
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2016-007 June 28, 2016

Modeling Network User Behavior: Various Approaches
Shidan Xu

Modeling User Network Transitions: Various
Approaches

by

Shidan Xu
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c⃝ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2016

Certified by. .
Professor Karen R. Sollins

Principal Research Scientist
Thesis Supervisor

Accepted by .
Professor Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

Modeling Network User Behavior: Various Approaches

Shidan Xu

May 20, 2016

Abstract

This project involves learning to predict users’ mobility within the network topology. Topo-

logical mobility, as opposed to physical mobility, can be substantial as a user switches from LTE

to wifi network, while moving minimally physically. Our dataset consists of email IMAP logs

as they document associated client IP addresses, as well as the clients’ identifiers. Prediction

for online mobility is of particular interest to the networks community. If we can predict online

mobility with high probability, then new network architecture can be designed to optimize the

caching system by minimizing resending packets. We used various approaches and techniques

to model the user’s behavior, including probabilistic programming, regression, neural nets, and

clustering algorithms. We compare and contrast how models di↵er in their prediction accuracy,

speed of convergence, and algorithmic complexity.

1

Acknowledgement

I would like to thank Dr. Karen Sollins for giving me an opportunity to work on this MobilityFirst

project for my MEng. I loved my time exploring the intricacies in the datasets and I learned so

much in the research process.

I would like to thank Dr. Karen Sollins and Dr. Steven Bauer for their continued advice and

insight into conceiving this project and thesis.

I would like to thank Dr. Bauer for his technical help and project focus guidance throughout this

project. I’d like to thank Dr. Sollins for all of her help with design decisions and project planning.

Without their insights, this project would not have been possible. Their help was invaluable.

I would like to thank the MIT Advanced Networks Architecture (ANA) group for having me

carry out this research.

I would like to thank Tingtao Zhou, Tianfan Xue, and Zhengli Wang for their help with the

statistics concepts and machine learning ideas.

Lastly, I would like to thank my family for all of their support, love, and help in life.

This project was funded in part under NSF Grant 1413973, ”NeTS: Large: Collaborative Re-

search: Location-Independent Networks: Evaluation Strategies and Studies”. All code written in this

project can be found on Github at All the work can be found on Github at https://github.com/shidanxu/mengvfinal.

2

Contents

1 Introduction 7

1.1 Project Background . 7

1.2 Relations to MobilityFirst . 7

1.3 Current Internet Has Ine�ciency in Topological Distance 8

1.4 Data Analysis Approaches on Networks Problem . 10

2 Previous Works on Quantitative Network Measurements 11

2.1 Sookhyun Yang’s Three State Markov Model . 11

2.1.1 Choosing the Dataset . 11

2.1.2 Comments on Yang’s Work . 12

2.2 Beverly Applies Machine Learning to Extract Most Important IP Bit for Tra�c Con-
gestion . 13

2.3 Probabilistic Programming As a Tool For Fast Modeling 14

3 Reproducing Yang Paper Results 16

3.1 A Peek of the Dataset . 16

3.2 Markov Chain For Transition Prediction . 17

3.3 Evaluate Markov Chain Prediction . 19

3.4 Aspects of Modeling where Markov Chain Falls Short 22

3.5 Questions that Emerge from Yang Experiment Reproduction 22

4 Modeling 24

4.1 Clustering Finds Three Groups . 24

4.2 Clustering Shines Light on Canonical User . 27

4.3 Regression Helps Weighing Factors . 28

4.3.1 Ridge Regression . 29

4.3.2 Logistic Regression . 32

4.4 Neural Net Increases Performance . 35

4.4.1 Background . 35

3

4.4.2 Results and Discussion . 37

4.5 Bayesian Modeling and Probabilistic Programming 38

4.5.1 Generative vs. Discriminative Modeling . 38

4.5.2 Probabilistic Programming . 39

5 Approach Comparison 43

5.1 Speed . 43

5.2 Prediction Accuracy . 44

5.3 Relevance to Dataset . 45

6 Toolkit 47

7 Challenges 49

7.1 Challenges in the Dataset . 49

7.2 Challenges in Technology . 51

8 Contributions and Conclusion 54

8.1 Contributions . 54

8.2 Conclusion . 55

4

List of Figures

1 Physical proximity does not guarantee topological proximity. Small moves in physical
space may be large moves in Network topology. The path from the 4G LTE network
to the MIT network goes through US Eastern. 9

2 Sample IMAP entry for 2014.01.28 . 16

3 The distribution of number of transitions from Markov chain and testing set. Sample
size 10000 user days each. 20

4 The distribution of number of transitions from training set and testing set. Sample
size 10000 user days each. The light blue regions are overlaps of both sets. 21

5 The clustering algorithm output. X-axis is average duration in seconds. Y-axis is
session start hour. Average duration length significantly a↵ected the clustering. The
green dots represent the centers of each cluster. 25

6 X-axis is portion of user entry generated from a wifi network. Y-axis is day of the
week. Those were two of the features that did not significantly a↵ected the clustering. 25

7 The K-means clustering algorithm output. The top three factors for separating the
dataset are average duration per session, average number of sessions in one day, and
the average starting hour for sessions. 26

8 The average number of sessions per cluster. 28

9 The long cluster average session length prediction. Each integer on the x-axis is a
feature and the y-axis is showing the feature’s corresponding weight. 31

10 The distribution of session durations, in seconds. Note the second peak at the hour
mark. 32

11 The distribution of session durations, by tags. 34

12 A one hidden-layer feed forward neural net. Image courtesy to Bishop[20]. 36

13 An example PP output using PYMC3. 41

14 Sample session data, each line is a session. The column headers are session start time,
session end time, IP, device, user ID. 49

15 Exponential distribution implementation in PYMC3. 51

List of Tables

1 Di↵erent kinds of Markov Models[17] . 18

2 Empirical estimates of transition probabilities. Data acquired on training sample
(10000 user days). 19

5

3 Empirical estimates of transition probabilities for all users. 27

4 Empirical estimates of transition probabilities for the long duration cluster. 27

5 Comparison of di↵erent number of nodes in the hidden layer. 38

6 Complexity of di↵erent approaches. 44

7 Prediction Accuracy of di↵erent approaches. 44

8 Comparison of various Python probabilistic programming APIs. 48

6

1 Introduction

1.1 Project Background

The Internet is approaching a historic inflection point, with mobile platforms and applications re-

placing the fixed-host/server model that has dominated the Internet since its inception [14]. This

gradual shift produces an opportunity to design a new network focused on mobile users. The prob-

lem this thesis investigates is motivated by the MobilityFirst project in the FIND (Future Internet

Design) initiative [7], which asks the question of what the requirements should be for a global net-

work 15 years from now, and how we can build such a network if we are not constrained by the

current Internet.

1.2 Relations to MobilityFirst

The MobilityFirst projects presents several major design goals [14]:

• Dynamic hosting to provide scalable network mobility.

• The robustness of the wireless transfer medium.

• Reinforce network security and privacy for both mobile and wired networks.

• Provide context-aware mobile services.

Mobile users often switch between di↵erent networks (such as cellular and wifi) as they move

geographically. Traditional networks such as the Internet were designed more for a static user. In

designing a new network that is more suited to the mobile users, we need to evaluate this switching

behavior. In this thesis project, we evaluate the user’s network transition behavior, in order to

understand which users should the new network address. This relates to the first design goal. By

7

providing a clearer understanding of the user behavior, new networks can be designed to configure

hosts that is more suitable for the user. One aspect of suitable is to minimize the di↵erence in

topological distance and geographical distance. We expand this point next.

1.3 Current Internet Has Ine�ciency in Topological Distance

Developers of the Internet made some design choices with assumptions. One particular assumption

is that network mobility is similar to mobility in geography[3]. However, in real world cases, this

assumption is often violated. For example, a phone user could transition from a 4G network to Wi-

Fi by walking a few meters in real world, but the network topological distance is long. In extreme

cases, the nearest path of two nodes in network topology can traverse opposite coasts of the country.

