factors (the size of the specimen, the mean stiff

fraction, and the stiffness contrast between the phases)? Section 5.3 builds on the

findings of Section 5.2 to address these questions.

Section 5.4 uses Monte Carlo simulation to validate the analytical approximations of

Sections 5.2 and 5.3. Section 5.5 compares results for checkerboard materials with those

for lognormal modulus distribution with similar second moment properties. Section 5.6

summarizes our main contributions, highlights the key findings, and proposes directions

for future research.

5.2 Factors that Influence the Effective Stiffness and the Role of

Percolation

Consider a square specimen of side length L, partitioned into L2 unit square tiles. Each

tile is independently assigned to the stiff phase with probability p and the soft phase with

probability 1 - p. Therefore the number of stiff tiles N has binomial distribution and the

stiff fraction f = N/L2 has mean value p and variance p(l - p)/L2 . Young's modulus E

is 1 inside the soft tiles and eA with A ;> 0 inside the stiff tiles. The specimen is stretched

in the x1 direction, with zero tractions along the upper and lower sides and no shear

stresses along the right and left sides; see Figure 5.1. We are interested in the distribution

of the effective modulus Eeff for given {L, p, A}.

A probabilistic analysis of Eeff is made in Section 5.3. In this section we control f rather

than p and focus on understanding the roles played by the specimen size L, the stiff

fraction f, the log-stiffness contrast A, and different components of the spatial variation

of the modulus (see below for a definition of these components). For this purpose it is

convenient to work with the log-modulus field F(x1 , x2) = In E(x1 , x2) and log-effective
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modulus Feff = In Eeff. Notice that F = 0 inside the soft tiles, F = A inside the stiff

tiles, and Feff is a number between 0 and A.

5.2.1 Components of F(x1 , x 2) and Their Effect on Feff

To understand how the log-modulus field F(x1, x2) affects Feff, we make the ANOVA

decomposition

F(x1 , x 2 ) = F + E1 (x1 ) + E2 (x2 )+E 12 (X 1 , X 2 ) (5.1)

where F is the average of F over the specimen, E1 (x1) and E 2 (x 2 ) are the main effects of

x1 and x2, and E12 (X 1, X2) is a second-order interaction term. The E terms in Eq. 5.1

average to zero over each of their arguments. They are obtained from F(x1, x2) and the

averages T, T1 (x1 ) = f F(xj, x2)dx 2, and T2(x2) = f F(x1,x 2)dx1 as

E1(x1) = F1(x1) - F,

E2(X2)= F2 (x2) - F, (5.2)

E1 2 (x1 ) = F(x1 , x 2 ) - F1 (x1 ) - F 2 (x2 ) + F.

This is the same decomposition that was used in Chapter 2. An illustration of the

decomposition for checkerboard specimens with side length L = 4 and 32 is shown in

Figure 5.2.

By deleting the E12-term in Eq. 5.1, one obtains the first-order approximation

F1(x1, x 2) = F + E1(x1) + E2 (x2) (5.3)

The lower-right panels in Figure 5.2 show examples of this approximation. Note that in

large specimens F1 (x1, x2 ) is nearly uniform, whereas in small specimens it is highly
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variable. Equation 5.3 corresponds to decomposable modulus fields in which E(x1, x2) is

the product of a function of x1 and a function of x 2 . For checkerboard materials E(x1, x2)

cannot be decomposable (E 12 cannot vanish), except in the limiting case of porous

materials with zero soft-phase modulus. By contrast, other heterogeneous materials

including those with lognormal modulus can have a decomposable E field.
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Figure 5.2: Examples of ANOVA decomposition of the log-modulus field. a {L, p, A} = (4, 0. 5, 1) and b

fL, p, A) = {32, 0. 25, 1). F is the spatial average of the log-modulus field, El and E2 are the marginal

fluctuations in the xj- and x2 -direction, respectively, E 12 is the second order fluctuation of F, and F1 =

F + El + E 2 is the first-order approximation of the modulus field F.

Our strategy is to first calculate the log-effective modulus Frff,1 under the first-order

approximation in Eq. 5.3 and then modify Feff,1 to account for the second-order

138

(a ) C' x, -v,

I; LT.xj

(b)

0 .8

0.6

0.4

'1

-0.4



fluctuation term E12 (X1, X 2 ). One can easily obtain Feffj since E1 (x1) and E2 (x 2 )

contribute additive terms equal to the log of the harmonic average of e'l(xi) and the log

of the arithmetic average of e12(X2), respectively. Therefore, denoting by (g(X))q =

f [g(x)]dx) the q-norm of a function g(x) in [0, L], Feff, is given by

Feff,l = ln(E(x1,x 2))0 + ln(eEl(xI))_1 + ln(e E2(X2)), (5.4)

where the first term on the right hand side of Eq. 5.4 is the spatial average F. An

interesting feature of Eq. 5.4 is that the first-order fluctuations El1(X1) and E2 (x 2 ) do not

interact, in the sense that their effects on Fefff are additive and independent.

The next step is to modify Eq. 5.4 to account for the interaction term E1 2(X 1, X2 ). This is

a difficult task because:

1. Even the direct effect of E1 2 , by which we mean the effective log-modulus under

F(x1,x 2) = E1 2(X 1, X2), cannot be found analytically, and

2. While the first-order fluctuations El and E2 do not interact with each other, E12

interacts with El and E2 ; therefore it is not sufficient to find the direct effect of

E12. The basic reason for the interaction is that the effective modulus depends on

the geometry of the soft and stiff phases (in particular how the soft and stiff tiles

connect to form clusters and whether the clusters percolate) and these geometric

features depend in a complicated way on all three E terms.

The approach we take is to add to Feff,l a term Feff,12 that includes the direct effect of

E1 2 as well as the interactions. For any simulated log-modulus field F(x1 , x 2), we extract

the fluctuations E1 (x1 ) and E2 (X 2 ) using Eq. 5.2 and obtain Feff,12 by subtracting Feff,1

in Eq. 5.4 from the numerically calculated effective log-modulus Feff.
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To ease interpretation and compare with the first-order effects in Eq. 5.4. we express

Fejj,12 as ln(g(x1,x 2 ))q 2 , the log of some q1 2 -norm of some function g related to

F(x1 , x 2 ). The obvious choice Ing = E1 2 has two drawbacks: 1. Due to the interaction of

E12 with El and E2, no q12 -norm of such function is an accurate predictor of Fejj,12, and

2. The use of E1 2 is not convenient for the probabilistic analysis in Section 5.3. After

consideration of various alternatives, we have chosen Ing = F - F. In large specimens,

F - F = E1 2 . In small specimens. F - F results in a more accurate and analytically more

convenient predictor of Feff,12 than E1 2 . For example, Figure 5.3 compares the values of

q1 2 that match the observed log-moduli Fef,12 in simulated specimens with L = 4, = 4

and variable f, for the two g functions mentioned above. While the trend with f is

similar, the choice In g = F - F produces a predictor with lower dispersion.

V /F >

I I

0.5 (0 -

(112 (/12

0 0 5 I 0 0.5

Figure 5.3: Comparison of q 12 values for In g = F - F and in g = E12 when L = 4, A = 4 and the stiff

volume fraction f progressively increases from 0 to 1 in 1/16 increments.

With these considerations, we express the effective log-modulus as

Feff = ln(E(x1 , x 2 ))O + ln(eE1(X1)1 + nE2(X2 + In(eXX2 )q 1 2  (5.5)

Notice that q 12 in Eq. 5.5 is random (see scatter in Figure 5.3). with a distribution that

depends on the specimen size L, the stiff fraction f, and the log-modulus contrast A. A

model for the distribution of q1 2 is presented in Section 5.2.3.
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The relative importance of the various terms in Eq. 5.5 depends to a large extent on the

size of the specimen L. To illustrate, we consider a small specimen (L = 4) and a large

specimen (L = 32), fix the log-modulus contrast A to 4, and through numerical

simulation find the contribution of each term on the right hand side of Eq. 5.5 as the stiff

volume fraction f progressively increases from 0 to I in 1/16 increments. Notice that for

L = 4 a 1/16 increment of f corresponds to adding just one stiff tile at a time, whereas

for L = 32 the same increment corresponds to adding 64 stiff tiles (in large specimens,

adding one stiff tile at a time would be computationally very onerous). For each specimen

size, we simulate 10 independent stiff-phase sequences. The results are presented in

Figure 5.4 using the following notation: El and E2 denote the main effects of E1(x1) and

E2 (X2 ), E1 2 is Feff under F(x1, X 2 ) = E 1 2 (X 1 ,X2 ) (this is the direct effect of E 12 (X 1 , X2)),

and "int" is the contribution to Fejj from the interaction between the main effects and

the second-order fluctuations. Therefore, the sum "E12 + int" corresponds to the last term

in Eq. 5. Next we comment in some detail on Figure 5.4.

Small Specimen (L = 4)

Noticeable features of Figure 5.4a are:

* In the limiting cases f = 0 and f = 1, the modulus is spatially uniform; therefore

all the E terms in Eq. 1 vanish and so do their effects on Feff. The effects of the

E terms are maximum and most variable for f around 0.4 - 0.5;

* The contributions to Feff from the different l and int terms have similar orders

of magnitude. In particular, it would be inaccurate to ignore the interaction effect;

and

* Feff and its components are not smooth functions of f, but display significant

discontinuities and variability from simulation to simulation.

