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Abstract
Electrosprays of the pure-ion variety embody a unique collection of attributes that
have compelled interest in derivative technologies across a spectrum of applications
ranging from Focused Ion Beams (FIB) to microrocketry. Unlike conventional colloid
sources (i.e., so-called cone-jets or others sources from which droplets typically em-
anate), pure ion sprays are commonly characterized by narrow distributions of high
specific charge and nominal energy deficits as a result of their evaporative mecha-
nisms. Among other properties of the spray, these are known to enable well-behaved
optics (e.g. for nanometric patterning with FIB) and low power overhead (e.g. for ef-
ficient electrical-to-kinetic energy transduction in microrocketry) while also providing
for innate simplicity and spatial compactness.

In spite of their potential for paradigm-shifting impact, the practicality of con-
temporary pure-ion sources has been tempered by issues relating to reliability and
predictability. In contrast to droplet emission, for example, empirical studies strongly
suggest that pure-ion modes are only permissible under special sets of circumstances
and that important beam qualities (namely the stability but also the current) are
sensitive functions of the meniscus configuration. The difficulty in controlling these
modes is somewhat abated through the use of fluids like ionic liquids (IL), particu-
larly in connection with several heuristics that have emerged, but the process remains
substantially fickle. This is believed to owe most directly to an undeveloped physical
understanding.

While the physics that govern conventional colloid sources are at least function-
ally understood at this point, an analogous grasp of their ion relatives has proven
elusive. The purpose of this thesis is to begin addressing this issue by way of rigor-
ous theoretical investigations, with the ultimate aim of offering deeper fundamental
insight and additional recourse to future design initiatives beyond the existing set of
over-simplified heuristics.

In this thesis we first conduct a survey of potential contributors to the very multi-
physical phenomenon of charge evaporation and identify key influences through basic
order-of-magnitude analyses. These are used to inform the formulation of a detailed
mathematical framework that is subsequently leveraged in the exploration of evap-
oration behaviors for a prototypical ionic liquid meniscus across a range of field,
media, and hydraulic conditions. The results uncover a previously uncharted family
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of highly-stressed but ostensibly stable solutions for the problem of a volumetrically-
unconstrained source. These appear to be confined to a particular subregion of the
global parameter space that emphasizes thoughtful sizing of the meniscus and archi-
tecting of the feeding system. The impedance aspect of the latter, in particular, is
believed to play a critical role in steady emission when large scale disparities, which
are common in practical settings, exist across the parent meniscus. Additional influ-
ences that are often neglected in the literature, such as that of the liquid permittivity,
are also elucidated and shown to play meaningful roles in evaporation. We conclude
by outlining a reasonably comprehensive set of conditions that should be met for
steady emission and substantiate these with tangible evidence from our studies.

Thesis Supervisor: Paulo C. Lozano
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

The family of electrospray ion sources embodies an intriguing collection of candidate
technologies that have begun to find utility across a broad spectrum of disciplines in
recent years. This is particularly true of a special subset of monodisperse and low-
solvation sources, i.e., “purely ionic” sources, that are sometimes enabled through the
use of ionic liquid (IL) fluids, a class of molten salt that is stable near room tempera-
ture and largely involatile. Among the group of potentially high-impact applications
are focused ion beams (FIB) and microrocketry, where unique “purely ionic” physics
promise to affect paradigm-shifting advances. Owing to localized emanation of mo-
noergetic species and the amazing wealth of potential IL chemistries, which could
facilitate tailorable reaction properties, such sources could very well allow for ex-
treme nanometric processing capabilities across a spectrum of novel materials in FIB.
Similarly, their unification of fuel and power economies with unprecedented archi-
tectural simplicity is enacting a new age of ultra-scalable propulsion elements for
microrocketry.

In spite of substantial incentive, the subset of purely ionic IL sources have still
to approach the operational maturity of some of their relatives from the broader
electrospray family, e.g. sources based upon cone-jet (droplet) emission. This is
perhaps most directly attributable to the nascent understanding of fundamental ion
emission processes and the attendant lack of systematic design tools. While several
heuristics have emerged, ad-hoc methods continue to typify an unfortunate majority
of developmental efforts.

Before purely ionic systems can realize their potential, basic emission processes
will need to be explored in the course of (1) outlining subregions of the global opera-
tional space that ensure steady ion operation; (2) elucidating the relative influences of
various design factors; and (3) identifying specific points within the feasible envelope
that confer favorable operational traits, e.g. high current or stability. In a broad
sense, these will be the focus of the thesis presented herein.
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1.2 Background & Fundamental Physics
Electrospray ionization is a field emission phenomenon that produces focused streams
of high velocity particles through the breakdown of an electrically stressed meniscus.
In the presence of a sufficiently strong electric field, the interface of a conducting
fluid and an adjoining dielectric (often vacuum but sometimes air or even another
liquid) destabilizes before resettling in a pseudoconic state. The attendant geometry
is dynamically stable over a range of field conditions and enables the binding forces of
surface tension to locally balance the prevailing electrical traction. While qualitative
observations of this process were made as early as 1914 (see Zeleny [1, 2]), a satisfac-
tory mathematical framework remained elusive until 1964 when G. I. Taylor came to
the very remarkable conclusion that all such cones must obey a universal half-angle
(49.29 ∘), regardless of the working fluid or far-field perturbations [3]. In recognition
of this insight and the profound impact it has had in the intervening years, the term
“Taylor cone” is now conventionally used to reference these structures in electrospray
parlance.

A rich spectrum of conducting fluids -- these include, but are not limited to, liquid
metals (LM), solvents with ionic dopants, and a class of room-temperature molten salt
known as an ionic liquid (IL) -- are known to support Taylor cone formation in spite
of what are sometimes large disparities in the intrinsic properties. Liquid metals, for
example, are often characterized by electrical conductivities that are ≫ 1 S/m while
those of doped solvents are many orders of magnitude smaller. Interestingly, this
leads to a similarly impressive range of feasible operating modes. The so-called cone-
jet mode typifies low conductivity fluids and involves a thin cylindrical protuberance
that extends from the Taylor cone tip before breaking into an ensemble of charged
droplets shortly downstream. When certain hydraulic conditions are met, i.e. when
the flow rate is sufficiently small, the same cone-jet may produce a concurrent stream
of individual ions that are distinguished from their droplet counterparts by drastically
elevated specific charges (C/kg); this is the ion-droplet mixed mode. For higher
conductivity fluids like liquid metals and many ionic liquids, still smaller flow rates
may sometimes enact pathways to a purely ionic mode in which the cone-jet is fully
extinguished and the emission of low-solvation ions is permitted to prevail exclusively.

Among the potential modes, cone-jet emission has been studied most extensively
as a result of its widespread utility in several fields (it is perhaps best known in the
application of soft ionization for bio-molecules in mass spectrometry, for which John
Fenn won the 2002 Nobel Prize in Chemistry). In certain respects, however, the
purely ionic mode is singularly attractive: for example, high specific charges enable
superior propellant economy in microrocketry while minimal flow rates sometimes
afford passive hydraulic management schemes that simplify the system-level engine
architecture.

As a foundation for the detailed analyses that will emerge throughout this the-
sis, in the following sections we introduce fundamental electrospray mechanics and
emphasize important elements of pure ion emission. Topics include Taylor cone for-
mation, field emission processes, and “emitter” utilization concepts. We conclude
the introduction by offering a specific and detailed example of pure ion utility in
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Figure 1-1: Diagram of Taylor cone formation and spherical coordinate convention.
Left: Smooth, quasi-hemispherical meniscus preceding transition to Taylor geometry.
Center: Spherical coordinate convention used to identify equipotential half-angle.
Right: Stabilized Taylor structure highlighting local balance between electrical trac-
tion, hydrostatic pressure, and surface tension. The latter force, 𝑃𝑆𝑇 , intensifies with
the electric field as the governing length scales shrink in the direction of the apex.

microrocketry.

1.2.1 Taylor cone formation
Critical aspects of Taylor cone formation, including geometric phenomena, follow from
a pressure balance governing the fluid-dielectric interface. When electrical stressing
is present, this balance reads

1
2𝜖0 (∇Φ)2 + Δ𝑃 = 𝛾∇ · 𝑛⃗ (1.1)

where the first term on the left-hand side is the familiar electric pressure and the
second is a hydrostatic pressure jump across the interface. 𝛾 is the intrinsic surface
energy of the fluid (J/m2) that combines with the divergence of the surface normal,
∇ · 𝑛⃗, to describe the pressure that is supported by surface tension. It is, in general,
equivalent to 𝛾

(︁
𝑟−1

1 + 𝑟−1
2

)︁
, where 𝑟1 and 𝑟2 are the principal radii of curvature at a

given point along the interface.
In practical situations the working fluid is often anchored in place by some form

of feeding mechanism. This can be, for example, the end of a capillary tube or a
sharp needle. In either case, sub-critical stressing of the meniscus will result in the
growth of a smooth, continuous interface (to first approximation) until the LHS of Eq.
1.1 reaches some threshold value. For capillary tubes this is typically approximated
by the so-called capillary pressure, 𝑃𝑐 = 2𝛾/𝑟𝑐, which is determined in part by the
radius of the tube head, 𝑟𝑐. Conventional wisdom suggests that stressing beyond this
point results in rapid deformation of the interface and ultimately its reconstitution
as a stable pseudocone (see Fig. 1-1). While certain metastable geometries may exist
between the cone itself and the spheroidal cap that is believed to precede it [4], we
often take license to view the transition as an instantaneous snap-over process.

Topographical characteristics of the resulting structure can be identified by finding
a boundary geometry that satisfies equipotentiality. Although the nature of charge
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emission, which we have yet to discuss, must naturally perturb the equipotential con-
dition, it is very often a feasible approximation. After placing a spherical coordinate
system at the apex of the interface we can invoke a Laplacian "product" solution of
the form

Φ (𝑟, 𝜃) =
∑︁
𝑛

[︁
𝑎𝑛𝑟

𝑛 + 𝑏𝑛𝑟
−(𝑛+1)

]︁
𝑃𝑛 (cos 𝜃) (1.2)

for the dielectric region outside of the cone so long as azimuthal symmetry is
appropriate. This incorporates the Legendre function of the first kind, 𝑃𝑛, but ignores
the counterpart 𝑄𝑛 due to its singular behavior near 𝜃=0 (in the dielectric region of
interest). If we further neglect the hydrostatic pressure term Δ𝑃 as in the classical
Taylor analysis, we can use Eq. 1.1 to show that the balance governing the pseudocone
structure must only involve electric pressure and surface tension. When this is the
case, the boundary very nearly approaches a perfect conical geometry for which the
normal component of the interfacial field is known to scale like (see, for example, [5])

𝐸𝑛 =
√︃

2𝛾 cot 𝜃𝑇
𝜖0𝑟

(1.3)

where the Taylor angle, 𝜃𝑇 , is the half-angle of the conic body. This must be the
same field described by the Laplacian solution. Taking the derivative of Eq. 1.2 at
the equipotential interface gives

𝐸𝑛 = 𝐸𝜃 = −1
𝑟

𝜕Φ
𝜕𝜃

= −
∑︁
𝑛

[︁
𝑎𝑛𝑟

𝑛−1 + 𝑏𝑛𝑟
−(𝑛+2)

]︁ 𝜕
𝜕𝜃
𝑃𝑛 (cos 𝜃) (1.4)

which can only agree with Eq. 1.3 when 𝑏𝑛 → 0 and 𝑛 → 1/2. The corresponding
Legendre function, 𝑃1/2 (cos 𝜃), has a zero at 𝜃 = 130.71∘ and provides for the Taylor
angle 𝜃𝑇 = 180 - 130.71 = 49.29∘. This result has two very remarkable features:

∙ First, the cone solution is independent of any property of the working fluid
and suggests a universal geometry. In formulating the solution we ignored the
presence of a hydrostatic pressure jump, Δ𝑃 , which is not always vanishing
when the cone is in communication with a feeding system (e.g. a pressurized
reservoir of fluid) or when charge emission is present. Although these factors
are known to perturb the cone geometry [6] to some degree, the nominal 𝜃𝑇 is
typically a reasonable first approximation for the half-angle.

∙ Second, the Laplacian solution is local to the cone and ignores perturbations
in the far-field. To low order, this suggests that the fields very near to the
interface are somewhat insensitive to external ones once the Taylor cone has
been established.

1.2.2 Charge emission
From Eq. 1.3, the field at the apex of a perfectly conical Taylor structure is un-
bounded. This cannot be strictly physical, of course, and nature addresses the ap-
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parent absurdity through the dynamics of charged particle emission. In most cases,
strong apex fields disrupt the cone topography and force an open meniscus that is
characterized by a thin jet extending in the axial direction. This jet carries a current
[6]

𝐼𝑑 = 𝑔 (𝜖)
√︁
𝛾𝐾𝑄 (1.5)

where 𝐾 and 𝑄 are the conductivity (Si/m) and flow rate (m3/s) of the fluid,
respectively, and 𝑔 (𝜖) is some empirical factor depending upon the dielectric constant.
The characteristic length scale of the protuberance, namely its diameter, approaches

𝑑𝑗 = 𝐺 (𝜖)
(︂
𝜖𝜖0𝑄

𝐾

)︂1/3
(1.6)

where 𝐺 (𝜖) is a related empirical factor, before it breaks into a stream of charged
droplets briefly downstream. These carry a specific charge

(︂
𝑞

𝑚

)︂
𝑑

= 𝑔 (𝜖)
𝜌

√︃
𝛾𝐾

𝑄
(1.7)

that depends on the intrinsic density of the fluid, 𝜌 (kg/m3), and the ratio 𝐼/𝑄.
Values of the droplet specific charge vary across different fluids and flow conditions
but typically fall within the range from 102 - 104 C/kg. From Eqs. 1.5, 1.6, and 1.7
we see that a decreasing flow rate results in a shrinking jet that produces droplets
of stronger specific charge, albeit at the expense of the overall current. When the
flow rate becomes sufficiently small, such that the jet approaches the 10-8 m regime,
a process known as “field evaporation” begins to compensate the waning current by
releasing a concurrent population of low-solvation ions from the neck. These particles
are characterized by specific charges in the range from 105 - 106 C/kg. Interestingly,
further reduction in the flow may sometimes give way to complete extinction of the
jet and evaporation of a stream of pure ions from a closed meniscus (see Fig. 1-2),
though this is not the general case. With organic electrolytes, for example, there
exists a minimum stable flow rate

𝑄𝑚𝑖𝑛 ≈ 𝜖𝜖0𝛾

𝜌𝐾
(1.8)

that is very often larger than that which would otherwise be required for recovery
of a closed configuration.

The mechanics of the closed meniscus problem are still only tenuously understood
but in practice it is known that high conductivity fluids like liquid metals and certain
ionic liquids possess special circumstances that do sometimes facilitate this configura-
tion. When it does prevail, it is known that the emission obeys the phenomenological
Arrhenius rate [7]

𝑗 = 𝜎
𝑘𝐵𝑇

ℎ
𝑒−𝐸𝑎/𝑘𝐵𝑇 (1.9)

where 𝑗 is the density of evaporated current (A/m2), 𝜎 is the density of charge
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Figure 1-2: Diagrams of cone-jet emission (left) and pure ion emission from a closed
meniscus (right). The jet net shrink for small flow rates and sometimes produces ion
currents upstream of the droplet breakup. For special circumstances that are not yet
fully understood, very small flows give way to total extinction of the jet and pure ion
desorption from a sharp but closed meniscus structure.

at the liquid-dielectric interface (C/m2), 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the liquid
temperature, ℎ is Planck’s constant, and 𝐸𝑎 is some characteristic activation energy.
At 1-2 eV, the nominal activation energy for many ionic liquids (this is sometimes
referred to as the solvation energy, Δ𝐺 [8]) is extremely large with respect to the
thermal product 𝑘𝐵𝑇 and precludes significant evaporation near room temperature.
This kinetic barrier is, however, artificially defrayed by the presence of strong fields
near the tip of a sharp meniscus. In very polar media (𝜖 ≫ 1), for example, the
barrier reduction scales like

𝐸𝑎 =Δ𝐺−𝐺 (𝐸𝑛) , where (1.10)

𝐺 (𝐸𝑛) =
√︃
𝑒3𝐸𝑛
4𝜋𝜖0

(1.11)

with 𝑒 the fundamental charge and 𝐸𝑛 the normal component of the electric field
acting at the interface. Eq. 1.11 applies to singly charged particles and garners
validity insofar as an image charge approximation holds [9]. Copious ion emission
occurs for

𝐸𝑛 &
4𝜋𝜖0Δ𝐺2

𝑒3 (1.12)

when the potential energy supplied by the external field meets or exceeds the
nominal solvation barrier. This suggests that fields on the order of 109 V/m (ionic
liquids) to 1010 V/m (liquid metals) are required for meaningful currents. These are
extremely strong, and by invoking Eq. 1.3 it can be seen that they can only be
permitted to exist in the vicinity of a very small region (∼ 10 nm radius) encircling
the apex of a Taylor source or similarly sharp meniscus.
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1.2.3 Emitter Architectures
From a theory perspective it is sometimes convenient to view the enabling electro-
spray fields in an abstract way, as simply "externally supplied", but real devices require
some feasible means for producing them. More often than not, the requisite fields
are realized by forcing a relative bias across two neighboring electrodes, one of which
is wetted with the working fluid. The wetted electrode, or “emitter”, is generally
deformed to a sharp point that amplifies the ambient field at its apex and local-
izes cone formation to the same area. This serves the twofold purpose of enabling
emission at tractable potentials and restricting charge production to specific sites
that are locationally known a priori. The latter affords alignment to perforations in
the opposing electrode and unimpeded pathways for interstitial charge flows. Several
common emitter architectures are diagrammatically sketched in Figure 1-3 and briefly
expounded upon in what follows.

Open-flow emitters

Open-flow architectures operate by transporting fluid along the external surface of a
solid emitter body. The result is a simple electrospray structure with a large interfa-
cial area that is in some ways advantageous but comes at the expense of propellant
selection. Owing to full exposure, liquids of non-negligible vapor pressure (e.g. or-
ganic electrolytes) are generally precluded in low pressure operating environments.

From a geometric perspective, open-flow emitters -- sometimes referred to as
externally-wetted emitters -- may safely adopt one of a number of different shapes.
Previous studies, for example, have used "volcano" geometries, which naturally fol-
low from the isotropy of electrochemical etches on wires or planar surfaces; "pencil"
geometries, which follow from specially-masked plasma etches and are akin to the for-
mer, albeit with greater anisotropy in the sidewalls; and "plateau" geometries, which
are characterized by anisotropic sidewalls and flat tops designed to augment the active

𝒎  

𝑰 

𝒎  

𝑰 

𝒎  

𝑰 

𝑽 

Figure 1-3: Common emitter architectures. Common emitter architectures are de-
picted along with the typical counter-electrode biasing scheme. Left: Open-flow
emitter transporting liquid along its body. Center: Closed-flow emitter transport-
ing liquid through an internal channel. Right: Hybrid emitter passing liquid through
a porous bulk.
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emission area. Other permutations are possible, of course, but limited insofar as the
related manufacturing methods. Additional caveats include tenuous fluid transport,
which is related to the difficulties of external wicking, and the near-impossibility of a
feeding pressure.

Closed-flow emitters

Closed-flow architectures are the antithesis of their open-flow counterparts in that
they transport fluid via sealed internal channels, which mitigates losses attendant to
normal evaporation in low-pressure environments and restricts Taylor cone formation
to the exposed head of the liquid column. Liquid metals, ionic liquids, and organic
electrolytes are all feasible fluids.

The closed-flow emitter geometry is almost always that of a traditional capillary,
though slit-style variations which are similar but elongated in one direction are known
to exist. In this way, they benefit from a degree of simplicity that lends them to both
conventional and MEMS manufacturing. Only the latter, however, is well-suited to
multiplexing. Owing to their closed infrastructure, they are adept at transporting
strong flows such as those provided through external pumping, and this has made
them useful as cone-jet sources in a number of different applications ranging from
spectrometry to thin-film deposition to propulsion. They are, however, susceptible to
clogging and overflow for the same reasons.

Hybrid (porous) emitters

Porous architectures transport fluid via networks of internal channels. They combine
the high capacity hydraulics of closed-flow designs with a robustness to clogging
and overflow that is characteristic of their open-flow counterparts. They are hybrids
in this sense, and offer compatibility with liquid metals, ionic liquids, and organic
electrolytes to varying extents.

Functional geometries for porous emitters generally coincide with those of the
open-flow variety although creative configurations are theoretically possible. Bulk
porous substrates are only commonly available in metallic and ceramic forms, both
of which are plasma-chemically inert and sputter-hard, and this has traditionally
restricted manufacturing to electrochemical techniques. As a result, the literature is
largely limited to "pencil" and "volcano" style features.

Geometric limitations notwithstanding, porous emitters are generally capable of
operating with or without back pressure and of exhibiting modal versatility in their
emission, i.e. the ability to support either cone-jet or ionic sprays. In conjunction
with a proclivity for large ionic throughputs, this has helped them to garner a great
deal of interest in recent years.

1.3 Example of pure ion utility: micropropulsion
As an example of pure ion utility we offer here a brief analysis of the performance of
an electrospray microrocket. Among other metrics, we show that fuel economy is a
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strong function of beam composition and leverage the results in motivating further
studies on the ion mode.

The function of any emitter structure is to amplify the local electric field and stress
the fluid at its surface. For a specific starting voltage, 𝑉𝑠, the field at the tip will
reach a threshold level and begin driving an electrospray current, 𝐼. The attendant
mass flow

𝑚̇ =
∑︁
𝑛

𝐼𝑛

(︃
𝑚

𝑞

)︃
𝑛

(1.13)

may, in general, contain both ionic and droplet contributions (subscripts 𝑖 and 𝑑
hereafter). The 𝑛𝑡ℎ constituent in this charge stream will experience an electrostatic
free-fall through the beam voltage 𝑉𝐵 and reach a terminal velocity

𝑐𝑛 =
√︃

2
(︂
𝑞

𝑚

)︂
𝑛
𝑉𝐵 (1.14)

as dictated by the conservation of total energy (which is only between kinetic and
electrostatic potential energy factors in this case), before exhausting into free space
at an angle 𝜃𝑛 with respect to the axial direction. The momentum flux embodied
by the aggregate flow has an axial projection ∑︀ (𝑚̇𝑐 · cos 𝜃)𝑛 that imparts a thrust
force 𝐹 on the parent needle. Assuming two particle families of monodisperse specific
charge (one family of ions and another of droplets, neglecting both "cold" neutrals
arising from thermal evaporation from the meniscus and their "hot" counterparts that
may arise from molecular fragmentation events in the accelerating part of the beam
[10, 11]), this thrust can be cast as

𝐹 = 𝜂𝑡𝑟𝜂𝜃
√
𝜂𝐸𝜂𝑝𝐼𝑇

⎯⎸⎸⎷2
(︃
𝑚

𝑞

)︃
𝑚

𝑉 (1.15)

where 𝐼𝑇 is the total current, 𝐼𝑖 + 𝐼𝑑, and (𝑞/𝑚)𝑚 is the average specific charge of
the mixed mass flows

(︂
𝑞

𝑚

)︂
𝑚

=
(︂
𝑞

𝑚

)︂
𝑖
[𝛽 + (1 − 𝛽)𝜓]−1 =

(︂
𝑞

𝑚

)︂
𝑑

[︃
𝜓

𝛽 + (1 − 𝛽)𝜓

]︃
(1.16)

In Eq. 1.16, 𝛽 is taken to be the ratio of transmitted ion current to total trans-
mitted current (1 − 𝛽, therefore, is the corresponding droplet fraction), and 𝜓 is the
ratio of specific charges, (𝑞/𝑚)𝑖 / (𝑞/𝑚)𝑑. The efficiency factors are defined as
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𝜂𝑡𝑟 = 𝐼𝑡𝑟
𝐼𝑇

(1.17)

𝜂𝜃 = 𝛽 cos⟨𝜃𝑖⟩ + (1 − 𝛽) cos⟨𝜃𝑑⟩
√
𝜓

𝛽 + (1 − 𝛽)
√
𝜓

(1.18)

𝜂𝐸 = 𝑉𝐵
𝑉

(1.19)

𝜂𝑝 =

[︁
𝛽 + (1 − 𝛽)

√
𝜓
]︁2

𝛽 + (1 − 𝛽)𝜓 (1.20)

The transmission efficiency, 𝜂𝑡𝑟, is the ratio of transmitted current to total current
and accounts for imperfect extractor transparency. The angular efficiency, 𝜂𝜃, takes
care of angular losses in the part that of the beam that successfully propagates.
The characteristic angles ⟨𝜃𝑖⟩ and ⟨𝜃𝑑⟩ are averaged over the beam and account for
potentially dissimilar distributions of the particle families

cos⟨𝜃𝑛⟩ =
∫︁
𝐵

cos 𝜃𝑛 ·
(︃
𝑑𝑚̇𝑛

𝑚̇𝑛

)︃
, for both 𝑛 (1.21)

The energetic effiency, 𝜂𝐸, is the ratio of the actual beam voltage to the emitter
one and describes the characteristic "ion cost". This is often just a few volts in ion
modes. The polydispersity efficiency, 𝜂𝑝, is very important in mixed-mode operation
and accounts for losses related to concurrent acceleration of dissimilar specific charges.

Currents on the order of 10-7 - 10-6 A are typical when a pure ion stream is
achieved. For (𝑞/𝑚)𝑖 ∼ 105 - 106 C/kg and 𝑉 ∼ 103 Volts, these lead to thrust values
(Eq. 1.15) that are on the order of 10-9 - 10-7 N and generally small in comparison to
in-space needs. Multiplexing of individual needles is a common solution for this issue
and can provide for engines of substantial thrust density when arrays are sufficiently
populated. Figure 1-4 briefly introduces this idea.

Beyond the thrust, the total efficiency of the electrical to kinetic energy trans-
duction process and the effective specific impulse are important engine parameters.
These are cast as

𝑐 = 𝜂𝑖𝜂𝑡𝑟𝜂𝜃
√
𝜂𝐸𝜂𝑝 ·

√︃
2
(︂
𝑞

𝑚

)︂
𝑚
𝑉 (1.22)

𝜂𝑇 = 𝜂𝑢𝜂𝑖𝜂𝐸𝜂𝑝 (𝜂𝑡𝑟𝜂𝜃)2 (1.23)

where 𝜂𝑖 is an ionization efficiency accounting for any flow of neutral mass, 𝜂𝑖 =
(𝑚̇𝑖 + 𝑚̇𝑑) /𝑚̇, and 𝜂𝑢 is a factor accounting for upstream losses in the power man-
agement system (e.g. the PPU) [12]. The specific impulse in particular, which is
sometimes referenced in units of seconds after dividing by the gravitational accel-
eration constant, is a critical metric in system-level design as it dictates aspects of
vehicle sizing and mass/volume budgeting.
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Figure 1-4: Notional scaling of thrust density with emitter population. Estimated
thrust densities for several values of 𝐹 (the thrust per emitter) are shown alongside
nominal F/A ranges for select engine technologies. The inset delineates the emitter
pitch, 𝑝, that governs the feature density in an actual array.

Consider the equation for an ideal rocket traveling in a vacuum devoid of external
forces, 𝑑𝑚/𝑚 = −𝑑𝑣/𝑐, which can be integrated to identify the propellant fraction
that is required to achieve a given Δ𝑣 [13, 14, 15, 16]. This is

𝑚𝑝

𝑚0
= 1 − 𝑒−Δ𝑣/𝑐 (1.24)

where 𝑚𝑝/𝑚0 is the ratio of propellant mass to the initial wet mass of the vehicle,
Δ𝑣 is a mission-specific velocity increment, and 𝑐 is the characteristic specific impulse
of the engine (assumed constant). Many missions require substantial velocity incre-
ments and therefore high values of 𝑐 in order to mitigate the attendant propellant
need. The latter is often facilitated by a pure ion beam, rather than a mixed or
pure droplet one, and Figure 1-5 illustrates this point. On the left, the polydisper-
sity efficiency is observed to suffer for mixed beams, especially for large 𝜓. Losses
are wholly mitigated for either a pure ion beam or a pure droplet beam, but from
Fig. 1-5 (center) we see that only the former confers good specific impulse perfor-
mance. The vehicular ramifications of this are delineated in Fig. 1-5 (right), which
shows propellant budgeting for three cases of velocity increment: 100 m/s, which is
on the order of simple orbit raising requirements [17]; 1000 m/s, which is on the order
of long-term drag cancellation or stationkeeping requirements [18]; and 10,000 m/s,
which is on the order of high-altitude and interplanetary requirements (e.g. Lunar
missions) [19]. The budgets for pure droplet and mixed stream engines are substan-
tially larger than those of their pure ion counterparts. While this clearly underscores
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Figure 1-5: Various metrics for a general (mixed ion-droplet) electrospray engine.
Left: Polydispersity efficiency for various ratios of specific charge. Center: Effective
specific impulse (seconds) for three select voltages and the case [𝜓 = 100, (q/m)𝑖 =
106 C/kg]. Right: Propellant fraction for various Δ𝑣 requirements and the case [𝜓
= 100, (q/m)𝑖 = 106 C/kg, 𝑉 = 1000V].

the need to reliably design for and operate within a purely ionic envelope, the present
collection of a posteriori insights have proven rather prohibitive. With that in mind,
the fundamental studies to be undertaken hereafter are intended as a first remedial
step.
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Chapter 2

Literature review

The literature review is divided along two lines. The first section covers theoretical
and experimental aspects of purely ionic IL evaporation while the second presents
a representative snapshot of previous microrocket development programs. The at-
tention of the latter is restricted to purely ionic IL engines of the porous type. It
is intended to introduce the current state-of-the-art as a way of highlighting several
deficiencies that are common amongst the broader family of purely ionic technologies.
In the brief chapter that immediately follows, the collection of existing art is used to
motivate a series of high-level objectives for the thesis.

2.1 Fundamental research

2.1.1 Experimentation
In the cone-jet literature it is well-known that the emitted current begins to favor
ionic pathways in lieu of droplet ones at very low flow rates, which often leads to
speculation that a pure ion mode is within reach when a sufficiently small value can
be prescribed for the latter. In many cases, however, this belies possibility as there
exists a limiting flow rate for conventional fluids (e.g. doped organic electrolytes)
that demarcates a stability threshold and precludes transition to the pure ion regime.
Still, the fact that ion emission has been observed in liquid metals since at least the
1960’s [26, 27] has given hope that it is permitted for certain fluids under special
circumstances.

Notwithstanding a 1969 study by Perel [28], in which the spray properties of
concentrated sulfuric acid were explored, the pure ion mode has remained largely
elusive until only recently. In 2003, Romero-Sanz [29] first reported on a fluid for
which droplet extinction could be navigated in a stable way. Using a 20 𝜇m ID cap-
illary line (30 cm long) biased to 1375V, the ionic liquid EMI-BF4 (1-ethyl-3-methyl
imidazolium tetrafluoroborate) was sprayed at various flow rates by modulating an
upstream reservoir pressure. While a mixed ion/droplet current prevailed in most of
the cases investigated, as expected, the droplet component appeared to completely
extinguish (as evidenced by time-of-flight spectrometry) when the reservoir pressure
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and flow rates were throttled to their low values of 28 Torr and 0.56·10-12 kg/s, respec-
tively. Very remarkably, an ion current in the neighborhood of ∼ 200 nA remained.
Though a firm rationalization for the enabling facets of EMI-BF4 could not be of-
fered at the time, it is now somewhat apparent that this is possibly owing to a unique
combination of high electrical conductivity (& 1 Si/m) and surface tension (& 50
dyn/cm) [30]. Note that liquid metals, for which ion emission is pervasive, share this
combination of attributes albeit to a much greater extent.

Around the same time, Lozano [31] explored the emission properties of the same
ionic liquid from electrochemically sharpened tungsten wires at MIT. Starting volt-
ages of ∼ 1.6 kV were observed for emitter tip radii of ∼ 20 𝜇m and corresponded
to incipient currents of 100 nA near room temperature. These nearly tripled to 300
nA for biases of 2 kV though time-of-flight (TOF) measurements suggested purely
ionic emission for all cases. Energy tests and angularity-resolved beam measurements
also showed low voltage losses (not more than a few percent of the needle voltage)
and minimal spray divergence not exceeding ∼ 18∘. Interestingly, the author also ex-
plored the thermal dependence of the emission properties and demonstrated enhanced
currents at elevated temperatures. While holding the fluid at 65∘, for example, mea-
sured currents were ∼ 400 nA and ∼ 600 nA for needle voltages of 1.6 kV and 2 kV,
respectively. While this led to some speculation on a limiting hydraulic mechanism
-- the temperature increase must have reduced the effective fluid viscosity and im-
proved convective transport thereby -- similar conduction effects could not be ruled
out. Lastly, in all cases Lozano observed detrimental electrochemistry that degraded
both the needle and the fluid quality during extended operation in a single polarity.
This was attributed to capacitive charging of the liquid-metal double layer beyond
the so-called electrochemical window and ultimately rectified with a voltage alter-
nation strategy in which excessive overpotentials were discouraged through periodic
polarity reversal [32]. This is the same technique that is now widely employed in the
maintenance of source integrity for long-life, IL-based sprays.

Lozano followed up on this work by characterizing a source based on the ionic
liquid EMI-Im and concluded that it displayed similarly advantageous energetic prop-
erties whilst achieving pure ion emission [33]. A 5-10 𝜇m tungsten tip was used to
facilitate the spray, as before, but now operated in the voltage band from ±900V to
±1200V. Rather than the energy results, the most striking facet of this study was
the fact that it achieved ion emission with a fluid that typically produces droplets
when fed from a capillary. This is an important phenomenon of externally-wetted
electrosprays that was later corroborated through exploration of more exotic ionic
liquid permutations [34, 35] and suggests that upstream hydraulic properties play a
major role in determining the nature and quality of the source.

Further indication of this notion was evidenced by Castro [36] in a study on the
tip curvature dependency of the emission characteristics. The author presented the
level of evaporated current for a panoply of fluids and observed sizable excursions that
varied monotonically with the sharpness of the emitting electrode. While just tens of
nA were produced with the smallest tip in the study (2.5 𝜇m radius), greater than 1
𝜇A was seen for the largest (60 𝜇m radius). Additional information was given for a
50 𝜇m tip case, where the authors plotted biases covering the full range of stability
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(2225V - 2425V) and corresponding currents (∼ 500 nA to ∼ 700 nA). Mention was
also made of an 80 𝜇m tip that could not support an ion emission mode; rather, the
production of droplets led the authors to point specifically to the influence of the
upstream hydraulic impedance on the emitted current. For small tips, they argued, a
high impedance must somehow ensure ion emission while simultaneously restricting
the allowable flow rate. The governing impedance is relaxed for larger tips, permitting
elevated currents, but appears to reach a threshold for excessively blunt surfaces where
it gives way to other emission modes. Though still qualitative, this argument was
compelling in its seeming ability to reconcile the difference between externally-wetted
and capillary sources. Beyond that, however, no treatment or discussion was offered
for the nature of the Taylor cones that produced the immense currents observed in
the blunt-tip cases, which were anomalously large in relation to typical findings (≥ 1
𝜇A compared to hundreds of nA). Interestingly, more recent research has hinted that
bifurcations [37, 38], in which a single Taylor cone splits into two coupled sources,
or other "multi-cone" mechanisms [39] could have been factors, though the degree to
which these phenomena are connected to the noted hydraulic ones is still relatively
unclear.

Velasquez-Garcia [40, 41] and Gassend [39, 42] attempted to leverage the phe-
nomenon described in Ref. [36] by exploring externally-wetted tips with large emis-
sion areas. Unfortunately, they showed that the high current regime (more than
several hundred nA) is unstable in many cases and likely the result of poor fluid
transport properties upstream of the evaporation zone. Owing to the depletion of
fluid pools near the tip, which were not being steadily fed by the needle, intermittent
spray extinction was reported for several experiments. In view of this, an ad-hoc
“black silicon” surface treatment was explored as a way of improving the wetting
characteristics (see Garza [43, 44] for details); however, engine sputtering could not
be cleanly eliminated.

As a byproduct of these difficulties, the most recent purely ionic IL sources have
tended toward capillary and porous emitters where similar fates are not necessar-
ily met. Krpoun, for example, has presented a modified capillary system in which
the emitter tubes were packed with silanized silica microbeads [45]. The capillaries
themselves were 70 𝜇m tall and 24 𝜇m in (inner) diameter while the beads were 5
𝜇m wide. The stated purpose of the bead packing was to augment the impedance
of the hydraulic line as a way of ensuring uniform performance across a multiplexed
array during pressure fed operation, which is known to occur when the viscous drop
dominates the driving electrodynamic pull [46, 47]. This could presumably serve
the ancillary benefit of enabling pure ion emission from fluids that would otherwise
require externally-wetted sources; however, any benefit derived therein was perhaps
marginalized due to the low currents that Krpoun reported. For voltages between
±1000V and ±1200V, little more than ∼ 20 nA was observed. A later study that
spanned the much larger voltage range from ± 700V to ± 1400V came to the same
findings [48]. To further compound matters, the latest work in this area has shown
that pure ion emission from these capillaries is still a relatively precarious proposition
owing to the uncertainty of the bead process. While it has proven effective in ideal
cases, consistent and controllable packing is a challenge which often precludes the
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array-level uniformity that was originally sought [49], i.e. emitters sometimes run in
a mixed ion/droplet mode despite the presence of the beads. A new effort is underway
to fully reconcile this issue through the use of ultra-high aspect ratio tubes, though
early reports have yet to indicate pure ion emission [50, 51].

In the area of porous emitters, initial forays were reported by Legge and involved
the use of bulk porous metal sheets [52, 53, 54]. The primary substrate metal, tung-
sten, was chosen for its heritage in earlier externally-wetted studies, most notably
those of Lozano. Legge described a simple photolithographic process for etching a
2.14 mm long, 1.196 mm wide (at the base) triangular tip from a 600 𝜇m thick sheet
[54]. The resulting tip had principal curvature radii of 8.25 and 9.77 𝜇m, yield-
ing a 4.47 𝜇m effective tip radius that was large enough to maintain macroscopic
smoothness despite a nominal pore size of 0.5 𝜇m. Time-of-flight measurements in-
dicated purely ionic emission from four ionic liquids (EMI-BF4, EMI-IM, EMI-Beti,
and MPI), though several are predisposed to droplets in capillary instances. Noting
that Legge did not use a feed pressure, this is qualitatively similar to the same phe-
nomenon in externally-wetted configurations and possibly owing to similar hydraulic
mechanisms. Legge also reported current measurements for biases ranging from a
starting voltage of ∼ ± 1500V to ∼ ± 2900V. Current/voltage traces appeared quasi-
linear and reached between ∼ 200 nA (for MPI, the most resistive fluid) and ∼ 1 𝜇A
(for EMI-BF4, the most conductive fluid) near the high-voltage end. The author
noted that these magnitudes are substantial in comparison to what externally-wetted
sources of similar size produce in the steady-state and attributed the discrepancy to
superior hydraulics.

Courtney extended this work to bulk porous nickel (∼ 1 - 5 𝜇m nominal pore
size) and presented detailed emission characteristics for ∼ 150 𝜇m tall tips with 15
- 25 𝜇m apex curvature radii [55, 25, 56, 57]. In the absense of a feed pressure, as
before, pure ion emission was demonstrated through a time-of-flight technique before
presenting several current measurements. For the ILs EMI-BF4 and EMI-IM, these
were provided for biases between the starting voltage of ∼ ± 800V and roughly ±
1150V (for EMI-BF4) and ± 1600V (for EMI-IM). These levels allowed the latter
to reach ∼ 1 𝜇A near the high-voltage end and the former to approach 400 nA.
Encouragingly, the explanation provided for these high currents was somewhat more
concrete and well-founded than those offered previously. Rather than simply craft
a qualitative hydraulic argument, Courtney used a witness plate to create a visible
impaction pattern that ostensibly reflected the concurrent activation of several Taylor
cones at the tip. In interesting fashion, this was used to suggest that not one but
multiple cones must have been at least partially responsible for enabling such high
throughputs.

Based on the Legge and Courtney studies it would be tempting, though premature,
to conclude that porous emitters are invariably robust in their ability to support pure
ion emission. If the insights from Castro [36] are any lesson, it is likely that conditions
exist for which they similarly engage a droplet regime. Indeed, Coffman appeared to
demonstrate this explicitly while investigating the properties of a porous glass emitter
[58]. Using tips that were geometrically similar to those of Courtney, the author
presented both time-of-flight and current measurements for the ionic liquid EMI-BF4,
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which has often been noted for its partiality to the ionic mode even when fed from
a capillary (recall Romero-Sanz [29]). Despite quantitative agreement between those
current measurements and others reported elsewhere for purely ionic evaporation,
the time-of-flight results suggested a small but non-zero droplet population in the
beam. Whether this curious finding is the result of larger and somewhat irregularly
shaped pores (5 - 10 𝜇m nominal diameter with noticeable non-circularity) conferring
a smaller hydraulic impedance than that which is apparently necessary for pure ion
emission [36], a wetting issue, or perhaps a difference between metal and dielectric
substrates remains unclear. Regardless, as with Castro [36] the finding squarely
underscores the important roles that upstream conditions and surface properties play
in governing the spray.

2.1.2 Modeling
A strong fundamental understanding for the governing facets of purely ionic evapora-
tion from ionic liquids remains elusive despite experimental heuristics, e.g. that high
hydraulic impedance promotes pure ions. Accordingly, the literature on the side of
fundamental theory is thin and somewhat undeveloped.

Similar to cone-jet emission studies, the Taylor-Melcher “leaky dielectric” model
is a powerful tool for investigating purely ionic evaporation from fluids of modest but
finite conductivity (see Saville [59] for a review of the salient elements first introduced
by Taylor [60] and then Taylor and Melcher [61]). Using the basic framework described
therein, Higuera [62] has constructed one of the few models for an IL meniscus by
examining the behavior of a hypothetical drop that is subject to a strong external
field while resting on a flat, perfectly conducting plate (to simplify the treatment).
The problem was organized with three distinct regions, each of which possessed its
own governing equations: there was a fluid-dynamic region inside the liquid globule,
a Laplacian space outside of it, and an interfacial region separating the two. Charge
conservation in the fluid region, ∇ · 𝑗 = 0, ensured that the interior field was wholly
solenoidal. Owing to small Reynolds numbers, basic Stokes flow was also invoked
while neglecting possible body forces (i.e. ∇𝑃 ∼ 𝜇∇2𝑢), which seems to be justified
in view of the fact that the non-neutral region permitted to exist near the interface
is very nearly vanishing [63]. The Laplacian region outside the globule ignored space
charge, by definition, and the interface served as the forum for electromechanical
coupling: there, surface tension and hydraulic pressure balanced the normal electric
traction and the tangential shear described by Maxwell’s tensor.

Higuera has offered a measure of perspective on the conventional Taylor anal-
ysis and added generality by virtue of the fact that neither conical nor ellipsoidal
geometries were assumed a priori. Rather, the interface of the rounded globule was
permitted to propagate in time until a steady solution was found for the aforemen-
tioned equations. This was accomplished via a basic boundary element method for
the spatial equations and a second order Runge-Kutta algorithm for the temporal
marching. Two distinct cases of ionic emission were considered with this technique,
one in which the volume of the meniscus was held constant and another in which a
feed pressure was used to pump fluid from an upstream reservoir. In the latter case,
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the effects of a non-zero hydraulic impedance between the reservoir and meniscus were
briefly considered. For all numerical examples the relative dielectric constant 𝜖𝑟 = 50
was used along with a dimensionless 𝛽 parameter of 10. The former is typical of ionic
liquids solutions in propylene carbonate [8] and several times larger than those of pure
ILs [64, 65]. The latter, which is related to the electrostatic energy term from Eq.
1.11, appears to correspond to menisci with anchoring radii (similar to the radius of
a supporting capillary or pore) in the vicinity of 2.5 𝜇m and not far from those that
are often observed for commonly investigated porous materials. In an effort to make
the numerical problem tractable, the author also artificially modified the value of the
related liquid solvation energy so that emission could occur at reduced fields. While
this might raise questions about direct numerical applicability of the results, certain
qualitative attributes still warrant discussion.

In the constant volume example, Higuera has plotted the menisci shapes, surface
field distributions, and surface charge densities as functions of the external field with
the dimensionless volume as a parameter. The evaporated current was also shown
as a function of the same field and used to qualitatively corroborate the notion of a
starting voltage, which is often observed in practice. The current traces contained
therein began to appreciably grow for stresses much lower than the critical one often
thought of in the context of Taylor (∼ 𝐸𝑐/4, where 𝐸𝑐 =

√︁
2𝑃𝑐/𝜖0) and terminate

shortly thereafter (∼ 𝐸𝑐/2) with the onset of an instability. They were also markedly
linear, which contrasts with the Iribarne & Thomson expression (Eq. 1.9), as a result
of conduction limitations within the “leaky dielectric” fluid.

Unfortunately, treatment of the feeding case was somewhat less complete than
for the constant volume counterpart. There, Higuera formulated the hydrodynamic
pressure drop that arises as a result of a feeding impedance and subtracted it from
a positive reservoir pressure. The force that the drop exerts on the plate was also
accounted for even though it does not likely have meaning in real situations where
the fluid rests atop an hydraulic line. Subsequently, several current-field traces were
presented for notional combinations of reservoir pressure and impedance. They dis-
played stability behavior similar to that of the preceding case but adopted dissimilar
slopes and achieved maximum currents that varied wildly as functions of the upstream
conditions. For example, the trace corresponding to small feed pressure and negli-
gible impedance (𝑝0 = 2, 𝛼̂ = 0, both dimensionless) reached an exceptionally large
current (I ∼ 103, also dimensionless) while the trace corresponding to (𝑝0 = 5, 𝛼̂ = 1)
merely achieved I ∼ 1. Though no quantitative pathway was offered for reaching the
high current branch, nor any heuristics, the author hinted that careful selection of an
appropriate 𝑝𝑜-𝛼̂ combination is paramount.

The noted deficiencies of the model notwithstanding, qualitative aspects of the
results are intriguing for several reasons. First, the notion of a maximum external field
suggests that purely ionic emission might only be permissible within a narrow band
of stability. Second, broad excursions in the current traces for the feeding example
underscore the importance of upstream conditions in determining emission behavior.
These seem to agree with the body of experimental work. Higuera also shows depleted
surface charge equilibria during emission in the constant volume case. For regions of
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strong evaporation in particular, the prevailing charge density is but a small fraction
of the fully relaxed value and the author argues that this is a byproduct of limited
conduction in the fluid bulk, which scales in proportion to the vacuum field. This is
a profound observation that could perhaps explain to some degree the linearity seen
in many ILIS current/voltage characteristics. It is, however, not immune to scrutiny
in view of the difficulties inherent to the interpretation of surface charge layers for
ionic liquid solutions, particularly those that are nearly pure. If a fluid has only two
components (a pure mixture of molecular cations and anions), how is the surface
charge structured when the length of the associated layer is only of sub-molecular
scale? What happens when it is “depleted”? In spite of its historical utility for dilute
electrolytic solutions, the conventional “leaky dielectric” model is perhaps not strictly
equipped to handle pure IL fluids or answer such fundamental questions.

Beyond Higuera, a fair amount of literature exists on the geometry and stability
of electrified droplets suspended in free space. Taylor [3], for example, famously
treated the problem of a perfectly conducting droplet subjected to a uniform external
field. By assuming a purely ellipsoidal elongation of the major axis in the direction
of the applied field and fixing the drop volume, that author constructed a two-point
method in which the relevant pressures (electric, interfacial tension, and hydrostatic)
were concurrently balanced at both the pole and equatorial locations. This led to
stable elongations (as measured by the ratio of major to minor axis, 𝑎/𝑏) that grew
monotonically until a turning point was reached in the vicinity of 𝑎/𝑏 ∼ 2 and scaled
field

√︁
4𝜋𝜖0𝑟0/𝛾 ·𝐸0, where 𝑟0 and 𝐸0 were the quiescent droplet radius and the field

far from the drop, respectively. No stable solution for a closed ellipsoidal meniscus
was found for higher fields, though it was noted that a second but unstable branch
of equilibrium solutions existed at exaggerated elongations, i.e. the equilibrium 𝑎/𝑏
curve was multi-valued for sub-critical 𝐸0.

The same fixed-volume drop problem is examined several more times throughout
the literature using progressively more sophisticated techniques to relax the geometric
constraints implied by Taylor’s analysis (see, for example, Refs. [66, 67, 68, 69, 70,
71]). It is also extended to the case of pure dielectric drops (i.e. no “leakiness”
attendant to free charge [68, 69, 70, 71]) where an interesting phenomenon is observed.
For fluids with a relative dielectric constant above a certain threshold (𝜖𝑐 & 20) the
stability behavior is qualitatively similar to that of the perfect conductor case in that
a turning point is met at a specific external field, beyond which no stable solutions
for closed menisci are found. For dielectric constants below the threshold, however,
elongation is apparently indefinitely stable due to the abbreviated traction of the field.
This is an extremely interesting result that reflects to some degree on the Higuera
model. Higuera[62] showed depleted surface charge for emitting regions of the IL
meniscus, suggesting that initially conductor-like behavior (the fluid fully shields
itself with surface charge when it is not emitting) gave way to dielectric behavior
when emission was achieved in advance of the stability limit. In the cases examined,
emission was indeed observed but the stability limit was still met because, ostensibly,
the fluid had a high intrinsic dielectric constant (𝜖𝑟 = 50) that was well beyond 𝜖𝑐.
It is interesting, however, to speculate on what may have happened had the fluid
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possessed a value below this demarcation. Could instability have been postponed?
In addition to the free drop problem, Basaran [70] and Wohlhuter [71] considered

cases in which a fixed-volume droplet was attached to a flat plate with either a
constant contact distance (i.e. a fixed base radius) or constant contact angle, the
so-called sessile and pendant drop cases. The former of these constraints was shown
to confer more stability. In situations where the drop had a non-wetting quiescent
configuration (contact angle greater than 90∘), both anchoring cases went unstable
for low fields but permitted substantial elongations of the meniscus. The opposite
was true of wetting configurations. By examining the magnetohydrostatic problem
of a ferrofluid drop attached to a plate in a uniform field, which is mathematically
similar to the electric field problem in question, Boudouvis [72] appeared to show
that wetting does indeed lend itself to augmented stability, at least in the sense that
higher fields can be sustained.

2.2 Porous microrocket programs
The first porous IL engines were developed from the porous tungsten emitters de-
scribed by Legge. The same author examined the propulsion significance of the four
liquids from the previously noted emission study [54] by using the current and TOF
measurements to infer the average charge-to-mass ratio (q/m), thrust, specific im-
pulse, and propulsion efficiency of each fluid as a way of comparing relative perfor-
mance. These were used to show that, at a given emitter voltage, the lower q/m of
the heavier fluids (e.g. MPI) was not significant enough to offset the higher current
of the lighter fluids (e.g. EMI-BF4) on a thrust basis. Accordingly, EMI-BF4 alone
was selected for further study in a multiplexed system.

Legge proceeded to construct linear arrays of individual porous tips and explore
the effects of emitter spacing for three different densities (1, 1.33, and 2 tips per mm).
New current measurements were obtained as the metric for this purpose. Interestingly,
the current per emitter was shown to vary little with this parameter over the voltage
band from ∼ ± 1000V to ∼ ± 2000V in spite of additional disparities in the emitter
heights. In the 1 tip/mm case, for example, the emitters were 1168 𝜇m tall while in the
2 tip/mm case they were 458 𝜇m. On the strength of this finding, a two-dimensional
array was assembled by integrating several linear strips in a macroscopic package. A
third collection of current measurements indicated that per-emitter performance was
once again conserved in the 2D configuration, which was likely owing to the relative
sparseness of the array (0.5 mm2 for 49 total tips). Direct thrust measurements were
also presented, showing up to 6 𝜇N in a highly stressed state (∼ +2400V). In view of
these encouraging results, the author espoused further miniaturization as a pathway
for this system to realize compatibility with small spacecraft.

In an effort to simplify the packaging and generate higher thrust densities, Court-
ney [56, 57] iterated on the Legge efforts by exploring planar arrays of porous nickel
tips. This material was selected for its low cost, availability, and geometric similarity
to the tungsten. Courtney [57] developed a novel electrochemical cell to machine
quasi-isotropic features directly into the surface. These were approximately 150 𝜇m
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tall and spaced at a pitch of 450 𝜇m. Unlike previous studies in which the liquid se-
lection alone was used to modify thrust (e.g. Legge [54]), Courtney aptly recognized
that the emitter topography represented an additional parameter through which cer-
tain performance objectives could be affected. Consequently, tip apices across the
array were post-processed to hemispherical geometries of radii between 10 and 25 𝜇m
in order to reduce the starting potential and augment the attendant thrust-to-power
(i.e. increase the thrust output at a given power level). As an ancillary benefit,
this also discouraged off-axis emission, although beam angles as large as 30∘ to 40∘

were estimated for the highest operational powers (compare this to the ∼ 18∘ half-
angle observed by Lozano [31]). The author speculated that this effect was likely the
byproduct of concurrent Taylor cone formations in the high-current regime [55].

Courtney [25] also reported on the development of a fully-integrated MEMS en-
gine head for these arrays. A small silicon frame measuring roughly 1.2cm x 1.2cm
x 0.3cm was used to house a thin plate of bulk porous nickel containing 480 elec-
trochemically micromachined emitter features. While operating with the ionic liquid
EMI-BF4 and an integrated silicon extractor, Courtney reported array-level currents
as high as 500 𝜇A in the vicinity of 1500V. Along with grid transparencies approaching
unity (∼ 97-98% were typical of many tests), these were used to indirectly estimate
the production of ∼ 25 𝜇N of thrust at specific impulses from ∼ 2500-3000s. Very
remarkably, Courtney emphasizes that these performance levels were achieved with a
passive, capillarity-driven propellant transport scheme that obviated the need for an
active pump and limited complete engine head mass to just 0.75 grams. Total power
consumption was ∼ 0.6W.

Despite the conceptual successes of the Courtney work, Coffman [58] noted issues
with the yield and scalability of the electrochemical manufacturing approach that
would need to be addressed prior to technology transfer (commercialization) or den-
sification studies. Among others (see Xie [73]), the same author has been looking for
alternative porous materials and more flexible fabrication techniques very recently.
As in the case of laser-machined glass tips [58], however, it is becoming abundantly
apparent that pure ion emission is not always guaranteed with certain materials and
emitter configurations. The reasons for this are not currently clear.
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Chapter 3

Thesis objectives

Evidence from the literature indicates that pure ion emission from ionic liquids is
only permissible under specific conditions, and that large disparities in spray quality
(e.g. the evaporated current [36]) can exist even when it is achieved. While empirical
observations have motivated a collection of emission heuristics, in some cases these
have led to paradoxical design questions that have been difficult to fully resolve.

In the interest of greater recourse, this thesis will seek a more fundamental under-
standing for the problem of electrically-assisted evaporation. To high level, specific
objectives are

∙ to identify the various physics which might affect purely ionic electrospray emis-
sion in a material way;

∙ to formulate a fundamental model for electrified menisci;

∙ to utilize the model for investigating fundamental properties of purely ionic
electrospray emission over a range of field and fluid conditions;

∙ to purpose the results in outlining specific types or sets of conditions that could
confer useful emission properties (e.g. high current); and

∙ to offer a measure of corresponding physical rationalization.

Owing to our heritage with ionic liquids and their burgeoning interest we will
attempt to emphasize these fluids throughout the thesis, including borrowing rep-
resentative numerical values where necessary. It is our firm belief, however, that
the basic principles and findings to be set forth will, as a matter of generality, be
extensible to many other liquids.
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Chapter 4

Orders of magnitude for ion
evaporation

4.1 Emission field and tip size
Evaporation of charged species from the tip of a fluid meniscus is governed through
the phenomenological kinetic law given by Eq. 1.9, i.e.

𝑗 = 𝜎
𝑘𝐵𝑇

ℎ
exp

⎛⎝− 1
𝑘𝐵𝑇

⎧⎨⎩Δ𝐺−
√︃
𝑞3𝐸𝑣

𝑛

4𝜋𝜖0

⎫⎬⎭
⎞⎠ (4.1)

where 𝜎 is the prevailing density of surface charge (C/m2), Δ𝐺 is the characteristic
solvation energy of the evaporating species (J), and 𝐸𝑣

𝑛 is the normal component of
the vacuum electric field (V/m). The strong nonlinearity of this relationship implies
an activated process for which little to no emission is seen until

𝐸𝑣
𝑛 ∼ 4𝜋𝜖0 (Δ𝐺)2

𝑞3 = 𝐸* (4.2)

which we can interpret as a critical condition for strong evaporation. Unlike
hard-body or solid field emitters (e.g. hot cathodes), steady emission from electrified
menisci is only permissible when the fluid interface is able to achieve a mechanical
balance between the governing stresses. Of these, the electrical traction and surface
tension are typically salient. It is generally a good approximation then to take 𝜏𝑒 ∼
2𝛾/𝑟* near the tip, where 𝜏𝑒 is the electric stress and 𝑟* is the characteristic scale.
After invoking the Maxwell tensor this can be expanded to give

1
2𝜖0

[︂
(𝐸*)2 − 𝜖𝑟

(︁
𝐸𝑙
𝑛

)︁2
]︂

∼ 2𝛾
𝑟* (4.3)

where 𝜖𝑟 is the relative permittivity of the fluid and where the tangential compo-
nent of 𝜏𝑒 has been omitted in view of the fact that the associated field, 𝐸𝑡, must
vanish near the apex of the meniscus by symmetry. The remaining fields exist on
either side of the interface but are both orthogonal (𝐸* on the vacuum side and 𝐸𝑙

𝑛

on the liquid side) and obey the conventional jump condition for idealized surface
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Figure 4-1: Electrical mechanics at a liquid-vacuum interface. In the vacuum there
is a field with a component normal to the interface. Its counterpart in the liquid, 𝐸𝑙

𝑛,
may or may not vanish depending on evaporation conditions. When the conductivity
of the fluid is nonzero there exists a layer of charge at the interface that ideally
occupies a region of infinitessimal thickness. If the vacuum field is strong enough,
some of this charge is permitted to evaporate while conduction in the fluid attempts
to replenish it.

charge, 𝜎 = 𝜖0(𝐸𝑣
𝑛 − 𝜖𝑟𝐸

𝑙
𝑛), as in Fig. 4-1.

Insofar as conduction is the dominant charge transport mechanism (more on this
in a subsequent section) and Ohm’s law is valid we can further invoke 𝑗 = 𝑘𝐸𝑙

𝑛 along
with Eq. 4.1 and the jump condition to recast the stress balance in terms of the
vacuum field alone. This has merit in that it will allow us to more clearly visualize
the relationship between the outside field and the topography of the tip. Performing
a current balance at the interface

𝑗 = 𝑘𝐸𝑙
𝑛 = 𝜖0

(︁
𝐸𝑣
𝑛 − 𝜖𝑟𝐸

𝑙
𝑛

)︁ 𝑘𝐵𝑇
ℎ

exp
⎛⎝− 1

𝑘𝐵𝑇

⎧⎨⎩Δ𝐺−
√︃
𝑞3𝐸𝑣

𝑛

4𝜋𝜖0

⎫⎬⎭
⎞⎠ (4.4)

where 𝑘 is the bulk conductivity of the fluid (S/m), we solve for the liquid field

𝐸𝑙
𝑛 = 𝐸𝑣

𝑛/𝜖𝑟

1 + ℎ𝑘
𝜖0𝜖𝑟𝑘𝐵𝑇

exp
(︂

1
𝑘𝐵𝑇

{︂
Δ𝐺−

√︁
𝑞3𝐸𝑣

𝑛

4𝜋𝜖0

}︂)︂ (4.5)

The denominator of this expression contains the dimensionless group 𝑘ℎ/(𝜖0𝜖𝑟𝑘𝐵𝑇 )
which is the ratio of the characteristic charge emission time to the characteristic charge
relaxation time, 𝜏𝑒 (not to be confused with the stress 𝜏𝑒). In terms of values that
are typical of pure ionic liquids near room temperature (𝑘 ∼ 100 S/m, 𝜖𝑟 ∼ 101-102)
it evaluates to ∼ 10-3 and is always much smaller than unity. When the vacuum field
is small (𝐸𝑣

𝑛 → 0) the exponential for which this group is a prefactor is still large
enough to dominate and drive 𝐸𝑙

𝑛 → 0. On the other hand, only the prefactor is
left when 𝐸𝑣

𝑛 → 𝐸* because the exponent vanishes. Owing to its magnitude we see
that 𝐸𝑙

𝑛 ∼ 𝐸𝑣
𝑛/𝜖𝑟 in this limit. In other words, when the vacuum field approaches
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the critical value for emission the interface becomes depleted because of conduction
limitations in the fluid. As a result, the region of the meniscus local to the emission
site begins to mimic the behavior of a pure dielectric.

For the sake of the stress balance we can evaluate Eq. 4.5 as 𝐸𝑣
𝑛 → 𝐸* and

substitute this in Eq. 4.3

1
2𝜖0 (𝐸*)2

[︂
𝜖𝑟 − 1
𝜖𝑟

]︂
∼ 2𝛾
𝑟* (4.6)

The factor (𝜖𝑟 − 1)/𝜖𝑟 on the left-hand side should be very close to unity typical
permittivity strengths. When that is true, solving for the characteristic tip scale gives

𝑟* ∼ 4𝛾
𝜖0 (𝐸*)2 = 𝑞6𝛾

4𝜋2𝜖3
0 (Δ𝐺)4 (4.7)

Using common ionic liquid values (𝛾 ∼ 10-2 - 10-1 N/m, Δ𝐺 ∼ 1 eV) it is possible
to show that 𝐸* ∼ 109 V/m and 𝑟* ∼ 10-8 - 10-10 m, both of which are noteworthy
for their extremity (the field is very high while the tip is very small). Furthermore,
we would be remiss if we were not to note that the latter scale in particular is very
sensitive to the value of Δ𝐺 and that this parameter is difficult to quantify precisely.
If, for example, the solvation energy were closer to 2 eV than to just 1 eV, we would
have that 𝐸* ∼ 1010 V/m and 𝑟* ∼ 10-9 m, a decided and even more extreme change!

4.2 Emission strength and basic scaling
From the previous section we have that

𝐸𝑙
𝑛 ∼4𝜋𝜖0 (Δ𝐺)2

𝜖𝑟𝑞3 = 𝐸*

𝜖𝑟

𝑟* ∼ 𝑞6𝛾

4𝜋2𝜖3
0 (Δ𝐺)4 = 4𝛾

𝜖0 (𝐸*)2

when the vacuum field approaches the characteristic value for strong emission
(𝐸𝑣

𝑛 → 𝐸*). We anticipate that the associated current should scale like 𝐼 ∼ 𝑗𝐴 where
𝑗 ∼ 𝑘𝐸𝑙

𝑛 from Ohm’s law and 𝐴 ∼ 𝜋 (𝑟*)2 is the characteristic area for evaporation.
When this is expanded in terms of the intrinsic fluid properties

𝐼* ∼ 𝑘𝛾2𝑞9

4𝜋2𝜖5
0𝜖𝑟 (Δ𝐺)6 (4.8)

which is again very sensitive to the solvation energy. If we now take 𝑘 ∼ 1
S/m, 𝛾 ∼ 0.05 N/m, 𝜖𝑟 ∼ 10, and allow Δ𝐺 to vary between 1 eV and 1.5 eV this
relationship evaluates in the range from 50 to 500 nA. These would, at the very
least, seem to bracket the spectrum of experimentally-observed values and support
the present approach to scaling.
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Interestingly, we might also investigate the change in the evaporated current as
a function of the vacuum field, albeit in a very crude way. Assuming that the scale
for the tip must always obey the mechanical balance dictated by the electrical stress,
𝜖0(𝐸𝑣

𝑛)2/2 ∼ 2𝛾/𝑟, the approximate area available for emission at an arbitrary field is

𝐴 (𝐸𝑣
𝑛) ∼ 16𝜋𝛾2

𝜖2
0 (𝐸𝑣

𝑛)4 (4.9)

The corresponding liquid field, Eq. 4.5, also varies in a nonlinear way with the
vacuum field. If we take

𝜒 = ℎ𝑘

𝜖0𝜖𝑟𝑘𝐵𝑇
(4.10)

𝜓 = Δ𝐺
𝑘𝐵𝑇

(4.11)

we can nondimensionalize and solve for the scaled current

𝐼

𝐼* ∼ 1(︁
𝐸𝑣

𝑛

𝐸*

)︁3
[︂
1 + 𝜒 exp

(︂
𝜓
{︂

1 −
√︁

𝐸𝑣
𝑛

𝐸*

}︂)︂]︂ (4.12)

This relationship is plotted in Fig. 4-2, with 𝜒 = 10-3 and 𝜓 = 40, and seems
to capture empirical trends in at least a qualitative way. Notwithstanding the slight
discrepancy observed for high fields, the behavior near incipience mimics laboratory
generated I-V curves very closely. If we can safely assume a linear relationship between
the applied field (the external one that we enforce far downstream of the meniscus)
and the one acting at the meniscus tip, an argument can be made that this result
further validates the scaling here.

4.3 Space charge
Space charge will be generated in the vicinity of the meniscus during the course of
evaporation and for certain conditions it is conceivable that that this could disrupt the
Laplacian potential field. To identify these conditions we might consider the Poisson
equation in vacuum

∇ · 𝐸⃗ = 𝜌𝑠𝑐
𝜖0

(4.13)

from which we can easily extract the homogeneous (Laplacian) part

∇ · 𝐸𝑠𝑐 = 𝜌𝑠𝑐
𝜖0

(4.14)

The space charge in Eq. 4.14 (which, as an equation, is identical in form to Eq.
4.13 but involves different boundary conditions) is related to both the current density
and particle velocity though the prevailing number density of charges local to the
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Figure 4-2: Scaled evaporation 𝐼/𝐼* as a function of the vacuum field 𝐸/𝐸* with 𝜒 =
10-3 and 𝜓 = 40. Although the estimated emission area begins to shrink more quickly
than the current density is able to grow at fields approaching 𝐸*, the behavior near
the onset of evaporation (sometimes referred to as the startup voltage in practice) is
very similar to what we observe experimentally. The inset highlights this region of
growth where a small exponential transition is followed by an approximately linear
tail.

emitting tip, 𝜌𝑠𝑐 ∼ 𝑞𝑛𝑠𝑐 ∼ 𝑗/𝑣. The velocity here follows from a basic kinetic energy
balance 𝑚𝑣2/2 ∼ 𝑞Φ and allows us to write

∇ · 𝐸𝑠𝑐 ∼ 𝑗

𝜖0
√︁

2 𝑞
𝑚

Φ
(4.15)

Assuming that 𝐸* and 𝑟* are the important field and length scales, respectively,
we can take 𝑗 ∼ 𝑘𝐸*/𝜖𝑟 and Φ ∼ 𝐸*𝑟* to find

𝐸𝑠𝑐
𝐸* ∼ 𝑘

𝜖0𝜖𝑟

√︃
𝑟*

2 𝑞
𝑚
𝐸* ∼

√︃
1

8𝜋
𝐼*

𝛾 (𝑞/𝑚)
𝑘

𝜖0𝜖𝑟
(4.16)

which is the ratio of the characteristic residence time for a particle in electrostatic
free-fall around the tip (residence time ∼ 𝑟*/

√︁
2(𝑞/𝑚)Φ ∼ 𝑟*/

√︁
2(𝑞/𝑚)𝐸*𝑟*) to the

charge relaxation time, 𝜖0𝜖𝑟/𝑘. Under typical ionic liquid emission conditions we can
expect that 𝐼* ∼ 10-7 - 10-6 A at most and 𝜖0𝜖𝑟/𝑘 ∼ 10-10 s. If we now also take 𝛾 ∼
10-1 N/m and 𝑞/𝑚 ∼ 106 C/kg we see that 𝐸𝑠𝑐/𝐸* might vary anywhere from 10-2

to 10-1. While this suggests that space charge effects are certainly not pronounced
for ionic liquid sources it also reminds us that they are not vanishingly small either,
something that we often take for granted.

In an effort to highlight one of the more marked differences between ionic liquid
ion sources and those of liquid metals (which will not be directly investigated in
this thesis but do relate in some way to the problem of pure ion evaporation), it
is at this point useful to perform a brief but similar analysis on the latter fluids.
Owing to very high conductivities, liquid metals are known to produce significantly
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elevated currents and so it stands to reason that their space charge properties could
be somewhat different. If we consider them as perfect conductors, which is sufficient
for a first approximation, Eq. 4.1 suggests that the current density at the tip of an
evaporating liquid metal meniscus should be

𝑗 ∼ 𝜖0𝐸
*𝑘𝐵𝑇/ℎ (4.17)

when the normal component of the vacuum field 𝐸𝑣
𝑛 → 𝐸* (recall that 𝐸* ∼ 1010

V/m for many liquid metals). After substituting this into Eq. 4.15 and performing
several algebraic manipulations we find that

𝐸𝑠𝑐
𝐸* ∼ 𝑘𝐵𝑇

ℎ

⎯⎸⎸⎷ 2𝛾
𝜖0 (𝐸*)3 𝑞/𝑚

(4.18)

is a measure of the space charge influence. For many liquid metals it can be
expected that 𝐸* ∼ 1010 V/m, 𝛾 ∼ 1 N/m [100], and 𝑞/𝑚 ∼ 106 C/kg which suggests
𝐸𝑠𝑐/𝐸

* ∼ 100. In other words, the space charge could perhaps completely dominate
the nature of the field surrounding the activated tip. Given the earlier result for the
more modestly conductive ionic liquids, it is clear that this represents a substantial
line of demarcation between the two fluids and something that should be kept in mind
as we assess the strengths and limitations of our emission model later on.