Such design is costly for the user to transition between networks. In designing a new network, one

of the focal points is to decrease inconsistency between geographical and topological distance, as

packets of information need to be rerouted. The future network needs to address this geographically

proximate network change, and decrease this data transfer cost.

8

Figure 1: Physical proximity does not guarantee topological proximity. Small moves in physical
space may be large moves in Network topology. The path from the 4G LTE network to the MIT
network goes through US Eastern.

Imagine a person traversing through a college campus while checking his email on the phone. As

he moves along, his phone’s network switches between LTE and his college network alternatively.

Every time the user switches network, his phone loses some data and has to send extra requests to

recover lost data. The LTE and campus wifi, despite being geographically close by, can be vastly

distant in network topology. Hence a request may have to traverse a much longer path than the

physically proximity suggests. This extra path traversed slows down packet transfer in the current

network.

Consider another typical 9-5 o�ce worker. She wakes up at 8, goes to work at 9, comes home

at 5. She has dinner at 6 and spends two hours surfing the web at night. Now consider how her

daily network usage would look like. She would be on her home network in the morning. She uses

9

a combination of the company and LTE network at work. Sometimes she eats lunch at a co↵ee

shop and uses the network there. She spends some time on her home network at night. Her active

network tra�c ends at 11, but some passive email checking and other maintenance from her device

persist throughout the night. Her daily network usage is very predictable. If researchers can predict

her network usage, mobile device applications can be customized to make her life more convenient.

Multiple questions can be asked in those two scenarios. To what accuracy is human network

behavior habitual? To what degree can user network behavior be predicted? How should we evaluate

network usage behavior? How often do such costly network transitions happen? How do we measure

the cost of one such transition? How much tra�c is a↵ected by those costly transitions? How should

we design our networks to minimize this costly transition?

1.4 Data Analysis Approaches on Networks Problem

Additionally, the project stresses to create a procedure for fast exploration of new models using

approaches such as probabilistic programming and neural nets. These procedures are chosen to

quickly expand on the current model. We spent time in evaluating the di↵erent modeling techniques

and tools for their prediction accuracy, speed of convergence, and algorithmic complexity.

Noam Chomsky believed that the Merge operation is one of the fundamental di↵erences that

separate humans apart from other primates [13]. That is, humans can take two abstract concepts

and combine them to create scenarios that s/he has never physically experienced. A person can

imagine a dinosaur ripping apart an opera stage as long as he understands dinosaurs and opera,

despite he has never seen such an event in reality. This Merge ability can induce creativity. Statistical

methods and machine learning are trending approaches to extract insight out of the dataset. By

applying machine learning strategies to a networks problem, we try to develop new insights that’s

not traditionally seen.

10

2 Previous Works on Quantitative Network Measurements

In this chapter, we review some of the previous works. We reviewed previous works on quantitive

models of user transitioning among networks, we evaluate what kind of approaches were taken for

networks datasets. We also evaluate new techniques for implementing models.

2.1 Sookhyun Yang’s Three State Markov Model

This thesis seeks to expand the work on Yang’s Measurement and Modeling of User Transition

Among Networks [5].

Yang’s paper created a 3-state Markov model that’s evaluated by measuring the distribution

of cost function of signaling a network attachment / detachment, using Internet Message Access

Protocol (IMAP) logs for email access for the population of University of Massachusetts at Amherst

residents [5].

2.1.1 Choosing the Dataset

A major di�culty in network mobility research is to select a dataset that captures user transitions.

Yang argued for three major criteria for selecting a proper dataset[5].

• The application should be frequently used by the user to provide a su�ciently large dataset.

• The application can be monitored without introducing inconvenience to the user.

• The application provides trackable user identification.

Therefore, Yang’s choice on IMAP logs is a good exploration that satisfies those requirements.

We also had several options choosing our datasets.

11

• Use the Yang dataset.

• Collect our own email based dataset.

• Use mobility datasets from a third party provider who installs apps to track user network

usage.

If we pick Yang’s dataset, we have a leap ahead into what kind of approaches we can take to

understand the dataset. More importantly, we save time in acquiring the dataset ourselves, which

in Yang’s case took four months. We can also collect our own email-based dataset at MIT. In order

to extract more information on the user’s age, residence, etc., we need to clear privacy controls from

the institute. Such data collection can also be time-consuming. Using mobility datasets from a third

party is also an option that can provide a feature-rich dataset. We can include identification features

for the users, such as age and gender. This is not possible in the IMAP logs due to the way the

protocol is setup. However, using data from a third party creates bias towards only the users who

are interested in installing the software. We evaluated our options and continued our work based on

Yang’s datasets as we see areas of improvement on their work.

The Yang dataset identifies a user by an ID that was intentionally anonymized. The dataset

specified times when the user logged into an email service, the IP address s/he uses to attach to the

network, and times when the server closes the network connection. We see that the raw dataset is

large as it contains many entries, but not as feature-rich as each entry contains limited information.

2.1.2 Comments on Yang’s Work

While the paper serves as a decent exploration baseline, we explore alternatives on some aspects,

definitions, and assumptions. For instance, the Yang paper collected two datasets. One dataset

contains email logs for campus professors and sta↵ members in the fall. Another dataset contains

12

all users across campus over a four month period in winter. In evaluating the transition costs, Yang

assumed all users in the campus wide dataset formed one uniform group. We hypothesized that

users form several groups based on their behavioral patterns, and would like to evaluate potentially

di↵erent user types. We suspect that students would have their preferred time to access emails (night

or morning) depending on the course load and personal preferences. Those factors can possible

separate the dataset into multiple clusters.

Another criticism is that the Markov model is simple and not easily expandable to adapt to

specific user types. The only independent parameter in this model is the current state the user is in.

If another factor is identified to be significant, the entire modeling process needs to restart. We want

to avoid such repetitive work in further modeling, by utilizing tools and techniques that facilitate

exploration in modeling space.

2.2 Beverly Applies Machine Learning to Extract Most Important IP Bit

for Tra�c Congestion

There are many related works in applying machine learning to a networks problem. In Beverly [1],

the author described several learning approaches for attacking various networks tra�c problems with

minimal datasets. In particular, learning was useful in capitalizing on under-utilized information

and inferring behavior reliably. Using a hidden Markov model, Beverly was able to predict mean

TCP congestion times based on the IP address bits. By using 8 out of the 32 bits, Beverly can

predict the mean congestion time accurately to an error of less than 30ms. We take from Beverly’s

work that statistics and machine learning can provide unique insights into a dataset. By utilizing

statistical methods to aid humans in extracting patterns in data, we can improve prediction ac-

curacies. Beverly’s paper provides intuition on which learning approaches to use on what type of

problem.

13

2.3 Probabilistic Programming As a Tool For Fast Modeling

Probabilistic programming is a generative learning approach, and an ongoing research area. Gener-

ative learning approaches can analyze complex scenes more richly and flexibly, but have been less

widely embraced due to their slow inference speed and problem specific engineering to obtain robust

results [6]. Like a Markov model, generative approaches can learn the optimal parameters for the

model. Once the parameters are set, researchers can use the model to generate new data to compare

with the observed testing data. One of the trending topics lately in probabilistic programming is in

creating a generic inference engine that facilitates optimization of parameters. This inference engine

facilitates code implementation for di↵erent models. Many current applications are under devel-

opment for probabilistic programming [16] (See probabilistic-programming.org for a list of existing

probabilistic programming systems). Picture and Venture are two notable probabilistic program-

ming languages conceived at MIT. Both languages focus on the development of a general inference

engine. With an inference engine, a user can take the benefit of probabilistic models without having

the expertise in statistics. We refrained from using those languages as they are alpha versions and

are standalone platforms that have higher learning curves. Instead, we explored PyMC3, a stable

python package that’s written with a general inference engine. We chose this option because we

want to explore more models without having to implement the inference methods ourselves [2].