The jumps in the Feff (f) curves are related to percolation, a phenomenon to which we

devote a separate subsection below.
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Figure 5.4: Contribution of various ANOVA components to the total effective log-stiffness Feff for a L =
4 and b L = 32. In each case A = 4. Through numerical simulation we find the contribution of each term
on the right hand side of Eq. 5.5 as the stiff volume fraction f progressively increases from 0 to 1 in 1/16
increments. See text for an explanation of the different components.

Large Specimens (L = 32)

In large specimens. the component contributions to Feff are very different; see Figure

5.4b. When L = 32, the main effects are negligible and E 1 2 is very close to F(x1 , x 2 ) -

F. The effective log-stiffness is determined almost entirely by the spatial average F, with
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a secondary contribution from E1 2 . The contributions from El and E 2 are small and

opposite in sign and virtually cancel each other.

Another important feature of large specimens is that the dependence of Feff on the stiff

fraction f is smooth and nearly identical in different simulations. The reason is that, as

far as the effective modulus is concerned, specimens of size L = 32 are already close to

the ergodic limit L - oo under which Feff becomes a deterministic function of f and A.

The absence of significant discontinuities in the Feff (f) relationship is an interesting

feature of elastic percolation, which we address below.

5.2.2 The Role of Percolation

An important stiffening mechanism in checkerboard materials is the formation of

percolating stiff clusters. As was noted above, the effect of percolation changes

drastically with the specimen size: in small specimens Feff displays large discontinuities

at certain values of the volume fraction f, whereas in large specimens Feff is a smooth

function of f; see top-left (Feff) panels in Figures 5.4a and 5.4b. To better understand

this phenomenon, we consider the formation of two types of percolating clusters:

* Clusters made of only nearest neighbors (tiles that share one side). Using standard

percolation notation, e.g. [122], we refer to this as NN-percolation (NN for

nearest-neighbor); and

* Clusters formed by nearest and next-nearest neighbors, hence by tiles that share

either one side or one vertex. We refer to this as (NN + NNN)-percolation (NNN

for next-nearest neighbor).

Other neighborhood definitions are possible, but the two mentioned above are the most

influential ones on the effective stiffness of checkerboard specimens. As is well known

[122], in square lattices the (NN + NNN) and NN percolation thresholds are fNN+NNN

0.407 and fNN = 0.593, respectively.
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Percolation in Small Specimens (L = 4)

Figure 5.5 shows how Feff evolves with f in three different simulations. Also shown are

the first (NN + NNN) and NN percolation clusters, respectively highlighted in blue and

red (the same color coding identifies the occurrence of these clusters in the plots of Fejj

versus f). The vertical dashed lines in the Feff plots correspond to the theoretical

percolation thresholds 0.407 and 0.593. Stiff tiles are in black. The gray tile is the last

stiff tile added to form each cluster. Notice that for the first simulation the NN and

(NN + NNN) percolating clusters coincide.

One can see that for small specimens NN-percolation is a significant stiffening

mechanism that produces large discontinuities in the Feff(f) curve, whereas (NN +

NNN)-percolation has a less dramatic effect. Also notice that for the present log-modulus

contrast A = 4, the value of Feff at NN-percolation is around 3 when the cluster

includes a full row of stiff tiles acting as a bar in tension (first two simulations) and

around 2.5 if the cluster includes en-echelon connections (last simulation). In the latter

case, as f increases and "longitudinal bars" form, the effective modulus experiences

significant additional jumps; see arrows in the lower-right panel of Figure 5.5.

A complementary perspective is obtained by starting from a completely stiff material

(f = 1) and progressively decreasing f until transversal (NN + NNN) and NN

percolating clusters of the soft-phase occur. The two perspectives are equivalent, in that

the formation of (NN + NNN) and NN percolating stiff clusters in the longitudinal

direction respectively coincides with the formation of NN and (NN + NNN) soft

percolating clusters in the transversal direction.

The large jumps associated with percolation of the stiff and soft phases separate two

branches of the Feff(f) curve: a lower branch where transversal soft percolation occurs

and an upper branch where longitudinal stiff percolation occurs. The value of f at which

the transition takes place is random, but often close to the theoretical percolation
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thresholds of 0.407 and 0.593. These features of small specimens become more

pronounced as A increases or L decreases.
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Figure 5.5: Three simulations of Feff(f) for systems with L = 4 and A = 4. The first two columns show

the first (NN + NNN) and NN percolating clusters highlighted in blue and red, respectively. The points

along the Fejf(f) trajectory at which these percolating clusters form are shown with matching colors. The

vertical dashed lines indicate the theoretical percolation thresholds.

Percolation in Large Specimens (L = 32)

Figure 5.6 is analogous to Figure 5.5, but refers to a large specimen with L = 32. In this

case, for given f. Feff is insensitive to the geometric arrangement of the stiff tiles. This is

why we show the function Feff(f) for only one realization. Fff varies smoothly with f

and percolation has a gradual stiffening effect with no well-defined threshold. The jumps

at the onset of NN and (NN + NNN) percolation are barely visible. To our knowledge

this feature of large-scale percolation has not been reported for other physical transport

phenomena like electric conductivity and fluid or heat flow. This is partly because
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previous studies of percolation in checkerboard systems have focused on the case of

infinite material property contrast. when one of the phases is non-conducting. It is likely

that also the difference between the elastic problem and other flow problems plays a role.

For example, in the elastic case with large L and A the effective modulus depends on the

degree of static determinacy of the stiff percolating cluster under the given boundary

conditions. This degree increases gradually as more stiff tiles are included.

NN+NNN NN

~. .. ...... .4

LL.
0 1

00

0) 0.5 1

Figure 5.6: Same as Figure 5.5 for L 32, the F (f) plots are almost deterministic; hence we display

only on simulation.

5.2.3 Modeling the Exponent q 1 2 in Eq. 5.4

To complete the model of Feff one needs to estimate the averaging exponent q 1 2 in Eq.

5.4 as a function of {L, f, A). The lower-right panels of Figure 5.4 show how q12 depends

on f for a log-modulus contrast A = 4 and specimens of size L = 4 and 32. Since q12

exhibits a far more regular behavior for L = 32 than for L = 4, we begin by seeking a

model for (q 1 2 1L = 32,f, A), applicable to large specimens.

Using the same format as Figure 5.4, Figure 5.7a shows simulations of the function

q1 2 (f) for L = 32 and A = t1,2,3,4). An interesting first observation is that, for all A.

q1 2 exhibits near-linear dependence on f. This is in sharp contrast to the constant value

q12,LN = -0.25 in the case of lognormal modulus [36] and the constant values of q for

the first three terms in Eq. 1 (q- = 0 for F, q, = -1 for E1 (X 1 ), and q2 = 1 for E2 (X 2 )).

A qualitative explanation is that when f is small the soft phase percolates transversally

and q 1 2 is negative (softening effect). whereas for high f the stiff phase percolates
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longitudinally and q 1 2 is positive (stiffening effect). The horizontal dashed lines in

Figure 5.7a indicate the value qLN,12 = -0.25. For all A (and L), the present q 12 values

are close to -0.25 at approximately f = 0.5 (for this value of f the second-order term

E1 2 has symmetrical distribution around zero, which is also the case when F is normal).

Another feature of Figure 5.7a is that the slope of q12 (f) is nearly proportional to A.

Using least-squares fitting, we obtain the following model of E[q 12] for L = 32:

E[q 12 |L = 32,f,A] = -0.25 + 0.20A(f - 0.5). (5.6)

Equation 5.6, with the constant 0.20 replaced with a suitable function c(L), is an accurate

model for E[q 12] over all specimen sizes. Least-squares fitting to the simulations in

Figure 5.7b for L = {4,8,16,32) gives the c values in the left panel of Figure 5.7c. Using

c(L) = (0.18 + 05) (red curve in left panel of Figure 5.7c), we obtain the final model

E[q 12 L, f,A] = -0.25 + 0.18 + 0.5)A(f - 0.5). (5.7)
L)

The black straight lines in Figure 5.7b are plots of this function.

In small specimens, one must also model the scatter of (q 121 L, f, A) around the mean

value. As Figures 5.4 and 5.7b show, the scatter depends on L, but is insensitive to f and

A. Also, the scatter vanishes in the large-specimen limit L -> oo. The right panel of

Figure 5.7c shows empirical standard deviations uq1 2 from the simulations in Figure

5.7b and the least squares hyperbolic fit

0.74
q12 LA = 0 ' (5.8)

L

The distribution of (q 1 21 L, f ,A) may be taken as normal.
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Figure 5.7: a Dependence of q 1 2 on fs for L = 32 and A = [1, 2,3,4}. b Dependence of q 12 on f for L =

[4, 8, 16, 32) and A = [1, 2, 3,4} along with regression lines from Eq. 5.7. c Values of c(L) in Eq. 5.6 for

L = [4,8, 16, 32} and values of aq 2 (L) for L = [4,8, 16, 32). with least squares fits.
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5.3 Probability Distribution of the Effective Modulus

Next we seek an analytical approximation to the distribution of Feff for given specimen

size L, stiff-phase probability p, and log-modulus contrast A. Uncertainty on

(EeffIL, p, A) is contributed by two sources: variability of the stiff fraction f given p,

which is easy to quantify, and variability of the spatial arrangement of the stiff tiles given

f, whose effect on Eeff is much more complex.