4.4 Charge transport

In addition to conduction it is possible for charge within the meniscus to be convected
through the action of a passing flow. For emission regimes characterized by very
strong/high flow rates this phenomenon can play an important role in governing
the observable properties of the meniscus. In the case of the cone-jet, for example,
the characteristic dimension of the neck is correlated with the location at which
the magnitude of the convected charge begins to approach that of its conducted
counterpart.

The process of convective charge transport is strictly a surface phenomenon and
in that sense it is easily distinguished from conduction. Owing to quasineutrality
of the fluid in the meniscus bulk, flows are unable to carry net charge. At the
interface, however, tangential fluid motion allows for entrainment of the surface charge
population. One might imagine, for example, an active meniscus in which a flow is
moving from an electrically relaxed upstream region to an evaporation region where
a supply of fresh charge is needed to maintain steady operation. On its way, an
element of initially neutral fluid traveling along the surface might capture an element
of surface charge from the relaxed region and transport it to the depleted emission
zone. It is this small amount of rearranged surface charge that we refer to when
we discuss the convected current for electrified flows of fluids like ionic liquids. To
visualize it, consider a surface charge distribution determined primarily through the
conducted current so that we can manipulate Eq. 4.5 to write
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Figure 4-3: Approximate interfacial charge plotted as a function of the vacuum field
𝐸𝑣
𝑛/𝐸

* and the approximate radial distance from the meniscus tip 𝑟/𝑟* when the
stress balance 𝜖0𝐸

2/2 ∼ 2𝛾/𝑟 is satisfied. At the interface, fluid elements pass through
regions of changing 𝜎 and might therefore rearrange the charge to some degree. Near
the tip (𝐸𝑣

𝑛/𝐸
* → 1 and 𝑟/𝑟* → 1) the surface charge becomes depleted due to

transport limitations in the fluid. The black arrows indicate the direction of the flow
toward this location and suggest that fluid from an upstream area of high 𝜎 might
offer it a strong convection current.

𝜎 ∼ 𝜖0𝐸
𝑣
𝑛

1 + 𝜖0𝜖𝑟𝑘𝐵𝑇
ℎ𝑘

exp
(︂

− 1
𝑘𝐵𝑇

{︂
Δ𝐺−

√︁
𝑞3𝐸𝑣

𝑛

4𝜋𝜖0

}︂)︂ ⇒ 𝜎

𝜖0𝐸* ∼ (𝐸𝑣
𝑛/𝐸

*)

1 + 1
𝜒

exp
(︂
𝜓
{︂√︁

𝐸𝑣
𝑛

𝐸* − 1
}︂)︂

(4.19)
where 𝜒 and 𝜓 are the same quantities defined by Eqs. 4.10 and 4.11. This

relationship is plotted in Fig. 4-3 as a function of 𝐸𝑣
𝑛/𝐸

* and 𝑟/𝑟* after imposing the
stress balance 𝜖0𝐸

2/2 ∼ 2𝛾/𝑟. Notice that the surface flow, the direction for which
is delineated by the arrows, passes through regions of varying surface charge. The
hump represents the transition between the relaxed upstream region and the depleted
emission zone. After passing the hump, fluid propagating toward the center of the tip
moves from an area of comparatively high surface charge to an area of comparatively
little surface charge while working to even out this distribution through the process
of charge convection.

An understanding for the relative magnitudes of the conduction and convection
transport mechanisms is an important prerequisite for anticipating emission behavior.
A comparison of these is facilitated by first recalling that 𝑗𝑐𝑜𝑛𝑑 ∼ 𝑘𝐸𝑙

𝑛 as we have
already used several times for the conducted current density. The convected current
density, by contrast, ends up depending upon the gradient of the product of the
surface charge and the interfacial velocity (see chapter on model formulation for a
detailed derivation of the transport expressions) and might be approximated by
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𝑗𝑐𝑜𝑛𝑣 ∼
𝜎
(︁
𝑢⃗ · 𝑡⃗

)︁
𝑟

(4.20)

where 𝑢⃗ is the velocity vector for the fluid, 𝑡⃗ is the tangent vector at the liquid-
vacuum interface, and 𝑢⃗ · 𝑡⃗ is the component of the surface flow in its direction. By
symmetry, the latter must vanish at the apex of an axisymmetric tip where the local
surface charge could also be at least partially depleted due to transport limitations
during emission (assuming 𝐸𝑣

𝑛 ∼ 𝐸*). The 1/𝑟 factor is there to account for the fact
that fluid moving toward the tip is carrying a fixed amount of charge into a gradually
decreasing area (a shrinking area for a fixed charge results in a growing spatial density
of that charge). As a consequence we might expect the maximum magnitude of the
convected current to be colocated with tip, in spite of the tangential velocity and
partially depleted surface charge there. In order to resolve the local singularity,
observe that

lim
𝑟→0

𝑗𝑐𝑜𝑛𝑣 =
𝜕
𝜕𝑟

(︁
𝜎𝑢⃗ · 𝑡⃗

)︁
1 = 𝜎

𝜕
(︁
𝑢⃗ · 𝑡⃗

)︁
𝜕𝑟

+
(︁
𝑢⃗ · 𝑡⃗

)︁ 𝜕𝜎
𝜕𝑟⏟  ⏞  

𝑢⃗·⃗𝑡|
𝑟=0

=0

= 𝜎
𝜕
(︁
𝑢⃗ · 𝑡⃗

)︁
𝜕𝑟

(4.21)

after invoking L’Hôpital. At the edge of the emission region we can use a simple
mass balance, 𝑚̇ ∼ 𝜌𝑢𝜋(𝑟*)2 where 𝑢 ∼ 𝑢⃗ · 𝑡⃗, to calculate the velocity of the incoming
flow and its first spatial derivative. For the sake of estimating the maximum current
density we might also take 𝜎 ∼ 𝜖0𝐸

* even though the surface charge is probably
somewhat depleted. Together these yield

𝑗𝑐𝑜𝑛𝑣 ∼ 𝜖0𝐸
*

𝑟*
𝑚̇

𝜋𝜌 (𝑟*)2 (4.22)

The mass flow rate is related to the aggregate current density through 𝑚̇ ∼
𝑗𝑒𝜋 (𝑟*)2 (𝑚/𝑞) where 𝑗𝑒 = 𝑗𝑐𝑜𝑛𝑑 + 𝑗𝑐𝑜𝑛𝑣 by continuity. Substituting this

𝑗𝑐𝑜𝑛𝑣
𝑗𝑐𝑜𝑛𝑑

∼
𝜖0𝐸*

𝜌(𝑞/𝑚)𝑟*[︁
1 − 𝜖0𝐸*

𝜌(𝑞/𝑚)𝑟*

]︁ (4.23)

Under typical emission conditions with ionic liquids (say 𝐸* ∼ 109 V/m; 𝜌 ∼ 103

kg/m3; 𝑞/𝑚 ∼ 106 C/kg; 𝑟* ∼ 10-8 m) the group in the numerator and denominator
of this equation is small, 𝜖0𝐸

*/[𝜌(𝑞/𝑚)𝑟*] ∼ 10-3. This admits the simplification

𝑗𝑐𝑜𝑛𝑣
𝑗𝑐𝑜𝑛𝑑

∼ 𝜖0𝐸
*

𝜌 (𝑞/𝑚) 𝑟* (4.24)

which says that convection is likely very inconsequential for pure ion evaporation
with ionic liquids. For a physical interpretation of why, we could recast Eq. 4.24 by
multiplying the numerator and denominator by 𝜖𝑟𝑘 to get

𝑗𝑐𝑜𝑛𝑣
𝑗𝑐𝑜𝑛𝑑

∼ 𝜖0𝜖𝑟
𝑘

𝑘𝐸*

𝜖𝑟𝜌 (𝑞/𝑚) 𝑟* (4.25)
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where we now recognize 𝜖0𝜖𝑟/𝑘 to be the familiar charge relaxation time. The
quantity 𝑘𝐸*/𝜖𝑟 is the conduction current density (essentially the full current density
under present conditions) and 𝑗𝑐𝑜𝑛𝑑/[𝜌(𝑞/𝑚)] is the associated flow velocity. Since 𝑟*/𝑢
is the time required for a fluid element to propagate through the tip we can interpret
the transport ratio 𝑗𝑐𝑜𝑛𝑣/𝑗𝑐𝑜𝑛𝑑 as the ratio of the electrical relaxation time to the flow
residence time. This is the same result that is obtained with other magnitude analyses.
Apparently, convection is not very important if the charges have good mobility and
if the rate of mass evaporation is modest, such as the case is with liquids of high
specific charge. This would also seem to shed some light on the cone-jet mode where
conventional liquids (e.g. doped organic electrolytes) do not always possess good
conductivity and where upstream feeding enforces high flow rates.

4.5 Hydrodynamic stresses

In addition to the electrical traction and surface tension there will generally exist a
distribution of hydrodynamic stresses in the fluid that could influence the mechanical
balance at the interface. An analysis of these stresses might start by considering the
classical Navier-Stokes equation for fluid momentum

𝜌
𝜕𝑢⃗

𝜕𝑡
+ 𝜌 (𝑢⃗ · ∇) 𝑢⃗ = ∇ · [−𝑝𝐼 + 𝜏 ] + 𝐹 (4.26)

where 𝑢⃗ is the velocity vector for the fluid, 𝑝 is its hydrostatic pressure, 𝜏 is the
viscous (or deviatoric) stress tensor, and 𝐹 is a vector describing the net body force
acting on the fluid, if any. When the flow is steady, incompressible, and devoid of
body forces the momentum balance reduces to

𝜌 (𝑢⃗ · ∇) 𝑢⃗ = ∇ · [−𝑝𝐼 + 𝜏 ] (4.27)

It is common to nondimensionalize this equation by identifying for the flow a
characteristic velocity and a characteristic length scale (say 𝑢0 and 𝑟0, respectively).
The dimensionless variables in this case are

𝑢̂ → 𝑢

𝑢0

∇̂ → ∇𝑟0

𝑝 → 𝑝

𝜇
(︁
𝑢0
𝑟0

)︁
𝜏 → 𝜏

𝜇
(︁
𝑢0
𝑟0

)︁
where 𝜇 is the fluid viscosity (Pa·s) and where we have dropped the vector arrows

for notational simplicity. After substituting these, the momentum equation becomes
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𝜌𝑢0𝑟0

𝜇⏟  ⏞  
𝑅𝑒

[︁(︁
𝑢̂ · ∇̂

)︁
𝑢̂
]︁

= ∇̂ · [−𝑝𝐼 + 𝜏 ] (4.28)

We recognize the prefactor for the inertial term on the left-hand side of this equa-
tion to be the Reynolds number. For ionic liquid menisci operating in a purely ionic
mode we might expect the characteristic length scale to be in the neighborhood of 𝑟*.
From the previous section, the flow velocity in this vicinity is 𝑢 ∼ 𝐼/[𝜋𝜌(𝑞/𝑚)(𝑟*)2].
This leads to

𝑅𝑒 ∼ 𝐼

𝜋𝜇 (𝑞/𝑚) 𝑟* (4.29)

which, at the very most (𝐼 ∼ 10-6 A; 𝜇 ∼ 10-2 Pa·s; 𝑞/𝑚 ∼ 106 C/kg; 𝑟* ∼ 10-8

m), is still no greater than 𝑅𝑒 ∼ 10-2. It is likely safe to conclude then that the flow
is of the creeping variety and governed by ∇ · [−𝑝𝐼 + 𝜏 ] = 0. The viscous component
of this equation, ∇ · 𝜏 = ∇ · [𝜇(∇𝑢⃗ + (∇𝑢⃗)𝑇 )], reduces it to the Stokes relationship
when the viscosity is constant

∇𝑝 = 𝜇∇2𝑢 (4.30)

We will work from this equation and attempt to estimate the hydrodynamic forces
affecting the interface. Owing to the fact that the flow is concentrated in the emission
region of the tip, it stands to reason that the interface in the same area is also the
forum for the largest fluid stresses. If we take

Δ𝑝
𝑟* ∼ 𝜇

𝑢

(𝑟*)2 (4.31)

and use the same characteristic velocity as above we find

Δ𝑝 ∼ 𝜇𝐼

𝜋𝜌 (𝑞/𝑚) (𝑟*)3 (4.32)

For comparison, the ratio of this stress with the local surface tension is

Δ𝑝(︁
2𝛾
𝑟*

)︁ ∼ 𝜇𝐼

2𝜋𝜌𝛾 (𝑞/𝑚) (𝑟*)2 (4.33)

When the emission and viscosity are both very strong (say 𝐼 ∼ 10-6 A; 𝜇 ∼ 10-1

Pa·s; 𝑟* ∼ 10-8 m) this flow stress could well be comparable to what would otherwise
be the dominate pressures (electrical and surface tension). On the other hand, for
more modest conditions that might better typify pure ion evaporation from ionic
liquids (𝐼 ∼ 10-7 A; 𝜇 ∼ 10-2 Pa·s) the stress appears to be small. Also, it is worth
noting here that the stress ratio Δ𝑝/(2𝛾/𝑟*) can be interpreted as (1) the ratio of
the viscous capillary time 𝜇𝑟*/𝛾 to the flow residence time 𝑟*/𝑢, or (2) the so-called
Capillary number, 𝐶𝑎 = 𝑢𝜇/𝛾.
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4.5.1 Shearing flow

For the flow that is directly induced by the evaporation dynamics we have estimated
the characteristic velocity

𝑢* ∼ 𝑘𝐸*

𝜖𝑟𝜌 (𝑞/𝑚) (4.34)

and shown that the corresponding hydraulic stresses should be relatively modest
in comparison to the important electrical and surface tension effects, as evidenced by
the prevailing Capillary number. In addition to this basic flow, situations of strong
evaporation will afford the electric field a non-trivial component tangential to the
liquid-vacuum interface that will necessarily create a supplementary motion of the
liquid. This is a direct byproduct of the fact that in a steady balance of tangential
stresses

𝜎𝐸𝑡 = 𝜇
𝜕𝑢

𝜕𝑡
(4.35)

where 𝑡 denotes the tangential direction, only viscous shearing is available to
counteract any electrical traction, however tenuous (compare this to, for example, the
balance of normal stresses, where surface tension and hydraulic stresses are permitted
to act in concert to counter any electrical pull). To determine whether this shearing
flow could be important we can start by estimating the magnitude of the tangential
electric field, which at most could be of the order 𝐸𝑡 ∼ 𝐸*/𝜖𝑟. This field will, in part,
affect regions of the interface where the charge is somewhat depleted but still possibly
in the neighborhood of the relaxed value 𝜎 ∼ 𝜖0𝐸

*. Insofar as the local length scale
is roughly 𝑟*, we can now formulate

𝜖0 (𝐸*)2

𝜖𝑟
∼ 𝜇

𝑢𝑠
𝑟* (4.36)

where 𝑢𝑠 is a measure of the velocity induced by electrical shear. After recalling
the approximate mechanical balance at the tip of the meniscus 𝜖0(𝐸*)2 ∼ 𝛾/𝑟*, we
can rearrange Eq. 4.36 to find that 𝑢𝑠 ∼ 𝛾/𝜇𝜖𝑟, which suggests that the shearing
flow is smaller than the so-called viscous-capillary speed by a factor 1/𝜖𝑟. Similarly,
in comparison to the primary flow 𝑢* we find that

𝑢𝑠
𝑢* ∼ 𝛾𝜌 (𝑞/𝑚)

𝜇𝑘𝐸* (4.37)

For a fluid with 𝛾/𝜇 ∼ 1 m/s, 𝜌 ∼ 103 kg/m3, 𝑞/𝑚 ∼ 106 C/kg, 𝑘 ∼ 1 S/m,
and 𝐸* ∼ 109 V/m this ratio reduces to approximately 𝑢𝑠/𝑢* ∼ 100. The conclusion,
therefore, must be that the shearing flow should not significantly affect the relative
role of hydraulic stresses in the meniscus. In certain situations it could, however,
engender a measure of fluid recirculation that would be at least of academic interest.
Indeed, in a later chapter we point out that such a phenomenon has an analog in the
cone-jet world and show that it is likely to occur for evaporating ionic liquids.
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4.6 Heating effects

Through the process of ion evaporation it is possible that Ohmic dissipation in the
fluid might modify the nominal temperature near the tip. In the event that the
heating is not insignificant, this could affect the evaporation behavior in two ways:
(1) from Eq. 4.1 it is clear that augmented interfacial temperatures would increase
the local current density in possibly an exponential way, and (2) augmented bulk
temperatures would similarly increase the local electrical conductivity of the fluid and
presumably enhance its ability to transport charge to the interface. Therefore, it is
not unreasonable to imagine scenarios in which heated menisci generate considerably
more current than that which would otherwise be expected, something that could
also influence the balance of mechanical stresses and stability of the interface.

Before estimating the order of the expected temperature increment we might at-
tempt to isolate the effect that an arbitrary temperature has on the evaporated cur-
rent density and interfacial stress. From Eq. 4.5 we can write the equilibrium current
density for a conduction-controlled interface

𝑗 = 𝑘 (𝐸𝑣
𝑛/𝜖𝑟)

1 + ℎ𝑘
𝜖0𝜖𝑟𝑘𝐵𝑇

exp
(︂

Δ𝐺
𝑘𝐵𝑇

{︂
1 −

√︁
𝐸𝑣

𝑛

𝐸*

}︂)︂ (4.38)

The electrical conductivity in this relationship will in general be a function of the
local temperature. In the case of ionic liquids, for example, we might adopt the linear
approximation 𝑘 = 𝑘0 +𝑘′(𝑇 −𝑇0) where 𝑘0 is the nominal conductivity (S/m) at the
reference temperature 𝑇0 (K) and 𝑘′ is a characteristic thermal sensitivity (S/m-K).
After introducing this approximation with Eq. 4.38 we nondimensionalize using the
scales

𝐸̂ →𝐸𝑣
𝑛

𝐸*

𝑇 → 𝑇

𝑇0

𝑗̂ → 𝑗

𝑘0 (𝐸*/𝜖𝑟)

The vacuum fields are scaled by the characteristic evaporation strength, temper-
atures are scaled by a reference (ambient) value, and the current density is scaled by
the product of the nominal conductivity and 𝐸*/𝜖𝑟. When we do this we find

𝑗̂ =
𝐸̂
[︁
1 + Λ · Δ𝑇

]︁
1 + 𝜒1+Λ·Δ𝑇

1+Δ𝑇 exp
(︂

𝜓

1+Δ𝑇

{︂
1 −

√︁
𝐸̂
}︂)︂ (4.39)

where we have defined the dimensionless groupings
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𝜒 = ℎ𝑘0

𝜖0𝜖𝑟𝑘𝐵𝑇0
(4.40)

𝜓 = Δ𝐺
𝑘𝐵𝑇0

(4.41)

Λ =𝑘
′𝑇0

𝑘0
(4.42)

Δ𝑇 = 𝑇

𝑇0
− 1 (4.43)

The first two of these, for 𝜒 and 𝜓, are analogous the definitions from Eqs. 4.10
and 4.11 while the third is a new grouping that describes the thermal sensitivity of
the working fluid. Note that when there is no heating the current density reduces to

𝑗̂
(︁
Δ𝑇 = 0

)︁
= 𝐸̂

1 + 𝜒 exp
(︂
𝜓
{︂

1 −
√︁
𝐸̂
}︂)︂ (4.44)

Similarly, the electrical stress acting on the interface

𝑃𝑒 = 1
2𝜖0

[︂
(𝐸𝑣

𝑛)2 − 𝜖𝑟
(︁
𝐸𝑙
𝑛

)︁2
]︂

(4.45)

can be nondimensionalized after noting that the normal component of the liquid
field is related to the current density, i.e. 𝐸𝑙

𝑛 = 𝑗/𝑘, for the conduction-controlled
meniscus. After some manipulation

𝑃𝑒
1
2𝜖0 (𝐸*)2 = 𝑃𝑒 = 𝐸̂2 − 1

𝜖𝑟

(︃
𝑗̂

1 + Λ · Δ𝑇

)︃2

(4.46)

which, when the heating vanishes, must reduce to

𝑃𝑒
(︁
Δ𝑇 = 0

)︁
= 𝐸̂2 − 𝑗̂2

𝜖𝑟
(4.47)

In Fig. 4-4 we plot the current density produced by a heated interface for several
different values of dimensionless temperature Δ𝑇 with 𝜒 = 10-3, 𝜓 = 40, and Λ =
10 (all loosely representative of pure ionic liquids such as the popular EMI-BF4).
The increments Δ𝑇 =10-2, Δ𝑇 =10-1, and Δ𝑇 =100 roughly correspond to thermal
excursions of ∼ 100 K, ∼ 101 K, and ∼ 102 K, respectively, when the nominal tem-
perature 𝑇0 is near room levels (say ∼ 300K). Based on this we observe that when
the interface is heated by more than just a few degrees it may begin to exhibit rad-
ically different emission behavior. On the other hand, for the electrical traction we
can see by inspection that elevated temperatures should not modify the prevailing
stress so long as 𝜖𝑟 is sufficiently high (perhaps about 𝜖𝑟 ∼ 10 or greater). Physically,
even though the heating may shift the field strength for which the interface starts
to become depleted of charge and behave locally like a dielectric, the permittivity of
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Figure 4-4: Current density produced by a heated interface for 𝜒 = 10-3, 𝜓 = 40, and
Λ = 10. The dimensionless temperature increments approximately represent thermal
excursions ranging up to several hundred Kelvin. When the heating is more than just
a few Kelvin it is clear that evaporation levels may climb quickly.

the fluid will always preclude large fields in the liquid that could offset the vacuum
component of the stress.

To this point we have treated the heating as an independent variable but in reality
it is coupled to the emission properties. To garner a sense for the magnitude of the
temperature increment in an ionic liquid meniscus we can consider the steady-state
thermal transport equation

𝜌𝑐𝑝 (𝑢⃗ · ∇𝑇 ) = 𝑘𝑇∇2𝑇 + 𝑞 (4.48)

which is general for heat transfer in a moving fluid with heat capacity 𝑐𝑝 (J/kg-K)
and thermal conductivity 𝑘𝑇 (W/m-K). The generation term, 𝑞, is equivalent to the
Joule heating value 𝑗2/𝑘 if we restrict our attention to Ohmic dissipation. It is possible
to glean the relative magnitudes of the terms in this equation by nondimensionalizing.
For this exercise we elect the scales

𝑇 → 𝑇

𝑇0
(4.49)

𝑢̂ → 𝑢

𝑢* , where 𝑢* = 𝑘 (𝐸*/𝜖𝑟)
𝜌 (𝑞/𝑚) (4.50)

𝑗̂ → 𝑗

𝑗* , where 𝑗* = 𝑘
(︂
𝐸*

𝜖𝑟

)︂
(4.51)

∇̂ →∇𝑟* (4.52)

These yield, after substitution
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⎡⎢⎣ 𝜌𝑐𝑝𝑇0(︁
(𝑗*)2

𝑘

)︁ 𝑢*

𝑟*

⎤⎥⎦
⏟  ⏞  

𝜏𝑑/𝜏𝑟𝑒𝑠

(︁
𝑢̂ · ∇̂𝑇

)︁
=

⎡⎢⎣ 𝜌𝑐𝑝𝑇0(︁
(𝑗*)2

𝑘

)︁ 𝑘𝑇

𝜌𝑐𝑝 (𝑟*)2

⎤⎥⎦
⏟  ⏞  

𝜏𝑑/𝜏𝑐𝑜𝑛𝑑

(︁
∇̂2𝑇

)︁
+ 𝑗̂2 (4.53)

The first dimensionless grouping on the left-hand side is the ratio of the charac-
teristic ohmic dissipation time 𝜏𝑑 ∼ 𝜌𝑐𝑝𝑇0/[(𝑗*)2/𝑘] to the fluid residence time in the
tip 𝜏𝑟𝑒𝑠 ∼ 𝑟*/𝑢*. The heat capacity for pure ionic liquids should be in the vicinity of
𝑐𝑝 ∼ 103 J/kg-K and so for the former we find that 𝜏𝑑 ∼ 10-8 s when 𝑗 ∼ 𝑘𝐸*/𝜖 ∼
108 A/m2 with 𝑘 ∼ 1 S/m. Similarly, for the latter we get 𝜏𝑟𝑒𝑠 ∼ 10-7 s. The ratio
of these two time scales is then ∼ 10-1. By contrast, the dimensionless group on the
right-hand side is the ratio of the dissipation time to the characteristic conduction
time

𝜕𝑇

𝜕𝑡
∼ 𝑘𝑇
𝜌𝑐𝑝

𝜕𝑇

𝜕𝑥2 ⇒ 𝜏𝑐𝑜𝑛𝑑 ∼ 𝜌𝑐𝑝 (𝑟*)2

𝑘𝑇
(4.54)

The thermal conductivity of pure ionic liquids is 𝑘𝑇 ∼ 10-1 W/m-K and so 𝜏𝑐𝑜𝑛𝑑 ∼
10-9 s. The time scale ratio for conduction is then 𝜏𝑑/𝜏𝑐𝑜𝑛𝑑 ∼ 10.

Based on this analysis it is clear that conduction, rather than convection, is the
dominant heat transfer mechanism for ionic liquid menisci operating in a pure ion
evaporation mode. To reasonable order, it follows that

𝑘𝑇∇2𝑇 ∼ 𝑗2

𝑘
⇒ Δ𝑇

𝑇0
∼ 𝑗2 (𝑟*)2

𝑘 · 𝑘𝑇𝑇0
∼ 𝜏𝑐𝑜𝑛𝑑

𝜏𝑑
(4.55)

which means that the temperature increment could be on the order of tens of
Kelvin if the prevailing current density is in the vicinity of the characteristic value
𝑗* = 𝑘(𝐸*𝜖𝑟). We might, however, choose to look at it in terms of the current and
write

Δ𝑇
𝑇0

∼ 𝐼2

𝑘 (𝑟*)2 𝑘𝑇𝑇0
(4.56)

Assuming the current is toward the low end of the usual spectrum (say 𝐼 ∼ 10-8 A)
then Δ𝑇/𝑇0 ∼ 10-2 and an excursion of just a few Kelvin could be expected, although
it deserves to be noted that this is still on the border of what might elicit a very real
change in the emission behavior (recall Fig. 4-4).

4.7 Momentum exchange
During the process of field-assisted emission, evaporated species will accelerate away
from the source and commonly attain very high momenta before escaping the influence
of the prevailing fields. In exchange for this acceleration it is incumbent upon the
meniscus from which evaporating species originate to bear some related distribution
of stresses. In fact, this is the exact stress through which the source garners its own
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Figure 4-5: Stress considerations for a thermo-chemical rocket. The static pressure
in the chamber of the rocket, 𝑃𝑐, is high and typically owes to exothermic reactions
between an oxidizer and a fuel. High pressure gas from this chamber is convectively
accelerated through a nozzle where it exits with a pressure 𝑃𝑒 that may differ from
the ambient 𝑃𝑎. The integral of the pressures acting on the solid surfaces of the rocket
plus the momentum exchange embodied by the exhaust gas defines the total thrust
powering the vehicle.

useful momentum; for example, when it is purposed as a means for propulsion.
To look at the momentum exchange another way, it is useful to draw an analogy

to the more familiar situation of a thermo-chemical rocket (Fig. 4-5). The rocket
utilizes chemical reactions to generate a reservoir of thermally-excited gas that also
exists at a high pressure. In the upstream reaction chamber we might call this 𝑃𝑐. Gas
from the reservoir is forced downstream where it undergoes convective acceleration in
a nozzle before exiting the back of the rocket. The pressure along the exhaust plane
is now 𝑃𝑒, which in general may differ from the ambient level 𝑃𝑎.

In order to discern the forces that are acting on the rocket we can start by consid-
ering the pressure 𝑃 pushing on all of the interior surfaces. If propagation is in the
𝑥-direction, we can draw a control volume that hugs the inner contour of the rocket
and write

∑︁
𝐹𝑥 =

∫︁
𝑃 × 𝑑𝐴𝑥 −

∫︁
𝑃𝑒 × 𝑑𝐴𝑒𝑥 −

∫︁
𝑢𝑥 (𝜌𝑢⃗𝑒 · 𝑛⃗) × 𝑑𝐴𝑒𝑥⏟  ⏞  

𝑑𝑚̇

(4.57)

where 𝑑𝐴𝑥 is the differential part of the interior surface with a unit normal in
the 𝑥-direction, 𝑑𝐴𝑒𝑥 is the 𝑥-directed part of the exhaust surface, and 𝑢𝑥 is the x-
component of the gas velocity in the same vicinity. From this expression we can now
subtract an external force due to the ambient pressure. The result is

∑︁
𝐹𝑥 − 𝑃𝑎𝐴𝑒𝑥⏟  ⏞  
𝑡ℎ𝑟𝑢𝑠𝑡=𝑇

=
∫︁
𝑃 × 𝑑𝐴𝑥 −

∫︁
(𝑃𝑒 − 𝑃𝑎) × 𝑑𝐴𝑒𝑥 −

∫︁
𝑢𝑥 (𝜌𝑢⃗𝑒 · 𝑛⃗) × 𝑑𝐴𝑒𝑥 (4.58)

from which we recognize ∑︀𝐹𝑥 − 𝑃𝑎𝐴𝑒𝑥 to be the total thrust 𝑇 acting on the
rocket system. It is at this point conventional to define several spatially-averaged
quantities. These are
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Figure 4-6: Momentum exchange scenarios for evaporation of an electrified fluid.
Left: Charged particles approach the active part of an evaporating meniscus with
velocity 𝑣𝑙 and depart with a related velocity 𝑣𝑔 after changing phase but before ac-
celerating in the surrounding fields. The momentum carried by the flux of particles
leaving at speed 𝑣𝑔 creates a stress on the local fluid surface. Right: After chang-
ing phase, free species begin to accelerate in the prevailing electrostatic fields. The
momentum that they accumulate during this process is communicated back to the
liquid where it creates an additional stress.

𝑢̄𝑒 =
∫︀
𝑢𝑥 (𝜌𝑢⃗ · 𝑛⃗) 𝑑𝐴𝑒𝑥∫︀
𝜌𝑢⃗ · 𝑛⃗𝑑𝐴𝑒𝑥

(4.59)

and also

𝑃𝑒 = 1
𝐴𝑒𝑥

∫︁
𝑃𝑒𝑑𝐴𝑒𝑥 (4.60)

which handle the possibilities of non-uniform exit pressures and velocities. After
substituting these in Eq. 4.58 we see that

𝑇 = 𝑚̇𝑢̄𝑒 + (𝑃𝑒 − 𝑃𝑎)𝐴𝑒𝑥 (4.61)

For the rocket, the total stress is the aggregate of a net pressure force pushing on
the exit plane and a force related to the momentum that is transferred to accelerating
species. The fact that both of these contribute is an important observation because
of the direct analogy that can be drawn to the situation of an evaporating meniscus.
In that case, the electrical traction pushing on the interface, nominally 𝜖0𝐸

2/2, is
analogous to the net pressure 𝑃𝑒 − 𝑃𝑎 while the influence of the electrostatically
accelerated particles is analogous to 𝑚̇𝑢̄𝑒.

Although we have already touched on electrical traction and its relative impor-
tance at the interface, we have yet to address the transfer of momentum to evapo-
rating particles and what that could mean in terms of stresses. An attempt will be
made to do so in the brief sections that follow. These will examine the two types
of transfer phenomena (see Fig. 4-6) that could presumably be in play: (1) transfer
of momentum to particles undergoing phase change directly at the interface, and (2)
electrostatic repulsion away from the surface thereafter.
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4.7.1 Momentum transferred directly at the interface

In order for steady evaporation to prevail it is true that constituents of the liquid must
approach the interface with a non-zero velocity component normal to the interface,
at least in the region of the tip where the vacuum fields are of sufficient strength. We
have already shown that this velocity is roughly

𝑢𝑙 = 𝑗𝑒
𝜌 (𝑞/𝑚) ∼ 𝑘𝐸*

𝜖𝑟𝜌 (𝑞/𝑚) (4.62)

Once the liquid constituents evaporate they possess an outward (gas-phase) veloc-
ity 𝑢𝑔 but still reside very near the meniscus since they have yet to propagate through
the electrostatic fields. Assuming that 𝑢𝑔 ∼ 𝑢𝑙, i.e. there is no change in velocity
during the change in phase, we can investigate a momentum transfer stress equal to
𝑚̇𝑢𝑙 that must be acting on the interface. We find

𝜏𝑚𝑒 ∼ 𝑚̇

𝐴
𝑢𝑙 ∼ 1

𝜌

(︃
𝑗*

(𝑞/𝑚)

)︃2

(4.63)

where the characteristic current density at the tip is 𝑗* ∼ 𝑘𝐸*/𝜖𝑟. The ratio of
this stress to the local electric stress is

𝜏𝑚𝑒

𝜏 𝑒
∼ 𝑘2

𝜌𝜖0𝜖2
𝑟 (𝑞/𝑚)2 (4.64)

For an ionic liquid typified by 𝑘 ∼ 1 S/m, 𝜌 ∼ 103 kg/m3, 𝜖𝑟 ∼ 10, and 𝑞/𝑚 ∼ 106

C/kg this evaluates to approximately 10-6. In other words, the momentum exchange
is extremely insignificant, which should comes as no surprise in view of the fact that
Eq. 4.64 is essentially tantamount to the ratio of inertial forces to electrical forces at
the tip, 𝜌(𝑢*)2/𝜖0(𝐸*)2. Since we have already identified the characteristic Reynolds
number of the evaporation process (the ratio of inertial forces to viscous forces) as
well as the ratio of viscous forces to surface tension forces (the latter of which should
be more or less equivalent to electrical forces), it is worth pointing out that this result
could also have been arrived at by multiplying those two quantities. Given that each
is very small in its own right, it stands to reason that the momentum carried by the
evaporating liquid should be largely inconsequential.

Another possibility is that particles are impulsively accelerated as they change
phase and begin flying away with a velocity much greater than 𝑢𝑙 even before electro-
static free-fall. In this instance it is tempting to consider the so-called “ion cost” (a
penalty of several volts of energy that is consumed during evaporation) as a vehicle
for this acceleration; however, the nature of the cost would seem to preclude this
categorically. If indeed the species were impulsively gifted with several volts per par-
ticle in the midst of their phase change we would observe this energy in experiments,
and conclude that there is actually no cost at all! Instead we see a deficit, and so
impulsive acceleration appears unlikely.
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Figure 4-7: Scenario for the interaction of a test charge at the tip of an electrified
meniscus with accelerating gas-phase charges. The test charge 𝑞𝑡 is co-located with the
origin of a spherical coordinate system so that the appropriate Coulombic interaction
distance is simply |𝑟⃗|. While moving through the background field 𝐸⃗, the free charges
will collectively push on the test charge with some as-of-yet determined force.

4.7.2 Electrostatic acceleration of gas-phase species

In the immediate aftermath of evaporation, gas-phase species near the surface of
the meniscus will experience mutual Coulombic repulsion with charges in the liquid.
This is the electrostatic process by which they are accelerated downstream and away
from the source, often at high speeds. An unavoidable consequence of the attendant
momentum exchange is a stress on the liquid; however, the corresponding magnitude
is as of yet unclear.

To discern the prevailing forces we can start by invoking Coulomb’s law, which
states that the force of electrical attraction/repulsion between two charged bodies is
proportional to the product of their charge numbers and falls off as the square of the
intervening distance, i.e.

𝐹 = 1
4𝜋𝜖0

𝑞1𝑞2

|𝑟⃗21|2

(︃
𝑟⃗21

|𝑟⃗21|

)︃
(4.65)

where 𝑟⃗21 is the vector separating the two charged bodies. Now consider the
situation of electrically-induced evaporation in which a charged meniscus is stressed
by gas-phase particles that are being accelerated downstream. Since the gaseous
particle velocities are not of relativistic magnitude, we can take a snapshot in time of
their positions and attempt to determine how hard they are pushing on the upstream
fluid. By placing a test charge 𝑞𝑡 at the exact tip of the meniscus and co-locating it
with a spherical coordinate system (Fig. 4-7) we can write
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∑︁
𝐹 = 1

4𝜋𝜖0

∑︁
𝑗

𝑞𝑡𝑞𝑗

|𝑟⃗𝑗|2

(︃
𝑟⃗𝑗
|𝑟⃗𝑗|

)︃
(4.66)

which represents the aggregated effect of all charges 𝑗 = 1, 2, ..., 𝑁 in the gas-
phase. Since the summed forces on the test charge are equivalent to 𝑞𝑡𝐸⃗𝑡, dividing
through by 𝑞𝑡 gives

𝐸⃗𝑡 = 1
4𝜋𝜖0

∑︁
𝑗

𝑞𝑗

|𝑟⃗𝑗|2

(︃
𝑟⃗𝑗
|𝑟⃗𝑗|

)︃
(4.67)

Note here that 𝐸⃗𝑡 is not in general the only field acting on the test charge. Owing
to the presence of companion charges along the boundaries (for example, at the liquid
interface and on the surfaces of the electrodes forming the electrical architecture of
the global emitter system), there will also exist a Laplacian field 𝐸⃗𝐿. The total field
is then 𝐸⃗ = 𝐸⃗𝐿 + 𝐸⃗𝑡.

If we choose now to work in a continuum it is helpful to take 𝜌 = 𝜌(𝑥⃗) (C/m3) as
the distribution of charges 𝑗. This affords a conversion of the summation in Eq. 4.67
to the more convenient integral form

𝐸⃗𝑡 = 1
4𝜋𝜖0

∫︁
𝑉

𝜌

|𝑟⃗|2

(︃
𝑟⃗

|𝑟⃗|

)︃
𝑑𝑉 (4.68)

where 𝜌 × 𝑑𝑉 embodies the former charges 𝑞𝑗 at a given location. From Poisson
we know that the volumetric charge density is tantamount to the divergence of the
local displacement field, 𝜌 = ∇ · (𝜖0𝐸𝑝), where 𝐸⃗𝑝 is the so-called Poisson field that
is the particular solution to Poisson’s differential equation. We can substitute this to
find

𝐸⃗𝑡 = 1
4𝜋

∫︁
𝑉

∇ · 𝐸⃗𝑝
|𝑟⃗|2

(︃
𝑟⃗

|𝑟⃗|

)︃
𝑑𝑉 (4.69)

In many practical instances it suffices to model the tip of the meniscus as a
spherical diode, at least locally. When this is true, 𝐸⃗𝑝 → 𝐸⃗𝑝(𝑟⃗) and 𝑑𝑉 → 4𝜋𝑟2𝑑𝑟,
making it easy to show that Eq. 4.69 reduces to

𝐸⃗𝑡 =
∫︁

∇ · 𝐸⃗𝑝
(︃
𝑟⃗

|𝑟⃗|

)︃
× 𝑑𝑟 (4.70)

For the spherical diode we must have that

𝐸⃗𝑝 = 𝐸𝑝

(︃
𝑟⃗

|𝑟⃗|

)︃
(4.71)

∇ → 𝑑

𝑑𝑟

(︃
𝑟⃗

|𝑟⃗|

)︃
(4.72)

Taking these into account, Eq. 4.70 evaluates to
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𝐸⃗𝑡 =
(︃∫︁ 𝑑𝐸𝑝

𝑑𝑟
× 𝑑𝑟

)︃
𝑟⃗

|𝑟⃗|
= 𝐸𝑝

(︃
𝑟⃗

|𝑟⃗|

)︃
= 𝐸⃗𝑝 (4.73)

From this result we clearly see that the field responsible for momentum exchange
between the liquid and the accelerating gas-phase species is identical to that of Pois-
son. The conclusion is extensible to arbitrary domains, i.e. configurations other than
just spherical diodes, and should come as no surprise since the forces are communi-
cated electrostatically.

To phrase the result in another way, the Poisson field is the one that is responsible
for exchanging momentum between the fixed electrodes, including the liquid, and the
free particles. As we have already seen, the tendency of this field is to reduce the
influence of the corresponding Laplacian field. Since the latter works to pull the liquid
out, a physical interpretation for the former is that it mitigates the effective electrical
stress, just as we might expect. In terms of importance, however, we have shown that
the Poisson field is relatively insignificant under present conditions. Coupled with the
extremely small inertia of the evaporating species, it stands to reason that momentum
exchanges should not impact the mechanics of the meniscus in any meaningful way.

4.8 Time scales
In what follows we briefly review several time scales that are germane to the process
of ion evaporation from electrified ionic liquid menisci, including those referenced in
the preceding sections.

4.8.1 Electric relaxation time

Consider an electrified fluid-vacuum interface in which the liquid has a nonzero electri-
cal conductivity. A vacuum field is instantaneously imposed at an arbitrary moment
in time and held at a constant value orthogonal to the interface. The initial surface
charge 𝜎(𝑡 = 𝑡0) = 𝜎0 is not necessarily equivalent to the vacuum displacement field,
i.e. 𝜎0 ̸= 𝜖0𝐸

𝑣
𝑛, which permits a field to permeate the fluid. In turn, this field works to

conduct charge to the interface as it asymptotically approaches a state of full charge
relaxation. Mathematically, this situation is described by the transport relationship

𝜕𝜎

𝜕𝑡
= 𝑘𝐸𝑙

𝑛 (4.74)

where 𝑘 is the conductivity of the fluid (S/m) and 𝐸𝑙
𝑛 is the component of the

liquid field orthogonal to the interface. The latter obeys the interfacial jump condition

𝜎 = 𝜖0𝐸
𝑣
𝑛⏟  ⏞  

𝐷𝑣
𝑛

− 𝜖0𝜖𝑟𝐸
𝑙
𝑛⏟  ⏞  

𝐷𝑙
𝑛

⇒ 𝐸𝑙
𝑛 = 𝐸𝑣

𝑛

𝜖𝑟
− 𝜎

𝜖0𝜖𝑟
(4.75)

at all times. Using this allows us to recast Eq. 4.74 as
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𝜕𝜎

𝜕𝑡
+ 𝜎

(︃
𝑘

𝜖0𝜖𝑟

)︃
⏟  ⏞  

1/𝜏𝑒

−𝑘𝐸
𝑣
𝑛

𝜖𝑟
= 0 (4.76)

from which we can glean the characteristic time scale for charge relaxation at the
interface. This turns out to be 𝜏𝑒 ∼ 𝜖0𝜖𝑟/𝑘, a value which can be very small for fluids
that are relatively conductive (𝑘 ∼ 1 S/m, or greater) and apolar (𝜖𝑟 ∼ 102, or less).
For example, an ionic liquid with 𝑘 ∼ 1 S/m and 𝜖𝑟 ∼ 10 has an electrical relaxation
time of just 𝜏𝑒 ∼ 10-10 s, or about 100 picoseconds.

4.8.2 Viscous capillary time
When viscous flow forces dominate their inertial counterparts, i.e. the flow is charac-
terized by a low Reynolds number, the more general Navier-Stokes equation reduces
to that of Stokes

∇𝑝 = 𝜇∇2𝑢⃗ (4.77)

which describes the so-called creeping flow regime. After identifying a specific
length scale that typifies the creeping flow (e.g. 𝑟0) we can make use of dimensional
analysis to elucidate important velocity and temporal properties. Assuming that the
driving force for the flow is a surface tension effect, it makes sense to take 𝑝 ∼ 𝛾/𝑟0
where 𝛾 is the characteristic interfacial energy of the fluid (J/m2 or, equivalently,
N/m). Substituting this gives

1
𝑟0

𝛾

𝑟0
∼ 𝜇

𝑢0

𝑟2
0

⇒ 𝑢0 ∼ 𝛾

𝜇
(4.78)

The characteristic velocity 𝑢0, commonly referred to as the viscous-capillary speed,
is the ratio of the interfacial tension to the dynamic fluid viscosity (Pa-s). As for a
corresponding time scale, we can make use of 𝑢0 and 𝑟0 to formulate

𝜏𝑣𝑖𝑠 ∼ 𝑟0

𝑢0
∼ 𝜇𝑟0

𝛾
(4.79)

From a physical perspective this is the characteristic residence time for fluid ele-
ments within a flow driven strictly by surface tension forces. In practice, it is simply
referred to as the viscous-capillary time. To garner a sense for its magnitude, consider
an ionic liquid in which 𝛾 ∼ 10-2 N/m and 𝜇 ∼ 10-2 Pa-s so that 𝑢0 ∼ 1 m/s. When
the ionic liquid is supporting field evaporation from a tip that is 𝑟* ∼ 10-8 - 10-7 m
we find that 𝜏𝑣𝑖𝑠 ∼ 10-8 - 10-7 s also. In comparison to the electrical relaxation time,
for example, it is clearly very long.

4.8.3 Inertial time
To consider the inertia of a viscous fluid driven by capillary forces we might again
identify an important length scale 𝑟0 and then invoke Newton’s second law, 𝐹 = 𝑚 ·𝑎,
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to find

𝛾𝑟0⏟ ⏞ 
𝐹

∼ 𝜌𝑟3
0⏟ ⏞ 

𝑚

𝑟0

𝜏 2
𝑖𝑛⏟ ⏞ 
𝑎

(4.80)

The representative capillary force is 𝐹 ∼ 𝛾𝑟0. This acts on a mass of fluid 𝑚 ∼ 𝜌𝑟3
0

and accelerates it at a rate of 𝑎 ∼ 𝑟0/(𝜏𝑖𝑛)2 where 𝜏𝑖𝑛 is the characteristic inertial time
scale. Rearranging Eq. 4.80

𝜏𝑖𝑛 ∼

⎯⎸⎸⎷𝜌𝑟3
0
𝛾

(4.81)

For a numerical example, consider a fluid with 𝜌 ∼ 103 kg/m3 and 𝛾 ∼ 10-1 N/m
that is supporting ion evaporation from an emission region that has the size 𝑟* ∼ 10-8

m. Using these values 𝜏𝑖𝑛 ∼ 10-10 s, at least near the tip, which is small in comparison
to the viscous time and possibly on the order of 𝜏𝑒.

4.8.4 Feeding flow time

In practice it is common for feed systems to deliver fluid to the area near the interface.
These could be the emitters that were briefly discussed in the introductory chapter
(e.g. externally wetted tips, porous tips, or capillary tubes) or other configurations
capable of transporting fluid from an upstream reservoir. Just like viscous-capillary
and inertial effects, consideration for the delivery mechanism is important because it
could potentially influence the dynamics of the meniscus. For example, if the time
scale for equilibration of the feeding flow in response to downstream perturbations at
the interface is very long, the delivery system could very well be the bottleneck that
governs the meniscus motion. This is a point that seems to be overlooked very often
in the discussion of electrosprays.

Consider a feeding system that can be idealized as a capillary tube of radius 𝑟0.
When it carries a steady flow of viscous liquid the momentum equation is that of
Stokes, ∇𝑝 = 𝜇∇2𝑢⃗. If we choose to resolve the tube in cylindrical coordinates then
∇𝑝 = 𝑑𝑝/𝑑𝑧 · 𝑖⃗𝑧 only and 𝑢⃗ = 𝑢(𝑟) · 𝑖⃗𝑧. The momentum equation reads

−𝑃 = 𝜇

(︃
𝑑2𝑢

𝑑𝑟2 + 1
𝑟

𝑑𝑢

𝑑𝑟

)︃
(4.82)

where 𝑃 = ||𝑑𝑝/𝑑𝑧||. The general solution to this differential equation is

𝑢 (𝑟) = 𝐶1 ln (𝑟) + 𝐶2 − 𝑃𝑟2

4𝜇 (4.83)

For the viscous flow we have the boundary conditions
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𝝉 
𝒛 

𝒓 

𝒕 

Figure 4-8: Schematic of transient feeding flow evolution. A stress 𝜏 (also 𝑃 ) is
instantaneously applied and held through external means to enforce a given hydraulic
gradient 𝑑𝑃/𝑑𝑧 in an axisymmetric tube. The initial velocity distribution in the tube
(left) will evolve in time, 𝑡, until full development is reached (right).

𝑢 (𝑟 = 𝑟0) =0
𝑑𝑢

𝑑𝑟

⃒⃒⃒⃒
⃒
𝑟=0

= 0

which ensure axial symmetry and a no-slip condition along the wall. The velocity
distribution that satisfies these is

𝑢 (𝑟) = 𝑃

4𝜇
(︁
𝑟2

0 − 𝑟2
)︁

(4.84)

which is essentially the well-known Poiseuille solution for tube flow. Now consider
the same feeding system (tube) with fluid that is initially at rest before being set
in motion by an instantaneously imposed pressure gradient maintained by external
measures (Fig. 4-8). For this situation the momentum equation reads

𝜕𝑢

𝜕𝑡
= 𝑃

𝜌
+ 𝜇

𝜌

(︃
𝜕2𝑢

𝜕𝑟2 + 1
𝑟

𝜕𝑢

𝜕𝑟

)︃
(4.85)

and the corresponding boundary and initial conditions are

𝑢 (𝑟 = 𝑟0, 𝑡) =0 for all 𝑡,
𝜕𝑢

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=0,𝑡

=0 for all 𝑡,

𝑢 (𝑟, 𝑡 = 0) =0 for 0 ≤ 𝑟 ≤ 𝑟0

As Batchelor shows [81], Eq. 4.85 can be converted to a homogeneous form
through the change of variable 𝑤(𝑟, 𝑡) = 𝑢𝑠(𝑟) − 𝑢(𝑟, 𝑡) where 𝑢𝑠(𝑟, 𝑡) is the steady
flow solution from Eq. 4.84. The unsteady momentum equation is now
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𝜕𝑤

𝜕𝑡
= 𝜇

𝜌

(︃
𝜕2𝑤

𝜕𝑟2 + 1
𝑟

𝜕𝑤

𝜕𝑟

)︃
(4.86)

subject to

𝑤 (𝑟 = 𝑟0, 𝑡) =0

𝑤 (𝑟, 𝑡 = 0) = 𝑃

4𝜇
(︁
𝑟2

0 − 𝑟2
)︁

As a particular solution to this equation, Batchelor [81] offers

𝐽0

(︂
𝜆𝑛

𝑟

𝑟0

)︂
· exp

(︃
−𝜆2

𝑛

𝜇𝑡

𝜌𝑟2
0

)︃

in which 𝜆𝑛 is the nth positive root of the Bessel function of the first kind, 𝐽0.
This satisfies the boundary condition at 𝑟 = 𝑟0. The additional condition at 𝑡 = 0
can be satisfied by summing over all possible 𝜆𝑛 so that

𝑤 (𝑟, 𝑡) = 𝑃

4𝜇

∞∑︁
𝑛=1

𝐴𝑛𝐽0

(︂
𝜆𝑛

𝑟

𝑟0

)︂
· exp

(︃
−𝜆2

𝑛

𝜇𝑡

𝜌𝑟2
0

)︃
(4.87)

Without needing to go further, we can already see that the time scale for the
feeding flow must be

𝜏𝑓 ∼ 𝜌𝑟2
0
𝜇

(4.88)

This is to be compared against the viscous-capillary and inertial time scales of the
full meniscus, i.e. the scales that are calculated using the contact line or anchoring
radius of the meniscus rather than 𝑟*. As an example, for a liquid with 𝜌 ∼ 103 kg/m3

and 𝜇 ∼ 10-2 Pa-s that has a contact radius 𝑟0 ∼ 10-6 m we find that 𝜏𝑓 ∼ 10-7 s.
At the same scale, the viscous-capillary and inertial times might be 𝜏𝑣𝑖𝑠 ∼ 10-6 s and
𝜏𝑖𝑛 ∼ 10-13/2 s, respectively. The feeding time is the fastest while the viscous-capillary
time is still limiting.

4.8.5 Evaporative residence times: liquid and gaseous states
The residence times associated with evaporation are the characteristic time scales
describing the propagation of charges in and around the emission zone. The liquid
residence is the time required for a fluid element to move through the electrically
stressed meniscus tip while the gas residence is the time required for evaporated
species to be accelerated away from the same area.

Either residence time can be formulated as the ratio 𝑟/𝑢 where 𝑟 is the charac-
teristic propagation distance and 𝑢 is the characteristic propagation speed. In both
cases the former should evaluate to 𝑟 ∼ 𝑟*. The velocities, however, are likely to
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be very different as a result of the change of states: one is for a viscous fluid flow
and the other is for particles in electrostatic free-fall. As we have already seen, the
characteristic liquid velocity is roughly

𝑢𝑙𝑖𝑞 ∼ 𝑗

𝜌 (𝑞/𝑚) ∼ 𝑘𝐸*

𝜖𝑟𝜌 (𝑞/𝑚) (4.89)

by continuity. On the other hand, for the particle motion it is usually most
appropriate to invoke a basic kinetic energy balance 𝑚𝑢2/2 ∼ 𝑞Φ before finding

𝑢𝑔𝑎𝑠 ∼
√︃

2
(︂
𝑞

𝑚

)︂
Φ (4.90)

The characteristic potential drop in the vicinity of the emission zone must be
Φ ∼ 𝐸*𝑟* and so

𝑢𝑔𝑎𝑠 ∼
√︃

2
(︂
𝑞

𝑚

)︂
𝐸*𝑟* (4.91)

Notice that the ratio of these two velocities

𝑢𝑔𝑎𝑠
𝑢𝑙𝑖𝑞

∼

√︂(︁
𝑞
𝑚

)︁
𝐸*𝑟*[︂

𝑘𝐸*

𝜖𝑟𝜌( 𝑞
𝑚)

]︂ → 𝜖𝑟𝜌

𝑘

(︂
𝑞

𝑚

)︂3/2
√︃
𝑟*

𝐸* (4.92)

could be very large if the specific charge is sufficiently high. For a liquid with
𝑞/𝑚 ∼ 106 C/kg, for example, it could be that 𝑢𝑔𝑎𝑠/𝑢𝑙𝑖𝑞 ≫ 103 or 104 even if 𝑟* is
small and 𝐸* is large. From these results we can formulate the time scales

𝜏 𝑙𝑟𝑒𝑠 ∼𝜖𝑟𝜌 (𝑞/𝑚) 𝑟*

𝑘𝐸* (4.93)

𝜏 𝑔𝑟𝑒𝑠 ∼
√︃

𝑟*

(𝑞/𝑚)𝐸* (4.94)

For the same liquid with 𝑞/𝑚 ∼ 106 C/kg and also 𝐸* ∼ 109 V/m, 𝑟* ∼ 10-8 m,
𝜖𝑟 ∼ 10, 𝑘 ∼ 100 S/m, and 𝜌 ∼ 103 kg/m3 these evaluate to 𝜏 𝑙𝑟𝑒𝑠 ∼ 10-7 s and 𝜏 𝑔𝑟𝑒𝑠 ∼
10-11 - 10-12 s. The particle residence is obviously very short and this is at least part
of the reason why ionic liquid menisci elude the limitations of space charge.

4.8.6 Thermal generation, conduction, and convection times
During ion evaporation the process of Ohmic dissipation (and possibly viscous dis-
sipation, but to a much lesser extent in view of the weak flow) will deposit thermal
energy within the fluid near the tip. Given that thermal excursions could appreciably
modify the behavior of the source it is important to understand the mechanisms that
handle the transport of heat as well as their characteristic time scales. These include
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thermal conduction (analogous to electrical conduction) and also convection when
the fluid is in motion.

In a quiescent state the liquid will hold an amount of specific thermal energy
equivalent to 𝜌𝑐𝑝𝑇0 where 𝜌 is the density of the fluid (kg/m3), 𝑐𝑝 is its specific heat
at constant pressure (J/kg-K), and 𝑇0 is the ambient temperature (K). A time scale
for thermal energy generation is then very easily defined as

𝜏𝑇𝑔𝑒𝑛 ∼ 𝜌𝑐𝑝𝑇0

𝑞
(4.95)

where 𝑞 is now the generation rate (W/m3). Physically, this is the approximate
time required for the generate process to deposit an amount of energy tantamount to
what is stored at the nominal temperature. In the case of electrical evaporation the
mechanism of generation is Ohmic

𝑞 ∼ 𝑗⃗ · 𝐸⃗𝑙 ∼ 𝑘 (𝐸*)2

𝜖2
𝑟

(4.96)

which in turn gives

𝜏𝑇𝑔𝑒𝑛 ∼ 𝜌𝑐𝑝𝑇0𝜖
2
𝑟

𝑘 (𝐸*)2 (4.97)

Conduction is one channel through which thermal energy can be carried away from
the generation site and roughly analogous to the process of electrical conduction for
charge transport. Using a basic transient heat balance

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
∼ 𝑘𝑇

𝜕2𝑇

𝜕𝑥2 ⇒ 𝜏𝑇𝑐𝑜𝑛𝑑 ∼ 𝜌𝑐𝑝 (𝑟*)2

𝑘𝑇
(4.98)

where 𝑘𝑇 is the thermal conductivity (W/m-K) and 𝑥 is the coordinate in sim-
plified one-dimensional space. For ion evaporation, the characteristic distance should
be 𝑥 ∼ 𝑟* near the tip.

Convection of heated fluid is a second channel through which thermal energy
can be transported; unlike its conduction counterpart, however, it is not directly
analogous to electrical convection in the sense that it is a bulk fluid phenomenon
(electrical convection is primarily predicated upon the motion of surface charges).
Because it involves the flow of bulk fluid we can surmise that the associated time
scale should essentially be that of fluid residence, i.e. 𝜏𝑇𝑐𝑜𝑛𝑣 ∼ 𝜏 𝑙𝑟𝑒𝑠 ∼ 𝑟*/𝑢𝑙𝑖𝑞. For
a fluid with 𝑐𝑝 ∼ 103 J/kg-K, 𝑘𝑇 ∼ 10-1 W/m-K, 𝑇0 ∼ 102 K, 𝜖𝑟 ∼ 10, 𝑘 ∼ 100

S/m, 𝐸* ∼ 109 V/m, and 𝑟* ∼ 10-8 m we find the time scales 𝜏𝑇𝑔𝑒𝑛 ∼ 10-8 s, 𝜏𝑇𝑐𝑜𝑛𝑑 ∼
10-9 s, and 𝜏𝑇𝑐𝑜𝑛𝑣 ∼ 10-7 s. It is clear that conduction is the primary mechanism
for the transport of thermal energy because 𝜏𝑇𝑐𝑜𝑛𝑑 ≪ 𝜏𝑇𝑐𝑜𝑛𝑣 and also that a meniscus
supporting ion evaporation could experience a reasonable temperature excursion, but
perhaps not as great as Δ𝑇 ∼ 𝑇0 since 𝜏𝑇𝑐𝑜𝑛𝑑 < 𝜏𝑇𝑔𝑒𝑛.
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4.9 Summary
The kinetic law from Eq. 4.1 suggests that charge evaporation from electrified fluids
should happen in the vicinity of

𝐸* = 4𝜋𝜖0 (Δ𝐺)2

𝑞3 (4.99)

The solvation energy of many ionic liquids is somewhere in the range from 1-2
eV and this necessitates strong fields on the order of 𝐸* ∼ 108 - 109 V/m. Stable
maintenance of ion evaporation requires that the associated electrical stress 𝜏𝑒 ∼
𝜖0 (𝐸*)2 /2 be balanced by a sharply curved meniscus of characteristic size

𝑟* ∼ 4𝛾
𝜖0 (𝐸*)2 = 𝛾𝑞6

4𝜋2𝜖3
0 (Δ𝐺)4 (4.100)

that is typically 10-8 - 10-7 m. This defines an evaporation area 𝐴* ∼ 𝜋 (𝑟*)2 over
which 10-8 - 10-6 A could be reasonably emitted, depending upon conditions such as
the actual field strength. When the latter is very strong, for example, the current
density reaches its conduction-limited maximum of 𝑗 ∼ 𝑘𝐸*/𝜖𝑟 and a similarly large
𝐼 would be expected.

The fluid flows that develop during evaporation are relatively tenuous as a result of
the high specific charges, among other things, that typify pure ion emission regimes.
As a direct consequence, all convective processes are apparently subordinate to their
conduction counterparts. This is true for the transport of both heat and electrical
charge. Similarly, the weak flow results in a low Capillary number which indicates
that viscous stresses are somewhat unimportant in comparison to surface tension
effects.

Finally, heating may occur during the evaporation process as a result of Ohmic
dissipation in the fluid. While the timescale for thermal conduction is believed to
be small in comparison to the one for thermal generation, the behavior of the source
could be radically different for even minor temperature excursions. A basic schematic
of these fundamental processes is provided in Fig. 4-9.

In the tables that follow we distill salient results from this chapter. Several im-
portant emission properties are formulated in terms of the intrinsic fluid properties,
the evaporated current, and the governing time scales while numerical examples are
given for a small selection of solvation energies within the range from 0.5 - 2 eV. Given
that this parameter is only loosely quantified within this range, we would expect the
stated numbers to bracket the set of physical possibilities. In all cases the sample
fluid is one with 𝜖𝑟 = 10; 𝑘 = 1 S/m; 𝑞/𝑚 = 106 C/kg; 𝛾 = 10-1 N/m; 𝜇 = 10-1 Pa-s;
𝜌 = 103 kg/m3; 𝑐𝑝 = 103 J/kg-K; 𝑘𝑇 = 10-1 W/m-K; and 𝑇0 = 300 K unless otherwise
stated.
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Figure 4-9: Schematic illustration of several fundamental processes for evaporation
of ionic liquids. The curved meniscus satisfies a mechanical balance that nominally
includes electrical traction and surface tension. Surface charge accumulates in its
relaxed state over most of the meniscus. Near the tip with characteristic scale 𝑟*

the vacuum field 𝐸𝑣
𝑛 ∼ 𝐸* is strong enough to extract ions and locally deplete the

surface of net charge. Flows of replenishing fluid within the meniscus are relatively
tenuous, such that the attendant Capillary number is small (i.e., viscous stresses can
be ignored to first approximation), but might still lead to non-trivial heating by way
of Ohmic dissipation.
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Table 4.1: Evaporation parameters formulated in terms of (1) the intrinsic fluid prop-
erties, (2) the evaporated current, and (3) the governing time scales

Parameter Formulation
Intrinsic properties Current Time scales

Evaporation field, 𝐸* 4𝜋𝜖0(Δ𝐺)2

𝑞3 – –

Tip size, 𝑟* 𝛾𝑞6

4𝜋2𝜖30(Δ𝐺)4 – –

Evaporation current, 𝐼* 𝑘𝛾2𝑞9

4𝜋2𝜖50𝜖𝑟(Δ𝐺)6 – –

Surface charge, 𝜎/𝜖0𝐸
* ℎ𝑘

𝜖0𝜖𝑟𝑘𝐵𝑇
– 𝜏𝑒𝑚𝑖𝑠

𝜏𝑒

Space charge, 𝐸𝑠𝑐/𝐸* 𝑘
8𝜖𝑟

[︂
2𝛾𝑞9

𝜋3𝜖60(𝑞/𝑚)(Δ𝐺)6

]︂1/2 [︁
𝑘𝐼*

8𝜋𝜖0𝜖𝑟𝛾(𝑞/𝑚)

]︁1/2 𝜏𝑔
𝑟𝑒𝑠

𝜏𝑒

Charge convection, 𝑗𝑐𝑜𝑛𝑣/𝑗𝑐𝑜𝑛𝑑 16𝜋3𝜖50(Δ𝐺)6

𝜌𝛾(𝑞/𝑚)𝑞9
𝜖0𝜖𝑟𝐼*

𝜋𝑘𝜌(𝑞/𝑚)(𝑟*)3
𝜏𝑒

𝜏 𝑙
𝑟𝑒𝑠

Viscous stress, Δ𝑝/𝑃𝑠𝑡 2𝜋𝜇𝜖0𝑘(Δ𝐺)2

𝜖𝑟𝜌𝛾(𝑞/𝑚)𝑞3
𝜇𝐼*

2𝜋𝜌𝛾(𝑞/𝑚)(𝑟*)2
𝜏𝑣𝑖𝑠

𝜏 𝑙
𝑟𝑒𝑠

Meniscus heating, Δ𝑇/𝑇0
𝑘𝛾2𝑞6

𝜋2𝜖2𝑟𝜖
4
0(Δ𝐺)4𝑘𝑇𝑇0

(𝐼*)2

𝑘(𝑟*)2𝑘𝑇𝑇0

𝜏𝑇
𝑐𝑜𝑛𝑑

𝜏𝑇
𝑔𝑒𝑛
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Table 4.2: Numerical examples near the tip of a fluid with 𝐸 → 𝐸*

Parameter Approx. value near tip
Δ𝐺 = 0.5 eV 1.0 eV 1.5 eV 2.0 eV

Evaporation field, 𝐸* (V/nm) 2 · 10−1 7 · 10−1 2 3

Tip size, 𝑟* (nm) 2 · 103 93 19 6

Evaporation current, 𝐼* (nA) 105 2 · 103 2 · 102 30

Surface charge, 𝜎/𝜖0𝐸
* 2 · 10−3 2 · 10−3 2 · 10−3 2 · 10−3

Space charge, 𝐸𝑠𝑐/𝐸* 7 · 10−1 9 · 10−2 3 · 10−2 10−2

Charge convection, 𝑗𝑐𝑜𝑛𝑣/𝑗𝑐𝑜𝑛𝑑 10−6 10−4 8 · 10−4 4 · 10−3

Viscous stress, Δ𝑝/𝑃𝑠𝑡 9 · 10−3 3 · 10−2 8 · 10−2 10−1

Meniscus heating, Δ𝑇/𝑇0 20 100 3 · 10−1 9 · 10−2
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Table 4.3: Formulations for the governing time scales and approximate numerical
values near the tip of a fluid with 𝐸 → 𝐸* and Δ𝐺 = 1 eV

Time scale Formulation Approx. value (s)

Emission, 𝜏𝑒𝑚𝑖𝑠 ℎ
𝑘𝐵𝑇

2 · 10−13

Electric relaxation, 𝜏𝑒 𝜖0𝜖𝑟
𝑘

9 · 10−11

Viscous capillary, 𝜏𝑣𝑖𝑠 𝜇𝑟
𝛾

9 · 10−8

Inertial, 𝜏𝑖𝑛𝑒𝑟
√︁

𝜌𝑟3

𝛾
3 · 10−9

Feeding flow, 𝜏𝑓 𝜌𝑟2

𝜇
–

Liquid residence, 𝜏 𝑙𝑟𝑒𝑠
𝜋𝜌(𝑞/𝑚)𝑟3

𝐼
1 · 10−6

Gas residence, 𝜏 𝑔𝑟𝑒𝑠
√︁

𝜋𝑘𝑟3

𝜖𝑟(𝑞/𝑚)𝐼 1 · 10−11

Thermal generation, 𝜏𝑇𝑔𝑒𝑛
𝜌𝑐𝑝𝑇0𝑘(𝜋𝑟2)2

𝐼2 6 · 10−8

Thermal conduction, 𝜏𝑇𝑐𝑜𝑛𝑑
𝜌𝑐𝑝𝑟2

𝑘𝑇
9 · 10−8

Thermal convection, 𝜏𝑇𝑐𝑜𝑛𝑣
𝜋𝜌(𝑞/𝑚)𝑟3

𝐼
1 · 10−6
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Chapter 5

Equilibria, stability, and
evaporation of spheroidal menisci

If the order-of-magnitude analyses from the previous chapter are to be believed then it
is likely that electrified ionic liquid menisci are conduction-controlled and not limited
by the vacuum effects of the space charge that they generate. Owing to the small
capillary number, the topographical properties of their interfaces should be deter-
mined primarily through the balance of electrical and surface tension stresses. When
thermal effects can also be ignored, this set of conditions lends itself to a simplified
description of the fluid that might be described through analytical means. In this
chapter we explore this possibility as a means of discerning basic emission phenomena
and highlighting several weaknesses attendant to non-numerical approaches.

5.1 Fixed-volume problem

Fixed-volume droplets that protrude from a conducting plate while being subjected
to a uniform downstream field 𝐸0 (or simply rest in a uniform background field, which
is mathematically equivalent) have significant heritage in the literature where they
have been studied with a variety of different methods [66, 67, 68, 69, 70, 71]. These
include numerical investigations but also analytical treatments [3] predicated upon
the fact that their stressed morphologies closely resemble a family of prolate spheroids
(see Fig. 5-1). Very conveniently, this facilitates closed-form solutions for the stresses
that govern the problem (especially when systems of special coordinates are used, as
we show) and for this reason we begin by considering the fixed-volume droplet.