In Tenenbaum [9], current applications and limitations for probabilistic programming are dis-

cussed, with a vision for hierarchical structural learning. In hierarchical structural learning, the

algorithm can learn the dependence of variables. That is, not only can the learning algorithm opti-

mize the parameters for the model, it can also learn the most appropriate structure of the model.

With enhanced storage capacities and computational cheapness, hierarchical structural learning can

facilitate data mining further by saving the scientists time to conceive the more structurally accurate

model.

14

Summary In this chapter, we review some of the related previous works. Three works are espe-

cially important to us. Yang[5] created a three-state Markov Model to predict user transition among

networks. Beverly[1] applied machine learning techniques to various networks problem. Probabilis-

tic programming, a modeling tool that implements an inference engine to facilitate fast modeling, is

reviewed.

15

3 Reproducing Yang Paper Results

In this chapter, we first reproduce Yang’s Markov chain model for user transition prediction. We

then evaluate this model to see areas of improvement.

3.1 A Peek of the Dataset

We acquired processed IMAP datasets from University of Massachusetts. The dataset included the

IMAP logs for 7137 campus wide users. The user population was mainly students [5] and data were

taken from December 3, 2013 to Mar 26, 2014.

Figure 2: Sample IMAP entry for 2014.01.28

This is what a section of a sample IMAP processed logs file looks like. The most useful information

here is that on line 1, a user with an IP address of 68.186.244.103 attached to the network. In the

middle section, another user attached to the UMass network. At 00:47:44, the server unilaterally

detached the idle user identified by 34630. The log also includes information on when the user checks

the inbox and deletes messages. Note that the user identity, which is originally an email address, is

masked using SHA2-hashing [5] to protect user privacy.

16

We extract the device the user signed in with, and acquire additional information from the IP

address. We used the free website ip-api.com to determine the user’s city location and internet

service provider (ISP) information. We threw out entries that have unidentifiable IP addresses as

we used IP addresses to identify when the user is continuously on a network. We did not consider

entries with abroad IP addresses because network transition around the world may exhibit di↵erent

patterns due to the local network infrastructure. Those entries account for roughly 3% of the entire

dataset.

We note that a user can simultaneously be signed into the same email account from multiple

devices or networks. The server does not dismiss a user’s first attachment once s/he signs in from a

second device.

3.2 Markov Chain For Transition Prediction

One of the important results in Yang’s paper is a 3-state Markov chain model that predicts the

likelihood of a user transitioning (defined below), given the number of networks s/he is currently on.

To understand how users make network transitions, first we need to define a transition.

Definition A session is a continuous period of time for which a user is on the same network, which

is defined by the same IP address. A transition happens when the user detaches from one network

and attaches to another one.

With this definition, we can decide whether a transition happens from the logs. Brian Copeland,

a UROP student of the ANA group, parsed the original UMass log entries into entries that contain

each individual session. We overlay the durations to decide occurrences of transition. The details of

transition criteria can be found in Yang [5] paper.

17

A Markov model is a way of modeling the randomly changing systems where the future states

only depend on the current state. There are four types of Markov models depending on two criteria.

Observable evaluates whether the state of the system is directly observable by the outside. Controlled

means for each new step, the system has options on which action to take, and this action a↵ects the

transition probabilities. Autonomous means that the system does not have the option to choose an

action.

Dimension System State Fully Observable System State Partially Observable

System is Autonomous Markov Chain Hidden Markov Model(HMM)

System is Controlled Markov Decision Process(MDP) Partially Observable MDP

Table 1: Di↵erent kinds of Markov Models[17]

In Yang, the researchers implemented a Markov Chain, that is, a system with fully observable

states and no action options. The three states of the Markov chain are

• On 0 networks

• On 1 network

• On � 2 networks

A 3 by 3-state transition probability matrix can be calculated directly from the dataset. One

subtle choice we have to make is how often we call each time step. One extreme is to take near-

continuous measurements. For instance, we can consider every second as a new time step. However,

this creates a nearly inescapable state. On average, a typical user logs 20 sessions a day. There are

86400 seconds in one day. This is at most 20/86400 = 0.23‰. Hence we are likely to be stuck in the

on 0 networks state. Using such a model, we might create a skewed dataset that does not faithfully

captures the original distribution.

18

We took measurements at the end of each 20-minute period as Yang concluded 20-minute periods

was appropriate for this dataset [5]. We look at the networks the user is on at the end of the 20-

minute window, versus at the beginning, to see whether s/he has transitioned. In table 2, we have the

transition probability matrix calculated on a 10000 user days training sample. Given this transition

probability matrix, we can generate estimations of what the user may behave in the future. We then

compare this model generated data with the testing sample.

Transition Prob. On 0 Networks On 1 Network On >= 1 Networks

On 0 Networks CRF 0.930 0.066 0.004

On 1 Network 0.696 0.266 0.038

On >= 1 Networks 0.291 0.356 0.353

Table 2: Empirical estimates of transition probabilities. Data acquired on training sample (10000
user days).

3.3 Evaluate Markov Chain Prediction

For baseline, we evaluate the distribution of the number of transitions for all users on a daily basis

as noted in Yang. We identify a transition as a change of state (on 0, on 1, or on 2 or more) from

the end of the previous 20-minute period to the end of the current 20-minute period. We compute

one distribution from the testing dataset, and another for the randomly generated dataset based

on Markov chain runs. Further, we also included the distribution for the training data we used to

produce the transition probability matrix. We make the simple assumption that all users behave

similarly.

19

Figure 3: The distribution of number of transitions from Markov chain and testing set. Sample size
10000 user days each.

In figure 3, we illustrate the distribution of daily transitions for 10000 sample days generated

by the Markov chain, and another randomly selected 10000 user days of testing data. The Markov

chain generated data shows a more Gaussian distribution, whereas the testing data shows a skewed

tail. We further confirmed that such di↵erence is not due to randomness in the data selection, by

comparing the 10000 user days training data used to generate the Markov transition probability

matrix and the test data.

20

Figure 4: The distribution of number of transitions from training set and testing set. Sample size
10000 user days each. The light blue regions are overlaps of both sets.

The training data used to generate the Markov transition probability matrix has a similar dis-

tribution as the testing data.

Despite the Markov generated set and the testing set having similar transition probability ma-

trices, the Markov chain failed to capture the exponential distribution. Because the fixed transition

probability matrix was used to generate all data for the Markov chain, we expected a more nor-

mally distributed number of transitions transitions, whereas the real data include users that have

larger variance in number of transitions. We confirm the concern that a simple three state Markov

transition matrix alone does not capture the transition behavior exhibited by the dataset.

21

3.4 Aspects of Modeling where Markov Chain Falls Short

We do not believe that such modeling captures user behavior well enough for the following reasons.

• Loss of information by the probability matrix.

By categorizing the user into one of the three states, we assume the transition only depends

on the number of networks a user is on. The user’s likelihood to make a transition can depend

on other factors, such as the time of the day. If more users access the network during the

daytime, it is plausible that the transition probabilities during the day may be higher than at

night.

• Loss of individuality of users

The entire dataset contains users of various habitual patterns. There could be a number of

groups of users who have contrasting transition probability matrix. By combining all users

together, we only gain insight on how an ”average user” behaves like, though this ”average

user” may be a mix of several exemplary users.

• Failure to capture the exponential distribution

The Markov chain generated dataset presented a more normal distribution of transitions,

as opposed to exponential distribution in the training and testing dataset. This could be

potentially explained by the model not capturing the di↵erent types of users.

We continue to the next section to evaluate what can be done along those dimensions.

3.5 Questions that Emerge from Yang Experiment Reproduction

Due to the simplicity of the Markov chain, we can ask several major questions:

22

• Can the entire user population be separated into groups? How many di↵erent groups of users

are there?