The approximation we propose is based on the assumption that the four terms on the right

hand side of Eq. 5.5 have independent normal distributions. The assumption of normality

is justified by the fact that these terms are obtained through averaging operations on the F

values. By virtue of the central limit theorem their distribution is close to normal, at least

for large specimens.

In practice, one can just replace the binary log-modulus field F(x1 , x 2 ) with a normal

random field having the same first two moments and then use the method presented in

Chapter 2 for lognormal modulus fields. The mean value mF and variance oF are

mF = F0 + pA,

2 A 2  (5.9)
UF =.p(1 - p).

A complicating factor is that the correlation function of F is non-isotropic and non-

homogeneous, whereas the analysis in Chapter 2 considers isotropic fields. We make an

isotropic representation of F by randomly translating and rotating the tile mesh. Random

translation produces a homogeneous field whose correlation function is obtained by

noting that the log-moduli at two points separated by distance r in some direction 9 are

identical if the points belong to the same tile and independent if the points are in different

tiles. It follows that the correlation PF(r, 0) equals the probability that the points belong

to the same tile, which is also the overlap area between a unit square and the same unit

square translated by (r, 9). Simple geometric reasoning gives
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pF (r,)

_(1 - Ircos6l)(1 - Irsin l), for Ircosel < 1 and Irsinel < 1 (5.10)
=. 0, otherwise

Finally we obtain the isotropic approximation by randomly rotating the field, which

corresponds to averaging pF(r, 9) over 0:

pF ) 2 f pr/2 ,6)(d,.0(5.11)
7r0

The accuracy of this and other approximations is verified in Section 5.4 using Monte

Carlo simulation. An alternative isotropic approximation for the correlation function is

obtained by replacing the unit square tiles with unit-area discs, i.e. by using the overlap

area between two such discs with centers at distance r. The results from the two

approaches are nearly identical.

The normal approximation method we have just described works well for the first three

terms in Eq. 5.5, i.e. it gives an accurate estimate of the distribution of Feff,l in Eq. 5.4.

For the contribution from E12 (last term in Eq. 5.5), the analysis in Chapter 2 assumed a

deterministic effect derived under large-specimen conditions, but this is not satisfactory

for checkerboard specimens on two accounts: 1. Also for large checkerboard specimens,

the deterministic effect of 12 differs from the case of lognormal modulus (recall from

Section 5.2 that in the lognormal case the large-specimen value of q1 2 is -0.25, whereas

for checkerboard materials q 1 2 depends in important ways on the stiff fraction and the

modulus contrast); 2. For small specimens and intermediate values of p, the value of q1 2

in checkerboard materials is highly variable due to uncertainty on the presence/absence of

different percolation clusters. Therefore, for the last term in Eq. 5.5 we develop a

different stochastic approximation, as explained below.
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As shown in Eq. 5.5, in checkerboard materials the additive effect of E1 2 on Fejt may be

written as ln(eF(x1,X2)-F)q 2, where [F(x1,x 2) - F] and q12 are random. In the

Supporting Information, we use properties of the binary field eF(xl,x2)- to express this

contribution in terms of the control parameters f and A and the random variable q1 2 ,

F(x,x2)-F -fA + 1nf2 + (1 - f)], q12  (5.02)ln(e ' )q 1 2 :-I q12  0 q1 o(.2

Then we linearize Eq. 5.12 around the mean values of q1 2 and f and use the fact that q12

and f may be taken as normal with moments given in Eqs. 5.7 and 5.8 and in the

beginning of Section 5.2 to obtain a normal approximation to the distribution of

in(e F(X1,X2-F)q 1 2 . The approximating distribution of Fetj is normal, with mean value

and variance given by the sum of the mean values and variances of Feff,1 and

ln(e F(X1,X-F q 1 2.

5.4 Numerical Validation

We validate the analytical results using Monte Carlo simulation. For each simulated

modulus field (spatial distribution of stiff and soft tiles), we find the bulk modulus with a

finite element model developed in MATLAB. Section 5.4.1 describes the numerical

model and Section 5.4.2 compares numerical results with theoretical predictions.

5.4.1 Numerical Model

The difficulty of numerically analyzing checkerboard systems with large property

contrast has been widely reported and studied in the context of electric conductivity and

heat conduction [123-125]. The problem arises mainly when stiff (conducting) tiles meet

at a corner: when A is large, the stiffness of the soft tiles is negligible and a singularity

arises with a finite load transferred through a point [123]. Various specialized meshing

151



schemes have been proposed to produce accurate results for conductivity contrasts as

large as 107 [123, 124]. While powerful, these approaches are complicated and are not

pursued here. Rather, we limit the modulus contrast to a factor of about 50 (A = 4) and

overcome the challenge of large localized stresses by using refined finite-element

discretizations.

For A = 4, numerical results accurate to within 2% are obtained by using a 256 x 256

grid of quadratic nine-node elements. For A = 1 and 2, this accuracy level is achieved or

surpassed with a 128 x 128 grid; see Supporting Information. The size of the largest

systems (L = 32) is considerable (> 500,000 nodes) and as we are interested in

validating the theoretical results over a wide range of {L, p, A}, we must limit the number

of Monte Carlo simulations for each parameter combination (on a Dell Precision T5500

with an Intel Xeon 5600 series processor, each of the largest simulations takes

approximately 90 seconds). We run 1,000 Monte Carlo simulations for each parameter

combination and investigate a total of 64 combinations.

5.4.2 Validation Runs

In Section 5.2 we derived single-value estimates of (Feff IL, f, A) (the true effective

modulus under given (L, f, A) is random and the analytical expressions should be seen as

approximations of the mean value) and in Section 5.3 we obtained normal

approximations to the distribution of (Fej I L, p, A). Here we compare both types of

analytical predictions with numerical results for L = {4,8,16,32}, p = {0.1,0.3,0.6,0.9},

and A = {2,4} (results for A = {1,3} are in the Supporting Information).
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Figure 5.8: Scatter plots of single-value-predicted and simulated Fef for L = {4,8, 16, 32}, f =
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Sinsle-value Estimates of Feff

Figure 5.8 shows scatterplots of simulated Feff and single-value predictions.

We control p, and the stiff volume fraction f is a random variable. The single-value

predictions of Fejj are calculated using Eq. 5.7 with the realized values of f. Although

there is scatter, especially for small specimens with large A and intermediate values of

p, the point estimates are nearly unbiased. The scatter is due to the fact that, as explained

in Section 5.2.3, the mean values of q12 in Eq. 5.7, which are used to produce the single-

value estimates, do not depend on the specific arrangement of the stiff tiles; rather they

describe the average effect of the second-order term e 12 for given (L, f, A). In small

specimens, the true effective stiffness depends on the specific arrangement of the stiff

tiles, producing the scatter in Figure 5.8. In larger specimens, the effect of E12 is

insensitive to the arrangement of the stiff tiles (see Section 5.2) and the scatter is much

reduced.

Distribution of Feff

Figure 5.9 compares the numerical and approximate analytical cumulative distributions

of Feff for L = [4,8,16,32}, p = (0.1,0.3,0.6,0.9}, and A = [2,4).

Figure 5.9a shows that for A = 2 the estimator is accurate for all L and p. Since Fejj is

bounded between 0 and A, the approximating normal distributions have been doubly-

censored by setting negative values to 0 and values above A to A. Also for A = 4 the

agreement is quite good; see Figure 5.9b. The small discrepancies for L = 4 are mainly

due to a shorter-than-normal lower tail in the empirical distribution and "kinks"

associated with percolation effects, which the analytical approximation does not treat in

detail. For example, the sharp edge observed for {L = 4, p = 0.6) at about Fejj = 2.7

marks the divide between specimens in which all four rows contain at least one soft tile

and specimens in which only three rows contain one or more soft tiles. The first two

moments are always accurately predicted.

154



_\ = 2

p = 0.3

9--

I L
2 0 2

p 0.6

0 2

0.9

0
F et

'A = 4

p =0.1

o 1j
')

0 L
0 4

p = 0 .3

0 4

p = 0.6

0 4

p = 0.9

0 4
F1.1

Figure 5.9: Comparison of approximate analytical (red) and empirical
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5.5 Comparison Between Checkerboard and Lognormal Materials

It is interesting to compare the compliance of checkerboard specimens with that of

lognormal specimens with similar modulus variability. Here we make the comparison

under ergodic conditions (i.e. for specimens that are large relative to the log-modulus

correlation distance, in the checkerboard case just relative to the tile size). The reason for

this choice is that in ergodic specimens the log-modulus field is the sum of only two

terms, the spatial average F and the second-order fluctuation E12 , and the effective

modulus is eF times some q12 -norm of e112. We consider the checkerboard and

lognormal specimens to have comparable modulus variability if they share the mean

value mE (without loss of generality, we set mE = 1) and log-variance oF. Notice that for

large specimens mE controls the spatially integrated "total stiffness"; hence we compare

the effective modulus when the same total stiffness has different random spatial

distribution.