We can start to formulate the mathematical framework for the fixed-volume prob-
lem by considering the stress balance at the liquid-vacuum interface. This should read
𝑃𝑒 + 𝑃𝑙 = 𝑃𝑠𝑡 where 𝑃𝑒 is the local electric pressure, 𝑃𝑙 is the hydrostatic pressure
of the liquid, and 𝑃𝑠𝑡 is the surface tension. Using the Maxwell tensor this can be
expanded to find [77, 78, 79]

1
2𝜖0

[︂
(𝐸𝑣

𝑛)2 − 𝜖𝑟
(︁
𝐸𝑙
𝑛

)︁2
+ (𝜖𝑟 − 1)𝐸2

𝑡

]︂
+ 𝑃𝑙 = 𝑃𝑠𝑡 (5.1)
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𝜽 

𝒓 = 𝒃𝟎 𝒓 = 𝒃 

𝒛 = 𝒂 

𝟗𝟎° 

𝒓 

𝒛 

𝜽 

𝒓 = 𝒃𝟎 

𝒓 = 𝒃 

𝒛 = 𝒂 𝑬𝟎 

Figure 5-1: Fixed-volume droplets resolved in axisymmetric cylindrical coordinates.
The case of a droplet in free-space (left) is mathematically equivalent to that of a
droplet on a conducting plate so long as the corresponding contact angle is exactly
90∘. This is due to the fact that the mid-plane of the free-space droplet (located
along 𝑧 = 0) is a plane of symmetry where 𝐸⃗ · 𝑖⃗𝑟 = 0 by definition (notice that
a perfectly conducting plate enforces the same field condition). Application of a
uniform electrical field 𝐸0 far downstream of the droplets disturbs their quiescent
configurations (dashed curves), which are characterized by spherical radii of length 𝑏0,
and causes deformation along the direction of the field. The deformed droplets retain
approximately spheroidal geometries for which the associated major and minor axes
(denoted by 𝑎 and 𝑏, respectively) are functions of the applied electrical stress. The
corresponding aspect ratio 𝑎/𝑏 is a measure of the prevailing distortion and typically
represented by the variable 𝑍 (not to be confused with the cylindrical coordinate 𝑧,
which is always written in lower-case).
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where 𝐸𝑣
𝑛 and 𝐸𝑙

𝑛 are again the normal components of the electric field on the
vacuum and liquid sides of the interface, respectively, and where 𝐸𝑡 is the tangential
component. During the emission process we have shown that parts of the meniscus
may experience depleted surface charge as a result of conduction limitations in the
fluid. When the depletion is not too significant, however, and perhaps when the di-
electric strength 𝜖𝑟 of the fluid is high, the droplet might be reasonably approximated
as an equipotential structure. In that case, 𝐸𝑙

𝑛 ∼ 𝐸𝑡 ∼ 0 leaving the vacuum field as
the lone electrical stressor of the fluid. The simplified stress balance is

1
2𝜖0 (𝐸𝑣

𝑛)2 + 𝑃𝑙 = 𝑃𝑠𝑡 (5.2)

Of the terms here, the one involving 𝐸𝑣
𝑛 is easily the most involved, especially for

generalized curvilinear geometries. Fortunately, the subset of spheroidal form factors
are analytically tractable in an orthogonal system of prolate spheroidal coordinates.
As we show in the appendix, the solution to Laplace’s equation in that space yields

𝐸𝑣
𝑛 = 𝐸0√︁

1 + (𝑍 · tan 𝜈)2

⎡⎣ 𝑍2 − 1
𝑍√
𝑍2−1 ln

(︁
𝑍 +

√
𝑍2 − 1

)︁
− 1

⎤⎦ (5.3)

for the vacuum field acting on an equipotential spheroid. Here, 𝑍 is the aspect
ratio 𝑎/𝑏 of the droplet (i.e. the ratio of the major and minor axes) and 𝜈 is a polar
angle that ranges from 𝜈 = 0 at the tip to 𝜈 = 𝜋/2 at the mid-plane.

As for the surface tension and liquid pressure terms it is most appropriate to adopt
the two-point stress method introduced by Taylor [3]. This calls for the stress to be
balanced at both the tip of the meniscus and at the mid-plane, but not necessarily
at points in between. Starting with the mid-plane, it can be verified from Eq. 5.3
that 𝐸𝑣

𝑛 → 0 as 𝜈 → 𝜋/2 requiring that 𝑃𝑒 fall out of the stress equation. The local
surface tension is found by recalling that

(︂
𝑧

𝑎

)︂2
+
(︂
𝑟

𝑏

)︂2
= 1 (5.4)

is the equation of a spheroid resolved in axisymmetric cylindrical space. The first
and second spatial derivatives of this equation are

𝑧′

𝑎
= −𝑟
𝑏 (𝑏2 − 𝑟2)1/2 (5.5)

𝑧′′

𝑎
= −𝑏

(𝑏2 − 𝑟2)3/2 (5.6)

where the “primes” denote differentiation with respect to 𝑟. In general, the radius
of curvature for projection of the spheroid on the 𝑟−𝑧 plane is𝑅1 = ||(1+(𝑧′)2)3/2/𝑧′′||.
Substituting the derivatives into this express gives
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1
𝑅1

= 𝑎𝑏4

[𝑏2 (𝑏2 − 𝑟2) + 𝑎2𝑟2]3/2 (5.7)

At the mid-plane, 𝑟 → 𝑏 and reduces this relationship to 1/𝑅1 = 𝑏/𝑎2. This is the
first principal radius of curvature and the one residing in the 𝑟− 𝑧 plane. The second
principal curvature is in the azimuthal direction and should be exactly 𝑏, the radius
of the spheroidal waist. The total surface tension pressure at the mid-plane is then

𝑃𝑠𝑡|𝑚𝑖𝑑 = 𝛾
(︂ 1
𝑅1

+ 1
𝑅2

)︂
= 𝛾

𝑏

(︃
1 + 𝑍2

𝑍2

)︃
(5.8)

where we have used the aspect ratio 𝑍 = 𝑎/𝑏. Since there is no field this must
be numerically equivalent to the hydrostatic pressure in the fluid (which is spatially
uniform) at all times. Turning our attention to the tip, from Eq. 5.7 the local surface
tension is

𝑃𝑠𝑡|𝑡𝑖𝑝 = 2𝛾𝑍
𝑏

(5.9)

and we note that the electrical stress is, of course, nonzero now. The stress balance
now reads

1
2𝜖0𝐸

2
0

⎡⎣ 𝑍2 − 1
𝑍√
𝑍2−1 ln

(︁
𝑍 +

√
𝑍2 − 1

)︁
− 1

⎤⎦2

⏟  ⏞  
𝑃𝑒

+ 𝛾

𝑏

(︃
1 + 𝑍2

𝑍2

)︃
⏟  ⏞  

𝑃𝑙

= 2𝛾𝑍
𝑏⏟  ⏞  
𝑃𝑠𝑡

(5.10)

The base radius 𝑏 in this expression is somewhat problematic as it must vary in
order to satisfy volume conservation. We can address it, however, by integrating the
equation of the spheroid in axisymmetric cylindrical space

𝑉 = 2𝜋𝑎
∫︁ 𝑏

0
𝑟

√︃
1 −

(︂
𝑟

𝑏

)︂2
· 𝑑𝑟 = 2𝜋𝑎𝑏2

3 (5.11)

and noting that the product 𝑎𝑏2 is invariant regardless of any induced deformation.
This condition requires that

𝑏3
0 = 𝑎𝑏2 ⇒ 𝑏

𝑏0
= 1
𝑍1/3 (5.12)

where 𝑏0 is the spherical radius of the undeformed droplet. Substituting this in
the stress balance at the tip provides for an expression that we can use to estimate
the elongation of the fluid as a function of the external field 𝐸0

1
2𝜖0𝐸

2
0

⎡⎣ 𝑍2 − 1
𝑍√
𝑍2−1 ln

(︁
𝑍 +

√
𝑍2 − 1

)︁
− 1

⎤⎦2

+ 𝛾

𝑏0
𝑍1/3

(︃
1 + 𝑍2

𝑍2

)︃
− 2𝛾
𝑏0
𝑍4/3 = 0 (5.13)

The emission part of the problem is subordinate to the deformation but still obeys
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the usual kinetic law. From Eq. 4.5

𝑗 = 𝑘𝐸𝑣
𝑛/𝜖𝑟

1 + ℎ𝑘
𝜖0𝜖𝑟𝑘𝐵𝑇

exp
(︂

1
𝑘𝐵𝑇

{︂
Δ𝐺−

√︁
𝑞3𝐸𝑣

𝑛

4𝜋𝜖0

}︂)︂ (5.14)

is the current density at the interface for a conduction-limited fluid. The total
current is therefore the integral of this expression over the surface, 𝐼 =

∫︀
𝑗 · 𝑑𝐴 with

𝑑𝐴 = 2𝜋𝑟 · 𝑑𝑠 in axisymmetric cylindrical space. The differential distance along the
interface follows from 𝑑𝑠2 = 𝑑𝑟2 + 𝑑𝑧2 and can be be expanded with the help of the
expression for 𝑧′ above

𝑑𝑠 = 𝑑𝑟

⎯⎸⎸⎷1 +
(︃
𝑑𝑧

𝑑𝑟

)︃2

= 𝑑𝑟

⎯⎸⎸⎷1 + (𝑟/𝑏)2 (𝑍2 − 1)
1 − (𝑟/𝑏)2 (5.15)

The current is then

𝐼 = 2𝜋
∫︁ 𝑏

0
𝑗𝑟

⎯⎸⎸⎷1 + (𝑟/𝑏)2 (𝑍2 − 1)
1 − (𝑟/𝑏)2 · 𝑑𝑟 (5.16)

Going forward it will be helpful to eliminate the 𝑟/𝑏 factors. To achieve this we
now define 𝑅 = 𝑟/𝑏 and make this our variable of integration so that

𝐼 = 2𝜋𝑏2
∫︁ 1

0
𝑗𝑅

√︃
1 +𝑅2 (𝑍2 − 1)

1 −𝑅2 · 𝑑𝑅 = 2𝜋
(︃

𝑏2
0

𝑍2/3

)︃∫︁ 1

0
𝑗𝑅

√︃
1 +𝑅2 (𝑍2 − 1)

1 −𝑅2 · 𝑑𝑅

(5.17)
where we have also invoked the volume conservation relationship 𝑏 = 𝑏0/𝑍

1/3.
This completes the mathematical description of the emission problem for the fixed-
volume droplet. Before proceeding, however, we will nondimensionalize the governing
equations by electing the scales

𝑟 → 𝑟

𝑏0

𝐸̂ → 𝐸

𝐸𝑐
, where 𝐸𝑐 = 4𝛾

𝜖0𝑏0

𝑃𝑠𝑡 → 𝑃𝑠𝑡(︁
2𝛾
𝑏0

)︁
𝑃𝑙 → 𝑃𝑙(︁

2𝛾
𝑏0

)︁
𝑗̂ → 𝑗

𝑘𝐸𝑐

𝐼 → 𝐼

𝑘𝐸𝑐𝑏2
0
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Notice that the stresses are scaled by the nominal capillary pressure and that the
fields are scaled by the critical value 𝐸𝑐. This is the field at which the electric pressure
balances the capillary pressure, i.e. 𝜖0𝐸

2
𝑐 /2 = 2𝛾/𝑏0. After implementing these we

find that the problem is governed by

𝐸̂2
0

⎡⎣ 𝑍2 − 1
𝑍√
𝑍2−1 ln

(︁
𝑍 +

√
𝑍2 − 1

)︁
− 1

⎤⎦2

+ 𝑍1/3

2

(︃
1 + 𝑍2

𝑍2

)︃
− 𝑍4/3 = 0 (5.18)

𝐼 = 2𝜋
𝑍2/3

∫︁ 1

0
𝑗̂𝑅

√︃
1 +𝑅2 (𝑍2 − 1)

1 −𝑅2 · 𝑑𝑅 (5.19)

at the interface, which is also subject to

𝑗̂ = 𝐸̂𝑣
𝑛/𝜖𝑟

1 + 𝜒 · exp
(︂
𝜓
{︂

1 −𝐵1/4
√︁
𝐸̂𝑣
𝑛

}︂)︂ (5.20)

𝐸̂𝑣
𝑛 = 𝐸̂0

⎯⎸⎸⎷ 1 −𝑅2

1 +𝑅2 (𝑍2 − 1)

⎡⎣ 𝑍2 − 1
𝑍√
𝑍2−1 ln

(︁
𝑍 +

√
𝑍2 − 1

)︁
− 1

⎤⎦ (5.21)

The dimensionless groupings 𝜒 and 𝜓 are those defined by Eqs. 4.10 and 4.11 in
the previous chapter. The new grouping 𝐵 is defined as 𝑏*/𝑏0, where

𝑏* = 𝑟* = 𝛾𝑞6

4𝜋2𝜖3
0 (Δ𝐺)4 (5.22)

is the characteristic size of the charge evaporation area. 𝐵, therefore, can be
interpreted as ratio of this size to that of the full meniscus. Also note that we have
used the cylindrical transformations for prolate spheroidal space (see appendix)

𝑟 =𝛼 sinh𝜇 sin 𝜈
𝑧 =𝛼 cosh𝜇 cos 𝜈

to substitute

tan 𝜈 = 𝑅√
1 −𝑅2

(5.23)

in the expression for 𝐸𝑣
𝑛.

5.1.1 Equilibria for conducting and dielectric droplets
To investigate equilibrium properties of the fixed-volume droplet in the most general
way it makes sense to consider the electrical stress on a pure dielectric fluid of arbitrary
strength 𝜖𝑟. The Laplacian solution for this problem, developed in the appendix,
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suggests that the field on the vacuum side of the meniscus tip is

𝐸𝑣
𝑛|𝑡𝑖𝑝 = 𝜖𝑟𝐸0

1 − 𝜖𝑟−1
𝑍2−1

[︁
1 + 𝑍√

𝑍2−1 · ln
{︁

1
𝑍+

√
𝑍2−1

}︁]︁ (5.24)

while the field on the liquid side is simply 𝐸𝑙
𝑛 = 𝐸𝑣

𝑛/𝜖𝑟 as a result of the vanishing
surface charge. Notice that

lim
𝜖𝑟→∞

𝐸𝑣
𝑛 = 𝐸0 (𝑍2 − 1)

𝑍√
𝑍2−1 · ln

{︁
𝑍 +

√
𝑍2 − 1

}︁
− 1

(5.25)

which, of course, is the solution for the perfectly conducting meniscus. Depending
upon the structure of the field it is not always true that a material with unbounded
permittivity will behave the same as one with infinite conductivity; in this instance,
however, the cases are mathematically equivalent. The fact that this situations ex-
ists is helpful here as it will allow us to easily explore the stress responses of both
conducting and dielectric drops at the same time. The task now is to formulate the
electric pressure at the tip of the dielectric drop

𝑃𝑒 =
1
2𝜖0𝐸

2
0 [𝜖𝑟 (𝜖𝑟 − 1)][︁

1 − 𝜖𝑟−1
𝑍2−1

(︁
1 + 𝑍√

𝑍2−1 · ln
{︁

1
𝑍+

√
𝑍2−1

}︁)︁]︁2 (5.26)

and nondimensionalize in the same manner as before

𝑃𝑒 = 𝐸̂2
0 [𝜖𝑟 (𝜖𝑟 − 1)][︁

1 − 𝜖𝑟−1
𝑍2−1

(︁
1 + 𝑍√

𝑍2−1 · ln
{︁

1
𝑍+

√
𝑍2−1

}︁)︁]︁2 (5.27)

This is a more general expression that can be substituted in Eq. 5.18

𝐸̂2
0 [𝜖𝑟 (𝜖𝑟 − 1)][︁

1 − 𝜖𝑟−1
𝑍2−1

(︁
1 + 𝑍√

𝑍2−1 · ln
{︁

1
𝑍+

√
𝑍2−1

}︁)︁]︁2 + 𝑍1/3

2

(︃
1 + 𝑍2

𝑍2

)︃
− 𝑍4/3 = 0 (5.28)

Eq. 5.28 now describes the relationship between the externally imposed electric
field 𝐸0 and the equilibrium deformation of an general fluid, as measured by the aspect
ratio 𝑍. The simplest way to solve it involves isolating the field on the left-hand side

𝐸̂2
0 =

𝑍4/3 − 𝑍1/3

2

(︁
1+𝑍2

𝑍2

)︁
𝜖𝑟 (𝜖𝑟 − 1)

[︃
1 + 𝜖𝑟 − 1

𝑍2 − 1

(︃
𝑍√

𝑍2 − 1
· ln

{︁
𝑍 +

√
𝑍2 − 1

}︁
− 1

)︃]︃2

(5.29)

and then calculating the value corresponding to the independent variable 𝑍, which
is arbitrary in this case.

Results from this process are shown in Fig. 5-2 for several values of dielectric
strength ranging from 𝜖𝑟 = 5 to the limiting case 𝜖𝑟 → ∞. These values increase in
the counterclockwise direction, starting from the bottom curve, and offer rich insight
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Figure 5-2: Equilibrium elongation values as a function of the dimensionless external
electric field 𝐸̂0 for fixed-volume dielectric droplets. The monotonic growth of the
weak dielectrics is very different from the multi-valued, turning point behavior of
their high 𝜖𝑟 counterparts. In the limiting case, 𝜖𝑟 → ∞, the turning point precludes
spheroidal solutions about 𝐸̂0 ∼ 0.228 but an unbounded set of possible deformations
is possible above the starting value 𝑍 = 1.

on the deformation behavior of fixed volume droplets. Other authors have arrived at
similar results in the past through a variety of methods [3, 71].

From the plot we can distinguish three distinct groups of curves: the double-
valued group, the hysteretic group, and the monotonic group. The first of these,
the double-valued group, is populated by fluids with 𝜖𝑟 & 25 (at least within the
pictured range) and includes the limiting 𝜖𝑟 → ∞ case. It is characterized by a multi-
valued deformation curve involving a lower branch of modest 𝑍 and an upper branch
of extreme protraction. In terms of the former, it begins with the undeformed or
quiescent 𝑍 = 1 state and experiences a very subtle elongation as the external field is
increased. We see that this elongation persists until some terminal value of the field
is met, beyond which the fluid apparently cannot reach a mechanical equilibrium,
at least with a spheroidal interface. In the limiting case, for example, this happens
around 𝐸̂0 ∼ 0.228 and 𝑍 ∼ 1.86 (as shown in Fig. 5-3). Other interface modes could
be possible for higher fields, however, and this is what led Taylor [3] to conclude that
the so-called turning point must be the one at which the droplet begins to devolve
into the characteristic cone that is known in that regime. Unfortunately, the results of
Higuera [62] strongly suggest that steady evaporation is not supported by these modes
and so we do not consider them any further here. Moving on to the upper branch,
we see that solutions again exist for fields below the turning point but involve strong
deformations. The fact that these satisfy the mechanical balance is very interesting,
and in the next section we examine their stability to determine whether they are an
artifact of the mathematics or something we should physically anticipate.

At the other end of the dielectric spectrum we have the monotonic group for which
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Figure 5-3: Detail of the turning point for the limiting case 𝜖𝑟 → ∞. The critical
field is 𝐸̂0 ∼ 0.228 and corresponds to the elongation 𝑍 ∼ 1.86.

the elongation of the droplet is associated a single field value over 𝐸̂0 ∈ [0,∞]. It
corresponds to roughly 𝜖𝑟 . 20 and likely has something to do with the arrangement
of the field near the tip, where the low permittivity of the fluid must mitigate the
stress of the electric pressure even when 𝐸𝑙

𝑛 is small (consider the 𝐸𝑙
𝑛 ∼ 𝐸𝑣

𝑛/20 case).
Apparently, the meniscus is very sensitive to the structure of the surrounding field,
which is something that should be kept in mind. In between this group and the
double-valued family is the hysteretic group, corresponding to the range 20 . 𝜖𝑟 .
25. As shown in Fig. 5-4, a lower solution branch meets an initial turning point
before reversing course at elevated 𝑍 and continuing to grow monotonically thereafter.
Note that while it is possible that certain droplets with 𝜖𝑟 & 25 exhibit qualitatively
similar hysteretic behavior (i.e. that their elongation curves return to positive slope
at elevated 𝑍), this would clearly need to occur in the presence of extreme protraction
beyond the maximum 𝑍 = 10 that we have depicted. Such cases will not be rigorously
considered here.

5.1.2 Stability
The stability of the deformed states depends on the behavior of the governing pres-
sures in response to perturbations of the interfacial geometry. For the stress balance
that determines the droplet shape we can write, in general

𝑃𝑒 + 𝑃𝑙 − 𝑃𝑠𝑡 = Δ𝑃 (5.30)

at the tip, where Δ𝑃 is a pressure difference that vanishes for an equilibrium
configuration, i.e. Δ𝑃 → 0 for 𝑍 → 𝑍𝑒𝑞. When an equilibrium is perturbed, however,
Δ𝑃 may deviate in either the positive (outward forcing) or negative (inward forcing)
direction and it is the nature of this excursion that determines stability. For example,
if the equilibrium value of the droplet aspect ratio grows a small amount from 𝑍𝑒𝑞 to
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Figure 5-4: Detail for the hysteretic behavior of the curves corresponding to inter-
mediate 𝜖𝑟. After an initial turning point the curves reverse course and become
monotonic again for high 𝑍.

𝑍𝑒𝑞 + 𝛿𝑍 and Δ𝑃 (𝑍𝑒𝑞 + 𝛿𝑍) is positive, the extra pressure at the tip will tend to pull
it out even further and likely create a runaway effect from which a steady interface
cannot be recovered. On the other hand, if Δ𝑃 (𝑍𝑒𝑞 + 𝛿𝑍) is negative the excess
pressure will tend to push the tip back in and restore the original configuration. To
state this in a more formal mathematical way, consider the pressure at 𝑍 = 𝑍𝑒𝑞 + 𝛿𝑍

𝑃𝑒 (𝑍𝑒𝑞 + 𝛿𝑍) + 𝑃𝑙 (𝑍𝑒𝑞 + 𝛿𝑍) − 𝑃𝑠𝑡 (𝑍𝑒𝑞 + 𝛿𝑍) = Δ𝑃 (𝑍𝑒𝑞 + 𝛿𝑍) (5.31)

with the field 𝐸0 fixed. Since 𝛿𝑍 is by definition very small, we can expand the
pressures in a Taylor series and truncate after the linear term so that

[︃
𝑃𝑒 (𝑍𝑒𝑞) + 𝜕𝑃𝑒

𝜕𝑍
𝛿𝑍

]︃
⏟  ⏞  

𝑃𝑒(𝑍𝑒𝑞+𝛿𝑍)

+
[︃
𝑃𝑙 (𝑍𝑒𝑞) + 𝜕𝑃𝑙

𝜕𝑍
𝛿𝑍

]︃
⏟  ⏞  

𝑃𝑙(𝑍𝑒𝑞+𝛿𝑍)

−
[︃
𝑃𝑠𝑡 (𝑍𝑒𝑞) + 𝜕𝑃𝑠𝑡

𝜕𝑍
𝛿𝑍

]︃
⏟  ⏞  

𝑃𝑠𝑡(𝑍𝑒𝑞+𝛿𝑍)

= Δ𝑃 (𝑍𝑒𝑞) + 𝜕Δ𝑃
𝜕𝑍

𝛿𝑍⏟  ⏞  
Δ𝑃 (𝑍𝑒𝑞+𝛿𝑍)

(5.32)
After noting the equilibrium condition

𝑃𝑒 (𝑍𝑒𝑞) + 𝑃𝑙 (𝑍𝑒𝑞) − 𝑃𝑠𝑡 (𝑍𝑒𝑞) = Δ𝑃 (𝑍𝑒𝑞) = 0 (5.33)

and dividing through by 𝛿𝑍 we get

𝜕𝑃𝑒
𝜕𝑍

+ 𝜕𝑃𝑙
𝜕𝑍

− 𝜕𝑃𝑠𝑡
𝜕𝑍

= 𝜕Δ𝑃
𝜕𝑍

(5.34)

The appropriate stability condition is, therefore
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[︃
𝜕𝑃𝑒
𝜕𝑍

+ 𝜕𝑃𝑙
𝜕𝑍

− 𝜕𝑃𝑠𝑡
𝜕𝑍

]︃
𝐸0(𝑍𝑒𝑞)

= 𝜕Δ𝑃
𝜕𝑍

⃒⃒⃒⃒
⃒
𝐸0(𝑍𝑒𝑞)

< 0 (5.35)

While it is possible to arrive at closed-form analytical expressions for the deriva-
tives in this relationship, they are far from trivial. We will consider them piece-
wise here and start with the electric pressure. From the pure dielectric condition
𝐸𝑙
𝑛 = 𝐸𝑣

𝑛/𝜖𝑟 we have

𝑃𝑒 = 1
2𝜖0

(︂
𝜖𝑟 − 1
𝜖𝑟

)︂
(𝐸𝑣

𝑛)2 ⇒ 𝜕𝑃𝑒
𝜕𝑍

= 𝜖0

(︂
𝜖𝑟 − 1
𝜖𝑟

)︂
𝐸𝑣
𝑛 · 𝜕𝐸

𝑣
𝑛

𝜕𝑍
(5.36)

where 𝐸𝑣
𝑛(𝑍) is given by Eq. 5.24. After extensive manipulation we find its

derivative to be

𝜕𝐸𝑣
𝑛

𝜕𝑍
=

−𝜖𝑟 (𝜖𝑟 − 1)𝐸0
𝑍

(𝑍2−1)2

[︂
3 − ln{𝑍+

√
𝑍2−1}√

𝑍2−1

(︁
2𝑍2+1
𝑍

)︁]︂
[︁
1 + 𝜖𝑟−1

𝑍2−1

(︁
𝑍√
𝑍2−1 ln

{︁
𝑍 +

√
𝑍2 − 1

}︁
− 1

)︁]︁2 (5.37)

The derivative of the electric pressure is now

𝜕𝑃𝑒
𝜕𝑍

=
−2 (𝜖𝑟 − 1) 𝑍

(𝑍2−1)2

[︁
𝑍4/3 − 𝑍1/3

2

(︁
1+𝑍2

𝑍2

)︁]︁
·
[︂
3 − ln{𝑍+

√
𝑍2−1}√

𝑍2−1

(︁
2𝑍2+1
𝑍

)︁]︂
1 + 𝜖𝑟−1

𝑍2−1

(︁
𝑍√
𝑍2−1 ln

{︁
𝑍 +

√
𝑍2 − 1

}︁
− 1

)︁ (5.38)

in dimensionless form. Note that we invoked Eq. 5.29 to substitute for 𝐸0(𝑍𝑒𝑞)
and write the derivative as a function of 𝑍 alone. The remaining terms are much
more simple

𝜕𝑃𝑙
𝜕𝑍

=𝑍
2 − 5

6𝑍8/3 (5.39)

𝜕𝑃𝑠𝑡
𝜕𝑍

=4
3𝑍

1/3 (5.40)

and yield the aggregate expression

𝜕Δ𝑃
𝜕𝑍

=
−2 (𝜖𝑟 − 1) 𝑍

(𝑍2−1)2

[︁
𝑍4/3 − 𝑍1/3

2

(︁
1+𝑍2

𝑍2

)︁]︁
·
[︂
3 − ln{𝑍+

√
𝑍2−1}√

𝑍2−1

(︁
2𝑍2+1
𝑍

)︁]︂
1 + 𝜖𝑟−1

𝑍2−1

(︁
𝑍√
𝑍2−1 ln

{︁
𝑍 +

√
𝑍2 − 1

}︁
− 1

)︁ +𝑍
2 − 5

6𝑍8/3 −4
3𝑍

1/3

(5.41)
This relationship is plotted in Fig. 5-5 for several values of permittivity. In it

we can see the curves transitioning from stable to unstable states as they change
signs from negative to positive. For the limiting 𝜖𝑟 → ∞ case, for example, the sign
change corresponds to 𝑍 ≈ 1.86 which is the elongation at the turning point. This
suggests that its lower solution branch is stable but not the upper one. Also notice
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Figure 5-5: Stability curves for several values of dielectric strength 𝜖𝑟. The region of
positive 𝜕Δ𝑃/𝜕𝑍 is unstable and occupied by most of the equilibrium elongations for
the limiting 𝜖𝑟 → ∞ case. In fact, the location of neutral stability is 𝑍 = 1.86 and
corresponds to the turning point. Its lower solution branch is stable, therefore, while
its upper one is not.

that the 𝜖𝑟 = 25 curve becomes unstable for an intermediate range of 𝑍 but recovers
and begins to gain stability again. This is a very interesting phenomenon that we
can learn more about by reproducing Fig. 5-2 and marking all of the sections of the
elongation curves that are unstable. We do this in Fig. 5-6, where the stable sections
are plotted in thin blue lines while the unstable sections are denoted by thick red
ones. A subtle pattern is apparent, and without proving it rigorously here we note
that it looks as though the sections with a negative slope are unstable while those
with a positive slope are not. In mathematical terms

𝜕𝑍𝑒𝑞

𝜕𝐸̂0
< 0 ⇒ 𝜕Δ𝑃

𝜕𝑍
> 0 (5.42)

𝜕𝑍𝑒𝑞

𝜕𝐸̂0
> 0 ⇒ 𝜕Δ𝑃

𝜕𝑍
< 0 (5.43)

It may also be fair to speculate that the degree of stability (or proximity to
neutral stability) correlates to the magnitude of the 𝑍 − 𝐸0 slope. For example, a
small positive slope likely indicates a high level of stability while a large positive slope
could indicate a comparatively low level.

5.1.3 Field evaporation

Based on the stability results we can conclude that the maximum elongation for which
we should expect steady evaporation to occur is roughly 𝑍 ≈ 1.86, corresponding to
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Figure 5-6: Equilibrium elongation map with 𝜖𝑟 as a parameter. The stable sections
of each curve are plotted in thin blue while the unstable ones are shown in thick red.
By inspection we can see that the areas of negative slope are the unstable ones.

the turning point for the limiting 𝜖𝑟 → ∞ case. This should be a fair approximation
so long as the meniscus is not severely depleted of surface charge as we have already
stated. Using this information we can examine the prevailing interfacial fields and
estimate the magnitude of the emitted charge. For the former we wish to compare
the vacuum field 𝐸𝑣

𝑛 with 𝐸*, the characteristic field for strong evaporation. From
Eq. 5.21 we have

𝐸𝑣
𝑛

𝐸0

⃒⃒⃒⃒
𝑡𝑖𝑝

= 𝑍2 − 1
𝑍√
𝑍2−1 · ln

{︁
𝑍 +

√
𝑍2 − 1

}︁
− 1

(5.44)

The ratio of the fields on the left-hand side of this expression is

𝐸𝑣
𝑛

𝐸*
𝐸*

𝐸𝑐

𝐸𝑐
𝐸0

= 𝐸𝑣
𝑛

𝐸*
𝐵−1/2

𝐸̂0
(5.45)

and this can be substituted to find

𝐸𝑣
𝑛

𝐸* = 𝐵1/2
[︃
𝑍4/3 − 𝑍1/3

2

(︃
1 + 𝑍2

𝑍2

)︃]︃1/2

(5.46)

after invoking Eq. 5.29 for 𝐸̂0. In Fig. 5-7 we plot this relationship across the
stable range 𝑍 ∈ [1, 1.86) with the size ratio 𝐵 = 𝑏*/𝑏0 as a parameter. Based on the
information it contains we can see that the maximum tip field 𝐸𝑣

𝑛 only approaches
emission levels when 𝑏0 (the radius of the undeformed droplet) is on the order of the
characteristic scale 𝑏* (recall that 𝑏* = 𝑟*). In other words, the spheroidal meniscus
with fixed volume is only capable of supporting steady emission when the initial
droplet is already as small as the size of the characteristic emission region for the
working fluid. The present method alone is insufficient for resolving evaporation
when the problem involves a disparity in scales. This is somewhat unfortunate, given
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Figure 5-7: Electric field at the tip of a conducting spheroidal meniscus with fixed
volume. The field is shown as a function of the elongation over the stable rang-
ing that extends to 𝑍 ∼ 1.86 with the size ratio 𝐵 as a parameter. Values of
𝐵 = 3, 2, 1, 1/2, 1/3, 1/4 are represented while the arrow indicates the direction of
decreasing magnitude; i.e., the direction of increasing droplet size. From this infor-
mation it is clear that 𝑏0 ∼ 𝑏* is a prerequisite for emission.

that many reports suggest emission can occur from much larger menisci [29, 30], but
not necessarily prohibitive for continuing to explore issues of academic interest.

Notwithstanding the scale issue for the moment, we can consider the evaporated
current by recalling Eqs. 5.19 thru 5.21. The results are plotted in Figs. 5-8 and
5-9 with 𝐵 as a parameter once again. These assume a fluid with Δ𝐺 = 1 eV, 𝜖𝑟 =
10, 𝑘 = 1 S/m, 𝛾 = 5·10-2 N/m, and 𝑇 = 300 K so that 𝜒 and 𝜓 are ∼ 10-3 and
40, respectively. In Fig. 5-8 we show the dimensionless evaporation as a function of
the dimensionless field for several 𝐵 between 3 and 1/4 across the range of ostensible
stability. As expected, the smaller menisci start producing charge at smaller 𝐸̂0
because the actual field 𝐸0 ∝ 𝑏

−1/2
0 .

In Fig. 5-9 we instead show estimated units of current (nanoamperes) as a function
of the dimensionless field. Encouragingly, the curves delineated therein represent
magnitudes 𝐼 ∼ 10-7 A that are roughly consistent with empirical observations from
similar fluids [29, 30]. Also, the curves indicate that the current might be retarded
for very small menisci. While it makes obvious sense that big spheroidal droplets
may not support significant emission, owing to the small fields that are attainable
within the range of stable elongations, it is perhaps less clear that the larger current
densities of their smaller counterparts are at some point offset by the decreasing area.
This phenomenon apparently points to the existence of an optimal droplet size, i.e.
one which maximizes the amount of evaporated current.

Fig. 5-9 suggests that the optimal size is likely somewhere between 𝐵 = 1 and
𝐵 = 1/2 assuming that all droplets obey the stable elongation properties of the
limiting 𝜖𝑟 → ∞ case. We expect this to occur so long as significant charge depletion
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Figure 5-8: Dimensionless current as a function of dimensionless field for fixed-volume
spheroidal droplets of conducting fluid. The arrow indicates the direction of decreas-
ing 𝐵 (i.e., increasing 𝑏0), the size parameter for the meniscus. Values of 𝐵 = 3, 2, 1,
1/2, 1/3, and 1/4 are represented. The results indicate that the size of the droplets
must be of the order of the characteristic evaporation region for the fluid in order for
steady emission to occur.
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Figure 5-9: Dimensional current as a function of dimensionless field. Values of 𝐵 =
3, 2 , 1, 1/2, 1/3, and 1/4 are represented while the arrow indicates the direction of
decreasing magnitude. The units of current, nanoamperes, suggest evaporation levels
(∼ 10-7 A) that are roughly consistent with empirical observations. Interestingly, it
is also observed here that the evaporated current begins to decrease for very small
menisci, which is likely the result of the smaller emission area offsetting the high fields
and current densities. This, perhaps, points to an optimal droplet size when emission
strength is the driving metric.

77



does not take place; however, in view of several of the fields observed in Fig. 5-7
it may not always be true that the interface is sufficiently near electrical relaxation.
Consider the interfacial jump condition for surface charge 𝜎 = 𝜖0𝐸

𝑣
𝑛 − 𝜖0𝜖𝑟𝐸

𝑙
𝑛 where

𝐸𝑙
𝑛 = 𝑗/𝑘 as a result of Ohm’s law. The ratio of the surface charge to the fully relaxed

value (the normal component of the displacement field in vacuum) is, therefore

𝜎

𝜖0𝐸𝑣
𝑛

= 1 − 𝑗𝜖𝑟
𝑘𝐸𝑣

𝑛

(5.47)

From Eq. 4.5, this becomes

𝜎

𝜖0𝐸𝑣
𝑛

= 1

1 + 1
𝜒

exp
(︂

−𝜓
{︂

1 −𝐵1/4
√︁
𝐸̂𝑣
𝑛

}︂)︂ (5.48)

after nondimensionalizing, where the normal field on the vacuum side of the in-
terface

𝐸̂𝑣
𝑛 =

⎯⎸⎸⎷ 1 −𝑅2

1 +𝑅2 (𝑍2 − 1)

[︃
𝑍4/3 − 𝑍1/3

2

(︃
1 + 𝑍2

𝑍2

)︃]︃
(5.49)

is a function of the scaled coordinate 𝑅 = 𝑟/𝑏. This relationship, Eq. 5.49,
follows from Eqs. 5.21 and 5.29 and accounts only for the equilibrium elongations
of the mensicus. As a result, it reaches a maximum in the vicinity of 𝑍 ≈ 1.86, the
largest stable deformation of the equipotential droplet.

In Fig. 5-10 we plot the surface charge ratio 𝜎/𝜖0𝐸
𝑣
𝑛 across the span of the meniscus

with its size 𝐵 as a parameter. All calculations are carried out for 𝜒 = 10-3, 𝜓 =
40, and the field/elongation corresponding to the turning point for the equipotential
meniscus (𝑍 → 1.86). From the results it is clear that extensive swaths of the smaller
menisci are very near full depletion of their interfacial charge while relaxation is only
recovered in the vicinity of the anchoring point (the mid-plane) where the electrical
field begins to vanish. Interestingly, even for the large menisci that are not producing
much current we still see a modest degree of depletion near the tip, although it does
not necessarily extend across much of the interface.

The fact that charge depletion is occurring is important because it means that the
interface will begin to behave more like a dielectric than something that is perfectly
conducting and equipotential. To illustrate this point, we define here an effective
relative permittivity for the interface that is related to the vacuum field through

(𝜖𝑟)𝑒𝑓𝑓 = 𝐸𝑣
𝑛

𝐸𝑙
𝑛

(5.50)

which comes from the basic interfacial condition for a pure dielectric, 𝐸𝑣
𝑛 = 𝜖𝑟𝐸

𝑙
𝑛.

After noting that 𝐸𝑙
𝑛 = 𝑗/𝑘 for the conduction-controlled meniscus and invoking Eq.

5.14 for the current density this becomes

(𝜖𝑟)𝑒𝑓𝑓

𝜖𝑟
= 1 + 𝜒 · exp

(︂
𝜓
{︂

1 −𝐵1/4
√︁
𝐸̂𝑣
𝑛

}︂)︂
(5.51)
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Figure 5-10: Ratio of interfacial charge to the normal component of the displacement
field in vacuum (the fully relaxed value) across menisci of various sizes 𝐵 in the
vicinity of the turning point for an equipotential spheroid. The curves indicate that
the smaller menisci, for which significant emission is observed (Fig. 5-9), are fairly
depleted across much of the interface. For their large counterparts, a measure of
depletion near the tip is also seen even though the currents they produce are more
modest. This suggests that the interfaces could be giving way to dielectric behavior.
All calculations assume 𝜒 = 10-3 and 𝜓 = 40.

in dimensionless form. This relationship is plotted in Fig. 5-11 again at the
equipotential turning point and with 𝐵 as a parameter. Based on the curves it is
clear that the smaller emitting droplets should behave like pure dielectric ones when
the evaporation is strong. In view of this result, it makes sense to amend our initial
hypothesis and admit the possibility that some of these droplets may trace paths
through the 𝑍 − 𝐸̂0 plane that do not necessarily coincide with that of the limiting
𝜖𝑟 → ∞ or equipotential case. For example, when the field is low all droplets must
obey the limiting elongation curve because no emission takes places. Providing that
the initial droplet is small enough, emission will commence at an intermediate field
(between 𝐸̂0 = 0 and 𝐸̂0 ≈ 0.228) and the interface will start to behave more like a
dielectric than a conductor, at least in areas that are local to charge depletion. As
the first turning point is met, instability could be evaded as the droplet migrates to
adjacent elongation curves. If the intrinsic permittivity of the fluid is somewhat high
(𝜖𝑟 & 20) instability will still ultimately be reached but at a higher 𝐸̂0. If it is fairly
low, however (𝜖𝑟 . 20), it could be possible that the small droplet eventually traces
one of the monotonically increasing elongation characteristics, which are apparently
always stable, and never see a turning point. This would be rather amazing. We
attempt to delineate one such possible trajectory in Fig. 5-12.
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Figure 5-11: Ratio of effective permittivity to intrinsic permittivity across menisci of
various sizes 𝐵 near the turning point for an equipotential structure with 𝜒 = 10-3

and 𝜓 = 40. As expected, the behavior of the smaller menisci may be very similar to
pure dielectric droplets of fluid with the same intrinsic permittivity. Only near the
anchoring point or mid-plane (𝑅 → 1) where the field vanishes is conducting behavior
recovered.
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Figure 5-12: Notional path of a small, conduction-controlled meniscus through the
equilibrium 𝐸̂0 −𝑍 plane. The conducting spheroid is initially relaxed for small fields
and traces the limiting 𝜖𝑟 → ∞ curve. Emission commences as the dimensionless
field is increased but before the first turning point is met. This results in a measure
of charge depletion at the interface. Provided the depleted area is sufficiently broad,
the meniscus begins migrating across adjacent elongation curves until it ultimately
reaches the one corresponding to its intrinsic permittivity. In the pictured case, 𝜖𝑟 =
10 for the fluid and the path of the droplet is delineated by the red line. The black
arrow indicates the direction of increasing 𝜖𝑟.
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5.1.4 Discussion

The problem of the fixed-volume droplet is useful as a result of the fact that the
attendant deformation modes closely resemble a family of prolate spheroids. A special
system of coordinates makes electrical field solutions for these structures analytically
convenient and we have shown that these can be used to study not only the equilibrium
properties of the droplet but also the stability behavior. When the droplets follow
the deformation curve of an equipotential meniscus we find that these characteristics
result in evaporated currents on the order of what is often observed experimentally
(𝐼 ∼ 10-7 A).

In spite of its convenience, the fixed-volume problem suffers several key issues.
We briefly discuss these below.

∙ The first and foremost issue is that the present methods cannot resolve emission
when there exists a disparity in the evaporation and meniscus anchor scales, i.e.
when 𝐵 is small. The literature would suggest that such a configuration is
capable of supporting evaporation and so it stands to reason that we have yet
to capture all of the important physics.

∙ We speculate in some cases that depletion of interfacial charge during emission
could offer the droplets a mechanism through which instability behavior might
be modified. Looking at the surface charge plots presented here, it would seem
that the distribution of 𝜎 across the meniscus would in general be very com-
plicated were that to occur. The present method is therefore unlikely to be
sufficient for resolving such phenomena.

∙ The currents that we calculate as well as the properties of typical fluids point
to something funny about the time scales for the fixed-volume problem. For
example, consider that the flow rate out of the droplet is 𝑚̇ ∼ 𝐼(𝑚/𝑞) when
emission is occurring. If 𝐼 ∼ 10-7 A and 𝑞/𝑚 ∼ 106 C/kg then this evaluates to
𝑚̇ ∼ 10-13 kg/s which at first appears very small. However, now consider that
the total mass of the droplet is 𝑚 ∼ 𝜌𝑏3

0 where 𝜌 ∼ 103 kg/m3 for most fluids
and 𝑏0 ∼ 𝑟* ∼ 10-8 - 10-9 m if emission is to actually occur. We can estimate
the amount of time required for the drop to fully evaporate as 𝑡 ∼ 𝑚/𝑚̇ and
find that this is but 𝑡 ∼ 10-6 s. While 10-6 s might be long in comparison to
the governing time scales (e.g. electrical relaxation) it is still very short in the
grander scheme. Perhaps the fixed-volume droplet is not the best way to pose
the evaporation problem.

∙ Finally, and perhaps most obviously, in practice there will often exist an hy-
draulic feed system capable of supplying the meniscus with fresh fluid in the
event of evaporation. When that is the case, the volume of the droplet should
not be constrained.
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5.2 Free-volume problem
In practical situations it is often the case that an hydraulic feeding system is used to
supply the meniscus with fresh fluid during evaporation. The particular system could
be one of the emitter structures introduced early or anything capable of transporting
fluid from an upstream reservoir. Unlike the previous problem, the nature of this
architecture nullifies the volume constraint and permits the interface to adopt any
shape that it needs, spheroidal or otherwise. In this section we will investigate the
free-volume variation of the electrified meniscus problem but continue to focus on
spheroidal morphologies in an effort to retain our analytic tools (see Fig. 5-13).
Although the maintenance of spheroidal form factors will eventually lead to a non-
trivial relationship between the feed pressure and the applied electric field, which is
perhaps somewhat artificial, the results should still be insightful.

As for the mathematical framework, Eqs. 5.19 thru 5.21 for the emission properties
of the fixed-volume droplet should still apply here. The remaining equation for a
complete description of the interface is the one describing the stress balance at the
tip (Eq. 5.18 in the fixed-volume case), which will require modification. We continue
to observe the two-point stress balancing approach from Taylor [3] and recall that

𝑃𝑠𝑡|𝑚𝑖𝑑 = 𝛾

𝑏

(︃
1 + 𝑍2

𝑍2

)︃
(5.52)

for the surface tension at the mid-plane, which is also the hydrostatic pressure of
the fluid as a result of the vanishing electrical traction. Since the lack of a volume
constraint allows us to fix the anchor radius of the meniscus now, 𝑏 → 𝑏0 in this
expression. Similarly, the surface tension at the tip is

𝑃𝑠𝑡|𝑡𝑖𝑝 = 2𝛾𝑍
𝑏

(5.53)

with 𝑏 → 𝑏0. After substituting these into the stress balance we find that the
dimensionless free-volume problem for a conducting fluid is governed by

𝐸̂2
0

⎡⎣ 𝑍2 − 1
𝑍√
𝑍2−1 ln

(︁
𝑍 +

√
𝑍2 − 1

)︁
− 1

⎤⎦2

+ 1 + 𝑍2

2𝑍2 − 𝑍 = 0 (5.54)

𝐼 = 2𝜋
𝑍2/3

∫︁ 1

0
𝑗̂𝑅

√︃
1 +𝑅2 (𝑍2 − 1)

1 −𝑅2 · 𝑑𝑅 (5.55)

at the interface, which is also subject to

𝑗̂ = 𝐸̂𝑣
𝑛/𝜖𝑟

1 + 𝜒 · exp
(︂
𝜓
{︂

1 −𝐵1/4
√︁
𝐸̂𝑣
𝑛

}︂)︂ (5.56)

𝐸̂𝑣
𝑛 = 𝐸̂0

⎯⎸⎸⎷ 1 −𝑅2

1 +𝑅2 (𝑍2 − 1)

⎡⎣ 𝑍2 − 1
𝑍√
𝑍2−1 ln

(︁
𝑍 +

√
𝑍2 − 1

)︁
− 1

⎤⎦ (5.57)
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Figure 5-13: Diagram of free-volume spheroid problem. A meniscus is attached to
some form of plate or the end of a tube and maintains a constant contact line radius,
𝑏0. Elongation of the meniscus in response to the externally-applied field 𝐸0 results in
a sequence of growing spheroids (dashed curves) for which the internal fluid volume
is no longer conserved. This is facilitated by communication of the meniscus with
a liquid feeding system. The feeding system may comprise a fluid reservoir that is
held at an arbitrary pressure, 𝑃𝑓 , and a feeding line with a non-zero characteristic
impedance, 𝑅ℎ. In the event of field evaporation from the meniscus tip, the interac-
tion of the attendant flow rate 𝑄 with this impedance could create a corresponding
pressure drop through the line. Also note that in order for the menisci to remain indef-
initely spheroidal for this “free-volume” problem, a non-trivial relationship between
the applied field 𝐸0 and the pressure of the liquid immediately inside the meniscus,
𝑃𝑙 (not pictured, but equivalent to 𝑃𝑓 when 𝑄 → 0 in the absence of emission), must
be observed.
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Notice that these relationships are nearly identical to those of the better-known
fixed-volume problem, save for a slight modification in the form of the stress equation
(Eq. 5.54). The extent to which this modifies the overall results will be examined in
the forthcoming sections.

It is also interesting to highlight the fact that 𝑍 = 𝑓(𝐸0) and 𝑃𝑙 = 𝑔(𝑍), which
suggests that 𝑃𝑙 is a function of the imposed electrical field rather than an arbitrary
pressure that can be applied with the feeding system. Specifically, 𝑃𝑙 = 𝑃𝑙(𝐸0) is the
relationship ensuring that the meniscus remains spheroidal at all times. The volume
of the meniscus is similarly beholden to the field and may be of interest to us in
certain instances. In general, it takes the form

𝑉 = 2𝜋
3 𝑎𝑏2 (5.58)

When we nondimensionalize by the nominal value corresponding to 𝑍 = 1, or
𝑉0 = 2𝜋/3 · (𝑏0)3, this becomes

𝑉 = 𝑍 (5.59)

assuming, of course, that a fixed anchor radius 𝑏0 prevails. Finally, we would be
remiss without mentioning that in general 𝑍 ∈ [0,∞) for the free-volume interface,
which includes a family of blunt spherical sections corresponding to 𝑍 < 1. We do not,
however, anticipate that the attendant electrical fields will be of sufficient strength
for evaporation when such equilibria prevail, unless the menisci are exceedingly small
(𝐵 ≫ 1). In view of this we will restrict our attention to cases of prolate spheroids
in what follows.

5.2.1 Equilibria for conducting and dielectric menisci
As with the fixed-volume case we will study the equilibria for conducting and pure
dielectric menisci simultaneously. After substituting the more general expression for
the electric pressure acting on a dielectric we arrive at the stress balance

𝐸̂2
0 [𝜖𝑟 (𝜖𝑟 − 1)][︁

1 − 𝜖𝑟−1
𝑍2−1

(︁
1 + 𝑍√

𝑍2−1 · ln
{︁

1
𝑍+

√
𝑍2−1

}︁)︁]︁2 + 1
2

(︃
1 + 𝑍2

𝑍2

)︃
− 𝑍 = 0 (5.60)

which is defined at the tip of the meniscus. We solve this relationship by arranging
it so that 𝐸̂0 is the dependent variable

𝐸̂2
0 =

[︁
𝑍 − 1

2

(︁
1+𝑍2

𝑍2

)︁]︁
𝜖𝑟 (𝜖𝑟 − 1)

[︃
1 + 𝜖𝑟 − 1

𝑍2 − 1

(︃
𝑍√

𝑍2 − 1
· ln

{︁
𝑍 +

√
𝑍2 − 1

}︁
− 1

)︃]︃2

(5.61)

The equilibrium 𝐸̂0 − 𝑍 relationship is plotted in Fig. 5-14 for select values of
fluid permittivity. From the results it is obvious that the equilibria for the free-volume
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Figure 5-14: Equilibrium elongation curves as a function of the dimensionless field
for free-volume menisci of pure dielectric fluids with various permittivities 𝜖𝑟. The
limiting 𝜖𝑟 → ∞ case is mathematically equivalent to case of a conducting fluid with
an equipotential interface. As with the fixed-volume problem, turning points are seen
for permittivities above a certain threshold. The results are slightly shifted but still
within the same quantitative neighborhood.

problem are very similar to their fixed-volume counterparts, if not slightly shifted.
For example, consider the elongation curve for the limiting 𝜖𝑟 → ∞ case, which is
delineated in Fig. 5-15 and plotted alongside the corresponding one from the fixed-
volume solution. Both the dimensionless field at the first turning point (𝐸̂0 ≈ 0.21)
and the corresponding elongation (𝑍 ≈ 1.68) occur at incrementally lower but still
similar values.

As we have pointed out, for the free-volume problem there is a non-trivial rela-
tionship between the hydraulic pressure that must be applied by the feeding system
and the imposed electric field 𝐸̂0. This is plotted for select 𝜖𝑟 in Fig. 5-16. For
small fields the elongation 𝑍 → 1 while the fluid pressure 𝑃𝑙 → 1 also. This says
that the feed system must apply a force equivalent to the capillary pressure when the
meniscus is perfectly hemispherical, as we would expect. For nonzero increasing 𝐸̂0
the fluid pressure begins to drop and ultimately asymptotes to 𝑃𝑙 = 0.5 in all cases
when 𝑍 → ∞. Notice that the dielectrics 𝜖𝑟 with multi-valued elongation curves also
exhibit multi-valued 𝑃𝑙 curves.

Finally, we will examine here the distribution of the various stresses across the
interface as Taylor has done for the fixed-volume problem (see [3]). Given that we
are balancing the stresses at only two locations, the tip and the mid-plane, it makes
sense that small but nonzero pressure differences could arise at points in between. To
check these, consider the pressure balance

Δ𝑃 (𝑅) = 𝑃𝑒 (𝑅) + 𝑃𝑙 − 𝑃𝑠𝑡 (𝑅) (5.62)
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Figure 5-15: Equilibrium elongation characteristics as a function of the dimensionless
field 𝐸̂0. (Left) Detail for the turning point of the limiting 𝜖𝑟 → ∞ case. This occurs
in the vicinity of 𝐸̂0 ≈ 0.21 where the elongation is 𝑍 ≈ 1.68. (Right) Comparison
of the limiting 𝜖𝑟 → ∞ elongation curves for the free-volume (solid) and fixed-volume
(dashed) cases. The free-volume solution is slightly shifted with respect to its fixed-
volume counterpart.
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Figure 5-16: Dimensionless fluid pressure as a function of dimensionless electric field
𝐸̂0 for pure dielectric menisci of various permittivity 𝜖𝑟. Values of 𝜖𝑟 = 5, 10, 15,
20, 25, 50, 100, and ∞ are represented, with the arrow indicating the direction of
increasing magnitude. For small fields, 𝐸̂0 → 0, the liquid pressure converges to
𝑃𝑙 = 1 in all instances. This is the capillary pressure and corresponds to the case of
a hemispherical interface. As the field is increased the pressure must be lowered in
order to maintain the spheroidal morphology, asymptoting at 𝑃𝑙 → 0.5 for 𝑍 → ∞.
The multi-valued elongation curves are also typified by multi-valued 𝑃𝑙 curves.
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written as a function of 𝑅 = 𝑟/𝑏0, a parameter describing points along the
spheroidal interface. Let us now expand each of the terms on the right-hand side
individually. For the electric pressure, we can see from Eq. 5.21 how the normal
component of the vacuum field at the interface varies with 𝑅

𝐸𝑣
𝑛 ∝

⎯⎸⎸⎷ 1 −𝑅2

1 +𝑅2 (𝑍2 − 1) (5.63)

This is to be appended to the electric pressure expression of Eq. 5.27 after squaring
it (recall 𝑃𝑒 ∝ (𝐸𝑣

𝑛)2)

𝑃𝑒 = 𝐸̂2
0 [𝜖𝑟 (𝜖𝑟 − 1)][︁

1 − 𝜖𝑟−1
𝑍2−1

(︁
1 + 𝑍√

𝑍2−1 · ln
{︁

1
𝑍+

√
𝑍2−1

}︁)︁]︁2 ·
[︃

1 −𝑅2

1 +𝑅2 (𝑍2 − 1)

]︃
(5.64)

In order to isolate the equilibrium elongations we can look to Eq. 5.61 and sub-
stitute for 𝐸̂2

0 . This yields the result

𝑃𝑒 (𝑅) =
[︃
𝑍 − 1

2

(︃
1 + 𝑍2

𝑍2

)︃]︃ [︃
1 −𝑅2

1 +𝑅2 (𝑍2 − 1)

]︃
(5.65)

The liquid pressure, by contrast, is spatially uniform

𝑃𝑙 (𝑅) = 1
2

(︃
1 + 𝑍2

𝑍2

)︃
(5.66)

For the surface tension we can invoke its general form, 𝑃𝑠𝑡 = −𝛾∇ · 𝑛⃗ where 𝑛⃗ is
the unit normal on the interface, and consult the appendix where we find

∇ · 𝑛⃗ = (1 + ℎ2
𝑟)ℎ𝑟 + 𝑟 · ℎ𝑟𝑟

𝑟 (1 + ℎ2
𝑟)

3/2 (5.67)

for axisymmetric cylindrical space. Here, ℎ𝑟 and ℎ𝑟𝑟 are the first and second
spatial derivatives given by Eqs. 5.5 and 5.6. Substituting for these yields

∇ · 𝑛⃗ = −𝑍

𝑏0

2 +𝑅2 (𝑍2 − 1)
[1 +𝑅2 (𝑍2 − 1)]3/2 (5.68)

and so the dimensionless surface tension across the interface is simply

𝑃𝑠𝑡 (𝑅) = 𝑍

2
2 +𝑅2 (𝑍2 − 1)

[1 +𝑅2 (𝑍2 − 1)]3/2 (5.69)

To visualize the net pressure we plot the ratio

Δ𝑃 (𝑅)
𝑃𝑠𝑡 (𝑅) = 𝑃𝑒 (𝑅) + 𝑃𝑙

𝑃𝑠𝑡 (𝑅) − 1 (5.70)

in Fig. 5-17, which compares the net pressure at points across the interface to the
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Figure 5-17: Percentage net pressure along the interface of a spheroidal protrusion for
several equilibrium elongations. While Δ𝑃 is an increasing function of the elongation
it is never very large for the range of 𝑍 under consideration. As a result, it is likely
that real menisci subjected to similar stressing conditions would adopt very similar
(nearly spheroidal) shapes.

magnitude of the local surface tension. We do this for select equilibrium elongations
𝑍 in the vicinity of and below the first turning point for the equipotential case.
The results show that the maximum pressure difference occurs somewhere along the
meniscus where 𝑅 ≈ 1/2 and that it is apparently an increasing function of 𝑍. It does
not, however, grow to appreciable values. This would seem to support the notion that
real menisci subjected to similar stressing conditions would likely adopt very similar
shapes. Also, note that Δ𝑃 → 0 at the balancing points 𝑅 = 0 and 𝑅 = 1 like we
would expect and that similar curves for the fixed-volume case can be found elsewhere
[3].

5.2.2 Stability

The stability condition for the free-volume problem is the same as before[︃
𝜕𝑃𝑒
𝜕𝑍

+ 𝜕𝑃𝑙
𝜕𝑍

− 𝜕𝑃𝑠𝑡
𝜕𝑍

]︃
𝐸0(𝑍𝑒𝑞)

= 𝜕Δ𝑃
𝜕𝑍

⃒⃒⃒⃒
⃒
𝐸0(𝑍𝑒𝑞)

< 0 (5.71)

The individual terms, however, require slight modification. After discarding the
volume constraint we find

𝜕𝑃𝑒
𝜕𝑍

=
−2 (𝜖𝑟 − 1) 𝑍

(𝑍2−1)2

[︁
𝑍 − 1

2

(︁
1+𝑍2

𝑍2

)︁]︁
·
[︂
3 − ln{𝑍+

√
𝑍2−1}√

𝑍2−1

(︁
2𝑍2+1
𝑍

)︁]︂
1 + 𝜖𝑟−1

𝑍2−1

(︁
𝑍√
𝑍2−1 ln

{︁
𝑍 +

√
𝑍2 − 1

}︁
− 1

)︁ (5.72)
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Figure 5-18: Derivative of the dimensionless net pressure Δ𝑃 as a function of equi-
librium elongation 𝑍. The elongations for which 𝜕(Δ𝑃 )/𝜕𝑍 is positive are unstable
while those for which it is negative are stable. As with the fixed-volume problem, the
turning point for the limiting 𝜖𝑟 → ∞ case marks the transition from stable equilibria
(lower solution branch) to unstable equilibria (upper solution branch).

𝜕𝑃𝑙
𝜕𝑍

= − 1
𝑍3 (5.73)

𝜕𝑃𝑠𝑡
𝜕𝑍

= 1 (5.74)

Notice that the change in liquid pressure for increasing 𝑍 is now negative-definite,
which was not the case for the fixed-volume problem. This is a byproduct of the
anchor fixation. In Fig. 5-18 we plot the derivative of the dimensionless pressure,
𝜕(Δ𝑃 )/𝜕𝑍, while in Fig. 5-19 we show a map of the unstable regions. From the
results we can see that the stability behavior is qualitatively similar to that of the
fixed-volume problem, where stability was conferred only for elongations residing
along the parts of the equilibrium characteristics with positive slopes.

5.2.3 Field evaporation
The equilibrium and stability results for the free-volume problem are very similar to
those of its fixed-volume counterpart, and so it stands to reason that the emission
properties will also be akin. Unfortunately, this suggests that 𝐵 will need to be at
least on the order of unity, if not somewhat higher, in order for the attainable electric
fields at the spheroidal interface to begin approaching 𝐸*. In other words, the size 𝑏0
of the meniscus still cannot be much larger than that of the characteristic emission
zone 𝑟*.

Consider a case involving a spheroidal meniscus with 𝑏0 ≫ 𝑟*. Even if emission
does somehow take place, the region of charge depletion will be very small and most
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Figure 5-19: Map of instability region within the equilibrium 𝐸̂0 − 𝑍 plane. The un-
stable equilibria coincide with the sections of the elongation curves that have negative
slope.

of the interface will remain in the vicinity of electrical relaxation. As a result, we can
approximate the structure as an equipotential and assume that it obeys the limiting
𝜖𝑟 → ∞ elongation curve. From Eq. 5.21 we have that 𝐸𝑣

𝑛 ∼ 𝐸𝑐 at the tip of the
meniscus when 𝑍 ∼ 1.7 and 𝐸̂0 ∼ 0.2 near the turning point. The ratio of 𝐸𝑐 to the
characteristic emission field 𝐸* is proportional to the size parameter, 𝐸𝑐/𝐸* ∼

√
𝐵,

which says that emission cannot be supported when 𝐵 is small, just as expected.
While this prevents us from quantitatively explaining emission for situations involving
a scale disparity, as is often the case in practice, it is still useful for narrowing the
part of the parameter space across which evaporation might occur. For example, the
value of the liquid pressure at the turning point, which corresponds to the maximum
vacuum field, is 𝑃𝑙 ∼ 0.67. Given that this value is inversely proportional to the field
(the liquid pressure goes up when the field goes down, and vice versa), this is very
likely an upper bound for the allowable fluid pressure. Under real circumstances, and
when other conditions are appropriate, evaporation may occur when 𝑃𝑙 is lower than
∼ 0.67 but certainly not when it is higher.

Now that we have an upper bound for the pressure of the fluid in the meniscus
we can draw a connection to the pressure that is used by the feed system to provide
a supply of liquid. These two are numerically equivalent when no evaporation is
ongoing but

𝑃𝑙 ∼ 𝑃𝑓 −𝑄 ·𝑅ℎ (5.75)

when there is flow. Here, 𝑃𝑓 is the feed pressure in the fluid reservoir, 𝑄 is the
volumetric flow rate being pumped by the feed system, and 𝑅ℎ is its characteristic
hydraulic impedance (recall Fig. 5-13). In the event that the feed system is a long,
slender tube (a capillary, perhaps), the impedance is
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𝑅ℎ ≈ 8𝜇𝐿
𝜋𝑟4 (5.76)

as a result of Poiseuille, where 𝐿 is the length of the tube, 𝑟 is its radius, and 𝜇 is
the dynamic viscosity of the fluid. After noting the relationship between the current
and the volumetric flow, 𝑄 ∼ 𝐼𝜌−1(𝑞/𝑚)−1, we rearrange Eq. 5.75 to find

𝑃𝑙 ∼ 𝑃𝑓 − 𝐼 ·

⎡⎣ 𝑘𝑅ℎ

𝜌 (𝑞/𝑚)

⎯⎸⎸⎷ 𝑏5
0

𝜖0𝛾

⎤⎦
⏟  ⏞  

𝑅̂ℎ

(5.77)

Recall from earlier that the dimensionless current is

𝐼 = 𝐼

𝑘𝐸𝑐𝑏2
0

(5.78)

For a fluid with 𝑘 ∼ 1 S/m, 𝛾 ∼ 5·10-2 N/m, and 𝑏0 ∼ 10-5 - 10-6 m, the dimen-
sionless current could be anywhere from 𝐼 ∼ 10-3 - 10-5 when 𝐼 ∼ 10-6 - 10-8 A. The
hydraulic impedance 𝑅ℎ is arbitrary but could range from nearly zero all the way to
𝑅ℎ ∼ 1022 N-s/m5, if not higher. When 𝜌 ∼ 103 kg/m3 and 𝑞/𝑚 ∼ 106 C/kg, this
could perhaps put 𝑅̂ℎ near 108 in extreme cases.

In Fig. 5-20 we plot the relationship between 𝑃𝑓 and 𝑅̂ℎ when 𝑃𝑙 → 0.67 with 𝐼
as a parameter. This is for a fluid with the intrinsic properties listed above and an
anchor radius of 𝑏0 = 10-5 m. The individual curves correspond to a selection of typical
currents and loosely demarcate the upper bounds of the allowable feeding pressure
when pure ion evaporation is the objective. Pressures above the curves will lead to
stresses in the meniscus higher than the limiting 𝑃𝑙 = 0.67 and likely precipitate
destabilization. Conversely, a subspace of the region below the curves could confer
stable ion evaporation, although the present methods are insufficient for accurately
outlining it.

5.2.4 Discussion
The equilibria and stability properties of the free-volume problem are quantitatively
similar to those of its fixed-volume counterpart, though slightly shifted. As a result,
the emission behavior is also akin and suggests that menisci with spheroidal form
factors are incapable of supporting evaporation when a disparity in scales exists,
i.e. when 𝐵 is much less than unity. This is unfortunate because it precludes the
present methods from describing important phenomena from the literature, where it
is believed that currents as high as hundreds of nA are possible with ionic liquids
even when 𝑏0 is orders of magnitude larger than 𝑟* (𝐵−1 ∼ 102 - 103, perhaps, as 𝑏0
can be tens of microns).

To further underscore the deficiencies of the analytical spheroid approach, we
might revisit the work of Romero-Sanz [29] where a pure ion current of ∼ 200 nA
was reported for the popular ionic liquid EMI-BF4 (𝑘 ∼ 1 S/m; 𝛾 ∼ 5·10-2 N/m;
𝜇 ∼ 4·10-2 Pa-s; 𝑞/𝑚 ∼ 106 C/kg). Consider that the emission configuration involved
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Figure 5-20: Relationship between 𝑃𝑓 and 𝑅̂ℎ at the limiting liquid pressure 𝑃𝑙 = 0.67
for a fluid with typical ionic liquid properties. The individual curves correspond to
currents of 10 nA, 50 nA, 100 nA, 200 nA, and 300 nA while the arrow indicates the
direction of increasing magnitude. These represent estimates for the upper bounds
on the allowable feed pressure for ion evaporation.

a ∼ 1400V bias stressing a 𝑏0 =10-5 m capillary extending approximately 𝐿 =3·10-1

m. The upstream end of the tube connected to a reservoir where a 𝑃𝑓 =3700 Pa
pressure (∼ 28 Torr) was used to drive the prevailing flow. Based on these numbers
we calculated a dimensionless feed pressure of 𝑃𝑓 ≈ 0.37, which is already below
both the estimated maximum of 0.67 and the minimum of 0.5 that is asymptotically
approached by spheroids with strong elongation. The modest impedance of the tube
(𝑅ℎ ≈ 3·1018 N-s/m5 ⇒ 𝑅̂ℎ ≈ 1500) did not substantially modify the pressure of the
fluid in the meniscus (𝐼 ≈ 4·10-5 ⇒ 𝐼 · 𝑅̂ℎ ≈ 6·10-2), but the fact that 𝑃𝑙 was well
below 0.5 points to the likelihood that a very different deformation mode had been
activated. Furthermore, if we estimate that the driving field for the capillary (which
is admittedly a little different than the one for the flat plate configuration we have
considered) might go like 𝐸0 ∼ 𝑉/𝑏0, then we calculate 𝐸0 ∼ 1400·105 V/m and the
dimensionless strength 𝐸̂0 ∼ 3, which is quite amazing! Compare this to the field
𝐸̂0 ≈ 0.2 at the turning point of the equipotential spheroid.

It should be obvious at this point that the analytical approach is incapable of
sufficiently resolving the physics that are important to ion evaporation. The spec-
trum of potential deformation modes is presumably very rich and not restricted to
the small subset of spheroidal morphologies that have been considered thus far. In
the remaining chapters we will attempt to reconcile the discrepancies between our
theoretical predictions and empirical observations through numerical recourse.
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Chapter 6

Generalized free-volume problem

Owing to the deficiencies of the spheroidal approach we seek to generalize the model
of the electrified ionic liquid meniscus. Note that this will also afford us the opportu-
nity to incorporate the additional physics outlined in previous chapters (e.g. viscous
stresses and Ohmic heating), which could be important. The model will involve a
free-volume fluid column that is attached to a flat plate of finite thickness and biased
with respect to a downstream surface so that a uniform electric field can prevail far
from the liquid-vacuum interface (Fig. 6-1). Technically speaking, the plate could be
either a perfect conductor or an ideal dielectric (no free charges) in order to capture
effects related to the choice of substrate material. As recent studies on porous glass
and aluminum oxide show, e.g. Coffman [58], it is believed that these could play a
potentially measurable role in the process of emission (see Lozano [74] for estimates
related to dielectric anchoring media of relative permittivity 𝜖𝑟 ∼ 5 - 10, which are
typical of many porous ceramics [75, 76]). In terms of the liquid column, it will obey
a constant contact line at the interface with the plate, i.e. it will have a prescribed
radius, while the contact angle will remain unconstrained. This is essentially the
situation that prevails for a well-defined tube which terminates in the plane of a per-
fectly non-wetting plate. In what follows, we will attempt to use the combination of
these conditions for simulating steady ion emission from electrified ionic liquids over
a range of field and media conditions.

To formulate the problem we will model the ionic liquid populating the meniscus
as a simple quasi-neutral fluid so that we may utilize the Navier-Stokes and Laplace
equations in the fluid bulk. While these physics may or may not be admissible in the
charge separation layer that develops at the interface when an electric field is applied,
this region should be small. From Poisson, observe that

Δ𝐸 ∼ −𝑒 (𝑛+ − 𝑛−)
𝜖

𝛿 (6.1)

local to the interface. In the limit of complete charge separation the thickness
of the non-neutral layer goes something like 𝛿 ∼ 𝜖𝐸/ (𝑒𝑛+), which evaluates to sub-
molecular scale (𝛿 ∼ 10-10 m) when fields characteristic of ion emission (E ∼ 109

V/m) and bulk number densities (𝑛+ ∼ 1028 m-3) are present, and remains small
even in cases when the latter is somehow rarefied. This suggests that we can view
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Figure 6-1: Diagram of solution domain for an electrified ionic liquid meniscus model.
Two Laplacian regions bracket a fluid interface of prescribed waist radius, 𝑏0. The
anchoring plate has thickness 𝑧𝑝, radius 𝑟𝑝, and can be either a perfect conductor
or ideal dielectric. Fluid enters the region of the plate at a pressure 𝑃𝐵, based on
upstream conditions, and feeds a meniscus in mechanical equilibrium.

the electrified layer as an infinitesimal transition region bracketed by vacuum on one
side and bulk fluid on the other. The nominal jump condition for the charge density
𝜎 = 𝜖0𝐸

𝑣
𝑛 − 𝜖𝐸𝑙

𝑛, where 𝐸𝑣
𝑛 is the normal component of the field on the vacuum side

and 𝐸𝑙
𝑛 is normal component on the liquid side, is then easily invoked. The same is

true of Ohm’s law for the fluid, 𝑗𝑙 = 𝑘𝐸𝑙, where 𝑘 is the bulk conductivity (Si/m).
The structure of the following sections is designed to introduce a set of equations

that form a rigorous and coherent mathematical framework while also outlining a
feasible approach for implementing the requisite numerics. In the sections that im-
mediately follow we start by presenting the full complement of physical equations
in their dimensional forms. The appropriate boundary conditions are derived and
discussed where necessary, after which we offer a collection of logical scales and use
them to nondimensionalize the problem. Several substrate considerations are then
investigated as a means of abbreviating the rather rich parameter space that results.
Finally, we develop a conceptual approach for solving the multiphysical problem in
a self-consistent manner and discuss the way in which it might be integrated with
Comsol, a commercial finite-element package.