• How frequently do users transition? What does a typical transition look like? What factors

can signal, or a↵ect a transition?

• Do users exhibit any periodical behavioral patterns?

We first answer the grouping question by utilizing clustering algorithms.

23

4 Modeling

In this section, we utilized clustering, regression, neural nets, and probabilistic programming to

evaluate and predict the number of sessions a user participates in, and the duration of each session.

4.1 Clustering Finds Three Groups

A closer inspection at the dataset conceives the idea that we may split users into user groups. The

population in the dataset is residents of UMass. This could include professors, students, and other

populations whose behavioral pattern are likely di↵erent. It would be beneficial for the Markov

model to take inference for each one of the groups.

We used K-means analysis for carrying out the clustering analysis. K-means analysis is a com-

monly used clustering algorithm that is scalable and fast. A typical implementation of the k-means

algorithm needs the user to provide the number of clusters, or k. The algorithm then picks the

k initial starting centroids for the population, and gradually update the position of centers as the

algorithm iterates itself. In Tibshirani[10], the optimal number of clusters k can be found using the

gap statistic, which finds a statistic to measure the comparison of the compactness of the clusters

with a distribution of no obvious clustering. We implemented such an algorithm with features in-

cluding ID, IP, start time, end time, average session duration, Android, Apple, device, whether the

ISP is wireless, whether the ISP is wifi, and average number of sessions per day. Three clusters were

identified by the algorithm. This clustering separates the users mainly by average session durations.

24

Figure 5: The clustering algorithm output. X-axis is average duration in seconds. Y-axis is session
start hour. Average duration length significantly a↵ected the clustering. The green dots represent
the centers of each cluster.

Figure 6: X-axis is portion of user entry generated from a wifi network. Y-axis is day of the week.
Those were two of the features that did not significantly a↵ected the clustering.

25

Figure 7: The K-means clustering algorithm output. The top three factors for separating the dataset
are average duration per session, average number of sessions in one day, and the average starting
hour for sessions.

The K-means clustering algorithm helps quantify the influence each feature has on dissecting the

dataset. Here the k-means algorithm proposes that average session duration is the number one factor

for distinguishing user types. Another plausible but less promising factor is the average number of

sessions on an average day.

We note that the clustering output may be less convincing, but it serves as a leading path into

potential criteria for distinguishing the users. We make the following arguments and observations

regarding this output.

• The long duration cluster transitions less frequently.

• Users with on average long durations may be less likely to transition.

• The number of sessions per day can directly a↵ect the calculation of how frequently the user

transitions.

26

• Combining the above arguments, we want to verify that users who have on average short

sessions and high number of transitions tend to switch between networks more frequently.

(Note that a user is not always online, otherwise this claim is trivial. The average online time

is roughly 4.5 hours a day[5].) This needs to be verified because a user can be on multiple

networks simultaneously. Hence when designing a new network catered to mobile users, those

users deserve extra attention for congestion.

We move on to test the arguments above.

4.2 Clustering Shines Light on Canonical User

To test out the hypotheses above, we break the users into clusters, and then calculate the Markov

transition probability matrix to see whether there is a significant di↵erence.

Transition Prob. On 0 Networks On 1 Network On >= 1 Networks

On 0 Networks Now 0.930 0.066 0.004

On 1 Network 0.696 0.266 0.038

On >= 1 Networks 0.291 0.356 0.353

Table 3: Empirical estimates of transition probabilities for all users.

Transition Prob. On 0 Networks On 1 Network On >= 1 Networks

On 0 Networks Now 0.896 0.096 0.008

On 1 Network 0.694 0.266 0.040

On >= 1 Networks 0.285 0.293 0.422

Table 4: Empirical estimates of transition probabilities for the long duration cluster.

Hypothesis 1 The average user in the long duration cluster (average duration � 67% percentile)

27

exhibits on average less number of transitions than the average user.

H0 is that the average user in the long duration cluster exhibits on average the same number of

transitions as the average user.

First we see that on average, the long duration users have a daily 18.49 sessions, whereas the

average user of the population of 6084 has a daily 20.64 sessions. The result is significant (p =

0.00179) by the t-test. So we reject the null hypothesis.

Figure 8: The average number of sessions per cluster.

Hypothesis 2 Users with on average the most sessions per day (top 33%) transition more frequently

than the average user.

By using a similar t-test, we observe that users with more sessions group on average transition

more frequently than the average user (p = 0.00834).

4.3 Regression Helps Weighing Factors

Another aspect of the Yang model that can be improved and discussed is the assumption that the

number of networks the user is on solely determines the transition probabilities. We’d like to quantify

28

the e↵ect other features have on the transitioning.

To answer the question how frequently do users transition, there are several parameters we can

model. We chose to model for each user, how many sessions happened in a given day, and what

is the duration of each session. If we can accurately model the number of sessions in a day, how

long each sessions is, and when exactly these sessions happen, then we can overlay the sessions to

evaluate the transitions.

We first tried out with regression analysis. Regression analysis evaluates the relationship between

a dependent variable and multiple independent variables. It does so by creating a curve that fits

all the data points with minimal total error norm. We started out by exploring linear regression

models for simplicity. More specifically, let each xi be a p-dimensional feature vector for prediction,

for each yi the prediction values, a typical regression estimates � by minimizing

X
i

(yi � xT
i �)2,

where � is the weight vector for the variables.

Regression analysis can be used to discover correlations between the variables. One of the

challenges of our dataset is that the predictors are not entirely independent. Hence we tried Ridge

regression and logistic regression.

4.3.1 Ridge Regression

Background Ridge regression is a technique that evaluates multiple regression data that su↵er

from multicollinearity[19], or multiple predictor variables being highly correlated. Ridge regression

resolves that issue by regularization, or adding a penalty on the weight sizes. Specifically, let each xi

29

be a p-dimensional feature vector for prediction, for each yi the prediction values, Ridge regression

estimates � by minimizing

X
i

(yi � xT
i �)2 + �

pX
j=1

�2
j ,

where � is the weight vector for the variables, and �j is the weight vector for the jth variable.

The first sum calculates the error term, and the second sum creates an additional penalty on the

absolute size of the individual weights. This partially resolves the multicollinearity of the variables.

If two variables are negatively correlated, the additional regularization term pushes the weights to

small absolute values[20]. Note that there is an additional regularization constant �, which controls

how much having weight values of small absolute values matters. The choice of � is due to the

researcher and trial and error.

Results

Predicting Number of Sessions We first tried to predict the average number of sessions for

each day for every user as it is normally distributed. We used scikit-learn[27] as our library, for its

ease of use and availability of tutorials. We used all 6000 users for our data. We took 60% of the

users as our training set, and 40% as the testing set. For each user day, we passed in the following

features: whether the device is apple, whether the device is android, what day of the week it is,

the user’s likelihood to be on a cellular network that day, average duration for this user’s sessions,

average session start time for this user. The prediction score is defined by the R2 score, or

1�
P

(ytrue � ypred)2P
(ytrue � ytrue)2

,

30

or how much the model explains the variability in the data around its mean. We did the prediction

using 1. The general population. 2. Once for each cluster.

Figure 9: The long cluster average session length prediction. Each integer on the x-axis is a feature
and the y-axis is showing the feature’s corresponding weight.

R2 scores on the training dataset and testing dataset reach around 7% for both the general

population and each cluster. Training the model took 0.003 seconds on average due to the low

dimensions.

The main observations are:

• Using just the 7 features, a linear regression model cannot predict the number of sessions in a

given day

• Being on a cellular network decreases the number of sessions per day. Being on a wifi network

increases the number of sessions. This is potentially due to the automatic email checking is

only on when on a wifi network to save wireless data usage.

• Grouping by cluster does not help show significant di↵erence in prediction accuracy.

Note that in predicting the daily number of sessions, we are no longer accessible to the unique

31

IP address as found in each entry before. This decrease in number of independent variables further

decreased the performance of our prediction.