In the lognormal case the marginal distribution of the modulus and the effective modulus

are completely defined by (mE = 1, qF). In checkerboard specimens, the same quantities

depend also on the stiff fraction f (which under the present ergodic conditions equals p).

Specifically, it is easy to show that the modulus of the soft phase EO and the log-modulus

contrast A (which together with f define the marginal distribution) are given by

1
EO fed + (1 - f)'

(5.14)
aF

f(,- f)

Notice that A is proportional to uF and that for any given qF, A is symmetrical around

f = 0.5 (where it is minimum) and diverges for f = 0,1.

For lognormal specimens q12 = -0.25 and the log-effective modulus is Feff 2

[36]. The corresponding quantities for the checkerboard specimen depend on oF and f:
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q1 2 is calculated from Eq. 5.7 (due to ergodicity, q1 2 is deterministic) and Fejt = F +

ln(eF(x1,x2)-F)q 1 2 , with T = (1 - f) In EO + f (In E + A), EO given by Eq. 5.14, and

ln(eF(x1,x2->F)q 1 2 given by Eq. 5.12.

Figure 5.10 shows Feff as a function of cF. For the checkerboard specimen, three stiff

fractions are considered: f = 0.1, 0.5, 0.9. As described in Section 5.2.4, the stiff fraction

affects the log-effective stiffness of ergodic checkerboard specimens through two

mechanisms: 1. the averaging exponent q 1 2 (see Eq. 5.7) and 2. the marginal distribution

of the modulus. To understand whether the differences in Feff between lognormal and

checkerboard specimens is due mainly to q12 or the shape of the marginal distribution,

Figure 5.10 shows also Feff = 1/2(q 1 2 - 1)oa, the log-effective modulus under

lognormal marginal distribution using the q 1 2 value from Eq. 5.7. These hybrid values

are given by the dashed lines. For f = 0.5, q12 = -0.25; hence the green dashed line

gives also Feff for lognormal specimens. Notice that:

* The effective stiffness is comparable when f = 0.5. Checkerboard specimens are

softer than lognormal specimens when f < 0.5 and are stiffer when f > 0.5;

* When f is close to either 0 or 1 and qF2 is large, Feff for checkerboard specimens

is very different from the lognormal value. This divergence is due to the

dependence of A on 6 F and f (see comments on Eq. 14); and

* For f # 0.5, the difference between the checkerboard and lognormal cases is due

mainly to the shape of the marginal distribution and to a lesser extent the

generalized averaging exponent q12. Therefore the modulus distribution beyond

just the first two moments is of critical importance to the bulk elastic properties of

composite materials.

To appreciate the difference in the marginal distribution of the log-modulus F, Figure

5.10 shows lognormal/checkerboard comparisons for uF = 0.25 and f = {0.1,0.5,0.9}.

Notice that when f is small, the system consists of isolated rigid inclusions in a soft

matrix. The inclusions deform minimally, the stresses are nearly uniform, and the
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effective stiffness Eeff is close to the harmonic average (eF(x))_1. When f is large. the

system consists of isolated pore inclusions in a stiff matrix. The pores deform with the

matrix, the strain field is near uniform, and the effective stiffness is closer to the

arithmetic average (e F(x)1.

0

-0.5

-I1

0 0.2 0.4 0.6 0.8

21

Figure 5.10: Dependence of Feff on fF for large checkerboard and lognormal specimens with mE -
For checkerboard materials, results are presented for three values of the stiff fraction f. Checkerboard

results are shown as solid lines. The dashed lines give hybrid results when the exponent q1 2 is from

checkerboard analysis but the marginal distribution of the modulus is assumed to be lognormal. The dashed

green line is also the log-effective stiffness in the lognormal case. Small panels compare the checkerboard

(binary) and normal marginal distribution of F for oF = 0.25 and f = {0.1, 0. 5, 0. 9.

5.6 Conclusions

We have extended the elastic homogenization approach reported in Chapter 2, which was

originally developed for lognormal Young's modulus fields E, to two-phase

checkerboard materials in which E has binary distribution. Checkerboard materials may

be viewed as a simple model system for a wide class of multi-phase composites.
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Important new factors in the elastic homogenization of checkerboard (and other multi-

phase) materials are the longitudinal percolation of the stiff phase and the transversal

percolation of the soft phase. A further distinction is based on the definition of

neighboring cells in percolation clusters. Two basic neighborhood concepts are the

sharing of one side (NN percolation) and the sharing of either one side or one vertex

(NN + NNN percolation), but other neighborhood definitions are also possible. These

various forms of percolation make the stiffening or softening effects of percolation quite

complex and difficult to quantify.

If one decomposes the log-modulus field F(x1 , X2) = ln E(x1 , X 2) as shown in Eq. 5.1,

then one can express the effect of each term on the right hand side as some q-norm of the

Young's modulus E or of some component of modulus fluctuation. As shown by Eq. 5.5,

the q values associated with F, E1(x1) and E2(X 2 ) are deterministic and equal 0, -1 and

1, respectively. This is true for all heterogeneous materials. On the other hand, the value

of q 12 for E12 (X 1, X2) depends on the nature of the modulus heterogeneity. For two-

dimensional specimens with lognormal modulus fluctuations, q12 = -0.25. By contrast,

in checkerboard materials q12 is neither constant nor deterministic. Its mean value varies

as an approximately linear function of the stiff fraction f, with a slope that increases as

the log-modulus contrast A increases; see Eq. 5.7. For f = 0.5 (equal number of soft and

stiff tiles), E[q 12] ~ -0.25 as in the lognormal case. Values above/below -0.25 are

associated with stiff/soft percolation. The stochasticity of q12 is largely due to the

variability of the stiff-fraction levels at which different types of percolation occur.

The complexities of percolation are especially prevalent in checkerboard specimens that

are small relative to the size of the tiles. In large specimens, the effect of percolation is

gradual and nearly deterministic (in this case Eq. 5.7 gives q12 rather than E[ql2)-

Based on this understanding of what affects the bulk modulus of checkerboard

specimens, we have developed simple analytical approximations to the distribution of

Eeff. A basic assumption on which the approximations are based is that the terms on the

right hand side of Eq. 5.5 are independent normal. This assumption is strictly valid for
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very large specimens, for which the approximations are especially accurate. For small

specimens, the approximating lognormal distribution is smoother than the distributions of

Eeff from simulation, but the first two moments of In Eeff are captured very well.

Our analysis unveils interesting characteristics of the bulk stiffness of checkerboard

systems and important differences with lognormal systems:

1. In small specimens longitudinal (transversal) percolation of stiff (soft) tiles is the

most significant stiffening (softening) mechanism.

2. In large specimens (with finite modulus contrast) percolation has a gradual

stiffening/softening effect and there is no well-defined threshold.

3. The effective stiffness of ergodic checkerboard and lognormal systems is

comparable when the stiff fraction f = 0.5. Checkerboard specimens are softer

than lognormal specimens when f <0.5 and stiffer when f > 0.5;

4. For f # 0.5, the difference between the ergodic checkerboard and lognormal cases

is due mainly to the shape of the marginal distribution and to a lesser extent the

generalized averaging exponent q12 . The shape of the marginal distribution is

esp lly InfluentI foJI Larg' WF*

5. The mean of Feff is insensitive to L (to the size of the tiles for a specimen of

fixed dimension), while the variance of Fejj increases with decreasing tile size.

Considering the relationship between the first two moments of lognormal and

associated normal variables, one concludes that if one is interested in reducing the

coefficient of variation of Eeff one should use smaller tiles, whereas larger tiles

increase the mean value of Eeff.

This work could be extended in several ways, including the following:

1. Checkerboard systems with more than two phases: The first-order log-modulus

field F1 could still be approximated using a moment-matched normal log-modulus

model, whereas the second-order effect Feff,12 would be affected by a multitude
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of percolation thresholds associated with different phases and different

neighborhood definitions;

2. Three-dimensional checkerboard systems stretched in the x1 direction: Following

Chapter 2, the 3D ANOVA decomposition of F includes the spatial average, three

marginal fluctuations, three second-order fluctuations and one third-order

fluctuation. The generalized averaging exponents q associated with the spatial

average F, the marginal fluctuations E 1(X 1), E2 (x 2 ) and E3 (X 3), and the second-

order term E2 3 (X 2 ,X 3) are deterministic and equal 0, -1, 1, 1, and 1, respectively.

The effect of the other two second-order fluctuations and the third order

interaction could be dealt with in analogy with the present analysis of E12;

3. Granular materials with grains forming random tessellations and two or more

phases. Also in this case one could approximate the first-order log-stiffness F1

using results for the lognormal case. Percolation should have similar effects as for

checkerboard systems, although with different critical stiff fractions. Due to the

more irregular geometry, the effects of percolation are expected to be more

gradual than for checkerboard materials;

4. Finally, one could study the effect of percolation in greater detail. We have found

that in large specimens with a modulus contrast factor up to 50, the effective

stiffness depends in a smooth way on the stiff volume fractionf. By contrast,

small specimens display sharp discontinuities associated with different types of

percolation. It would be interesting to study the onset of these phenomena and in

particular what controls the transition from sharp to smooth percolation effects in

checkerboard and other granular materials.
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Supporting Information

Part A: Derivation of Eq. 5.12

The field In g = F - T has binary marginal distribution, with probability (1 - f) at F -

F = -fA and probability f at F1 - F = (1 - f)A. Therefore, the q1 2 moment of g =

eF-F is

E[g12 ] = fe 1z (1-f)A + (1 - f)e~42fA = e-l2fA[fe4l2A + (1 - f)] (5.Al)

and the q1 2 -norm of g is given by

(gq12 = (E[gq12])1/j12 e-fA[fe12A + (1 - f)]1/q 2 q 12  0 (5.A2)
1, q 1 2 - 0

Taking the logarithm on both sides of Eq. 5.A2 gives the expression in Eq. 5.12.