6.1 Full equation set
The full equation set is developed here by first investigating the bulk equations and
then deriving the corresponding boundary conditions. Physical exposition is offered
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where necessary, as several of the latter can be sources of confusion.

6.1.1 Bulk physics
Vacuum & plate regions

We start by considering the vacuum and plate regions, both of which are governed
by Laplace

∇2Φ𝑣 = 0 (6.2)
∇2Φ𝑝 = 0 (6.3)

For the former, this owes to the fact that we are choosing to explicitly neglect
space charge effects a priori, as these would require iterative and possibly expensive
calculations. They would ideally be accounted for; however, from the earlier chapters
we recall that 𝐸𝑠𝑐/𝐸* ∼ 0 is likely a good approximation in most instances. Laplace,
therefore, seems to be justified here, especially in view of the anticipated numerical
difficulties. Also note that the superscripts 𝑣, 𝑝, and 𝑙 will henceforth be used to
distinguish the vacuum, plate, and liquid regions, respectively.

Liquid region

The fluid region is somewhat more complicated in that it will involve coupled elec-
trical, hydrodynamic, and heat transfer relationships when we choose to invoke all
of the contributing physics that we have identified to this point. For example, the
governing equation for the electrical effects should be charge conservation, ∇ · 𝑗⃗ = 0
where 𝑗⃗ is the current density vector. From Ohm we have that 𝑗⃗ = 𝑘𝐸⃗𝑙 and so

∇ ·
(︁
𝑘𝐸⃗𝑙

)︁
= 0 (6.4)

is in general the appropriate relationship for charge conservation. When there
is no heating of the fluid, notice that the electrical conductivity of the fluid should
be constant, i.e. 𝑘 → 𝑘0 where 𝑘0 is the nominal value (S/m) at some reference
temperature 𝑇0. When this is the case, charge conservation ∇ · 𝑗⃗ = 0 is simply
reduced to Laplace. Recall that in the present case, however, we wish to incorporate
heating effects and so the more general relationship, Eq. 6.4, should apply more
strictly as it allows for 𝑘 = 𝑘(𝑇 ).

For the hydrodynamics, it stands to reason from our Reynolds number estimates
that the Stokes relationship, ∇𝑝 = ∇·(𝜇∇𝑢⃗), should be a very good approximation to
the relationship governing the flow. Unfortunately, the finite-element (FEM) package
available to us (Comsol) does not support perfectly creeping flow and so we will be
forced to retain the inertial term in the Navier-Stokes momentum equation. While
this is not a substantial issue (indeed, the inertial term could offer incrementally better
accuracy), it is possible that it could eventually slow our calculations. Nevertheless,
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after invoking mass conservation for the fluid (𝜌 → 𝜌0, a constant) we find that its
motion must obey

∇ · 𝑢⃗ = 0 (6.5)
𝜌 (𝑢⃗ · ∇) 𝑢⃗ = ∇ · [−𝑝𝐼 + 𝜏 ] (6.6)

where 𝑢⃗ is the velocity vector of the flow and 𝑝 is the hydrostatic pressure. Note
that these equations assume that the flow is time-independent, as it should be for the
steady evaporation solutions we are seeking. The viscous stress tensor, 𝜏 , relates the
strain rate of the flow to its viscous forces. For Newtonian fluids it is given by

𝜏 = 𝜇
[︁
∇𝑢⃗+ (∇𝑢⃗)𝑇

]︁
(6.7)

which can be expanded in several coordinate systems of interest (see appendix).
We also endeavor here to account for effects due to heating in the fluid, which

we could be important as we have already shown. To achieve this we first require
a thermal balance that can describe the spatial distribution of steady temperatures.
Owing to the motion of the fluid, which is of course a prerequisite for Ohmic heating,
both conduction and convection are capable of transporting thermal energy. In view
of this, the appropriate balance should be

𝜌𝑐𝑝 (𝑢⃗ · ∇𝑇 ) = 𝑘𝑇∇2𝑇 + 𝑞 (6.8)

where 𝑐𝑝 is the heat capacity of the fluid at constant pressure (J/kg-K), 𝑇 is the
temperature (K), 𝑘𝑇 is the intrinsic thermal conductivity (W/m-K), and 𝑞 is the
internal generation rate (W/m3). Note that this assumes a constant isotropic 𝑘𝑇 ,
which should roughly be the case for many ionic liquids. If the generation is purely
Ohmic (we will ignore viscous generation, which should be weak as a result of the
tenuous flow), then 𝑞 = 𝑗2/𝑘 where 𝑗 is the local current density (A/m2). After
substituting this we arrive at

∇2𝑇 + 1
𝑘𝑇

𝑗2

𝑘
− 𝜌𝑐𝑝
𝑘𝑇

(𝑢⃗ · ∇𝑇 ) = 0 (6.9)

which is our final working form for the thermal balance.

6.1.2 Interfacial and boundary conditions
Liquid-vacuum interface

The normal and tangential components of the stress acting on the fluid interface are,
respectively

𝜏 𝑒
𝑛 − 𝑛⃗ · 𝜏 · 𝑛⃗ = 𝛾∇ · 𝑛⃗ (6.10)

𝑡⃗ · 𝜏 · 𝑛⃗ = 𝜏 𝑒
𝑡 (6.11)
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Here, 𝜏 is the viscous tensor and 𝜏 ·𝑛⃗ is the fluid traction vector 𝑇 on the interface
where 𝑛⃗ is the unit normal (note that 𝑡⃗ is the unit tangent). The factors 𝑛⃗ · 𝜏 · 𝑛⃗
and 𝑡⃗ · 𝜏 · 𝑛⃗ are, therefore, the projections of the traction vector on either direction.
The electrical stress 𝜏 𝑒 follows from the Maxwell tensor (see, for example, Landau &
Lifshitz [77], Melcher [78], Zahn [79])

𝜏 𝑒
𝑖𝑗 = 𝜖𝐸𝑖𝐸𝑗 − 𝜖

2𝛿𝑖𝑗𝐸𝑘𝐸𝑘 (6.12)

where the repeated indices in the last term on the right-hand side indicate the
Einstein summation convention. This leads to

𝜏 𝑒
𝑛 = 1

2𝜖0

[︂
(𝐸𝑣

𝑛)2 − 𝜖𝑟
(︁
𝐸𝑙
𝑛

)︁2
]︂

+ 1
2𝜖0 (𝜖𝑟 − 1)𝐸2

𝑡 (6.13)

𝜏 𝑒
𝑡 = 𝜖0𝐸

𝑣
𝑛𝐸𝑡 − 𝜖𝐸𝑙

𝑛𝐸𝑡 = 𝜎𝐸𝑡 (6.14)

for the normal and tangential components of the electrical stress at the interface.
Note that only viscous forces are available for balancing the latter, which differs from
the normal direction where surface tension forces play an important role.

In addition to these stresses, the surface charge at the interface is governed by the
usual jump condition for regions of dissimilar permittivity

𝜎 = 𝜖0𝐸
𝑣
𝑛 − 𝜖0𝜖𝑟𝐸

𝑙
𝑛 (6.15)

The prevailing surface charge may or may not be in the vicinity of the fully relaxed
value (equal to the normal component of the displacement field on the vacuum side,
𝜖0𝐸

𝑣
𝑛), as we have shown, and this is important because the evaporation is in part a

function of 𝜎

𝑗𝑒 = 𝜎
𝑘𝐵𝑇

ℎ
exp

⎛⎝ −1
𝑘𝐵𝑇

⎧⎨⎩Δ𝐺−
√︃
𝑞3𝐸𝑣

𝑛

4𝜋𝜖0

⎫⎬⎭
⎞⎠ (6.16)

Notice that the introduction of the jump condition and this kinetic law for the
evaporated current density (two relationships) gives us only two of 𝑗𝑒, 𝜎, and the liquid
field 𝐸𝑙

𝑛. It says nothing of the third, and so we require an additional relationship if
we are to uniquely solve the set of equations at hand. We can do this by writing a
steady-state transport equation at the interface

𝑗𝑒 = 𝑗𝑐𝑜𝑛𝑑⏟  ⏞  
𝑘𝐸𝑙

𝑛

+𝑗𝑐𝑜𝑛𝑣 (6.17)

This suggests that the current evaporated on the vacuum side must be balanced
by a corresponding flow of charge on the liquid side of the interface. This flow is
composed of two parts: a conducted component and a convected component. Of these,
observe that only the former can prevail in the bulk, where quasineutrality in the
fluid precludes net charge from being transported by internal flows. At the interface,
however, charge separation (i.e. the surface charge) is available for entrainment by
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the passing flow and so convection is possible. The conducted part of the interfacial
current, 𝑗𝑐𝑜𝑛𝑑, is simply the familiar Ohmic value 𝑘𝐸𝑙

𝑛. Expressions for the convected
part, on the other hand, are sometimes confusing and so we offer here a fundamental
and intuitive derivation.

Consider the axisymmetric meniscus illustrated in Fig. 6-2, where evaporation of
charge is taking place in the steady-state. If we allow 𝑠 to be a parameter describing
the distance along the interface between the axis of symmetry and an arbitrary point
(say, 𝑠0), we can isolate a cylindrical section bracketed by 𝑠0 and 𝑠0 +Δ𝑠 and perform
a basic current balance. The locally evaporated current on the vacuum side is simply
𝑗𝑒(Δ𝐴) while the current conducted to the liquid side of interface is 𝑘𝐸𝑙

𝑛(Δ𝐴). In
both cases, the differential area of the section is Δ𝐴 = 2𝜋𝑟(Δ𝑠) where 𝑟 is the local
cylindrical radius. The convected contribution to the balance is somewhat trickier and
depends on three parameters: (1) the speed of the flow tangent to the local interface,
𝑣𝑡; (2) the magnitude of the local surface charge, 𝜎; and (3) the circumference of
the projection of the local interface on the 𝑟− 𝜃 plane, assuming we are resolving the
interface in cylindrical space. The product of these three things, 𝑣𝑡 ·𝜎 ·2𝜋𝑟, determines
the locally convected current (units of Amperes rather than a current density). From
the figure we can see that flow moving toward the tip of the meniscus requires that a
current of

𝑣𝑡 (𝑠0 + Δ𝑠) · 𝜎 (𝑠0 + Δ𝑠) · 2𝜋𝑟 (𝑠0 + Δ𝑠)

enter the bottom of our differential section where 𝑠 = 𝑠0 +Δ𝑠. By the same token,
a current of

𝑣𝑡 (𝑠0) · 𝜎 (𝑠0) · 2𝜋𝑟 (𝑠0)

must be leaving the top of the section. We can now collect the difference between
these two currents and formulate the aggregate balance

𝜕𝜎

𝜕𝑡
(Δ𝐴) = 𝑘𝐸𝑙

𝑛 (Δ𝐴)−𝑗𝑒 (Δ𝐴)−[𝑣𝑡 (𝑠0 + Δ𝑠) · 𝜎 (𝑠0 + Δ𝑠) · 2𝜋𝑟 (𝑠0 + Δ𝑠) − 𝑣𝑡 (𝑠0) · 𝜎 (𝑠0) · 2𝜋𝑟 (𝑠0)]
(6.18)

which is general and accounts for transients in the local charge. After dividing
through by the sectional area this becomes

𝜕𝜎

𝜕𝑡
= 𝑘𝐸𝑙

𝑛−𝑗𝑒−
1
𝑟

[︃
𝑣𝑡 (𝑠0 + Δ𝑠) · 𝜎 (𝑠0 + Δ𝑠) · 2𝜋𝑟 (𝑠0 + Δ𝑠) − 𝑣𝑡 (𝑠0) · 𝜎 (𝑠0) · 2𝜋𝑟 (𝑠0)

Δ𝑠

]︃
(6.19)

where the last term on the right-hand side can be converted to a partial derivative
through the fundamental theorem of calculus. Taking the limit as Δ𝑠 → 0
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Figure 6-2: Prevailing currents for an arbitrary cylindrical slice of an axisymmetric
electrified meniscus. The evaporative current is balanced by conducted and convected
charge in the fluid. Note that the latter is strictly a surface phenomenon which does
not take place in the bulk where quasineutrality prevents flows from transporting net
charge.

lim
Δ𝑠→0

𝜕𝜎

𝜕𝑡
= 𝑘𝐸𝑙

𝑛 − 𝑗𝑒 − 1
𝑟

𝜕

𝜕𝑠
(𝑣𝑡𝜎𝑟) (6.20)

For steady evaporation, 𝜕𝜎/𝜕𝑡 → 0 and we find

𝑗𝑒 = 𝑘𝐸𝑙
𝑛⏟  ⏞  

𝑗𝑐𝑜𝑛𝑑

− 1
𝑟

𝜕

𝜕𝑠
(𝑣𝑡𝜎𝑟)⏟  ⏞  

𝑗𝑐𝑜𝑛𝑣

(6.21)

The second term on the right-hand side of this expression is what we refer to as
the convected current contribution.

The transport equation, Eq. 6.21, is presented in a cylindrical form and represents
the motion of all charges at the interface. It could be of use, however, to recast it
since its given form is most easily evaluated in a local 𝑛⃗− 𝑡⃗ coordinate system rather
than a global one. To do this, we might look to Higuera [62] where the alternative
representation

𝐷𝜎

𝐷𝑡
= 𝜕𝜎

𝜕𝑡
+ 𝑢⃗ · ∇𝜎 = 𝜎 (𝑛⃗ · ∇𝑢⃗ · 𝑛⃗) + 𝑘𝐸𝑙

𝑛 − 𝑗𝑒 (6.22)

is offered. Apparently, this is partially derived from Batchelor [81], in which the
first term on the right-hand side is interpreted as an effect related to the surface
strain (which makes some sense given the presence of the ∇𝑢⃗ tensor factor). In the
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steady-state this relationship reduces to

𝑗𝑒 = 𝑘𝐸𝑙
𝑛⏟  ⏞  

𝑗𝑐𝑜𝑛𝑑

+𝜎 (𝑛⃗ · ∇𝑢⃗ · 𝑛⃗) − 𝑢⃗ · ∇𝜎⏟  ⏞  
𝑗𝑐𝑜𝑛𝑣

(6.23)

This is similar to the transport equation derived above but differs slightly in the
representation of the convected current. We do, however, believe it to be equivalent.
Therefore, in view of its greater notational formalism and amenability to arbitrary
coordinate systems we will sometimes make use of it throughout the remainder of
this thesis.

Finally, to complete the interfacial conditions we must say something of the ther-
mal behavior. Consider now the small section of the electrified fluid interface delin-
eated in Fig. 6-3. Just beneath the surface resides a differential control volume of
cross-sectional area Δ𝐴 (into the page) and thickness Δ𝑛 in the direction normal to
the surface. We can derive a representative interfacial condition by writing a heat
balance in this volume. In general, this is

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
(Δ𝐴 · Δ𝑛) = 𝑞 (Δ𝐴 · Δ𝑛)−𝑘𝑇∇𝑇 (Δ𝐴)+𝜌𝑐𝑝 [𝑢 (𝑛0 + Δ𝑛)𝑇 (𝑛0 + Δ𝑛) − 𝑢 (𝑛0)𝑇 (𝑛0)] (Δ𝐴)

(6.24)
where 𝑞 is the generation internal to the control volume (W/m3) and 𝑘𝑇∇𝑇 is

the heat conducted away from its inward face (W/m2). The terms involving the fluid
velocity 𝑢 describe the thermal energy convected into (𝜌𝑐𝑝𝑢(𝑛0 +Δ𝑛)𝑇 (𝑛0 +Δ𝑛)) and
out of (𝜌𝑐𝑝𝑢(𝑛0)𝑇 (𝑛0)) the volume. After dividing through by the area the balance
becomes

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
(Δ𝑛) = 𝑞 (Δ𝑛)−𝑘𝑇∇𝑇+𝜌𝑐𝑝 [𝑢 (𝑛0 + Δ𝑛)𝑇 (𝑛0 + Δ𝑛) − 𝑢 (𝑛0)𝑇 (𝑛0)] (6.25)

and since we are interested in the condition at the interface we can now take the
limit as Δ𝑛 → 0. The result is

lim
Δ𝑛→0

{︃
𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
(Δ𝑛) = 𝑞 (Δ𝑛) − 𝑘𝑇∇𝑇 + 𝜌𝑐𝑝 [𝑢 (𝑛0 + Δ𝑛)𝑇 (𝑛0 + Δ𝑛) − 𝑢 (𝑛0)𝑇 (𝑛0)]

}︃
⇒ 𝑛⃗ · ∇𝑇 = 0 (6.26)

In other words, the interface should act like a thermal insulator. Notice, however,
that this is simply an approximation (but probably a very good one still) owing
to the fact that we have neglected the possibilities of thermal radiation and the
consumption of latent heat. The former of these, at least, should be very small when
the temperature excursions are not too great. Observe that

𝑞𝑟𝑎𝑑 ≈ 𝜎𝐵
[︁
(𝑇0 + Δ𝑇 )4 − 𝑇 4

0

]︁
(6.27)
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𝒒  

𝝆𝒄𝒑𝒖 𝒏𝟎 𝑻 𝒏𝟎  

𝝆𝒄𝒑𝒖 𝒏𝟎 + ∆𝒏 𝑻 𝒏𝟎 + ∆𝒏  𝒌𝑻 𝜵𝑻 
𝒏𝟎+∆𝑵

 

Figure 6-3: Thermal transport and generation processes near an electrified meniscus.
Internal generation heats a small control volume while conduction and convection
redistribute heat in several directions. A system of local 𝑛⃗ − 𝑡⃗ coordinates is shown
for the surface.

where 𝑞𝑟𝑎𝑑 is the radiative transfer density (W/m2), 𝜎𝐵 is the Stefan-Boltzmann
constant (5.67·10-8 W·m-2·K-4), 𝑇0 is some reference temperature for the quiescent
fluid and its surroundings, and Δ𝑇 is the temperature increment in the emission zone
of the meniscus due to Ohmic heating. When Δ𝑇 is not too substantial, i.e. Δ𝑇 ≪ 𝑇0

𝑞𝑟𝑎𝑑 ≈ 4𝜎𝐵𝑇 3
0 (Δ𝑇 ) (6.28)

which can be compared with, for example, the thermal conduction. Assuming
that 𝑞𝑐𝑜𝑛𝑑 ∼ 𝑘𝑇Δ𝑇/𝑟*

𝑞𝑟𝑎𝑑
𝑞𝑐𝑜𝑛𝑑

∼ 𝜎𝐵𝑟
*𝑇 3

0
𝑘𝑇

(6.29)

For many ionic liquids it is likely that 𝑟* ∼ 10-8 m, 𝑇0 ∼ 3·102 K, and 𝑘𝑇 ∼ 10-1

W/m-K. Using these values suggests that the ratio of the radiation transfer to the
conduction transfer is likely no more than 10-6 in most cases, which would seem to
justify its exclusion.

The extent of the role played by the latent heat, on the other hand, is less clear.
In evaporative processes that are strictly thermal, i.e. those that are not electrically
assisted, it is understood that the phase transition of excited species, charged or
otherwise, must be accompanied by the consumption of an additional amount of
energy. This is known as the latent heat, which, thermodynamically speaking, is an
intrinsic property of the evaporating substance. In situations where field assistance is
not insignificant, as in the room temperature evaporation of electrified ionic liquids,
it is believed that the strong pull of the field effectively “plucks” charged particles
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from the surface of the fluid. Thermal excitation does play some part, however, and
this is evidenced by the kinetic law of Iribarne and Thomson [7]. With this in mind,
the extent to which latent heat should be consumed is rather unclear.

For the sake of argument, let us assume for the moment that particles evaporating
from an electrified ionic liquid do consume full measures of the latent heat. When
this is the case, an additional “cooling” term should be added to the heat balance of
the form

𝑞′′
𝐿 = 𝑚̇

𝐴
𝐿𝑣 (6.30)

where 𝑞′′
𝐿 is the heat flux associated with the consumption of latent heat (W/m2),

𝑚̇/𝐴 is the specific evaporation rate (kg/m2-s), and 𝐿𝑣 is the latent heat (J/kg).
During ion evaporation we might approximate 𝑚̇/𝐴 as ∼ 𝑗/(𝑞/𝑚) ∼ 𝑘𝐸*𝜖−1

𝑟 (𝑞/𝑚)−1

and so this expression becomes

𝑞′′
𝐿 ∼ 𝑘𝐸*

𝜖𝑟 (𝑞/𝑚)𝐿𝑣 (6.31)

When we compare this to, for example, the characteristic conduction flux we find

𝑞′′
𝐿

𝑞′′
𝑐𝑜𝑛𝑑

∼ 𝑘𝐸*𝑟*𝐿𝑣
𝜖𝑟 (𝑞/𝑚) 𝑘𝑇Δ𝑇 (6.32)

For a fluid with 𝑘 ∼ 1 S/m, 𝐸* ∼ 109 V/m, 𝑟* ∼ 10-8 m, 𝜖𝑟 ∼ 10, 𝑞/𝑚 ∼ 106 C/kg,
𝑘𝑇 ∼ 10-1 W/m-K, and 𝐿𝑣 ∼ 106 J/kg (which could be more or less representative of
a fluid like EMI-BF4; see [88, 89]), this evaluates to roughly

𝑞′′
𝐿

𝑞′′
𝑐𝑜𝑛𝑑

∼ 10
Δ𝑇 (6.33)

When the thermal excursion Δ𝑇 is small, the latent heat would obviously domi-
nate. Conversely, when it is of a more typical order, say Δ𝑇 ∼ 100-101 K, the latent
heat contribution could be comparable to the that of conduction but certainly not
extreme. In view of this finding and the uncertainty that would come with invoking
latent heat factors, the thermal balances used throughout the rest of this thesis will
explicitly neglect them.

Boundaries

We will address the hydrodynamic boundaries first, as these will require some cleav-
ing of the global modeling domain. Ideally, we would like to capture effects on the
meniscus stemming from events as far upstream as the origin (reservoir) of the evap-
orating fluid. The ramifications of the hydraulic configuration there are of particular
interest as we often have much more direct control over the upstream hydraulics than
we do over what happens very near to the menisci.

Consider the conceptual modeling domain illustrated in Fig. 6-4, which includes
a fluid reservoir and a feeding tube for delivering liquid to the plate upon which
our meniscus is anchored. Under very rigorous circumstances we might attempt to
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Figure 6-4: Schematic illustration of global modeling domain, including a computa-
tional space that is local to the meniscus and an upstream feeding system that is
handled analytically. The feeding system (green enclosure) is a “black box” from
the perspective of our numerical calculations. Its simplified architecture includes a
reservoir that is held at pressure 𝑃𝑟 and a characteristic impedance 𝑅ℎ (Pa-s/m3)
such that it supplies fluid to the bottom of our computational channel at a pressure
𝑃𝑟 −𝑄×𝑅ℎ.

numerically model this system in its entirety; in other words, we would discretize
all of the space in-between and including the reservoir and the meniscus regions.
It is likely, however, that the physics taking place in the feeding system (upstream
of the plate) should be rather straightforward and amenable to characterization by
analytical means. In the specific case of a long tube, for example, the upstream flow
field should very nearly resemble that of Poiseuille, for which we have a well-known
solution. With this in mind, we will endeavor to ease our eventual numerical burden
by segregating the upstream feeding system from the more nuanced region in which
the meniscus itself resides. The former will be treated analytically while the latter,
which is essentially the region delineated in Fig. 6-1, will be handled computationally.

The hydraulic boundary at the bottom of the computational domain (𝑧 = −𝑧𝑝 in
Fig. 6-1 when the origin is coincident with the top surface of the plate) is the one
that requires specification now. We can assume that the reservoir is pressurized to
𝑃𝑟𝑒𝑠 (or 𝑃𝑟) and that the feeding line (tube, porous material, etc.) is characterized
by an hydraulic impedance 𝑅ℎ (N-s/m5). In general then, the fluid being fed to the
meniscus enters the bottom of the plate at a pressure

𝑃𝐵 = 𝑃𝑟 −𝑄 ·𝑅ℎ (6.34)

where 𝑄 is the volumetric flow rate. When steady emission prevails, we recognize
that this is related to the current as 𝑄 = 𝐼𝜌−1(𝑞/𝑚)−1. Substituting this gives
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𝑃𝐵 = 𝑃𝑟 − 𝐼𝑅ℎ

𝜌 (𝑞/𝑚) (6.35)

Eq. 6.35 is at this point a passable hydraulic boundary condition for the bottom
of the fluid column in the computational domain. The condition for the sidewalls of
the plate (𝑟 = 𝑏0, −𝑧𝑝 < 𝑧 < 0) are much easier. We can simply take

𝑢⃗ · 𝑖⃗𝑟 = 0 (6.36)
𝑢⃗ · 𝑖⃗𝑧 = 0 (6.37)

which ensures that fluid neither passes into the plate nor “slips” alongside it.
For the thermal calculations we are again only interested in the liquid column

within the computational domain. Along the bottom of the column (0 < 𝑟 < 𝑏0,
𝑧 = −𝑧𝑝) and along the sidewalls of the plate (𝑟 = 𝑏0, −𝑧𝑝 < 𝑧 < 0) we can adopt
a static reference temperature 𝑇0, which should be a good approximation so long as
the plate is a good thermal sink. Mathematically, these conditions state

𝑇 (𝑟 < 𝑏0, 𝑧 = −𝑧𝑝) = 𝑇0 (6.38)
𝑇 (𝑟 = 𝑏0,−𝑧𝑝 < 𝑧 < 0) = 𝑇0 (6.39)

Only the electrical conditions remain now. Regardless of the nature of the plate
we can set a reference potential along the bottom of the computational domain and
bias the top plate with respect to this value. The vertical edges of the domain should
obey a Neumann condition and together these state

Φ (𝑟, 𝑧 = −𝑧𝑝) = Φ0 (6.40)
Φ (𝑟, 𝑧 = 𝑧0) = Φ0 + 𝑉 (6.41)

𝜕Φ
𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑟𝑝

= 0 (6.42)

For the remaining surfaces of the plate, these should be at the reference potential
if it is a conductor. When it is a dielectric, the vacuum-exposed surface should
satisfy the condition of vanishing 𝜎 and the liquid surface should be at full electrical
relaxation (at least approximately, since we would expect the flow to be very weak in
the tube). Mathematically we have that

Φ (𝑟 = 𝑏0,−𝑧𝑝 < 𝑧 < 0) = Φ0 (6.43)
Φ (𝑏0 < 𝑟 < 𝑟𝑝, 𝑧 = 0) = Φ0 (6.44)

when the plate is a conductor; and
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Φ𝑙 (𝑟 = 𝑏0,−𝑧𝑝 < 𝑧 < 0) = Φ𝑝 (𝑟 = 𝑏0,−𝑧𝑝 < 𝑧 < 0) (6.45)

𝜎 = −𝜖0𝜖𝑝
𝜕Φ𝑝

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑏0

(6.46)

Φ𝑣 (𝑟 > 𝑏0, 𝑧 = 0) = Φ𝑝 (𝑟 > 𝑏0, 𝑧 = 0) (6.47)
𝜕Φ𝑣

𝜕𝑧

⃒⃒⃒⃒
⃒
𝑧=0

= 𝜖𝑝
𝜕Φ𝑝

𝜕𝑧

⃒⃒⃒⃒
⃒
𝑧=0

(6.48)

when the plate is a dielectric with permittivity 𝜖𝑟.

6.1.3 Summary

After examining the relevant physics we find the vacuum and plate regions are gov-
erned by Laplace’s equation while the liquid is subject to a more general form of
charge concentration owing to possible thermal excursions and modifications to the
nominal electrical conductivity there. The flow of fluid should obey the Stokes re-
lationship for the viscous limit, although limitations in our numerical software call
for the inclusion of an inertial term from the more general Navier-Stokes momentum
balance.

In summary, the collection of governing relationships (bulk/volume equations,
interfacial equations, and boundary conditions) defining the computational part of
the problem are

∇2Φ𝑣 = 0 (6.49)
∇2Φ𝑝 = 0 (6.50)

in the vacuum and plate regions, respectively;

∇ · 𝑗⃗ = 0, where 𝑗⃗ = 𝑘𝐸⃗𝑙 (6.51)
𝜌 (𝑢⃗ · ∇) 𝑢⃗ = ∇ ·

[︁
−𝑝𝐼 + 𝜇

(︁
∇𝑢⃗+ (∇𝑢⃗)𝑇

)︁]︁
(6.52)

𝑘𝑇∇2𝑇 + 𝑗2

𝑘
− 𝜌𝑐𝑝 (𝑢⃗ · ∇𝑇 ) = 0 (6.53)

in the liquid region;
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𝜏 𝑒
𝑛 − 𝑛⃗ · 𝜏 · 𝑛⃗ = 𝛾∇ · 𝑛⃗ (6.54)

𝑡⃗ · 𝜏 · 𝑛⃗ = 𝜏 𝑒
𝑡 (6.55)

𝜎 = 𝜖0
(︁
𝐸⃗𝑣 · 𝑛⃗

)︁
− 𝜖0𝜖𝑟

(︁
𝐸⃗𝑙 · 𝑛⃗

)︁
(6.56)

𝑗𝑒 = 𝜎
𝑘𝐵𝑇

ℎ
exp

⎛⎜⎝ −1
𝑘𝐵𝑇

⎧⎪⎨⎪⎩Δ𝐺−

⎯⎸⎸⎷𝑞3𝐸⃗𝑣 · 𝑛⃗
4𝜋𝜖0

⎫⎪⎬⎪⎭
⎞⎟⎠ (6.57)

𝑗𝑒 = 𝑘
(︁
𝐸⃗𝑙 · 𝑛⃗

)︁
+ 𝜎 (𝑛⃗ · ∇𝑢⃗ · 𝑛⃗) − 𝑢⃗ · ∇𝜎 (6.58)

𝐼 =
∫︁
𝑗𝑒 · 𝑑𝐴 (6.59)

𝑛⃗ · ∇𝑇 = 0 (6.60)

at the liquid-vacuum interface;

Φ𝑙 = Φ0 (6.61)

𝑃 𝑙 = 𝑃𝑟 − 𝐼𝑅ℎ

𝜌 (𝑞/𝑚) (6.62)

𝑇 𝑙 = 𝑇0 (6.63)

at the base of the fluid column in the computational domain (0 < 𝑟 < 𝑏0, 𝑧 = −𝑧𝑝);

𝑢⃗ · 𝑖⃗𝑟 = 0 (6.64)
𝑢⃗ · 𝑖⃗𝑧 = 0 (6.65)
𝑇 𝑙 = 𝑇0 (6.66)

on the sidewalls of the fluid channel (𝑟 = 𝑏0, −𝑧𝑝 < 𝑧 < 0);

Φ = Φ0 (6.67)
Φ𝑣 = Φ0 + 𝑉 (6.68)
𝐸⃗ · 𝑖⃗𝑟 = 0 (6.69)

on the bottom of the domain (𝑧 = −𝑧𝑝), the top of the domain (𝑧 = 𝑧0), and the
radial edge of the domain (𝑟 = 𝑟𝑝), respectively;

Φ = Φ0 (6.70)

on the vertical (𝑟 = 𝑏0, −𝑧𝑝 < 𝑧 < 0) and horizontal (𝑏0 < 𝑟 < 𝑟𝑝, 𝑧 = 0) surfaces
of the plate, when it is a conductor; and
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Φ𝑙 = Φ𝑝 (6.71)
𝜎 = 𝜖0𝜖𝑝

(︁
𝐸⃗𝑝 · 𝑖⃗𝑟

)︁
(6.72)

Φ𝑣 = Φ𝑝 (6.73)(︁
𝐸⃗𝑣 · 𝑖⃗𝑧

)︁
= 𝜖𝑝

(︁
𝐸⃗𝑝 · 𝑖⃗𝑧

)︁
(6.74)

on the vertical and horizontal surfaces of the plate, when it is a dielectric with
relative permittivity 𝜖𝑝.

6.2 Nondimensionalization

Before nondimensionalizing the problem we will need to clarify the intrinsic fluid prop-
erties that may vary as a function of temperature, namely the electrical conductivity
𝑘(𝑇 ) and the viscosity 𝜇(𝑇 ). For the former, we adopt the linear approximation

𝑘 (𝑇 ) = 𝑘0 + 𝑘′ (𝑇 − 𝑇0) (6.75)

where 𝑘0 is the nominal conductivity (S/m) at the reference temperature 𝑇0 (K)
and 𝑘′ is a thermal sensitivity (S/m-K). This should be more than sufficient over a
range of at least tens of Kelvin in the vicinity of room temperature for many ionic
liquids. As a point of reference, for the popular fluid EMI-BF4 the thermal sensitivity
𝑘′ ∼ 0.04 S/m-K in the neighborhood of room temperature [90, 91]. With respect to
the viscosity, it is often a good approximation to take 𝜇(𝑇 )𝑘(𝑇 ) as a constant since
both of these parameters depend on temperature in a roughly linear way over wide
ranges but vary in proportionally opposite directions (i.e. 𝜇 ∼ 𝑇−1 while 𝑘 ∼ 𝑇 ). If
we evaluate this constant at the reference temperature, 𝜇(𝑇 )𝑘(𝑇 ) → 𝜇0𝑘0 and so we
can write

𝜇 = 𝜇0𝑘0

𝑘0 + 𝑘′Δ𝑇 (6.76)

We make use of both of these relationships for nondimensionalization. The scales
that we elect for this process are
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𝐿̂ → 𝐿

𝑏0
(6.77)

𝐴 → 𝐴

𝑏2
0

(6.78)

𝑃 → 𝑃

𝑃𝑐
, where 𝑃𝑐 = 2𝛾

𝑏0
(6.79)

𝐸̂ → 𝐸

𝐸𝑐
, where 𝐸𝑐 =

√︃
4𝛾
𝜖0𝑏0

(6.80)

𝜎̂ → 𝜎

𝜖0𝐸𝑐
(6.81)

𝑗̂ → 𝑗

𝑘0𝐸𝑐
(6.82)

𝐼 → 𝐼

𝑘0𝐸𝑐𝑏2
0

(6.83)

𝑢̂ → 𝑢

(𝛾/𝜇0)
(6.84)

𝑇 → 𝑇

𝑇0
(6.85)

Lengths are scaled by the radius of the contact line, 𝑏0; areas are scaled by 𝑏2
0;

stresses are scaled by the capillary pressure, 𝑃𝑐; fields are scales by a “critical” value
satisfying the balance 𝜖0𝐸

2
𝑐 /2 = 𝑃𝑐; charge densities are scales by the corresponding

displacement field, 𝜖0𝐸𝑐; current densities by 𝑘0𝐸𝑐; currents by 𝑘0𝐸𝑐𝑏
2
0; velocities by

the viscous-capillary speed, 𝛾/𝜇0; and temperatures by the reference value, 𝑇0. After
applying these to the governing equations we find that the dimensionless problem is
subject to

∇̂2Φ̂𝑣 = 0 (6.86)
∇̂2Φ̂𝑝 = 0 (6.87)

in the vacuum and plate regions, respectively;

∇̂ · 𝑗̂ = 0 (6.88)

𝑅𝐸

𝐵

(︁
𝑢̂ · ∇̂

)︁
𝑢̂ = ∇̂ ·

⎡⎣𝑝𝐼 + 1/2
1 + Λ

(︁
𝑇 − 1

)︁ (︂∇̂𝑢̂+
(︁
∇̂𝑢̂

)︁𝑇)︂⎤⎦ (6.89)

𝐵 · 𝐶𝑇
𝑐

(︁
∇̂2𝑇

)︁
+ 𝑗̂2

1 + Λ
(︁
𝑇 − 1

)︁ − 𝐶𝑇
𝑢

(︁
𝑢̂ · ∇̂𝑇

)︁
= 0 (6.90)

in the liquid region;
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[︂(︁
𝐸̂𝑣
𝑛

)︁2
− 𝜖𝑟

(︁
𝐸̂𝑙
𝑛

)︁2
+ (𝜖𝑟 − 1) 𝐸̂2

𝑡

]︂
−

⎡⎢⎢⎣−𝑝+ 1
2

𝑛⃗ ·
(︂

∇̂𝑢̂+
(︁
∇̂𝑢̂

)︁𝑇)︂
· 𝑛⃗

1 + Λ
(︁
𝑇 − 1

)︁
⎤⎥⎥⎦ = 1

2∇̂ · 𝑛⃗

(6.91)

𝑡⃗ ·
(︂

∇̂𝑢̂+
(︁
∇̂𝑢̂

)︁𝑇)︂
· 𝑛⃗

1 + Λ
(︁
𝑇 − 1

)︁ = 4𝜎̂𝐸̂𝑡 (6.92)

𝜎̂ = 𝐸̂𝑣
𝑛 − 𝜖𝑟𝐸̂

𝑙
𝑛 (6.93)

𝑗̂𝑒 = 𝜎̂𝑇

𝜖𝑟𝜒
exp

(︃
−𝜓
𝑇

{︂
1 −𝐵1/4

√︁
𝐸̂𝑣
𝑛

}︂)︃
(6.94)

𝑗̂𝑒 =
[︁
1 + Λ

(︁
𝑇 − 1

)︁]︁
𝐸̂𝑙
𝑛 + 𝐶𝑒

𝑢 (𝐵)
[︁
𝜎̂
(︁
𝑛⃗ · ∇̂𝑢̂ · 𝑛⃗

)︁
− 𝑢̂ · ∇̂𝜎̂

]︁
(6.95)

𝐼 =
∫︁
𝑗̂𝑒 · 𝑑𝐴 (6.96)

𝑛⃗ · ∇̂𝑇 = 0 (6.97)

at the liquid-vacuum interface;

Φ̂𝑙 = Φ̂0 (6.98)
𝑃 𝑙 = 𝑃𝑟 − 𝐶𝑅𝐼 (6.99)

𝑇 𝑙 = 𝑇0 (6.100)

at the base of the fluid column in the computational domain (0 < 𝑟 < 1, 𝑧 = −𝑧𝑝);

𝑢̂ · 𝑖⃗𝑟 = 0 (6.101)
𝑢̂ · 𝑖⃗𝑧 = 0 (6.102)
𝑇 𝑙 = 𝑇0 (6.103)

on the sidewalls of the fluid channel (𝑟 = 1, −𝑧𝑝 < 𝑧 < 0);

Φ̂ = Φ̂0 (6.104)
Φ̂𝑣 = Φ̂0 + 𝑉 (6.105)
𝐸̂ · 𝑖⃗𝑟 = 0 (6.106)

on the bottom of the domain (𝑧 = −𝑧𝑝), the top of the domain (𝑧 = 𝑧0), and the
radial edge of the domain (𝑟 = 𝑟𝑝), respectively;
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Φ̂ = Φ̂0 (6.107)

on the vertical (𝑟 = 1, −𝑧𝑝 < 𝑧 < 0) and horizontal (1 < 𝑟 < 𝑟𝑝, 𝑧 = 0) surfaces
of the plate, when it is a conductor; and

Φ̂𝑙 = Φ̂𝑝 (6.108)
𝜎̂ = 𝜖𝑝𝐸̂

𝑝 · 𝑖⃗𝑟 (6.109)
Φ̂𝑣 = Φ̂𝑝 (6.110)

𝐸̂𝑣 · 𝑖⃗𝑧 = 𝜖𝑝𝐸̂
𝑝 · 𝑖⃗𝑧 (6.111)

on the vertical and horizontal surfaces of the plate, when it is a dielectric with
relative permittivity 𝜖𝑝. The problem, therefore, is contingent upon the selection of
16 unique parameters

𝐸̂0 𝜖𝑟 𝜖𝑝 𝑟𝑝

𝑧𝑝 𝑧0 𝐵 = 𝑟*

𝑏0
𝑅𝐸 = 𝜌𝛾𝑟*

2𝜇2
0

Λ = 𝑘′𝑇0

𝑘0
𝐶𝑇
𝑐 = 𝜖0𝑘𝑇𝑇0

4𝑘0𝛾𝑟* 𝐶𝑇
𝑢 = 𝜖0𝜌𝑐𝑝𝑇0

4𝜇0𝑘0
𝐶𝑒
𝑢 = 𝜖0𝛾

𝜇0𝑘0𝑟*

𝜒 = ℎ𝑘0

𝜖0𝜖𝑟𝑘𝐵𝑇0
𝜓 = Δ𝐺

𝑘𝐵𝑇0
𝐶𝑅 = 𝑘0𝐸𝑐𝑏

3
0𝑅ℎ

2𝛾𝜌 (𝑞/𝑚) 𝑃𝑟

The physics of the present problem are clearly very rich and likely restrict rea-
sonably efforts to map the parameter space to investigations of but a few important
degrees of freedom. Of course, this naturally raises the question as to which ones are
“important”. As an example, one way to begin narrowing the parameter space could
be to select physical values corresponding to a single liquid (𝑘0, Δ𝐺, 𝛾, etc.) and hold
these constant, which is essentially what we do when we conduct experiments in the
laboratory. When this is the case, we can see that 𝜖𝑟, 𝑅𝐸, Λ, 𝐶𝑇

𝑐 , 𝐶𝑇
𝑢 , 𝐶𝑒

𝑢, 𝜒, and 𝜓
all become static parameters. This leaves us with 8 free values, of which another two
can be eliminated if we wish to study a meniscus that is isolated at infinity. Since this
simply requires an absence of boundary influences, we can choose 𝑟𝑝 and 𝑧0 arbitrarily
large and not have to worry about the sensitivity of the solution with respect to these
so long as they are both ≫ 1.

We are now faced with a six-dimensional spaced (defined by 𝐸̂0, 𝜖𝑝, 𝑧𝑝, 𝐵, 𝐶𝑅,
𝑃𝑟) that may or may not still be too expansive for us to reasonably explore through
numerics, depending upon the speed of the routines that we will develop. Before we
get to that point though, in the next few sections we will consider several substrate
issues and determine the relative importance of 𝜖𝑝 and 𝑧𝑝 to our fundamental study.
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𝜺𝟎 𝜺𝒑 

Figure 6-5: Sphere-on-cone (SOC) model. A sphere (radius 𝑟0) and an infinite conical
shaft (half-angle 𝜃𝑠) are superimposed to create a field-amplifier structure that has a
closed-form analytical solution to the Laplace equation. Several equipotential surfaces
are shown between the solid assembly and a distant counter-electrode (radius 𝑅 along
the zenith line). The presence of a substrate material with unique permittivity (𝜖𝑝 ̸=
𝜖0) surrounding the cone structure is admissible.

6.3 Substrate considerations
In this section we consider two issues that are central to dielectric substrate media:
(1) the manner in which they modify the structure of the field acting on the meniscus,
and (2) the singularity that they promote along the contact line. The results will be
useful for informing choices of substrate material during our numerical investigation.

6.3.1 Dielectric plate amplification
In order to study structural modifications to the interfacial electric field through
analytical means we might consider the simple case of a purely hemispherical meniscus
and look to the well-known sphere-on-cone (SOC) model [85, 86, 87, 74]. This offers
closed-form solutions to Laplace’s equation for a family of spherically-capped conical
structures that are subject to electrical stress (Fig. 6-5). As we show in the appendix,
solutions to Laplace in spherical space are of the product variety, Φ(𝑟, 𝜃) = 𝑅(𝑟)·Θ(𝜃),
where 𝑅(𝑟) and Θ(𝜃) are of the form

𝑅 (𝑟) = 𝐴𝑛𝑟
𝑛 +𝐵𝑛𝑟

−(𝑛+1)

Θ (𝜃) = 𝐶𝑛𝑃𝑛 (cos 𝜃) +𝐷𝑛𝑄𝑛 (cos 𝜃)

𝑃𝑛 and 𝑄𝑛 are the Legendre functions of the first and second kind, respectively,
while 𝑛 is the separation constant that results from segregating the 𝑟 and 𝜃 depen-
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dencies (essentially the eigenvalue of the differential operator). Typically we take
𝑛 ∈ Z+ (i.e. 𝑛 = 0, 1, 2, ...) so that the Legendre functions simplify to their familiar
polynomial forms and construct the series

Φ (𝑟, 𝜃) =
∞∑︁
𝑛=0

[︁
𝐴𝑛𝑟

𝑛 +𝐵𝑛𝑟
−(𝑛+1)

]︁
· [𝐶𝑛𝑃𝑛 (cos 𝜃) +𝐷𝑛𝑄𝑛 (cos 𝜃)] (6.112)

which can be useful for non-standard geometries but not always convenient. As it
turns out, in the case of the SOC we have license to abbreviate this series to a single
term so long as we can assign the reference potential Φ = 0 to the boundary defined
by the sphere-cone superposition. When we do this we get

Φ (𝑟, 𝜃) =
[︁
𝐴𝑟𝑛 +𝐵𝑟−(𝑛+1)

]︁
· [𝐶 · 𝑃𝑛 (cos 𝜃) +𝐷 ·𝑄𝑛 (cos 𝜃)] (6.113)

where the separation constant 𝑛 could, in general, be of fractional magnitude now.
Its only constraint is that it must satisfy

𝐶 · 𝑃𝑛 (cos 𝜃) +𝐷 ·𝑄𝑛 (cos 𝜃) = 0 (6.114)

for 𝜃 → 𝜋−𝜃𝑠 in order to preserve the boundary along the cone. In the traditional
situation where the SOC is surrounded by only vacuum we can remove 𝑄𝑛 from this
balance because it is singular along the zenith line (𝜃 → 0). At present, however,
we wish to investigate the slightly different scenario in which the body of the SOC
is enveloped by a dielectric material of potentially disparate permittivity (𝜖𝑝 ̸= 𝜖0)
leaving only the hemispherical cap exposed to vacuum. To do this we can invoke
unique field solutions for each of the two regions in the problem (i.e., the vacuum
region and the plate/substrate region) by writing

Φ (𝑟, 𝜃) =

⎧⎨⎩
[︁
𝐴𝑟𝑛 +𝐵𝑟−(𝑛+1)

]︁
𝑃𝑛 (cos 𝜃) = Φ𝑣, 𝜃 ∈ [0, 𝜋/2][︁

𝐶𝑟𝑛 +𝐷𝑟−(𝑛+1)
]︁

[𝑃𝑛 (cos 𝜃) + 𝐸 ·𝑄𝑛 (cos 𝜃)] = Φ𝑝, 𝜃 ∈ [𝜋/2, 𝜋 − 𝜃𝑠]
(6.115)

where 𝑛 is common to both fields. Notice that 𝑄𝑛 is now omitted for the vacuum
part of the solution, Φ𝑣, but retained for the part inside the plate, Φ𝑝. In both regions
the potential field needs to satisfy the reference value on the sphere, Φ(𝑟0, 𝜃) = 0 where
𝑟0 is the radius of the cap. Applying this condition gives

Φ𝑣 (𝑟, 𝜃) = 𝐴𝑟𝑛0

[︃(︂
𝑟

𝑟0

)︂𝑛
−
(︂
𝑟0

𝑟

)︂𝑛+1
]︃
𝑃𝑛 (cos 𝜃) (6.116)

Φ𝑝 (𝑟, 𝜃) = 𝐶𝑟𝑛0

[︃(︂
𝑟

𝑟0

)︂𝑛
−
(︂
𝑟0

𝑟

)︂𝑛+1
]︃

[𝑃𝑛 (cos 𝜃) + 𝐸 ·𝑄𝑛 (cos 𝜃)] (6.117)

The four remaining constants (𝐴, 𝐶, 𝐸, and 𝑛) are identified by enforcing the
constraints
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Φ𝑣 (𝑅, 0) = 𝑉 , where 𝑅 ≫ 𝑟0 (6.118)
Φ𝑣 (𝑟, 𝜋/2) = Φ𝑝 (𝑟, 𝜋/2) (6.119)

1
𝑟

𝜕Φ𝑣

𝜕𝜃

⃒⃒⃒⃒
⃒
𝜃=𝜋/2

= 𝜖𝑝
𝑟

𝜕Φ𝑝

𝜕𝜃

⃒⃒⃒⃒
⃒
𝜃=𝜋/2

(6.120)

Φ𝑑 (𝑟, 𝜋 − 𝜃𝑠) = 0 (6.121)

These provide a counter-electrode through which an electrical bias can be imposed
(condition 6.118) and ensure that the conical shaft of the SOC remains at the ap-
propriate potential (condition 6.121). Eqs. 6.119 and 6.120 represent the interfacial
conditions for a perfect dielectric (constant voltage and normal displacement field
across the surface) and are applied at the mid-plane where the vacuum region meets
the plate. After inserting these we find the system of governing equations

𝑉 = 𝐴𝑟𝑛0

[︃(︂
𝑅

𝑟0

)︂𝑛
−
(︂
𝑟0

𝑅

)︂𝑛+1
]︃

≈ 𝐴𝑅𝑛 (6.122)

𝐴𝑃𝑛 (0) = 𝐶 [𝑃𝑛 (0) + 𝐸 ·𝑄𝑛 (0)] (6.123)
𝐴𝑃 ′

𝑛 (0) = 𝜖𝑝𝐶 [𝑃 ′
𝑛 (0) + 𝐸 ·𝑄′

𝑛 (0)] (6.124)
0 = 𝑃𝑛 (0) + 𝐸 ·𝑄𝑛 (0) (6.125)

where the “primes” denote partial differentiation 𝜕/𝜕𝜃. Note that these involve
special values of the Legendre functions given by (see [82, 83])

𝑃𝑛 (0) = 1√
𝜋

cos
(︂
𝜋𝑛

2

)︂ Γ
(︁
𝑛+1

2

)︁
Γ
(︁
𝑛+2

2

)︁ (6.126)

𝑃 ′
𝑛 (0) = − 2√

𝜋
sin

(︂
𝜋𝑛

2

)︂ Γ
(︁
𝑛+2

2

)︁
Γ
(︁
𝑛+1

2

)︁ (6.127)

𝑄𝑛 (0) = −
√
𝜋

2 sin
(︂
𝜋𝑛

2

)︂ Γ
(︁
𝑛+1

2

)︁
Γ
(︁
𝑛+2

2

)︁ (6.128)

𝑄′
𝑛 (0) = −

√
𝜋 cos

(︂
𝜋𝑛

2

)︂ Γ
(︁
𝑛+2

2

)︁
Γ
(︁
𝑛+1

2

)︁ (6.129)

Since we are primarily interested in the vacuum fields acting on our notional
meniscus (the exposed part of the spherical cap from the SOC), we can now restrict
our attention to Φ𝑣. From above, this is

Φ𝑣 = 𝑉
(︂
𝑟

𝑅

)︂𝑛 [︃
1 −

(︂
𝑟0

𝑟

)︂2𝑛+1
]︃
𝑃𝑛 (cos 𝜃) (6.130)
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𝜽𝒔  (𝐝𝐞𝐠) 

𝒏 

𝜺𝒑 

Figure 6-6: Map of 𝑛 = 𝑛(𝜖𝑝, 𝜃𝑠) as a function of 𝜃𝑠 with the permittivity 𝜖𝑝 as a
parameter. The values 𝜖𝑝 = 1, 2, 6.5, 20, and ∞ are represented and increase in the
direction of the arrow. Reproduced from Lozano [74].

which varies with the properties of the plate through 𝑛 alone. Similarly, for the
interfacial electric fields produced by this distribution of potentials we have

𝐸𝑣
𝑛 = − 𝜕Φ𝑣

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟0

= −𝑉

𝑅

(︂
𝑅

𝑟0

)︂1−𝑛
(2𝑛+ 1)𝑃𝑛 (cos 𝜃) (6.131)

where the “n” in 𝐸𝑣
𝑛 is understood to denote the normal component of the vac-

uum field along the arc 𝑟 = 𝑟0 and not the eigenvalue of the differential operator
(or separation constant) used previously. Assuming that the spatially uniform and
axially-oriented field existing far from the interface goes like 𝐸0 ∼ −𝑉/𝑅, we find the
corresponding dimensionless form

𝐸𝑣
𝑛

𝐸0
= (2𝑛+ 1)

(︂
𝑅

𝑟0

)︂1−𝑛
𝑃𝑛 (cos 𝜃) (6.132)

Note that this is very similar to the result that we obtain in the appendix for the
traditional pure vacuum case (𝜖𝑝 → 𝜖0) with the lone exception that 𝑛 is now subject
to the constraints 6.118-6.121 rather than 𝑃𝑛(cos(𝜋 − 𝜃𝑠)). In order to ascertain the
effect that the dielectric has on the meniscus field we need to solve for 𝑛 = 𝑛(𝜖𝑝, 𝜃𝑠).
Instead of performing this directly, we refer to Lozano [74] where the same problem
is considered and it is shown that the separation constant ranges from 𝑛 ∼ 0.1 (for
the degenerate case 𝜃𝑠 → 0 and 𝜖𝑝 → 1) to 𝑛 = 1 (for all 𝜖𝑝 when 𝜃𝑠 → 𝜋/2). A
reproduction of this result is shown in Fig. 6-6.

In Fig. 6-7 we plot the interfacial electric field as a function of 𝑛 and 𝜃 in several
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Figure 6-7: Representations of the normal electric field acting on the cap of a sphere-
on-cone (SOC) immersed in a dielectric plate. Dimensionless field strengths are shown
for various 𝑛 (separation constant) and 𝜃. Left: Dimensionless normal field as a func-
tion of 𝑛 with polar angle 𝜃 as a parameter. The arrow delineates the direction of
decreasing value for 𝜃 =[0,15,30,45,60,75,90]. Center: Dimensionless field as a func-
tion of polar angle 𝜃 with 𝑛 as a parameter. The curves show that field distributions
are structurally similar but amplified for decreasing 𝑛 (signifying a narrowing shaft
and/or weakening 𝜖𝑝). Notice that the field along the interface of the plate, 𝜃 = 𝜋/2,
does not vanish even when 𝑛 ∼ 0.2 (the value corresponding to 𝜖𝑝 → ∞ in the
degenerate case 𝜃𝑠 → 0). Right: Ratio of the field for the conducting plate case,
𝑛 = 1 (shown as (𝐸𝑣

𝑛)1 here), to fields of other 𝑛 as a function of polar angle 𝜃. The
arrow indicates the direction of decreasing separation constant for 𝑛 =[0.1 0.12 0.14
0.16 0.18 0.2], a range that spans the approximate set of solutions for all 𝜖𝑝 in the
degenerate case 𝜃𝑠 → 0.
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different ways. For example, in Fig. 6-7 (left) we show how 𝐸𝑣
𝑛/𝐸0 varies for 𝑛 with

𝜃 as a parameter. From the curves we can see that small 𝑛 correspond to strong
amplifications, which we anticipate based on the fact that 𝑛 is a measure of the
“sharpness” of the SOC; i.e. small 𝑛 represent narrow conical shafts (small 𝜃𝑠) while
large 𝑛 represent comparatively broad conical shafts (large 𝜃𝑠). In Figs. 6-7 (center)
and 6-7 (right) we first show changes in 𝐸𝑣

𝑛/𝐸0 across the meniscus/interface and then
(𝐸𝑣

𝑛)𝑛=1/𝐸
𝑣
𝑛 in order to show the ratio of the limiting case 𝜃𝑠 → 𝜋/2 (corresponding

to 𝑛 = 1, a flat conducting plate) to solutions of other 𝑛. In doing so we primarily
focus on a subset of 𝑛 in the range from 0.1 ∼ 0.2 where the results of Lozano
[74] suggest that all solutions should reside when the shaft is degenerate (𝜃𝑠 → 0),
including the one for 𝜖𝑝 → ∞ (for reference, this corresponds to 𝑛 ∼ 0.2 under
these conditions). From the curves we see that the field distributions are structurally
similar but amplified to various degrees depending upon the dielectric strength of the
plate material. Interestingly, this is also true of the 𝜖𝑝 → ∞ case which we may have
initially expected to reduce to the 𝑛 = 1 solution. As we recall, in the chapter on
spheroidal menisci the 𝜖 → ∞ and equipotential fluids were mathematically identical.
Given the present revelation, however, it appears as though the relationship between
perfectly polarizable and perfectly conducting materials is not always trivial. The
organization of the boundaries, it turns out, must also have a say in determining
their behaviors.

In any event, it is rather amazing that the 𝜖𝑝 → ∞ material is able to permit a
nonzero field on the contact line (𝜃 = 𝜋/2) and in Fig. 6-8 we underscore this by
plotting 𝐸𝑣

𝑛/(𝐸𝑣
𝑛)𝑛=1 across the meniscus with 𝑛 as a parameter. While it is clear

that a key difference between dielectric and conducting plates is that the former sup-
port a nonzero field at the contact line and the latter do not, the essential conclusion
for present purposes is that the prevailing interfacial fields are otherwise structurally
similar, at least near the zenith where we know the important physics to be concen-
trated. Going forward, this could be a useful observation in that it might allow us to
restrict our attention to conducting substrates so long as we can show that these do
not obscure critical physics in the vicinity of the contact line.

6.3.2 Contact line singularity
It is interesting that the modulus of the electric field along the contact line need not
be identically zero when the meniscus is attached to a dielectric plate, regardless of
its polarizability. In the last section we considered a perfectly hemispherical interface
that ensured a smooth 90∘ junction with the substrate material but in general the
contact could be discontinuous. If it is true that the field does not vanish in its vicin-
ity, these more general geometries could have important consequences for the global
problem since discontinuous boundaries are commonly characterized by singularities.

In order to investigate the ramifications of a discontinuous contact we will consider
a meniscus that is fed by a vertical column of fluid and anchored by a plate of arbitrary
permittivity 𝜖𝑝 (Fig. 6-9). By zooming in on the contact line we see that the fluid
makes an angle 𝜃𝑙 with the horizontal and is very likely characterized by a locally
uniform potential. So long as 𝐵 ≪ 1 (recall that the size ratio 𝐵 = 𝑟*/𝑏0 is a measure
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Figure 6-8: Ratio of normal electric field for arbitrary 𝑛 to the field in the limiting
𝑛 = 1 case as a function of polar angle 𝜃. The arrow indicates the direction of
increasing separation constant for parameter values 𝑛 =[0.10 0.12 0.14 0.16 0.18
0.20]. Notice that the relative field behaviors are divergent near the contact line
but structurally similar in the vicinity of the meniscus tip where we know important
evaporation phenomena to be focused, particularly when 𝐵 ≪ 1. This is evidenced
by the modest slopes observed in the corresponding region of the plot (small 𝜃).

𝑬𝟎 
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𝜽𝒍 
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𝒓 

Figure 6-9: Geometric aspects of a discontinuous contact line. (Left): Electrically
stressed meniscus supported by a dielectric plate. (Right): Zoomed view of the
contact region where in general a geometric discontinuity might exist between the
boundary of the fluid column and the part of the liquid-vacuum interface extending
up toward the tip. Boundary and volume conditions are shown for a representative
mathematical framework resolved in 2D polar coordinates. Owing to charge relax-
ation, the liquid boundaries are equipotential while the adjacent volumes simply obey
Laplace.
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of the scale of the contact line in relation to the characteristic emission area), this
owes to the fact that the interface must be essentially fully relaxed even if emission
is taking place far downstream at the location of the meniscus tip. Assuming that
similar evaporation is not occurring nearby (more on this in the next section), the
ratio of the local particle residence time 𝜏 𝑙𝑟𝑒𝑠 to the electric relaxation time 𝜏𝑒 should
be a fair measure of relaxation; i.e., a ratio ≫ 1 should signify full relaxation in this
case. Since 𝜏 𝑙𝑟𝑒𝑠 ∼ 𝑟/𝑢 and 𝑢 ∝ 𝑟−2, the residence time must go like 𝜏 𝑙𝑟𝑒𝑠 ∝ 𝑟3 (where
𝑟 is measured from the tip so that the contact line resides near 𝑟 ∼ 𝑏0) and grow
very rapidly away from the tip, where we have already shown that it still may not be
comparable to 𝜏𝑒 (see chapter on orders of magnitude and scaling). As a result, the
condition of equipotentiality for the fluid would seem to withstand scrutiny as a first
approximation.

We can now construct a mathematical framework and examine the contact fields
in greater quantitative detail. Very near to the contact it is probably fair to represent
the problem in two-dimensional space so that we can invoke the polar Laplacian

∇2Φ = 1
𝑟

𝜕

𝜕𝑟

(︃
𝑟
𝜕Φ
𝜕𝑟

)︃
+ 1
𝑟2
𝜕2Φ
𝜕𝜃2 + 𝜕2Φ

𝜕𝑧2⏟  ⏞  
≈0

= 0 (6.133)

where 𝑟 is now the polar radius for a coordinate system centered about the contact
point and 𝜃 is the corresponding angle (with the respect to the horizontal). As is
conventional, we adopt here a product solution to this equation that is of the form
Φ(𝑟, 𝜃) = 𝑅(𝑟) · Θ(𝜃). After substituting this we find

𝑟

𝑅

𝑑

𝑑𝑟

(︃
𝑟
𝑑𝑅

𝑑𝑟

)︃
⏟  ⏞  

𝑚2

+ 1
Θ
𝑑2Θ
𝑑𝜃2⏟  ⏞  

−𝑚2

= 0 (6.134)

The variables have been fully separated between the two terms and so the equality
can only be satisfied when they differ by the constant 𝑚2. Starting with the first term
on the left, introducing this factor gives

𝑑2𝑅

𝑑𝑟2 + 1
𝑟

𝑑𝑅

𝑑𝑟
− 𝑚2

𝑟2 𝑅 = 0 (6.135)

Trying solutions of the form 𝑅 = 𝐴𝑟𝑛 shows that 𝑛 = ±𝑚. 𝑅 must, therefore,
take the general structure

𝑅 = 𝐴𝑟𝑛 +𝐵𝑟−𝑛 (6.136)

Similarly, for the second term in Eq. 6.134 we find

𝑑2Θ
𝑑𝜃2 +𝑚2Θ = 0 (6.137)

which, by inspection, gives

Θ = 𝐶 sin (𝑚𝜃) +𝐷 cos (𝑚𝜃) (6.138)
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for the general form of Θ. The boundary conditions for the simple problem
illustrated in Fig. 6-9 are that the potential along the liquid surfaces must equal
some reference value while the interface between the dielectric plate and vacuum
should behave in the usual charge-free way (continuity in the normal component of
the displacement field but discontinuity for the tangential part). Mathematically,
these require that

Φ𝑣|𝜃=𝜃𝑙 = Φ0 (6.139)
Φ𝑝|𝜃=−𝜋/2 = Φ0 (6.140)

Φ𝑣 = Φ𝑝, along 𝜃 = 0 (6.141)
𝜕Φ𝑣

𝜕𝜃

⃒⃒⃒⃒
⃒
𝜃=0

= 𝜖𝑝
𝜕Φ𝑝

𝜕𝜃

⃒⃒⃒⃒
⃒
𝜃=0

(6.142)

Here, the superscripts 𝑣 and 𝑝 represents the fields in the vacuum and plate regions,
respectively, while the dielectric strength of the latter is 𝜖𝑝. The first two of these
conditions are immediately satisfied if we choose

Φ𝑣 = 𝑟𝑚 sin
[︁
𝑚
(︁
𝜃𝑙 − 𝜃

)︁]︁
(6.143)

Φ𝑝 = 𝐶𝑟𝑚 sin
[︂
𝑚
(︂
𝜋

2 + 𝜃
)︂]︂

(6.144)

for the two Laplacian regions. Notice that two constants, 𝐶 and 𝑚, remain to be
identified now. The condition for continuity of the potential at the dielectric interface,
Eq. 6.141, yields the first of these

𝑟𝑚 sin
(︁
𝑚𝜃𝑙

)︁
= 𝐶𝑟𝑚 sin

(︂
𝜋𝑚

2

)︂
⇒ 𝐶 =

sin
(︁
𝑚𝜃𝑙

)︁
sin

(︁
𝜋𝑚
2

)︁ (6.145)

and after substituting this relationship and imposing Eq. 6.142 we find that the
separation constant is subject to

tan
(︂
𝜋𝑚

2

)︂
+ 𝜖𝑝 tan

(︁
𝑚𝜃𝑙

)︁
= 0 (6.146)

Resolution of the field behavior near the discontinuous contact point is now con-
tingent upon finding solutions to Eq. 6.146. Noting that the periodic nature of this
relationship will facilitate a multitude of mathematically satisfactory 𝑚, we antici-
pate that only a small subset of these will be physically viable. These will likely be
of the simple, low-order variety with 𝑚 ∈ (0, 1]. To develop a more strict sense for
the range of feasible 𝑚 we might consider an equipotential Φ𝑐 in the vicinity of the
contact point

Φ𝑣 = 𝑟𝑚 sin
[︁
𝑚
(︁
𝜃𝑙 − 𝜃

)︁]︁
= Φ𝑐 (6.147)
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As 𝜃 → 𝜃𝑙 the distance between the contact point and the curve traced by Φ𝑐 will
tend to infinity as we might expect. If we now begin to reduce 𝜃 the distance of the
equipotential should begin to shrink and approach a finite value 𝑟 as 𝜃 → 0 so that
it may penetrate the dielectric. To observe the radial behavior of this curve we can
reformulate Eq. 6.147 so that

𝑟𝑚 = Φ𝑐

sin [𝑚 (𝜃𝑙 − 𝜃)] (6.148)

In the most extreme case (that of a conducting plate), 𝑟 might become unbounded
again as we reduce 𝜃, but only at exactly 𝜃 = 0. Based on this observation we can
see that physical solutions for 𝑚 are those which prevent Eq. 6.148 from becoming
singular on 𝜃 ∈ (0, 𝜃𝑙). This requires that 𝑚(𝜃𝑙 − 𝜃) < 𝜋, where the left-hand side
reaches a maximum as 𝜃 → 0. The relationship

𝑚 <
𝜋

𝜃𝑙
(6.149)

is, therefore, the one that ensures “real” solutions. Recalling Eq. 6.146, we note
that the function 𝑓 = tan(𝜋𝑚/2) + 𝜖𝑝 tan(𝑚𝜃𝑙) is positive definite for small 𝑚 (as-
suming, of course, that the separation constant is positive) and only crosses the line
𝑓 = 0 between subsequent singularities (precluding 𝑚 = 0, which is the trivial solu-
tion). From the cosine factors in the denominator, these occur at

𝑚 =𝑛, n = 1, 3, 5, ... (6.150)

𝑚 =𝜋𝑛

2𝜃𝑙 , n = 1, 3, 5, ... (6.151)

Solutions to Eq. 6.146 that satisfy relationship 6.149 are sought between the two
smallest of these singular 𝑚-values. The results from this process are plotted in Fig.
6-10 as a function of the scaled angle 2𝜃𝑙/𝜋 and with the dielectric strength 𝜖𝑝 as a pa-
rameter. The limiting case 𝜖𝑝 → ∞ is shown in solid black and is characterized by two
discontinuous branches. For 𝜃𝑙 < 𝜋, the simplest solution involves tan(𝜋𝑚/2) → −∞
and requires that 𝑚 → 1 from the top. In other words, 𝑚 → 1+ and remains constant
for all 𝜃𝑙 in this range. For 𝜃𝑙 > 𝜋, the solution 𝑚 = 𝜋/𝜃𝑙 becomes appropriate. Note
that this is identical to the boundary for “physical” solutions which is also shown by
a dashed line. The remaining curves represent finite 𝜖𝑝 and show that the field at the
contact line is generally bounded for 𝜃𝑙 < 𝜋/2. This is because 𝜕Φ𝑣/𝜕𝑟 ∝ 𝑟𝑚−1 and 𝑚
is greater than unity for these angles. On the other hand, 𝑚 dips below unity when
𝜃𝑙 < 𝜋/2 and this suggests that the contact line begins to harbor a divergent field,
albeit one of the relatively weak variety. As it turns out, the field is still integrable
over the polar radius 𝑟. Observe that∫︁ 𝑟

0
(𝑟′)𝑚−1

𝑑𝑟′ → 1
𝑚
𝑟𝑚 (6.152)

which is always finite, regardless of the integration bounds. Recognizing that the
same is true for the square of the field, we see that it should still be possible to com-
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Figure 6-10: Simple solutions to the problem of a discontinuous contact line in polar
coordinates. The separation constant 𝑚 is plotted as a function of the scaled contact
angle 2𝜃𝑙/𝜋 with 𝜖𝑝 as a parameter. The arrows indicate the direction of increasing
value for 𝜖𝑝 =[1,5,10,25,100,∞] while the dashed line represents the upper bound for
“physical” solutions. Recognizing that the field at the liquid interface 𝐸𝑣

𝑛 ∝ 𝑟𝑚−1, we
see from the curves that 𝜃𝑙 < 𝜋/2 ensures unconditionally bounded fields. On the
other hand, when 𝜃𝑙 > 𝜋/2 the 𝑚 dip below unity and give rise to a singular field at
the contact point where 𝑟 → 0. This is the case for all permittivities but the limiting
value 𝜖𝑝 → ∞, which does not support a singularity until 𝜃𝑙 > 𝜋.

pute currents, force densities, etc. along the contact line in spite of its inconvenient
behavior. In particular, the former is of interest for present purposes (the current)
and in the next section we consider whether or not the singularity could meaningfully
contribute to evaporation.