This result opens up discussion for alternative modeling techniques.

4.3.2 Logistic Regression

Motivation Another parameter we’d like to predict is the duration of each session. We first look

at the distribution of session durations.

Figure 10: The distribution of session durations, in seconds. Note the second peak at the hour mark.

We observe that there is a secondary peak at the hour mark, and more importantly, the distri-

bution is not normal. A deeper inspection at the original processed dataset reveals that the hour

peak was largely due to the server closing down connections after an hour of idle time. This does

not conflict with our definition of session, as the user was on, despite not utilizing the network, for

the entire time.

Since Ridge regression assumes a normal distribution, it will not work well directly predicting

the session duration. We asked whether a categorical answer (such as long or short) can be acquired

32

through regression. We decided to use logistic regression to give a categorial prediction for session

duration.

Background Logistic regression is a regression model where the dependent variable is categorical,

as opposed to continuous. Logistic regression makes its predictions by comparing the likelihood of

each individual category, and picks the category with the highest likelihood.

Formally, the logistic regression tries to predict the conditional probability Pr(Y = 1|X = x),

where Y is the binary indicator variable for the category (0 or 1). In order to reach a 0 or 1 output,

we need to carefully examine the math to produce the correct results.

The formal model [21] is that

log
p(x)

1� p(x)
= �0 + x · �

where �0 is the y-intercept and � the weights for the features. Solving for p we get

p(x) =
e�0+x·�

1 + e�0+x·� =
1

1 + e�(�0+x·�)

To minimize error, we should predict Y = 1 when p � 0.5 and Y = 0 when p < 0.5. This means

predict 1 when �0 + x · � � 0, 0 otherwise.

We used a variation of the logistic regression model, namely we expanded it to predict from

multiple categories. That is,

Pr(Y = c|X = x) =
e�

(c)
0 + x · �(c)P
c e�

(c)
0 +x·�(c)

33

Instead of having one set of parameters �0 and �, each class c has its own o↵set �
(c)
0 and weight

vector �(c). The remaining calculations are analogous as the binary case. The category c with the

highest probability gets picked.

Results We used scikit-learn[27] as our library for its readily implemented multi-class logistic

regression module. Because we did not have enough dimensions to capture the distribution, we

decided to expand the feature size of the dataset, by including all the bits of the IP address. We

passed in 2.5 million entries of session data for training, where each entry xi consists of user ID,

IP address by bits (32 bits), timeStartBucket {0 - 23}, day of week, device, whether the device is

Apple, and whether the device is Android. We further broke duration into short (< 5s), mid (5s -

60 mins), and long (> 60 mins). The cuto↵ at 60 minutes is because we noticed a peak at slightly

more than 60 minutes for duration distributions. We used another 2.5 million session data entries

for testing set to predict the duration tag.

Figure 11: The distribution of session durations, by tags.

34

The logistic regression predicts correctly the duration tag(yi=long, mid, or short) at 67% accu-

racy, which is better than chance (1/3). Note that it also outperforms the simple strategy of always

predicting ”short” of 58% accuracy. However, 67% is far from accurate. The features that carry the

most weights are Apple or Android, and specific leading bits of the IP address. Having the device

being Android produces more likely a long session. This naturally leads to questions like whether

the Android’s transfer protocol and app settings by default lets the user stay on a network for long

periods of time without disconnection.

4.4 Neural Net Increases Performance

4.4.1 Background

We see that the regression approaches we took have limited practicality as they were either linear

or su↵ered from not enough features. Alternatively, we can fix the number of basis functions but

allow them to be adaptive [20].

Neural network is one such approach that allow basis functions to adapt to nonlinear modeling.

A neural net is very useful in problem domains where no known function for approximating the

given features to their outputs. A neural net contains a collection of layers, where each layer has a

collection of nodes. The input features are feed to the first layer and subsequently to next layers to

either condense or extract information. The end result is often a classification. The adaptiveness

comes from its optimization of the mathematical calculations each round and in the activation

functions used.

There are three general types of neural nets depending on the connection architecture of the

nets[22].

• Feed Forward Network

35

• Recurrent Network

• Reinforcement Network

A feed forward network reads the input and feeds forward the information till the output produces

a prediction. It is the simplest form of neural net. Such a net is acyclic in the network architecture.

A recurrent network, on the other hand, can remember past inputs and forms a directed cycle in the

network architecture. A recurrent net is useful in problem domains of natural language processing,

in which the earlier part of the sentence is important in deciphering the meaning. A reinforcement

network does not directly take input, but takes actions based on its environment and the reward

function. Such an approach is often used in the robotics world.

Figure 12: A one hidden-layer feed forward neural net. Image courtesy to Bishop[20].

Mathematical Background The exact way neural networks carry out calculations may be less

interesting, so readers can skip this section as needed. The one sentence summary is that each

layer of the neural network has an activation function, which can be allowed to be nonlinear, and so

multiple layers of such application can adapt to resolve nonlinearity in the dataset.

36

Using the notation in the figure above, we have D input data points, each data point xi contains

its feature vector, and M hidden nodes. The notations are due to Bishop[20].

zj = h(
DX

i=1

w
(1)
ji xi + w

(1)
j0),

where h is a nonlinear activation function, wji are the weights for the ith input and jth hidden

node, wj0 is the intercept, or bias, for the jth hidden node, and superscripts (1) mean that the

parameters are in the first hidden layer. The

Similar operation happens from the hidden layer to the output layer. The activation function h

can be taken as the sigmoid function, or

h(a) = �(a) =
1

1 + e�a
,

This sigmoid function turns a linear combination of input vectors into a nonlinear output. By

taking this activation multiple times, the final output yk is no longer linearly related to the original

input.

4.4.2 Results and Discussion

We saw that logistic regression predicted duration tags with 67% accuracy. We want to increase per-

formance on duration tag predictions, so we implemented a feed-forward neural net with supervised

training with one hidden layer.

With aid from Python’s TensorFlow[26] library, we implemented a one-hidden layer feed forward

neural net with 7 features, 3 output nodes. We vary the number of hidden nodes from 5, 10, 20,

to 30.. The features used were the same as in regression. The activation function is sigmoid and

37

optimization was done using gradient descent. This net correctly predicts the duration tag with

84.5% accuracy with 20 hidden nodes. The training and prediction took 554 seconds. In general,

starting with 10 nodes, increasing the number of nodes no longer increased the prediction accuracy

by large amounts.

Number of hidden nodes Prediction Accuracy Convergence Time

5 57.7% 399

10 83.4% 505

20 84.5% 554

30 83.6% 705

Table 5: Comparison of di↵erent number of nodes in the hidden layer.

The results were helpful, but not surprising for the following reasons.

• The neural net has more parameters. The 10 hidden parameters created more flexibility for

the model to better fit the outcome.

• The neural net has a nonlinear activation function. As seen from previous plots, the duration

is not linearly correlated with the features given. Hence resolving linearity largely increased

performance.

4.5 Bayesian Modeling and Probabilistic Programming

4.5.1 Generative vs. Discriminative Modeling

Despite the neural net having a high performance, we note that the neural net we used is mostly

a classifier. That is, such an algorithm is an example of a discriminative algorithm. In general,

modeling algorithms can be classified into two categories, generative vs. discriminative. A discrim-

38

inative algorithm learns what criteria separate the classes given the dataset. For instance, logistic

regression is a discriminative algorithm. A generative model focuses on each class, and creates a

model for what the underlying process for each class is [4]. Let x be the feature inputs to the model,

y be the model output prediction, discriminative models learn Pr(y|x), whereas generative models

learn Pr(x|y). That is, given the dataset, how likely is it that the data came from a distribution

that is modeled by y. Therefore, generative model allows researchers to synthesize new dataset by

understanding what the underlying distribution is. The Markov model is a generative approach,

whereas regressions and neural nets are mostly descriptive models. We used the the discriminative

approach when we needed to correctly classify or quantify parameters. To predict future actions, it

is more practical to use a generative approach.