Part B: Accuracy of Numerical Experiments

To investigate the accuracy of the numerical analysis in Section 4 we compare results

with variously refined meshes. We find that systems with stiff fraction f = 0.5 cause the

most numerical issues (many corner contacts between stiff tiles) and for each

combination of L = {4,8,16,32} and A = {1,2,3,4} investigate ten randomly simulated

arrangements of stiff tiles with f = 0.5. An important controlling variable in the accuracy

of the numerical results is the number of discretization elements per tile. We denote the

number of elements in each coordinate direction by neI and find Fejj for each stiffness

field and each parameter combination for nei/L = {1,2,4,8,16}. The results are plotted in

the top panel of Figure 5.B1 and in each case the log-effective stiffness if normalized by

the value of Fejj when ne, /L = 16 (this normalization is motivated by the fact that the

curves tend to plateau around nei/L = 8). Note that in Figure 5.B1 we plot the average

discretization error across the ten randomly simulated arrangements of stiff tiles for each
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combination of nel/L, L, and A. We approximate the exact value of Fejj as the value

calculated with nei/L = 16 and obtain the following simple model for the numerical bias

fdisc of Fejj due to the discretization,

fldisc(,6, L, nel) = 1 + 0. 01 - d I n L -e -5 .- , (5.Bl)

where Feffnumerical (A, L, ne) = #disc(A, L, nei) Feff,true. The lines in the bottom

panel of Figure 5.B1 are lines of Eq. 5.B.

Part C: Numerical Validation for A = [1, 3}

Figure 5.C1 complements Figure 5.8 in the paper by showing scatterplots of simulated

Feff and single-value predictions for A = {1,3}. As in Figure 5.8, the theoretical

predictions are nearly unbiased and strongly correlated with the simulation values,

especially for A = 1.

Similarly, Figure 5.C2 complements Figure 5.9 by comparing the theoretical and

simulation cumulative distributions of Feff for A = {1,3}. As in Figure 5.9, the

agreement between the two distributions is quite good.
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nel /L

Figure 5.B1: For each value of L and A we simulate ten modulus fields with f = 0.5 and calculate Feff

numerically with 5 different discretizations of quadratic nine-node elements; = {1,2,4,8,16}. The
L

displayed data points indicate the average values of the numerical error across the ten simulated fields for

each parameter combination. The values of Feff are normalized by Fejj at = 16. The bottom plot

displays curves of the fitted bias model, which agrees well with the data across all parameter values.
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Figure 5.C2: Comparison of approximate analytical (red) and empirical (blue) cumulative distributions of

Feff for L = [4,8,16,32}, p = [0.1,0.3,0.6,0.9) and A = [1,3).
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Chapter 6: The Effective Stiffness of Multi-Phase

Composites with Random Inclusions

6.1 Introduction

The class of multi-phase composites with random inclusions covers a wide range of

materials. For example nacre, ceramic-metal composites, reinforced polymers, fiber-

composites, and laminated composites all fall under this broad umbrella description. The

spatial arrangement of the composite can be deterministic with each phase having random

material properties, the material properties of the various phases can be deterministic and

arranged randomly in space, or both the material properties and the spatial arrangement

can be random. Furthermore, the inclusions can the same or different different shapes.

Determining the effective stiffness of such multi-phase composites is a classical elastic

homogenization problem and has been studied extensively. Some popular approaches

include Maxwell-type approximations [48, 49] based on the classical work by Maxwell

[35 %1 UeV iej "trI L 114511Ly and m II geI, Imp1FJII IL c3%I1L4e-con1ItLenf aprxiMaL1V1In

[50-53], and differential effective-medium approximations [54, 55] based on the work of

Bruggeman on conductivity approximations [56].

Maxwell-type approximations consider systems with dilute inclusions and find the

effective elasticity tensor by approximating the stress/strain field as the superposition of

the stress/strain field due to each individual inclusion. These approximations are thus

most accurate in the dilute inclusion limit. Implicit self-consistent approximations

determine the effective elasticity tensor such that the incremental elasticity contribution

of each individual phase averages to zero and does not consider the specific spatial

arrangement of the inclusions. Differential effective-medium approximations evaluate the

effective properties by considering the differential contribution of each individual phase

sequentially in the dilute inclusion limit [I]. These methodologies are thus not suitable

when inclusions form large clusters.
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In this chapter we consider the effective stiffness of one simple type of multi-phase

composites with random inclusions. We adopt the same approach as in Chapter 2. An

advantage of our methodology is that it treats the spatial distribution of the modulus field

explicitly and should be accurate for a large range of volume fractions of the stiffer

inclusions.

We consider square specimens of side length L and finite thickness t with matrix of

stiffness E0 . Square inclusions of thickness t1 <K t are distributed randomly according to

a homogeneous Poisson process; see Figure 6.1. Without loss of generality we set E0 =

1. The Young's modulus E(x1 , x 2 , x3) is approximated as a two-dimensional field

E(x1 ,x 2 ) obtained by averaging E(x,x 2 , x 3 ) in the x 3 -direction.

X1

A A

LL

x, U

X-1.

Xi

Figure 6.1: Illustration of composite system and boundary conditions.

Consider first the case of composites with one type of inclusion with stiffness E, and side

length L 1,. At a spatial location (x 1, x 2 ) at which a single inclusion of this type is present
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in the (out-of-plane) x3 -direction, a fraction - of the material has stiffness 1 and a

fraction ' has stiffness E1 . Hence at that location
t

t

We let d = L (E1 - 1) and call A the effective stiffness contrast of inclusions of type 1.
t

At a spatial location (x 1 , x2 ) where N inclusions of type I overlap E(x1 , x2 ) = 1 + NA 1 .

If multiple types of inclusions are present, their stiffnesses also combine additively in the

same way. When the locations of the inclusions form a Poisson point process, the

Young's modulus E(x1 , x 2 ) is a filtered Poisson point process. In our model we can have

inclusions of different types (with different sizes and stiffnesses), but for each individual

type the shape, size and stiffness are deterministic.

When the volume fraction of stiff inclusions p is small, inclusions do not overlap and the

Young's modulus field has binary marginal distribution (if there is only one inclusion

type) and characteristics similar to the checkerboard plates studied in Chapter 5. As the

volume fraction of the stiff inclusions p tends to infinity, the Young's modulus field

tends to a normal with a coefficient of variation that approaches 0. For low coefficient of

variation, normal and associated lognormal fields have the same statistical characteristics.

Therefore as p tends to infinity, the Young's modulus field tends to be lognormal. One

concludes that depending on the value of p, the Young's modulus field lies between the

lognormal fields considered in Chapter 2 and the binary fields considered in Chapter 5.

This model is thus a good candidate for investigating the applicability of the ANOVA

approach devised in Chapter 2 to non-lognormal multi-phase systems.

In the following sections we present the stochastic model and the analytical approach

(Section 6.2), validate our analytical results (Section 6.3), and conclude by highlighting

key findings and proposing directions for future research.
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6.2 Stochastic Model and Probability Distribution of the Effective

Modulus

First, we present the stochastic model and then discuss the analytical approach employed

to approximate the probability distribution of Eeff.

6.2.1 Stochastic Model

We consider a square plate with side length L, thickness t, and stiffness 1, within which

M types of square inclusions of infinitesimal thickness t1 , side lengths L, =

{L,, L,, ... , LIm}, average volume fractions p = tPl, P2,.--, Pm), and effective stiffness

contrasts A = {A1 ,A 2, AM} are distributed uniformly and independently. When the

locations of the inclusions form a Poisson point process, the Young's modulus is a

filtered Poisson point process,

M Ni

E(x1 ,x 2) = 1 + hi[(x1, x2 ), (x'i, x2i)]. (6.2)
i=1 nj=1

with filtering function,

[ ((x1,x2),(xi~x~13 =fA1,lxi x1"i|l5 L,,/2 and 1x2 - x"I| LS/26
hi [(1,X2) i' n] X , otherwise

and (x2, x2) the center point of inclusion ni. We consider the specimen stretched in the

xj-direction, with zero tractions along the upper and lower sides and no shear stresses

along the right and left sides; see Figure 6.1.

In Figure 6.2 we show example stiffness field realizations for three-phase composites

with side length L = 16, inclusion sizes Ls = {4,8}, effective stiffness contrasts A =
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{9,4} and average inclusion densities a p = {O.5,0.5} and b p = {2.5,2.5}. The modulus

field in Figure 6.2b is not far from lognormal.