6.3.3 Emission from the contact line

The singular fields we have found suggest that evaporation of the liquid might occur
not just at the tip of the meniscus but also around its contact line. In order to
determine whether the fractional contribution of the current emanating from the
latter is significant we need to revisit the model from the last section. The way it is
formulated omits any characteristic lengths or fields and so we first need to rectify
this by writing the modified distributions

121



Φ𝑣 = 𝐴𝑟𝑚 sin
[︁
𝑚
(︁
𝜃𝑙 − 𝜃

)︁]︁
(6.153)

Φ𝑝 = 𝐵𝑟𝑚 sin
[︂
𝑚
(︂
𝜋

2 + 𝜃
)︂]︂

(6.154)

where 𝐴 is a new constant that we can use to enforce an additional boundary
condition. Before introducing this condition, notice that these field distributions still
allow for Φ = 0 on the liquid surfaces (𝜃 = 𝜃𝑙 and 𝜃 = −𝜋/2) and, similarly, that a
dielectric interface at 𝜃 = 0 with

Φ𝑣 = Φ𝑝 (6.155)
𝜕Φ𝑣

𝜕𝜃
= 𝜖𝑝

𝜕Φ𝑝

𝜕𝜃
(6.156)

still requires the separation constant 𝑚 to obey

tan
(︂
𝜋𝑚

2

)︂
+ 𝜖𝑝 tan

(︁
𝑚𝜃𝑙

)︁
= 0 (6.157)

just as before. In view of this, the values presented in Fig. 6-10 should be germane
to what follows. The task now is to resolve the new constant 𝐴 through an appropriate
boundary imposition. This is facilitated in part by noting that the influences of the
strong fields surrounding the contact line are likely very localized. Anecdotally, this
notion would seem to be supported by photographic images of steady Taylor cones
atop capillary tubes where the structure of the anchoring region is not noticeably
perturbed in spite of sharp geometric transitions between the liquid and the feeding
tube [92, 93]. Given that these interfaces seem to globally adhere to the nominal
Taylor angle, even near the anchoring point where there could be locally divergent
fields, the conclusion must be that the length scale over which these fall off must be
very small in comparison to the characteristic scale of the full meniscus. With this
in mind, we might formulate the condition

𝐸𝑣
𝑛 (𝑟 = 𝛼𝑏0) ∼

√︃
4𝛾
𝜖0𝑏0

(6.158)

where 𝛼 < 1 is some number ensuring that the characteristic length scale for field
dilution is smaller than the characteristic scale of the meniscus, 𝑏0. The term on the
right-hand side is the characteristic field corresponding to the contact radius while
𝐸𝑣
𝑛 follows from

𝐸𝑣
𝑛 = −1

𝑟

𝜕Φ𝑣

𝜕𝜃

⃒⃒⃒⃒
⃒
𝜃=𝜃𝑙

= 𝑚𝐴

𝑟1−𝑚 (6.159)

Notice that 𝑚 < 1, which is prerequisite for singular fields, already ensures that
the effects of the contact line vanish very far away, where 𝑟 → ∞. The function of the
boundary condition (and specifically the number 𝛼), therefore, is simply to mediate
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the rate at which attenuation should occur. After applying it we find√︃
4𝛾
𝜖0𝑏0

= 𝑚𝐴

(𝛼𝑏0)1−𝑚 ⇒ 𝐴 = (𝛼𝑏0)1−𝑚

𝑚

√︃
4𝛾
𝜖0𝑏0

(6.160)

and so the field along the interface becomes

𝐸𝑣
𝑛 =

(︃
𝛼𝑏0

𝑟

)︃1−𝑚√︃ 4𝛾
𝜖0𝑏0

(6.161)

This is a distribution that we can now use to estimate the current produced by
evaporation along the contact line. Recalling the conduction limitations discussed
in the earlier chapters we can assume 𝑗 ∼ 𝑘𝐸𝑣

𝑛/𝜖𝑟 for the prevailing current density.
Combining this with the differential area 𝑑𝐴 ∼ 2𝜋𝑏0𝑑𝑟 gives

𝑑𝐼 ∼ 2𝜋𝑏0
𝑘

𝜖𝑟

√︃
4𝛾
𝜖0𝑏0

(︃
𝛼𝑏0

𝑟

)︃1−𝑚

𝑑𝑟 (6.162)

for the differential current contribution. The aggregated current emanating from
the contact region should be the integral of Eq. 6.162 from 𝑟 = 0 to 𝑟 = 𝑟*

𝑐 , where
the latter is the location at which the contact field approaches the characteristic one
for ion evaporation, 𝐸*. From Eq. 6.161 we have that

𝐸* ∼
(︃
𝛼𝑏0

𝑟*
𝑐

)︃1−𝑚√︃ 4𝛾
𝜖0𝑏0

(6.163)

The critical field 𝐸* is related to the curvature at the tip of an evaporating menis-
cus. Since 𝐸* ∼

√︁
4𝛾/𝜖0𝑟*, where 𝑟* is the scale for the tip, we can substitute and

find

𝑟*
𝑐 ∼ 𝛼𝑏0

(︂
𝑟*

𝑏0

)︂ 1
2(1−𝑚)

(6.164)

The ratio of this length to 𝑟* is then

𝑟*
𝑐

𝑟* ∼ 𝛼
(︂
𝑟*

𝑏0

)︂ 2𝑚−1
2(1−𝑚)

= 𝛼𝐵
2𝑚−1

2(1−𝑚) (6.165)

The case of 𝐵 & 1 is trivial for the present purposes and has already been investi-
gated to an extent. We are primarily interested in the less certain situation in which
the scale of the full meniscus is much larger than that of the usual emission area at its
apex. By definition, this requires that 𝐵 ≪ 1. When this case prevails, the exponent
in Eq. 6.165 becomes very important. For example, in the event that 𝑚 → 1/2 (cor-
responding to the strongest singularities we might expect to see, relatively speaking),
(2𝑚 − 1)/(2𝑚 − 2) → 0 and the ratio of the scales is essentially tantamount to 𝛼,
which is mostly unknown still. Depending upon how small it is, this may or may not
make 𝑟*

𝑐 much less than 𝑟*. At the opposite end of the spectrum, however, where
𝑚 → 1 for less divergent fields, we see that the exponent (2𝑚 − 1)/(2𝑚 − 2) → ∞
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causing 𝑟*
𝑐 to vanish. Obviously, this would preclude any meaningful emission.

Although we now have some qualitative sense for how big the emission zone around
the contact line could be, the relative current that could be evaporated there remains
unclear. This owes to the disparity in activated areas (observe that 𝐴 ∼ 2𝜋𝑏0𝑟

*
𝑐

around the contact line while 𝐴 ∼ 2𝜋(𝑟*)2 at the tip) and also the drastic difference
in driving fields (𝐸 → ∞ over parts of the contact line while 𝐸 ∼ 𝐸* at the tip).
To resolve the issue definitively we can now integrate Eq. 6.162 over the appropriate
span

𝐼*
𝑐 ∼ 2𝜋𝑏0

𝑘

𝜖𝑟

√︃
4𝛾
𝜖0𝑏0

(𝛼𝑏0)1−𝑚
∫︁ 𝑟*

𝑐

0
𝑟𝑚−1𝑑𝑟 (6.166)

which results in

𝐼*
𝑐 ∼ 2𝜋𝑏0

𝑘

𝜖𝑟

√︃
4𝛾
𝜖0𝑏0

(𝛼𝑏0)1−𝑚 · (𝑟*
𝑐 )
𝑚

𝑚
(6.167)

After substituting for 𝑟*
𝑐

𝐼*
𝑐 ∼ 2𝜋𝑏2

0
𝛼𝑘

𝑚𝜖𝑟

√︃
4𝛾
𝜖0𝑏0

𝐵
𝑚

2(1−𝑚) (6.168)

In an effort to compare this to the characteristic current that might be produced
at the tip of the meniscus, 𝐼*, we can write

𝐼* ∼ 2𝜋 (𝑟*)2 𝑘𝐸* ∼ 2𝜋 (𝑟*)2 𝑘

𝜖𝑟

√︃
4𝛾
𝜖0𝑟* (6.169)

If we now take the ratio of 𝐼*
𝑐 to this current we find

𝐼*
𝑐

𝐼* ∼ 𝛼

𝑚
𝐵

4𝑚−3
2(1−𝑚) (6.170)

The number 𝛼 is somewhat unknown but it is probably safe to say that even
if 𝛼/𝑚 approaches unity, corresponding to a very strong singularity, it can never
be much greater. In all likelihood it could be that 𝛼/𝑚 ≪ 1 very often; however,
the attendant ambiguity requires that we seek recourse if we are to quantify the
ratio from Eq. 6.170 in any way. Fortunately, the exponent over 𝐵 leads to a high
degree of nonlinearity that we can exploit to examine the essential behavior of 𝐼*

𝑐 /𝐼
*

with greater certainty. Notice that when 𝑚 → 1/2 in extreme cases, the exponent
(4𝑚 − 3)/(2 − 2𝑚) → −1 and 𝐵 ends up being inverted. Since we are considering
the regime in which 𝐵 ≪ 1, this would suggest that the current emanating from
the contact line could actually be measurable in comparison to that which originates
from the tip of the meniscus, or even dominate. At the other end of the spectrum,
however, when 𝑚 → 1 we see (4𝑚 − 3)/(2 − 2𝑚) → ∞ which says that the contact
current is completely suppressed. It would appear then that 𝑚, and therefore the
contact angle 𝜃𝑙, are critical in determining the emission behavior.

In Fig. 6-11 we plot the nonlinear term 𝐵𝑓 , where 𝑓 is the exponent (4𝑚−3)/(2−
2𝑚), as a function of the separation constant 𝑚 with the scale ratio 𝐵 as a parameter.
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Figure 6-11: Nonlinear function 𝐵𝑓(𝑚) as a function of 𝑚 with the meniscus scale
factor 𝐵 as a parameter. The exponent 𝑓(𝑚) is defined as 𝑓(𝑚) = (4𝑚−3)/(2−2𝑚)
while the arrow indicates the direction of decreasing 𝐵 for several values that are
explicitly shown. There is a crossover field value 𝑚 = 3/4 above which 𝐵𝑓 is strongly
suppressed and below which it is amplified.

As expected we see that small 𝑚 could amplify the contribution of the contact current
while larger 𝑚 must suppress it very strongly. Also notice that in all cases there is a
crossover value 𝑚 = 3/4 at which 𝐵𝑓 → 𝐵0 → 1.

The problem now calls for us to revisit the 𝑚 − 𝜃𝑙 relationship so that we can
determine the conditions under which 𝑚 will be greater than the crossover field and
the conditions under which it will be smaller. These should tell us when to anticipate
emission from the contact line. In Fig. 6-12 we plot the subset of solutions to Eq.
6.146 corresponding to 𝜃𝑙 ∈ [𝜋/2, 𝜋]. Notice, however, that unlike Fig. 6-10 the
abscissa is now 𝜃𝑐. We define this here as

𝜃𝑐 = 𝜃𝑙 − 𝜋

2 (6.171)

It is shown in units of degrees and might be interpreted as the internal half-angle
of the meniscus in the event that it is a perfect cone. For example, 𝜃𝑐 = 49.2∘ would
indicate a classical Taylor structure. Based on the results we can see that for nearly
all 𝜖𝑝 the 𝑚-values remain above 3/4, at least within the range of delineated contact
angles. The lone exception is 𝜖𝑝 = 1 (a vacuum surrounding) which crosses over
at 𝜃𝑐 ≈ 60∘. This suggests that ideal Taylor cones are likely immune to contact
evaporation regardless of the anchoring media. Also note that 𝜖𝑝 ∼ 5-10 is loosely
representative of many dielectrics of interest and that contact emission from these
would appear to be strongly suppressed.
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Figure 6-12: Separation constant 𝑚 as a function of cone angle 𝜃𝑐 ∈ [0, 𝜋/2] (shown
in units of degrees) with 𝜖𝑝 as a parameter. The results suggest that contact emission
from many dielectric plate media is likely strongly suppressed as 𝑚 is well above the
crossover value of 3/4 in nearly all cases. The lone exception involves 𝜖𝑝 = 1, where
𝑚 = 3/4 corresponds to 𝜃𝑐 ≈ 60∘, an angle greater than that of the classical Taylor
structure.
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6.4 Numerical methodology
The results from the last several sections suggest that the fields surrounding menisci
attached to dielectric anchoring media have slight morphological differences when
compared to those of perfectly conducting plates. This is particularly true of the
region in the immediate vicinity of the contact line, where dielectric materials seem
to permit a field that is not only non-zero, but possibly singular. In spite of this, we
have shown that attendant evaporation should be relatively limited in comparison to
the currents that are characteristic of the meniscus tip, at least in the case of ionic
liquid working fluids.

With these issues in mind, we will choose here to further reduce the rich parameter
space of the generalized free-volume problem by restricting our attention to conduct-
ing anchoring media. Although this may preclude us from identifying some of the finer
nuances of certain emission architectures (e.g. menisci at the end of thin, dielectric
capillary tubes), it is likely that we will still capture the essential physics. In the sec-
tions that follow we outline a procedure for using a commercial finite-element (FEM)
package, Comsol, to solve the reduced problem in a self-consistent way. This begins
with a brief conceptual overview of the numerical protocol and continues with discus-
sions on how the various facets of the model (volume equations, boundary conditions,
etc.) are integrated within Comsol’s specific software environment. To conclude, we
address the inherently iterative nature of the process with the introduction of an
interfacial propagation strategy.

6.4.1 Overview
Figure 6-13 presents a conceptual overview of the numerical process we will use to
identify steady, axisymmetric solutions to the generalized free-volume problem. We
will work in a cylindrical domain similar to that which is shown in Fig. 6-1 (ori-
gin of the vertical axis coincident with the plane defined by the top of the plate)
and start by specifying several parameters of interest (i.e. values for the various de-
grees of freedom in the parameter space). These include the downstream field 𝐸̂0,
the feeding or reservoir pressure 𝑃𝑟, the feed impedance 𝐶𝑟, as well as a fixed set
of intrinsic fluid properties (nominal conductivity, surface tension, solvation energy,
etc.). Additionally, we will input an initial “guess” as to the topographical profile of
the interface and any useful information from previous simulations that might help
expedite convergence for the run at hand.

Once all of the parameters have been chosen, including the geometry, the process
calls for us to solve the various physics in sequence. While some packages like Com-
sol offer multi- or coupled-physics simulation capabilities that theoretically allow for
these to be solved concurrently, for logistical and computational reasons it will be
easiest for us to utilize the piecemeal approach. This begins with the solution of the
electrical equations, where we solve Laplace in the vacuum region and charge conser-
vation ∇· 𝑗⃗ = 0 in the liquid (also note that the potential in the plate is now spatially
uniform since we are considering conducting substrates, and that this obviates the
need for numerical treatment in the attendant subdomain). This is followed by solu-
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Start 

 Input geometry 
 Input fluid properties 
 Input previous results 

 Input electric field, 𝑬 𝟎 
 Input feed pressure, 𝑷 𝒓 
 Input impedance, 𝑪𝒓 

Compute Laplace in vacuum and 𝛁 ∙ 𝒋 = 𝟎 in the fluid 

Compute net pressure at meniscus nodes 

Propagate free interface 

Is equilibrium globally satisfied? 
No 

Yes 

End 

Compute quasi-Stokesian flow in the liquid 

Compute Ohmic heating in the liquid and evaporation 

Figure 6-13: Conceptual framework for numerical solution procedure to the general-
ized free-volume problem. We start by specifying topographical characteristics of the
free-interface and values of interest from the parameter space. The computational
scheme then proceeds with sequential FEM solutions to the various physics (electri-
cal, hydraulic, heat transfer) and an integrated estimate of the instantaneous current.
The results are used to investigate the mechanical balance at the interface before
propagating it if necessary.
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tions to the Navier-Stokes and heat transfer relations in the liquid. After all of the
volume physics have been handled, at which point we should have all of the necessary
electrical/hydraulic/thermal field information, we can invoke the kinetic evaporation
law at the interface and perform a surface integration to determine an approximate
current. This will be used in part to determine the distribution of net stress across
the interface before iterating (in the event that the interface requires perturbation)
or terminating the loop (in the event that global equilibrium has been reached). Also
note that the notion of a “net” pressure, which we have yet to introduce, is specific
to our steady-state approach and will be expounded upon as part of the interfacial
propagation discussion at the end of this chapter.

6.4.2 Comsol integration
Solutions to all of the volume physics will be carried out in the Comsol environment.
In this section we detail specific aspects of the relevant solver configurations, which
include but are not limited to boundary declarations and mesh construction. It should
also be pointed out that Comsol requires us to work in physical units, and that as
a result we will often reference dimensional quantities during this process. Keep
in mind, however, that these dimensional calculations will be restricted to only the
subroutines involving FEM. In other words, we will convert to units before calling
Comsol and then immediately convert back to dimensionless values before examining
the stress balance and propagating the interface, if necessary, since these will be
managed elsewhere (Matlab).

Electrodynamics

For the electrical calculations we start by setting the voltage on the downstream
counter-electrode. Assuming we want to impose a uniform downstream field 𝐸0, this
requires that

Φ𝑣 (𝑧 = 𝑧0) = −𝑉 = 𝐸0𝑧0 (6.172)

where 𝑧0 is the distance between the plate and the top electrode. Given that
the field far from the meniscus should approach 𝐸0 asymptotically, this Dirichlet
condition should provide for a reasonable facsimile of a uniform, axially-directed field
in the corresponding vicinity so long as 𝑧0 ≫ 𝑏0. To isolate the meniscus at infinity
we will also take

𝑛⃗ · 𝐸⃗𝑣 = 0 (6.173)

along the vertical edge of the solution domain at 𝑟 = 𝑟𝑝. Here, 𝑛⃗ is the unit normal
for the corresponding surface and 𝑟𝑝 ≫ 𝑏0. All remaining boundaries, excepting that
of the meniscus, are set to the reference potential Φ0 = 0.

The specifications for the liquid-vacuum interface and charge conservation in the
fluid are somewhat more involved. With respect to the former, the easiest approach
is to specify the distribution of surface charge densities. From the earlier discussion
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on charge transport we have that 𝑗𝑒 = 𝑘𝐸𝑙
𝑛 + 𝑗𝑐𝑜𝑛𝑣, which says that the local flux of

evaporating charges must be balanced by local conduction and convection. Recalling
the kinetic evaporation law, we can rewrite this in terms of 𝜎 as

𝜎 = ℎ

𝑘𝐵𝑇
exp

⎛⎝ 1
𝑘𝐵𝑇

⎧⎨⎩Δ𝐺−
√︃
𝑞3𝐸𝑣

𝑛

4𝜋𝜖0

⎫⎬⎭
⎞⎠ ·

[︁
𝑘𝐸𝑙

𝑛 + 𝑗𝑐𝑜𝑛𝑣
]︁

(6.174)

Note that Comsol provides access to the normal and tangential unit vectors on
each surface, internal or otherwise. In axisymmetric cylindrical space it defines these
as

𝑛⃗ = 𝑛𝑟𝑖𝑟 + 𝑛𝑧𝑖𝑧 (6.175)
𝑡⃗ = 𝑡𝑟𝑖𝑟 + 𝑡𝑧𝑖𝑧 (6.176)

and so anytime we require, for example, 𝐸𝑣
𝑛 and 𝐸𝑙

𝑛 we are writing

𝐸𝑣
𝑛 = 𝐸𝑣

𝑟 · 𝑛𝑟 + 𝐸𝑣
𝑧 · 𝑛𝑧 (6.177)

𝐸𝑙
𝑛 = 𝐸𝑙

𝑟 · 𝑛𝑟 + 𝐸𝑙
𝑧 · 𝑛𝑧 (6.178)

where 𝐸⃗𝑣 = 𝐸𝑣
𝑟 𝑖⃗𝑟+𝐸𝑣

𝑧 𝑖⃗𝑧 and 𝐸⃗𝑙 = 𝐸𝑙
𝑟𝑖𝑟+𝐸𝑙

𝑧𝑖𝑧 are the fields stored by Comsol for the
vacuum and liquid regions, respectively. Also notice that the convection current 𝑗𝑐𝑜𝑛𝑣
is left in its unexpanded form. This is because we solve the electrical equations before
the hydraulic ones during each iteration, and the fact that the convected current is
some function of the latter. In view of this we specify it as an external input and
provide 𝑗𝑐𝑜𝑛𝑣 = 𝑗𝑐𝑜𝑛𝑣(𝑟) to the electrical solver where 𝑗𝑐𝑜𝑛𝑣(𝑟) is a radially-resolved
estimation taken from the most recent iteration. For example, during the (𝑖 − 1)
iteration we calculate from Eq. 6.21

𝑗𝑖−1
𝑐𝑜𝑛𝑣 = −1

𝑟

𝜕

𝜕𝑠
(𝑣𝑡𝜎𝑟) (6.179)

which becomes the input to the interfacial condition of Eq. 6.174 for the 𝑖𝑡ℎ itera-
tion. Near the tip, we address the apparent singularity by expanding this relationship
so that

−1
𝑟

𝜕

𝜕𝑠
(𝑣𝑡𝜎𝑟) → − 𝜕

𝜕𝑠
(𝑣𝑡𝜎) − 𝑣𝑡𝜎

𝑟

𝜕𝑟

𝜕𝑠
(6.180)

In the limit as 𝑟 → 0 we have 𝜕𝑟/𝜕𝑠 → 1 and 𝑣𝑡 → 0 by symmetry. Recognizing
that

lim
𝑟→0

𝑣𝑡𝜎

𝑟
→

𝜎 𝜕𝑣𝑡

𝜕𝑟
+ 𝑣𝑡

𝜕𝜎
𝜕𝑟

1 → 𝜎
𝜕𝑣𝑡
𝜕𝑟

(6.181)

after application of L’Hôpital’s, this result gives
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lim
𝑟→0

𝑗𝑐𝑜𝑛𝑣 → −2𝜎𝜕𝑣𝑡
𝜕𝑟

(6.182)

at the exact tip of the meniscus. Repeated application of this procedure should
offer numerical convergence for the 𝜎 condition in our FEM calculations, especially
in view of the small convection contribution that we anticipate.

The final condition that needs to be accounted for is charge conservation ∇· 𝑗⃗ = 0
in the fluid. We do this by invoking Ohm’s law 𝑗⃗ = 𝑘𝐸⃗𝑙 and expanding so that

∇ · 𝑗⃗ = 0 → 𝑘∇ · 𝐸⃗𝑙 + (∇𝑘) · 𝐸⃗𝑙 = 0 (6.183)

As before, we take a linear approximation for thermally-induced modifications to
the prevailing electrical conductivity, 𝑘 = 𝑘0 + 𝑘′Δ𝑇 . Substituting this

∇ · 𝐸⃗𝑙 = −𝑘′ (∇𝑇 ) · 𝐸⃗𝑙

𝑘0 + 𝑘′Δ𝑇 (6.184)

The module in Comsol that directly handles currents is somewhat inconvenient.
In lieu of it, we wish to make use of the basic electrostatic interface. This can be
done by recognizing that the right-hand side of Eq. 6.184 looks similar to a space
charge (𝜌𝑓 ) since ∇ · 𝐸⃗ = 𝜌𝑓/𝜖. With this is mind, we give as an external input to
the electrostatic interface

𝜌𝑓 (𝑟, 𝑧) = −𝜖0𝜖𝑟
𝑘′ (∇𝑇 ) · 𝐸⃗𝑙

𝑘0 + 𝑘′Δ𝑇 (6.185)

where the temperature map 𝑇 (𝑟, 𝑧) = 𝑇 (𝑟, 𝑧)𝑖−1 is again an estimation from the
previous iteration in the numerical sequence. This satisfies charge continuity per se
and requires no further attention.

Hydrodynamics

Hydrodynamics calculations are restricted to the liquid subdomain, where we will
make use of the laminar flow module in Comsol. The first condition that needs to be
imposed is the pressure along the bottom horizontal boundary of the fluid channel.
Owing to the linearity of the Stokes equation, in all cases we will take the reference
value 𝑃 = 0. The astute reader may note that, in general, this represents a shift from
condition reflected in Eq. 6.35. We will address this issue while discussing interfacial
propagation in the corresponding section.

In cylindrical space, the laminar flow module offers the built-in velocity vector

𝑢⃗ = 𝑢𝑖𝑟 + 𝑣𝑖𝜃 + 𝑤𝑖𝑧 (6.186)

The next condition that must be satisfied is “no-slip” along the vertical wall of
the channel. In terms of the velocity components, this requires
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𝑢 = 0, and (6.187)
𝑤 = 0 (6.188)

at that boundary, which we enforce with Comsol’s built-in option. The final
condition defining the flow field involves the liquid-vacuum interface, where we might
specify two of three potential constraints. These involve (1) the normal component
of interfacial traction vector, 𝑛⃗ · 𝜏 · 𝑛⃗; (2) the tangential component of the interfacial
traction vector, 𝑡⃗ · 𝜏 · 𝑛⃗; or (3) the normal component of the flow velocity, 𝑢⃗ · 𝑛⃗ =
𝑢 ·𝑛𝑟 +𝑤 ·𝑛𝑧. In studies of the dynamics of the surface motion it is most appropriate
to use the first two of these and to take 𝑛⃗ · 𝜏 · 𝑛⃗ directly from the stress balance.
For present purposes, however, we are only interested in steady solutions and so it
will be easiest to make use of the latter two. From the appendix, the fluid stress in
axisymmetric cylindrical space reduces to

𝜏 = −𝑝𝐼 + 𝜇

⎛⎝ 2𝜕𝑢
𝜕𝑟

(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁
2𝜕𝑤
𝜕𝑧

⎞⎠ (6.189)

where 𝑢𝑟 and 𝑢𝑧 (or 𝑤𝑟 and 𝑤𝑧) will be used to denote the respective spatial
derivatives hereafter. For the tangential stress, the hydrostatic pressure term drops
out and we find that

𝑡⃗ · 𝜏 · 𝑛⃗ = 2 (𝑢𝑟𝑛𝑟𝑡𝑟 + 𝑤𝑧𝑛𝑧𝑡𝑧) + (𝑢𝑧 + 𝑤𝑟) (𝑛𝑧𝑡𝑟 + 𝑛𝑟𝑡𝑧) (6.190)

Therefore, to handle the electrical shear we specify in Comsol

𝜎 (𝐸𝑣
𝑟 𝑡𝑟 + 𝐸𝑣

𝑧 𝑡𝑧) = 2 (𝑢𝑟𝑛𝑟𝑡𝑟 + 𝑤𝑧𝑛𝑧𝑡𝑧) + (𝑢𝑧 + 𝑤𝑟) (𝑛𝑧𝑡𝑟 + 𝑛𝑟𝑡𝑧) (6.191)

where 𝜎 is the value calculated from the electrical equations during the current
iteration. For the next condition, that of the normal flow at the interface, we recognize
that only evaporation can cause 𝑢⃗ · 𝑛⃗ ̸= 0 in the steady-state. Observe that, when
the evaporation is nonzero the flow immediately inside the interface must be

𝑢⃗ · 𝑛⃗ = 𝑗𝑒
𝜌 (𝑞/𝑚) (6.192)

in order to satisfy mass continuity, where 𝑗𝑒 is the local flux of emitted charge
(A/m2). With this in mind, we offer to Comsol the ancillary condition

𝑢𝑛𝑟 + 𝑤𝑛𝑧 = 𝑗𝑒
𝜌 (𝑞/𝑚) (6.193)

again using the 𝑗𝑒 calculated from the current iteration.
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Heat transfer

The heat transfer calculations are also restricted to the liquid subdomain. The bound-
ary conditions are very simple and involve the Dirichlet specifications 𝑇 = 𝑇0, where
𝑇0 is a fixed reference, along the bottom and vertical walls of the fluid channel in the
computational domain. The meniscus is a thermal insulator to first approximation
and requires that ∇𝑇 = 0 along its boundary. This is easily applied with a built-in
option provided by Comsol.

For the transport equation in the volume, we simply use

𝑞 = [𝑘0 + 𝑘′ (𝑇 − 𝑇0)] 𝐸⃗𝑙 · 𝐸⃗𝑙 (6.194)

as the source term (W/m3), where the field 𝐸⃗𝑙 comes from the electrical calculation
in the current iteration. Similarly, the convection term uses 𝑢⃗ from the hydraulic step
in the current iteration.

Meshing

For convenience and efficiency we take advantage of Comsol’s built-in meshing engine
to discretize the solution domain. Generation requires declaration of no more than
four sizing parameters. These include

∙ hmax: the maximum allowable element size in the domain;

∙ hmin: the minimum allowable element size in the domain;

∙ hgrad: the maximum allowable growth rate between adjacent elements (e.g.
hgrad=2 allows for an element to be twice as large as a neighbor); and

∙ hcurve: a factor controlling the maximum allowable element size along a curved
boundary (e.g. hcurve=0.1 requires all elements along a curved boundary to be
less than ten times smaller than the local radius of curvature of that boundary).

For accuracy we create one mesh for the electrostatic calculations and another
for the hydraulic and heat transfer calculations during each computational cycle.
This is helpful in that it allows us to populate a denser mesh for the hydraulics,
which benefit more from the smaller elements, without slowing down the electrical
counterpart. Nominal settings for the electrical mesh are ℎ𝑚𝑎𝑥 = 𝑏0/4 (where 𝑏0
is the meniscus contact radius), ℎ𝑚𝑖𝑛 = 10−11 (arbitrarily small so as not to limit
resolution near the meniscus tip), ℎ𝑔𝑟𝑎𝑑 = 1.25, and ℎ𝑐𝑢𝑟𝑣𝑒 = 0.01. We also call
for a single “adaption” in which we offer the functional 𝐸𝑣 × 𝐸𝑣 along the liquid-
vacuum interface. This allows Comsol to selectively distribute additional elements
near the interface to minimize an internal estimate of the error for the functional. It
effectively serves as a systematic mesh refinement step that, within reason, maximizes
accuracy in the calculation of the vacuum fields that govern the meniscus. Nominal
settings for the hydraulic and heat transfer mesh are ℎ𝑚𝑎𝑥 = 𝑏0/25, ℎ𝑚𝑖𝑛 = 10−11,
ℎ𝑔𝑟𝑎𝑑 = 1.25, ℎ𝑐𝑢𝑟𝑣𝑒 = 0.005, and include no adaption step.
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6.4.3 Interfacial propagation

In a previous section we modified the pressure at the base of the liquid channel in
the computational domain and applied the reference value 𝑃 = 0 instead of using the
more correct condition described by Eq. 6.35. While we did this for convenience, it
should only retain validity as long as we still communicate the actual pressure of the
fluid coming from the feeding system to the meniscus in some way. To see how this
can be done, consider the stress tensor for the liquid

𝜏 = −𝑝𝐼 + 𝜇
(︁
∇𝑢⃗+ (∇𝑢⃗)𝑇

)︁
(6.195)

At the interface, the 𝑝-term can be viewed as a record of the accumulated hydro-
static pressure between that location and as far upstream as the generating reservoir.
In view of this, we can expand it by writing

𝜏 = −
(︃
𝑃𝑟 − 𝐼𝑅ℎ

𝜌 (𝑞/𝑚) − Δ𝑃𝑚
)︃

⏟  ⏞  
𝑃𝐵−Δ𝑃𝑚

𝐼 + 𝜇
(︁
∇𝑢⃗+ (∇𝑢⃗)𝑇

)︁
(6.196)

which shows that the hydrostatic pressure acting on the interface is simply the
algebraic sum of 𝑃𝐵 and an additional drop accrued within the small channel of fluid
immediately beneath the meniscus (i.e., the drop between the bottom of the liquid
column in the computational domain and the liquid-vacuum interface). The former
of these could be of any magnitude owing to the arbitrary nature of the impedance
𝑅ℎ but we expect that latter to always be relatively insignificant as a result of the
small capillary number 𝐶𝑎 ∼ 𝜇𝑢*/𝛾 that is typical of emission from pure ionic liquids.
With this in mind, we isolate the comparatively important implications of the feed
system by changing the balance of normal stresses at the interface so that

𝜏 𝑒
𝑛 + 𝑃𝑟 − 𝐼𝑅ℎ

𝜌 (𝑞/𝑚)⏟  ⏞  
𝑃𝐵

−𝑛⃗ · 𝜏𝑚 · 𝑛⃗ = 𝛾∇ · 𝑛⃗ (6.197)

where 𝑛⃗ ·𝜏𝑚 · 𝑛⃗ is now understood to mean the part of the fluid stress generated in
the small channel of the computational domain only. For clarity, the modified tensor
is given by

𝜏𝑚 = −Δ𝑃𝑚𝐼 + 𝜇
(︁
∇𝑢⃗+ (∇𝑢⃗)𝑇

)︁
(6.198)

During FEM calculations, Δ𝑃𝑚 will be the algebraic difference between the hy-
drostatic pressure found at the interface and whichever reference pressure is provided
for the fluid at the base of the channel. Consequently, it should be clear that the
reference choice 𝑃 = 0 given at that location is simply for numerical convenience.

With respect to the modified balance of normal stresses at the interface, Eq.
6.197, the surface tension during each computational iteration will be established by
the chosen geometry, whatever that happens to be. The electrical stress will follow
from the prevailing field distributions and 𝑃𝐵 will be calculated using the instanta-
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neous evaporation current (the integral of 𝑗𝑒 over the meniscus). The remaining term
in the balance, 𝑛⃗ · 𝜏𝑚 · 𝑛⃗, will be calculated using the steady-state boundary con-
ditions we have already discussed: namely, viscous balancing of the electrical shear
on the interface and a distribution of normal velocities 𝑢⃗ · 𝑛⃗ tantamount to the local
evaporation-induced speed 𝑗𝑒/(𝜌𝑞/𝑚). Unless the interface is of the exact equilib-
rium configuration, constructing the balance in this way will in general lead to a
distribution of “net” pressures or “residues” such that

𝜏 𝑒
𝑛 + 𝑃𝐵 − 𝑛⃗ · 𝜏𝑚 · 𝑛⃗− 𝛾∇ · 𝑛⃗ = Δ𝑃𝑑 (6.199)

This is a direct byproduct of the fact that we use steady-state boundary conditions
to identify the fluid stresses. When the problem does not satisfy an exact mechanical
equilibrium (which is what Eq. 6.197 represents), the interface should move and
so Δ𝑃𝑑 can be interpreted as the pressure controlling the “dynamic”, or transient,
behavior of the meniscus. Although the dynamics of electrified menisci are sometimes
of interest (see, for example, Higuera [62] or Suvorov [84]), we have already firmly
established that in the present study we would like to focus solely upon solutions
of the steady variety. Noting that these require Δ𝑃𝑑 → 0 at all points along the
meniscus, in what follows we briefly introduce an interfacial perturbation method
that will be useful in approaching this condition sequentially during our numerical
iterations.

Consider an interface with an arbitrary distribution of surface tension pressures
𝑃 𝑖
𝑠𝑡, where 𝑖 denotes the 𝑖𝑡ℎ computational iteration and 𝑃 𝑖

𝑠𝑡 = 𝑃 𝑖
𝑠𝑡(𝑟) is a vector quan-

tity of values defined at 𝑁 discrete points 𝑟𝑗 (𝑗 = 1, 2, ..., 𝑁) between the symmetry
axis and the contact line. In order to determine the spatial profile of the meniscus
characterized by this distribution, 𝑧 = ℎ(𝑟), we can recall that 𝑃𝑠𝑡 = −𝛾∇ · 𝑛⃗ and
refer to the appendix where we show that for axisymmetric cylindrical space

𝑃𝑠𝑡 = −𝛾∇ · 𝑛⃗ = −𝛾
[︃

(1 + ℎ2
𝑟)ℎ𝑟 + 𝑟 · ℎ𝑟𝑟

𝑟 (1 + ℎ2
𝑟)

3/2

]︃
(6.200)

where the subscripted variables ℎ𝑟 and ℎ𝑟𝑟 denote the first and second spatial
derivatives of 𝑧 = ℎ(𝑟) with respect to the cylindrical radius. After rearranging this
relationship we arrive at the 2nd-order nonlinear ODE

ℎ𝑟𝑟 + (1 + ℎ2
𝑟)ℎ𝑟
𝑟

+
(︁
1 + ℎ2

𝑟

)︁3/2 𝑃𝑠𝑡
𝛾

= 0 (6.201)

which can easily be integrated numerically for any distribution 𝑃𝑠𝑡 = 𝑃 𝑖
𝑠𝑡(𝑟) (using,

for example, the built-in Matlab Runge-Kutta solver ODE45). When we do this for
the 𝑖𝑡ℎ iteration we find a profile 𝑧 = ℎ𝑖(𝑟) that can be used to conduct the necessary
electrical/hydraulic/heating calculations before determining an attendant imbalance
Δ𝑃 𝑖

𝑑(𝑟) from Eq. 6.199. The question now is how to begin driving Δ𝑃 𝑖
𝑑 → 0 globally,

and one possible avenue is to modify slightly the distribution of surface tension stresses
in order to cancel out a measure of the local net pressure. In other words, for the
(𝑖+ 1) iteration we might take
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𝑃 𝑖+1
𝑠𝑡 = 𝑃 𝑖

𝑠𝑡 + 𝛽Δ𝑃 𝑖
𝑑 (6.202)

where 𝛽 is some relaxation parameter 𝛽 ∈ (0, 1] that can be used to control
the rate at which we approach equilibrium during the iteration process and/or the
numerical stability. In situations where the equilibrium interface is very well-defined
and stable (when it is not too stressed by the field or significantly distorted) it might
be safe to take 𝛽 close to unity; however, during emission and when 𝐵 ≪ 1 the strong
nonlinearity of the physics will undoubtedly necessitate 𝛽 ≪ 1 in order to circumvent
numerical hiccups.

We expect that the judicious choice of 𝛽 will provide for gradual reduction of ex-
cess pressure at the interface as we iterate in time. While we ideally desire to identify
equilibrium configurations in which Δ𝑃𝑑 is identically zero at every observation point
on the meniscus, in reality this will not be possible because of limitations such as ma-
chine precision and computational cost, among others. Finding the various equilibria
is therefore an exercise in approximation that will require us to possess some notion
of “closeness” to the real solutions and a corresponding termination condition that
prevents us from having to iterate indefinitely. To develop one, albeit in a relatively
crude way, we point to that fact that the low Reynolds numbers typified by emission
from ionic liquids suggests the interplay between pressure and viscous forces (as for-
malized in the Stokes equation). By considering a hypothetical meniscus, or maybe
some small section thereon, that is slightly statically imbalanced and subject to the
dynamic pressure Δ𝑃𝑑 we can write

Δ𝑃𝑑 ∼ 𝜇
𝑢

𝑟
(6.203)

where 𝑢 is a measure of the local propagation speed for the interface and 𝑟 is
its characteristic length scale. Rearranged, this gives that 𝑢 ∼ 𝑟Δ𝑃𝑑/𝜇. A good
condition for proximity to an exact equilibrium might be that the distance traveled
by the unbalanced one over some characteristic time scale should be much less than
the local 𝑟. In other words,

𝑢𝜏 ≪ 𝑟 ⇒ 𝑟Δ𝑃𝑑
𝜇

𝜏 ≪ 𝑟 ⇒ Δ𝑃𝑑
𝜇

𝜏 ≪ 1 (6.204)

From our earlier analyses we saw that the viscous-capillary time 𝜏𝑣 ∼ 𝜇𝑟/𝛾 for
the meniscus is likely the limiting one. If we insert this now for 𝜏 in the preceding
relationship we find

Δ𝑃𝑑
𝜇

𝜇𝑟

𝛾
≪ 1 ⇒ Δ𝑃𝑑

(𝛾/𝑟) ≪ 1 (6.205)

which says that when the local pressure imbalance is small in comparison to the
local capillary pressure the interface could be very near an equilibrium. This seems
to make good sense but in practice we will sometimes find that the actual Laplace
pressure (i.e., 𝛾∇ · 𝑛⃗ rather than the approximate 𝛾/𝑟) can change signs somewhere
between the tip and the anchoring location. This is because the fluid pressure, which
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can be below the vacuum level, in some places requires a negative Laplace pressure
to compensate it, especially in regions of weak electrical field like the contact point.
In order to avoid attendant numerical complication we could perhaps adopt the more
conservative condition that the net local pressure must be small in comparison to the
capillary pressure of the full meniscus since this will be the smallest characteristic
surface tension for the problem. The termination condition is then

Δ𝑃𝑑
𝑃𝑐

= Δ𝑃𝑑 ≤ 𝑃𝛽 (6.206)

where 𝑃𝛽 is a number much less than one. When this condition is satisfied at
all observation points 𝑟𝑗 across the meniscus we can conclude that an approximate
equilibrium has been reached.

6.5 Stability
The balance of normal stresses at the interface reads

𝜏 𝑒
𝑛 − 𝜏 𝑣

𝑛 = 𝜏 𝑠𝑡 (6.207)

where 𝜏 𝑣
𝑛 is the fluid stress (hydrostatic plus viscous) and 𝜏 𝑠𝑡 is the surface tension,

in all cases static or dynamic. When a mechanical equilibrium is reached, the balance
becomes

𝜏 𝑒
𝑛,0 − 𝜏 𝑣

𝑛,0 − 𝜏 𝑠𝑡
0 = 0 (6.208)

where 𝜏 𝑣
𝑛,0 is by definition the steady part of the fluid stress. Now imagine a

scenario in which an interface that is initially at rest is subjected to a distribution of
morphological perturbations such that 𝜏 𝑠𝑡 → 𝜏 𝑠𝑡

0 + 𝛿𝜏 𝑠𝑡. Owing to these surface per-
turbations, the electrical and hydraulic stresses will also experience slight excursions
that lead to the modified balance

𝜏 𝑒
𝑛,0 − 𝜏 𝑣

𝑛,0 − 𝜏 𝑠𝑡
0⏟  ⏞  

=0

+𝛿𝜏 𝑒
𝑛 − 𝛿𝜏 𝑣

𝑛 − 𝛿𝜏 𝑠𝑡 = Δ𝑃 (6.209)

After subtracting out the equilibrium solution and dividing through by 𝛿𝜏 𝑠𝑡 we
can see

𝛿𝜏 𝑒
𝑛

𝛿𝜏 𝑠𝑡 − 𝛿𝜏 𝑣
𝑛

𝛿𝜏 𝑠𝑡 − 1 = Δ𝑃
𝛿𝜏 𝑠𝑡 (6.210)

Similar to what we found for the spheroidal problem, this tells us that the condi-
tion for stability is

Δ𝑃
𝛿𝜏 𝑠𝑡 ≤ 0 ⇒ 𝛿𝜏 𝑒

𝑛

𝛿𝜏 𝑠𝑡 − 𝛿𝜏 𝑣
𝑛

𝛿𝜏 𝑠𝑡 ≤ 1 (6.211)

although the condition must now be met at all points 𝑟𝑗 that we are observing
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along the meniscus; i.e.

𝛿𝜏 𝑒
𝑛

𝛿𝜏 𝑠𝑡

⃒⃒⃒⃒
⃒
𝑟𝑗

− 𝛿𝜏 𝑣
𝑛

𝛿𝜏 𝑠𝑡

⃒⃒⃒⃒
⃒
𝑟𝑗

≤ 1 (6.212)

where 𝑗 = 1, 2, ..., 𝑁 . In other words, the excess or “dynamic” pressure Δ𝑃
distributed around the interface must work to suppress the prevailing perturbations
rather than exacerbate them.

In addition to physical stability it will be important to consider issues of a related
numerical nature. For example, we will want to know whether our chosen iteration
scheme will remain stable for (1) all instances in which physical stability of the inter-
face should be expected to prevail, and (2) for instances in which equilibria exist but
under physically unstable conditions, e.g. the upper solution branch of fixed-volume
droplets in free space. To probe this problem, consider a situation in which we run
our meniscus model for a given set of parameters and reach a perfect equilibrium
at the 𝑖 − 1𝑠𝑡 computational iteration. During the next (𝑖𝑡ℎ) iteration a small set of
morphological perturbations 𝛿𝜏 𝑠𝑡 are introduced by either numerical error or exter-
nal means (for example, by the human user). The stress balance for this iteration
becomes

𝛿𝜏 𝑒,𝑖
𝑛 − 𝛿𝜏 𝑣,𝑖

𝑛 − 𝛿𝜏 𝑠𝑡,𝑖 = Δ𝑃 𝑖 (6.213)

For this particular instance, the algebraic difference between the electrical and
fluid stresses is 𝛿𝜏 𝑒,𝑖

𝑛 − 𝛿𝜏 𝑣,𝑖
𝑛 = 𝜒(𝛿𝜏 𝑠𝑡,𝑖), which permits us to write

(𝜒− 1) 𝛿𝜏 𝑠𝑡,𝑖 = Δ𝑃 𝑖 (6.214)

Recalling our scheme for updating the interface, this requires for the following
iteration that

𝜏 𝑠𝑡,𝑖+1 = 𝜏 𝑠𝑡,𝑖 + 𝛽 (𝜒− 1) 𝛿𝜏 𝑠𝑡,𝑖 (6.215)

The first two surface tension stress can be expanded in the form 𝜏 𝑠𝑡,𝑙 → 𝜏 𝑠𝑡,𝑙
0 +

𝛿𝜏 𝑠𝑡,𝑙. Applying this gives

𝛿𝜏 𝑠𝑡,𝑖+1 = 𝛿𝜏 𝑠𝑡,𝑖 [1 + 𝛽 (𝜒− 1)] (6.216)

from which we can easily identify the ratio of perturbation magnitudes from one
iteration to the next

𝛿𝜏 𝑠𝑡,𝑖+1

𝛿𝜏 𝑠𝑡,𝑖 = 1 + 𝛽 (𝜒− 1) (6.217)

Physical stability requires 𝜒 < 1 and from Eq. 6.217 we see that our numerical
scheme will tend to suppress perturbations for such a condition. Conversely, physical
stability will be lost for 𝜒 > 1 and numerical stability will suffer concurrently. As a
result, we should expect to find stable equilibria if and where they exist, and numerical
deterioration otherwise.
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On a final note, while the preceding methods should be more than sufficient for
satisfying the scope of the study at hand, in the future it might be desirable to
decouple the numerical and physical stabilities. In other words, it could be useful to
make use of a routine that is capable of identifying unstable equilibria. Achieving
this will likely require us to cast the stress balance equation as a nonlinear root-find
problem, similar to what Wohlhuter [71] has done. For example, consider a meniscus
that is not in static equilibrium so that its instantaneous normal stresses look like

𝜏 𝑒,𝑖
𝑛 − 𝜏 𝑣,𝑖

𝑛 − 𝜏 𝑠𝑡,𝑖 = Δ𝑃 𝑖 (6.218)

during the 𝑖𝑡ℎ computational iteration. For the (𝑖+ 1)𝑠𝑡 iteration we can attempt
to perturb the morphology such that

𝜏 𝑒,𝑖
𝑛 − 𝜏 𝑣,𝑖

𝑛 − 𝜏 𝑠𝑡,𝑖⏟  ⏞  
Δ𝑃 𝑖

+𝛿𝜏 𝑒,𝑖
𝑛 − 𝛿𝜏 𝑣,𝑖

𝑛 − 𝛿𝜏 𝑠𝑡,𝑖 = 0 (6.219)

which directly drives the excess pressure to zero at every point across the meniscus.
Before we can solve for the appropriate distribution of perturbations we need to note
that

𝛿𝜏 𝑒,𝑖
𝑛

⃒⃒⃒
𝑟𝑗

≈
∑︁
𝑛

𝜕𝜏 𝑒,𝑖
𝑛 (𝑟𝑗)

𝜕𝜏 𝑠𝑡,𝑖 (𝑟𝑛)
𝛿𝜏 𝑠𝑡,𝑖 (𝑟𝑛) (6.220)

𝛿𝜏 𝑣,𝑖
𝑛

⃒⃒⃒
𝑟𝑗

≈
∑︁
𝑛

𝜕𝜏 𝑣,𝑖
𝑛 (𝑟𝑗)

𝜕𝜏 𝑠𝑡,𝑖 (𝑟𝑛)
𝛿𝜏 𝑠𝑡,𝑖 (𝑟𝑛) (6.221)

These follow from a Taylor expansion truncated to linear order. After substituting
these, at any point 𝑟𝑗 we can write

Δ𝑃 𝑖 (𝑟𝑗) +
∑︁
𝑛

[︃
𝜕𝜏 𝑒,𝑖

𝑛 (𝑟𝑗)
𝜕𝜏 𝑠𝑡,𝑖 (𝑟𝑛)

− 𝜕𝜏 𝑣,𝑖
𝑛 (𝑟𝑗)

𝜕𝜏 𝑠𝑡,𝑖 (𝑟𝑛)

]︃
𝛿𝜏 𝑠𝑡,𝑖 (𝑟𝑛) − 𝛿𝜏 𝑠𝑡,𝑖 (𝑟𝑗) = 0 (6.222)

In matrix form this equation reads

⎛⎜⎜⎜⎜⎜⎝
Δ𝑃 𝑖 (𝑟1)
Δ𝑃 𝑖 (𝑟2)

...
Δ𝑃 𝑖 (𝑟𝑁)

⎞⎟⎟⎟⎟⎟⎠+
(︁
𝐽 𝑒

(︁
𝜏 𝑠𝑡,𝑖

)︁
− 𝐽𝑣

(︁
𝜏 𝑠𝑡,𝑖

)︁)︁
⎛⎜⎜⎜⎜⎝
𝛿𝜏 𝑠𝑡,𝑖 (𝑟1)
𝛿𝜏 𝑠𝑡,𝑖 (𝑟2)

...
𝛿𝜏 𝑠𝑡,𝑖 (𝑟𝑁)

⎞⎟⎟⎟⎟⎠− 𝐼

⎛⎜⎜⎜⎜⎝
𝛿𝜏 𝑠𝑡,𝑖 (𝑟1)
𝛿𝜏 𝑠𝑡,𝑖 (𝑟2)

...
𝛿𝜏 𝑠𝑡,𝑖 (𝑟𝑁)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎟⎠
(6.223)

where 𝐽 𝑒

(︁
𝜏 𝑠𝑡,𝑖

)︁
is the Jacobian matrix of the electric stress tensor
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𝐽 𝑒

(︁
𝜏 𝑠𝑡,𝑖

)︁
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝜏 𝑒,𝑖
𝑛 (𝑟1)

𝜕𝜏 𝑠𝑡,𝑖(𝑟1)
𝜕𝜏 𝑒,𝑖

𝑛 (𝑟1)
𝜕𝜏 𝑠𝑡,𝑖(𝑟2) · · · 𝜕𝜏 𝑒,𝑖

𝑛 (𝑟1)
𝜕𝜏 𝑠𝑡,𝑖(𝑟𝑁 )

𝜕𝜏 𝑒,𝑖
𝑛 (𝑟2)

𝜕𝜏 𝑠𝑡,𝑖(𝑟1)
𝜕𝜏 𝑒,𝑖

𝑛 (𝑟2)
𝜕𝜏 𝑠𝑡,𝑖(𝑟2) · · · 𝜕𝜏 𝑒,𝑖

𝑛 (𝑟2)
𝜕𝜏 𝑠𝑡,𝑖(𝑟𝑁 )

... ... . . . ...
𝜕𝜏 𝑒,𝑖

𝑛 (𝑟𝑁 )
𝜕𝜏 𝑠𝑡,𝑖(𝑟1)

𝜕𝜏 𝑒,𝑖
𝑛 (𝑟𝑁 )

𝜕𝜏 𝑠𝑡,𝑖(𝑟2) · · · 𝜕𝜏 𝑒,𝑖
𝑛 (𝑟𝑁 )

𝜕𝜏 𝑠𝑡,𝑖(𝑟𝑁 )

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (6.224)

and 𝐽𝑣

(︁
𝜏 𝑠𝑡,𝑖

)︁
is the corresponding Jacobian for the fluid stress. We solve Eq.

6.223 by first rearranging to the form

(︁
𝐼 + 𝐽𝑣

(︁
𝜏 𝑠𝑡,𝑖

)︁
− 𝐽 𝑒

(︁
𝜏 𝑠𝑡,𝑖

)︁)︁
⎛⎜⎜⎜⎜⎝
𝛿𝜏 𝑠𝑡,𝑖 (𝑟1)
𝛿𝜏 𝑠𝑡,𝑖 (𝑟2)

...
𝛿𝜏 𝑠𝑡,𝑖 (𝑟𝑁)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
Δ𝑃 𝑖 (𝑟1)
Δ𝑃 𝑖 (𝑟2)

...
Δ𝑃 𝑖 (𝑟𝑁)

⎞⎟⎟⎟⎟⎟⎠ (6.225)

and then finding
⎛⎜⎜⎜⎜⎝
𝛿𝜏 𝑠𝑡,𝑖 (𝑟1)
𝛿𝜏 𝑠𝑡,𝑖 (𝑟2)

...
𝛿𝜏 𝑠𝑡,𝑖 (𝑟𝑁)

⎞⎟⎟⎟⎟⎠ =
(︁
𝐼 + 𝐽𝑣

(︁
𝜏 𝑠𝑡,𝑖

)︁
− 𝐽 𝑒

(︁
𝜏 𝑠𝑡,𝑖

)︁)︁−1

⎛⎜⎜⎜⎜⎜⎝
Δ𝑃 𝑖 (𝑟1)
Δ𝑃 𝑖 (𝑟2)

...
Δ𝑃 𝑖 (𝑟𝑁)

⎞⎟⎟⎟⎟⎟⎠ (6.226)

Since 𝜏 𝑠𝑡,𝑖+1 = 𝜏 𝑠𝑡,𝑖 + 𝛿𝜏 𝑠𝑡,𝑖, we now have that

𝜏 𝑠𝑡,𝑖+1 = 𝜏 𝑠𝑡,𝑖 +
(︁
𝐼 + 𝐽𝑣

(︁
𝜏 𝑠𝑡,𝑖

)︁
− 𝐽 𝑒

(︁
𝜏 𝑠𝑡,𝑖

)︁)︁−1
Δ𝑃 𝑖 (6.227)

By inspection we see that this is very similar to the present propagation equation
save for the fact that 𝛽 is now replaced with (𝐼 + 𝐽𝑣

(︁
𝜏 𝑠𝑡,𝑖

)︁
− 𝐽 𝑒

(︁
𝜏 𝑠𝑡,𝑖

)︁
)−1, which

will in general vary from point to point along the meniscus and also from iteration to
iteration.

The difficulty in deploying such a method is in calculating the various Jacobian
matrices, which is why we will not use it for the present studies. Moreover, the fact
that it can identify unstable equilibria necessitates the use of a separate analysis to
determine physical stability. Notwithstanding those issues, it is important to keep in
mind that it could be of great interest in the future, particularly in view of the fast
convergence properties it is likely to exhibit [71].
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Chapter 7

Validation

During the literature review we highlighted the fact that while many studies have been
carried out on the equilibria and stability properties of both conducting and dielectric
liquids, the overwhelming majority of these focus on situations of constrained volume.
Among these, we also learned that only the investigations reported by Higuera [62]
considered the possibility of kinetic emission in any detail, at least as it pertains
to moderately conducting fluids such as ionic liquids. In the preceding chapter we
have developed a rigorous meniscus model that purposefully avoids any volumetric
constraints and incorporates the influences of a liquid feeding system. Along with
potential heating effects, which were explicitly disregarded in the Higuera [62] work,
we believe that these lend the present model to a much more physical and realistic de-
scription of the problem of steady electrically-assisted evaporation. This is due to the
fact that in practice we typically elect to work with some form of electrospray emitter
(be it a capillary, a porous needle, or an externally-wetted tip) that is connected to
a reservoir of fluid rather than simply discrete droplets.

In an ideal world we would be able to immediately benchmark our model against
some well-known theoretical result; however, the lack of any free-volume numerical
investigations in the literature makes this very difficult. While attempting to exactly
reproduce an empirical finding is one alternative, there are apparently no existing
studies that do a sufficient job of reporting precise experimental parameters (menis-
cus size, liquid properties, electrode configurations, feeding impedance and back pres-
sure, etc.) in a detailed way. As a result, we must at this point resign ourselves to
only validating aspects of the current model that are relevant to the problem of a
fixed-volume droplet since that is the only meniscus configuration that has been rig-
orously modeled to date. After making the appropriate concessions we will be able
to quantitatively verify the electrostatic and interfacial propagation components of
our model, i.e., the ability to calculate electric fields, formulate a balance of normal
stresses, and use the interfacial relaxation method introduced in the last chapter to
slowly approach stable, equilibrated morphologies. Once we have shown this, we will
begin to explore the parameter space of the full free-volume model in the following
chapter before comparing the corresponding results with known empirical behaviors
in an attempt to qualitatively assess the merits of the remaining components of the
model, i.e., the evaporative components.
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In what follows we will make slight modifications to the full model to adapt it
to the fixed-volume droplet problem. In most cases this will also be accompanied by
suppression of the emission physics (for example, by setting Δ𝐺 → ∞ so that finite
fields will not extract charge) so that conditions in the comparison studies can we
replicated. The appropriate balance of normal stresses will be

𝜏 𝑒
𝑛 + 𝑃𝑙 = 𝛾∇ · 𝑛⃗ (7.1)

where 𝑃𝑙 is the hydrostatic pressure in the droplet (recall the chapter on fixed-
volume spheroids). The interfacial relaxation procedure introduced in Section 6.4.3
will be used in conjunction with this balance to identify equilibrated droplet struc-
tures.

We will first attempt to model stressed dielectric droplets in free-space, the results
of which can be compared to the analytical spheroids that were presented in Chapter
5. Recall that the construction of those results was predicated upon Taylor’s two-point
stress balancing method (i.e., balancing stresses at the droplet tip and at the droplet
waist) and the assumption of exact spheroidal morphologies. Sufficient reproduction
of the droplet shapes and elongations from Chapter 5 should confirm our ability to (1)
calculate accurate fields at a vacuum-dielectric interface, and (2) utilize our relaxation
method for the identification of various equilibria. Given that the analytical results
also speak to the locations of turning point and unstable equilibria, this exercise will
also be useful in showing that our methods are restricted to physically stable interface
configurations.

Second, we will attempt to reproduce several of the numerical results reported
by Wohlhuter [71]. As the reader may recall from the literature review, Wohlhuter
calculates equilibria for dielectric droplets resting on plates where either the contact
angle (which can be arbitrarily chosen over 𝜃 ∈ [0, 𝜋/2]) or radius (alternatively
referred to as a the contact line) is made invariant. The results contained therein are
useful in the sense that a very high-accuracy Jacobian method (similar in spirit to the
one presented in Section 6.5 of this thesis) was used to quickly identify equilibria in
connection with a small numerical tolerance. We will compare meniscus elongations
computed with our methods to those in the reference, where they are given to two
decimal places, to quantitatively assess the accuracy of the relaxation technique. As
we will show, strong agreement is observed.

Finally, we will attempt to reproduce several of the numerical results reported in
the seminal study of Higuera [62]. There, the author uses a time-resolved marching
technique to propagate interfaces for constant contact line droplets (droplets on plates
with fixed attachment radii) and calculate equilibria in the presence of evaporation.
Effects due to flow in the meniscus (hydraulic stressing) and charge depletion at the
interface were included. While at first glance it would appear as though comparison
to the Higuera [62] results may offer a new opportunity to confirm our ability to
accurately calculate flow fields and surface charges, we will show that neither hydraulic
stresses (due to a low Capillary number) nor charge depletion (due to a high dielectric
constant) had any effect on the important findings (e.g. droplet morphology and
emission strength). We will achieve this by calculating equilibria for non-evaporating

142



droplets of a corresponding dielectric strength (𝜖𝑟 = 50) and introducing emission
estimations as a post-processing step. Comparison with the Higuera [62] findings
will, therefore, primarily serve to provide additional confirmation that our relaxation
method for interfacial propagation is equipped to identify stable equilibria while the
contact line is fixed in place.

To summarize, the model developed for this thesis is a unique entry in the theo-
retical landscape in the sense that it describes free-volume menisci and incorporates
several effects (namely Ohmic heating) that were disregarded in the only other model
of an IL source [62]. Owing to its richness, we cannot directly validate every aspect
of it a priori, i.e., before using it to explore the parameter space of interest. Un-
fortunately, little recourse is offered by empirical studies as a result of the fact that
important conditions (e.g. feeding impedance and electrode configuration) are not
commonly reported in sufficient detail. With this in mind, we make the concession
here to temporarily suppress the emission physics in our model and make a slight
modification to the balance of normal stresses to engender compatibility with the
well-investigated problem of fixed-volume droplets. Comparison of results from our
modified model with several well-known findings from the literature will help us to
(1) prove that we can accurately calculate electric fields and formulate a balance of
stresses, and (2) utilize the relaxation method for interfacial propagation to identify
stable equilibria. In the following chapter we will use the full free-volume model (i.e.,
the dimensionless one presented in Section 6.2) to begin collecting new results, which
will later be compared against empirical emission behaviors.

7.1 Free-space dielectric droplets
For the problem of the free-space dielectric droplet we will ignore the possibilities of
charge evaporation and dynamical flow in accordance with existing literary conven-
tions. In reference to parameter space of the full model presented in the previous
chapter, this is tantamount to setting 𝐵, 𝑅𝐸, Λ, 𝐶𝑇

𝑐 , 𝐶𝑇
𝑢 , 𝐶𝑒

𝑢, 𝜒, 𝐶𝑅, and 𝑃𝑟 all equal
to zero along with 𝜓 → ∞ (see Section 6.2). Under these conditions the governing
set of equations reduces to

∇̂2Φ̂𝑣 = 0 (7.2)
∇̂2Φ̂𝑙 = 0 (7.3)

in the vacuum and liquid regions, respectively; and

𝜏 𝑒
𝑛 + 𝑝 = 1

2∇̂ · 𝑛⃗ (7.4)

on the interface. The mid-plane is defined by the reference potential, i.e. Φ̂ = 0.
Unlike the free-volume case, the hydrostatic pressure of the liquid comprising the
meniscus, 𝑝, is now fully coupled to the prevailing fields by way of the interfacial
structure. This pressure, along with the corresponding interface geometry, is calcu-
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lated for arbitrary 𝐸̂0 in an iterative fashion. As before, we do this in axisymmetric
cylindrical space and start by assuming a surface tension profile and a corresponding
shape 𝑧 = ℎ(𝑟) that defines the fixed volume

𝑣 = 2𝜋
∫︁
ℎ (𝑟) 𝑟 · 𝑑𝑟 (7.5)

Because the waist of the droplet is free to contract now, the scaling length is
taken as the radius 𝑟0 of the undeformed structure. We next calculate the prevailing
electrical fields and assess the mechanical balance at the interface. When it is not
sufficiently satisfied we prepare for a subsequent iteration by updating the surface
tension (i.e., Laplace pressure) profile such that

𝑃𝑠𝑡
𝑖+1

= 𝑃𝑒
𝑖−1

+ 𝛽𝐶𝑉

(︂
𝑃𝑒

𝑖
− 𝑃𝑒

𝑖−1
)︂

+ 𝑃𝑓 (7.6)

where 𝑖 is the iteration index and 𝑃𝑒 is the normal component of the electrical
stress. 𝛽𝐶𝑉 is a relaxation parameter that can be used to ensure “slow” evolution of
the meniscus and the constant-volume analog to the 𝛽 from our last chapter. The
fluid pressure 𝑃𝑓 , which is spatially uniform, is at this point unknown. We determine
it through a sublayer of iterations in which we integrate the differential relationship
of the surface, Eq. 6.201, until we find the exact value satisfying the given contact
angle constraint. For the free-space droplet this is 𝜋/2, i.e. the surface must be
orthogonal to the plane of symmetry. In general, the new meniscus shape will not
initially enclose the exact volume prescribed through 𝑣. This is rectified by scaling
all spatial coordinates by a value 𝛼𝐶𝑉 ∈ (0, 1] such that

𝛼3
𝐶𝑉 = 𝑣

2𝜋
∫︀
𝑧𝑟 · 𝑑𝑟

(7.7)

where 𝑧 = ℎ(𝑟) corresponds to the initial distribution 𝑃𝑠𝑡
𝑖+1

calculated for the sub-
sequent iteration. To incorporate the volume constraint we now impose the following
modifications

𝑃𝑠𝑡
𝑖+1

→ 1
𝛼
𝑃𝑠𝑡

𝑖+1
(7.8)

𝑃 𝑖+1
𝑓 → 1

𝛼
𝑃 𝑖+1
𝑓 (7.9)

𝑧 → 𝛼𝑧 (7.10)
𝑟 → 𝛼𝑟 (7.11)

where the values on the right-hand side are those calculated for the contact an-
gle constraint only (i.e. calculated before enforcing the volume constraint) while the
scaled values on the left-hand side reflect both contact angle and volume constraints.
The latter are the values that we pass along to the next iteration where we calcu-
late the fields, check the mechanical balance, and repeat the process in kind until a
converged solution is reached.
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Figure 7-1: Overview of simulated (blue) and approximated (dashed) elongation
curves for several fixed-volume dielectric droplets as functions of dimensionless field
𝐸̂0. Three cases of permittivity are shown: 𝜖𝑟 → ∞, 𝜖𝑟 =50, and 𝜖𝑟 =10. Solutions for
the first two cases terminate at the turning point, beyond which the computational
routine began to oscillate and did not identify any equilibria. The results seem to
suggest that our numerical methodology is sound, at least insofar as the electrostatics
and propagation components are concerned.

In Figs. 7-1-7-3 we show equilibrium results for the free droplet problem with
𝑣 = 2𝜋/3. All calculations involve 𝑁 =103 observation points equally-spaced across
the meniscus between 𝑟 = 0 and the contact location. The Comsol electrostatics
mesh is set so that ℎ̂𝑚𝑎𝑥 =1, ℎ̂𝑚𝑖𝑛 =10-4, ℎ̂𝑔𝑟𝑎𝑑 =1.25, and ℎ̂𝑐𝑢𝑟𝑣𝑒 =10-2 while a
single adaption is allowed. The relaxation parameter 𝛽𝐶𝑉 =0.5 and the termination
condition is set to 𝑃𝛽 =10-3.

Figure 7-1 delineates a comparison of three simulated elongation curves (𝜖𝑟 → ∞,
𝜖𝑟 =50, and 𝜖𝑟 =10) with the corresponding analytical approximations developed
in the earlier chapter on spheroids. The results appear to agree very well over the
range of dimensionless field 𝐸̂0 investigated, which is rather remarkable given the
assumptions that were invoked for the closed-form model. Small discrepancies, where
present, are likely attributable to the slight distribution of net pressure between the
droplet apex and waist that occurs for a perfectly spheroidal topography. Appar-
ently, this effect is more pronounced for small permittivity and possibly minimized
as 𝜖𝑟 → ∞. For the two cases of high permittivity, the solutions terminate at the
calculated turning point, beyond which our numerical routine began to oscillate and
no equilibrium could be identified. No turning point was seen for the case 𝜖𝑟 =10 and
so the solutions were arbitrarily cut off at 𝐸̂0 =0.4.

Figure 7-2 provides zoomed views of the individual elongation curves with 𝜖𝑟
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Figure 7-2: Zoomed comparisons of simulated (blue) and approximated (dashed)
elongation curves for the free droplet problem. As before, the equilibrium elongation
𝑍 is plotted as a function of dimensionless field 𝐸̂0. Cases 𝜖𝑟 → ∞, 𝜖𝑟 =50, and
𝜖𝑟 =10 are shown from left to right. The curves further highlight the good agreement
between simulated and approximated solutions, particularly in the first two cases
where there are excellent quantitative similarities near the turning points.

decreasing from left to right. In the first two cases, this serves to highlight the
quantitative similarities between the simulated and approximated turning point char-
acteristics. Figure 7-3 compares several of the simulated interfacial geometries with
perfect spheroids of equal aspect ratio. The results strongly suggest that fixed-volume
droplets retain nearly spheroidal morphologies throughout the elongation process, ex-
actly as we noted earlier.

7.2 Plate-attached dielectric droplets (Wohlhuter)
The comparison between the numerical results and the analytical model is qualita-
tively useful but fails to provide a strong quantitative measure of our solution accuracy
since the latter is based on an approximation. A better comparison might be to invoke
other numerical results in the literature and for this we can turn to Wohlhuter [71],
where deformation modes of fixed-volume droplets are described sans any synthetic
interface constraints.

Wohlhuter presents in detail the deformation properties of a dielectric droplet
(𝜖𝑟 = 21) that is attached to a conducting plate and subjected to an externally-
imposed electrical field. Two cases of attachment condition are considered (fixed
contact angle, FCA, and fixed contact line/radius, FCL) along with three fluid vol-
umes. This yields a test matrix with six distinct droplets, three of which we reproduce
here for the sake of comparison. These include (1) the case of a fixed orthogonal con-
tact angle droplet with 𝑣 = 2𝜋/3, which is similar to what we studied in the previous
section; (2) the case of a fixed contact line droplet with 𝑣 = 2𝜋/3; and (3) the case
of a fixed contact line droplet with 𝑣 = 0.1173.