4.5.2 Probabilistic Programming

In this project we explored modeling using probabilistic programming, which is a type of Bayesian

modeling. Bayesian modeling employs a prior belief of how data could look like before actually

inspecting the dataset. Then, given the dataset, we produce a distribution for each parameter that

we are interested in estimating, i.e. the posterior distribution [11]. Probabilistic programming is a

way of inferring the ideal parameters for such modeling practice. It is a programming language as

it abstracts away the mathematical calculations that goes on in inferencing the optimal parameters,

just like a typical programming language abstracts away the storage of pointers in memory.

Roughly speaking, the steps involved in probabilistic programming are as follows:

• Declare prior beliefs on what the data looks like.

• Feed in dataset.

• A sampling algorithm calculates a posterior distribution for each parameter in the model.

39

Probabilistic programming languages enable you to state your priors beliefs and your model with

elegant, statistical syntax. Typically, the larger the dataset that’s feed in, the less significant the

prior beliefs become for learning the final parameters. In rare cases, the initial setup can produce

local optimum that is impossible to climb out of. Hence it is recommended to examine several

di↵erent prior beliefs.

PP represents data and distributions with probabilistic parameters. Unlike traditional modeling

approaches that output exact estimation for their distribution’s parameters, a probabilistic pro-

gramming approach gives estimation for parameters of the distribution in distribution format. For

instance, PP may predict ”the mean of the duration variable is normally distributed around 3, with

a variance of 1.2”, as opposed to ”the mean of the duration variable is 3”. This additional infor-

mation can better capture the distribution variance and other characteristics of shape, and gives us

confidence on whether we picked an appropriate model.

We implemented a five factor model using probabilistic programming. Essentially, we are pre-

dicting two things, the number of sessions in a day, and the duration of an average session. We

used Python PYMC3 as our API library. PYMC3 uses next-generation Markov Chain Monte Carlo

sampling algorithms such as the No-U-Turn Sampler (NUTS) to sample its probability distribution

[8]. Essentially, it constructs a Markov Chain that has the desired distribution at its equilibrium

distribution, and uses Monte Carlo simulations to reach the approximation equilibrium. We can

think of MCMC as similar to gradient descent in neural nets, which is a way of estimating the

optimal parameters for the distribution.

The pros for using PYMC3 include fast inference engine and simplicity to switch between distri-

butions. PYMC3 o↵ers NUTS and Hamiltonian Monte Carlo sampling, which works well on high

dimensional and complex posterior distributions and allows complex models to be fit without spe-

cialized knowledge on fitting algorithms [8]. For instance, one can easily model the start time for

40

each session as a normal distribution in PYMC3. Later, if one decides that a exponential distribution

fits better, s/he can easily specify the desired shape for start time again.

Figure 13: An example PP output using PYMC3.

In the example PP output above, A is the distribution of start times of a typical session, which

is modeled as normal. We see that the mean is normally distributed around 12.033 with � of

approximately 6. The right column shows each sampled µ and � values over the 500 sample Monte

Carlo trials. The right column also shows convergence of the parameters. We see that the sigma

and x-intercept values converged within 20 iterations.

With this approach, we implemented a duration prediction as a combination of two normal

distributions, with a switch point. Switch point happened at 1800s, where the later normal has

mean 3466 second, the earlier normal has mean 3.53 seconds. This approach is done on the general

user population, hence it remains unclear what exactly are the factors that can cause the switch

between long and short durations.

41

Notably, we spent a lot of time in vain tweaking around the API to analyze more sophisticated,

multiply dependent models. Please see the challenges section to see the lessons learnt related to

PYMC3 and probabilistic programming.

Summary In this chapter, we used various modeling techniques to evaluate some relevant param-

eters for network transition.

• We utilized k-means clustering algorithm to identify three groups for the users.

• We used regression to predict the average duration of each session, and to predict the average

number of sessions per day for each user.

• We used neural nets to predict whether a duration is long, medium length, or short.

• We used probabilistic programming to implement a duration distribution estimation as a com-

bination of two normal distribution.

42

5 Approach Comparison

This project gives the author a much more thorough understanding on what approaches are plausible

for a networks dataset. We explored clustering algorithms, regressions, neural nets, and probabilistic

programming.

We evaluate the pros and cons of the di↵erent approaches along three dimensions: prediction

accuracy, speed of convergence, relevance to dataset.

5.1 Speed

In general, regressions are the fastest due to the simplicity of its models. A typical logistic regression

finishes in less than 30 seconds, whereas training of a million entries in a one-layer feed forward

neural net of 10 hidden nodes can take up to 10 minutes. Clustering varies its speed of convergence

depending on the exact method. The gap-statistic-enabled K-means algorithm is relatively fast and

takes less than a minute to converge. The specific probabilistic programming approach we took only

tried to infer the switch point and took relatively short time to converge. In general, because PYMC3

used a Monte Carlo approach as opposed to solving stochastic gradient descent as in neural nets, PP

outputs quickly adjust to reach an approximate solution. Neural net remains the slowest approach

of all. This is understandable due to hidden layers introducing extra parameters to optimize, and

activation calculations introduce additional exponential calculations to be made.

43

Approach Real Runtime seconds

K-means Clustering 47

Ridge Regression 0.003

Logistic Regression 28

Neural Net 633

Probabilistic Programming 15.6

Table 6: Complexity of di↵erent approaches.

5.2 Prediction Accuracy

Approach Prediction Accuracy

Ridge Regression 7%

Logistic Regression 67%

Neural Net 84.5%

Table 7: Prediction Accuracy of di↵erent approaches.

We compared prediction on duration for the di↵erent approaches. In general, a sophisticated

neural net requires a relatively small number of features by compensating with more hidden layers

and more nodes in each hidden layer. It also produces the highest output.

A sophisticated neural net still remains the most fruitful approach. However a neural net de-

creases the importance of human decision in creating the models. If the human has no idea what

is happening in the dataset, then a neural net may better assist him to predict new data points.

However, such an approach is di�cult to reverse-engineer the reason, and it does not tell causa-

tion apart from correlation. Two features may be both positively a↵ecting a tag, but really one of

the two causes the other and the positivity of the tag. So, if we use a graphical model approach,

44

i.e. bayesian probabilistic approach, we can more accurately specify the logical dependencies of the

features. Regressions in general trade speed for accuracy.

5.3 Relevance to Dataset

Ceteris paribus, we see that neural nets perform the best because it introduces hidden layers and

extra parameters. This suggests that in all trainings we did, we did not have enough features and

parameters to correctly tune for the results. The fundamental di↵erence in the di↵erent approaches

we take involve how much we understand the dataset. The specific probabilistic programming toolkit

we used requires knowledge on the structure of the dataset. We need to additionally understand the

structural dependence of the parameters.

Regressions do not perform as well, as we mostly tried out linear approaches. The more so-

phisticated logistic regression does well in predicting categorial data, but gets beaten by neural

nets.

This is somewhat due to the feature size of our dataset. For each entry, we had at most 10

parameters. Those 10 parameters do not necessarily have enough decision power over the prediction

values we wanted to predict. Therefore, a neural net may be a better approach, as it introduces

enough hidden parameters. Alternatively, we could introduce hidden intermediate nodes in the

graphical models and connect them with corresponding nodes. However, such an approach proves

to be overly complex beyond PYMC3 abilities. This alternative approach introduces additional

di�culty for us to understand the model. Because we have to specify exactly how the two parameters

are related, whether linear, polynomial, exponential, or some other functions, we can understand

the model better, but it burdens us to come up with the correct modeling.

We see that PYMC3 was better at predicting the shape of a given distribution, rather than

clarifying hierarchical feature dependence. It is good at picking out the model in the following way:

45

we have several distributions of what the coin’s true face probability may look like. We want to

know which model is more likely. We used probabilistic programming to infer using a list of runs,

we found out that the coin is most likely fair.