(a) (b)

Figure 6.2: Realizations of the composite modulus field for three-phase systems. The specimens are of size
L = 32, with inclusions of sizes L, = [4,81, stiffness contrasts A = [10, S}, and densities a p =

{0. 2, 0. 2) b p = [2. S, 2. S}.

6.2.2 Probability Distribution of the Effective Modulus

We seek the probability distribution of the effective modulus Eeff for a given specimen

size L, inclusion sizes L 1, inclusion densities p, and effective stiffness contrasts A.

Following Chapter 2, we make an ANOVA decomposition of the log-modulus field F =

In E(x)

F(x1, X 2 ) = F + El(X1 ) + E2 (X 2 ) + E12 (X 1 , X 2 ) (6.4)

where F is the average of F over the specimen, E1 (x 1 ) and E2 (X 2 ) are the marginal

fluctuations in the x1 - and X2 -direction, and E1 2 (X 1 , X 2 ) is a second-order interaction

term. We approximate each term as independent normal, consider its contribution to Fef,

and add the contributions to find the distribution of the effective log stiffness Feff. The

assumption of normality is justified by the fact that these terms are obtained through
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averaging operations on the F field and by the central limit theorem their distribution is

close to normal.

Except for the assumption of normality, the contributions of the first three terms are

captured exactly. The spatial average F contributes to Feff with a term equal to the

arithmetic average of F(x1,x 2) and the marginal fluctuations E1(x1 ) and E2 (X 2)

contribute to Feff with terms equal to the log of the harmonic average of eEl(x1) and the

log of the arithmetic average of e'2(x2) respectively. As in Chapter 2, we approximate the

effect of E12(X 1 , X2 ) as deterministic.

Similarly to Chapter 5 we estimate the distribution of Feff by replacing the true log-

modulus F(x1 , x2 ) field with a normal random field having the same first two moments

and then applying the framework of Chapter 2 for lognormal modulus fields.

There is no analytical expression for the mean value mF or the variance oF of the exact

log-modulus field F(x1, x2) = ln E(x1, x 2). Thus we evaluate these moments

numerically. The mean value mE and variance r of the Young's modulus E(x1,x 2) for

a system with M types of inclusions are given by,

M

mE = 1 + p + 1),

M (6.5)

UE= (i + 1).

The correlation function of E(x1,x 2) can be found from properties of filtered Poisson

point processes. In the limit of small p the variance of E(x1,x 2) is small and in the limit

of large p, the modulus field is close to normal (the statistics of lognormal fields

approach those of normal fields when the coefficient of variation approaches 0) and thus

we approximate the correlation function of F as the correlation function of E. The

validity of this and other approximations is evaluated in Section 3.
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We first consider the correlation function of a system with a single type of inclusion. The

approach in Chapter 2 applies to isotropic correlation functions. Therefore, to use that

approach, we approximate the square inclusions with side length L, as circular inclusions

with radius R = L1/V-. An alternative approach would be to develop the correlation for

square inclusions and then obtain an isotropic approximation by randomly rotating the

field. We later show that the two approaches give very similar results.

Following Matem [79], the, isotropic correlation function of a two-dimensional filtered

Poisson point process with circular inclusions of radius R is given by,

2 r
PE _)= _T - r2+ sin-'(r'r'= 2Ri (6.6)

0, otherwise.

Eq. 6.6 follows from to the area of the intersection of discs of radius R separated by a

distance r. The correlation function obtained from considering square inclusions and then

randomly rotating the field is very similar to Eq. 6.6.

In systems with several types of inclusions in which the inclusions are placed

independently, the total covariance function is found by adding the individual covariance

functions. The compound correlation function thus becomes a weighted average of the

individual correlation functions PEi (r),

M

PE(r) = E -PE,(r). (6.7)

With the moments as given, the distribution of Feff is obtained as in Chapter 2 (equations

and derivations are not repeated here).
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6.3 Numerical Model and Validation

We validate our theoretical results with Monte Carlo simulation. To simulate the modulus

fields we draw a Poisson random number of inclusions for each phase i according to the

intensity pi. The inclusions are then distributed uniformly and independently throughout

the specimen and, as explained in Section 6.2, their moduli combine additively in regions

in which they overlap.

For each simulated modulus field, we solve the mechanical problem using a finite

element code in MATLAB. We discretize the system with a 128 x 128 mesh of linear

four node elements and in experiments not shown here we show that with this

discretization the numerical accuracy of our results is adequate.

To validate the approach of Section 6.2 we compare numerical results with theoretical

predictions in systems with different values of L1, A, and p and both one and two

inclusion phases. In all cases the system size is L = 32 and the numerical results are

based on 10,000 Monte Carlo simulations for the two-phase (one inclusion phase)

systems and 1,000 Monte Carlo simulations for the three-phase (two inclusion phases)

systems. The results are presented in Figure 6.3. Panels a and b show results for

composites with one inclusion phase, A = 4 and L, = 2 and 4 respectively and panel (c)

shows results for composites with two inclusion phases, L, = {4,81 and A = {9,4}. In all

cases we consider a wide range of inclusion densities p. In the two-phase system we

consider p = {0.1,0.3,0.6,1,2,5} and in the three phase system p =

{0.1,0.1; 0.1,0.5; 0.1,2; 0.5,0.1; 0.5,0.5; 0.5,2; 2,0.1; 2,0.5; 2,2}. Thus the validation

covers systems with a range of inclusion sizes in the low, intermediate, and high

inclusion density regimes. Figure 6.3 shows that the theoretical predictions are accurate

for all parameter combinations.
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Figure 6.3: Comparison of approximate analytical (red) and numerical (blue) cumulative distributions of
Fej for L = 32 a L, = 2. A = 5, p = {0.1, 0. 3, 0. 6, 1, 2, 5}, b L, = 4, A = 5, p
{O. 1, 0. 3, 0. 6, 1, 2, 5}, and c L, = {4, 8), A = [10, 5}, p =
{0. 1, 0. 1; 0. 1, 0. S; 0. 1, 2; 0. 5, 0. 1; 0. 5, 0. 5; 0. 5, 2; 2, O. 1; 2, 0. 5; 2, 2}.
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6.4 Conclusions

We extended the homogenization approach of Chapter 2, which was originally developed

for lognormal Young's modulus fields E, to multi-phase composite materials in which

Young's modulus is modeled as a filtered Poisson point process. We approximate the

log-modulus F as normal and decompose it into four ANOVA components, for which the

effect on Feff = In Eej, is found either analytically or in approximation following the

method of Chapter 2. We validated the results through extensive Monte Carlo simulation

across a wide range of system parameters for both two- and three-phase composites and

observed good agreement between theory and experiments. In contrast to Chapter 5, the

ANOVA approach of Chapter 2 generalizes well to this class of composite systems,

without any modification. Importantly the effect of the second order ANOVA component

is well approximated as a deterministic ergodic term. The FPPP allows stiff regions to

overlap, avoiding nearest-neighbor percolating clusters as those observed in Chapter 5,

and this is likely an important reason why the second order interaction does not have a

more dominant effect on the bulk stiffness. Our analysis provides evidence of the

methodology presented in Chapter 2 as a general methodology valid also for systems

with non-lognormal Young's modulus.

Possible extensions of this work include:

1. Three-dimensional composites with three-dimensional inclusions stretched in the

x-direction. In a 3D system one could still assume that the moduli of inclusions

combine additively when marked points of the FPPP overlap (although this could

no longer be motivated by the homogenization argument presented here).

Alternatively, one could consider a coverage model in which overlapping

inclusions retain their original modulus, a thinning model in which overlapping

inclusions are thrown away or a replacement model in which the arrangement of

the inclusions is reshuffled until no overlap occurs. Each of these strategies
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influence the first and second moments of F and suitable approximations would

have to be found for these separately. With the first and second moments given

the distribution of Feff could be found analogously to in Chapter 2 for n = 3.

2. Interfaces may greatly affect the mechanical behavior of a composite. Their

inclusion in stochastic material models poses several challenges (realistic

representation, numerical analysis, treatment of uncertainty). One could start with

simple systems (e.g. inclusions with simple geometry) and develop random

homogenization strategies whereby each inclusion (plus interface) is replaced by

an effective inclusion with homogeneous but random mechanical properties, thus

converting materials with interfaces to equivalent random materials without

interfaces. The latter can be treated as in this paper.

3. Fiber-reinforced materials may also be studied. Fiber-reinforced composites pose

conceptually different problems and may require entirely different strategies. One

possibility is to model the stiffness E(x) as a compound Poisson field (or a

compound non-Poisson field, to model the often-occurring clustering of fibers). It

may then be possible to derive the second-moment properties of the modulus

using theoretical results for integrals of such compound random fields and from

L11U . F l LI, 1 1 %I UIJII %i LI 11U

moduli.
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Chapter 7: Summary and Outlook

Random heterogeneities influence the bulk mechanical properties of materials in complex

ways that depend on the property considered, the nature of the heterogeneity, the

Euclidean dimension of the specimen, etc. Standard ways to evaluate the distribution of

the bulk properties involve Monte Carlo simulation and numerical analysis. In this study

we devised analytical methods to investigate the following problems:

" The bulk stiffness of one-, two-, and three-dimensional rectangular blocks in

which Young's modulus varies spatially as a lognormal field (Chapter 2);

* The bulk strength of I and 2-dimensional rectangular blocks in which Young's

modulus varies spatially as a lognormal field (Chapter 3);

* The bulk strength of one and two-dimensional rectangular blocks in which the

Young's modulus and the local strength vary spatially as lognormal fields

(Chapter 4);

" The bulk stiffness of two-dimensional random checkerboard plates (Chapter 5);

and

" The bulk stiffness of two-dimensional plates with multi-phase inclusions in which

the Young's modulus varies as a filtered Poisson Point Process (Chapter 6).