For the fixed contact angle problem we will make use of the procedure described
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Figure 7-3: Comparison of simulated topographies (solid curves) and perfect spheroids
(dashed curves) for select elongations. The interfaces are plotted using the dimen-
sionless coordinates 𝑟 and 𝑧 and include, from left to right, 𝜖𝑟 → ∞, 𝜖𝑟 =50, and
𝜖𝑟 =10. The results confirm that fixed-volume droplets under electrical stress in free
space are almost identically spheroidal.

in the previous section. For those involving a fixed contact line we will modify it by
using the hydrostatic fluid pressure to satisfy the volume constraint directly and re-
moving the scaling step. In other words, after calculating 𝑃𝑒

𝑖
for the 𝑖𝑡ℎ computational

iteration we will take

𝑃𝑠𝑡
𝑖+1

= 𝑃𝑒
𝑖−1

+ 𝛽𝐶𝑉

(︂
𝑃𝑒

𝑖
− 𝑃𝑒

𝑖−1
)︂

+ 𝑃𝑓 (7.12)

and perform a sub-iteration loop over the fluid pressure 𝑃𝑓 until the appropriate
value is identified. This is the value for which the meniscus profile 𝑧 = ℎ(𝑟) cor-
responding to the distribution 𝑃𝑠𝑡

𝑖+1
has a volume integral (Eq. 7.5) equal to the

prescribed quantity.
In all cases, Wohlhuter makes use of the unit sphere, prior to any stressing, to

modulate the effective droplet volume. This is achieved by shifting the sphere a
specific distance in either the positive or negative 𝑧-direction (i.e. translation of
the sphere with respect to the plane of the plate is used to prescribe the droplet
volume, which is possible since the droplets will exhibit spherical morphologies in
the unstressed limit). A quantity 𝐷, measured between the horizontal plane of the
conducting plate and the center of the unit sphere, is used to signify this displacement
(Fig. 7-4). The two volumes we will consider are reported by Wohlhuter as 𝐷 = 0 and
𝐷 = −0.8. By inspection it is easy to see that the former is tantamount to 𝑣 = 2𝜋/3.
For the latter, consider that the general equation for the vertically-displaced unit
circle is
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Figure 7-4: Illustration of unit circle displacement method used to simulate various
droplet volumes. The unit circle is displaced a vertical distance 𝐷 to affect droplets
that are either larger (𝐷 > 0) or smaller (𝐷 < 0) than the nominal hemispherical
case (𝐷 = 0). Reproduced from Wohlhuter [71].

𝑟2 + (𝑧 −𝐷)2 = 1 ⇒ 𝑧 =
√

1 − 𝑟2 +𝐷 (7.13)

When the displacement is negative, this is equivalent to

𝑧 =
√

1 − 𝑟2 − |𝐷| (7.14)

The height of the unperturbed sphere is 𝑧0 = 1 − |𝐷| and it has a radial footprint
on the plate of 𝑟𝐶𝐿 = 1 −𝐷2. The enclosed volume is found by integrating

𝑣 = 2𝜋
∫︁ 𝑟𝐶𝐿

0
𝑟
(︁√

1 − 𝑟2 − |𝐷|
)︁
𝑑𝑟 = 𝜋

3
(︁
|𝐷|3 − 3|𝐷| + 2

)︁
(7.15)

For 𝐷 = −0.8 it is easy to confirm that this evaluates to 𝑣 = 0.1173, which is
why we have cited that volume. Figure 7-5 delineates computed elongation curves
for a dielectric droplet (𝜖𝑟 = 21) with 𝑧0 = 𝑧𝑝 = 20. These are plotted as functions
of the root of the so-called electric bond number (𝑁1/2

𝑒 =
√

2 × 𝐸̂0), which is used
by Wohlhuter, while corresponding results from the reference are shown on the right.
Using the present methods we have identified for each case a lower branch of ostensibly
stable solutions extending between a region of vanishing electrical stress and the
turning point. For small fields the computational scheme converges very quickly
but near the turning point we observe an increasing number of oscillations and an
attendant growth in the required solution time. This issue has precluded us from
computing any solutions above turning point, where the oscillations typically lead to
divergence, and is likely related to the stability of the interface. Notwithstanding this
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Figure 7-5: Comparison of several elongation curves with the results described in
Wohlhuter [71]. Each case corresponds to a dielectric droplet with 𝜖𝑟 = 21 situated
on a conducting plate. The boundary geometry is defined by 𝑧0 = 𝑧𝑝 = 20 while
the contact arrangement is given by either FCA (fixed contact angle) or FCL (fixed
contact line). 𝑁𝑒 is the so-called electric bond number used in the reference. Its root
is related to 𝐸̂0 through a simple constant, i.e. 𝑁1/2

𝑒 =
√

2 × 𝐸̂0.

inherent limitation in our method, the stable solutions we have computed appear to
agree very well with the results from the reference.

Figures 7-6 to 7-8 delineate comparisons between specific solution points. In each
case Wohlhuter provides equilibrium shapes for several elongations above and below
the turning point. While we cannot reproduce the former because of stability, the
elongations we calculate for the stable instances agree with Wohlhuter to all decimal
places given in the reference.

7.3 High-𝐵 emission from plate-attached droplets
(Higuera)

The model presented by Higuera [62] is unique in that it describes not only the steady
morphologies of fixed volume droplets but also the attendant evaporation when the
governing properties are representative of ionic liquids. As a further measure of the
present formulation we might try to reproduce several of the results provided therein,
especially those pertaining to emission behavior.

Higuera investigates the situation of a fixed-volume droplet anchored to a conduct-
ing plate with a fixed contact line. The mathematical framework used to describe
the problem is fundamentally similar to the one constructed for this thesis but differs
in its dimensionless form. Noting that the Higuera model does not admit thermal
phenomena, it is shown in the reference that the problem resides in a six-dimensional

149



-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

𝒛 

𝒓 

𝒁 = 𝟏. 𝟗𝟓 

𝟏. 𝟎𝟎 

Figure 7-6: Comparison of dielectric droplet shapes for 𝜖𝑟 = 21 and 𝑧0 = 𝑧𝑝 =
20 with fixed contact angle (90∘). Left: Shapes calculated with present methods.
Dimensionless fields 𝑁1/2

𝑒 for the given elongations are 0 for 𝑍 = 1.00 and 0.4088 for
𝑍 = 1.95. Right: Shapes reproduced from Wohlhuter [71]. Dimensionless fields 𝑁1/2

𝑒

for the given elongations are 0 for 𝑍 = 1.00; 0.4088 for 𝑍 = 1.95; 0.4172 for 𝑍 = 2.71;
0.4163 for 𝑍 = 3.96; and 0.4172 for 𝑍 = 4.52.
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Figure 7-7: Comparison of dielectric droplet shapes for 𝜖𝑟 = 21 and 𝑧0 = 𝑧𝑝 = 20
with fixed contact line (𝑟𝐶𝐿 = 1). Left: Shapes calculated with present methods.
Dimensionless fields 𝑁1/2

𝑒 for the given elongations are 0 for 𝑍 = 1.00; 0.4744 for
𝑍 = 1.32; and 0.4870 for 𝑍 = 1.48. Right: Shapes reproduced from Wohlhuter [71].
Dimensionless fields 𝑁1/2

𝑒 for the given elongations are 0 for 𝑍 = 1.00; 0.4744 for
𝑍 = 1.32; 0.4880 for 𝑍 = 1.51; 0.4838 for 𝑍 = 1.67; and 0.4753 for 𝑍 = 1.85.
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Figure 7-8: Comparison of dielectric droplet shapes for 𝜖𝑟 = 21 and 𝑧0 = 𝑧𝑝 = 20
with fixed contact line (𝑟𝐶𝐿 = 0.6). Left: Shapes calculated with present methods.
Dimensionless fields 𝑁1/2

𝑒 for the given elongations are 0 for 𝑍 = 0.33; 1.0469 for
𝑍 = 0.41; and 1.1400 for 𝑍 = 0.49. Right: Shapes reproduced from Wohlhuter [71].
Dimensionless fields 𝑁1/2

𝑒 for the given elongations are 0 for 𝑍 = 0.33; 1.0469 for
𝑍 = 0.41; 1.1531 for 𝑍 = 0.55; and 1.0833 for 𝑍 = 0.73.

parameter space defined by

Λ𝐻 = 𝜇𝑟0𝑘

𝜖0𝛾
𝜖𝑟

𝐵𝐻 = 𝐸0

𝐸𝐻
𝒱𝐻 =𝑉

𝑟3
0

𝐷𝐻 = 𝜇𝑟0𝑘𝐵𝑇

𝛾ℎ
exp

(︃
− Δ𝐺
𝑘𝐵𝑇

)︃
𝛽𝐻 = 1

𝑘𝐵𝑇

(︃
𝑞3𝐸𝐻
4𝜋𝜖0

)︃1/2

where 𝐸𝐻 is the field scale

𝐸𝐻 =
(︂
𝛾

𝜖0𝑟0

)︂1/2
= 1

2𝐸𝑐 (7.16)

Before we begin to reproduce any results it will be helpful to understand the
emission regime that they represent, i.e. to determine whether 𝐵 ∼ 100 or 𝐵 ≪ 1.
The task now is to recast 𝐵 in terms of the parameters used by Higuera. Recall from
our formulation that the size parameter is given by 𝐵 = 𝑟*/𝑟0 where

𝑟* ∼ 4𝛾
𝜖0

(︃
𝑞3

4𝜋𝜖0Δ𝐺2

)︃2

(7.17)

Using 𝑟0 = 𝑟*/𝐵 we can substitute in 𝛽𝐻 to find
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𝛽𝐻 = Δ𝐺
𝑘𝐵𝑇

(︂
𝐵

4

)︂1/4
(7.18)

The prefactor in this expression, Δ𝐺/𝑘𝐵𝑇 , can be determined through the quan-
tity 𝐷𝐻 . Rearranging that parameter gives

𝐷𝐻 = 𝜖0Λ𝐻

𝑘

𝑘𝐵𝑇

ℎ
exp

(︃
− Δ𝐺
𝑘𝐵𝑇

)︃
⇒ Δ𝐺

𝑘𝐵𝑇
= ln

(︃
𝜖0Λ𝐻

𝑘𝐷𝐻

𝑘𝐵𝑇

ℎ

)︃
(7.19)

which can itself be substituted in Eq. 7.18. The final result is that

𝐵 = 4𝛽4
𝐻[︁

ln
(︁
𝜖0Λ𝐻

𝑘𝐷𝐻

𝑘𝐵𝑇
ℎ

)︁]︁4 (7.20)

For most of the results in the reference Higuera takes Λ𝐻 =104, 𝐷𝐻 =10-3, and
𝛽𝐻 =10. Since 𝑘 ∼ 100 for ionic liquids we find 𝐵 ∼ 0.24 near room temperature.
This says that the contact line is somewhat larger than the characteristic size of the
emission region, even if not quite so large as we are accustomed to seeing in practice
(where 𝐵 ≪ 1 at the end of a large capillary tube, for example). We can conclude,
therefore, that any depletion of charge should primarily be restricted to the tip of the
droplet. Indeed, this appears to be reflected in several of the plots that are offered
by the author.

In addition to 𝐵 it will be of utility to have a sense for the prevailing capillary
number, 𝐶𝑎 = 𝑢*𝜇/𝛾. Recall that this is tantamount to

𝐶𝑎 = 𝑘𝐸*

𝜌 (𝑞/𝑚)
𝜇

𝛾
(7.21)

since 𝑢 ∼ 𝑗/(𝜌 · 𝑞/𝑚) on the liquid side of the interface. Although the author
does not provide the volumetric charge density 𝜌(𝑞/𝑚) it is explicitly noted that the
meniscus is essentially hydrostatic. This is important because it implies a very low
capillary number and marginalization of any flow-induced stresses. In fact, in the
limit as the meniscus becomes identically hydrostatic, we should expect to recover
morphological solutions resembling those from earlier sections that do not involve
any emission at all. After factoring in the prevailing 𝐵, which likely ensures charge
relaxation over most of the meniscus, it is fair to speculate whether evaporation had
anything to do with the structures reported in the reference.

Based on this speculation we hypothesize here that the equilibrium topographies in
Higuera [62] were essentially those of an electrically-relaxed droplet of fixed-volume
(no emission) and that any emission, where present, could have been reasonably
approximated through a post-processing step. In terms of methodology, the process
could have been to (1) determine the equilibrium shapes of a perfectly conducting
droplet using appropriate steps; and (2) integrate the conduction-controlled current
density over the computed interfaces to find the attendant evaporation level.

In Figures 7-9 thru 7-12 we present the results of this process and compare them
to those reported by Higuera [62]. Figure 7-9 delineates elongation curves for droplets
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of various volume as functions of the dimensionless field 𝐵𝐻 . The results of Higuera
are reproduced on the right and include six volumes ranging from 𝒱𝐻 = 0.5 to 𝒱𝐻 =
3.0 (increments of 𝒱𝐻 = 0.5). Among these, the two largest volumes (𝒱𝐻 = 3.0
and 0.25) are omitted in our calculations because their quiescent equilibria involve
contact angles with the plate that cannot be resolved through our specific cylindrical
coordinate scheme. Elongation curves for the remaining four droplet volumes have
been identified with our methods and are given on the left. To compute these, the
quiescent interface is first identified as an appropriate spherical section. Without any
electrical stressing the meniscus will belong to the sphere defined by

𝑟2 + (𝑧 − 𝑧0)2 = 𝑟2
0 ⇒ 𝑧 =

√︁
𝑟2

0 − 𝑟2 + 𝑧0 (7.22)

where 𝑧0 is some fraction of 𝑟0, i.e. 𝑧0 = 𝜒0𝑟0. If we impose the condition that the
meniscus must pass through 𝑟 = 1, the contact point, we find that 𝜒0𝑟0 =

√︁
𝑟2

0 − 1
and Eq. 7.22 becomes

𝑧 =
√︁
𝑟2

0 − 𝑟2 −
√︁
𝑟2

0 − 1 (7.23)

The attendant droplet volume is tantamount to the integral

𝒱𝐻 = 2𝜋
∫︁ 1

0
𝑟
[︂√︁

𝑟2
0 − 𝑟2 −

√︁
𝑟2

0 − 1
]︂
𝑑𝑟 (7.24)

which evaluates to

𝒱𝐻 = 𝜋

3

[︂
2𝑟3

0 − 2
(︁
𝑟2

0 − 1
)︁3/2

− 3
√︁
𝑟2

0 − 1
]︂

(7.25)

For a given 𝒱𝐻 we identify the quiescent interface by solving this relationship for
the appropriate spherical radius. Once this is known, equilibria for non-zero electrical
stress are determined in a manner similar to that which is discussed in the last section.
From Fig. 7-9 we can see that the elongations of the equipotential droplets are nearly
identical to those provided by the reference, save for the 𝒱𝐻 = 0.5 case in which
we calculate a maximum stable field that is incrementally elevated. This confers
a small but noticeable increase in the maximum elongation which is fleshed out to
some small degree in Fig. 7-10 where the limiting topographies are plotted. The
extent to which this small, albeit non-zero discrepancy can be attributed to either
flow effects or numerical artifacts is unclear. Notwithstanding it, however, the results
would otherwise seem to agree very nicely.

In Figures 7-11(𝑎) and 7-11(𝑏) we compare the dimensionless electric field at the
tip and the dimensionless charge density at the tip, respectively. For the latter case
our calculation is predicated upon the hydrostatic assumption so that we may neglect
convective surface currents and formulate a balance between emission and conduction
alone. In the notation of Higuera, this is

𝐷𝐻𝜎 exp
(︂
𝛽𝐻

√︁
𝐸̂𝑣
𝑛

)︂
⏟  ⏞  

𝑗𝑒

= Λ𝐻𝐸̂
𝑙
𝑛⏟  ⏞  

𝑗𝑐𝑜𝑛𝑑

(7.26)
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Figure 7-9: Comparison of elongation curves for active-emission droplets of fixed-
volume attached to conducting plates with a static contact line. Left: Elongations
calculated with present methods. Delineated volumes are 𝒱𝐻 = 0.5, 1.0, 1.5, 2.0 in-
creasing in the direction of the arrow. Right: Elongations reproduced from Higuera
[62]. Delineated volumes are 𝒱𝐻 = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 increasing in the direction
of the arrow.
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Figure 7-10: Comparison of limiting topographies for active-emission droplets of
fixed-volume attached to conducting plates with a static contact line. Left: Lim-
iting topographies calculated with present methods. Delineated volumes are 𝒱𝐻 =
0.5, 1.0, 1.5, 2.0 increasing in the direction of the arrow. Right: Limiting topographies
reproduced from Higuera [62]. Delineated volumes are 𝒱𝐻 = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
increasing in the direction of the arrow.
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where all quantities are dimensionless. After invoking the interfacial jump condi-
tion

𝜎 = 𝐸̂𝑣
𝑛 − 𝜖𝑟𝐸̂

𝑙
𝑛 ⇒ 𝐸̂𝑙

𝑛 = 1
𝜖𝑟

(︁
𝐸̂𝑣
𝑛 − 𝜎

)︁
(7.27)

we solve this to find

𝜎 = Λ𝐻𝐸̂
𝑣
𝑛

𝜖𝑟𝐷𝐻 exp
(︂
𝛽𝐻

√︁
𝐸̂𝑣
𝑛

)︂
+ Λ𝐻

(7.28)

The astute reader will now recognize that the equipotential menisci we are using
do not permit any fields to form within the body of the liquid. In this case, the
surface charge density is simply 𝜎 = 𝐸̂𝑣

𝑛 in spite of any emission. While that is
true, we refer to the earlier chapter on spheroidal interfaces where we showed that
highly polar droplets (say, 𝜖𝑟 & 50) are characterized by stable equilibria that are
nearly identical to those of a perfectly conducting fluid, suggesting that the vacuum
field is not significantly changed when the droplet permittivity sufficiently suppresses
the small but non-zero liquid field. With that in mind, we can assume as a first
approximation that a real fluid with depleted surface charge has a vacuum field that is
equivalent to that of a conducting fluid of similar shape (what we have calculated) and
an internal field governed by the interfacial jump condition so long as 𝜖𝑟 is large. Given
that Higuera has taken 𝜖𝑟 = 50 it would seem that Eq. 7.28 should provide a very
reasonable estimate when 𝐸̂𝑣

𝑛 is borrowed from our conducting meniscus solutions.
The correspondence between the curves in Fig. 7-11(left) and Fig. 7-11(right) appear
to confirm this.

In a similar spirit we can approximate the evaporation density 𝑗𝑒 across the in-
terface. When this is nondimensionalized by 𝜖0𝐸𝐻𝛾𝑎/𝜇 as in the reference, we find,
again the notation of Higuera

𝑗𝑒 = 𝜎𝐷𝐻

𝑎2 exp
(︂
𝛽𝐻

√︁
𝐸̂𝑣
𝑛

)︂
(7.29)

The total current is now the integral of this density over the full surface. The
result is that

𝐼𝑒 =
∫︁ 1

0

Λ𝐻𝐸̂
𝑣
𝑛𝐷𝐻 exp

(︂
𝛽𝐻

√︁
𝐸̂𝑣
𝑛

)︂
𝜖𝑟𝐷𝐻 exp

(︂
𝛽𝐻

√︁
𝐸̂𝑣
𝑛

)︂
+ Λ𝐻

× 𝑑𝐴 (7.30)

where the differential area is given by

𝑑𝐴 = 2𝜋𝑟
√
𝑑𝑟2 + 𝑑𝑧2 (7.31)

Evaporation curves are plotted in Figure 7-12 where we again observe good cor-
respondence between our calculations (left) and those from the reference (right). A
slight extension of the evaporation tail is noted for the 𝒱𝐻 = 0.5 droplet but this can
be attributed to the elevated field that we have already addressed.
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Figure 7-11: Comparison of apex properties for active-emission droplets of fixed-
volume attached to conducting plates with a static contact line. The top figures, (𝑎),
delineate the tip field on the vacuum side while the bottom figures, (𝑏), delineate the
local density of surface charge. These are plotted as functions of the dimensionless
field 𝐵𝐻 used by Higuera [62], which is related to ours through 𝐵𝐻 = 2𝐸̂0. Left:
Apex properties calculated with present methods. Delineated volumes are 𝒱𝐻 =
0.5, 1.0, 1.5, 2.0 increasing in the direction of the arrow. Right: Apex properties
reproduced from Higuera [62]. Delineated volumes are 𝒱𝐻 = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
increasing in the direction of the arrow.
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Figure 7-12: Comparison of evaporation curves for active-emission droplets of fixed-
volume attached to conducting plates with a static contact line. Left: Evaporation
curves calculated with present methods. Delineated volumes are 𝒱𝐻 = 0.5, 1.0, 1.5, 2.0
increasing in the direction of the arrow. Right: Evaporation curves reproduced from
Higuera [62]. Delineated volumes are 𝒱𝐻 = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 increasing in the
direction of the arrow.

7.4 Discussion
Using analytical approximations for electrically-stressed droplets in free space we
have confirmed that our numerical methods are capable of capturing stable equilibria
very accurately, at least when no emission is present. This notion is corroborated
through direct quantitative comparison of results that were obtained with our model
(for several droplet configurations) to known values developed in the literature using
high-accuracy Jacobian (Wohlhuter [71]) and time-resolved (Higuera [62]) methods.

Estimates of emission from conducting droplets have been compared to the results
of Higuera [62] with good agreement. During this process we have shown that the
menisci of moderate 𝐵 in the reference (recall that 𝐵 ∼ 1/5 rather than 𝐵 ≪ 1) were
primarily beholden to the normal turning point behavior of fixed-volume droplets.
Because the emission dynamics did not significantly influence the problem, we calcu-
lated our estimates as a post-processing step rather than in the strictly self-consistent
manner afforded by the full model.
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Chapter 8

Equilibria and evaporation

In this chapter we will invoke the full meniscus model, as presented earlier, and use it
to explore equilibria and evaporation of ionic liquids under various conditions. Owing
to previous work on solutions for the regime of moderate-𝐵 (Higuera [62]), emphasis
will be placed on low-𝐵 scenarios during this process; i.e. we will concentrate on
menisci that are much larger than the estimated size of the evaporation zone. Such
configurations will also afford better resolution of laboratory conditions, where large
tubes or emitter tips are often used to facilitate electrospraying.

The first section will investigate a branch of stable solutions corresponding to
low electric fields. These terminate at familiar "turning points" and represent the
free-volume analog to the well-known lower equilibrium branch of its fixed-volume
counterpart. The following section will introduce for the first time a new branch of
ostensibly stable solutions, corresponding to much higher fields, that begin to support
meaningful evaporation. As we will show, these are apparently enabled by the physics
of the flow. To conclude, we offer a brief qualitative comparison between the modeled
menisci and known empirical behaviors.

Unless otherwise noted, in all cases we adopt static fluid properties that are loosely
representative of pure ionic liquids, such as the popular EMI-BF4, near room temper-
ature. These include 𝜖𝑟 =10; 𝑘0 =1 S/m; 𝑘′ =0.04 S/m-K; 𝑞/𝑚 =106 C/kg; 𝑇0 =300
K; 𝜇0 =0.037 Pa-s; 𝑘𝑇 =0.2 W/m-K; 𝑐𝑝 =1500 J/kg-K; 𝛾 =0.05 N/m; Δ𝐺 =1
eV; and 𝜌 =103 kg/m3. This selection of parameters sets the following dimension-
less quantities: 𝑅𝐸 =853×10-6; Λ =12; 𝐶𝑇

𝑐 =0.0569; 𝐶𝑇
𝑢 =0.0269; 𝐶𝑒

𝑢 =256×10-6;
𝜒 =181×10-5; in addition to 𝜓 =38.6. The domain specifications are 𝑟𝑝 = 𝑧0 =20,
similar to Wohlhuter [71], and 𝑧𝑝 =1. All remaining values (i.e. 𝐸̂0, 𝐵, 𝐶𝑅, 𝑃𝑟) are
elected with discretion but explicitly noted where appropriate.

For the numerical routine, nominal values for the number of observation points
evenly spaced across the radial dimension of the meniscus 𝑁 , the relaxation param-
eter 𝛽, and the termination threshold 𝑃𝛽 are 103, 0.5, and 10-3, respectively. These
may, however, be modified in certain instances to suit the needs of a given solution.
Also, there are now two independent meshes: one for the electrical calculations and
another for the fluid and thermal calculations. The former is set to ℎ̂𝑚𝑎𝑥 =0.25,
ℎ𝑚𝑖𝑛 =10-10, ℎ𝑔𝑟𝑎𝑑 =1.25, and ℎ𝑐𝑢𝑟𝑣𝑒 =10-2 while the latter substitutes ℎ̂𝑚𝑎𝑥 =0.04
and ℎ𝑐𝑢𝑟𝑣𝑒 =5×10-3.
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8.1 Lower equilibrium branch

We will begin our study of free-volume menisci by investigating the behavior atten-
dant to small fields before gradually increasing the stresses (𝐸̂0 and 𝑃𝑟) to see what
happens. During this process it will be simplest to fix the remaining parameters
𝐵 and 𝐶𝑅. As a starting point for the former, we arbitrarily select a dimensional
meniscus size of 𝑏0 =10-6 m. Given the aforementioned fluid properties, a value of

𝑟* = 𝛾𝑞6

4𝜋2𝜖3
0Δ𝐺4 = 46.7𝑛𝑚 (8.1)

is calculated for the characteristic evaporation zone. This yields the dimensionless
size parameter 𝐵 = 𝑟*/𝑏0 =0.047, i.e. the contact line is approximately 21.4 times
wider than the part of the tip that we should expect to support evaporation.

At this point it is difficult to have any intuition as to sensible values for the scaled
hydraulic impedance 𝐶𝑅. It would at first seem attractive to take 𝐶𝑅 = 0, the so-
called friction-less feed system, for numerical convenience but empirical indications
suggest that much higher values could be a prerequisite for steady evaporation. In
order to get ourselves into the proper ballpark then, we might look instead to the
seminal work of Romero-Sanz [29] and attempt to glean a measure of insight. In
the study described therein, it is noted that a somewhat larger capillary with radius
𝑏0 =10-5 m and length 𝐿 =0.3 m is used to achieve pure evaporation with EMI-BF4
(for which the dynamic viscosity 𝜇0 ∼0.037 Pa-s). Assuming Poiseuille flow, the
corresponding impedance of this line is numerically equivalent to

𝑅ℎ = 8𝜇0𝐿

𝜋𝑏4
0

= 2.83 × 1018𝑃𝑎− 𝑠/𝑚3 (8.2)

which gives 𝐶𝑅 =1340 in our dimensionless notation. With this in mind, we will
elect 𝐶𝑅 =103 for the initial survey of low fields.

The figures that follow present several important results, including the corre-
sponding variations in 𝐸̂0 and 𝑃𝑟. Figure 8-1 delineates computed elongation curves
as functions of the applied field. Perhaps unsurprisingly, these exhibit familiar turn-
ing point behavior and bear a strong qualitative resemblance to earlier results for
other menisci. Figure 8-2 depicts limiting shapes, approximately representative of
the static stability threshold, for each of the back-pressures we have considered.

Emission properties for the calculated menisci are elucidated in Figure 8-3, where
the vacuum field at the tip is shown as a function of 𝐸̂0. Interestingly, we can see
that the maximum attainable field is only on the order of 𝐸̂𝑡𝑖𝑝 ∼ 100, and roughly
corresponds to the case of a vanishing back-pressure. To understand the implications
for evaporation, consider that

𝐸̂𝑡𝑖𝑝 ∼ 1 ⇒ 𝐸𝑡𝑖𝑝 ∼ 𝐸𝑐 =
√︃

4𝛾
𝜖0𝑏0

(8.3)

which can easily be related to the critical field 𝐸*
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Figure 8-1: Elongation curves corresponding to lower branch of free-volume equilibria.
The elongations are plotted as a function of the dimensionless field 𝐸̂0 with the
reservoir pressure 𝑃𝑟 as a parameter. Delineated values are 𝑃𝑟 =-0.50, -0.25, 0.00,
0.25, 0.50, 0.75, and 0.90 with the arrow indicating the direction of increasing value.
Notice that the curves are qualitatively familiar and exhibit so-called turning point
behavior.

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

𝒓 

𝒛 

Figure 8-2: Limiting menisci for lower branch of free-volume equilibria. The menisci
are plotted in dimensionless 𝑟−𝑧 space and correspond to the turning point locations
from Fig. 8-1. Delineated back-pressures are 𝑃𝑟 =-0.50, -0.25, 0.00, 0.25, 0.50, 0.75,
and 0.90 with the arrow indicating the direction of increasing value.
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𝐸𝑡𝑖𝑝
𝐸* ∼

√︃
4𝛾
𝜖0𝑏0

×
√︃
𝜖0𝑟*

4𝛾 =
√︃
𝑟*

𝑏0
= 𝐵1/2 (8.4)

In the regime involving 𝐵 ≪ 1, this indicates that the interfacial fields corre-
sponding to this ordinary branch of solutions will never be high enough for meaningful
evaporation. This was confirmed in the simulations, where currents were observed in
the range from 10-16 - 10-12 A for the 1-micron meniscus but not beyond. Owing to
these nearly immeasurable magnitudes, our choice of 𝐶𝑅 was apparently moot.

In spite of our complex and very substantial efforts to this point, it is still difficult
to reconcile these rigorous results with empirical observations suggesting that pure
evaporation can indeed be feasible in an extremely low-𝐵 regime. As in the spheroidal
case, it appears as though free-volume menisci residing along the normal solution
branch (i.e. the one for which 𝐸̂0 is low) are subject to similar restrictions. If we
are to eventually identify evaporative situations, as we suspect that we should be
able to, it stands to reason then that we will need to search for previously uncharted
branches. This will be the topic of the following section.

Before we begin that search, there are potentially useful results still to be gleaned
from the lower solution branch. Figure 8-4, for example, delineates one such result.
The contact angle, defined here as the liquid-side angle between the interface and
plane of the plate, is shown as a function of the applied field with 𝑃𝑟 as a parameter.
As we can see, this angle tends to increase with the field and also climbs dramatically
in response to added back-pressure. Since we can expect the contact line to be pinned
at 𝑏0 so long as 𝜃𝑐 is less than the so-called wetting angle 𝜃𝑤 [94], the utility of this
result is a demarcation of the feeding and stressing conditions for which the meniscus
should be confined to the modeled fluid port. For example, with a system that is
perfectly wetting (𝜃𝑤 → 0) it is clear that any back-pressure 𝑃𝑟 > 0 will immediately
result in spillage that breaks the interface, causing fluid to rapidly spread across the
plate (Fig. 8-5). The same is likely true of smaller back-pressures if the field is
sufficiently high; for example, in the case where 𝑃𝑟 = −0.25 and 𝐸̂0 & 0.50.

When the feeding port in the plate is part of a larger emitter tip, it is expected
that these "leaky" conditions will lead to a thin layer of conformal fluid covering the
structure. In this event, the fluid could resemble that of an externally-wetted tip
(insofar as its coverage of the tip, at least) but exhibit different hydraulics as a re-
sult of the internal feeding. While this may at first seem interesting, it is becoming
increasingly evident that larger menisci may have a much more difficult time sup-
porting pure evaporation. If this is indeed true, spillage will only serve to increase
the effective meniscus size, reducing in some way the ability for the tip to produce
monodisperse ions in steady fashion.

8.2 Upper equilibrum branch
The results of the previous section should embody the full family of "normal" solutions
for menisci involving 𝐵 ≪ 1, i.e. “egg-shaped” solutions that are qualitatively similar
to those that we have already seen. We can surmise this based on the familiar
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Figure 8-3: Apex fields for free-volume menisci residing on lower solution branch.
The dimensionless vacuum field 𝐸̂𝑡𝑖𝑝 is shown as a function of the applied field 𝐸̂0

with the reservoir pressure as a parameter. Delineated values are 𝑃𝑟 =-0.50, -0.25,
0.00, 0.25, 0.50, 0.75, and 0.90 with the arrow indicating the direction of increasing
magnitude. Notice that the field reaches a maximum near the turning point of the
𝑃𝑟 =0 case and corresponds to approximately 𝐸𝑐, precluding meaningful evaporation
when 𝑏0 ≫ 𝑟*.
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Figure 8-4: Contact angles for free-volume menisci residing on lower solution branch.
The contact angle is defined as the angle inside the liquid between the interface and
the plane of the anchoring plate. It is shown (units of degrees) as a function of
the applied field 𝐸̂0 with the reservoir pressure as a parameter. Delineated values
are 𝑃𝑟 =-0.50, -0.25, 0.00, 0.25, 0.50, 0.75, and 0.90 with the arrow indicating the
direction of increasing magnitude.
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Figure 8-5: Contact line pinning for a free-volume meniscus. Left: The contact line
is pinned to the fluid port so long as angle the interface makes with the plate is less
than the wetting angle, i.e. 𝜃𝑐 < 𝜃𝑤. Right: The contact line is permitted to wander
when 𝜃𝑐 → 𝜃𝑤. It is possible that this leads to a situation in which the plate becomes
covered with a thin layer of liquid.
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turning point behavior observed in the elongation curves of Fig. 8-1, which would
seem to significantly temper the possibility that additional solutions of the same type
exist beyond the noted limits of stability. However, as we have also suggested, this
conclusion is very difficult to reconcile with empirical phenomena since the lower
branch was not found to support meaningful emission.

With this in mind, it makes sense now to hypothesize the existence of high-field
solutions that do in fact support the strong emission we anticipate, but from interfacial
configurations that are possibly very different from the ones to which we have become
accustomed. Owing to the lower turning points, it seems fair to speculate that the
emission physics themselves (namely the interaction of evaporation-induced flow with
an upstream impedance) are responsible for conferring stability on this new and
previously uncharted branch.

8.2.1 First solution & numerical recalibration

In an effort to elucidate this elusive solution family, we might start by electing to
investigate the same fluid that was used to probe the lower branch. For consistency,
we can conserve 𝐵 = 0.047 and 𝐶𝑅 =103 while judiciously prescribing the reservoir
pressure 𝑃𝑟 = 0 in view of Fig. 8-3, which suggests that this is a good candidate
for maximizing the field at the tip of the meniscus. On the other hand, the choice
of appropriate 𝐸̂0 is rather arbitrary and uninformed but should obviously be larger
than the limiting field 𝐸̂0 ∼ 0.51 found for the lower turning point. As an exercise in
educated conjecture, we can therefore choose 𝐸̂0 =0.70 to satisfy this condition while
offering at the same time a small buffer that does not push the field to farcical levels.

Before searching for a solution we will also need to identify an initial meniscus
shape that is at least reasonably close to the equilibrium one so that our numerical
routine does not diverge. As with the field, this is again an exercise in guesswork since
it is difficult to have intuition for what the interface might eventually resemble. While
it is unlikely that the Taylor archetype will prevail, owing to an important dependence
on the hydrostatic condition of the meniscus now (which, of course, is neglected in the
classical derivation of Taylor’s structure), a pseudo-conic is probably a good starting
point so long as the tip is sufficiently rounded. To develop such a shape we will
first consider the corresponding distribution of surface tension (i.e., Laplace pressure)
since this is an input to the model. In general we have that 𝑃𝑠𝑡 = −𝛾(∇ · 𝑛⃗), where
∇ · 𝑛⃗ is the divergence of the local normal at the interface. From the appendix, this
takes the form

∇ · 𝑛⃗ = (1 + ℎ2
𝑟)ℎ𝑟 + 𝑟 × ℎ𝑟𝑟

𝑟 (1 + ℎ2
𝑟)

3/2 (8.5)

in cylindrical coordinates, where the spatial profile of the meniscus is given by
𝑧 = ℎ(𝑟) and the subscripts denote the first and second spatial derivatives with respect
to the cylindrical radius 𝑟. After converting this to our dimensionless notation we
find
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Figure 8-6: Relationship between the half-angle of an axisymmetric cone in cylindrical
space and the slope of its projection on the 𝑟 − 𝑧 plane. From 𝑑𝑧/𝑑𝑟 = ℎ𝑟 we have
that ℎ𝑟 = − cot 𝜃.

𝑃𝑠𝑡 = −1
2

⎡⎢⎣
(︁
1 + ℎ̂2

𝑟

)︁
ℎ̂𝑟 + 𝑟 × ℎ̂𝑟𝑟

𝑟
(︁
1 + ℎ̂2

𝑟

)︁3/2

⎤⎥⎦ (8.6)

For a conical protrusion, ℎ𝑟 must be a constant while ℎ𝑟𝑟 → 0. This reduces Eq.
8.6 to

𝑃𝑠𝑡 = −1
2

ℎ̂𝑟

𝑟
(︁
1 + ℎ̂2

𝑟

)︁1/2 (8.7)

The slope of the profile ℎ𝑟 will now depend on half-angle of the cone we choose
(see Fig. 8-6). The trigonometric relationship is ℎ𝑟 = − cot 𝜃 since the cone requires
ℎ𝑟 < 0 by definition, and so the surface tension becomes

𝑃𝑠𝑡 = cos 𝜃
2𝑟 (8.8)

after a measure of algebraic manipulation. Of course, 𝑃𝑠𝑡 → ∞ for 𝑟 → 0 as we
would expect for a perfectly sharp conical tip, but such a singularity is something
that should be avoided, particularly in numerical computation. In situations where
steady evaporation prevails it is likely that a rounded apex exists in lieu of a sharp
point. From earlier chapters we know that the characteristic scale of this cap is 𝑟*

and so the corresponding tension must be 𝑃𝑠𝑡 ∼ 2𝛾/𝑟*. In dimensionless quantities
this amounts to

𝑃𝑠𝑡 ∼ 𝑟0

𝑟* = 𝐵−1 (8.9)

Since we have already prescribed 𝐵 = 0.047 we now see that 𝑃𝑠𝑡 ∼ 20 should be
expected in the vicinity of an equilibrated tip. Just to be sure that we are starting our
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Figure 8-7: Starting shape for calculations to identify first solution along upper equi-
librium branch. The initial guess (blue) is shown alongside a classical Taylor structure
(black) while the inset highlights the roundedness of the cap. Coordinates are given
in dimensionless 𝑟 − 𝑧 space.

numerical process with a situation of active emission, however, it might make sense to
“sharpen” this tip, even if only incrementally. As a result, in a semi-arbitrary manner
we now choose 𝑃𝑠𝑡 = 50 for the cap and 𝜃 = 60∘ for the conical half-angle that will
exist far from the apex. Mating these two conditions gives

𝑃𝑠𝑡 =

⎧⎨⎩50 , cos 𝜃
2𝑟 ≥ 50

cos 𝜃
2𝑟 , otherwise

(8.10)

The shape that is produced by this distribution of tension is shown in Fig. 8-7
alongside a classical Taylor structure for comparison. The inset delineates the rounded
part of the cap very near to the axis of symmetry.

With a starting shape in hand we can begin to search for an equilibrium solution
at the specific point we have identified in the parameter space. Before we start, it
is worth mentioning that we may or may not require a “slow” iterative evolution of
the meniscus since we are now anticipating emission that will in general have a very
nonlinear (i.e. exponential) dependency on the prevailing fields. To be safe, we can
investigate cases of 𝛽 = 0.50 and 𝛽 = 0.05 in parallel while maintaining our 𝑃𝛽 =10-3

termination condition.
Figure 8-8 shows semi-converged solutions for both cases. On the left, the dashed

blue line delineates the starting point for 𝛽 = 0.5 while the lower blue line signifies an
interface that is apparently very close to an equilibrium but still slightly beyond the
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Figure 8-8: Semi-converged morphologies for first solution along upper branch with
𝛽 = 0.50 and 𝛽 = 0.05. The initial guess (blue dash) is shown above near-equilibrium
menisci (solid blue) with a classical Taylor structure (black) for comparison. In the
𝛽 = 0.50 case (left), the near-equilibrium structure is reached very quickly but the ter-
mination condition cannot be satisfied after many additional iterations. The 𝛽 = 0.05
case (right) approaches an almost identical structure fairly slowly but does achieve
full convergence.

termination threshold. On the right, the lower blue curve indicates a fully converged
solution (termination condition satisfied) found with the smaller 𝛽 = 0.05. These were
reached after 𝑖 = 100 iterations for 𝛽 = 0.50 (arbitrarily stopped due to asymptoting
excess pressure) and 𝑖 = 272 iterations for 𝛽 = 0.05.

To clarify several important convergence properties, Figures 8-9 and 8-10 delineate
the tip height (left) and dimensionless current (right) computed during each compu-
tational iteration. For 𝛽 = 0.50 (Fig. 8-9), we can see that the tip height oscillates
to some degree but otherwise approaches a constant value 𝑧𝑡𝑖𝑝 ∼ 0.40 very quickly.
The same is true of the dimensionless current, where it might be noted that for the
fluid in question the value 𝐼 ∼ 5×10-4 corresponds to roughly 80 nA. By comparison,
it is clear that the 𝛽 = 0.05 case (Fig. 8-10) yields what amounts to identical values,
albeit after significantly more iteration cycles.

Figures 8-11 (𝛽 = 0.5) and 8-12 (𝛽 = 0.05) delineate the maximum absolute
value of Δ𝑃 across the menisci during each iteration (left graphs). Again, these show
that the 𝛽 = 0.5 case very rapidly approaches a converged condition, but now we
can see how it “dances” right around 𝑃𝛽 =10-3 for many iterations without actually
reaching it at any point. As a result, the solver was manually terminated after 100
computational cycles. For 𝛽 = 0.05, on the other hand, the termination condition
is indeed reached, although it is clear that the threshold is approached extremely
methodically.

In an ideal world the deliberateness of 𝛽 = 0.05 would not be an issue. Much
to the contrary, it would likely be a virtue, and we would take 𝛽 arbitrarily small in
connection with an infinitely dense mesh in order to capture the important physics
perfectly well. In the real world, however, making the relaxation parameter small and
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Figure 8-9: Elongation and evaporation convergence for first upper branch solution
with 𝛽 = 0.50. Left: The elongation of the meniscus (tip height) is shown as a
function of the iteration index 𝑖. Right: The calculated dimensionless current is
similarly offered. Note for the elected fluid and contact conditions that 𝐼 ≈ 5×10-4

corresponds to roughly 80 nA.
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Figure 8-10: Elongation and evaporation convergence for first upper branch solution
with 𝛽 = 0.05. Left: The elongation of the meniscus (tip height) is shown as a
function of the iteration index 𝑖. Right: The calculated dimensionless current is
similarly offered. Note for the elected fluid and contact conditions that 𝐼 ≈ 5×10-4

corresponds to roughly 80 nA.
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Figure 8-11: Convergence of excess pressure and final interfacial distribution for first
upper branch solution with 𝛽 = 0.50. Left: Maximum absolute value of Δ𝑃 along
the meniscus during each computational iteration. Right: Distribution of excess
pressure as a function of 𝑟 across the interface for the final computational iteration
(𝑖 = 100).

0 50 100 150 200 250 300

10
-2

10
0

10
2

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

𝒊 𝒓 

∆𝑷 𝒎 ∆𝑷 × 𝟏𝟎𝟑 

Figure 8-12: Convergence of excess pressure and final interfacial distribution for first
upper branch solution with 𝛽 = 0.05. Left: Maximum absolute value of Δ𝑃 along
the meniscus during each computational iteration. Right: Distribution of excess
pressure as a function of 𝑟 across the interface for the final computational iteration
(𝑖 = 272).
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supplementing the mesh has nontrivial consequences, i.e. this increases the number
of required iterations (small 𝛽) and also the computational time per iteration (mesh
density). Since each iteration already costs roughly one minute of real time, neither
of these options are particularly compelling. We have an obvious and vested interest
in maintaining the mesh as it is while using 𝛽 = 0.50, but we need to rectify our
present inability to satisfy the chosen 𝑃𝛽 before we can move on to exploring the
broader parameter space.

Based on the collection of presented convergence behaviors for the 𝛽 = 0.50 case,
it is clear that the real equilibrium solution was actually identified in spite of the
fact that the termination condition was not quite satisfied. This is a first indication
that 𝑃𝛽 can be relaxed in some way without loss of accuracy. In other words, the
existing termination condition is unnecessarily stringent. To develop a better sense
for what might be going on, we refer to Figs. 8-11 and 8-12 (right), which show
the distributions of Δ𝑃𝑑 across the menisci for both 𝛽 during the final iteration
(𝑖 = 100 and 𝑖 = 272 for 𝛽 = 0.5 and 𝛽 = 0.05, respectively). From the curves
contained therein it is evident that we are experiencing a small amount of noise near
the activated (emitting) apices. Owing to the multiphysical and nonlinear nature of
the processes that are now concentrated there, this is perhaps to be expected. What
is important to point out, however, is that unlike the “egg-shaped” interfaces from
the lower solution branch and the earlier chapters, for which the governing stresses
are on the order of 2𝛾/𝑟0 at most, the emitting part of the meniscus is now unfairly
penalized by the chosen form of 𝑃𝛽. This is because the important stresses on the
activated tip (these scale like ∼ 𝐵−1) can be large in comparison to the nominal
capillary pressure, which suggests that the attendant noise could be too great for the
static termination value.

As an alternative, it would seem reasonable to compare the distribution of Δ𝑃𝑑
to the other local pressures (electrical, interfacial, etc.) in lieu of simply 2𝛾/𝑟0. For
example, a given Δ𝑃𝑑 could be compared to the local max-norm, |𝜏 |𝑚, defined by

|𝜏 |𝑚 = max {|𝜏 𝑒
𝑛| , |𝛾∇ · 𝑛⃗| , |𝜏 𝑣

𝑛|} (8.11)

where the three stresses on the right-hand side are the normal electric stress, the
surface tension stress, and the normal viscous stress, respectively. This leads to the
modified termination condition

|Δ𝑃𝑑|
|𝜏 |𝑚

≤ |𝑃𝛽| (8.12)

in which the denominator is understood to be the max-norm of the pressures local
to the Δ𝑃𝑑 in question. With this formulation, we should expect a fair assessment
of equilibrium proximity, even for instances where 𝐵 ≪ 1, and the ability to use the
faster 𝑏𝑒𝑡𝑎 = 0.5 value. For example, in the present case of 𝐸̂0 = 0.7 this condition
with |𝑃𝛽| =10-2 would have stopped the 𝛽 = 0.5 simulation after iteration 𝑖 = 22,
where the integrated current and tip elongation differed from the final 𝛽 = 0.05
result (the one for iteration 𝑖 = 272) by no more than 1% and 0.1%, respectively. As
a result, we will adopt |𝑃𝛽| =10-2 going forward and hope that it will afford us the
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Figure 8-13: Select shapes for the first set of upper equilibrium solutions (variations
in 𝐸̂0) plotted in dimensionless 𝑟-𝑧 space. A Taylor structure (black) is shown along-
side menisci for 𝐸̂0 = [0.59, 0.69, 0.79, 0.89, 0.99, 1.09], where the arrow indicates the
direction of increasing field. The results indicate an inverse proportionality between
the field and the elongation (and also the volume), in addition to the notion that the
Taylor structure may not be the appropriate archetype for ion evaporation.

opportunity to explore an interesting subregion of the global parameter space in a
practical amount of time.

8.2.2 Variations in 𝐸̂0 (𝐵 = 0.047, 𝐶𝑅 = 103, 𝑃𝑟 = 0)

Our first submapping task is to explore variations in the field 𝐸̂0 while conserving
the set of complimentary parameters (𝐵 = 0.047, 𝐶𝑅 = 103, 𝑃𝑟 = 0). Starting with
the initial 𝐸̂0 = 0.70 solution, we achieve this by making incremental excursions in
either direction (Δ𝐸̂0 = 0.01) until new solutions can no longer be identified within
the given tolerance.

Using this method we calculate equilibria spanning the domain from 𝐸̂0 = 0.59 to
𝐸̂0 = 1.09. Figure 8-13 delineates a selection of corresponding shapes alongside a clas-
sical Taylor structure for comparison. The arrow indicates the direction of increasing
field. As we can see, for small fields the meniscus begins to approach something that
might be construed as a pseudo-conic but never quite resembles Taylor. On the oppo-
site end of the spectrum, the physics of the higher fields apparently cause the interface
to be sucked into its feeding tube, for lack of a better description. At 𝐸̂0 = 1.09 in
particular, this results in a meniscus that is very unlike the classical Taylor structure,
and a first indication that such “cones” might not be the proper archetype for low-𝐵
ion evaporation.

In Figure 8-14 we plot the elongation curve for the upper equilibria in order to

171



0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

𝑬𝟎 

𝒁 

Figure 8-14: Comparison of elongation curves between upper and lower branches. The
elongation 𝑍 is given as a function of 𝐸̂0. The lower branch (left curves) is the same
as that delineated in Fig. 8-1, where the arrow indicates the direction of increasing
reservoir pressure 𝑃𝑟. Along both branches, the case 𝑃𝑟 = 0 is plotted in blue. The
results highlight the inverse proportionality between the field and elongation (also the
volume).

develop a better sense for where these new solutions reside in comparison to those of
the lower branch. Beyond the turning point that terminates the latter there exists
a small gap in the field for which we have not identified any menisci. It is possible
that this region corresponds to known electrospray regimes (or at least relatives of
known regimes, e.g. the pulsating regimes described by Cloupeau and Prunet-Foch
[95, 96]) that are unstable. At 𝐸̂0 = 0.59 the upper elongation curve commences
and immediately distinguishes itself from its lower counterpart in the sense that it
exhibits a negative slope. In other words, the field and the elongation show the inverse
proportionality that we noted in Fig. 8-13. This is very interesting and also explicable
by way of the emission physics that are now present but did not contribute to the
lower branch. For clarity, we plot the tip fields in Figure 8-15 where we can see that
the sharpness of the upper branch confers much higher 𝐸𝑣

𝑛. The inset delineates the
relationship between this field and the critical one, 𝐸*, and indicates that we must
now be supporting fields that are appropriate for ion evaporation.

Figure 8-16 shows the integrated dimensionless current as a function of the field
𝐸̂0. Units are offered in the inset, corresponding to the particular fluid we have
chosen, and these suggest that very meaningful evaporation is now taking place. For
example, for the lower fields we see several tens of nanoamperes (𝐼 . 50 nA at the low
extreme) and for the higher fields we see several hundred nanoamperes (𝐼 & 180 nA at
the high extreme). At first glance these would seem to agree at least qualitatively with
laboratory observations as they exhibit reasonable magnitude, i.e., hundreds of nA,
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Figure 8-15: Comparison of apex field between upper and lower branches. The di-
mensionless tip field 𝐸̂𝑡𝑖𝑝 is given as a function of 𝐸̂0. The lower branch (lower left
curves) is the same as that delineated in Fig. 8-3, where 𝑃𝑟 decreases from left to
right. Along both branches, the case 𝑃𝑟 = 0 is plotted in blue. The results highlight
the substantial increase in field that is observed for the upper equilibria. This owes
to improved meniscus sharpness and likely affords meaningful emission. The latter is
evidenced by the inset, which depicts the relationship between the tip field and the
critical one 𝐸*.
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Figure 8-16: Calculated current for first solutions along upper equilibrium branch.
The dimensionless current 𝐼 is plotted as a function of 𝐸̂0 while the inset offers
units (nA) corresponding to the prototype fluid. Along with reasonable magnitudes
(several tens of nA to several hundred), a linear relationship between the current
and the field is observed. These appear to at least qualitatively agree with known
empirical phenomena.

and a measure of linearity with respect to the applied field [54, 56]. Moreover, they
now provide a physical explanation for the interesting elongation behavior: as the
current increases with the field, interaction of the attendant flow with the upstream
impedance reduces the nearly hydrostatic pressure in the meniscus such that it is
pulled toward the plane defining the end of the tube (as seen in Figs. 8-13 and 8-14).

8.2.3 Select solution characteristics (𝐸̂0 = 1.00, 𝐵 = 0.047,
𝐶𝑅 = 103, 𝑃𝑟 = 0)

In an effort to further our investigation of the upper equilibria we will present here a
collection of interesting results for the specific solution identified at 𝐸̂0 = 1.00. We
believe that these will at least qualitatively embody the characteristics of many of
the additional solutions we hope to uncover later on.

Mechanical

Figure 8-17 shows the distributions of dimensionless normal stress across the interface,
i.e. as a function of 𝑟. The electric pressure 𝜏 𝑒

𝑛 is the dominant pressure and it is
primarily compensated by the surface stresses 𝛾∇ · 𝑛⃗, as expected. At this point it
should be clear as to why we separated the hydraulic tensor: the “suction” (𝑄×𝑅ℎ)
created by pressure loss in the upstream feeding duct is apparently meaningful while
the stress accumulated in the meniscus itself (𝑛⃗ · 𝜏𝑚 · 𝑛⃗) is exceedingly small. This
means that the meniscus is very nearly hydrostatic, which should not come as a
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Figure 8-17: Distribution of dimensionless normal surface stresses as a function of 𝑟
across the meniscus. The electrical, interfacial, and hydraulic stresses are indicated
in the legend while the excess pressure Δ𝑃𝑑 is shown as a dashed black line. These
results strongly suggest a hydrostatic meniscus for which the electrical traction is
dominant.

surprise in view of the small Capillary number 𝜇𝑢*/𝛾, at a pressure that is dictated
by the upstream impedance.

From Figure 8-17 we can see that the excess pressure Δ𝑃𝑑 (dashed black) is very
small in comparison to the other important pressures, as it should be. For clarity, an
expanded view is offered in Figure 8-18 where we show the quotient of the attendant
distribution and the max-norm |𝜏 |𝑚. It is clear that our convergence criterion has
been satisfied.

Electrical

The jump condition for electrical surface charge is 𝜎 = 𝜖0𝐸
𝑣
𝑛 − 𝜖0𝜖𝑟𝐸

𝑙
𝑛 and so we can

write

𝜎

𝜖0𝐸𝑣
𝑛

= 1 − 𝜖𝑟
𝐸𝑙
𝑛

𝐸𝑣
𝑛

= 1 − 𝜖𝑟
𝐸̂𝑙
𝑛

𝐸̂𝑣
𝑛

(8.13)

as a measure of the local surface relaxation. This relationship is plotted in Fig.
8-19 as a function of the dimensionless radial coordinate 𝑟, where we can see that full
relaxation prevails across most of the meniscus and gives way to charge depletion only
in the vicinity of a small activated region near the tip. Based on the inset it is clear
that this region is roughly 0.05 = 1/20𝑡ℎ the size of the contact line, corresponding
with very nicely to earlier estimations of 𝑟* for the elected fluid.

As we have already discussed, local depletion of surface charge is an expected
byproduct of conduction limitations in the fluid. This will in general lead to field
permeation that should affect the potential of the meniscus near its tip. In Fig. 8-20
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Figure 8-18: Distribution of scaled excess pressure as a function of 𝑟 across the
meniscus. The results clearly indicate satisfaction of the given convergence criterion.
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Figure 8-19: Ratio of surface charge to the normal component of the displacement
field in vacuum as a function of 𝑟. The meniscus is very nearly fully relaxed outside of
a small, activated region near the tip. The inset elucidates this region and indicates
that its size corresponds to the estimated 𝑟*.
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Figure 8-20: Magnitude of potential drop across the meniscus. The modulus |𝑉 | is
shown as a function of 𝑟 and given in units of volts (based on the prototype fluid). A
loss of the expected order is indicated.

we plot the modulus of the potential drop along the meniscus (i.e., the potential of
the interface with respect to the reference value Φ0 at the base) as a function of 𝑟.
From the curve we can see that the drop concentrates around the apex, albeit less
strongly than for the charge depletion, and exhibits an order (∼100 V) that again
agrees very nicely with previous estimates.

In Fig. 8-21 we further elucidate transport issues by plotting the convected (𝑗𝑐𝑜𝑛𝑣)
and conducted (𝑘𝐸𝑙

𝑛) currents as functions of 𝑟. Without proper context it would
at first appear that the convected contribution (𝑗𝑐𝑜𝑛𝑣 ∼103 A/m2) is substantial;
however, in comparison to the scale of its conducted counterpart it is obvious that
convection plays a rather meaningless role in this instance. As we have already
postulated, we believe this to be a very general result for evaporating ionic liquids.

In Figs. 8-22 and 8-23 we plot the dimensionless potential and electric field (axial
component 𝐸𝑣

𝑧 ) distributions along the vacuum axis of the computational domain,
respectively. From the insets we can see that the field and potential quickly decrease
as we move away from the tip before asymptoting to the parallel-plate values. This is
not surprising as we would in general expect that the fields very near to the tip might
behave like those of a spherical diode. The corresponding scale for the transition
from this local spherical behavior to the one-dimensional solution is apparently 𝑏0
(i.e. that of the contact line), which seems reasonable.

In addition to the preceding results it might be useful to shed additional light on
the corresponding space charge characteristics. While we have already performed an
order-of-magnitude analysis in an earlier chapter, a slightly more rigorous investiga-
tion seems warranted in view of the fact that this aspect of ionic liquid sources is often
dismissed. Unlike their liquid metal counterparts, for which it is known that space
charge does indeed play a decided role, ionic liquids typically produce more modest
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Figure 8-21: Comparison of convected and conducted current values across the menis-
cus. The convected contribution 𝑗𝑐𝑜𝑛𝑣 is shown alongside its conducted counterpart
𝑘𝐸𝑙

𝑛 as a function of 𝑟. The latter is strongly scaled (×10-4) to fit in the plot, which
suggests that convection is largely insubstantial in the process of ionic liquid evapo-
ration.

0 5 10 15 20
-25

-20

-15

-10

-5

0

𝒛 

𝜱 

0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

𝒛 

𝜱 

Figure 8-22: Dimensionless potential distribution along the vacuum part of the com-
putational axis. The dimensional potential Φ𝑣 is scaled by 𝐸𝑐 × 𝑏0 and shown as a
function of 𝑧. The inset delineates behavior very near to the tip and indicates a fast
transition from nonlinear behavior to the parallel-plate solution.

178



0 5 10 15 20
1

1.5

2

2.5

3

3.5

𝒛 

𝑬𝒛
𝒗 

0.2 0.3 0.4 0.5
1

2

3

4

𝒛 

𝑬𝒛
𝒗 

Figure 8-23: Dimensionless field distribution along the vacuum part of the computa-
tional axis. The axial field 𝐸𝑣

𝑧 is scaled by 𝐸𝑐 and shown as a function of 𝑧. The inset
delineates behavior very near to the tip and appears to show behavior that is similar
to that of a spherical diode. The attendant nonlinearity in the field gives way to the
parallel-plate solution over a distance Δ𝑧 ∼ 0.5 − 1.0, indicating that 𝑏0 is likely the
appropriate scale.

currents. Owing to the spherical behavior that is local to the tip, we might approach
such an investigation by first considering the spherical Poisson equation, i.e.

∇2Φ𝑣 = 1
𝑟2

𝑑

𝑑𝑟

(︃
𝑟2𝑑Φ𝑣

𝑑𝑟

)︃
= 𝑑2Φ𝑣

𝑑𝑟2 + 2
𝑟

𝑑Φ𝑣

𝑑𝑟
= −𝜌

𝜖0
(8.14)

where we have intentionally omitted 𝜃 (polar) and 𝜑 (azimuthal) dependencies for
reasons of symmetry (or at least quasi-symmetry, as in the case of the former). Also
note that 𝑟 is now the spherical radius for a coordinate system that is centered about
the active part of the meniscus tip (see Fig. 8-24). The volumetric charge in vacuum
is related to the quotient of the spatially varying current density and propagation
speed, 𝜌 = 𝑗/𝑣. In contrast to 1D space charge calculations, for the spherical diode it
is necessary for the current density to vary with 𝑟 in situations where continuity must
strictly apply. Noting that the total current 𝐼 ∼ 4𝜋𝑟2𝑗 is invariant, we can write

𝑗 = 𝑗0

(︂
𝑟0

𝑟

)︂2
(8.15)

where 𝑟0 and 𝑗0 are the radius and current density for the inner electrode, respec-
tively. If we assign the reference potential Φ𝑣 = 0 to the same electrode, the usual
balance between kinetic and electrostatic potential energy gives

𝑣 =
√︂

2 𝑞
𝑚

(−Φ𝑣) (8.16)
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Figure 8-24: Sketch of approximate spherical diode representation near the tip of an
activated meniscus. A spherical coordinate system is colocated with the center of
the evaporating region such that the radial coordinate 𝑟 = 𝑟0 is coincident with its
surface. An approximate potential drop −ΔΦ𝑣 exists at a location 𝑟 = 𝑓 × 𝑟0.

for the charge velocity. Substituting these in the spherical Poisson now

𝑑2Φ𝑣

𝑑𝑟2 + 2
𝑟

𝑑Φ𝑣

𝑑𝑟
= −𝑗0

𝜖0

(︂
𝑟0

𝑟

)︂2 1√︁
2 𝑞
𝑚

(−Φ𝑣)
(8.17)

We can nondimensionalize Eq. 8.17 by electing the scales

̃︀𝑟 → 𝑟

𝑟0
(8.18)

̃︀Φ𝑣 → Φ𝑣

ΔΦ𝑣
(8.19)

where we have invoked the tilde for the dimensionless values to avoid confusion
with other dimensionless equation sets. Here, ΔΦ𝑣 is the potential difference that is
enforced across the diode. After introducing these quantities we find

𝑑2 ̃︀Φ𝑣

𝑑̃︀𝑟2 + 2̃︀𝑟 𝑑
̃︀Φ𝑣

𝑑̃︀𝑟 + 𝜒𝑠

̃︀𝑟2
√︁

−̃︀Φ𝑣
= 0, where 𝜒𝑠 = 𝑗0𝑟

2
0

𝜖0ΔΦ𝑣
√︁

2 𝑞
𝑚

ΔΦ𝑣
(8.20)

When the current density 𝑗0 in the diode goes to zero, such that 𝜒𝑠 vanishes (note
that 𝜒𝑠 may be interpreted as the charge loading in the diode), Eq. 8.20 reduces to
the spherical Laplacian. If the outer electrode exists a distance ̃︀𝑟 = 𝑓 from the origin,
it can be shown that the corresponding solution is

(Φ𝑣)𝐿 = −
(︂

1 − 1̃︀𝑟
)︂(︃

𝑓

𝑓 − 1

)︃
(8.21)

For the Laplacian field on the inner electrode, this gives

̃︀𝐸𝑣
𝑟 (̃︀𝑟 = 1, 𝜒𝑠 = 0) = 𝑓

𝑓 − 1 (8.22)
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Our primary interest relates to how evaporated charge may or may not affect
the mechanics of the activated tip. With this in mind, we have solved Eq. 8.20
numerically for various charge factors 𝜒𝑠 and diode ratios 𝑓 . Figure 8-25, where
we have plotted the former as a function of the field ratio ̃︀𝐸𝑝/ ̃︀𝐸𝐿 (i.e. the Poisson
field divided by its Laplacian counterpart) with the latter as a parameter, delineates
a family of select solutions. Based on the results we can clearly see that 𝜒𝑠 → 0
leads to the homogeneous field while decreasing 𝑓 amplifies the space charge limit.
To confirm that this is correct we can consider instances of small diode ratio, where
𝑓 − 1 ≪ 1 suggests that we should recover the well-known Child-Langmuir result for
1D space charge limited current

𝑗𝐶𝐿 = 4
9𝜖0

√︂
2 𝑞
𝑚

(ΔΦ𝑣)3/2

𝐷2 (8.23)

For the diodes, the spacing 𝐷 ≈ (𝑓 − 1)𝑟0 and so the limiting current is

𝑗0 = 𝜒2 (𝑓 − 1)2 × 𝜖0

√︂
2 𝑞
𝑚

(Φ𝑣)3/2

𝐷2 (8.24)

By inspection we see that recovery of Child-Langmuir requires 𝜒𝑠(𝑓 − 1)2 → 4/9,
or 𝜒𝑠 → 4/9(𝑓 − 1)−2. The right-most curve in Fig. 8-25 corresponds to 𝑓 − 1 =10-2

and terminates at 𝜒𝑠 = 4516 for 𝐸𝑝/𝐸𝐿 = 0. This gives 𝜒𝑠(𝑓 − 1)2 ≈ 4.06/9 and
indicates that we are converging to the appropriate physics.

In terms of the present 𝐸̂0 = 1.00 meniscus, the dimensionless surface tension
(i.e. Laplace pressure) is 𝑃𝑠𝑡 = 8.9 at the tip, suggesting that 𝑟0 ∼10-7 m might
be an appropriate but conservative scale. Similarly, we find that 𝑗0 ∼ 2×107 A/m2

and observe from Figs. 8-22 and 8-23 that the pseudo-diode region likely extends
to a point between 𝑧 = 0.5 and 𝑧 = 1 where the potential has dropped 100-150V.
Based on considerations for the so-called perveance of the beam (see Lozano [21]), it
is probably fair to assume that this is also the extent of the region of space charge
that will influence the Poisson field at the tip. With that in mind, we take 𝑓 ≈10 and
ΔΦ𝑣 ≈150V to calculate 𝜒𝑠 ≈10-2. This yields 𝐸𝑝/𝐸𝐿 ≈ 0.96, or space charge that
reduces the Laplacian field by approximately 4%, which is very much in line with the
more crude estimate of 1-10% that was arrived at in an earlier chapter.

Hydraulic

In Fig. 8-26 we plot the normal and tangential components of the fluid velocity at
the interface. These are scaled by the critical velocity, 𝑢* ∼ 𝑘𝐸*/[𝜖𝑟𝜌(𝑞/𝑚)], that
was discussed in earlier chapters. We can see that the tangential velocity (blue)
gradually increases as the tip is approached, reaching a maximum near the edge of
the activated region and sharply decreasing thereafter. By continuity, 𝑢⃗ · 𝑡⃗ → 0 as
𝑟 → 0. Conversely, the normal component (black) of the flow is essentially vanishing
for all points outside of the activated region but sharply increasing within it, reaching
a maximum on the central axis (where the vacuum field is also at its highest) as we
would expect.
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Figure 8-25: Influence of space charge on the field of an idealized spherical diode.
The ratio of Poisson to Laplacian fields, 𝐸𝑝/𝐸𝐿, is plotted as a function of the charge
loading 𝜒𝑠 with the diode ratio 𝑓 as a parameter. The delineated values are 𝑓 =
[50, 25, 10, 5, 3, 2, 1.5, 1.25, 1.1, 1.05, 1.01], increasing in the direction of the arrow.
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Figure 8-26: Normal (𝑢⃗ · 𝑛⃗) and tangential (𝑢⃗ · 𝑡⃗) components of the interfacial
flow. These are plotted as a function of 𝑟 and scaled by the critical velocity
𝑢* ∼ 𝑘𝐸*/[𝜖𝑟𝜌(𝑞/𝑚)]. The tangential flow increases steadily until the edge of the
activated region, after which it falls off sharply. Conversely, the normal flow is essen-
tially zero until the edge of the same region, which marks the beginning of a fast ascent
to its maximum at 𝑟 = 0. The inset delineates a zoomed view of these behaviors.
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Figure 8-27: Select streamlines for steady flow within the liquid column of the com-
putational domain. Electrical shear at the interface appears to force a pattern of
circulation in the body of the liquid, where the inscribed arrow delineates the corre-
sponding direction. Coordinates are given in dimensionless 𝑟 − 𝑧 space.

Figure 8-27 delineates several streamlines of the prevailing flow within the fluid
column that we have modeled computationally. Very interestingly, we appear to
capture a large region of recirculation in the body of the channel. Streamlines emerge
from the bottom of the column (corresponding to the point at which the upstream
feed system dumps fluid into our computational arena), veer in a radial direction
toward the wall that defines the edge of the anchoring plate, and then begin to hug
the interface itself as they approach the evaporation area. Owing to an added “kick”
that can be attributed to electrical shear (recall, 𝜏 𝑒

𝑡 = 𝜎𝐸𝑡), fluid apparently reaches
the latter area at a rate that exceeds emission. As a result, some of the fluid is turned
back in a way that creates circulation. Although such a phenomenon is known in the
context of cone-jet sprays [97, 98], to the best of our knowledge this is the first time
that it has been uncovered for pure ion emission.

Thermal

Figs. 8-28 and 8-29 delineate the surface and bulk temperature distributions, re-
spectively. Where applicable, units are based on the noted reference value 𝑇0 =300
K. From the results we can see that thermal excursions due to Ohmic heating are
largely restricted to the vicinity of the activated tip, just as expected. The maximum
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Figure 8-28: Temperature distribution along the interface as a function of 𝑟. The di-
mensionless 𝑇 suggests that thermal excursions are relatively restricted to the vicinity
of the activated tip a reach a maximum ∼ 1.5% boost on the axis. This represents
Δ𝑇 ∼ 4 K for a reference value 𝑇0 =300 K.

increment corresponds to roughly ∼ 4 K and resides on the central axis. Based on
the sensitivity of the liquid conductivity (𝑘′ =0.04 S/m-K for the elected fluid), the
conclusion must be that the nominal 𝑘 =1 S/m is locally augmented by a value Δ𝑘 ∼
0.16 S/m. This represents a 16% boost.

8.3 Preliminary subspace mapping of upper equi-
libria

In the last section we demonstrated the existence of a previously unknown family of
equilibrium solutions (i.e., the upper equilibria) but restricted our attention to a fixed
meniscus size and feeding impedance in the process. In this section we will endeavor to
begin relaxing those condition so that we may explore aspects of the three-dimensional
subspace defined by the parameters 𝐸̂0, 𝐵, and 𝐶𝑅. For convenience we will continue
to maintain 𝑃𝑟 = 0 since it is our belief that the feeding pressure is possibly the least
important of the parameters under present consideration.

The contents of this section will be organized in the following way. To start, we will
map the 𝐸̂0-𝐵 plane for fixed 𝐶𝑅 = 103 and emphasize the region of low-𝐵 as we are
primarily interested in situations of large scale disparity. Ideally we would attempt to
rigorously map areas approaching 𝐵 ∼ 1; however, we anticipate large computational
costs that will necessitate judicious selection of solution points. In other words, time
will limit us to the investigation of but a few key parameter combinations.