Summary We compared and contrasted the various modeling techniques for speed, prediction ac-

curacy, and relevance. We see that the neural net has the highest prediction accuracy, the regression

and probabilistic programming methods are fast, and we argued that neural net is an appropriate

method for this dataset due to the small number of features.

46

6 Toolkit

In this chapter we list and discuss the software we used for carrying out this research. We make

arguments on why we picked the specific software, if necessary.

Multiple tools were used in carrying out this research. A quick list gives Python Pandas[25],

TensorFlow[26], PYMC3[8], scikit-learn[27].

We decided to use Python as our main programming language. Python is well accepted for data

analysis in the research community and the researchers have mastery on Python.

We decided to use a probabilistic programming approach. The advantage of using probabilistic

programming is that the inference engine is readily implemented in the API, as opposed to burden

the researchers to implement the inference algorithm from scratch[2, p.4]. This additional time gives

researchers more time to explore di↵erent models.

There are many probabilistic programming tools available currently, many under active develop-

ment. The researcher of this project wanted to pick a tool that has a relatively small learning curve,

a stable release and a sophisticated support platform. Hence all separately written programming

languages were not out of scope. We chose to use Python PYMC3 for our probabilistic program-

ming API. PYMC3 APIs are easy to pick up. PYMC3 o↵ers many general discrete and continuous

distributions, and the option to specify our own distribution.[8] While PYMC3 only supports a set

of common inference methods, we argue that although other inference methods could be faster,

optimization of speed is of minimal importance in training our relatively small dataset.

There are several alternative Python APIs for probabilistic programming, and we list their pros

and cons.

47

PP Language Learning Curve Alpha Version Software Support Platform

PYMC3 Low No Mainly Python, Stackoverflow

Stan[28] Low No Mainly R, Stackoverflow

Venture High Yes Correspondence with developers

Picture High Yes Correspondence with developers

Table 8: Comparison of various Python probabilistic programming APIs.

Both PYMC3 and Stan (pyStan) are python APIs, Venture and Picture are new programming

languages developed at MIT specifically for probabilistic programming. All softwares are under

active development, but PYMC3 has released multiple stable versions since 2013. Stan has been

along for equally long, but it’s mainly a R interface that has provided a Python package [12].

Therefore we picked PYMC3 as our probabilistic programming language.

Pandas is a widely accepted data processing API in python data analysis and our researchers

have gained previous proficiency in it. TensorFlow and scikit-learn are typical bundles for writing

neural nets and regressions in aiding the data analysis.

Summary We discussed the software choices we made throughout the research. All our software

packages were based on python. We used pandas for data processing, TensorFlow for neural nets,

PYMC3 for probabilistic programming, and scikit-learn for regression.

48

7 Challenges

In this chapter we discuss the challenges faced in implementing the software packages and writing the

models. We also discuss the limits we found in the dataset. In short, the dimension of the dataset,

the vagueness of transition, and the limits to current technology were all challenges we faced in this

research.

7.1 Challenges in the Dataset

First is the choice of the dataset. The raw dataset is a sequence of IMAP log entries. Please refer

to figure 2 for a sample of the typical sample entry. The main challenges faced in the dataset are

• Each entry has limited number of features.

• Network tra�c trace datasets normally provide limited user identity.

• Ending time for a session is ambiguous.

We had 12 million entries(lines) of sessions, as shown in figure.

Figure 14: Sample session data, each line is a session. The column headers are session start time,
session end time, IP, device, user ID.

49

This dataset contains many entries, but each entry has a limited number of features, so we went

on a pursuit for other relevant features. We included indicator variables for Apple and Android. We

included duration of each session, the day of the week, and the city, country, ISP of the IP address.

We included an indicator variable for cellular vs. wifi network. Such features were meant to 1. help

us achieve higher accuracies in prediction. 2. filter the dataset so that bad data points (missing

columns) were dropped. While these variables are relevant, none of them is decisively important for

our prediction purposes.

This brings us to the second point that the dataset provides no user identity. This is a tradeo↵

we had to make. Network tra�c traces and email logs are frequently used, but normally do not

provide characteristics of users. We used a clustering algorithm to break the dataset into groups,

but the algorithm output separates the users by the results of distribution, not by a reasonable

feature that gives a less direct answer. It would be more relevant if we can identify the users better

prior to clustering. Data such as gender, age, whether s/he is a sta↵ member, years s/he’s been

on campus can all be beneficial to target the model to a specific user group. For instance, we can

test hypotheses such as 1. First year students transition less often (since they are often found in

di↵erent activity venues). 2. Older population generally transition less (because they have a more

fixed routine schedule).

Another particular challenge in this dataset is that the exact ending time for a session is hard to

define, unless we see that the connection is reset by peer. In processing our datasets, we made the

assumption that a user is on the network unless this network connection is explicitly closed or reset.

This can introduce bias for users who were just on the network for a very short period of time but

did not detach from the network as seen in logs. We make the argument that from the perspective

of network design: since incoming data will still be directed to this idle but attached address, it is

reasonable to consider the user as being on the network. This is the tradeo↵ we had to make for

picking this server-side data. It would be di�cult to track idle network connections unless we install

50

a client-side application to record when the user actively access the app.

7.2 Challenges in Technology

Another aspect of challenge is the technology. In particular, the probabilistic programming toolkit

was challenging to maneuver. We chose to use PYMC3 for our API for probabilistic programming

because we believed that probabilistic programming allows for flexibility in creating new models,

but this API has its limits.

One can break down ease of changing models in two cases:

• How easy is it to add new features?

• How easy is it to change the distribution shape of current features?

For the API we used, it is easy to change the distribution of a feature, but not so much to add a

hierarchically connected feature. In PYMC3, we can easily change the shape of the distribution to

binomial, normal, Poisson, etc. due to its general inference engine. The NUTS and HMC sampler

can easily readapt to the di↵erent shapes that we provide as the inference methods were already

tuned. For each distribution class, a specific logp method is written to facilitate the parameter

estimation gradient calculations in NUTS and HMC sampling. Therefore it is very easy to switch

models by means of changing distribution.

Figure 15: Exponential distribution implementation in PYMC3.

Many common distributions have readily implemented classes in PYMC3. For each class, a

51

random() method generates samples from this distribution, and a log probability method logp is

implemented for fast inference. We can also specify our own distribution by creating a class in this

similar format.

It is easy to add new features, as long as the new feature is independent of other features. It is

possible to do hierarchical bayesian modeling in PYMC3, but the API was not tuned for hierarchical

inference. PYMC3 is meant to help approximate what the true distribution looks like based on feed-

in sample data, but not to understand how each feature is a↵ecting the distribution. We wanted to

approach the problem by understanding the features’ e↵ect on the distribution, using PYMC3.

We note that there were examples that implemented hierarchically dependent models using

PYMC3 [24], but the model is minimally hierarchical. We can implement a linear regression using

this approach, given the features are independent. If the parameters are dependent themselves, it

is in the user’s responsibility to figure out which parameter to infer first. If we change one node,

we have to rewrite all other variables that is dependent on that node. This tweaking of the API

required hacks that slowed down the progress and incurred bugs that were not informative and

di�cult to fix. For graphical models with multiple-level dependencies, if the user failed to specify

the inference order, the inference engine returns errors for not being able to infer hierarchically

dependent variables. This is a particular downside of PYMC3, by providing fast inference through

Monte Carlo simulations, it sacrifices flexibility in structural dependency. In retrospect, a di↵erent

API might serve us better in this specific approach we wanted to take.

On the other hand, in a typical neural network implementation, we can specify an extra feature

by adding in another column to the input vector / matrix. Even though the nodes can be dependent

themselves, the user does not have to specify them. The actual causal dependence is not resolved,

but the correlation will be discovered in the hidden layers, by ways of convolutional layers for

dimensionality reduction. Such is not possible in PYMC3. We have to specify the graphical model

52

for the variables first.