As described in Chapter 1 and illustrated in Figure 1.3 these are idealized models for real

material systems. They were chosen in part due to analytical convenience and in part to

capture fundamentally different types of heterogeneity and material properties.

Continuous variations in microstructural features such as for example the varying mineral

degree of mineralization in bone or and the varying degree of hydration in cement paste

could cause continuous variations in local mechanical properties similar to those of the

lognormal fields considered here. Random checkerboard systems give an idealized

description of a wide class of polycrystalline materials. Finally, many materials

(reinforced polymers, particulate composites, etc.) are composed of a softer matrix phase
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with randomly distributed inclusions of different shapes, sizes, and local mechanical

characteristics.

In all cases we validate our analytical models with extensive Monte Carlo simulations

and numerical analysis. For the numerical analysis we use a finite element model

developed in MATLAB for the elastic and the initial strength problem and a discrete

lattice model developed in Python for the ultimate strength problem. Beyond the

computational cost of simulating fracture propagation, we encounter few numerical

issues in analyzing the lognormal and filtered Poisson point process systems. The main

difficulties are calculating the effective modulus of checkerboard materials. The

difficulties arise mainly when stiff tiles meet at a corner: when the stiffness contrast

between the soft and stiff phases is large, the stiffness of the soft tiles is negligible and a

singularity arises with a finite load transferred through a point. We address the issue by

using refined finite element discretizations, limiting the stiffness contrast (to 50), and

estimating the bias induced by using not sufficiently refined discretizations. To deal with

larger stiffness contrasts in a more computationally efficient manner one would need to

use a different approach. This is left as a possible future extension.

Below we first summarize the main technical findings of this work. We then discuss the

general applicability of our results before we conclude with discussing some possible

topics for future research.

7.1 Main Technical Findings

In Chapter 2 we studied the effective elastic moduli of one-, two-, and three-dimensional

rectangular blocks when the log Young's modulus F(x) = ln E(x) varies spatially as a

normal random field. We used an ANOVA decomposition to express F(x) as a constant

plus a number of first- and higher-order fluctuation terms, analyzed the effect of each

ANOVA term, and developed analytical approximations to the distribution of the

effective elastic tensor as a combination of these effects. The analytical results were then
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used to explore the dependence of the distribution of the log effective elasticity tensor on

various geometric parameters and probabilistic characteristics. In all cases we observed a

softening in the mean effective log-moduli induced by the heterogeneity. In most cases

the log-moduli have similar variance and are highly correlated; hence in many cases one

could assume perfect dependence, reducing the computational task to evaluating the

mean values and the common variance of the log- moduli. Exceptions to this second rule

involve moduli that depend significantly on different averages of the exponentiated first-

order fluctuations of F(x), for example the shear and transverse bulk modulus of highly

elongated specimens.

In Chapter 3 we built upon the models and analysis strategy in Chapter 2 to study the

distribution of fracture strength characteristics of notched one-dimensional rods and two-

dimensional plates in which the log-Young's modulus varies spatially as an isotropic

normal field. We consider materials in which the crack initiates or propagates when the

maximum longitudinal strain at the edge of a crack tip exceeds a threshold value. We

found that the strengths at fracture initiation display a complex behavior relative to their

values under uniform modulus: The heterogeneities generally increase the mean value,

whereas the median value is lower or higher depending on the Euclidean dimension of

the specimen and the quantity considered (the elongation U, the load L, and the toughness

T). Specifically, gains in the median occur for U and T, whereas the median of L is lower

than in the uniform case.

In 2D specimens crack arrest increases the strengths at ultimate failure relative to the

values at fracture initiation. This effect is modest for the ultimate load, but is important

for the ultimate elongation and toughness. In specimens with limited variations of the

modulus field we observed crack arrest mechanisms similar to those in laminates and

composites with periodically varying modulus: crack arrest occurs as the fracture

propagates towards higher modulus regions and the magnitude of the effect is controlled

by the modulus contrast. As the variability of the modulus field increases, low modulus

valleys appear. Fracture tends to propagate along these valleys, limiting the effectiveness

of crack arrest and giving rise to different fracture patterns than those observed in
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laminated composites with periodic modulus variation. The dispersion of the fracture

strength parameters is smaller in the 2D than the I D case and for 2D specimens decreases

somewhat from initial fracture to ultimate failure conditions.

In Chapter 4 we extended the analysis of Chapter 3 to include the effect of random

fracture strain. Specifically, we analyzed the distribution of the elongation, load and

toughness at fracture initiation and ultimate failure for notched 1 D rods and 2D plates

when Young's modulus (stiffness) and the local fracture strain (material resistance) vary

as isotropic lognormal fields. We found that whether the initial strengths on average are

weakened or strengthened by heterogeneity of the failure strain largely depends on

whether one reasons in arithmetic or log scale. When the log-modulus and the log-

strength are positively correlated, heterogeneity of the material strength tends to increase

the mean values at fracture initiation. The opposite is true when the random fields are

negatively correlated. In 2D specimens, increasing the randomness of the material

strength makes crack- arrest events more frequent and increases the ratio between

ultimate and initial strengths. When the modulus and material strength have low spatial

correlation, randomness of the material strength can significantly increase the effect of

crack arrest, causing ultimate failure to be a more predictable and less brittle failure mode

than fracture initiation.

In Chapter 5 we extended the elastic homogenization approach of Chapter 2 to random

two-phase checkerboard materials in which the Young's modulus has binary distribution.

Important new factors in the elastic homogenization of checkerboard (and other multi-

phase) materials are the longitudinal percolation of the stiff phase and the transversal

percolation of the soft phase. The effects of percolation are especially complex in

checkerboard specimens that are small relative to the size of the tiles. The percolation

effects make the ANOVA approach less accurate due to the complex interactions

between the first and second order ANOVA components. However, by fitting a model for

these complex interactions to data generated through Monte Carlo simulation we obtain

results that are accurate over a wide range of system parameters.
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Our analysis gives interesting insights into the effective stiffness of this class of

composite system. In small specimens longitudinal (transversal) nearest neighbor

percolation of the stiff (soft) tiles is the most significant stiffening (softening) mechanism

whereas, next-nearest neighbor percolation has a less pronounced effect. By contrast, in

large specimens (with finite modulus contrast) percolation has a gradual

stiffening/softening effect and there is no well-defined threshold. Another interesting

finding is that the effective stiffness of large checkerboard systems with stiff volume

fraction f = 0.5 is comparable to that of lognormal systems with the same first two

moments. Checkerboard specimens are softer than lognormal specimens when f < 0.5

and stiffer when f > 0.5. For f # 0.5, the difference between the large checkerboard and

lognormal cases is due mainly to the shape of the marginal distribution, which in turn is

related to the occurrence of percolation. For a checkerboard specimen of fixed dimension

the mean of the log-effective stiffness is insensitive to the size of the tiles for a specimen

of fixed dimension, while the variance of the log-effective stiffness increases with

increasing tile size. Considering the relationship between the first two moments of

lognormal and associated normal variables, we concluded that if one is interested in

reducing the coefficient of variation of the bulk stiffness one should use smaller tiles,

whereas larger tiles increase the mean value of the bulk stiffness.

In Chapter 6, we extended the methodology of Chapter 2 to a class of random multi-

phase composites with non-lognormal marginal distribution of Young's modulus.

Specifically, we considered square plates with inclusions in which the Young's modulus

varies in space as a filtered Poisson point process (FPPP). In contrast to Chapter 5, the

ANOVA approach of Chapter 2 with the FPPP process replaced with a lognormal process

with the same first two moments produces accurate results.

This body of work provides insights into the elasticity and fracture mechanics properties

of materials with different random heterogeneities. Its main limitations are the idealized

models used in the study and the exclusion of more complex heterogeneities.
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7.2 General Findings

With the specific accomplishments of this work as background, one may reflect on the

applicability of the approaches and results to heterogeneous materials of practical

importance, their usefulness for design and optimization, and the combinations of

materials and bulk property of interest that call for significant extensions. We start with

stiffness homogenization problems and then consider the assessment of bulk fracture

strength.

Elastic Homogenization

Our first and most fundamental contribution on elastic homogenization is the analytical

prediction of the joint probability distribution of the elastic tensor for one-, two-, and

three-dimensional rectangular blocks when the local Young's modulus varies spatially as

a lognormal random field. As detailed in the previous subsection, this includes insights

on how the mean values, variances and correlation coefficients of the effective

longitudinal and shear moduli vary with the Euclidean dimension and aspect ratios of the

block and the parameters of the lognormal modulus field.