Once we have mapped a sufficient portion of the 𝐸̂0-𝐵 plane we will elect a single
point of interest and begin to explore variations in the impedance 𝐶𝑅. In the limit
as 𝐶𝑅 → ∞ we will recover a constant volume problem, which, by definition, cannot
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Figure 8-29: Spatial distribution of temperature in the liquid column. Coordinates
are shown in dimensionless 𝑟 − 𝑧 space while temperature is given in units of Kelvin
(assuming the fluid properties we have already reported). Again, thermal excursions
are observed to primarily reside in a region about the activated tip. Little to no
penetration into the bulk of the fluid is apparent.
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support steady emission. Similarly, the limit 𝐶𝑅 → 0 is tantamount to a constant
feeding pressure problem, for which it is unlikely that steady upper equilibria exist
(we believe that the impedance itself is a critical stabilizer in this regime and so its
absence would seem to preclude solutions). With this in mind, it is expected that
these explorations will yield solutions over a finite range of impedance. After defining
this range for the single 𝐸̂0-𝐵 point we will select one or two additional 𝐶𝑅 values
(for example, 𝐶𝑅 = 3 × 103 like we calculate for the Romero-Sanz [29] experiments)
and attempt to map the corresponding 𝐸̂0-𝐵 planes for comparison.

Finally, it is also our belief that the liquid permittivity 𝜖𝑟 plays a non-trivial
role in determining the existence of the upper equilibria in spite of the fact that it
is often overlooked in the evaporation literature. While many authors discuss the
conductivity 𝑘 (S/m) and an associated threshold for evaporation (i.e., a minimum
conductivity for pure ion evaporation), it is really the ratio 𝑘/𝜖𝑟 that governs both
charge relaxation in the meniscus and electrical stresses at the interface. Even in the
case of a fluid that exhibits the relatively high conductivity of 𝑘 ∼ 1 S/m, which is
common among ILs that are empirically known to support evaporation, it is possible
that a concurrently large 𝜖𝑟 could offset associated benefits to some degree. Indeed,
it is clear that many ILs have much lower permittivities (𝜖𝑟 ∼ 10-20) than highly
doped organic solvents (𝜖𝑟 ∼ 100) that are much more fickle despite comparable 𝑘.
It would, therefore, come as no surprise if this disparity were determined to be the
genesis of the very different evaporation behaviors that are typically observed. To
begin elucidating this possibility, we will again elect an interesting point in 𝐸̂0-𝐵-𝐶𝑅
space and slowly vary 𝜖𝑟 to explore the range of feasible permittivity. In doing so we
will maintain constant 𝑘 since this is essentially what we do in the laboratory when
we switch from an IL to a doped organic solvent of very similar conductivity, all other
things being roughly equal.

8.3.1 Mapping of 𝐸̂0-𝐵 plane (𝐶𝑅 = 103)
Figure 8-30 depicts a modestly populated map of the 𝐸̂0-𝐵 plane for 𝐶𝑅 = 103,
where the blue circles represent specific points at which we have calculated solu-
tions. These were determined by slowly varying the dimensionless field for the five
scale ratios 𝐵−1 = [21.3, 53.2, 85.1, 95.7, 106.4] (corresponding to 𝑏0 = 1𝜇m, 2.5𝜇m,
4.0𝜇m, 4.5𝜇m, and 5.0𝜇m for the prototype fluid), and also varying 𝐵 at fixed
𝐸̂0 = [0.62, 0.70]. For the 𝐵−1 = 21.3 line we have used the relaxation parameter
𝛽 = 0.5 while all other solutions were found with 𝛽 = 0.05. In connection with small
step sizes, the latter helped to avoid inadvertent numerical runaway, particularly in
the region of very high scale disparity.

Excepting the vertical 𝐸̂0 = 0.62 solution group, the ends of all other blue lines
correspond to points at which we have observed indefinite interfacial oscillations that
precluded convergence to within the stated tolerance. In most instances solutions
could be identified after 50-100 computational cycles. Qualitatively we observed that
points near the center of each line required the fewest iterations and that additional
calculations were needed as we moved away from these points. Variations in the
given directions were, therefore, arbitrarily terminated after 500-1000 cycles (i.e.,
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greater than ten times the notional average) were completed without convergence.
This phenomenon of increasing iterations as we move toward the ends of the solution
groups is qualitatively similar to what was seen in the benchmarking tests and the
lower equilibria studies as so-called turning points were approached. With that in
mind, it is likely that the number of required iterations could be a measure of the
physical stability associated with a particular point in the parameter space, relatively
speaking.

The lone exception to this termination practice is the low-𝐵 end of the 𝐸̂0 = 0.62
line, where continued increase in 𝐵−1 was not possible as a result of a meshing error
in Comsol. In order to sufficiently resolve the physics near the meniscus tip we require
elements in its vicinity to be roughly 102 times smaller than the local interface scale.
Given that 𝐵−1 is already exceeding 100 in these studies, and that the vacuum region
of the solution domain is at least 10 times larger than the contact line to ensure that a
uniform field prevails downstream, it is clear that the difference between the smallest
scale in the computational problem (the scale for the elements at the meniscus tip)
and the largest (the scale for the vacuum region) is in the neighborhood of 5 orders
of magnitude. Apparently, this is near the threshold of what the Comsol meshing
engine can handle, meaning that further exploration of high 𝐵−1 will not be possible
without special measures.

Accepting that the observed oscillatory behavior near the ends of the solution
groups is at least a loose indicator of waning stability for our equilibria, we can begin
to consider the implications of the solution plane that we have mapped. From our
study of the lower equilibria we know that a turning point exists in the vicinity of
𝐸̂0 ≈ 0.52, below which we cannot sustain meaningful emission when 𝐵−1 ≫ 1. It
is true that there is a region supporting emission as 𝐵 → 1 (marked on Fig. 8-30
as “high-𝐵 emission” and essentially the regime that was studied by Higuera [62]);
however, this must practically disappear by the time 𝐵−1 ∼ 10. As we jump beyond
the turning point we begin to find highly-distorted (i.e., no longer “egg-shaped”)
solutions that are ostensibly stable. From the map we see that this family of upper
equilibria extend out to 𝐸̂0 > 1 for intermediate 𝐵 but are only tenable at smaller
fields when the scale disparity is increased. Interestingly, all solution groups seem
to terminate on the low-end near 𝐸̂0 ≈ 0.59, which is still greater than the field of
the lower turning point. This appears to leave a small gap in the field for which no
stable solutions may be determined, and might signal a region of pulsating menisci
analogous to those that are known in the cone-jet world. In any event, the fact that
𝐸̂0 ≈ 0.59 is presumably a hard line, coupled with the decreasing field threshold
at high 𝐵−1, could suggest that there is a maximum feasible disparity 𝐵−1 (i.e.,
a maximum feasibly disparity between the characteristic emission scale 𝑟* and the
contact radius 𝑏0). This is highlighted by the black line (which is somewhat notional,
given that we have not densely mapped the solution space) in Fig. 8-30 separating
the green and red areas.

Figure 8-31 delineates the meniscus shapes corresponding to the vertical solution
group at 𝐸̂0 = 0.70 and highlights the transition from “egg-shaped” interfaces (𝐵 ∼ 1)
to highly-distorted ones that are typical of upper equilibria when 𝐵 ≪ 1. The most
modestly curved solution corresponds to 𝐵 ≈ 1/3 while the black arrow indicates the
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Figure 8-30: Map of the 𝐸̂0-𝐵 solution plane for 𝐶𝑅 = 103. For 𝐵 ≪ 1 there exists a
family of lower equilibria below a turning point at 𝐸̂0 ≈ 0.52 that are “egg-shaped”
and do not sustain meaningful emission. In contrast, above 𝐸̂0 ≈ 0.59 we find a
family of upper solutions that are highly-distorted and capable of sustaining strong
evaporation. Feasible areas of the upper solution space are shown in green while areas
in which we find no solutions are shown in red. The line of demarcation between these
spaces is somewhat notional given that we have yet to densely map the plane (owing
to computational cost).
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Figure 8-31: Meniscus shapes in dimensionless 𝑟 − 𝑧 space for changing 𝐵 along
the line 𝐸̂0 = 0.70 with 𝐶𝑅 = 103. The interface at the bottom with the smallest
curvature corresponds to 𝐵 ≈ 1/3 while the arrow indicates the direction of increasing
𝐵−1. The inset, also in 𝑟 − 𝑧 coordinates, shows all solutions for which 𝐵−1 > 50
and suggests that a common shape is adopted when the scale disparity is sufficiently
large. A classical Taylor structure is shown in black for comparison.

direction of increasing scale disparity. As we can see, the menisci for 𝐵 ≪ 1 begin to
approach a common shape with an apparent point source at the tip. This shape is
shown in the inset, where all solutions with 𝐵−1 > 50 are represented.

Figure 8-32 shows the computed length scale at the apices of the menisci along
the same 𝐸̂0 = 0.70 solution group. By symmetry we know that the local surface
tension is related to this scale 𝑟𝑡 through

2𝛾
𝑟𝑡

= 𝛾∇ · 𝑛⃗ (8.25)

and so the ratio of 𝑟𝑡 to the characteristic 𝑟* must be

𝑏0

𝑟𝑡
= 1

2∇̂ · 𝑛⃗ = 𝑃𝑠𝑡 (𝑟 = 0) ⇒ 𝑟*

𝑟𝑡
= 𝐵 × 𝑃𝑠𝑡 (𝑟 = 0) (8.26)

This relationship is plotted in the figure as a function of 𝐵−1. From the results we
can see that the tip appears to asymptote to roughly 𝑟𝑡 ≈ 2𝑟* for 𝐵 ≪ 1. With this in
mind it also makes sense to investigate the associated evaporation properties. In Fig.
8-33 we show both the dimensionless current 𝐼 and the approximately hydrostatic
pressure in the meniscus (𝑃𝐵 = −𝐼 × 𝐶𝑅) to which it is closely related. Like the
tip size, the dimensionless evaporation appears to increase in the region of high-𝐵
before essentially leveling off for situations of large scale disparity. When 𝐵 ≪ 1 for
the given parameter combination (𝐸̂0 = 0.70 and 𝐶𝑅 = 103) we see that changes in
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Figure 8-32: Dimensionless tip scale 𝑟𝑡/𝑟
* for various 𝐵 along the solution group

𝐸̂0 = 0.70 with 𝐶𝑅 = 103. For large scale disparity 𝐵 ≪ 1 we see that the tip begins
to asymptote to a common size in the neighborhood of 2𝑟*.

the meniscus size have little effect on the liquid pressure. Apparently, the feeding
system creates suction on the interface and maintains a negative pressure that is in
the vicinity of half of the nominal capillary pressure 2𝛾/𝑏0.

The preceding results (namely the curves from Figs. 8-32 and 8-33) are very
interesting because they seem to suggest the possibility of a limiting solution as𝐵−1 →
∞ and 𝐸̂0 → 0.59, roughly speaking. It is fair to wonder whether this solution could,
after all, have certain characteristics in common with the classical Taylor structure in
spite of the obvious macroscopic morphological differences highlighted by Fig. 8-31.
For example, could regions outside of the activated apex but still very far from the
contact location 𝑟 = 1 exhibit surface slopes and field distributions that are similar
to those of Taylor? We will conclude this section on the 𝐶𝑅 = 103 solution plane by
briefly examining these possibilities.

In Fig. 8-34 we plot the scaled effective half-angle across the meniscus for solutions
corresponding to𝐵−1 = [95.7, 106, 117, 125] (equivalent to approximately 𝑏0 = 4.5 𝜇m,
5.0 𝜇m, 5.5 𝜇m, and 5.9 𝜇m for the prototype fluid) along the vertical line 𝐸̂0 = 0.62.
The effective half-angle at each point on the surface of the meniscus is defined here
as

𝜃ℎ = tan−1
(︃

−𝑑𝑟

𝑑𝑧

)︃
(8.27)

where 𝑑𝑧/𝑑𝑟 is the local interface slope. This provides for easy comparison to the
classical Taylor angle 𝜃𝑇 = 49.29∘ = 0.86 radians, which is shown as a black line in
the figure. Although the results suggest that the limiting solutions could have slopes
in the basic vicinity of the Taylor angle for 𝑟 . 0.1, the comparison is clearly not
perfect.
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Figure 8-33: Dimensionless current and dimensionless hydrostatic pressure in the
meniscus as functions of 𝐵 along the line 𝐸̂0 = 0.70 with 𝐶𝑅 = 103. Left: The
dimensionless current 𝐼 increases in the region of high-𝐵 and essentially levels off
when 𝐵 ≪ 1. Right: The dimensionless pressure in the meniscus, −𝐼 × 𝐶𝑅, is
directly related to the current and follows the same behavior. The feeding system
apparently creates suction on the interface with a pressure modulus that is roughly
half of the nominal capillary pressure 2𝛾/𝑏0.

In Fig. 8-35 we now plot the distribution of dimensionless vacuum field 𝐸̂𝑣
𝑛 at the

interface for the same menisci. For the classical Taylor structure we know that the
vacuum field varies as [5]

𝐸𝑇 =
√︃

2𝛾 cos 𝜃𝑇
𝜖0𝑟

(8.28)

where 𝑟 is the local cylindrical radius. After non-dimensionalizing through the
use of our field scale 𝐸𝑐 =

√︁
4𝛾/𝜖0𝑏0 we find

𝐸̂𝑇 =
√︃

cos 𝜃𝑇
2𝑟 (8.29)

This distribution is shown as a solid black line in the figure while the simulated
distributions are given in blue. The arrow indicates the direction of increasing 𝐵−1 for
the latter. Unlike the comparison of the slopes, it is rather remarkable to note here the
similarity between the basic Taylor theory and what we have identified numerically.
The correspondence appears to extend across all parts of the meniscus (i.e., from 𝑟
slightly greater than 0 all the way to 𝑟 = 1) and the arrow seems to suggest that for
𝐵−1 → ∞ we could possibly recover an extremely large apex field similar to that of
the perfectly sharp Taylor cone.

8.3.2 Variations in 𝐶𝑅 (𝐵 = 9.4 × 10−3, 𝐸̂0 = 0.62)
In an effort to access different impedance values for mapping we have selected a point
in the parameter space (𝐸̂0 = 0.62 and 𝐵 = 9.4 × 10−3, corresponding to 𝑏0 = 5 𝜇m

191



0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

𝒓 

𝟐𝜽𝒉
𝝅

 

Figure 8-34: Effective internal half-angles for several simulated menisci along the line
𝐸̂0 = 0.62 with 𝐶𝑅 = 103. The half-angle is defined as 𝜃ℎ = tan−1(−𝑑𝑟/𝑑𝑧) and shown
as a function of the dimensionless cylindrical radius 𝑟 for menisci corresponding to
𝐵−1 = 95.7, 106, 117, and 125 (blue curves). The angle of the classical Taylor
structure, 𝜃𝑇 = 0.86 radians, is represented by the black line for comparison. The
curves suggest that while a small region near the tip of high 𝐵−1 menisci could be in
the neighborhood of the Taylor angle, the morphologies will likely always be somewhat
disparate.
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Figure 8-35: Distribution of dimensionless vacuum field 𝐸̂𝑣
𝑛 for several simulated

menisci along the line 𝐸̂0 = 0.62 with 𝐶𝑅 = 103. The vacuum field is shown as a
function of the dimensionless cylindrical radius, 𝑟. The blue curves correspond to the
cases of 𝐵−1 = 95.7, 106, 117, and 125, where the arrow in the zoomed inset indi-
cates the direction of increasing value. The black line represents the classical Taylor
distribution (see, for example, Martinez-Sanchez [5]), which is provided for compari-
son. Unlike Fig. 8-34 for the slopes, these results exhibit remarkable correspondence
between the conventional theory and the numerical calculations.
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with the prototype fluid) and varied 𝐶𝑅 over several orders of magnitude, starting at
the known solution for 𝐶𝑅 = 1000. In all cases we have done this while using 𝛽 = 0.05
and 𝑁 = 104 observation points equally spaced in 𝑟 across the meniscus.

With the model we are able to slowly reduce the feeding impedance to a value of
𝐶𝑅 = 670 on the low end before numerical oscillations begin to preclude further ex-
cursions. Insofar as we can attribute these oscillations to an actual physical instability
(like we have already discussed), the fact that 𝐶𝑅 → 0 is not feasible would seem to
suggest the upstream hydraulics do indeed play a very meaningful role in creating
the upper equilibria. Similarly, it would seem to rule out the possibility of so-called
frictionless feeding flows (at least for fluids that are not substantially affected by space
charge effects, like the ILs we are capturing, since our model does not involve Poisson)
that some authors talk about in connection with ion evaporation. At the opposite
end of the spectrum, our simulations very easily reached 𝐶𝑅 = 3.31 × 106 before
arbitrary termination. It is worth mentioning that we believe the impedance could
have continued to stably increase almost indefinitely (excluding, of course, 𝐶𝑅 = ∞
for previously stated reasons); however, by 𝐶𝑅 ∼ 105 or 106 the attendant current is
already exceedingly small and no longer of great interest.

Figure 8-36 delineates shapes corresponding to the impedance values 𝐶𝑅 = 103,
104, 105, and 106 and shows that macroscopic aspects of the meniscus do not change
substantially in spite of the wide range of 𝐶𝑅. From the inset we can see that subtle
morphological changes do occur in the vicinity of the tip, with larger impedance values
corresponding to duller tips and lower impedance values corresponding to sharper
tips. This relationship is further elucidated in Fig. 8-37, where we once again plot
the dimensionless apex radius 𝑟𝑡/𝑟*. The results clearly indicate that an increasing
impedance forces a related increase in 𝑟𝑡.

The fact that the tip sharpness varies with 𝐶𝑅 is one indication that the evaporated
current could be changing dramatically as we traverse the wide spectrum of impedance
values. Figure 8-38 (left) shows the dimensionless 𝐼 as a function of 𝐶𝑅 and suggests
that this is indeed the case. As we can see, a remarkably linear current-impedance
relationship prevails with a slope that reduces the evaporation by nearly four orders
of magnitude over the investigated range. Figure 8-38 (right) delineates the related
quasi-hydrostatic pressure 𝐼 × 𝐶𝑅 and shows that this is because the relationship is
very nearly 1:1; i.e., 𝐼 × 𝐶𝑅 ∼ 𝐶0, where 𝐶0 is some constant that is known to vary
almost exclusively with 𝐸̂0 (recall our mapping of the 𝐸̂0-𝐵 plane for 𝐶𝑅 = 103).
There is, however, at least a small decrease in the hydrostatic pressure for increasing
impedance, which must be the explanation for the noted changes in 𝑟𝑡.

8.3.3 Mapping of 𝐸̂0-𝐵 plane (𝐶𝑅 = 104)
In Figure 8-39 we depict our efforts to map the 𝐸̂0-𝐵 plane for the augmented
impedance 𝐶𝑅 = 104. The blue circles/lines again represent specific points within
the parameter space for which we have obtained converged solutions. The reader
will notice that, as before, we have left the very high end of 𝐵−1 relatively sparse
due to meshing limitations in Comsol. The two points at which this limited further
excursions are shown as red dots.
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Figure 8-36: Meniscus shapes for various 𝐶𝑅 in dimensionless 𝑟-𝑧 space with 𝐸̂0 = 0.62
and 𝐵 = 9.4 × 10−3. The four impedance values 𝐶𝑅 = [103, 104, 105, 106] are repre-
sented along with a classical Taylor structure (black) for comparison. While the
macroscopic view does not reveal substantial changes in the menisci despite the large
range of 𝐶𝑅, the inset (also in dimensionless 𝑟-𝑧 space) shows that subtle morpholog-
ical changes have occurred at the tip. The arrows indicates the direction of increasing
impedance and suggests that higher 𝐶𝑅 apparently lead to dulling.
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Figure 8-37: Dimensionless tip radii for various 𝐶𝑅 with 𝐸̂0 = 0.62 and 𝐵 = 9.4×10−3.
The ratio of tip radius 𝑟𝑡 to the characteristic 𝑟* is plotted as a function of the
impedance. The results confirm the notion that higher 𝐶𝑅 reduce the sharpness of
the meniscus apex.
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Figure 8-38: Dimensionless current and fluid pressure for various 𝐶𝑅 with 𝐸̂0 = 0.62
and 𝐵 = 9.4 × 10−3. Left: The dimensionless current 𝐼 is shown as a function of
𝐶𝑅. Right: The corresponding quasi-hydrostatic pressure in the fluid, 𝐼 × 𝐶𝑅, is
also shown. The results suggest that fluid pressure is nearly constant but still slightly
decreasing with 𝐶𝑅 in a way that could explain the growing 𝑟𝑡. In turn, the increase
in 𝑟𝑡 clearly leads to dramatic reductions for the evaporated current.

Comparison of the map in Fig. 8-39 with its counterpart for 𝐶𝑅 = 103 reveals that
the boundary corresponding to the high-field side of the upper solution regime has
been shifted to the right. In other words, for a given meniscus size 𝐵 the increased
impedance has apparently enabled access to a wider range of fields. It is likely,
therefore, that the “limiting” solution associated with the 𝐶𝑅 = 104 plane is situated
at higher 𝐵−1 than the one that was suggested for the lower impedance 𝐶𝑅 = 103.

8.3.4 Variations in 𝜖𝑟 (𝐶𝑅 = 103)

As a final numerical experiment we investigate here the tenability of several of our
solutions with respect to the liquid permittivity 𝜖𝑟. While it is known empirically that
the IL EMI-BF4 (𝑘 ∼ 1 S/m) is relatively amenable to ion evaporation under certain
conditions, reaching the same emission regime with other fluids of similar conductivity
(either doped solvents or other ionic liquids) can be decidedly more onerous. Although
several factors could be to blame for this, in this section we explore the possibility of
a connection to the permittivity.

All other things being essentially equal, when we move from one fluid in the
laboratory to another of similar conductivity we are primarily modifying the prevailing
𝜖𝑟 (and, correspondingly, the charge relaxation time 𝜖𝑟𝜖0/𝑘). In what follows we
attempt to capture any attendant emission effects by selecting several points from
the 𝐸̂0-𝐵 solution plane (𝐶𝑅 = 103) and slowly increasing the nominal 𝜖𝑟 = 10 while
observing changes in the menisci.

Figure 8-40 shows the three locations within the 𝐸̂0-𝐵 that we have selected for
these investigations. These include
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Figure 8-39: Map of the 𝐸̂0-𝐵 solution plane for 𝐶𝑅 = 104. For 𝐵 ≪ 1 there exists a
family of lower equilibria below a turning point at 𝐸̂0 ≈ 0.52 that are “egg-shaped”
and do not sustain meaningful emission. In contrast, above 𝐸̂0 ≈ 0.59 we find a
family of upper solutions that are highly-distorted and capable of sustaining strong
evaporation. Feasible areas of the upper solution space are shown in green while areas
in which we find no solutions are shown in red. The line of demarcation between these
spaces is somewhat notional given that we have yet to densely map the plane (owing
to computational cost); however, with respect to the map for 𝐶𝑅 = 103 it has clearly
been shifted to higher values of the field. This is apparently a symptom of the added
stability conferred by the increased impedance.
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Figure 8-40: Points in the 𝐸̂0-𝐵 plane of 𝐶𝑅 = 103 selected for permittivity studies.
The three points examined are represented by the orange dots.

∙ Point #1: 𝐸̂0 = 0.62, 𝐵−1 = 85.1, 𝐶𝑅 = 103

∙ Point #2: 𝐸̂0 = 0.75, 𝐵−1 = 53.2, 𝐶𝑅 = 103

∙ Point #3: 𝐸̂0 = 1.00, 𝐵−1 = 21.3, 𝐶𝑅 = 103

The maximum permittivities for which we were able to identify solutions corre-
sponded to 𝜖𝑟 = 19, 𝜖𝑟 = 25, and 𝜖𝑟 = 36 for Point #1, Point #2, and Point #3,
respectively. In all cases the evaporated current was observed to remain constant
in spite of the decreasing charge relaxation time, which ensured an invariant fluid
pressure within the meniscus. This was apparently achieved by subtle elongations
and sharpening of the menisci as the permittivity was slowly increased. Figure 8-41,
for example, shows several shapes that were calculated for Point #1 in an effort to
highlight this behavior.

Although the results presented here are not yet comprehensive, they do appear to
suggest the possibly of a limiting permittivity (insofar as the other fluid parameters
are fixed, at least) that decreases in the same direction as 𝐵; i.e., a limiting permit-
tivity that decreases in some proportion to 𝑟*/𝑏0. Given that EMI-BF4 is relatively
apolar in comparison to many alternative fluids with 𝑘 ∼ 1 S/m, this is perhaps an
additional clue as to its greater proclivity for evaporation. Further studies, however,
will be needed to confirm this.
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Figure 8-41: Meniscus shapes for several 𝜖𝑟 with 𝐸̂0 = 0.62, 𝐵−1 = 85.1, and 𝐶𝑅 = 103

in dimensionless 𝑟-𝑧 space. The blues curves correspond to 𝜖𝑟 = 10, 12, 14, 16, and
19 while a classical Taylor structure is given in black for comparison. Although the
macroscopic structure of the meniscus apparently does not change as a function of the
permittivity, the inset provides additional detail for the tips to highlight the localized
sharpening and elongation.
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8.4 Comparison of qualitative trends
The following is a list of qualitative similarities between the reported numerical results
and known empirical phenomena. We believe that these represent additional measures
of substantiation for the model.

∙ Non-evaporative lower branch. We have identified a family of solutions
for 𝐸̂0 . 0.52 that are “egg-shaped” and do not appear to support meaningful
levels of evaporation. This is congruent with empirical observations suggesting
that interfaces with roughly uniform curvature are characteristic of low fields
and gradually elongated with increasing 𝐸̂0 until a destabilization point, i.e., a
turning point, is reached (see, for example, the account of Krpoun [4]).

∙ Intermediate / pulsating regime. We have identified a narrow range of in-
termediate fields within which we have been unable to compute stable solutions.
This lies between the turning point of the lower solution family (𝐸̂0 ≈ 0.52 in
all cases with 𝑃𝑟 = 0) and the smallest field belonging to its upper counterpart
(roughly 𝐸̂0 ≈ 0.59 in all cases with 𝑃𝑟 = 0), and suggests the existence of
a dynamic regime that is analogous to the “pulsating” modes that are known
throughout the cone-jet literature [95, 96].

∙ Steady evaporation for large menisci. The family of upper equilibria we
have identified seem to admit the possibility of stead evaporation from menisci
with large contact radii, i.e., situations involving 𝐵 ≪ 1. This is congruent
with the findings of a large collection of empirical studies [29, 31, 36].

∙ 𝐼-𝑉 linearity. For fixed 𝐵 we have found that the evaporated current is es-
sentially linearly proportional to the downstream field 𝐸̂0. The same scaling
relationship is reported by a large of number of empirical studies (in addi-
tion to the theoretical study of Higuera [62]) and believed to be a symptom of
conduction-limited charge transport within ionic liquids [31, 25, 54].

∙ 𝐼-𝐵−1 proportionality. In general our model suggests that the evaporated
current is proportional to the size of the meniscus. For example, we have shown
that as 𝐵−1 is increased for fixed 𝐸̂0 and 𝐶𝑅 the dimensionless current 𝐼 remains
essentially constant. Because 𝐼 = 𝐼 × 𝑘𝐸𝑐𝑏

2
0, this requires that 𝐼 ∝ 𝑏

3/2
0 . This

is congruent with many empirical findings suggesting that large tubes or tips
are capable of supporting higher throughputs (see, for example, the Castro [36]
study on the relationship between tip curvature and current).

∙ Relationship between stability and contact line. Our results suggest that
the range of stable 𝐸̂0 for the upper solution family is a decreasing function of
the meniscus size. Although empirical field ranges are not often reported, this
finding would seem to be congruent with aspects of the Castro [36] and Lozano
[31] studies. Notwithstanding slight differences in the fluids that were used
(Castro [36] used EMI-C(CN)3 for which 𝑘 ≈ 2.2 S/m and 𝛾 ≈ 47.9 dyn/cm,
while Lozano [31] used EMI-BF4 for which 𝑘 ≈ 1.36 S/m and 𝛾 ≈ 43.2 dyn/cm

199



near room temperature), Castro [36] reports a stable range of ∼ 2225V - 2425V
for a 50 𝜇m emitter needle and Lozano [31] reports a range of at least ∼ 1600V
- 2000V for a 20 𝜇m needle. These suggest that the fields for the two tips
were able to grow by roughly 10% and 25%, respectively, which is qualitatively
similar to what our model would have predicted. Moreover, the Castro [36]
report goes a step further to show that there apparently exists a maximum
feasible meniscus size beyond which pure evaporation is no longer tenable. This
is similar to what we have gleaned from the 𝐸̂0-𝐵 maps presented herein.

∙ 𝐼-𝐶𝑅 inverse proportionality. Through our 𝐶𝑅 excursions we have shown
that the evaporated current is apparently inversely proportional to the prevail-
ing hydraulic impedance of the feeding system. This led to the finding that
𝐼 × 𝐶𝑅 ≈ 𝐶0, where 𝐶0 is some constant. Lozano [31] has reported on evap-
oration from heated ionic liquids and determined that the effects of reduced
viscosity are responsible for elevated currents in these fluids (this argument ig-
nores possible conduction effects but remains essentially valid). Specifically, the
author showed that reducing the viscosity by a factor of two led to a current
that was increased in the same proportion. In terms of our notation, 𝐶𝑅 ∝ 𝜇
(since 𝑅ℎ ∝ 𝜇) and so 𝜇 → 𝜇/2 ⇒ 𝐼 → 2 × 𝐼, which is consistent with this
empirical result.

8.5 Summary
We have investigated the properties of free-volume menisci by first considering their
behavior at relatively low electric fields 𝐸̂0. Similar to what we found for their fixed-
volume counterparts, the results suggest that a family of “egg-shaped” interfaces
(where we might loosely define egg-shaped interfaces as those for which the Laplace
pressure, 𝛾∇ · 𝑛⃗, is not too disparate between the apex and the contact line) prevail
over a finite domain. Beginning with the quiescent configuration 𝐸̂0 = 0, these menisci
slowly elongate with increasing field until they abruptly expand in close proximity to
a critical field, or “turning point”. For a negligible reservoir pressure, 𝑃𝑟 = 0, this
point roughly coincides with 𝐸̂0 ≈ 0.52.

Consideration for the corresponding vacuum fields has shown that this family of
“lower equilibria” are unable to sustain meaningful emission when large scale dispar-
ities (𝐵 ≪ 1), similar to those that are often encountered in the laboratory, prevail.
In view of the multitude of empirical studies suggesting that large menisci are indeed
amenable to strong ion emission, this finding is somewhat troubling. The fact that
the turning point typically signals the largest field for which steady equilibria will
exist (like we saw with the fixed-volume problems, especially when 𝑘 → ∞ or the
interface was in some way close to electrical relaxation) does not help.

In order to reconcile our findings with the body of empirical evidence we have
looked to the widely-held belief that large menisci undergo a “snap over” transition
from relatively smooth, egg-shaped morphologies to comparatively sharp ones. So
long as this belief is physically founded, it has two implications for our efforts: (1) the
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notion of “snap over” seems to convey the kind of dynamic or unsteady transition that
we could not hope to capture with the present model and offers an explanation for why
we have not been able to reach emission by slowly increasing the field from zero; and
(2) it could be that the “snap over” field is in the neighborhood of the turning point,
in which case sharp but stable menisci might still reside at greater fields. Needless to
say, the latter would be quite remarkable. While it is not strictly congruent with our
knowledge of turning points for fixed-volume menisci, the free-volume counterpart
represents a fundamentally unique problem in the sense that it incorporates a feeding
system and the various additional physics with which it is associated. In view of that,
it stands to reason that a new and previously uncharted family of stable equilibrium
solutions could perhaps be enabled by the feeding mechanics and exist beyond the
turning point of the lower branch.

With this in mind, we have investigated the possibility of a new family of “up-
per equilibria” by first making an educated guess as to a corresponding point in the
parameter space (e.g. 𝐸̂0 = 0.70, 𝐵 ≈ 1/20, and 𝐶𝑅 = 103 as inferred from Romero-
Sanz [29]) and jumping directly to it without attempting to smoothly navigate the
intervening territory between it and the turning point. The impetus for this is cir-
cumvention of any dynamic transition region that would presumably create issues for
our model. With the help of a starting morphology that is sufficiently sharp, i.e.,
relatively conic, our iterative numerical routine has indeed identified an equilibrium
geometry that is ostensibly stable but still very different from the egg-shapes we have
seen. Rather than a relatively uniform curvature across the interface, this solution
exhibits a high curvature at the tip, which supports strong evaporation on the order of
what we might see in practice (𝐼 ∼ 100 nA), that gradually decreases before switching
signs near the contact line in order to compensate a negative hydraulic pressure (i.e.,
suction).

Beyond this prototype solution (corresponding to 𝐸̂0 = 0.70, 𝐵 ≈ 1/20, 𝐶𝑅 = 103,
and 𝑃𝑟 = 0 in our parameter space) we have slowly varied the field, contact line, and
feeding impedance in an effort to populate select maps of the upper equilibria. Doing
so has allowed us to glean several important characteristics of ion evaporation. These
include:

∙ The upper solutions appear to be specifically enabled by the presence of a
feeding impedance. We might rationalize the reason for this by considering the
sharp tip of a steady activated meniscus. In the event of a small, sharpening
perturbation the electrical traction and surface tension will both begin to grow.
Owing to the increased field, it must also be true that the evaporated current will
elevate and concurrently reduce the local fluid pressure through flow-impedance
interactions. Even in situations where the growth in electrical traction outpaces
the surface tension (which, of course, was the driving factor for instability in
the fixed-volume problems, including those from the chapter on spheroids) it is
possible that the reduced pressure could still suppress the perturbation. With
this in mind, it makes sense that (1) we have been unable to identify low-
𝐵 menisci when 𝐶𝑅 → 0, and (2) increasing 𝐶𝑅 seems to improve stability
characteristics, albeit at the expense of the current.
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∙ In our model we have separated the upstream flow from that which occurs local
to the liquid-vacuum interface. Our numerical calculations seem to validate
this practice in the sense that they indicate that effects due to the latter are
relatively insignificant. While the stress accumulated upstream (∼ 𝐼 × 𝐶𝑅) is
singularly important for the reasons that we have just argued, the additional
stress accumulated within the meniscus itself is incremental at best and likely
does very little to modify the overall mechanics of the problem. This finding
is consistent with early hypotheses we derived based on the notion of a small
capillary number, 𝐶𝑎 = 𝜇𝑢*/𝛾.

∙ While the lower turning point occurs in the vicinity of 𝐸̂0 ≈ 0.52, the low-
field side of the upper solution family appears to universally terminate near
𝐸̂0 ≈ 0.59. This would seem to suggest the existence of an intermediate regime
of dynamic menisci that could be related to the pulsating modes that are known
throughout the cone-jet literature.

∙ Our maps of the 𝐸̂0-𝐵 parameter plane indicate that the range of stable fields
for the upper family decreases in some proportion to the meniscus size. While
numerical issues have prevented us from rigorously exploring the region of low
𝐵, it is believed that this behavior could lead to a maximum feasible contact
radius.

The collection of observations and findings arrived at throughout this thesis (par-
ticularly those reported in this chapter) could be very useful to future efforts aimed
at designing pure ion sources. Specifically, we can now say that sizing of the working
meniscus and its feeding system are critically important. While exact optimal val-
ues are difficult to discern for various reasons, large menisci are clearly ill-suited to
evaporation and so 𝐵−1 . 100-200 should likely be observed (at least for ILs similar
to the prototype we have worked with), especially in situations where pure emission
takes precedence over the current. 𝐶𝑅, on the other hand, is available for possibly
modulating the corresponding current but should still be selected judiciously since
a small impedance could similarly disrupt the emission mode. So-called frictionless
flows, for which the viscous drop in the feeding line is very small in comparison to
the capillary pressure, should therefore be actively avoided in spite of the common
belief that they confer strong evaporative currents.
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Chapter 9

Conclusions

In this chapter we review salient elements of the thesis and propose topics for future
investigation.

9.1 Summary and discussion
Charge evaporation from electrified fluids is a very intriguing but still decidedly mis-
understood phenomenon. While devices predicated upon it are believed to offer great
promise (for example, FIB systems and microrockets), maturation and translational
impact have been tempered by the attendant lack of a priori insight. This is acutely
true in the context of so-called ionic liquids but also in relationship to liquid metals
to some extent. In this thesis we have examined important aspects of the very mul-
tiphysical evaporation process and constructed a rigorous numerical model based on
the meniscus of a prototypical ionic fluid. Our investigations of its behavior over a
range of field and architectural conditions has uncovered (1)the existence of a high-
field solution branch for the large meniscus regime; (2) the likelihood of a limiting
meniscus size; and (3) critical stabilization properties enabled by the feeding system.
Among other findings, we view these as a significant step toward a firm fundamental
understanding of the electrically-assisted evaporation problem.

In order to inform the composition of the numerical model we have identified the
various physics that could contribute to the evaporation process and analyzed their
relative influences to order-of-magnitude accuracy. Notwithstanding potential atom-
istic effects, we believe that the corresponding list is essentially exhaustive for the
continuum approach we have elected to take. Unlike many other studies (e.g. Taylor
[3], Wohlhuter [71], Higuera [62]), the physics considered herein are inclusive of flow
effects inside the meniscus and local heating due to Ohmic dissipation. In the case
of the former, our basic analysis suggests that while upstream effects could play a
significant role, owing to the possibility of an arbitrary impedance there, the flow in
the immediate vicinity of the meniscus is likely rather meaningless as a result of the
very low Capillary number, 𝐶𝑎 = 𝜇𝑢*/𝛾, that typifies fluids of high specific charge.
On the other hand, the conductivities of many ILs and some liquid metals exhibit
strong thermal sensitivities that have given us to conclude that evaporation-induced
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heating could be important. We have also considered space charge influences due to
the presence of evaporated species propagating outside of the liquid-dielectric inter-
face. These are commonly dismissed out-of-hand for ILs but known to provide critical
ballasting in the case of liquid metals (where high conductivities lead to extreme cur-
rent densities). Although we also neglect them in the numerical formulation later
on, in the interest of simplicity, the magnitude estimate hints that they could indeed
affect the problem in a material way, especially in cases of high current.

In view of the fact that it is analytically tractable, after the order-of-magnitude
estimates we treat the classical problem of a fixed-volume droplet stressed by a uni-
directional electric field in free-space. Our analysis is very similar to that of Taylor
[3] but extends it to include dielectric fluids of finite permittivity and the possibility
of charge emission (albeit in a non-reactive, post-processing way that ignores, for
example, the possibility of charge accumulation in the emitting droplet). We start by
calculating equilibrium configurations using the corresponding two-point stress bal-
ance and find the well-known result that droplets stretching in the direction of the
field are sometimes characterized by multi-valued elongation curves. For the case of
an infinitely polar fluid (which is mathematically identical to a perfectly conduct-
ing fluid here), the elongation grows with increasing field until it reaches a value of
roughly 𝑍 ∼ 2 for dimensionless field 𝐸̂0 ∼ 0.2. This coincides with a so-called “turn-
ing point”. While no equilibrium solutions are found for fields greater than the one
at the turning point, a second branch of highly elongated solutions co-exists below
it. Stability analyses, however, suggest that it is not physical. Interestingly, as the
permittivity of a dielectric fluid is decreased from 𝜖𝑟 → ∞ we see the turning point
migrating toward higher fields and a gradual change in the multi-valued elongation
behavior. Indeed, for permittivities below some special value 𝜖𝑟 ∼ 20 it disappears
altogether and gives way to monotonic elongation curves. This would appear to un-
derscore the important role that the liquid dipoles play in managing the stress at
the interface and conferring stability. The possibility of emission is investigated by
considering the electric fields acting on the perfectly conducting droplet. Given the
noted stability properties, we examine these along the lower branch between 𝐸̂0 = 0
and the turning point and find that the tip is never comparable to the characteristic
evaporation field 𝐸* unless the quiescent waist of the droplet is itself comparable to
the corresponding scale 𝑟*, in spite of the elongation. We had hoped that spherical
droplets with 𝑟0 ≫ 𝑟* could be stably stretched to the point of evaporation; however,
it is clear now that such a scale disparity undoubtedly precludes that.

It is difficult to reconcile the results of the fixed-volume droplet with empirical
observations of evaporation, where it is believed that menisci much larger than 𝑟* can
support strong emission. With that in mind, we have developed a rigorous model in
which a meniscus of arbitrary intrinsic properties (e.g. surface tension 𝛾 and solvation
energy Δ𝐺) is anchored at the opening of a small hole in a plate. In general the plate
could be composed of either a dielectric or a perfectly conducting material. The hole
allows the meniscus to communicate with an upstream reservoir where a given back-
pressure is enforced. The impedance of the intervening hydraulic line is arbitrary. A
counter-electrode is also arranged far downstream of the meniscus and biased with
respect the bottom of the anchoring plate such that a nearly uniform electric field
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prevails away from the liquid.
We have calculated steady axisymmetric solutions to the set of governing equations

and identified two unique and ostensibly stable branches. The first of these is the
“lower equilibrium branch” that exists for relatively small values of the dimensionless
field 𝐸̂0. Investigation of the attendant elongation behavior for various reservoir
pressure reveal that this family of solutions is reminiscent of known results for fixed-
volume droplets in that they are somewhat “egg-shaped” and terminate at familiar
turning points. Owing to their smooth morphologies, these solutions are unable to
engender fields that are sufficiently strong for evaporation when there is a reasonable
disparity in the important scales, i.e., when 𝐵 ≪ 1. As a result, the menisci for all
{𝐵 : 𝐵 ≪ 1} should collapse to the dimensionless curves reported herein.

Noting that the highest fields along the lower branch were observed for negligible
back pressure (i.e., a reservoir pressure identical to the vacuum pressure), we have
identified this case as a good candidate for further examination. The corresponding
turning point is in the vicinity of 𝐸̂0 ≈ 0.52. After carefully elevating the field to
𝐸̂0 = 0.70 and judiciously estimating a potential interface shape for 𝐵 ≈ 1/20 and
𝐶𝑅 = 103 we have found a new solution which does support steady evaporation but
no longer resembles the egg shapes from the lower branch; rather it is characterized
by a sharp tip that gives way to a convex body. By slowly varying several parameters
(namely 𝐸̂0 and 𝐵, but also 𝐶𝑅 and 𝜖𝑟 to lesser extents) we have used this prototypical
solution to uncover a new and extremely rich family of solutions belonging to an
“upper equilibrium branch” that has never been seen before.

The turning point behavior along the lower branch suggests that no solutions
should exist beyond the associated field so long as only electrical traction, surface
tension, and the hydrostatic reservoir pressure prevail (since no emission occurs along
the lower branch, these are the only non-trivial physics governing the problem). In
view of this, we believe that the emission dynamics themselves are singularly respon-
sible for enabling the new branch that is reported for higher stresses. Moreover, we
speculate very specifically that the interaction of the evaporation-induced flow with
the nonzero upstream impedance creates a suction effect which confers the necessary
stability upon the interface. To conceptualize the manner in which this is possible
we might consider the sharp apex of the meniscus where the electrical traction, sur-
face tension, and pressure drop through the feeding line are all balanced when the
interface is steady. If a perturbation arises such that the apex sharpens, the field will
grow accordingly and begin to draw additional charge. Even in instances where the
excursion in the corresponding electrical pressure has outpaced the augmented surface
tension, the extra current could give rise to a perturbation in feeding pressure that
restores the equilibrium configuration. Similarly, a dulling perturbation could reduce
the feeding pressure and allow the newly unbalanced electrical traction to re-sharpen
it.

As a result of the findings from the upper branch of solutions we can now postulate
a notional collection of conditions that should typically be met if pure evaporation
is to prevail. In instances where there is overlap between these basic conditions and
the heuristics that were highlighted in the literature review we make use of tangible
modeling efforts to offer new measures of quantitative guidance. Trade-offs between
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potentially desirable attributes (e.g. current and stability) are pointed out where
appropriate. The conditions include:

∙ Meniscus sizing. From our maps it is clear that smaller menisci are more
amenable to evaporation than very large ones, likely due to the enhanced effects
of surface tension. For a typical ionic liquid it could be that a meniscus with
𝑏0 . 10 𝜇m is wise, depending upon the impedance (which apparently influences
the extent of the feasible regions in the 𝐵-𝐸̂0 plane). Of course, very large 𝛾
have the capacity to augment this number as a result of the fact that they
increase 𝑟* and therefore the parameter 𝐵 to which the problem is really linked.
Also, in the event that the span of feasible 𝐸̂0 is somehow correlated to a
measure of physical meniscus stability, as we have hypothesized in this thesis,
smaller menisci will also be more immune to perturbations than their larger
counterparts. This may, however, come at the penalty of a waning current that
could necessitate the judicious election of a delicate compromise between 𝑏0 and
𝐼.

∙ Feeding architecture. From our investigations it is clear that the feeding
system plays a critical role in enabling evaporation from menisci when a scale
disparity 𝐵 ≪ 1 exists (as it typically does in practical situations). Although
we have shown that the impedance can be almost arbitrarily increased, the ex-
istence of a minimum feasible value appears likely. This, of course, would to
preclude the possibility of so-called “frictionless” feeding flows that are some-
times believed to be desirable in connection with high currents. While we have
observed an inverse 𝐼-𝐶𝑅 relationship that is congruent with this hypothesis,
it is could be advisable to select a feeding architecture with 103 . 𝐶𝑅 . 105,
where the high end of this range would be most appropriate for larger menisci.
This owes to the fact that higher 𝐶𝑅 were shown to activate additional regions
of the 𝐵-𝐸̂0 plane in our simulations.

∙ Fluid permittivity. While our permittivity analyses are less rigorous than
other investigations in this thesis, the early results suggest the possibility of
a maximum feasible value in the neighborhood of 𝜖𝑟 ≈ 20. It is interesting
to speculate whether there is an analogy between this value and the critical
one that is known for dielectric droplets in free-space (recall from Chapter 5
that 𝜖𝑟 ≈ 20 separates droplets with “turning points” from those that elongate
monotonically). Although the reason for the observed threshold is somewhat
unclear at present, it is likely related somehow to the arrangement of the fields
and stresses near the tip of the meniscus and could explain to an extent why very
polar fluids (e.g. organic solvents and certain exotic ILs) are notoriously fickle
ion sources. An advisable condition, therefore, could be to strive for 𝜖𝑟 . 20
where possible.

∙ Fluid conductivity. For Liquid Metal Ion Sources it is well known that space
charge effects play an important role in governing the emission and making pure
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evaporation so readily accessible. In view of the similarities between the bal-
lasting properties of heavy space charge (which tempers the growth of electrical
stress in the event of a perturbation) and those of an impeding flow system
(which counteracts the growth of electrical stress, in the event of a perturba-
tion, by reducing the hydrostatic pressure in the meniscus) it is no surprise that
the latter is an enabling facet of evaporation from liquids that are modestly
conducting, e.g. ionic liquids. While our model and results do not encompass
a space charge component, it is clear at this point that increasing the space
charge around the meniscus could supplement the stabilizing influence of the
feeding system or perhaps nullify it entirely as it does for liquid metals (where
so-called “frictionless” feeding flows are in fact possible). With that in mind, it
is likely advisable to make the fluid conductivity as high as possible in almost
any situation since the evaporated current, and therefore the space charge, are
essentially throttled by transport limitations in the liquid. Given that our re-
sults show 𝑘 ∼ 1 S/m likely puts us on the edge of a regime of space charge
importance, aiming for 𝑘 ≫ 1 S/m, where possible, might make sense.

9.2 Thesis contributions
Through the course of this research we have identified and at least semi-quantified
important aspects of IL evaporation in a way that could ultimately be of benefit to
the full family of purely ionic electrospray ion technologies. Among other things,
these have served to underscore the importance of sizing the meniscus and carefully
engineering its feeding architecture. In what follows we briefly expound upon these
and other important contributions.

∙ Basic evaluation of influential physics. We have identified a broad spec-
trum of potentially contributing physics and performed corresponding order-of-
magnitude analyses. Unlike many other studies, these have revealed that both
space charge and heating effects could play non-trivial roles in the process of IL
ion evaporation, especially in the vicinity of high throughputs. Notwithstand-
ing upstream hydraulics, which are perhaps critically important, we have also
shown that the flow within the meniscus itself is a rather meaningless byproduct
of the emission dynamics. This is directly evidenced through the small Capillary
number that typifies fluids of high specific charge.

∙ Analytical investigation of spheroidal menisci. We have investigated the
equilibrium and stability properties of both free- and fixed-volume spheroidal
menisci through the use of several closed-form field solutions developed as part of
the thesis. The results have demonstrated that such configurations are incapable
of supporting meaningful emission unless the size of the meniscus is comparable
to characteristic evaporation scale 𝑟*. Given that evaporation from much larger
menisci is believed to be feasible, our results have undoubtedly disqualified
spheroids as possible interface candidates. Moreover, this has suggested that
numerical recourse is likely unavoidable in the pursuit of evaporative modeling.
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∙ Development of a fundamental meniscus model. We have constructed a
rigorous mathematical framework for an evaporating IL meniscus attached to a
feeding system of arbitrary impedance and reservoir pressure. Notwithstanding
space charge effects, which were omitted in view of substantially greater simplic-
ity, the framework is relevant to any liquid suspended at the end of a capillary
tube, or possibly the opening of an individual pore, and has enabled the enforce-
ment of several conditions (namely unconstrained volume but also 𝜖𝑟 ≪ 100)
that have yet to receive theoretical treatment. A hybrid Matlab/Comsol nu-
merical routine has also been developed for identifying steady, self-consistent
solutions to the embodied equations.

∙ Description of emission properties along the meniscus contact line.
When menisci are supported at the end of a sharp tube or a port in a dielectric
plate it is likely that singular fields of the weak (i.e., integrable) variety prevail
in the vicinity of the contact line. This owes to a corresponding geometric singu-
larity (or, in reality, a near-singularity) that is well-known in wetting problems.
Given that such fields could presumably engender evaporation themselves, we
have developed corresponding closed-form Laplacian solutions and used these to
identify conditions under which the “contact line emission” might be meaning-
ful in comparison to its counterpart from the meniscus tip. The results suggest
that emission is important beyond a specific contact angle, but that this angle
is typically greater than what would be true of a Taylor cone.

∙ Discovery of multiple solution branches for the free-volume problem.
In terms of the applied electric field, we have shown that two unique solution
branches exist for the free-volume problem when a significant disparity in scales
exists, i.e., 𝐵 ≪ 1. Of these, the lower branch is reminiscent of the stable
but weakly distorted solutions from fixed-volume problems and terminates at a
familiar “turning point”. As the field is increased beyond the “turning point”
we first intersect a small zone in which no solutions are evident (this is likely
the realm of so-called pulsating emission modes described in the literature) and
then a new and previously uncharted branch of ostensibly stable solutions, i.e.,
the upper branch. We believe that these are specifically enabled by the influence
of the upstream impedance. Corresponding menisci are characterized by highly
distorted morphologies that confer strong apex fields and result in currents that
agree with empirical values.

∙ Mapping of the 𝐵-𝐸̂0 solution plane for several values of 𝐶𝑅. We have
mapped out important areas of the 𝐵-𝐸̂0 solution plane, with a focus on the
interesting situation of 𝐵 ≪ 1, for several values of impedance 𝐶𝑅. Each plane
is typified by four distinct regions corresponding to the aforementioned solution
branches. These include a region at low fields for which no meaningful emission
is observed, a region of intermediate fields for which no solutions can be found, a
region of higher fields for which we observe sharp and evaporating menisci (i.e.,
the “upper equilibria”), and a region of even higher fields for which we again
can no longer identify stable equilibria. Among the upper solutions we have
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shown that the range of stable fields is apparently a decreasing function of the
meniscus size and that this could suggest the existence of an interesting limiting
structure. Variations in 𝐶𝑅 have revealed that the landscape of the solution
plane is sensitive to the feeding impedance and ostensibly confirmed the notion
that augmented 𝐶𝑅 could (1) confer additional stability on the menisci, and (2)
enable easier access to larger contact lines.

∙ Investigation of the dielectric influence. We have selected several points
within the 𝐸̂0-𝐵 plane for 𝐶𝑅 = 103 and slowly varied the permittivity 𝜖𝑟 to
identify any meaningful ramifications for evaporation. Our basic study has
shown that increasing permittivity serves to augment the stress at the tip of
the meniscus, much like it did for the fixed-volume dielectric droplets. Even
when the relaxation time 𝜖𝑟𝜖0/𝑘 is decreasing (owing to fixed conductivity), this
ensures an invariant current; however, at some threshold 𝜖𝑟 the elongation and
sharpening of the meniscus is no longer tenable. Given this observation, we have
argued that there could exist a maximum feasible permittivity for fluids with
𝑘 ∼ 1 S/m that may perhaps partially explain the difference in emission behavior
between apolar ionic liquids such as EMI-BF4 and more polar alternatives.

∙ Scrutiny of the Taylor archetype. Throughout this thesis we have routinely
juxtaposed our numerical structures with the classical Taylor archetype in a way
that highlights important morphological differences. While we have uncovered
but a small subset of the family of evaporating menisci, this effort has made
it clear that the Taylor structure is not the thoroughly pervasive result that
is so readily claimed in the body of contemporary literature. Notwithstanding
these geometric disparities, our investigations of very sharp menisci (i.e., ones
that may be pointing toward the limiting solution we have discussed) have
revealed certain subtle similarities to the perfect cone solution (for example, in
the distribution of vacuum field 𝐸𝑣

𝑛) that could perhaps lead to more general
theories in the future.

9.3 Suggestions for future work
Although the work presented in this thesis has begun to elucidate important theoret-
ical aspects of ion evaporation, it is merely representative of a first step. High-value
insights are still to be gleaned from future investigations that build upon what we
have presented. In what follows we briefly outline what we believe to be several
compelling areas of inquiry.

∙ Space charge effects. For simplicity we have neglected space charge in the
present formulation of the model. In other words, we have solved Laplace
instead of the more exact Poisson equation in the vacuum region. While this
would appear to be a reasonable approximation for modestly conducting fluids
producing gentle emission, our order-of-magnitude analysis suggests that the
Poisson field in the vicinity of the activated portion of the meniscus could begin
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to approach a nontrivial fraction of its Laplacian counterpart (say 10−1) as
the current escalates. Given that the electrical stress goes like the square of
fields, this would suggests that space charge effects could at some point affect a
material change to shape of the interface. Similarly, the added ballasting might
influence important stability characteristics and allow for situations of greater
scale disparity to be identified.
Notwithstanding the space charge, we believe that the present model is nearly
exhaustive from the perspective of a continuum approach. Substitution of Pois-
son for Laplace in the vacuum region might therefore represent the only missing
link to a unified model capable of describing ionic liquids and liquid metals alike.

∙ Influence of the electric field structure. In the present formulation we
have anchored the meniscus to a conducting plate for simplicity. In reality,
however, it is possible that the fluid could exist on an insulating plate or at
the end of a long, thin tube. Such configurations would necessarily modify
the structure of the electric field in the vicinity of the interface. For example,
we have shown that anchoring on a dielectric plate could lead to a singular
field along the contact line. Future investigations might seek to explore related
effects and determine the extent to which various anchoring media influence the
evaporation behaviors we have uncovered.

∙ Faster convergence properties. Based on our experiences, dense computa-
tional meshes are needed to resolve the disparate scales that characterize large,
activated menisci. In conjunction with our relatively slow interface relaxation
method, these demand a relatively large numerical cost that has precluded us
from exploring as much of the parameter space as we would have ideally liked.
In other words, solution hunting was much too slow. Future investigations might
address this issue by seeking to minimize the number of iterations required for
convergence. One possible approach could be to formulate the interfacial propa-
gation like a nonlinear root-finding problem, similar to what Wohlhuter [71] has
done, and employ the framework we have outlined in the corresponding section
of this thesis.

∙ Detailed meniscus stability analysis. We believe that the interfacial relax-
ation method employed herein is sufficient for identifying stable structures where
they exist and avoiding anomalous results otherwise, i.e., avoiding convergence
to physically unstable configurations. Indeed, the benchmarking experiments
with known results would seem to corroborate this notion. In our experience, as
we approach the bounds of physical stability with our method we begin to see
greater numerical oscillations and a growing number iterations. Even if these
represent qualitative measure of waning stability, they are far from quantita-
tive. Future investigations might seek to quantify the relative stability of one
solution with respect to another as a way of, for example, possibly establishing
a feasible operating envelope with a safety factor.

∙ Time-resolved modeling. While the model presented herein is capable of
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identifying steady solutions for the evaporation problem, it is unable to resolve
any related dynamic behaviors. Future investigations might borrow from the
Higuera [62] formulation, for example, to create a time-resolved tool that can
elucidate potentially interesting transients in the upper branch.

∙ Atomistic issues. For the present continuum formulation we have employed
certain notions of a “leaky dielectric” as a result of their simplicity and heritage.
As we noted in the literature review, however, it is possible that they may not
capture the true microscopic physics. For example, we have assumed that the
layer of charge at the liquid interface represents a vanishingly thin transition
between bulk fluid and vacuum. Statistically speaking this would seem to make
good sense if the free charges themselves were to occupy volumes that are small
in comparison to the dipoles in the liquid. With ionic liquids this cannot be
true though, since the charges themselves exist as parts of large molecules.
The confusion is further intensified by Poisson, which suggests that the actual
thickness of the surface charge layer is likely of sub-molecular scale. If that is
the case, how can the charges truly be separated from the fluid? And what is
really happening when the evaporating surface is “depleted” of charge?
Among other things, we might also ask questions about the composition of the
ionic liquid itself. Is it a two-fluid system of cations and anions? Or maybe
a three-fluid systems of cations, anions, and a population of neutrals? In the
event of the latter, it could be possible that carrier densities experience spatial
fluctuations in the fluid even when quasineutrality is preserved. In other words,
the bulk fluid properties might not be constant, in which case our formulation
would not be strictly valid.
Future investigations might seek to begin answering some of these questions by
taking an atomistic approach to the evaporation problem, e.g., through the prin-
ciples of so-called “molecular dynamics”, or MD. While several pilot studies on
electrosprayed beams are already underway (see, for example, Coles and Lozano
[99]), new research could pay particular attention to the electrical structure of
the liquid interface and charge distribution in the meniscus.

∙ Meniscus spreading modes. For the studies presented herein we have uncon-
ditionally “pinned” the contact line at a chosen radius. Given that the contact
angle is unconstrained this would seem to model a perfectly non-wetting plate.
As a matter of practicality, however, the surface of the plate may not always
meet this condition, which could presumably allow the meniscus to spread out
over the plate surface if the contact angle approaches the liquid-solid wetting
angle. In this case, the contact radius would be free while the contact angle
would be fixed to whatever the specific liquid-solid wetting angle is. Future
investigations might endeavor to explore the possibility of steady menisci that
satisfy these conditions.

∙ Multi-cone emission modes. Our attention in this research has been re-
stricted to individual ion sources. It is apparent from the literature, however,
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that single sources might split into multiple sources under certain conditions.
Future investigations might seek to uncover the mechanics of attendant repro-
duction processes and elucidate the manner in which they modify the meniscus
behaviors reported herein.

∙ Microscopy surveys. The menisci reported in this thesis are almost entirely
theoretical, corroborated only by laboratory measurements of indirect properties
such as the current. In the future it would be very interesting to attempt to
directly image steadily evaporating menisci such that important morphological
properties can be firmly established. For example, in all instances of steady
evaporation for the low-𝐵 regime we observe a stabilizing suction effect that
creates convex interfaces. Can we see this in the laboratory? The size of the
menisci represent an issue (the lower end of the visible spectrum is still a few
hundred nanometers) for which electron microscopy is perhaps the only recourse,
but this comes with its own challenges. Direct imaging would be very valuable
but future researchers will need to be clever!
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Appendix A

Analytical amplifier models

In this appendix we briefly review several analytical amplifier solutions that are widely
referenced throughout the field-emitter literature and invoked in this thesis. These
include the sphere-on-cone (SOC) model, the infinite hyperboloid, and the conducting
plate with spheroidal protrusion.

A.1 Sphere-on-cone (SOC)
The so-called sphere-on-cone model involves a sphere and an infinite conical shaft
that can be superimposed to create a structure loosely resembling many physical field
emitters (Fig. A-1). It was very popular model in the early field-emission literature
[85, 86, 87] but continues to be of utility today [74].

Structural properties of the electrical field formed between the sphere-on-cone
and a counter electrode are analytically tractable in spherical space when the origin
is identical to the vertex of the cone and coincident with the center of the sphere. In
general, Laplace’s equation in spherical coordinates is

∇2Φ = 1
𝑟2

𝜕

𝜕𝑟

(︃
𝑟2𝜕Φ
𝜕𝑟

)︃
+ 1
𝑟2 sin 𝜃

𝜕

𝜕𝜃

(︃
sin 𝜃𝜕Φ

𝜕𝜃

)︃
+ 1
𝑟2 sin2 𝜃

𝜕2Φ
𝜕𝜑2 = 0 (A.1)

where 𝑟 is the spherical radius here, 𝜃 is the polar angle, and 𝜑 is its azimuthal
counterpart. Where axial symmetry is appropriate, the third term in the expansion of
the Laplacian operator is identically zero and this enables the possibility of a classical
two-part product solution. Taking Φ = 𝑅 (𝑟) Θ (𝜃) and separating variables

1
𝑅

𝑑

𝑑𝑟

(︃
𝑟2𝑑𝑅

𝑑𝑟

)︃
+ 1

Θ sin 𝜃
𝑑

𝑑𝜃

(︃
sin 𝜃𝑑Θ

𝑑𝜃

)︃
= 0 (A.2)

which can only be true when the modulus of either term on the LHS is equal to the
so-called separation constant (essentially an eigenvalue of the differential operator).
Insofar as this constant evaluates to ±𝑛 (𝑛+ 1), where 𝑛 is an arbitrary integer such
that 𝑛 ∈ Z+, we have, for example
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Figure A-1: Sphere-on-cone (SOC) model. A sphere (radius 𝑟0) and an infinite conical
shaft (half-angle 𝜃𝑠) are superimposed to create a field-amplifier structure that has a
closed-form analytical solution to the Laplace equation. Several equipotential surfaces
are shown between the solid assembly and a distant counter-electrode (radius 𝑅 along
the zenith line).

1
𝑅

𝑑

𝑑𝑟

(︃
𝑟2𝑑𝑅

𝑑𝑟

)︃
⏟  ⏞  

𝑛(𝑛+1)

+ 1
Θ sin 𝜃

𝑑

𝑑𝜃

(︃
sin 𝜃𝑑Θ

𝑑𝜃

)︃
⏟  ⏞  

−𝑛(𝑛+1)

= 0 (A.3)

The 𝑅-term in this relationship then gives

𝑑

𝑑𝑟

(︃
𝑟2𝑑𝑅

𝑑𝑟

)︃
− 𝑛 (𝑛+ 1)𝑅 = 0 (A.4)

for which we can try 𝑅 = 𝐶 · 𝑟𝑝. The solution is

𝑝 (𝑝+ 1) = 𝑛 (𝑛+ 1) ⇒ 𝑝 = 𝑛,− (𝑛+ 1) (A.5)

and this yields

𝑅 (𝑟) = 𝐴𝑟𝑛 +𝐵𝑟−(𝑛+1) (A.6)

Similarly, for the Θ-term we find

𝑑

𝑑𝜃

(︃
sin 𝜃𝑑Θ

𝑑𝜃

)︃
+ [𝑛 (𝑛+ 1) sin 𝜃] Θ = 0 (A.7)

which, of course, is the form that Legendre’s equation takes when

Θ (𝜃) = 𝐶 · 𝑃𝑛 (cos 𝜃) +𝐷 ·𝑄𝑛 (cos 𝜃) (A.8)
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where 𝑃𝑛 and 𝑄𝑛 are the Legendre functions of the first and second kind, respec-
tively. Of these, the latter can be discarded because it is divergent along the polar
axis (𝜃 = 0 ⇒ cos 𝜃 = 1 and 𝑄𝑛 (1) → ∞).

Generally speaking, the total solution for the electric potential Φ is now found by
summing over all possible separation constants, i.e.

Φ (𝑟, 𝜃) = 𝐴+
∞∑︁
𝑛=1

[︁
𝐵𝑟𝑛 + 𝐶𝑟−(𝑛+1)

]︁
𝑃𝑛 (cos 𝜃) (A.9)

though this involves an infinite series that is oftentimes inconvenient. Rather than
rigorously pursuing this sum, for the SOC model we instead truncate the series to a
single term

Φ (𝑟, 𝜃) =
[︁
𝐵𝑟𝑚 + 𝐶𝑟−(𝑚+1)

]︁
𝑃𝑚 (cos 𝜃) (A.10)

and invoke the Legendre function of fractional order

𝑃𝑚 (cos 𝜃) = 2𝐹1

(︃
−𝑚,𝑚+ 1; 1; 1 − cos 𝜃

2

)︃
(A.11)

where 2𝐹1 is the hypergeometric function and 𝑚 is no longer restricted to the set
of integers. This reduces the problem to three unknown constants (𝐵, 𝐶, and 𝑚)
which are easily identified through the boundary conditions

Φ (𝑟 = 𝑟0, 𝜃) = 0
Φ (𝑟 = 𝑅, 𝜃 = 0) = 𝑉

Φ (𝑟, 𝜃 = 𝜋 − 𝜃𝑠) = 0

The reference potential on the sphere and its conical shaft is set to zero here
for mathematical convenience. Also notice that the downstream electrode, biased
to the relative potential 𝑉 , is specified only at the zenith location (𝑟 = 𝑅, 𝜃 = 0).
Incidentally, this provides the electrode with interesting topographical characteristics
that are sometimes useful to study later on. After applying these conditions

Φ (𝑟, 𝜃) = 𝑉
(︂
𝑟

𝑅

)︂𝑚 [︂1 −
(︁
𝑟0
𝑟

)︁2*𝑚+1
]︂

[︂
1 −

(︁
𝑟0
𝑅

)︁2*𝑚+1
]︂𝑃𝑚 (cos 𝜃) (A.12)

or, when 𝑟0 ≪ 𝑅

Φ (𝑟, 𝜃) ≈ 𝑉
(︂
𝑟

𝑅

)︂𝑚 [︃
1 −

(︂
𝑟0

𝑟

)︂2*𝑚+1
]︃
𝑃𝑚 (cos 𝜃) (A.13)

with the Legendre function subject to

2𝐹1

(︃
−𝑚,𝑚+ 1; 1; 1 + cos 𝜃𝑠

2

)︃
= 0 (A.14)
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Figure A-2: Plot of 𝑃𝑚(cos 𝜃) as a function of the Legendre order 𝑚 with 𝜃𝑠 a param-
eter. The value of the appropriate 𝑚 is determined by locating the root for a desired
cone half-angle. For example, 𝑚 = 1 corresponds to 𝜃𝑠 = 𝜋/2 which is the case of a
spherical protrusion on a semi-infinite slab. The case of 𝜃𝑠 = 0 is degenerate but it is
believed that 𝑚 → 0.088 in the limit.

Unfortunately this relationship must be solved numerically. In Fig. A-2 we plot
𝑃𝑚 (cos 𝜃) as a function of the fractional order𝑚 with 𝜃𝑠 a parameter. The appropriate
value of 𝑚 is determined by identifying the location of the root.

A.2 Infinite hyperboloid
Like the sphere-on-cone, it is not uncommon for physical field-emitter diodes to re-
semble hyperboloidal structures, especially near their apices where the important
physics take place. This is very useful in that it facilitates modeling activities in
prolate spheroidal space, among other systems, where analytical solutions to atypical
Laplacian problems are sometimes tractable. The prolate spheroidal system is the
cylindrical analog to planar elliptical coordinates and results from the rotation of
that system about its confocal axis. This produces a collection of spheroids that are
complemented by an orthogonal set of hyperboloids of revolution.

From Abramowitz and Stegun [82], prolate spheroidal coordinates are commonly
defined by the cylindrical transformation

𝑟 = 𝛼 sinh𝜇 sin 𝜈 (A.15)

𝑧 = 𝛼 cosh𝜇 cos 𝜈 (A.16)

where 𝜇 ∈ [0,∞), 𝜈 ∈ [0, 𝜋], and azimuthal symmetry has been imposed (see Fig.
A-3). The proportionality constant 𝛼 offers spatial modulation of the transformation
while 𝜇 and 𝜈 paramterize the ellipsoidal and hyperboloidal surfaces, respectively.
The general form of the corresponding Laplacian is
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∇2Φ = 1
𝛼2
(︁
sinh2 𝜇+ sin2 𝜈

)︁ [︃𝜕2Φ
𝜕𝜇2 + 𝜕2Φ

𝜕𝜈2 + coth𝜇𝜕Φ
𝜕𝜇

+ cot 𝜈 𝜕Φ
𝜕𝜈

]︃
(A.17)

If we choose a curve 𝜈0 that is geometrically similar to an emitter of interest (this
is typically done with the apex curvature in mind) and adopt a second hyperboloid
as our counter-electrode, the problem conveniently reduces to one of a single variable,
𝜈. For the specific boundary conditions

Φ (𝜈 = 𝜈0) = 𝑉

Φ (𝜈 = 𝜋/2) = 0

the homogeneous solution to Eq. A.17 becomes

Φ (𝜈) = 𝑉
ln
[︁

1−cos 𝜈
1+cos 𝜈

]︁
ln
[︁

1−cos 𝜈0
1+cos 𝜈0

]︁ (A.18)

The distribution of electrical fields in the inter-electrode region (𝜇 ∈ [0,∞) and
𝜈 ∈ [𝜈0, 𝜋/2]) is then

𝐸⃗ = −∇Φ = −𝜕Φ
𝜕𝜈

𝜕𝜈

𝜕𝑛
(A.19)

where 𝜕𝑛 is the differential in the direction normal to the local 𝜈 surface and
equivalent to 𝜕𝑛 = (𝜕𝑟2 + 𝜕𝑧2)1/2. This can be related to 𝜈 with the help of the
transformations (Eqs. A.15 and A.16)

𝜕𝑟|𝜇 = 𝛼 sinh𝜇 cos 𝜈𝜕𝜈
𝜕𝑧|𝜇 = −𝛼 cosh𝜇 sin 𝜈𝜕𝜈

⇒ 𝜕𝑛 = 𝜕𝜈 · 𝛼 cosh𝜇 cos 𝜈
√︁

tanh2 𝜇+ tan2 𝜈

so that we can arrive at the electric vector field

𝐸⃗ = 2𝑉
𝑎 cosh𝜇 sin 𝜈 cos 𝜈

√︁
tanh2 𝜇+ tan2 𝜈

ln−1
[︂1 + cos 𝜈0

1 − cos 𝜈0

]︂
𝑖⃗𝜈 (A.20)

where we have written in 𝜇-𝜈 variables for convenience.