Another thing we learnt from applying probabilistic programming techniques is that the model

needs to be clearly specified. The human expert needs to know exactly how A and B are linearly,

exponentially, or otherwise dependent. In the ideal scenario, once the human feeds in data, the

machine understands all the hierarchies and dependencies in data on its own, via a selection of

possible dependence functions. This belongs to the field of structural learning, which is a more

di�cult problem. Tenenbaum [9] writes on the current state of hierarchical learning. In short, not

only is it doing hill climbing in parameter space, but also in modeling space. The current technology

seems to have limited grasp on hierarchical structural learning.

Summary We discussed two main challenges faced in this research, the dataset and the technology.

The main points are

• The processed dataset has limited number of relevant features for prediction.

• The raw data has ambiguity on when exactly the server closes the connection.

• PYMC3 as an API is good for modeling di↵erent shapes of the distribution, but not good for

inferencing hierarchically dependent models.

• The exact functional relation between the variables needs to be specified in a PYMC3 imple-

mentation, which could be tedious.

53

8 Contributions and Conclusion

8.1 Contributions

The contributions of this thesis include

• Evaluated current models and built new models for network topological mobility.

– Evaluated Markov chain models to identify areas of improvement

∗ Markov chain produced normal distributions of daily transitions, as opposed to ex-

ponential distribution in real data.

∗ Markov chain failed to capture the e↵ect of other features.

– Utilized k-means clustering algorithm with gap-statistic to acquire three clusters of users,

mainly separated by duration distribution.

– Evaluated network mobility by user clusters. Implemented Markov transition probability

matrices for each cluster.

• Use and demonstration of a suite of tools for broad exploration possibility.

– Exploration of new modeling techniques and their application to networking challenges.

– Probabilistic programming to model the duration distribution as a combination of two

independent normal curves.

– Ridge regression with 7 features to predict average number of sessions. Experimented

with various regularization constants.

– Logistic regression with 38 features to predict duration tags.

– One layer feedforward neural net with 7 input nodes to predict durations tags. Experi-

mented with various number of hidden nodes.

54

• Compared and contrasted the di↵erent techniques and tools used in the process.

• Neural net has the highest prediction accuracy.

• Probabilistic programming and regressions are fast.

• PYMC3 is more suitable for models that need di↵erent shapes of distribution, rather than

resolve feature dependency.

8.2 Conclusion

Data analysis needs maturity and experience. By doing this project, we have acquired a much

deeper understanding of the procedures and priorities of data analysis. The approaches taken to

understand a dataset might be limited by the tools and dataset we have, but a good researcher can

point the research in an insightful direction. Machine learning algorithms and statistical approaches

can help provide additional understanding to the dataset if the researcher knows what factors are

important but just don’t know how exactly the factors are related. The first step in tackling a data

analysis project is to understand what exactly to model for. Then, what exactly are the features

that matter. Lastly, we pick the appropriate tools to explore.

The takeaway lessons in carrying out this thesis project are

• Start by understanding what data looks like. Evaluate whether the data distribution looks

reasonable. Decide whether to use the data or not.

• Compare and contrast various approaches for the purpose of the prediction. Proceed with

modeling.

• Find aspects the model does not capture and recurse.

55

• When faced with di�culties in modeling, take a step back and understand the limits of the

models. Understand what we know about the dataset and what we want the model to help us

find.

56

References

[1] Beverly, Robert. 2008. Statistical Learning in Network Architecture. Ph.D. Dissertation. Mas-

sachusetts Institute of Technology.

[2] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence Nature, 28 May

2015.

[3] Jacobson, Van. 2009. Networking Named Content. Retrieved May 21, 2016, from

http://conferences.sigcomm.org/co-next/2009/papers/Jacobson.pdf

[4] Ng, Andrew. 2001. On Discriminative vs. Generative classifiers: A comparison of logistic re-

gression and näıve Bayes. Retrieved May 21, 2016, from https://papers.nips.cc/paper/2020-

on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes

[5] Yang, Sookhyn. 2015. Measurement and Modeling of User Transitioning Among Networks. Re-

trieved May 21, 2016, from https://people.cs.umass.edu/⇠shyang/paper/Yang Infocom15.pdf

[6] Kulkarni. 2015. Picture: A Probabilistic Programming Language for Scene Perception. Retrieved

May 21, 2016, from http://dspace.mit.edu/openaccess-disseminate/1721.1/96620

[7] NSF NeTS FIND Initiative. Retrieved May 21, 2016, from http://www.nets-find.net/

[8] PyMC3. Retrieved May 21, 2016, from https://github.com/pymc-devs/pymc3

[9] Tenenbaum, Joshua. et al. 2011. How to Grow a Mind: Statistics, Structure, and Abstraction.

Science, 331(6022), 1279-1285. doi:10.1126/science.1192788

[10] Tibshirani, Robert. et al. 2001. Estimating the Number of Clusters in a Data Set via the Gap

Statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology) J Royal

Statistical Soc B, 63(2), 411-423. doi:10.1111/1467-9868.00293

57

[11] Finkelstein, Noam. Probabilistic Programming for Anomaly Detection. Retrieved May 21,

2016, from http://blog.fastforwardlabs.com/post/143792498983/probabilistic-programming-

for-anomaly-detection

[12] Carpenter, Bob. You’ll never guess what’s been happening with PyStan and PyMC. Retrieved

May 21, 2016, from http://andrewgelman.com/2015/10/15/whats-the-one-thing-you-have-to-

know-about-pystan-and-pymc-click-here-to-find-out/

[13] Berwick, Rob. Chomsky, Noam. 2016. Why Only Us: Language and Evolution. MIT Press.

[14] Raychaudhuri, Dipankar. MobilityFirst Future Internet Architecture Project Overview. Re-

trieved May 21, 2016, from http://mobilityfirst.winlab.rutgers.edu/

[15] NSF Future Internet Architecture Project. Retrieved May 21, 2016, from http://www.nets-

fia.net/

[16] Probabilistic programming. Retrieved May 21, 2016, from http://probabilistic-

programming.org/wiki/Home

[17] Kaelbling, Leslie. et al. 1998. Planning and acting in partially observable stochastic domains.

Artificial Intelligence, 101(1-2), 99-134. doi:10.1016/s0004-3702(98)00023-x

[18] scikit-learn 0.17.1 documentation. Retrieved May 21, 2016, from http://scikit-

learn.org/stable/modules/clustering.html

[19] NCSS Statistics Software Ridge Regression. Retrieved May 21, 2016, from

http://www.ncss.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Ridge Regression.pdf

[20] Bishop, Christopher. 2006. Pattern Recognition and Machine Learning. New York: Springer.

[21] Faraway, Julian. 2006. Extending the Linear Model with R. Boca Raton: Chapman & Hall/CRC.

[22] Hagan, Martin. 1996. Neural Network Design. Boston: PWS Pub.

58

[23] Inaba, Mary. 1994. Applications of weighted Voronoi diagrams and randomization to variance-

based k -clustering. Proceedings of the Tenth Annual Symposium on Computational Geometry

- SCG ’94. doi:10.1145/177424.178042

[24] Elbers, Danne, et al. 2014, The Best Of Both Worlds: Hierarchical Linear Regression in PyMC3.

Retrieved May 21, 2016, from http://twiecki.github.io/blog/2014/03/17/bayesian-glms-3/

[25] Pandas: Python Data Analysis Library. Retrieved May 23, 2016, from

http://pandas.pydata.org/

[26] TensorFlow Is an Open Source Software Library for Machine Intelligence. Retrieved May 23,

2016, from https://www.tensorflow.org/

[27] Scikit-learn Machine Learning in Python. Retrieved May 23, 2016, from http://scikit-

learn.org/stable/

[28] PyStan: The Python Interface to Stan. Retrieved May 23, 2016, from

https://pystan.readthedocs.io/en/latest/

59