An important question is whether the same approach and results apply to other classes of

heterogeneous materials. Specifically, one may question whether, in general, calculating

the exact second-moment properties of the local modulus and then assuming lognormal

distribution produces accurate results (we call this the "lognormal approximation"). This

is an important question, both theoretically and for practical application, because few real

synthetic and natural materials display lognormal modulus. The two classes of non-

lognormal materials we have analyzed (checkerboard materials and materials with

Poisson inclusions made of stiffer phases) provide interesting validation cases:

checkerboard materials have a binary marginal distribution that is very different from

lognormal and varies with the stiff volume fraction, while materials made of a matrix

with Poisson stiff inclusions have a marginal distribution that evolves from binary (or

discrete with few possible values) to lognormal as the density of inclusions increases

from zero to infinity.
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The analysis of the above non-lognormal cases has produced interesting insights:

" In general, the lognormal approximation is accurate (especially for materials with

inclusions), making us speculate that it may be an acceptable approach for a wide

class of heterogeneous materials. Of course, further validation work is necessary

to assess the limits of this conclusion. Applicability of the lognormal

approximation would make the methodology an important tool for material

design. For example, our methodology allows one to predict the mean and

variance of the effective stiffness from the mean value, variance and characteristic

length scale of heterogeneity. By controlling the latter parameters, one can realize

materials to satisfy target reliability requirements.

* The study of (small-size) checkerboard materials revealed that in certain multi-

phase cases percolation reduces the accuracy of the lognormal approximation and

requires an extension of the methodology. Percolation is a complex phenomenon

due in part to the difficulty to analytically determine its effects on the bulk moduli

and in part to the many forms of percolation: soft versus stiff percolation,

different definitions of neighborhood with different associated stiffening or

softening effects of percolating clusters, the fact that the formation of a

percolating cluster may in itself have little effects on the bulk modulus (as the stiff

volume fraction increases beyond the percolation threshold, the cluster increases

its density and connectivity, with the consequence that the bulk modulus

experiences a steady increase).

* To account for percolation in checkerboard materials, we had to modify the

analysis developed for lognormal systems. We expect the modified approach to

work well also for more general granular materials made of two or more phases.

Also fiber reinforced materials are subjected to percolation, but are more difficult

to analyze (also in a deterministic context). For example, a percolating cluster

made of fibers would contribute to the effective stiffness in different ways
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depending on the stiffness contrast with the embedding matrix, the curvature of

the fibers, the nature and stiffness of the junctions between fibers etc. For these

systems it is not clear under which conditions the lognormal approximation

remains accurate.

* Another microstructural feature that often influences the bulk elasticity of actual

materials (concrete, rock) but was not considered in this work is the presence of

micro- and or macro-cracks. Cracks are difficult to study analytically, as their

effect on the bulk elasticity depends in a complicated way on their orientation and

the boundary conditions. For example, a single crack orientated perpendicularly to

the loading direction softens a specimen in tension (the load acts to open the

crack) but not in compression (load acts to close the crack). When several cracks

are present, the resulting stress field under a given loading condition is a result of

a complex interaction of the network of cracks.

Fracture Strengths

For materials with lognormal modulus and/or strength (expressed as a failure strain

threshold), we also develoned methods to determine the nrohahility distrihbition of

various bulk strength measures (elongation, load, fracture toughness) at fracture initiation

and at ultimate specimen failure. Some of the findings are: (1) Decreasing the correlation

length of the lognormal modulus makes the bulk properties more predictable, promotes

crack arrest, and increases the ultimate fracture strengths; (2) Large fluctuations in the

local material properties, in particular the local material strength, also promote crack

arrest and are a second toughening mechanism; (3) Of course the fracture path tends to

follow low-stiffness or low-strength "valleys" and high-strain ridges. This creates a

complex interplay between the stiffness and strength of the material, especially when

these two properties are correlated. Interestingly, crack-arrest effects, which are

responsible for the increase in strength from initial to ultimate failure, are negatively

correlated with the initial strength (if the crack tip where fracture initiates is in a

relatively soft or weak region, it is likely that the fracture path will go through stiffer and

stronger regions, with a compensatory effect on the ultimate strength). Therefore, in
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general, the ultimate strengths have less statistical dispersion (are more accurately

predictable) than the initial strengths. In addition, the ultimate strengths are less sensitive

to the correlation between the local Young's modulus and material strength.

These results are necessarily less universal than those on the bulk elasticity because

strength (especially at fracture initiation) depends to a large extent on local weaknesses

and stress concentrations, which are highly dependent on the specific nature of the

heterogeneities and defects in a material. For example, in Chapter 6 we found that the

bulk stiffness of a system with square Poisson inclusions can be accurately approximated

by assuming the inclusions to be circular. However, the stress field around a square

inclusion is very different from that around a circular inclusion, with significant effects

on the initial strength and fracture path. Also, the nature of crack propagation is

fundamentally different in specimens with continuous (say lognormal) and discontinuous

modulus and strength properties. In the discontinuous case, cracks may preferentially

travel along interfaces and the interface behavior, which has not been considered here,

has great significance.

While these considerations reduce the range of applicability of the results under

lognormality assumptions, experimental evidence indicates that certain natural materials

such as bone exhibit lognormal like variations in the local elastic modulus. As shown

with nanoindentation and atomic force microscopy, at micrometer lengthscales the

indentation modulus of bone varies spatially in an essentially continuous way. This

feature is true also of other materials. If failure is determined by the elastic properties at

the mesoscale (for example due to plastic phenomena at smaller scales), then the

lognormal results could be used to explain at least certain fracture characteristics of such

materials. Indeed, as was pointed out in Chapters 3 and 4, the predictions of our

lognormal model are consistent with numerical and experimental findings on the fracture

behavior of bone. Furthermore, while we do not expect the lognormal fracture results to

have quantitative validity for multi-phase systems, we expect them to have at least

qualitative predictive power.
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As the mechanical model becomes more complex (multiple phases, stress concentrations,

defects like micro-cracks and weak interfaces...), analytical treatment of the strength

problem becomes increasingly problematic. In that case, the lognormal results can be

used as a reference against which to assess strength results obtained through simulation.

7.3 Future Extensions

Finally we include some discussion on future extensions of our work. Possible future

extensions include both relatively straightforward generalizations and the study of more

fundamentally different homogenization problems. Among the straightforward extensions

are:

1. Systems with continuous, but non-lognormal, variations of Young's modulus.

One could follow an approach of the type in Chapter 6 to see whether the

ANOVA approach with lognormal approximations yields accurate results;

2. Multi-phase systems with non-overlapping inclusions. One could first generate

Poisson inclusions and then either redistribute or throw away overlapping

inclusions. In either case one would have to adjust the first and second moments

of the log-modulus to reflect the non-overlap condition;

3. Three-dimensional checkerboard systems stretched in the x-direction. In this

case the bulk stiffness depends on three second-order and one third-order

ANOVA component. Their interactions with the marginal fluctuations could be

dealt with the single second order interaction in 2D;

4. Granular materials with grains forming random tessellations and two or more

phases. Percolation should have effects similar to those in checkerboard systems,

although with different critical stiff fractions. Due to the more irregular geometry,

the effects of percolation are expected to be more gradual than for checkerboard

materials.

More elaborate extensions of this work include:
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1. A detailed study of percolation. We have found that in large checkerboard

specimens with a modulus contrast factor up to 50, the effective stiffness depends

in a smooth way on the stiff volume fraction. By contrast, small specimens

display sharp discontinuities associated with different types of percolation. It

would be interesting to study the onset of these phenomena and in particular what

controls the transition from sharp to smooth percolation effects in checkerboard

and other granular materials. As explained in Chapter 5 this extension would

require a different numerical solver to efficiently deal with the stress singularities

at corner contacts between the stiff tiles as explained in Chapter 5;

2. Fiber-reinforced composites pose conceptually different problems and may

require entirely different strategies. An important difference of these systems is

the local anisotropy of the Young's modulus field. Such systems may experience

percolation, which could affect the bulk stiffness in complicated ways. One

possibility is to model the stiffness E(x) as a filtered Poisson field (or a filtered

non-Poisson field, to model the often-occurring clustering of fibers). It may then

be possible to derive the second-moment properties of the modulus using

theoretical results for integrals of such random fields and from that second-

moment characterization approximate the distribution of the bulk moduli. The

current finite element model only allows for quadrilateral elements and would

have to be revised to accurately describe the interaction between the fibers and the

matrix;

3. Interfaces may greatly affect the mechanical behavior of a composite. Their

inclusion in stochastic material models poses several challenges (realistic

representation, numerical analysis, treatment of uncertainty). One could start with

simple systems (e.g. inclusions with simple geometry) and develop random

homogenization strategies whereby each inclusion (plus interface) is replaced by

an effective inclusion with homogeneous but random mechanical properties, thus

converting materials with interfaces to equivalent random materials without

interfaces;
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4. The study of fracture in random multi-phase composites (for example the models

with inclusions studied in Chapter 6. In systems with inclusions and large discrete

jumps in the local Young's modulus the fracture is likely to travel along

interfaces. In addition to requiring a more accurate description of the interface

properties and the challenges of an analytical treatment, such problems might

require a different numerical approach. The current discrete lattice model has

been shown to accurately predict crack propagation in systems with smoothly

varying mechanical properties, but is relatively untested for systems with sharp

discontinuities of material properties. The discretization might favor certain

directions of crack propagation and thus misrepresent the fracture process.
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