A.2.1 Hyperboloid selection and tip field
It is conventional to select an hyperboloid 𝜈0 based upon its tip sharpness. The
radius of curvature of the apex in cylindrical space is exactly 𝑅𝑐 = (𝑧′′)−1 since the
first derivative of 𝑧(𝑟) vanishes due to symmetry on the axis. Imposing an arbitrary
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Figure A-3: Prolate spheroidal coordinates. Inscribed ellipses (𝜇) intersect hyper-
boloids of revolution (𝜈) to form an orthogonal system that is often convenient in the
solution of certain Laplacian problems.

tip-to-plate distance 𝑑 (note that 𝛼 = 𝑑/ cos 𝜈0 in this case) yields

(︃
𝑑2𝑧

𝑑𝑟2

)︃
𝜈0,𝜇=0

= cot2 𝜈0

𝑑
(A.21)

and this defines a non-trivial 𝜈0 such that

tan 𝜈0 =
√︁
𝑅𝑐/𝑑 (A.22)

It is straightforward at this point to choose the correct amplifier surrogate for
a given geometric sharpness 𝑅𝑐/𝑑. The corresponding field at the tip follows after
noting the trigonometric relationships

sin 𝜈0 = (1 + 𝑑/𝑅𝑐)−1/2

cos 𝜈0 = (1 +𝑅𝑐/𝑑)−1/2

In the sharp tip limit, 𝑅𝑐 ≪ 𝑑, we find the field modulus

𝐸 ∼ 2𝑉
𝑅𝑐 ln

(︁
4𝑑
𝑅𝑐

)︁ (A.23)

which is the foundation for several analytical field-emission treatments seen through-
out the literature [5, 4, 25].
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𝑬𝟎 

Figure A-4: Diagram of prolate spheroidal structure protruding from a flat semi-
infinte slab. A prescribed field is uniform at infinity and produces equipotential
surfaces that asymptotically approach flat planes. The associated Laplacian problem
for the potential field is mathematically equivalent to a prolate spheroid suspended
in a uniform background field directed along the line connecting the focii.

A.3 Conducting spheroid on a conducting, semi-
infinite plate

A third analytical field model involves a conducting spheroidal structure that is either
protruding from a conducting, semi-infinite plate or suspended in a uniform external
field, both of which are mathematically equivalent. It is similar to the SOC model
for 𝜃𝑠 → 𝜋, in fact it should be nearly identical when the protrusion is exactly hemi-
spherical, but otherwise generalizes the problem to both oblate and prolate structures
(Fig. A-4).

We will focus here on those of the prolate variety and work in the coordinate sys-
tems described by the cylindrical transformation from Eqs. A.15 and A.16. Starting
from the general form for the Laplacian in the corresponding space, Eq. A.17, we are
to solve the problem defined by the boundary conditions

Φ (𝜇0, 𝜈) = 0
Φ (𝜇, 𝜈 = 𝜋/2) = 0

𝐸⃗ (𝜇 → ∞, 𝜈 = 0) = 𝐸0 · 𝑖⃗𝑧

in which the spheroid and the plate (or mid-plane) are set to a reference potential
while a uniform field is prescribed far downstream. Note that the problem is now more
involved than the single-variable case for infinite hyperboloids and that it necessarily
entail variations in both 𝜇 and 𝜈 (two spatial dimensions). In view of this we can
adopt a product solution of the form Φ (𝜇, 𝜈) = 𝐹 (𝜇) · 𝐺(𝜈) and immediately try
𝐺(𝜈) = cos 𝜈 by inspection to satisfy the reference potential on the plate. Plugging
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this into the Laplacian gives

𝑑2𝐹

𝑑𝜇2 + coth𝜇𝑑𝐹
𝑑𝜇

− 2𝐹 = 0 (A.24)

for which the general solution is

Φ (𝜇, 𝜈) = 𝐶1 cos 𝜈 cosh𝜇
[︃
1 + 𝐶2

(︃
1

cosh𝜇 + ln{ sinh𝜇
1 + cosh𝜇}

)︃]︃
(A.25)

The second constant of integration, 𝐶2, is readily identified from the first boundary
condition, Φ (𝜇0, 𝜈) = 0, with the result that

Φ (𝜇, 𝜈) = 𝐶1 cos 𝜈 cosh𝜇
⎡⎣1 −

1
cosh𝜇 + ln{ sinh𝜇

1+cosh𝜇}
1

cosh𝜇0
+ ln{ sinh𝜇0

1+cosh𝜇0
}

⎤⎦ (A.26)

For the first constant we can examine the axial part of the potential, Φ (𝜇, 𝜈 = 0).
The electric field on this line is 𝐸𝑎𝑥 = −(𝑑Φ/𝑑𝜇) ·(𝑑𝜇/𝑑𝑧) where 𝑑𝜇/𝑑𝑧 = (𝛼 sinh𝜇)−1

from the coordinate transformations

𝐸𝑎𝑥 = −𝐶1

𝛼

⎡⎣1 −
ln{ sinh𝜇

1+cosh𝜇} + cosh𝜇
sinh2 𝜇

1
cosh𝜇0

+ ln{ sinh𝜇0
1+cosh𝜇0

}

⎤⎦ (A.27)

Assuming now that the downstream field is imposed very far from the tip of the
spheroid, we have that

lim
𝜇→∞

𝐸𝑎𝑥 = −𝐶1

𝛼
(A.28)

and this gives −𝐶1/𝛼 = 𝐸0 for satisfaction of the final boundary condition. After
substituting this back into the relationship for the full potential distribution we find

Φ (𝜇, 𝜈) = −𝛼𝐸0 cos 𝜈
⎡⎣cosh𝜇−

1 + cosh𝜇 · ln{ sinh𝜇
1+cosh𝜇}

1
cosh𝜇0

+ ln{ sinh𝜇0
1+cosh𝜇0

}

⎤⎦ (A.29)

which is now a complete and unique solution for the semi-infinite region above the
conducting plate (or mid-plane) and external to the spheroid.

A.3.1 Spheroid surface field and amplification

For reference it will also be helpful to explicitly derive the field acting on the surface of
the spheroid, 𝐸𝑛 = −𝑑Φ/𝑑𝑛|𝜇0 where 𝑛 denotes the direction of the outward surface
normal. From the chain rule we have that 𝐸𝑛 = −(𝑑Φ/𝑑𝜇) · (𝑑𝜇/𝑑𝑛) with

𝑑𝜇

𝑑𝑛
=
[︂
𝛼 cos 𝜈 cosh𝜇

√︁
tanh2 𝜇+ tan2 𝜈

]︂−1
(A.30)

again a result of the cylindrical transformations. This leads to
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𝐸𝑛 = 𝐸0

cosh𝜇
√︁

tanh2 𝜇+ tan2 𝜈

⎡⎣sinh𝜇−
coth𝜇+ sinh𝜇 · ln{ sinh𝜇

1+cosh𝜇}
1

cosh𝜇0
+ ln{ sinh𝜇0

1+cosh𝜇0
}

⎤⎦ (A.31)

which we can evaluate at 𝜇 = 𝜇0 to find

(︂
𝐸𝑛
𝐸0

)︂
𝜇0

= 1√︁
tanh2 𝜇0 + tan2 𝜈

⎡⎣ tanh𝜇0 − coth𝜇0

1 + cosh𝜇0 · ln{ sinh𝜇0
1+cosh𝜇0

}

⎤⎦ (A.32)

which is an expression for the result that we seek, albeit one in cumbersome
variables. It is sometimes useful to make the extra step of writing it in terms of the
aspect ratio, 𝑧0/𝑟0, where 𝑧0 is the height of the spheroid at the zenith and 𝑟0 is the
radial width at the mid-plane. Letting 𝑍 = 𝑧0/𝑟0 gives

(︂
𝐸𝑛
𝐸0

)︂
𝜇0

= 1√︁
1 + (𝑍 · tan 𝜈)2

⎡⎣ 𝑍2 − 1
𝑍√
𝑍2−1 ln

(︁
𝑍 +

√
𝑍2 − 1

)︁
− 1

⎤⎦ (A.33)

At the mid-plane (𝜈 → 𝜋/2) we can easily see that the tan 𝜈 in the denominator
becomes unbounded and drives the modulus of the local field to zero. Conversely, the
same tan 𝜈 disappears at the zenith and we are left with an amplification factor that
varies in a highly nonlinear way with 𝑍. For reference purposes, a plot of the global
amplification properties is shown in Fig. A-5 with the spheroidal aspect ratio as a
parameter. Note that the result (𝐸𝑛/𝐸0)𝜇0,𝜈=0 = 3 is well-known for 𝑍 → 1.

A.4 Dielectric spheroid on a conducting, semi-infinite
plate

A related spheroidal model involves the case of a dielectric structure, rather than a
conducting one, protruding from a conducting semi-infinite plate (or, equivalently,
suspended in a uniform background field; see Fig. A-6). As in the previous section
we will focus here on prolate geometries and work in the coordinate system defined by
the cylindrical transformations of Eqs. A.15 and A.16. We wish to solve the problem
governed by the boundary conditions

Φ (𝜇, 𝜈 = 𝜋/2) = 0
𝐸⃗ (𝜇 → ∞, 𝜈 = 0) = 𝐸0 · 𝑖⃗𝑧

as well as the interfacial conditions
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Figure A-5: Plot of the surface amplification for a spheroidal protrusion of prolate
form factor. The amplification, 𝐸/𝐸0, is shown as a function of the angle 𝜈 with the
aspect ration 𝑍 as a parameter. Note that 𝐸/𝐸0 = 3 at the zenith (𝜈 = 0) for 𝑍 = 1
and that it is possible to corroborate this result with other models, e.g. the SOC
model with 𝜃𝑠 = 𝜋/2.

𝑬𝟎 

𝜺𝒓 

Figure A-6: Diagram of a dielectric prolate spheroidal structure protruding from a flat
semi-infinte slab. A prescribed field is uniform at infinity and produces equipotential
surfaces that asymptotically approach flat planes. The associated Laplacian problem
for the potential field is mathematically equivalent to a prolate spheroid suspended in
a uniform background field directed along the line connecting the focii. This problem
is similar to the one for the conducting protrusion but now allows for the equipotential
lines to permeate the structure.
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Φ𝑣 (𝜇0, 𝜈) = Φ𝑑 (𝜇0, 𝜈)
𝐸⃗𝑣 (𝜇0, 𝜈) · 𝑛⃗ = 𝜖𝑟

[︁
𝐸⃗𝑑 (𝜇0, 𝜈) · 𝑛⃗

]︁
where the superscripts 𝑣 and 𝑑 signify properties in the vacuum and dielectric

regions, respectively; where 𝜖𝑟 is the relative permittivity of the dielectric; and where
𝑛⃗ is the unit normal vector on its surface. This is a problem in which an electric
field that is uniform far downstream creates potential gradients near the plate (or
mid-plane) that may or may not leak into the protrusion.

We can start by invoking the general solution to Laplace’s equation in axisym-
metric prolate speroidal space (Eq. A.25) and writing expressions for the potential
fields both internal and external to the dielectric

Φ𝑑 (𝜇, 𝜈) = 𝐶1 cos 𝜈 cosh𝜇
[︃
1 + 𝐶2

(︃
1

cosh𝜇 + ln{ sinh𝜇
1 + cosh𝜇}

)︃]︃

Φ𝑣 (𝜇, 𝜈) = 𝐶3 cos 𝜈 cosh𝜇
[︃
1 + 𝐶4

(︃
1

cosh𝜇 + ln{ sinh𝜇
1 + cosh𝜇}

)︃]︃

For Φ𝑑 we can immediately take 𝐶2 → 0 by inspection because the potential must
be bounded in the dielectric as 𝜇 → 0. The surviving constant in the expression for
the dielectric field, 𝐶1, is then determined by recognizing that the potential must be
uniform across the dielectric-vacuum interface. From Φ𝑣(𝜇0) = Φ𝑑(𝜇0) we have that

Φ𝑑 (𝜇, 𝜈) = 𝐶3 cos 𝜈 cosh𝜇
[︃
1 + 𝐶4

(︃
1

cosh𝜇0
+ ln

{︃
sinh𝜇0

1 + cosh𝜇0

}︃)︃]︃
(A.34)

To determine the first of the vacuum constants, 𝐶3, we can again consider the
axial part of the potential, Φ𝑣(𝜇, 𝜈 = 0). The electric field on this line is 𝐸𝑎𝑥 =
−(𝑑Φ/𝑑𝜇) · (𝑑𝜇/𝑑𝑧) by the chain rule with 𝑑𝜇/𝑑𝑧 = (𝛼 sinh𝜇)−1 following from the
coordinate transformations

𝐸𝑎𝑥 = − 𝑑Φ𝑣

𝑑𝜇

𝑑𝜇

𝑑𝑧

⃒⃒⃒⃒
⃒
𝜈=0

= −𝐶3

𝛼

[︃
1 + 𝐶4

(︃
1

cosh𝜇 + ln
{︃

sinh𝜇
1 + cosh𝜇

}︃)︃]︃
−𝐶3𝐶4 (coth𝜇− tanh𝜇)

𝛼 sinh𝜇
(A.35)

If the downstream field is imposed very far from the tip of the spheroid

lim
𝜇→∞

𝐸𝑎𝑥 = −𝐶3

𝛼
(A.36)

which gives 𝐶3 = −𝛼𝐸0. The final constant, 𝐶4, is identified by invoking the jump
condition for the interfacial electric field, 𝐸𝑣

𝑛(𝜇0) = 𝜖𝑟 · 𝐸𝑑
𝑛(𝜇0) or
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Table A.1: Field results for a dielectric spheroid on a conducting plate (dielectric
part)

Field
Dielectric
𝜇 ∈ [0, 𝜇0]
𝜈 ∈ [0, 𝜋/2]

Φ −𝛼𝐸0 cos 𝜈 cosh𝜇
1−(𝜖𝑟−1) sinh2 𝜇0

[︁
1+cosh𝜇0·ln

{︁
sinh 𝜇0

1+cosh 𝜇0

}︁]︁

𝐸𝑑
𝑛 (𝜇0) = − 𝑑Φ𝑑

𝑑𝜇
𝑑𝜇
𝑑𝑛

⃒⃒⃒
𝜇0

𝐸0 tanh𝜇0(tanh2 𝜇0+tan2 𝜈)−1/2

1−(𝜖𝑟−1) sinh2 𝜇0

[︁
1+cosh𝜇0·ln

{︁
sinh 𝜇0

1+cosh 𝜇0

}︁]︁

𝐸𝑑
𝑡 (𝜇0) = − 𝑑Φ𝑑

𝑑𝜈
𝑑𝜈
𝑑𝑡

⃒⃒⃒
𝜇0

𝐸0 tan 𝜈(tanh2 𝜇0+tan2 𝜈)−1/2

1−(𝜖𝑟−1) sinh2 𝜇0

[︁
1+cosh𝜇0·ln

{︁
sinh 𝜇0

1+cosh 𝜇0

}︁]︁

𝑑Φ𝑣

𝑑𝜇

𝑑𝜇

𝑑𝑛

⃒⃒⃒⃒
⃒
𝜇0

= 𝜖𝑟
𝑑Φ𝑑

𝑑𝜇

𝑑𝜇

𝑑𝑛

⃒⃒⃒⃒
⃒
𝜇0

⇒ 𝑑Φ𝑣

𝑑𝜇

⃒⃒⃒⃒
⃒
𝜇0

= 𝜖𝑟
𝑑Φ𝑑

𝑑𝜇

⃒⃒⃒⃒
⃒
𝜇0

(A.37)

The derivatives of the potential fields with respect to 𝜇 are

𝑑Φ𝑑

𝑑𝜇
= −𝛼𝐸0 cos 𝜈 sinh𝜇

[︃
1 + 𝐶4

(︃
1

cosh𝜇0
+ ln

{︃
sinh𝜇0

1 + cosh𝜇0

}︃)︃]︃
𝑑Φ𝑣

𝑑𝜇
= −𝛼𝐸0 cos 𝜈 sinh𝜇

[︃
1 + 𝐶4

(︃
1

cosh𝜇 + ln
{︃

sinh𝜇
1 + cosh𝜇

}︃)︃]︃
− 𝐶4𝛼𝐸0 cos 𝜈 (coth𝜇− tanh𝜇)

and allow us to find after a measure of algebraic manipulation

𝐶4 = −1
1

cosh𝜇0
+ ln

{︁
sinh𝜇0

1+cosh𝜇0

}︁
+ tanh𝜇0−coth𝜇0

(𝜖𝑟−1) sinh𝜇0

(A.38)

Substituting this back into the field expressions leads to the results that are sum-
marized in the tables.

The tangential electric fields in the tables are equivalent at the interface, as they
should be, and following from taking

𝑑𝜈

𝑑𝑡
= −1
𝛼 cos 𝜈 cosh𝜇

√︁
tanh2 𝜇+ tan2 𝜈

(A.39)

with the help of the cylindrical transformations. We can now take a look at two
interesting limits: one in which 𝜖𝑟 → 1 and the other in which 𝜖𝑟 → ∞. The first is
the limit in which the dielectric essentially becomes part of the vacuum and vanishes.
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Table A.2: Field results for a dielectric spheroid on a conducting plate (vacuum part)

Field
Vacuum

𝜇 ∈ [𝜇0,∞)
𝜈 ∈ [0, 𝜋/2]

Φ −𝛼𝐸0 cos 𝜈 cosh𝜇
⎡⎣1 −

1
cosh 𝜇

+ln{ sinh 𝜇
1+cosh 𝜇}

1
cosh 𝜇0

+ln
{︁

sinh 𝜇0
1+cosh 𝜇0

}︁
+ tanh 𝜇0−coth 𝜇0

(𝜖𝑟−1) sinh 𝜇0

⎤⎦

𝐸𝑣
𝑛 (𝜇0) = − 𝑑Φ𝑣

𝑑𝜇
𝑑𝜇
𝑑𝑛

⃒⃒⃒
𝜇0

𝜖𝑟𝐸0 tanh𝜇0(tanh2 𝜇0+tan2 𝜈)−1/2

1−(𝜖𝑟−1) sinh2 𝜇0

[︁
1+cosh𝜇0·ln

{︁
sinh 𝜇0

1+cosh 𝜇0

}︁]︁

𝐸𝑣
𝑡 (𝜇0) = − 𝑑Φ𝑣

𝑑𝜈
𝑑𝜈
𝑑𝑡

⃒⃒⃒
𝜇0

𝐸0 tan 𝜈(tanh2 𝜇0+tan2 𝜈)−1/2

1−(𝜖𝑟−1) sinh2 𝜇0

[︁
1+cosh𝜇0·ln

{︁
sinh 𝜇0

1+cosh 𝜇0

}︁]︁

If we consider the normal components of the fields at the interface we find

lim
𝜖𝑟→1

𝐸𝑣
𝑛 (𝜇0) = lim

𝜖𝑟→1
𝐸𝑑
𝑛 (𝜇0) = 𝐸0 tanh𝜇0√︁

tanh2 𝜇0 + tan2 𝜈
(A.40)

On the axis, tan 𝜈 → 0 to give 𝐸𝑣
𝑛 = 𝐸𝑑

𝑛 = 𝐸0 as expected. This is the solution for
a flat plate subjected to a uniform field. The limit at the opposite end of the spectrum
involves the dielectric becoming extremely polar. Again considering the normal fields

lim
𝜖𝑟→∞

𝐸𝑑
𝑛 (𝜇0) = 0

lim
𝜖𝑟→∞

𝐸𝑣
𝑛 (𝜇0) = 𝐸0√︁

tanh2 𝜇0 + tan2 𝜈

tanh𝜇0 − coth𝜇0[︁
1 + cosh𝜇0 · ln

{︁
sinh𝜇0

1+cosh𝜇0

}︁]︁
Unsurprisingly, from 𝐸𝑣

𝑛 we recover the solution for a fully conducting, equipoten-
tial protrusion (see previous section).
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Appendix B

Additional mathematical notes

This appendix contains notes on the evaluation of viscous stress tensors and the
divergence for surface normal vectors, both of which are referenced in this thesis,
using several common coordinate systems.

B.1 Divergence of a surface normal
Evaluating the divergence of the normal vector for a liquid-gas interface (and some-
times a liquid-liquid interface, though not in the present case) is important for identi-
fying the associated surface tension properties. Though several related methods exist
for computing this tension, the one involving ∇ · 𝑛⃗ is seemingly the most general.

In the subsections that follow we calculate normal vectors for arbitrary surfaces
parameterized in several common coordinate spaces. While these are sometimes avail-
able by inspection we take the more general approach of introducing a function that
vanishes along the interface, say 𝐹 (𝑥) = 0 where 𝑥 is a vector of appropriate co-
ordinate parameters, and finding the normalized gradient 𝑛⃗ = ∇𝐹/|∇𝐹 |. We then
compute the divergence of this vector before simplifying the result for typical topo-
graphical configurations, e.g. axisymmetry.

B.1.1 Cartesian space
Consider a surface that projects onto the 𝑥 − 𝑦 plane defined by 𝑧 = ℎ(𝑥, 𝑦) (Fig.
B-1). We can write a function 𝐹 that vanishes on the surface

𝐹 (𝑥, 𝑦, 𝑧) = 0 = ℎ (𝑥, 𝑦) − 𝑧 (B.1)

The gradient and its magnitude for this functional are ∇𝐹 = ℎ𝑥𝑖𝑥 + ℎ𝑦𝑖𝑦 − 𝑖⃗𝑧
and |∇𝐹 | =

√︁
1 + ℎ2

𝑥 + ℎ2
𝑦, respectively, where the 𝑥 and 𝑦 subscripts denote partial

derivatives on those parameters. These provide for the surface normal vector

𝑛⃗ = ∇𝐹
|∇𝐹 |

= ℎ𝑥𝑖𝑥 + ℎ𝑦𝑖𝑦 − 𝑖⃗𝑧√︁
1 + ℎ2

𝑥 + ℎ2
𝑦

(B.2)
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𝒙 

𝒚 

𝒛 

𝒛 = 𝒉(𝒙, 𝒚) 

Figure B-1: Surface parameterized in cartesian space with 𝑧 = ℎ(𝑥, 𝑦).

After taking the divergence of this normal we find the general result

∇ · 𝑛⃗ =
ℎ𝑥𝑥

(︁
1 + ℎ2

𝑦

)︁
+ ℎ𝑦𝑦 (1 + ℎ2

𝑥) − 2ℎ𝑥ℎ𝑦ℎ𝑥𝑦(︁
1 + ℎ2

𝑥 + ℎ2
𝑦

)︁3/2 (B.3)

which we might verify by investigating a perfectly spherical surface of radius 𝑅
centered about the origin. Recognizing that 𝑅2 = 𝑥2 + 𝑦2 + 𝑧2 we solve for interface
expression 𝑧 =

√
𝑅2 − 𝑥2 − 𝑦2 and its derivatives

ℎ𝑥 = − 𝑥√
𝑅2 − 𝑥2 − 𝑦2

ℎ𝑦 = − −𝑦√
𝑅2 − 𝑥2 − 𝑦2

ℎ𝑥𝑥 = − 𝑅2 − 𝑦2

(𝑅2 − 𝑥2 − 𝑦2)3/2

ℎ𝑦𝑦 = − 𝑅2 − 𝑥2

(𝑅2 − 𝑥2 − 𝑦2)3/2

ℎ𝑥𝑦 = − 𝑥𝑦

(𝑅2 − 𝑥2 − 𝑦2)3/2

After substituting these we see that ∇ · 𝑛⃗ = −2/𝑅 and find the tension 𝑃𝑠𝑡 =
−𝛾∇ · 𝑛⃗ = 2𝛾/𝑅 we would expect.

The general result can be somewhat cumbersome and circumnavigating it is often
facilitated by working in spatial regions with fewer degrees of freedom. For example,
for a surface that is two-dimensional with 𝑧 = ℎ(𝑥) the general result reduces to just
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𝒛 

𝒓 

𝜽 

𝒛 = 𝒉(𝒓, 𝜽) 

Figure B-2: Surface parameterized in cylindrical space with 𝑧 = ℎ(𝑟, 𝜃).

∇ · 𝑛⃗ = ℎ𝑥𝑥

(1 + ℎ2
𝑥)

3/2 (B.4)

The corresponding radius of curvature in this case, simply 𝑅𝑐 = |∇ · 𝑛⃗|−1, is
well-known and can be verified through many external mathematical references.

B.1.2 Cylindrical space
Surface with 𝑧 dependent

Consider a surface that projects onto the 𝑟 − 𝜃 plane defined by 𝑧 = ℎ(𝑟, 𝜃), where
𝑟 and 𝜃 are respectively the radial and azimuthal coordinates (Fig. B-2). This
parameterization can be useful for interfaces that may have some periodicity in 𝑟,
such as a wave. We can write the function 𝐹 on this surface

𝐹 (𝑟, 𝜃, 𝑧) = 0 = ℎ (𝑟, 𝜃) − 𝑧 (B.5)

The normalized gradient of this functional evaluates to

𝑛⃗ = ∇𝐹
|∇𝐹 |

=
ℎ𝑟𝑖𝑟 + ℎ𝜃

𝑟
𝑖⃗𝜃 − 𝑖⃗𝑧√︂

1 + ℎ2
𝑟 +

(︁
ℎ𝜃

𝑟

)︁2
(B.6)

and has a divergence

∇ · 𝑛⃗ =
(1 + ℎ2

𝑟)ℎ𝑟 + 𝑟 · ℎ𝑟𝑟 + ℎ2
𝜃

(︁
ℎ𝑟𝑟

𝑟
+ 2ℎ𝑟

𝑟2

)︁
− ℎ𝑟ℎ𝜃ℎ𝑟𝜃

𝑟
+ (1+ℎ2

𝑟)ℎ𝜃𝜃

𝑟

𝑟
[︂
1 + ℎ2

𝑟 +
(︁
ℎ𝜃

𝑟

)︁2
]︂3/2 (B.7)
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which we arrive at after a considerable amount of algebraic manipulation. In
the event that the surface is axisymmetric, as we often assume in this thesis, then
𝑧 = ℎ(𝑟) only and we can observe the reduced result

∇ · 𝑛⃗ = (1 + ℎ2
𝑟)ℎ𝑟 + 𝑟 · ℎ𝑟𝑟

𝑟 (1 + ℎ2
𝑟)

3/2 (B.8)

To verify this we can consider a perfectly spherical surface of radius 𝑅. In this case
the expression for the interface becomes 𝑧 =

√
𝑅2 − 𝑟2 = ℎ(𝑟) and the derivatives are

ℎ𝑟 = − 𝑟√
𝑅2 − 𝑟2

ℎ𝑟𝑟 = − −𝑅2

[𝑅2 − 𝑟2]3/2

After substituting these we find

∇ · 𝑛⃗ = − 2
𝑅

(B.9)

along with the associated tension, 𝑃𝑠𝑡 = −𝛾∇ · 𝑛⃗ = 2𝛾/𝑅, as expected. Similarly,
we might check the case of a perfect cone with 𝑧 = −𝑟 ·cot 𝜃𝑐 where 𝜃𝑐 is its half-angle.
Using ℎ𝑟 = − cot 𝜃𝑐 and ℎ𝑟𝑟 = 0 we see that ∇ · 𝑛⃗ = − cos 𝜃𝑐/𝑟. The spherical form
of this result, where the spherical radius is 𝑟𝑠 = 𝑟/ sin 𝜃𝑐, is known

∇ · 𝑛⃗ = −cot 𝜃𝑐
𝑟𝑠

(B.10)

and may be verified elsewhere [5].

Surface with 𝑟 dependent

Consider a surface that projects onto the 𝑧−𝜃 plane defined by 𝑟 = ℎ(𝜃, 𝑧) (Fig. B-3).
This parameterization could be useful for interfaces that may have some periodicity
in 𝑧, such as a fluid tube or jet. The function 𝐹 on the surface is

𝐹 (𝑟, 𝜃, 𝑧) = 0 = ℎ (𝜃, 𝑧) − 𝑟 (B.11)

The normalized gradient of this functional evaluates to

𝑛⃗ = ∇𝐹
|∇𝐹 |

= −𝑟𝑖𝑟 + ℎ𝜃𝑖𝜃 + 𝑟 · ℎ𝑧𝑖𝑧√︁
𝑟2 (1 + ℎ2

𝑧) + ℎ2
𝜃

(B.12)

and has a divergence

∇ · 𝑛⃗ = 𝑟 (1 + ℎ2
𝑧) (ℎ𝜃𝜃 − 𝑟) − 2ℎ𝜃 (ℎ𝜃 + 𝑟 · ℎ𝑧 · ℎ𝜃𝑧) + 𝑟 · ℎ𝑧𝑧 (𝑟2 + ℎ2

𝜃)
[𝑟2 (1 + ℎ2

𝑧) + ℎ2
𝜃]

3/2 (B.13)
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𝒛 

𝒓 
𝜽 

𝒓 = 𝒉(𝜽, 𝒛) 

Figure B-3: Surface parameterized in cylindrical space with 𝑟 = ℎ(𝜃, 𝑧).

In the event that the surface is axisymmetric, so that 𝑟 = ℎ(𝑧) only, we can take
ℎ𝜃 = ℎ𝜃𝜃 = ℎ𝜃𝑧 = 0 and reduce the result to

∇ · 𝑛⃗ = − (1 + ℎ2
𝑧) + 𝑟 · ℎ𝑧𝑧

𝑟 (1 + ℎ2
𝑧)

3/2 (B.14)

To verify this we might check the case in which the surface is perfectly cylindrical
with 𝑟(𝑧) = 𝑅. This necessitates that ℎ𝑧 = ℎ𝑧𝑧 = 0 and we find that

∇ · 𝑛⃗ = − 1
𝑅

(B.15)

on the surface along with the tension 𝑃𝑠𝑡 = −𝛾∇ · 𝑛⃗ = 𝛾/𝑅. This is the result
that we would expect. Similary, we might again check the perfect cone that is now
given by 𝑟 = −𝑧 · tan 𝜃𝑐. Using ℎ𝑧 = − tan 𝜃𝑐, ℎ𝑧𝑧 = 0, and converting to the spherical
radius 𝑟𝑠 = 𝑟/ sin 𝜃𝑐 gives

∇ · 𝑛⃗ = −cot 𝜃𝑐
𝑟𝑠

(B.16)

which is the same as before.

B.1.3 Spherical space
Surface with 𝑟 dependent

Consider a surface defined by 𝑟 = ℎ(𝜃, 𝜑) where 𝑟 is the spherical radius, 𝜃 is the
polar angle, and 𝜑 is its azimuthal counterpart (Fig. B-4). This parameterization
could be useful for interfaces that have some periodicity in 𝜃, such as a bubble. The
function 𝐹 on the surface is
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𝒓 𝜽 

𝒓 = 𝒉(𝜽,𝝋) 

𝝋 

Figure B-4: Surface parameterized in spherical space with 𝑟 = ℎ(𝜃, 𝜑).

𝐹 (𝑟, 𝜃, 𝜑) = 0 = ℎ (𝜃, 𝜑) − 𝑟 (B.17)

The normalized gradient of this function evaluates to

𝑛⃗ =
−𝑟 · 𝑖⃗𝑟 + ℎ𝜃𝑖𝜃 + ℎ𝜑

sin 𝜃 𝑖⃗𝜑√︂
𝑟2 + ℎ2

𝜃 +
(︁
ℎ𝜑

sin 𝜃

)︁2
(B.18)

and has a divergence

∇ · 𝑛⃗ = 1
𝑟2

𝜕

𝜕𝑟

(︁
𝑟2𝑛𝑟

)︁
+ 1
𝑟 sin 𝜃

𝜕

𝜕𝜃
(𝑛𝜃 sin 𝜃) + 1

𝑟 sin 𝜃
𝜕𝑛𝜑
𝜕𝜑

(B.19)

where 𝑛𝑟, 𝑛𝜃, and 𝑛𝜑 are the mutually orthogonal components of 𝑛⃗. The expanded
version of this expression after taking derivatives is quite involved and so we provide
the results here in segmented form

1
𝑟2

𝜕

𝜕𝑟

(︁
𝑟2𝑛𝑟

)︁
=
𝑟2 − 3

[︂
𝑟2 + ℎ2

𝜃 +
(︁
ℎ𝜑

sin 𝜃

)︁2
]︂

[︂
𝑟2 + ℎ2

𝜃 +
(︁
ℎ𝜑

sin 𝜃

)︁2
]︂3/2

1
𝑟 sin 𝜃

𝜕

𝜕𝜃
(𝑛𝜃 · sin 𝜃) =

sin 𝜃 · ℎ𝜃𝜃
[︂
𝑟2 +

(︁
ℎ𝜑

sin 𝜃

)︁2
]︂

+ cos 𝜃 · ℎ𝜃
[︂
𝑟2 + ℎ2

𝜃 + 2
(︁
ℎ𝜑

sin 𝜃

)︁2
]︂

− ℎ𝜃·ℎ𝜑·ℎ𝜃𝜑

sin 𝜃

𝑟 sin 𝜃
[︂
𝑟2 + ℎ2

𝜃 +
(︁
ℎ𝜑

sin 𝜃

)︁2
]︂3/2

1
𝑟 sin 𝜃

𝜕𝑛𝜑
𝜕𝜑

= ℎ𝜑𝜑 (𝑟2 + ℎ2
𝜃) − ℎ𝜃 · ℎ𝜑 · ℎ𝜃𝜑

𝑟 sin2 𝜃
[︂
𝑟2 + ℎ2

𝜃 +
(︁
ℎ𝜑

sin 𝜃

)︁2
]︂3/2
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𝒓 

𝜽 

𝜽 = 𝒉(𝒓,𝝋) 

𝝋 

Figure B-5: Surface parameterized in spherical space with 𝜃 = ℎ(𝑟, 𝜑).

It is likely that there are many algebraic simplifications we have not invoked.
When the surface is symmetric about the azimuthal axis we have that ℎ𝜑 = ℎ𝜑𝜑 =
ℎ𝜃𝜑 = 0 and the solution reduces to

∇ · 𝑛⃗ =
−2𝑟2 − 3ℎ2

𝜃 + 𝑟 · ℎ𝜃𝜃 + cot 𝜃
(︁
𝑟 · ℎ𝜃 + 1

𝑟
ℎ3
𝜃

)︁
(𝑟2 + ℎ2

𝜃)
3/2 (B.20)

A very crude check of this is possible by considering the simple case of a perfectly
spherical surface, with 𝑟 (𝜃) = 𝑟0, so that ℎ𝜃 = ℎ𝜃𝜃 = 0 also. When this is true,

∇ · 𝑛⃗ = − 2
𝑟0

(B.21)

on the surface and the associated tension becomes

𝑃𝑠𝑡 = −𝛾∇ · 𝑛⃗ = 2𝛾
𝑟0

(B.22)

as would be expected.

Surface with 𝜃 dependent

Now consider a surface defined by 𝜃 = ℎ(𝑟, 𝜑) so that 𝜃 is the dependent parameter
(Fig. B-5). This parameterization could be useful for interfaces that have some
periodicity in 𝑟, such as a wave again or a conical structure. The function 𝐹 on the
surface is

𝐹 (𝑟, 𝜃, 𝜑) = 0 = ℎ (𝑟, 𝜑) − 𝜃 (B.23)

The normalized gradient of this function evaluates to
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𝑛⃗ = ∇𝐹
|∇𝐹 |

=
𝑟 · ℎ𝑟𝑖𝑟 − 𝑖⃗𝜃 + ℎ𝜑

sin 𝜃 𝑖⃗𝜑√︂
1 + (𝑟 · ℎ𝑟)2 +

(︁
ℎ𝜑

sin 𝜃

)︁2
(B.24)

and has a divergence that is still equal to Eq. B.19. Piecewise, the terms in this
expression are

1
𝑟2

𝜕

𝜕𝑟

(︁
𝑟2𝑛𝑟

)︁
=
𝑟 · ℎ𝑟𝑟 + 3ℎ𝑟 + 2𝑟2ℎ3

𝑟 − 𝑟·ℎ𝑟·ℎ𝜑·ℎ𝑟𝜑

sin2 𝜃[︂
1 + (𝑟 · ℎ𝑟)2 +

(︁
ℎ𝜑

sin 𝜃

)︁2
]︂3/2

1
𝑟 sin 𝜃

𝜕

𝜕𝜃
(𝑛𝜃 · sin 𝜃) = −cot 𝜃

𝑟
·

1 + (𝑟 · ℎ𝑟)2 + 2
(︁
ℎ𝜑

sin 𝜃

)︁2

[︂
1 + (𝑟 · ℎ𝑟)2 +

(︁
ℎ𝜑

sin 𝜃

)︁2
]︂3/2

1
𝑟 sin 𝜃

𝜕𝑛𝜑
𝜕𝜑

=
ℎ𝜑𝜑

[︁
1 + (𝑟 · ℎ𝑟)2

]︁
− 𝑟2 · ℎ𝑟 · ℎ𝜑 · ℎ𝑟𝜑

𝑟 sin2 𝜃
[︂
1 + (𝑟 · ℎ𝑟)2 +

(︁
ℎ𝜑

sin 𝜃

)︁2
]︂3/2

For the axisymmetric case we have that ℎ𝜑 = ℎ𝜑𝜑 = ℎ𝑟𝜑 = 0 and the solution
reduces to

∇ · 𝑛⃗ = 𝑟 · ℎ𝑟𝑟 + 3ℎ𝑟 + 2𝑟2ℎ3
𝑟[︁

1 + (𝑟 · ℎ𝑟)2
]︁3/2 − cot 𝜃

𝑟

[︁
1 + (𝑟 · ℎ𝑟)2

]︁−1/2
(B.25)

As a crude check we can again investigate a very simple case. Consider the conical
surface given by 𝜃(𝑟) = 𝜃0 and further observe that this necessarily implies ℎ𝑟 = ℎ𝑟𝑟 =
0. The reduced result now becomes

∇ · 𝑛⃗ = −cot 𝜃0

𝑟
(B.26)

on the surface. The associated tension is

𝑃𝑠𝑡 = −𝛾∇ · 𝑛⃗ = 𝛾 cot 𝜃0

𝑟
(B.27)

which is well-known and can be verified by, for example, Meusnier’s theorem [5].

B.1.4 Summary

A distillation of the important normal vector and divergence results is provided in
the table.
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Table B.1: Normal vectors and their divergence values for surfaces parameterized in
several common coordinate systems

Coordinate system 𝑛⃗
∇ · 𝑛⃗

General 2D

Cartesian
𝑧 = ℎ(𝑥, 𝑦)

ℎ𝑥𝑖𝑥+ℎ𝑦𝑖𝑦−⃗𝑖𝑧√
1+ℎ2

𝑥+ℎ2
𝑦

ℎ𝑥𝑥(1+ℎ2
𝑦)+ℎ𝑦𝑦(1+ℎ2

𝑥)−2ℎ𝑥ℎ𝑦ℎ𝑥𝑦

(1+ℎ2
𝑥+ℎ2

𝑦)3/2
ℎ𝑥𝑥

(1+ℎ2
𝑥)3/2

Cylindrical
𝑧 = ℎ(𝑟, 𝜃)

ℎ𝑟𝑖𝑟+ ℎ𝜃
𝑟
𝑖⃗𝜃−⃗𝑖𝑧√︂

1+ℎ2
𝑟+
(︁

ℎ𝜃
𝑟

)︁2

(1+ℎ2
𝑟)ℎ𝑟+𝑟·ℎ𝑟𝑟+ℎ2

𝜃(ℎ𝑟𝑟
𝑟

+ 2ℎ𝑟
𝑟2 )

𝑟

[︂
1+ℎ2

𝑟+
(︁

ℎ𝜃
𝑟

)︁2
]︂3/2

+− ℎ𝑟ℎ𝜃ℎ𝑟𝜃
𝑟

+
(1+ℎ2

𝑟)ℎ𝜃𝜃

𝑟

𝑟

[︂
1+ℎ2

𝑟+
(︁

ℎ𝜃
𝑟

)︁2
]︂3/2

(1+ℎ2
𝑟)ℎ𝑟+𝑟·ℎ𝑟𝑟

𝑟(1+ℎ2
𝑟)3/2

Cylindrical
𝑟 = ℎ(𝜃, 𝑧)

−𝑟𝑖𝑟+ℎ𝜃𝑖𝜃+𝑟·ℎ𝑧𝑖𝑧√
𝑟2(1+ℎ2

𝑧)+ℎ2
𝜃

𝑟(1+ℎ2
𝑧)(ℎ𝜃𝜃−𝑟)−2ℎ𝜃(ℎ𝜃+𝑟·ℎ𝑧 ·ℎ𝜃𝑧)

[𝑟2(1+ℎ2
𝑧)+ℎ2

𝜃]
3/2

+ 𝑟·ℎ𝑧𝑧(𝑟2+ℎ2
𝜃)

[𝑟2(1+ℎ2
𝑧)+ℎ2

𝜃]
3/2

−(1+ℎ2
𝑧)+𝑟·ℎ𝑧𝑧

𝑟(1+ℎ2
𝑧)3/2

Spherical
𝑟 = ℎ(𝜃, 𝜑)

−𝑟·⃗𝑖𝑟+ℎ𝜃𝑖𝜃+
ℎ𝜑

sin 𝜃
𝑖⃗𝜑√︂

𝑟2+ℎ2
𝜃
+
(︁

ℎ𝜑
sin 𝜃

)︁2

cos 𝜃·ℎ𝜃

[︂
𝑟2+ℎ2

𝜃+2
(︁

ℎ𝜑
sin 𝜃

)︁2
]︂

−
ℎ𝜃 ·ℎ𝜑·ℎ𝜃𝜑

sin 𝜃

𝑟 sin 𝜃
[︂
𝑟2+ℎ2

𝜃
+
(︁

ℎ𝜑
sin 𝜃

)︁2
]︂3/2

+
sin 𝜃·ℎ𝜃𝜃

[︂
𝑟2+
(︁

ℎ𝜑
sin 𝜃

)︁2
]︂

𝑟 sin 𝜃
[︂
𝑟2+ℎ2

𝜃
+
(︁

ℎ𝜑
sin 𝜃

)︁2
]︂3/2

+
𝑟2−3

[︂
𝑟2+ℎ2

𝜃+
(︁

ℎ𝜑
sin 𝜃

)︁2
]︂

[︂
𝑟2+ℎ2

𝜃
+
(︁

ℎ𝜑
sin 𝜃

)︁2
]︂3/2

+ ℎ𝜑𝜑(𝑟2+ℎ2
𝜃)−ℎ𝜃·ℎ𝜑·ℎ𝜃𝜑

𝑟 sin2 𝜃

[︂
𝑟2+ℎ2

𝜃
+
(︁

ℎ𝜑
sin 𝜃

)︁2
]︂3/2

−2𝑟2−3ℎ2
𝜃+𝑟·ℎ𝜃𝜃

(𝑟2+ℎ2
𝜃)

3/2

+ cot 𝜃(𝑟·ℎ𝜃+ 1
𝑟
ℎ3

𝜃)
(𝑟2+ℎ2

𝜃)
3/2

Spherical
𝜃 = ℎ(𝑟, 𝜑)

𝑟·ℎ𝑟𝑖𝑟−⃗𝑖𝜃+
ℎ𝜑

sin 𝜃
𝑖⃗𝜑√︂

1+(𝑟·ℎ𝑟)2+
(︁

ℎ𝜑
sin 𝜃

)︁2

𝑟·ℎ𝑟𝑟+3ℎ𝑟+2𝑟2ℎ3
𝑟−

𝑟·ℎ𝑟 ·ℎ𝜑·ℎ𝑟𝜑

sin2 𝜃[︂
1+(𝑟·ℎ𝑟)2+

(︁
ℎ𝜑

sin 𝜃

)︁2
]︂3/2

− cot 𝜃
𝑟

·
1+(𝑟·ℎ𝑟)2+2

(︁
ℎ𝜑

sin 𝜃

)︁2

[︂
1+(𝑟·ℎ𝑟)2+

(︁
ℎ𝜑

sin 𝜃

)︁2
]︂3/2

+ ℎ𝜑𝜑[1+(𝑟·ℎ𝑟)2]−𝑟2·ℎ𝑟·ℎ𝜑·ℎ𝑟𝜑

𝑟 sin2 𝜃

[︂
1+(𝑟·ℎ𝑟)2+

(︁
ℎ𝜑

sin 𝜃

)︁2
]︂3/2

𝑟·ℎ𝑟𝑟+3ℎ𝑟+2𝑟2ℎ3
𝑟

[1+(𝑟·ℎ𝑟)2]3/2

− cot 𝜃
𝑟

[︁
1 + (𝑟 · ℎ𝑟)2

]︁−1/2
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B.2 Evaluation of the viscous (deviatoric) tensor
For single-phase laminar flows we can, in general, write the Navier-Stokes momentum
equation

𝜌
𝜕𝑢⃗

𝜕𝑡
+ 𝜌 (𝑢⃗ · ∇) 𝑢⃗ = ∇ · [−𝑝𝐼 + 𝜏 ] + 𝐹 (B.28)

where 𝜌 is the fluid density (kg/m3), 𝑢⃗ is the velocity vector (m/s), 𝑝 is the
hydrostatic pressure (Pa), 𝐼 is the identity matrix, 𝜏 is the viscous or so-called
deviatoric stress tensor, and 𝐹 is a vector representing any net body force (N/m3).
In order to evaluate this equation it is necessary to expand the tensor 𝜏 and relate
it to the flow variables. In the case of Newtonian fluids, for example, it is known
that there is a linear relationship between this tensor and its strain rate counterpart.
When the fluid is also incompressible Stokes showed that

𝜏 = 𝜇
[︁
∇𝑢⃗+ (∇𝑢⃗)𝑇

]︁
(B.29)

Here, ∇𝑢⃗ is a quantity describing spatial changes in the given velocity field. It
is a 2nd rank tensor which, while similar to the speed gradient vector ∇

(︁√
𝑢⃗ · 𝑢⃗

)︁
, is

sometimes the source of confusion. For a vector quantity 𝑎⃗ that exists in R3 with
basis vectors (𝑒𝑖, 𝑒𝑗, 𝑒𝑘) the gradient is defined as, in general

∇𝑎⃗ = 𝜕𝑎⃗

𝜕𝑥𝑗
⊗ 𝑒𝑗 = 𝜕𝑎𝑖

𝜕𝑥𝑗
𝑒𝑖 ⊗ 𝑒𝑗 (B.30)

where 𝑒𝑖 ⊗ 𝑒𝑗 is the so-called dyadic or outer product of those two basis vectors.
This operation is performed over all indices 𝑖, 𝑗, and 𝑘. When working in systems for
which the basis vectors are fully uncoupled, e.g. cartesian space, the result is very
simple. For example, consider the vector 𝑎⃗ = 𝑋 · 𝑒𝑥 + 𝑌 · 𝑒𝑦 and observe that

𝜕𝑎𝑥
𝜕𝑥𝑗

⊗ 𝑒𝑗 = 𝜕𝑋

𝜕𝑥
𝑒𝑥 ⊗ 𝑒𝑥 + 𝜕𝑋

𝜕𝑦
𝑒𝑥 ⊗ 𝑒𝑦 (B.31)

which involves the outer products

𝑒𝑥 ⊗ 𝑒𝑥 =
(︃

1 0
0 0

)︃
𝑒𝑥 ⊗ 𝑒𝑦 =

(︃
0 1
0 0

)︃

This allows us to very easily generalize the result in such a system to simply

(∇𝑎⃗)𝑖,𝑗 = 𝜕𝑎𝑖
𝜕𝑥𝑗

(B.32)

exactly as we would do for the Jacobian of a scalar quantity. Where the vector
gradient becomes a bit trickier, however, is when the basis vectors couple (as in
cylindrical and spherical systems). Now consider the cylindrical vector 𝑎⃗ = 𝑅 · 𝑒𝑟 +
Θ · 𝑒𝜃 and observe that the first azimuthal derivative of the radial component is
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1
𝑟

𝜕𝑅 · 𝑒𝑟
𝜕𝜃

⊗ 𝑒𝜃 = 1
𝑟

𝜕𝑅

𝜕𝜃
𝑒𝑟 ⊗ 𝑒𝜃 + 𝑅

𝑟

𝜕𝑒𝑟
𝜕𝜃

⊗ 𝑒𝜃 = 1
𝑟

𝜕𝑅

𝜕𝜃
𝑒𝑟 ⊗ 𝑒𝜃 + 𝑅

𝑟
𝑒𝜃 ⊗ 𝑒𝜃 (B.33)

and involves the outer products

𝑒𝑟 ⊗ 𝑒𝜃 =
(︃

0 1
0 0

)︃
𝑒𝜃 ⊗ 𝑒𝜃 =

(︃
0 0
0 1

)︃

Owing to the confusion associated with the tensor quantity ∇𝑢⃗ + (∇𝑢⃗)𝑇 we ex-
amine it briefly in what follows. In order to facilitate ease of use throughout this
thesis we expand it in several common coordinate systems and offer simplifications
for geometries with reduced dimensionality, e.g. axisymmetric ones.

B.2.1 Cartesian space
In cartesian space we take the velocity vector

𝑢⃗ = 𝑢 · 𝑖⃗𝑥 + 𝑣 · 𝑖⃗𝑦 + 𝑤 · 𝑖⃗𝑧 (B.34)

and note that the gradient operator is

∇ → 𝜕

𝜕𝑥
⊗ 𝑖⃗𝑥 + 𝜕

𝜕𝑦
⊗ 𝑖⃗𝑦 + 𝜕

𝜕𝑧
⊗ 𝑖⃗𝑧 (B.35)

Under these conditions the vector gradient ∇𝑢⃗ becomes

∇𝑢⃗ =

⎛⎜⎜⎝
𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

𝜕𝑢
𝜕𝑧

𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦

𝜕𝑣
𝜕𝑧

𝜕𝑤
𝜕𝑥

𝜕𝑤
𝜕𝑦

𝜕𝑤
𝜕𝑧

⎞⎟⎟⎠ (B.36)

and yields the full tensor

∇𝑢⃗+ (∇𝑢⃗)𝑇 =

⎛⎜⎜⎜⎝
2𝜕𝑢
𝜕𝑥

(︁
𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)︁ (︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

)︁(︁
𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)︁
2𝜕𝑣
𝜕𝑦

(︁
𝜕𝑣
𝜕𝑧

+ 𝜕𝑤
𝜕𝑦

)︁(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

)︁ (︁
𝜕𝑣
𝜕𝑧

+ 𝜕𝑤
𝜕𝑦

)︁
2𝜕𝑤
𝜕𝑧

⎞⎟⎟⎟⎠ (B.37)

When the problem is two-dimensional and 𝑢⃗ = 𝑢 · 𝑖⃗𝑥 + 𝑣 · 𝑖⃗𝑦 the tensor reduces to
the 2x2 section in the upper left-hand quadrant.

B.2.2 Cylindrical space
In cylindrical space we take the velocity vector

𝑢⃗ = 𝑢 · 𝑖⃗𝑟 + 𝑣 · 𝑖⃗𝜃 + 𝑤 · 𝑖⃗𝑧 (B.38)
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where 𝑟 is the cylindrical radius, 𝜃 the azimuthal angle, and 𝑧 the vertical height.
Note that the cylindrical gradient operator is now

∇ → 𝜕

𝜕𝑟
⊗ 𝑖⃗𝑟 + 1

𝑟

𝜕

𝜕𝜃
⊗ 𝑖⃗𝜃 + 𝜕

𝜕𝑧
⊗ 𝑖⃗𝑧 (B.39)

Under these conditions the vector gradient ∇𝑢⃗ becomes

∇𝑢⃗ =

⎛⎜⎜⎝
𝜕𝑢
𝜕𝑟

(︁
1
𝑟
𝜕𝑢
𝜕𝜃

− 𝑣
𝑟

)︁
𝜕𝑢
𝜕𝑧

𝜕𝑣
𝜕𝑟

(︁
𝑢
𝑟

+ 1
𝑟
𝜕𝑣
𝜕𝜃

)︁
𝜕𝑣
𝜕𝑧

𝜕𝑤
𝜕𝑟

1
𝑟
𝜕𝑤
𝜕𝜃

𝜕𝑤
𝜕𝑧

⎞⎟⎟⎠ (B.40)

and yields the full tensor

∇𝑢⃗+ (∇𝑢⃗)𝑇 =

⎛⎜⎜⎜⎝
2𝜕𝑢
𝜕𝑟

[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+ 𝑟 𝜕
𝜕𝑟

(︁
𝑣
𝑟

)︁]︁ (︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+ 𝑟 𝜕
𝜕𝑟

(︁
𝑣
𝑟

)︁]︁ [︁
𝑢
𝑟

+ 1
𝑟
𝜕𝑣
𝜕𝜃

]︁ (︁
𝜕𝑣
𝜕𝑧

+ 1
𝑟
𝜕𝑤
𝜕𝜃

)︁(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁ (︁
𝜕𝑣
𝜕𝑧

+ 1
𝑟
𝜕𝑤
𝜕𝜃

)︁
2𝜕𝑤
𝜕𝑧

⎞⎟⎟⎟⎠ (B.41)

When the problem is two-dimensional and 𝑢⃗ = 𝑢 · 𝑖⃗𝑟 +𝑤 · 𝑖⃗𝑧 the tensor reduces to
the 2x2 section defined by

∇𝑢⃗+ (∇𝑢⃗)𝑇 =
⎛⎝ 2𝜕𝑢

𝜕𝑟

(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁
2𝜕𝑤
𝜕𝑧

⎞⎠ (B.42)

B.2.3 Spherical space

In spherical space we take the velocity vector

𝑢⃗ = 𝑢 · 𝑖⃗𝑟 + 𝑣 · 𝑖⃗𝜃 + 𝑤 · 𝑖⃗𝜑 (B.43)

where 𝑟 is the spherical radius, 𝜃 is the polar angle, and 𝜑 is its azimuthal coun-
terpart. Note that the spherical gradient operator is now

∇ → 𝜕

𝜕𝑟
⊗ 𝑖⃗𝑟 + 1

𝑟

𝜕

𝜕𝜃
⊗ 𝑖⃗𝜃 + 1

𝑟 sin 𝜃
𝜕

𝜕𝜑
⊗ 𝑖⃗𝜑 (B.44)

Under these conditions the vector gradient ∇𝑢⃗ becomes

∇𝑢⃗ =

⎛⎜⎜⎜⎝
𝜕𝑢
𝜕𝑟

[︁
1
𝑟
𝜕𝑢
𝜕𝜃

− 𝑣
𝑟

]︁ [︁
1

𝑟 sin 𝜃
𝜕𝑢
𝜕𝜑

− 𝑤
𝑟

]︁
𝜕𝑣
𝜕𝑟

[︁
𝑢
𝑟

+ 1
𝑟
𝜕𝑣
𝜕𝜃

]︁ [︁
1

𝑟 sin 𝜃
𝜕𝑣
𝜕𝜑

− cot 𝜃
(︁
𝑤
𝑟

)︁]︁
𝜕𝑤
𝜕𝑟

1
𝑟
𝜕𝑤
𝜕𝜃

[︁
𝑢
𝑟

+ cot 𝜃
(︁
𝑣
𝑟

)︁
+ 1

𝑟 sin 𝜃
𝜕𝑤
𝜕𝜑

]︁
⎞⎟⎟⎟⎠ (B.45)

and yields the full tensor
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∇𝑢⃗+(∇𝑢⃗)𝑇 =

⎛⎜⎜⎜⎝
2𝜕𝑢
𝜕𝑟

[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+
(︁
𝜕𝑣
𝜕𝑟

− 𝑣
𝑟

)︁]︁ [︁
1

𝑟 sin 𝜃
𝜕𝑢
𝜕𝜑

+
(︁
𝜕𝑤
𝜕𝑟

− 𝑤
𝑟

)︁]︁[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+
(︁
𝜕𝑣
𝜕𝑟

− 𝑣
𝑟

)︁]︁
2
[︁
𝑢
𝑟

+ 1
𝑟
𝜕𝑣
𝜕𝜃

]︁ [︁
1

𝑟 sin 𝜃
𝜕𝑣
𝜕𝜑

+
(︁

1
𝑟
𝜕𝑤
𝜕𝜃

− cot 𝜃 · 𝑤
𝑟

)︁]︁[︁
1

𝑟 sin 𝜃
𝜕𝑢
𝜕𝜑

+
(︁
𝜕𝑤
𝜕𝑟

− 𝑤
𝑟

)︁]︁ [︁
1

𝑟 sin 𝜃
𝜕𝑣
𝜕𝜑

+
(︁

1
𝑟
𝜕𝑤
𝜕𝜃

− cot 𝜃 · 𝑤
𝑟

)︁]︁
2
[︁
𝑢
𝑟

+ cot 𝜃
(︁
𝑣
𝑟

)︁
+ 1

𝑟 sin 𝜃
𝜕𝑤
𝜕𝜑

]︁
⎞⎟⎟⎟⎠

(B.46)
When the problem is two-dimensional and 𝑢⃗ = 𝑢 · 𝑖⃗𝑟 + 𝑣 · 𝑖⃗𝜃 the tensor reduces to

the 2x2 section defined by

∇𝑢⃗+ (∇𝑢⃗)𝑇 =
⎛⎝ 2𝜕𝑢

𝜕𝑟

[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+
(︁
𝜕𝑣
𝜕𝑟

− 𝑣
𝑟

)︁]︁[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+
(︁
𝜕𝑣
𝜕𝑟

− 𝑣
𝑟

)︁]︁
2
[︁
𝑢
𝑟

+ 1
𝑟
𝜕𝑣
𝜕𝜃

]︁ ⎞⎠ (B.47)

B.2.4 Summary
Table B.2.4 contains a distillation of the important results for evaluating the viscous
stress tensor in several common coordinate spaces.
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Table B.2: The tensor ∇𝑢⃗+ (∇𝑢⃗)𝑇 calculated in several common coordinate systems
and dimensionalities

Coordinate system ∇𝑢⃗+ (∇𝑢⃗)𝑇

General 2D

Cartesian
𝑢⃗ = 𝑢𝑖𝑥 + 𝑣𝑖𝑦 + 𝑤𝑖𝑧

⎛⎜⎜⎜⎝
2𝜕𝑢
𝜕𝑥

(︁
𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)︁ (︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

)︁(︁
𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)︁
2𝜕𝑣
𝜕𝑦

(︁
𝜕𝑣
𝜕𝑧

+ 𝜕𝑤
𝜕𝑦

)︁(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

)︁ (︁
𝜕𝑣
𝜕𝑧

+ 𝜕𝑤
𝜕𝑦

)︁
2𝜕𝑤
𝜕𝑧

⎞⎟⎟⎟⎠
⎛⎝ 2𝜕𝑢

𝜕𝑥

(︁
𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)︁(︁
𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)︁
2𝜕𝑣
𝜕𝑦

⎞⎠

Cylindrical
𝑢⃗ = 𝑢𝑖𝑟 + 𝑣𝑖𝜃 + 𝑤𝑖𝑧

⎛⎜⎜⎜⎝
2𝜕𝑢
𝜕𝑟

[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+ 𝑟 𝜕
𝜕𝑟

(︁
𝑣
𝑟

)︁]︁
0[︁

1
𝑟
𝜕𝑢
𝜕𝜃

+ 𝑟 𝜕
𝜕𝑟

(︁
𝑣
𝑟

)︁]︁ [︁
𝑢
𝑟

+ 1
𝑟
𝜕𝑣
𝜕𝜃

]︁
0(︁

𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁ (︁
𝜕𝑣
𝜕𝑧

+ 1
𝑟
𝜕𝑤
𝜕𝜃

)︁
0

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎝
0 0

(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁
0 0

(︁
𝜕𝑣
𝜕𝑧

+ 1
𝑟
𝜕𝑤
𝜕𝜃

)︁
0 0 2𝜕𝑤

𝜕𝑧

⎞⎟⎟⎠

⎛⎝ 2𝜕𝑢
𝜕𝑟

(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁(︁
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑟

)︁
2𝜕𝑤
𝜕𝑧

⎞⎠

Spherical
𝑢⃗ = 𝑢𝑖𝑟 + 𝑣𝑖𝜃 + 𝑤𝑖𝜑

⎛⎜⎜⎝
2𝜕𝑢
𝜕𝑟

0 0[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+
(︁
𝜕𝑣
𝜕𝑟

− 𝑣
𝑟

)︁]︁
0 0[︁

1
𝑟 sin 𝜃

𝜕𝑢
𝜕𝜑

+
(︁
𝜕𝑤
𝜕𝑟

− 𝑤
𝑟

)︁]︁
0 0

⎞⎟⎟⎠

+

⎛⎜⎜⎜⎝
0

[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+
(︁
𝜕𝑣
𝜕𝑟

− 𝑣
𝑟

)︁]︁
0

0 2
[︁
𝑢
𝑟

+ 1
𝑟
𝜕𝑣
𝜕𝜃

]︁
0

0
[︁

1
𝑟 sin 𝜃

𝜕𝑣
𝜕𝜑

+
(︁

1
𝑟
𝜕𝑤
𝜕𝜃

− cot 𝜃 · 𝑤
𝑟

)︁]︁
0

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎝
0 0

[︁
1

𝑟 sin 𝜃
𝜕𝑢
𝜕𝜑

+
(︁
𝜕𝑤
𝜕𝑟

− 𝑤
𝑟

)︁]︁
0 0

[︁
1

𝑟 sin 𝜃
𝜕𝑣
𝜕𝜑

+
(︁

1
𝑟
𝜕𝑤
𝜕𝜃

− cot 𝜃 · 𝑤
𝑟

)︁]︁
0 0 2

[︁
𝑢
𝑟

+ cot 𝜃
(︁
𝑣
𝑟

)︁
+ 1

𝑟 sin 𝜃
𝜕𝑤
𝜕𝜑

]︁
⎞⎟⎟⎟⎠

(︃
2𝜕𝑢
𝜕𝑟

0[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+
(︁
𝜕𝑣
𝜕𝑟

− 𝑣
𝑟

)︁]︁
0

)︃

+
⎛⎝0

[︁
1
𝑟
𝜕𝑢
𝜕𝜃

+
(︁
𝜕𝑣
𝜕𝑟

− 𝑣
𝑟

)︁]︁
0 2

[︁
𝑢
𝑟

+ 1
𝑟
𝜕𝑣
𝜕𝜃

]︁ ⎞⎠
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Appendix C

1D space charge limitations for
field emitters

While individual IL electrospray emitters typically operate far from space-charge re-
strictions (see Lenguito [20] for basic arguments based on a spherical diode model) it
is believed that densely populated arrays may be limited by the same Child-Langmuir
threshold that governs the performance of other electrostatic engines (e.g the ion en-
gine). As Lozano points out, the associated effects could become important when the
emitter pitch dips below 10-4 to 10-5 m, depending upon specific emission conditions
[21].

Derivation of the classical Child-Langmuir law for one-dimensional space-charge
limited current begins by invoking Poisson’s equation

𝑑2Φ
𝑑𝑧2 = − 𝜌

𝜖0
(C.1)

and applying it to the inter-electrode gap, i.e. the space between the dense
emission plane and the extractor, with boundary conditions Φ (𝑧 = 0) = 0 and
Φ (𝑧 = −𝑑) = −𝑉 . The current density in this region, 𝑗 = 𝑒𝑛𝑖𝑣𝑖, varies with the
axial velocity of the emitted charges. Through a simple balance between kinetic and
electrostatic potential energies we can write 𝑣𝑖 =

√︁
2𝑞/𝑚 (−Φ), where Φ = Φ (𝑧), and

substitute this in Poisson to find

𝑑2Φ
𝑑𝑧2 = − 𝑗

𝜖0

[︂
2 𝑞
𝑚

(Φ)
]︂−1/2

(C.2)

If we now recognize that

𝑑2Φ
𝑑𝑧2 = 1

2
𝑑

𝑑Φ

(︃
𝑑Φ
𝑑𝑧

)︃2

(C.3)

we can perform a first integration that yields the result
(︃
𝑑Φ
𝑑𝑧

)︃2

= 4𝑗
𝜖0

√︃
−Φ

2𝑞/𝑚 + 𝐶 (C.4)
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where the constant of integration, 𝐶, may be used to prescribe a standing field
magnitude at either boundary. In the classical Child-Langmuir analysis, 𝐶 → 0 and
indicates a vanishing field at the emission plane. A subsequent integration leads to
the well-known results

𝑗𝐶𝐿 = 4
9𝜖0

√︂
2 𝑞
𝑚

𝑉 3/2

𝑑2 (C.5)(︂
𝐹

𝐴

)︂
𝐶𝐿

= 8
9𝜖0

(︂
𝑉

𝑑

)︂2
(C.6)

for limiting current and thrust densities, respectively. Ion engines and other elec-
trostatic plasma accelerators typically produce charges upstream of the non-neutral
grid spaces and do not require large fields to stream particles. The Child-Langmuir
results are valid in these situations but begin to break down for field emission devices
where strong entry gradients are an unavoidable facet of the ionization process, as
several authors have detailed [22, 23, 24]. In the case of electrosprays, for example,
we can see direct evidence of this by formulating a simple pressure balance. For
steady emission to occur, hydraulic and electrostatic forces must approach a nominal
equilibrium such that

1
2𝜖0𝐸

2 + 𝑃𝑓 ∼ 𝑃𝑐 + Δ𝑃 (C.7)

where the first term on the LHS describes the driving electrical traction (nominally,
E ∼ V/d in the 1D case) while the second term corresponds to an imposed hydrostatic
pressure that may originate, for example, in a liquid reservoir supplying the emission
zone. On the RHS, 𝑃𝑐 is some characteristic surface tension force acting on the
electrified liquid interface and Δ𝑃 is the pressure drop carrying liquid between a
reservoir (where 𝑃𝑓 is the reference pressure) and the emission region.

For situations in which a substantive feed pressure is employed, it is possible that
the sustaining electrical traction need not be very large (lending validity to Eqs. C.5
and C.6) but this manner of operation is not always the most favorable. At the oppo-
site end of the spectrum, where 𝑃𝑓 → 0, we sometimes find architectural simplicities
that follow from passive hydraulics. There, the emission physics likely preclude a van-
ishing surface traction as suggested by Eq. C.7. Ignoring the hydrodynamic pressure
drop for a moment (as others have shown, Δ𝑃 ≪ 𝑃𝑐 in many situations of practical
interest [25]), we see that 𝜖0𝐸

2/2 ∼ 𝑃𝑐 for steady spraying when 𝑃𝑓 is insignificant.
More formally, we can write (︃

𝑑Φ
𝑑𝑧

)︃2

𝑧=0
∼ 4𝛾
𝜖0𝑟𝑃

(C.8)

for steady emission to prevail, where 𝛾 is a characteristic fluid surface energy
(J/m2) and 𝑟𝑃 is a principal length scale dictating the surface tension pressure. In
closed-flow and hybrid emitters, 𝑟𝑃 is closely related to either the capillary radius or
pore dimension. After substituting this condition for the constant in Eq. C.4 and
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Figure C-1: 1D space charge thresholds. The classical Child-Langmuir limit is shown
in black alongside cases of nonzero surface fields in blue. The green highlight indicates
upper bounds in the feasible V/d region while the red highlight reflects a regime that
is likely precluded by manufacturing and insulation issues with electrosprays.

performing a second integration we find an expression of the form

𝜁2 +
√︁
𝜁0

[︂
(2 − 𝜁)

√︁
1 + 𝜁

]︂
= 0 (C.9)

which is general and encompasses the subset of Child-Langmuir results. Here we
have defined the dimensionless pressures

𝜁 = 𝐹/𝐴

𝑃𝑐
(C.10)

𝜁0 = (𝐹/𝐴)𝐶𝐿
𝑃𝑐

(C.11)

Solutions to this expression have been computed for several values of 𝑃𝑐 and plot-
ted alongside the classical Child-Langmuir limit in Figure C-1. Due to manufacturing
and insulation challenges, small electrospray systems generally operate in the voltage
band from 103 - 104 V with electrode gaps between 10-4 and 10-5 m. These values
indicate a feasible 𝑉/𝑑 range spanning 107 - 109 V/m. From the figure we see that
this range coincides with limiting thrust densities (greater than 103 Pa) that are still
well-beyond the laboratory performance of state-of-the-art electrosprays.
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